
Code Offloading and Resource
Management Algorithms for

Heterogeneous Mobile Clouds

Bowen Zhou

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

January 2018

School of Computing and Information Systems
THE UNIVERSITY OF MELBOURNE

Copyright c© 2018 Bowen Zhou

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author
except as permitted by law.

Code Offloading and Resource Management Algorithms for
Heterogeneous Mobile Clouds

Bowen Zhou
Principal Supervisor: Prof. Rajkumar Buyya

Abstract

The recent innovation and development of software and hardware on mobile devices
such as smartphones and tablets have made them evolve as the primary tool of our digital
life. Mobile device users have increased their demands on more PC-like user experiences
such as mobile gaming, augmented reality, and mobile version of legacy PC applications.
However, the battery lifetime remains as a weakness due to the advanced display, camera
and sensors that drain the battery quickly. Since the battery technology seems unlikely
to have a significant improvement in the foreseen future, other solutions are needed.

The heterogeneous mobile cloud paradigm emerges as a promising solution. It de-
fines a wireless, shared computing resource environment that consists of ad-hoc con-
nected mobile devices, nearby form-factor servers (cloudlets), and cloud computing ser-
vices. Mobile devices can leverage the shared resource environment to offload their com-
putation intensive tasks in order to conserve battery lifetime and accelerate application
performances. However, with such a loosely coupled and mobile device dominating net-
work, new challenges and problems emerge such as how to enable task offloading in
such environment, how to achieve minimum time and energy consumption through task
offloading and scheduling, how to maintain the service reliability and recover from fail-
ures, and how to incentivize ad-hoc mobile users to use mobile cloud offloading services.

This thesis studies algorithms and technologies to solve these problems and provides
a task offloading framework for the heterogeneous mobile cloud service. It extended the
state-of-the-art by making the following key contributions:

1. A system architecture for heterogeneous mobile cloud services and a system frame-
work implemented on Android platform to enable the mobile cloud offloading ser-
vice.

2. A context-aware offloading algorithm for individual mobile devices to make task
offloading decisions based on the context changes in the heterogeneous mobile
cloud network.

3. An optimal offline algorithm and an online algorithm based on the ski-rental frame-
work with near-optimal performance guarantee for providing task offloading and
scheduling decisions on minimizing overall task execution time, considering the
load balancing of all devices in the heterogeneous mobile cloud network as well as
the unique constraints such as battery limit and offloading enhancement.

4. A group-based fault tolerant mechanism for improving the service reliability of
heterogeneous mobile cloud offloading. It classifies mobile devices into groups

iii

based on its processing capacity. mobility, and reliability. Different fault tolerant
technologies such as checkpointing and replication are devised adaptively based
on the task offloading schedules and the specific group of machines it’s offloaded.

5. A reverse auction based incentive mechanism and an optimal offline model for in-
creasing the participation and utilization of the proposed mobile cloud offloading
services. The proposed algorithm guarantees computational efficiency, truthful-
ness, individual rationality and near-optimal auction results.

iv

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Bowen Zhou, 25 January 2018

v

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my principal supervi-
sor Prof. Rajkumar Buyya. Throughout my PhD candidature, Prof. Buyya has provided
me the continuous support with his patience, enthusiasm, and immense knowledge. His
guidance has motivated me to carry out the research works in this thesis, without which
this could not ever happen. I also thank my external supervisor Dr. Satish Srirama for his
advice and guidance on my research. I thank them for their contributions on the research
and writing of this thesis.

Besides my supervisors, I would like to thank the chair of my committee, Prof. Lars
Kulik for his kindness and advice to help me progress along my PhD candidature. I also
want to thank Dr. Rodrigo N. Calheiros and Dr. Amir Vahid Dastjerdi for their invaluable
advices and discussions during early part of my PhD studies.

I also want to take the opportunity to thank some of the current and past members
of the CLOUDS laboratory at the University of Melbourne: Dr. Adel Nadjaran Toosi, Dr.
Deepak Poola, Dr. Nikolay Grozev, Dr. Maria Rodriguez, Dr. Chenhao Qu, Dr. Ate-
feh Khosravi, Dr. Yaser Mansouri, Dr. Sukhpal Singh Gill, Jungmin Son, Safiollah Hei-
dari, Xunyun Liu, Caesar Wu, Minxian Xu, Sara Kardani Moghaddam, Muhammad H.
Hilman, Redowan Mahmud, Muhammed Tawfiqul Islam, Shashikant Ilager, TianZhang
He, Tiago Justino, and Diana Barreto for their help and friendships.

I thank the University of Melbourne for the scholarship, research training support
and facilities to let me pursue my PhD degree. My sincere thank also goes to the staff at
the School including Rhonda Smithies, Julie Ireland, Madalain Dolic for their support.

Last but not least, I want to thank my parents for the emotional support and endless
love throughout this journey and always believing in me. Their comfort and encourage-
ment have carried me on a long way through the difficulties in both my PhD candidature
and life.

Bowen Zhou
Melbourne, Australia
January 2018

vii

Preface

The thesis research has been carried out in the Cloud Computing and Distributed Sys-

tems (CLOUDS) Laboratory, School of Computing and Information Systems, The Uni-

versity of Melbourne. The main contributions of the thesis are discussed in Chapters 2 -

6 and are based on the following publications:

• Bowen Zhou and Rajkumar Buyya, “Augmentation Techniques for Mobile Cloud

Computing: A Taxonomy, Survey, and Future Directions,” ACM Computing Surveys,

Volume 51, No. 1, Article No. 13, Pages: 1-38, ISSN 0360-0300, ACM Press, New

York, USA, January 2018.

• Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Satish Narayana Sri-

rama, and Rajkumar Buyya, “A context Sensitive Offloading Scheme for Mobile

Cloud Computing Service,” in Proceedings of IEEE 8th International Conference on

Cloud Computing (CLOUD), New York City, NY, USA, 27 June-2 July, 2015, Pages:

869-876.

• Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Satish Narayana Sri-

rama, and Rajkumar Buyya, “mCloud: A Context-Aware Offloading Framework

for Heterogeneous Mobile Cloud,” IEEE Transactions on Services Computing, Volume

10, Issue 5, September/October 2017, Pages: 797 - 810.

• Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and Rajkumar Buyya,

“An Online Algorithm for Task Offloading in Heterogeneous Mobile Clouds,” ACM

Transactions on Internet Technology, Volume 18 Issue 2, Article No. 23, March 2018.

• Bowen Zhou and Rajkumar Buyya, “A Group-Based Fault Tolerant Mechanism for

Heterogeneous Mobile Clouds,” in Proceedings of the 14th EAI International Confer-

ix

ence on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQui-

tous 2017), Melbourne, VIC, Australia, November 7 - 10, 2017.

• textbfBowen Zhou, Satish Srirama, and Rajkumar Buyya, “An Auction-Based In-

centive Mechanism for Heterogeneous Mobile Clouds,” Journal of Parallel and Dis-

tributed Computing, 2018 (Under review).

x

Contents

1 Introduction 1
1.1 Motivation and Challenges . 2

1.1.1 Motivation . 2
1.1.2 Challenges . 4

1.2 Research Problems and Objectives . 6
1.3 Methodology . 8
1.4 Thesis Contributions . 9
1.5 Thesis Organization . 11

2 Literature Review 15
2.1 Introduction . 15
2.2 Overview . 20

2.2.1 Terms and Definitions . 20
2.2.2 Motivations . 22

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 25
2.3.1 Code Offloading . 26
2.3.2 Service-oriented Task Delegation . 32
2.3.3 Parallel Execution . 35
2.3.4 Opportunistic Mobile Collaboration 38
2.3.5 Task Offloading Decision Making 40
2.3.6 Task Allocation and Scheduling Decision Making 45
2.3.7 Mobility Model for Mobile Device Cloud 48
2.3.8 Fault Tolerance . 51

2.4 Taxonomy and Survey of Mobile Storage Augmentation Techniques 53
2.4.1 Mobile Storage Offloading . 53
2.4.2 Data Protection . 56
2.4.3 Data Interoperability . 59

2.5 Summary . 60

3 A Context-aware Task Offloading Decision Algorithm and Enabling Framework 61
3.1 Introduction . 61
3.2 System Architecture . 63

3.2.1 System Overview . 63
3.2.2 Framework Components . 64

3.3 Cost Estimation Model and Algorithm . 68
3.3.1 System Model and Problem Formulation 68

xi

3.3.2 Cost Estimation Models . 71
3.3.3 Context-aware Decision Making Algorithm 73
3.3.4 Failure Recovery . 78

3.4 System Design and Implementation . 80
3.4.1 Android x86 . 81
3.4.2 Offloading Method . 81
3.4.3 Execution Environment . 82

3.5 Performance Evaluation . 85
3.5.1 Experiments Settings . 85
3.5.2 Results and Analysis . 86

3.6 Summary . 92

4 Execution Optimization for Task Offloading and Scheduling 93
4.1 Introduction . 93
4.2 System and Cost Models . 96

4.2.1 Motivation Example . 96
4.2.2 Resource Models . 96
4.2.3 Workload Model . 98
4.2.4 Computation and Communication Models 99
4.2.5 Monetary Cost . 100
4.2.6 Failure Model . 101

4.3 Mobile Offloading Scheduling Problem Formulation 101
4.3.1 Mixed Integer Programming Based Offline Optimal Formulation . 102
4.3.2 Complexity Analysis . 105

4.4 Online Code Offloading and Scheduling Algorithm 106
4.4.1 Mobile Code Offloading and Scheduling Problem 106
4.4.2 Online Code Offloading and Scheduling Algorithm 107

4.5 Performance Evaluation . 111
4.5.1 Experiment Settings . 111
4.5.2 Experiment Results . 114

4.6 Summary . 124

5 A Group-based Adaptive Fault Tolerant Mechanism 127
5.1 Introduction . 127
5.2 Related Work . 129

5.2.1 Fault Tolerance in Distributed Computing 129
5.2.2 Fault Tolerance in Mobile Cloud Computing 130

5.3 System Modelling . 130
5.3.1 Application Model . 131
5.3.2 Machine Model . 132
5.3.3 Reliability Model . 132

5.4 Group-based Fault Tolerant Mechanism GFT-mCloud 133
5.4.1 Machine Grouping Algorithm . 133
5.4.2 Group-based Fault Tolerant Algorithm 138

5.5 Performance Evaluation . 141
5.5.1 Experimental Setup . 141
5.5.2 Design and Implementation of Simulator 142

xii

5.5.3 Evaluation Results and Analysis . 144
5.6 Summary . 153

6 A Reverse Auction Based Incentive Mechanism 155
6.1 Related Work . 158

6.1.1 Incentive Mechanisms in Mobile Opportunistic Computing 158
6.1.2 Incentive Mechanisms in Mobile Cloud Computing 159

6.2 System Model and Problem Formulation 160
6.2.1 System Model . 160
6.2.2 Problem Formulation . 163

6.3 The Incentive Mechanism . 167
6.3.1 The Greedy Reverse Auction . 167
6.3.2 Failure Recovery and Penalty Policy 170
6.3.3 Economic Property Analysis . 170

6.4 Performance Evaluation . 172
6.4.1 Simulation Settings . 172
6.4.2 Numerical Results and Analysis . 174

6.5 Summary . 183

7 Conclusions and Future Directions 185
7.1 Conclusions and Discussion . 185
7.2 Future Directions . 188

7.2.1 Context Aware Management of Resources 189
7.2.2 Quality of Service Management . 189
7.2.3 Security and Privacy . 189
7.2.4 Internet-of-Things and Fog Computing 190
7.2.5 Container-based Services . 190
7.2.6 Virtual Reality, Augmented Reality and Artificial Intelligence on

Mobile Devices . 191
7.3 Final Remarks . 192

xiii

List of Figures

1.1 An overview of the heterogeneous mobile cloud environment 3
1.2 Thesis organization . 11

2.1 Typical modules of a heterogeneous mobile cloud system framework . . . 18
2.2 Cloud service models . 21
2.3 A thematic taxonomy of software techniques for mobile cloud augmentation 25
2.4 Taxonomy of computation augmentation techniques 26
2.5 Code offloading concept . 27
2.6 Layers of OSGi programming model [9] . 34
2.7 Taxonomy of decision making techniques 39
2.8 Taxonomy of supporting techniques for computation augmentation 48
2.9 Taxonomy of mobile storage augmentation 55

3.1 Main components of the framework . 65
3.2 Execution dataflow: 1) sending offloading request to the decision engine,

2) collecting context parameters from context monitor, 3) get information
of available cloud resources, 4) Task Manager starts once the decision is
made to offload, 5) Communication Manager divides the jobs into subtasks
for parallel processing, 6) Offload to cloud resources for remote execution,
7) pause until receiving the result, 8) aggregate results from parallel pro-
cessing and store the result of execution time and energy consumption in
database, 9) and 10) send result back to device for presentation 82

3.3 Overall time and energy consumption for each workload under different
policies . 87

3.4 Task processing time and offloading overhead of workload S H under lo-
cal only(L), time sensitive(T), energy sensitive(E) and time energy(TE) poli-
cies . 88

3.5 Task processing time and offloading overhead of workload B H under dif-
ferent policies . 89

3.6 Performance under available resource changing conditions 90
3.7 Performance under different network conditions 91

4.1 Makespan and running time of the offline optimal approach 114
4.2 Performance of OCOS algorithm with different task data size 115
4.3 Performance of OCOS algorithm for tasks with different computing re-

quirements . 117
4.4 Makespan with different Weibull Distribution (α: shape, β: scale) 119

xv

4.5 Performance comparison of different offloading strategies 121
4.6 Effect of network bandwidth on the scheduling performance 124

5.1 An example of application model. Critical path is marked in red 132
5.2 The proposed fault tolerant mechanism as a standalone module 134
5.3 Interaction procedures of proposed fault tolerant mechanism 135
5.4 Implemented modules for the simulator . 143
5.5 Average application completion time for different weight factor cases . . . 146
5.6 Performance under different machine availability 147
5.7 Performance under different task computation requirements 149
5.8 Performance under different task data sizes 150
5.9 Scalability of GFT-mCloud with low machine availability 152
5.10 Scalability of GFT-mCloud with high machine availability 152

6.1 An example of a local mobile device network using heterogeneous mobile
cloud services . 156

6.2 Time of devising allocation results with different number of machines . . 174
6.3 Overall utility with different number of participants 176
6.4 Overall utility with different task arrival rates 177
6.5 Individual rationality of mCloudAuc . 178
6.6 Utility loss (∆U) with different bid manipulation factor δ 179
6.7 An example of one auciton process and interactions of modules in the

framework . 181
6.8 The user interface of the implemented mobile translator application 182
6.9 Comparison of task response time between local execution and using the

mobile cloud offloading service . 183

7.1 Future research directions . 188

xvi

List of Tables

2.1 Comparison of mobile cloud computation augmentation frameworks . . . 54

3.1 Notations of cost models . 70
3.2 Importance scale and definition . 75
3.3 Criteria weights for TOPSIS . 85
3.4 Experiment scenarios . 86
3.5 Workload for experiments . 87
3.6 Proportion of tasks mapped at each location under different policies (T:

time sensitive, E: energy sensitive, TE: time energy) 88
3.7 Number of each type of cloud resources . 90
3.8 Average network speed for each test case 91

4.1 List of acronyms . 95
4.2 Symbols of the HMC modeling . 97
4.3 Parameter settings for evaluation . 112
4.4 Characteristics of workloads . 112

5.1 The configuration for simulations . 141
5.2 Results of the cross validation . 145
5.3 Weight factor setting cases . 146

6.1 Symbols of the system model . 161
6.2 The configuration of simulations . 173

xvii

Chapter 1

Introduction

THE recent innovation and development on mobile devices such as smartphones

and tablets have made the smart devices evolve as the primary tool in our digital

life. According to some recent mobile industry reports [49, 50], mobile device usage has

doubled in the past three years, and has represented 70% of digital media minutes by the

end of 2016. However, the limited computing capacity of the embedded hardware can

not fulfil the mobile users’ growing expectations of applications. Moreover, the battery

lifetime remains as a weakness of the mobile devices due to the high energy consumption

from display, camera, sensors, etc. that end up draining the battery quickly. On the other

hand, the battery technology seems unlikely to have a significant improvement in the

foreseen future to keep up with the rest of the mobile hardware.

Cloud computing has gained popularity for industries as solutions for running their

web services. It enables end users to run a broad range of applications including scientific

workflows, data analytics, streaming services, etc. on the cloud services. NIST defines

cloud computing with a three-tier service model [159]. The Infrastructure-as-a-Service

(IaaS) model at bottom provides resources such as compute, storage and network. On top

of IaaS model, there is Platform-as-a-Service (PaaS) that provides application developing

and management environment. The top tier is Software-as-a-Service (SaaS) model, which

provides services through web applications to end users. In this thesis, the focus is on

the IaaS model.

Mobile cloud computing emerges as a promising solution to the issues of modern

smart mobile devices. At the early stage, mobile cloud computing is a onefold comput-

ing paradigm between a mobile device and a cloud service that enables the mobile device

to outsource the computation intensive tasks onto cloud computing resources via wire-

1

2 Introduction

less networks for execution. However, as the outsourcing data from mobile applications

increases rapidly, and the mobile devices become more powerful, network bottleneck

and lack of performance improvement degrade the effect of the mobile cloud computing.

Therefore, this thesis focuses on the new paradigm named heterogeneous mobile

clouds that aims to avert the network bottleneck and ensure adaptation to different mo-

bile cloud environments. The new paradigm introduced the mobile ad-hoc network [218]

and cloudlet [200] into the original mobile cloud computing. Figure 1.1 shows an exam-

ple of the HMC (Heterogeneous Mobile Cloud) where the mobile devices in a local area

form a wireless ad-hoc network through short-range wireless network such as WiFi, Blue-

tooth and WiFi-direct. In addition, some users also own cloudlets that are publicly con-

nectible for other mobile devices via WiFi (e.g., a café owner), and some users have sub-

scribed to the application’s cloud service with dedicated instances running in the cloud.

HMC can be applied with different availability of network mediums. The different types

of resources form a shared resource pool that enables mobile cloud offloading services.

As can be observed, the HMC environment is a dynamic computing environment that

contains heterogeneous machines and tasks, intermittent wireless networks, and context

changes.

In the remainder of this chapter, motivation, challenges, research problems of this

thesis, evaluation methodology, thesis contributions, and the thesis organization are dis-

cussed.

1.1 Motivation and Challenges

1.1.1 Motivation

Mobile devices have already seen a significant improvement with more powerful and

functional hardware such as multi-core processors, mobile graphic cards, and memory.

Nevertheless, realizing mobile cloud computing can bring numerous benefits to both

mobile device users and cloud service providers. From the user’s perspective, user ex-

perience on mobile applications and functions of mobile devices can be improved by

introducing mobile cloud computing. For cloud service providers, mobile clouds enable

a large user community to use their services. Additionally, providers can apply machine

1.1 Motivation and Challenges 3

Figure 1.1: An overview of the heterogeneous mobile cloud environment

learning mechanisms on the service data of mobile device users to further provide more

customized cloud services.

Computing capability

Despite hardware improvements seen in mobile devices in recent years, the slow pro-

cessing speed and low RAM still hinder mobile devices from providing experience rich

applications to end users [199]. Since mobile devices have been involved as part of peo-

ple’s daily activities such as social networking, office work, and gaming, they are ex-

pected to have PC approximate computing capacities. Mobile cloud computing provides

the opportunities for developers to overcome this gap and enrich their applications by

outsourcing computing-intensive tasks to cloud resources. Moreover, by migrating the

computation to other computing resources, mobile devices are released to complete light

tasks which eventually will improve the fluency of mobile devices.

Energy efficiency

One of the most urgent technical challenges for mobile devices is battery life. Currently,

lithium-ion batteries used on mobile devices can only supply few hours of power for

4 Introduction

extensive computing. As more powerful processors, bigger displays and different types

of sensors are installed on mobile devices, larger energy consumption is expected. How-

ever, the battery manufacturers are only able to increase the battery capacity by 5% annu-

ally [192]. Multiple efforts have been provided by phone manufacturers such as battery

saving mode that dims displays or switches off wireless interfaces when the battery level

is too low. Apparently, this type of approach neither solves the problem nor enhances

user experiences. Therefore, mobile cloud augmentation can be a promising alternative

solution that shifts the computation from mobile devices to other resources to save en-

ergy consumption on the battery.

Seamless and collaborative mobile application

With the advent of smart mobile devices, mobile users expect continuous mobile appli-

cation experiences by using mobile cloud computing services. However, the wireless

mediums that carry out data migrations are the performance bottleneck for mobile cloud

services due to their instability and accessibility. In the event of network infrastructure

failures, public cloud services may not be available, and mobile applications running

its computation intensive tasks will be interrupted. In such a case, an ad-hoc network

of mobile devices as a collaborative resource pool can be an alternate solution. Another

example is the mobile social network in proximity (MSNP) [31], which enables mobile de-

vice users to interact with other users nearby via peer-to-peer wireless communications

and complete tasks collaboratively.

1.1.2 Challenges

The trends of utilizing heterogeneous computing resources and multiple types of wireless

networks in mobile cloud augmentation bring many challenges. We present the major

challenges related to techniques used in realizing mobile cloud augmentation systems.

Outsourcing computation

First, how to outsource the computation is one of the main challenges in the mobile cloud

computing. Specifically, selecting the appropriate augmentation approach based on the

1.1 Motivation and Challenges 5

characteristics of heterogeneous cloud resources is a non-trivial task. For instance, code

offloading is one of the common approaches for outsourcing mobile tasks to cloud vir-

tual machine (VM) based resources, while remote procedure calling is more suitable for

SOA-based task integration. A few existing works such as MAUI [52], ThinkAir [122],

CloneCloud [43], MuSIC [184], Cloudlet [200] have been proposed to solve the issue, but

the efficient use of heterogeneous computing resources are yet to be studied more com-

prehensively.

Unstable wireless communications

Due to unique characteristics of wireless communication techniques, the network through-

put, signal range, and connection stability can be downgraded by environmental changes

like signal interference comparing to the wired networks. Another issue of wireless net-

works in the mobile cloud computing environment is the channel capacity. As the num-

ber of mobile device users grows, the service level agreement (SLA) regarding network

performances is at risk of being violated. Therefore, handover strategies and seamless

connection in case of a network SLA violation need to be studied when developing sys-

tems for mobile cloud augmentation.

Mobile device mobility

The mobile device management is vital to the performance of the mobile cloud augmen-

tation system. On the one hand, the mobile device movement, together with the unstable

wireless networks, can cause service failures in the mobile cloud augmentation systems

frequently. On the other hand, the performance of the certain types of cloud resources

like mobile device cloud (i.e., mobile ad-hoc networks) depends on routing protocols that

are affected by the mobile device mobility. As a result, mobility management and fault

tolerance need to be considered to provide a reliable mobile cloud service. The location-

based device mobility prediction under different user context is another issue that needs

to be investigated.

6 Introduction

Context-aware augmentation decision making strategies

Outsourcing the computation to cloud resources is not always beneficial because the con-

text of the mobile cloud environment changes rapidly. As we discussed above, the device

mobility and unstable wireless networks are the main reasons that cause the change of the

context. Moreover, the heterogeneity of the cloud resources and mobile applications can

significantly affect the performance of the augmentation. For example, in computation

outsourcing such as code offloading, transferring a significant amount of data for remote

execution may consume more time and energy than running it on the mobile device itself.

Instead, offloading this type of computation to a nearby mobile ad-hoc network may gain

benefits from parallel execution and delay-free network transmission. Hence, it is neces-

sary to develop augmentation decision making strategies to achieve context-awareness

of the mobile cloud augmentation systems.

User participation and fairness

Since heterogeneous mobile cloud services leverage the computing power of the ad-hoc

network of mobile devices, each mobile device using the service should share its own

computing resources for other participants to outsource. Therefore, mobile users may

be discouraged from using the HMC services due to the concern of battery lifetime and

privacy. Also, the HMC service should prevent malicious users from gaining extra bene-

fits by unfair participation. As a result, it is important to design an incentive mechanism

that encourage mobile users to participate in the HMC environment with fairness and

rationality.

1.2 Research Problems and Objectives

This thesis focuses on the task offloading service using the heterogeneous mobile cloud

environment. The target of the research is the execution cost optimization of the mobile

tasks for smart mobile devices with the consideration of load balance and fault tolerance

of the entire heterogeneous mobile cloud offloading service environment. In order to

provide solutions to the above-mentioned challenges in respect to the thesis target, the

1.2 Research Problems and Objectives 7

following research problems are defined and investigated.

• How to identify computation intensive tasks of a mobile application and enable

task offloading to HMC environment? A mobile application commonly consists

of multiple functions that work together in sequence or parallel to deliver the ser-

vice. Some of the functions can only be carried out natively on its running mobile

device, e.g., user inputs, while other functions can either be executed locally or on

remote computing resources, e.g., photo and voice processing. Also, different func-

tions require different computation, which affects the performance of the whole

application. In addition, since the code is offloaded via wireless mediums, the time

and energy cost of the data communication as well as the selection of the avail-

able wireless medium need to be considered. Therefore, in order to offload these

computation intensive functions, an offloading technique is needed to fulfil these

needs.

• How to schedule the offloading tasks among the different computing resources

in the HMC environment with the consideration of the application execution cost

optimization? The execution cost of a mobile task includes the execution time and

the energy consumption. Since the computing resources (i.e., mobile devices and

cloud resources) are heterogeneous, a mobile task requires different execution cost

on different computing resources. Therefore, a task offloading and scheduling algo-

rithm for the HMC environment should be designed to decide the task offloading

locations and schedule the offloaded tasks in respect to system load balancing and

cost optimization.

• How to improve the system reliability of HMC? Service reliability and fault tol-

erance are among the most challenging issues of distributed systems. Since HMC

environment consists of different mobile devices and wireless networks, it is more

challenging to maintain the system reliability since the conventional fault tolerant

mechanisms usually focus on systems with homogeneous machines connected by

wired networks. Hence, a novel, lightweight fault tolerant mechanism is required

to adapt the heterogeneity of the HMC system and cooperate with the offloading

logics of the system to maintain its offloading benefits.

8 Introduction

• How to incentivize the mobile users to participate and ensure a fair participa-

tion? The success of the proposed HMC services depends on the participation of

mobile users and their shared computing and cloud resources. Therefore, in order

to provide a complete service framework of the HMC system, an incentive mech-

anism is of interest to provide a fair and competitive environment in which the

mobile users can be encourage to participate and get benefits from sharing their

redundant computing resources.

1.3 Methodology

All the approaches to the above-mentioned research problems are developed and studied

following the methodology of 1) system modelling, 2) problem formulation, 3) algorithm

designing, and 4) performance evaluation and numeric results analysis. The system mod-

elling provides the abstraction of the HMC system environment, which enables the re-

search problem to be formulated in the mathematical form based on the models. Then

the solution can be proposed by designing algorithms to solve the problem formulation.

Finally, the proposed algorithms are tested with either synthetic or real-world workloads

and traces to prove the effectiveness on solving the research problems.

The proposed approaches including algorithms and mechanisms are evaluated using

both simulations and implemented system frameworks. In order to evaluate the per-

formance of the approaches in practice to show the feasibility, a prototype of the pro-

posed framework is implemented on the Android platform to test the algorithms and

approaches with real mobile applications including a mobile optical character recogni-

tion (OCR) application and a mobile chess game application.

The evaluation on the implemented system is restricted in small scale due to the lim-

ited number of mobile devices available for use. Therefore, simulations are used to eval-

uate the proposed approaches for large-scale system settings. Due to the lack of the real-

world workloads for the research problems, the workloads used in the simulations of this

thesis are generated by profiling task executions of different mobile applications like the

OCR application. Each application is profiled on the method level to obtain parameters

such as computation requirements, data size, etc. using the Android Studio. In addition,

1.4 Thesis Contributions 9

real-world traces including CRAWDAD traces [123] and MIT Reality Mining datasets [62]

are adopted to capture the mobile device movements. Corresponding simulation tools

and environment are developed to conduct the simulations. Results are compared with

baseline algorithms that have been previously developed in the literature.

1.4 Thesis Contributions

In order to solve the research problems, this thesis made the following key contributions:

1. A taxonomy and survey of the state-of-the-art computing and storage augmenta-

tion technologies for mobile device using mobile cloud computing.

2. A system framework named mCloud that enables mobile task offloading for the

heterogeneous mobile cloud system.

• The definition of the heterogeneous mobile cloud environment.

• The design of the framework architecture and module interactions.

• A technique based on Java Refection to enable task offloading for mobile ap-

plications

• A context-aware decision making algorithm based on multi-criteria decision

making method for providing task offloading decisions on whether to offload

and the type of wireless medium used to offload.

3. An online task offloading and scheduling algorithm with the consideration of load

balancing and offloading gain of all the computing resources to provide near-optimal

offloading schedules for the heterogeneous mobile cloud system.

• The definition and formulation of the mobile cloud offloading and schedul-

ing problem (MCOSP) in heterogeneous mobile clouds to provide global opti-

mal solutions on whether to offload a mobile task and its execution schedule

among the computing resources.

• An offline solution of MCOSP based on mixed linear programming. The of-

fline optimal solutions are obtained using brand-and-bound optimization al-

gorithm.

10 Introduction

• An online scheduling algorithm based on ski-rental framework to provide

competitive task offloading schedules and lightweight process for mobile de-

vices in real-time.

4. A group-based fault tolerant mechanism, GFT-mCloud, to improve the system reli-

ability of the HMC offloading services and maintain the offloading benefits gained

from task offloading.

• The mechanism works as an add-on module to the existing mobile cloud of-

floading frameworks (e.g. the proposed mCloud).

• A machine grouping algorithm based on decision tree method to dynamically

classify computing resources such as mobile devices and cloud instances to

multiple groups based on different criteria and can be expended.

• An adaptive fault tolerant algorithm that takes task offloading schedules as

inputs and generates different fault tolerant policies based on the schedules

and the machine groups that the task is offloaded.

5. An incentive mechanism to encourage mobile users to participate in the HMC

offloading services and get rewards from sharing their redundant computing re-

sources.

• The offloading service is formulated as an offloading market where there are

resource sellers who want to sell their redundant resources for the offloaded

tasks, and resource buyers who wish to buy the resource offerings and offload

their tasks.

• A greedy reverse auction-based algorithm to allocate sellers’ offerings to buy-

ers’ offloading requests, and a price determination algorithm to decide the

price paid from buyers to sellers. The algorithms guarantee computation effi-

ciency, truthfulness, and individual rationality.

• A prototype implementation of the incentive mechanism based on the mCloud

framework is developed to show the feasibility of the propose mechanism in

practice.

1.5 Thesis Organization 11

Chapter 1
Motivation, challenges, Research
Problems, and Thesis structure

Chapter 2
Taxonomy and survey of mobile
cloud augmentation techniques

Chapter 3
A context-aware mobile cloud

system, mCloud, with TOPSIS-based
offloading decision making algorithm

Chapter 4
An online mobile task offloading and
scheduling algorithm for execution

cost optimization in mCloud

Chapter 5
A group-based, adaptive fault

tolerant mechanism for mCloud

Chapter 6
A reverse auction-based incentive
mechanism for offloading market

problem in mCloud

Chapter 7
Conclusion and future directions

Offloading Support Mobile Task Offloading

Figure 1.2: Thesis organization

1.5 Thesis Organization

The organization of the chapters in this thesis is shown in Figure 1.2. Chapter 2 discussed

the state-of-the-art mobile cloud augmentation techniques with a taxonomy and survey.

Chapter 3 and 4 focus on enabling the efficient task offloading services in the heteroge-

neous mobile cloud system. Chapter 5 and 6 focus on the supporting services including

fault tolerance and incentive strategy for a complete mobile cloud offloading service. The

core chapters are derived from the conference and journal publications completed during

my PhD candidature. The remainder of this thesis is organized as follows:

• Chapter 2 presents a taxonomy and survey on the state-of-the-art augmentation

technologies adopted in the mobile cloud computing in terms of both computing

capability and mobile storage. The chapter is partially derived from the following

12 Introduction

publication:

– Bowen Zhou and Rajkumar Buyya, “Augmentation Techniques for Mobile

Cloud Computing: A Taxonomy, Survey, and Future Directions,” ACM Com-

puting Surveys, Volume 51, No. 1, Article No. 13, Pages: 1-38, ISSN 0360-0300,

ACM Press, New York, USA, January 2018.

• Chapter 3 proposed a task offloading framework along with the offloading enabling

technology and a context-aware mobile-to-cloud offloading decision making algo-

rithm. The chapter is derived from the following publications:

– Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Satish Narayana

Srirama, and Rajkumar Buyya, “A context Sensitive Offloading Scheme for

Mobile Cloud Computing Service,” in Proceedings of IEEE 8th International Con-

ference on Cloud Computing (CLOUD), New York City, NY, USA, 27 June-2 July,

2015, Pages: 869-876.

– Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Satish Narayana

Srirama, and Rajkumar Buyya, “mCloud: A Context-Aware Offloading Frame-

work for Heterogeneous Mobile Cloud,” IEEE Transactions on Services Comput-

ing, Volume 10, Issue 5, September/October 2017, Pages: 797 - 810.

• Chapter 4 enhances the offloading decision algorithm in Chapter 3 by providing

an online task offloading and scheduling algorithm that considers load balancing,

context changes, and offloading benefits for the entire HMC environment. This

chapter is derived from the following publication:

– Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and Rajkumar

Buyya, “An Online Algorithm for Task Offloading in Heterogeneous Mobile

Clouds,” ACM Transactions on Internet Technology, Volume 18 Issue 2, Article

No. 23, March 2018.

• Chapter 5 demonstrates the group-based fault tolerant mechanism, GFT-mCloud,

which is designed as a standalone module that can work with existing mobile cloud

offloading solutions to adaptively provide different fault tolerant policies based on

1.5 Thesis Organization 13

task requirements and machine classifications. This chapter is derived from the

following publication:

– Bowen Zhou and Rajkumar Buyya, “A Group-Based Fault Tolerant Mecha-

nism for Heterogeneous Mobile Clouds,” in Proceedings of the 14th EAI Interna-

tional Conference on Mobile and Ubiquitous Systems: Computing, Networking and

Services (MobiQuitous 2017), Melbourne, VIC, Australia, November 7 - 10, 2017.

• Chapter 6 proposes a reverse auction-based incentive mechanism to encourage mo-

bile users to participate in the HMC offloading service with the guarantee of com-

putation efficiency, truthfulness, and individual rationality for each participant.

This chapter is derived from the following publication:

– Bowen Zhou, Satish Srirama, and Rajkumar Buyya, “An Auction-Based In-

centive Mechanism for Heterogeneous Mobile Clouds,” Journal of Parallel and

Distributed Computing, 2018 (Under review).

Chapter 2

Literature Review

Despite the rapid growth of hardware capacity and popularity in mobile devices, limited resources in

battery and processing capacity still lack the ability to meet the increasing mobile users’ demands. Both

conventional techniques and emerging approaches are brought together to fill this gap between the user

demand and mobile device’s limited capabilities. In this chapter, we first discuss the background and

key concepts in the heterogeneous and intermittent mobile cloud computing environment. Then, we

provide a comprehensive taxonomy and survey of the existing techniques and frameworks for mobile

cloud augmentation regarding both computation and storage. It focuses on the techniques aspect,

following the idea of realizing a complete mobile cloud computing system, as to provide a guide on

what available augmentation techniques can be adopted in mobile cloud computing systems as well

as supporting mechanisms such as decision making and fault tolerance policies for realizing reliable

mobile cloud services.

2.1 Introduction

RECENT years have seen the exponential development of smart mobile devices.

They have gained enormous popularity among end users with more advanced

mobile applications to enrich the user experience. However, compared to the growing

demand for more enhanced user experience mobile applications from users, mobile de-

vices are still in lack of adequate resources such as processing capability, storage and

battery lifetime to provide such applications. The gap between the mobile hardware and

users’ demand will hinder the mobile devices from providing experience-rich mobile ser-

vices.

Due to the slow development of the battery technology, mobile resource augmenta-

This chapter is derived from: Bowen Zhou and Rajkumar Buyya, “Augmentation Techniques for Mobile
Cloud Computing: A Taxonomy, Survey, and Future Directions,” ACM Computing Surveys, Volume 51, No.
1, Article No. 13, Pages: 1-38, ISSN 0360-0300, ACM Press, New York, USA, January 2018.

15

16 Literature Review

tion has been considered as a critical approach to tackling the gap. Augmentation tech-

niques for resource-constrained machines have been investigated since two decades ago.

In the early 1990s, the ideas of remote execution and inter-process communication were

introduced to help leverage the computing resources of computer clusters and manage

message passing traffic [85, 166, 212]. Remote execution aims to augment the comput-

ing capacity of resource-limited computers such as mobile devices and computers to run

computation-intensive applications in a client-server mode. However, utilizing the dis-

tributed resources can bring many challenges, including parameter marshaling, client

and service binding, and the semantics of remote invocation.

Later on, with the development of the Internet and remote execution, a new service

paradigm called Service-Oriented Architecture (SOA) is introduced. Mobile web services

(MWS) [174, 211] incorporate SOA with mobile devices to enable mobile device users

to share existing software and services on other devices to augment its capability and

conserve energy. Mobile devices in MWS can be either service clients or service providers.

Since remote execution and SOA rely on stable network connections, the performance

of these systems can be unstable. Researchers study the possibility of utilizing the com-

puting resources in the proximity (e.g., mobile devices nearby) with short-range wire-

less communications to provide an ad-hoc computing augmentation service. The earliest

idea of the wireless ad-hoc network, “packet radio” network, was introduced by Defence

Advanced Research Projects Agency (DARPA) in the early 1970s [106]. Due to the de-

velopment of the mobile device and 802.11/WiFi, the mobile ad-hoc wireless network

(MANET) was then developed in the mid-1990s to provide a self-configuring mobile de-

vice network without the requirement of network infrastructures for collaborative mobile

computing. The disadvantage of MANET is that the dynamic nature of network topology

caused by the mobility of devices requires high adaptability of the network functions.

Moreover, this type of mobile device augmentation can only provide limited resources

within the resource pool built with other mobile devices. Later, pervasive computing

[198] was introduced for a ubiquitous computing paradigm that enables computing to

migrate from any device to any other devices via any type of network as the user moves.

This paradigm essentially makes it possible to merge the computing resources of desk-

tops, servers and mobile devices to provide continuing services.

2.1 Introduction 17

Recently, cloud computing emerged as a promising computing paradigm in both in-

dustries and academia. Cloud computing aims to leverage virtualization technologies

to provide computing resources such as computation, storage, and networks as a util-

ity. The advantages such as on-demand self-service, broad accessibility, elastic scal-

ability and pay-as-you-go services make cloud computing a potential computing re-

source for mobile device augmentation. The computing paradigm that leverages cloud

computing resources to enhance the performance of resource-constrained mobile de-

vices is called mobile cloud computing. In some works, it is also described as cyber-

foraging [131], which refers to the same computing paradigm as mobile cloud comput-

ing. We use the term “mobile cloud computing” throughout this chapter and the rest

of the thesis. A significant amount of research has been proposed in this area regarding

the approaches for mobile cloud augmentation, resource provisioning and management

[52, 122, 209, 238, 242, 255]. These existing works focus on four main issues: the solutions

of leveraging cloud resources, the efficiency of outsourcing the computation, the service

availability and reliability, and the platforms for mobile cloud services.

As the hardware capabilities of mobile devices are developing rapidly nowadays,

researchers have shown that the benefits of using the public cloud as augmentation re-

sources for mobile cloud are decreasing [210], and the network conditions can be another

performance bottleneck. On the other hand, utilizing a heterogeneous mobile cloud

(HMC), namely a hybrid of mobile ad-hoc cloud, computers in proximity and public

clouds, as augmentation resources can solve the issue. However, it also brings new chal-

lenges to the mobile cloud augmentation system.

Many surveys have been given on the mobile cloud computing [1, 137, 195, 203, 205].

Shiraz et al. [203] reviewed the existing distributed application processing frameworks

for mobile devices to offload computational intensive applications to remote servers. It

presented a detailed taxonomy and survey on the offloading frameworks including ap-

plication partitioning, VM migration, partitioning granularity, migration objectives, etc.

Abolfazli et al. [1] presented a survey on the existing mobile code offloading frameworks

based on the different types of cloud-based resources, which include distant immobile

clouds, proximate immobile computing entities, proximate mobile computing entities,

and hybrid cloud. However, its main focus is on the cloud-based augmentation frame-

18 Literature Review

Figure 2.1: Typical modules of a heterogeneous mobile cloud system framework

works comparison, without a detailed classification and discussion of the techniques that

can be used for implementing a mobile cloud system. Therefore, the interoperability of

the techniques mentioned may not fit in the HMC environment. Moreover, the survey

only provided a brief discussion on the supporting techniques of mobile cloud augmen-

tation such as decision making, context monitoring, and fault tolerance. Sanaei et al.

[195] took a look into the heterogeneity in mobile cloud computing. They presented a

taxonomy of heterogeneity of mobile device and cloud on four levels for both, includ-

ing hardware, platform, features, and APIs. The existing approaches for handling the

heterogeneity in mobile clouds were discussed. However, their survey does not include

the discussion on realizing computation and storage augmentation of the hybrid mo-

bile cloud. Li et al. [137] focused on the survey of mobility-augmented cloud service

provisioning and provided a taxonomy of cell network and cloud service provisioning

mechanisms. Shuja et al. [205] focused on multimedia application oriented survey that

discussed application virtualization, dynamic binary translation techniques, and native

code offloading based mobile cloud frameworks. These two surveys provided discussion

only on specific problems, and do not meet the technical demands of the new heteroge-

neous mobile cloud systems. Different from the existing surveys, in this chapter, we first

introduce the concepts and issues of the HMC, and then we present a comprehensive

taxonomy and survey of software techniques applied in the heterogeneous mobile cloud

for both computation and storage augmentation.

2.1 Introduction 19

The taxonomy covers the software augmentation related techniques for computation

and storage and classifies with regards to implementation a heterogeneous mobile cloud

system in practice. Figure 2.1 illustrates a typical set of modules for the heterogeneous

mobile cloud system framework, where the techniques presented in the taxonomy are

needed. The HMC network consists of several HMC system powered devices. On each

HMC device, the Augmentation Engine implements the main technique for computation

and storage augmentation. The application submits offloading task requests to the Deci-

sion Engine, which makes offloading decisions based on its decision logic and the context

data observed from the Resource Monitors and Profilers. The Scheduler further schedules

the tasks upon receiving offloading decisions from Decision Engine to other HMC devices

for remote execution. The Fault Tolerant Manager module supports the task execution in

the event of failures. The Communication module deals with all the data-related trans-

mission. The taxonomy presented in this chapter is organized around modules of this

system architecture.

In summary, the main contributions of this literature review are:

• It introduces the main concepts and most challenging issues in realizing mobile

cloud augmentation systems.

• It classifies the state-of-the-art techniques and works in a taxonomy with two parts

regarding mobile computing augmentation and mobile storage augmentation re-

spectively. Each type of techniques and works is discussed with advantages and

disadvantages, as well as the suitable conditions for adopting that type of tech-

nique.

• The taxonomy is organized following the idea of necessary modules needed for

realizing a practical mobile cloud service, including outsourcing techniques, sup-

portive decision making mechanisms, resource management, service reliability, etc.

The rest of the chapter is organized as follows. We explain the relevant terms and

definitions, and the motivation of mobile augmentation in the mobile cloud computing

in Section 2.2. Then we propose the taxonomy of computing and storage augmentation

techniques and existing frameworks respectively in Section 2.3 and Section 2.4. Finally,

we summarise the chapter in Section 2.5.

20 Literature Review

2.2 Overview

Different types of approaches have been applied for mobile computing and storage aug-

mentation in mobile cloud computing. In this section, we explain the terms used in the

previous works regarding the augmentation techniques. Furthermore, we discuss the

motivations that have been targeted by the existing works.

2.2.1 Terms and Definitions

Due to the variety of techniques adopted in mobile cloud computing, we explain some

of the important terms and conceptions that will be mentioned throughout this chapter

and the rest of the thesis.

Cloud Computing

The cloud computing emerged in the recent years and gained popularity among both

academia and industries. NIST gives the definition of cloud computing as “Cloud com-

puting is a model for enabling ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks servers, storage, appli-

cations, and services) that can be rapidly provisioned and released with minimal man-

agement effort or service provider interaction. This cloud model is composed of five

essential characteristics, three service models, and four deployment models [159].”

A. Essential characteristics

On-demand self-service: Customers can quickly provision the services automatically

according to their demand (e.g., process capacity, network, and storage).

Broad network access: Customers can access the cloud service over the Internet by using

heterogeneous client platforms such as mobile devices, laptops, and workstations.

Resource pooling: The infrastructure providers pool many resources from data centers

and provide resource renting for clients in a multi-tenant service manner, with multiple

physical and virtual resources dynamically assigned upon consumer demand.

Highly scalable: The service provider can easily scale up and down with the resources

to meet user’s demand automatically or manually when needed.

B. Service models

2.2 Overview 21

Compute, Storage, Networking, VM
Management, Operating System

Application Development and
Deployment, Load Balancing, Auto-Scaling

CRM, Online Games, Scientific,
Healthcare and Enterprise Application

Platform-as-a-
Service (PaaS)

Software-as-a-
Service (SaaS)

Infrastructure-
as-a-Service

(IaaS)

Figure 2.2: Cloud service models

Generally, there are three types of service models provided by cloud service providers.

The models can be summarized in a service stack, which is shown in Figure 2.2. From the

bottom to the top, IaaS provides virtualized data centre infrastructure resources such as

compute, storage and networking. Examples include Amazon EC2, Microsoft Azure, and

Google Compute Engine; PaaS provides platforms and tools for application and other

development, testing and deployment. Examples include Majsoft Aneka and Apache

Stratos; SaaS represents the largest part of cloud services. It provides web-based applica-

tions where the backend services are managed on the cloud. Examples of SaaS applica-

tions include Facebook, Gmail, and Office 365.

C. Deployment models

Based on the difference of the administrative domain of the cloud, it can be further

referred as the public cloud for general public users, private cloud for private groups

and companies, and community cloud. The cloud computing service is adopted by a

significant amount of research work as a potential approach for resource augmentation

in mobile cloud computing.

Mobile cloud computing

In the beginning, mobile cloud computing was defined as a restricted computing paradigm

that considers interactions between only mobile devices and public cloud services. Later

on, due to the instability of mobile devices as well as wireless networks, more types of

22 Literature Review

platforms and computing resources are introduced to mobile cloud computing to achieve

seamless mobile cloud services. An overview of the heterogeneous mobile cloud service

environment is shown in Figure 1.1. Based on the previous definitions and the new de-

mands, we give the definition of mobile cloud computing as follows:

Mobile cloud computing is a computing paradigm that enables the resource-

constrained mobile devices to utilize heterogeneous computing resources (e.g.,

public clouds, private clouds, and MANETs) over multiple types of wireless

networks (e.g., cellular network, WiFi, Bluetooth, and Femtocell) to provide

mobile device users with a seamless, on-demand and scalable mobile service

that has rich user experience.

The term “cloud” in mobile cloud computing refers to multiple types of computing

resources. A brief classification of different clouds is as follows.

• Infrastructure based cloud. The infrastructure refers to public cloud services in-

cluding IaaS, PaaS, and SaaS. The mobile device only outsources its computation

and storage to the public cloud services via WiFi or cellular network.

• Cloudlet based cloud. Cloudlet refers to “trusted, resource-rich form-factor com-

puter that is well-connected to the Internet and available for use by nearby mo-

bile devices [200]”. Cloudlets are deployed as middle layer servers between public

cloud and mobile devices to reduce network latency.

• Mobile device cloud. It refers to a mobile wireless ad-hoc network (MANET),

which consists of a set of mobile devices connected to each other via short-range

wireless networks such as WiFi-direct and Bluetooth in dynamic topologies, with

no support of networking infrastructure [51]. Mobile device cloud can further re-

duce the data transmission overhead and provide augmentation services in case the

WLAN or public cloud services are unavailable.

2.2.2 Motivations

Mobile devices have already seen a significant improvement with more powerful and

functional hardware such as multi-core processors, mobile graphic cards, and memory.

2.2 Overview 23

Nevertheless, realizing mobile cloud computing can bring numerous benefits to both

mobile device users and cloud service providers. From the user’s perspective, user ex-

perience on mobile applications and functions of mobile devices can be improved by

introducing mobile cloud computing. For cloud service providers, mobile clouds enable

a large user community to use their services. Additionally, providers can apply machine

learning mechanisms on the service data of mobile device users to further provide more

customized cloud services.

Computing capability

Despite hardware improvements seen in mobile devices in recent years, the slow pro-

cessing speed and low RAM still hinder mobile devices from providing experience rich

applications to end users [199]. Since mobile devices have been involved as part of peo-

ple’s daily activities such as social networking, office work, and gaming, they are ex-

pected to have PC approximate computing capacities. Mobile cloud computing provides

the opportunities for developers to overcome this gap and enrich their applications by

outsourcing computing-intensive tasks to cloud resources. Moreover, by migrating the

computation to other computing resources, mobile devices are released to complete light

tasks which eventually will improve the fluency of mobile devices.

Energy efficiency

As the hardware on mobile devices such as display, processor and sensors become more

battery demanding, one of the most important issues smart mobile device users face

nowadays is the battery efficiency. Since the currently battery technology cannot provide

a significant performance improvement, an alternative solution needs to be considered,

and mobile cloud augmentation can be a promising solution by bringing the cloud com-

puting resources to the mobile device’s proximity to enhance its battery lifetime.

Mobile storage

In the era of big data and mobile computing, many digital contents such as photos,

videos, and large files have seen a drastic increase. Unlike the storage on PCs, mobile

24 Literature Review

devices provide only limited flash storage space despite the demands of large and elas-

tic storage from mobile applications and services. The elastic cloud storage resources

can be a solution to the lack of mobile storage. The characteristics of cloud storage such

as elasticity, on-demand, and low cost make it a potential extension to mobile devices.

However, due to unstable wireless connections and mobile device mobility, the offline

usability of mobile cloud storage augmentation is one of the challenges. Moreover, the

migration of sensitive personal data from mobile applications to cloud storage raises the

concern of data security and privacy.

Seamless and collaborative mobile application

With the advent of smart mobile devices, mobile users expect continuous mobile appli-

cation experiences by using mobile cloud computing services. However, the wireless

mediums that carry out data migrations are the performance bottleneck for mobile cloud

services due to its instability and accessibility. In the event of network infrastructure

failures, public cloud services may not be available, and mobile applications running

its computation intensive tasks will be interrupted. In such a case, an ad-hoc network

of mobile devices as a collaborative resource pool can be an alternate solution. Another

example is the mobile social network in proximity (MSNP) [31], which enables mobile de-

vice users to interact with other users nearby via peer-to-peer wireless communications

and complete tasks collaboratively.

Many research works have been proposed with different techniques to tackle above-

mentioned issues in heterogeneous mobile clouds, which include hardware augmenta-

tion technologies regarding battery [7], processor, etc. However, since our focus is on

the development of heterogeneous mobile cloud systems for mobile cloud applications,

this taxonomy covers the software augmentation technologies for HMC. A thematic tax-

onomy of the software mobile cloud augmentation techniques is depicted in Figure 2.3.

It is divided into two main categories: computation augmentation and storage augmen-

tation. For the computation augmentation, we present augmentation techniques related

to task offloading for the Augmentation Engine in Figure 2.1, decision making techniques

for devising offloading decisions for Decision Engine, with observed context monitoring

data from Context Monitor and Profiler, and supporting techniques such as scheduling

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 25

Figure 2.3: A thematic taxonomy of software techniques for mobile cloud augmentation

and load balancing, fault detection and recovery for the Scheduler and the Fault toler-

ance module. For the storage augmentation, we present the techniques related to storage

offloading, data protection, and data interoperability. The detailed taxonomies of com-

putation augmentation techniques and storage augmentation techniques are proposed in

the following two sections respectively.

2.3 Taxonomy and Survey of Computing Capacity Augmenta-
tion Techniques

One benefit of mobile cloud computing paradigm is to bring the cloud resources to the

device proximity to enhance the computing capability limited mobile devices. Multi-

ple techniques can be leveraged to augment the computing capability of mobile devices.

As shown in Figure 2.4, we will discuss the techniques in two aspects: the augmenta-

tion models and the augmentation architectures. Augmentation models, which include

code offloading models and task delegation models, provide solutions of how the com-

putation augmentation of mobile devices is realized by utilizing cloud resources. The

augmentation architecture, which includes parallel execution and opportunistic mobile

collaboration, describes the system architecture of the mobile cloud system for perform-

ing the computation augmentation. The two aspects work together to provide efficient

mobile cloud augmentation services. A detailed discussion of these techniques is pre-

sented in the next four subsections.

26 Literature Review

Figure 2.4: Taxonomy of computation augmentation techniques

2.3.1 Code Offloading

Offloading computation for remote execution is an idea that has been studied ever since

the computer network was developed. The computation offloading technology aims

at migrating the computation intensive code from resource-limited machines to remote

computing resources to accelerate the running process of the computation and reduce

the energy consumption on limited battery devices. Figure 2.5 shows a general concept

of code offloading. In a general code offloading model, computation intensive codes of

a mobile application are identified at first, and then it is evaluated by the decision mak-

ing process based on the objective of the mobile cloud augmentation service (e.g., saving

energy) to whether offload or not. Last, the code is offloaded to the remote comput-

ing resources by different types of available techniques. The code offloading technique

assumes the entire application computation originally happens on mobile devices. It en-

ables mobile devices to migrate part of the computation from resource-limited mobile

devices to resource-rich computing machines, which makes it flexible in terms of out-

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 27

Figure 2.5: Code offloading concept

sourcing. However, the disadvantage of code offloading is that it requires developers

to identify and partition the part of the computation to offload, which is a non-trivial

task and may impose unnecessary overhead for mobile devices. Various code offload-

ing approaches have been proposed and applied based on various programming models

of the mobile applications. The approaches can be classified into four categories: parti-

tioned offloading, VM migration, mobile agents based offloading, and replication based

offloading.

Partitioned offloading

For partitioned offloading methods, only the computation intensive part of mobile appli-

cations is identified and offloaded to the remote servers. The conventional client-server

computing model is introduced to perform the partitioned offloading for HMC augmen-

tation. Resource-limited mobile devices are considered as thin clients, while the remote

computing resources that execute the offloaded codes are considered as resource-rich

servers. The application is partitioned either statically before the runtime or dynamically

at runtime.

In the static partitioning, offloading partitions are decided and hard-programmed in

the application by the developers. As a result, there is no overhead imposed by deciding

28 Literature Review

partitions when the application is running. However, static partitioning requires the com-

prehensive program running knowledge for developers which is a non-trivial task. Also,

the static partitions make this offloading approach less adaptive to a dynamic computing

environment like mobile clouds. Therefore, static partitioning is barely adopted in mo-

bile cloud augmentation. To fix this issue, dynamic partitioning is introduced. Different

from static partitioning, dynamic partitioning analyses the processes of an application at

the runtime with the assistance of the offloading decision logic. Most commonly used dy-

namic partitioned offloading techniques are Flow-based programming, .NET common

language runtime programming, Java reflection, and distributed shared memory.

Flow-based Programming (FBP). “FBP is a data flow programming paradigm that

models applications as modulized processes connected with each other by pre-defined

communication connections [161]”. These modules can be reconnected with each other

to develop various types of applications without having to be modified. Therefore, each

module can be dynamically decided whether to offload. To apply FBP in mobile cloud

computing, Hung et al. [97] ported JavaFBP onto Android system. The Android applica-

tions are coded with APIs provided by JavaFBP in modules. However, using FBP as code

offloading approach requires the installation on both mobile devices and offloaded ma-

chines, which hinders the scalability of the applications. To solve this problem, another

approach using Java Reflection is proposed by Kosta et al. [122].

Java Reflection is provided by Java that enables the program to inspect and manipu-

late the annotated classes, interfaces, fields and methods at runtime. Therefore, classes of

an Android application can be decided dynamically at runtime whether to offload, and

any machines with Java runtime can execute the offloaded partitions without require-

ments of additional installations. Kosta et al. [122] proposed ThinkAir for mobile cloud

code offloading on the method level using Java reflection. The annotated methods are

evaluated by offloading decision logics dynamically and offloaded to cloud VMs run-

ning Android clones. In this way, the offloading services can be easily scaled up and

down on cloud VMs. However, by using Java reflection, ThinkAir is only able to offload

one method at a time and may cause lock-in issues.

In order to overcome this lock-in problem, Gordon et al. designed another solution

named COMET [80] for Android system using distributed shared memory. It is built

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 29

on top of the Dalvik Virtual Machine [63] on Android that leverages the underlying Java

memory model and VM synchronization to form a distributed shared memory (DSM) for

the code migration between machines. The offloading is implemented by synchronizing

the information of heap, memory stacks, register states, and synthetic classes between

VMs on cloud and mobile devices.

Besides Java on Android, other mobile platforms also provide similar functions that

can be used for code offloading. .NET Common Language Runtime (CLR) “provides a

managed coding platform featuring cross-language integration and exception handling

and a simplified model for component interaction [22]”. Cuervo et al. proposed a frame-

work called MAUI that adopts .NET CLR on Windows phones to enable code offloading.

Similar to Java Reflection, methods annotated by CLR tags are evaluated by MAUI’s deci-

sion making logic at runtime to decide whether to be offloaded. However, different from

ThinkAir, MAUI requires users to develop a server version of the mobile application us-

ing CLR, which harms the application’s scalability in mobile clouds. Moreover, MAUI

lacks consideration of multi mobile device offloading environment, and same lock-in is-

sue as Java reflection remains.

The above-mentioned four types of techniques are the major approaches proposed.

Compared with the static code offloading, although dynamic code offloading is more

flexible and able to adapt to the different execution environment, it still requires modifi-

cations of mobile applications at the application developing stage. This drawback makes

it non-trivial and tightly coupled with the underlying programming model of the mobile

applications. With the development of new smartphone operating systems, many works

later presented VM migration techniques for computation offloading.

VM migration

Live VM migration approach [45] for code offloading is based on the idea of moving

the computation dynamically among the machines in the distributed system without in-

terrupting the ongoing execution. It is fairly suitable for computation augmentation in

mobile clouds since most mobile applications, as well as cloud services, are running on

virtual machines. VMs can be migrated either partially or completely based on the re-

quirement of the offloading. Applications are not required to be installed on the server

30 Literature Review

side. However, the drawback of live VM migration is the overhead of transferring a VM

image and its state via wireless networks can be costly and inefficient under the unstable

network conditions. Hence, the focus of VM migration technique is improving energy

efficiency considering the network conditions. Several previous works have proposed

solutions based on live VM migration.

Satyanarayanan et al. proposed a VM migration based framework called Cloudlet2

[200] to bring the computation from the mobile device to nearby form factor servers to

overcome the long latency caused by transferring data to cloud via wireless networks.

The term Cloudlet refers to “trusted, resource-rich computer or cluster of computers that

is well-connected to the Internet and available for use by nearby mobile devices.” Dy-

namic VM synthesis is developed to perform the transient partial VM migration service.

The benefit of using Cloudlets is that it can be an alternative to the remote cloud resources

to reduce the network bottleneck which often has significant effects on mobile cloud per-

formances. However, the absence of monetary incentives of installing the Cloudlet-like

machines is an issue to be further studied. Moreover, Cloudlets can only provide offload-

ing service to stationary users. The continuous execution of the offloaded tasks would be

an issue.

Chun et al. [43] took a different approach of using VM migration from Cloudlets.

They proposed a code offloading framework CloneCloud that works with the application

VM layer such as DalvikVM and Microsoft .NET. It deploys one or more clones of the

mobile applications and data onto Cloud VMs and nearby servers and using process

interception on the VM level to execute parts of the application on Cloud. The running

states including data in the stack and heap are synchronized between the two processes

on the mobile device and cloud VM. However, since the mobile clones have limitations

on native data virtualizing, it does not have all the access to data on the cloud side,

which narrows the range of functions to be offloaded. This is also a vital issue for all VM

migration based code offloading approaches.

2Source code can be found on https://github.com/cmusatyalab

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 31

Mobile agent based offloading

In order to overcome the data access limit of VM migration for code offloading, Mobile

agent based offloading is introduced to mobile cloud computing. A mobile agent is a

movable software that can be transferred from one mobile device to a network and roam

among the computing nodes in the network [40]. When an application using mobile

agents needs to request a service from the remote server like the cloud, it collects the ap-

plication execution information and passes to the execution environment of the agent for

offloading and remote execution. There are several advantages of using mobile agents in

mobile cloud computing. First, the mobile agent uses asynchronous communication to

interact with remote servers in the network, which is suitable for mobile devices since the

network connections of mobile devices are unstable. Moreover, the device can still per-

form other lightweight computation while waiting for the results from remote execution.

Second, mobile agents are robust to server failures, since all the information including

executing environment, the process states, services required, etc. are transferable. Some

mobile agent supported frameworks have been proposed.

Angin and Bhargava [12] proposed JADE (Java Agent Development Environment)3

for mobile code offloading. In the event of task offloading, the method being offloaded is

transferred into an agent-based process by the feature Behaviour in JADE on either class

level or method level. Then it consults the cloud directory service to select one of the cloud

hosts for the remote execution. JADE provides the offloading code with high movability

and running adaptively. However, JADE does not consider the QoS of its cloud resources

such as load balancing, application multi-tenancy and wireless channel energy efficiency

for multi-users.

The multi-tenancy issue of mobile agent based offloading is investigated by Liu et

al. [145]. They considered the energy efficiency of the wireless channels with multi-user

scenario and solve the problem by using Lyapunov optimization framework to minimize

the number of transmission time slots based on the queue backlog and channel states on

each mobile device. However, this optimization approach only focuses on data transmis-

sion without considering local and cloud task execution, which may have a significant

impact on the efficiency of the proposed algorithm.

3Source code available at: http://jade.tilab.com/download/jade/

32 Literature Review

Replication based offloading

Either partitioned offloading, VM migration or mobile agent based offloading requires

applications to precisely analyse the benefits of whether to run portions of the applica-

tion on mobile devices or remote machines. As a result, it usually benefits applications

with large computation and small data size. In addition, the above three techniques do

not benefit network-intensive applications. In order to solve this problem, Gordon et

al. [79] took a different approach by using replications. They proposed a framework

called Tango for Android that attempted to reduce user-perceived application latency

by switching execution and output display automatically between application and its

replica on remote machines for the faster one. However, there are still some limitations

of Tango. Only one replica can lead the execution instead of working simultaneously.

This issue can affect the application running time as the leading replica may have no ac-

cess to native resources such as sensors and user inputs. Also, the overhead of constantly

switching is not presented in the work.

Discussion. The above-mentioned types of augmentation techniques adopted for

code offloading aim to dynamically offload computation intensive code to cloud resources

in order to conserve energy and speed up the execution. However, some code offloading

approaches such as partitioned offloading require particular environment and compre-

hensive programming skills, which limits the usage on existing applications. Moreover,

the lock-in issue of code offloading exists for approaches such as Java reflection and FBP.

Also, the decision process of the offloading incurs additional overhead that will reduce

the benefits of code offloading.

2.3.2 Service-oriented Task Delegation

Unlike the code offloading approach, service-oriented task delegation augments resource-

limited mobile devices by utilizing existing services on remote servers with remote pro-

cess invocation rather than migrating part of the application to the server for execution.

OASIS has defined service-oriented architecture (SOA) as: “A paradigm for organizing

and utilizing distributed capabilities that may be under the control of different ownership

domains. It provides a uniform means to offer, discover, interact with and use capabili-

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 33

ties to produce desired effects consistent with measurable preconditions and expectations

[150].”

A service is a self-contained unit that implements at least one reusable action such

as searching a database or rendering a web page. The request to a service and its corre-

sponding response are communicated via protocols such as XML and SOAP (Simple Ob-

ject Access Protocol). The benefit of SOA for mobile cloud computing is that it provides

a solution for multiple service providers and heterogeneous devices to incorporate their

services into more comprehensive service combinations, where services are independent

of any underlying vendors, products or techniques. The transparency of SOA-based ser-

vices can reduce the additional issue and the execution lock-in issue of code offloading.

SOA enables conventional applications to deliver their services to mobile devices via

cloud resources with same user experiences on PCs, without the need of developing na-

tive mobile applications.

Web Service based Mobile Cloud

In the age of cloud computing, many legacy PC applications have been migrated to the

cloud to provide the original functions in the form of web services. This SOA based ser-

vice paradigm also enables mobile device users to use the legacy applications on their

devices with the same PC-like user experiences via mobile cloud augmentation systems.

The benefits of web service based mobile cloud systems are that there is no need to de-

velop a native mobile application but only a thin client to relay the service requests to the

cloud servers and render the returned results. In this way, the device is released to pro-

cess other tasks and still able to obtain same, good quality of service. Many recent works

have been proposed in the mobile cloud augmentation. Hani and Dichter [87] proposed

a four-layer service-oriented architecture to provide an energy-efficient solution for web

service based mobile cloud augmentation. The architecture ensures the security of the

data handover and guarantees the quality-of-service. Rossi et al. [193] designed a cloud-

based service architecture to provide geolocated emergency services on mobile devices.

Mobile users report the real-time condition reports about the emergency via mobile de-

vices to the backend services. Crowdsourcing techniques are applied to evaluate the

circumstances on the cloud. Guerrero-Contreras et al. [86] studied the service availabil-

34 Literature Review

Figure 2.6: Layers of OSGi programming model [9]

ity in mobile cloud computing. They proposed a context-aware SOA based framework

to improve the maintain service availability that can be downgraded by dynamic net-

work changes in mobile cloud systems. The framework contains three services running

on the cloud, including monitoring, context managing, and replica managing. As we can

observe from these proposed works, one drawback of SOA based mobile cloud augmen-

tation is service binding, which means mobile users can only choose certain provided

services.

In the attempt to solve the operating binding issue, Flores et al. [71] proposed mobile

cloud middleware MCM4 for processing the intensive hybrid cloud services regardless

of the underlying mobile operating systems. The middleware provides a set of cloud

service APIs available to the mobile device users to build the applications in its own

language. MCM also fosters the integration and orchestration of mobile tasks delegated

with minimal data transfer. However, the cloud services provided in MCM are limited,

and the ability of users to add additional cloud services is yet to be delivered.

OSGi (Open Service Gateway Initiative)

Another technique adopted in the SOA-based mobile cloud is OSGi5 [9], which is a Java

module management system enabling applications to dynamically load and unload ser-

4Source code available at: https://github.com/huberflores/MobileCloudMiddleware
5More details at https://www.osgi.org/

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 35

vice bundles at runtime. The difference of OSGi from the C based RPC is that OSGi is

object-oriented. The bundles can be invoked by users with a service interface, which is

registered in the OSGi service registry with an implementation of the interface. Figure 2.6

depicts the OSGi system stack. Bundles are OSGi components built by developers. Exe-

cution Environment defines the available methods and classes for the user’s application.

Modules define the way Bundles import methods and classes. Life Cycle provides APIs

to install, start, stop, update, and uninstall bundles. Services dynamically bind the bun-

dles with underlying Java objects. Services, life cycle, modules, and execution environ-

ment together define how the bundles work with underlying Java VMs.

Verbelen et al. [224] proposed an OSGi based middleware called AIOLOS6 for mo-

bile augmentation on Android. The bundle feature is ported to Android. The mo-

bile application is developed with OSGi bundles, service interfaces and remote services

that implement the bundle services. Junior et al. [107] proposed a mobile offloading

system (MOSys) to enable seamless offloading when users move between wireless net-

works. It is implemented based on OSGi, utilizes software-defined networking and re-

mote caching to reduce the response time and provide a seamless handover. A few other

works [231,244] have also presented OSGi based techniques to support the mobile cloud

augmentation systems.

Discussion. SOA-based mobile cloud is fundamentally different from code offloading

as there is no computation migration. Mobile devices in SOA work as thin clients that

are only able to send service requests without any computation, while the main task

computation is carried out in the form of services on the cloud. However, this limits

the flexibility of mobile applications in terms of functions as it needs backend service to

support.

2.3.3 Parallel Execution

More than one zettabyte of data is generated over the Internet nowadays [100]. The needs

of processing big data surpass the capacity of mobile devices. The big data applications

such as mobile forensics applications, data streaming applications and augmented reality

applications have been challenging conventional mobile cloud computing augmentation

6The framework is available to download at: http://aiolos.intec.ugent.be/

36 Literature Review

approaches. Although code offloading and SOA-based task delegation can enhance mo-

bile devices with more computing capability, the overhead of migrating a large amount

of data to the remote server is getting higher and higher. As a result, the benefits of

outsourcing the computation are counteracted.

On the other hand, utilizing parallel execution to distribute computation can signifi-

cantly reduce the time overhead of handling big data applications. In parallel computing,

the computation and related data are divided into subproblems with a chunk of data,

which are then processed simultaneously on multiple resources. Regarding data-parallel

applications, sets of either homogeneous or heterogeneous task are processed in parallel,

and the results are merged to generate the final result. The benefits of using parallel ex-

ecution for mobile cloud computing augmentation depend on the types of applications

particularly requiring parallel data processing. The frameworks such as GPU comput-

ing, OpenCL and MapReduce have been adopted to cope with big data applications in

mobile cloud augmentation.

GPU computing

The thousands of cores on GPU enable applications to offload compute-intensive por-

tions to the GPU while the remainder of the applications still runs on the CPU. Soyata

et al. [209] proposed a mobile cloud-based hybrid architecture (MOCHA) using GPU

computing to enhance the performance of object recognition applications used on the

battlefield. Typically, the battlefield handheld devices are connected via satellites that in-

cur long latency. The Cloudlet in MOCHA is used to reduce the latency by letting mobile

devices connect to Cloudlet in the vicinity via low latency links and then the Cloudlet

processes either part or all the computation. GPUs are utilized to perform the massively

parallel processing (e.g., object recognition), which provides massively parallel process-

ing ability to applications by using CUDA7, which is a C-like programming platform and

programming models designed for GPU parallel programming. However, GPU com-

puting is only suitable for mobile applications that involve matrix-based computation,

e.g., image processing due to the structure of cores on GPU. In addition, only intensive

computation on small size data instead of streaming applications is preferred so that the

7Download available at http://www.nvidia.com/object/cuda home new.html

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 37

speedup on execution would not be hindered by data transmission overhead. More im-

portantly, GPU computing is only available with the certain brand of GPU, which causes

vendor lock-in.

OpenCL

Different from GPU computing that only works with the particular type of applications,

OpenCL [21] provides a more general parallel solution. It is an open-source platform

for building parallel programs on cross-platforms that provide transparent C-compatible

programming models for utilizing distributed processors regardless of the underlying

architectures. Shih et al. [202] proposed an elastic computation framework for mobile

clouds based on OpenCL frameworks. It federates computing and memory resources on

wearable devices, mobile devices, nearby cloudlets and public cloud VMs as a shared

resource pool for completing tasks on mobile devices. Eom et al. [64] studied the feasi-

bility of applying HPC cluster architectures to the mobile cloud computing environment.

They proposed an OpenCL-based offloading framework that migrates OpenCL work-

loads from the mobile grid to clouds. OpenCL provides more portability and compati-

bility comparing to GPU computing since it works on both CPU and GPU.

MapReduce

Another approach having been adopted as augmentation technique in the mobile cloud

computing is MapReduce. “MapReduce is a programming model and an associated im-

plementation for processing and generating large data sets with a distributed algorithm

on a cluster [54]”. Marinelli [154] developed a mobile-cloud computing infrastructure

called Hyrax based on Hadoop. Hyrax enables smartphone applications to run in dis-

tribution both regarding data and computation by adapting the Hadoop onto mobile

devices within the Hyrax system. However, NameNode and JobTracker instances are

not realized in Hyrax. In Hyrax, these must be run on a traditional machine. Duo

and Kalogeraki [58] implemented MapReduce paradigm on Nokia smartphones using

Python. The master node including a scheduler, an HTTP server, and an application

repository is implemented on a server to map the jobs to other mobile devices as worker

38 Literature Review

nodes. MapReduce is not widely used in mobile cloud computing since the processing

capability of mobile devices is not enough for a complete MapReduce implementation.

Discussion. Different from the previous two augmentation techniques, parallel exe-

cution in mobile cloud aims to reduce the transmission overhead by breaking up big data

into smaller chunks and process individually at distributed nodes at the same time in or-

der to speed up the execution for resource-limited mobile devices. However, techniques

like GPU computing have limitations on types of applications that can be run as well as

vendor lock-in issues, which makes parallel execution restricted.

2.3.4 Opportunistic Mobile Collaboration

Mobile cloud augmentation techniques discussed above focus on utilizing remote com-

puting resources via wireless networks like WiFi. However, most of these techniques rely

on adequate wireless network bandwidth, which can be intermittent and cost-unfriendly.

In addition, since mobile devices are usually on the move and may lose Internet connec-

tions in the area lacking signal strength, the communication between mobile devices and

cloud services may be disrupted.

In recent years, the short-range wireless communication technologies on mobile de-

vices such as Bluetooth, WiFi-direct, and Zigbee have been significantly improved re-

garding bandwidth and energy efficiency. With the development of both mobile device

computing capacity and wireless networks, the mobile ad-hoc network (MANET) has

become a potential mobile cloud infrastructure for augmentation. Many proposed works

considered MANET as mobile device cloud, which is a network of mobile devices con-

nected wirelessly in either centralized or distributed manner [218]. The mobile ad-hoc

network provides a solution for mobile devices to dynamically utilize other peer devices

in the vicinity to overcome the issue of unstable wireless network connections.

Many research works [153, 178, 187] have been carried out on applying MANET to

enhance the mobile device performance. Penner et al. [178] proposed a collaborative

computing platform, “Transient Clouds”, to enable mobile devices in the vicinity to share

their own mobile application services to other devices in the manner of ad-hoc networks.

The prototype was developed on Android using the built-in WiFi-direct feature. The

tasks are stored in the auto-generated .dex file and later distributed to other devices by

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 39

Decision Making
Techniques

Task Offloading
Decision Making

Stochasatic
Process

Markov Decision
Process

Queueing Theory

Historical Data
Based Analytic

Models

Resource
Monitoring and

Profiling

Application Level

Network

Hardware

Task Allocation
and Scheduling

Decision Making

Heuristic

Combinatorial
Optimization

Metaheuristic

Game Theory

Figure 2.7: Taxonomy of decision making techniques

the decision engine. However, due to the limit of WiFi-direct, the ad-hoc network imple-

mented is a one-hop network, which is not a complete implementation of the proposed

framework and its feasibility needs further evaluation. Mao et al. [153] utilized mobile

edge device computing to offload computation in order to reduce network latency and

congestion, and proposed an online Lyapunov optimization-based dynamic offloading

algorithm to minimize execution cost by adopting DVFS. The above-mentioned mobile

device implementations all have only one type of wireless medium for communication,

which leaves itself vulnerable to network disruptions, and also will not be scalable to

devices with different wireless interfaces. Therefore, mobile device cloud that can utilize

devices with multi-type wireless mediums needs to be investigated.

Discussion. The mobility and dynamic nature of MANET bring the reliability issue

which needs the support of fault tolerant policies for a much stabler performance. The

approaches addressing the fault tolerance issues in mobile cloud augmentation systems

are discussed in Section 2.3.8. In addition, the performance of MANET can be affected

by network congestion as well as synchronizing the up-to-date information of the mobile

devices.

40 Literature Review

2.3.5 Task Offloading Decision Making

In order to provide efficient mobile task offloading services, decision making techniques

are required to decide whether, when and where to offload. In this section and sec-

tion 2.3.6, existing decision making techniques regarding task offloading, and task allo-

cation and scheduling are discussed respectively. Figure 2.7 shows a detailed taxonomy

of decision making techniques, including offloading decisions (whether to offloading),

and task allocation and scheduling decisions (where to offload). For making offloading

decisions, three main categories are discussed: stochastic process, analytic model, and

resource monitoring and profiling. For making task scheduling decisions, the techniques

are classified into four categories: heuristic, combinatorial optimization, metaheuristic,

and game theory.

In this section, the task offloading decision making techniques are classified into three

categories: 1)stochastic process, which abstracts systems with random variables and sta-

tistically devises offloading decisions as systems evolve into stable states with certain

probabilities; 2)historical data based analytic models, which aims to abstract systems

with parametric models based on historical data and devise real-time offloading deci-

sions unlike the stochastic processes; 3) resource monitoring and profiling, which pro-

vides real-time monitoring and profiling of the system and running applications, and

utilizes the real-time data to devise offloading decisions without analysing on paramet-

ric models.

For both parametric model-based techniques and real-time monitoring data based

techniques, different factors of a mobile cloud system need to be captured in order to

have valid analysis on the task offloading decisions. The factors can be classified as mo-

bile application contents, contexts of the mobile cloud environment, characters of the

hardware, and user preferences.

1) Mobile application contents. The contents refer to characters of applications in-

cluding application type, code granularity, data size and type, user interaction require-

ments as well as the computation intensity. These application contents have important

impacts on the results of the augmentation. For instance, applications with computing

intensive jobs are more suitable for cloud servers if outsourced. Data streaming appli-

cations such as video streaming and Optical Character Recognition applications require

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 41

short response delay while data analytic applications such as sentinel surveillance appli-

cation in the medical field are more delay-tolerant. Hence, it is important to consider the

differences in application contents when making augmentation decisions.

2) Context of mobile cloud environment. The mobile cloud environment is a resource

sharing environment that consists of mobile devices, remote servers, and various wire-

less communication mediums. For example, wireless communication is one of the key

components when outsourcing the computation, and the bandwidth and congestion will

affect the time taken for transferring data, which will hinder the augmentation perfor-

mance. Moreover, the mobility of mobile devices adds dynamics to the environment as

the available resources are changing rapidly. Thus the decision making schemes should

be agile for dynamic context changes.

3) Hardware specifications. The hardware refers to both mobile devices and remote

servers, which have heterogeneous types of hardware such as CPU, memory, storage

and communication modules. The challenge for decision making schemes is how to dis-

tribute the tasks among machines to either balance between time and energy saved by

augmentation or fulfil user preferences based on the hardware as well as other factors

discussed. Therefore, monitoring schemes are required to profile the hardware informa-

tion to support the decision making schemes.

4) User preferences. Last but not the least, user preferences which are priority objec-

tives for decision making schemes should be taken into consideration. User preferences

can be very different depending on users’ circumstances. Some users want to use the

augmentation service to save the battery of their mobile devices while other users wish

to outsource the mobile tasks to get a shorter processing time regardless of how much

battery it will consume.

Stochastic process

The stochastic process is a random process evolving with time [44]. It aims to abstract

the evolution of a system that changes based on random variations and predicts possi-

ble outcomes weighted by probability. Some well-known stochastic processes include

Markov processes, Poisson process, and queueing theory. In mobile cloud augmentation

systems, a stochastic process is applied to model mobile applications as well as devices

42 Literature Review

statistically, and evaluate the execution conditions to help devise optimal augmentation

schedules.

Chen et al. [35] proposed a semi-markovian decision process (SMDP) based method

to solve the problem of optimal offloading tasks dispatching and transmission for mo-

bile cloud augmentation systems. Its objective is to obtain an optimal trade-off between

computation time and energy consumption. The semi-Markov decision process based

optimization is developed to abstract mobile device status and decide the probability of

tasks to offload and at each stable state, which DVFS level of CPU and data rate of the

transmitter to be set. The SMDP is solved with linear programming. One drawback is

that many mobile devices have no access for users to change DVFS and wireless interface

status.

Instead of focusing on a single device, Terefe et al. [216] proposed an energy-efficient

multi-site offloading policy for mobile clouds using Markov decision process (MDP).

MDP is used to formulate application partitioning and scheduling to multi-clouds prob-

lem as a delay-constrained, least-cost shortest path problem with the goal to minimize

energy consumption on wireless channels. Similarly, Wang et al. [229] applied Markov

model in dynamic scheduling for mobile cloud health telemonitoring. As the mobile

cloud infrastructure in health monitoring faces ever-changing clinical priorities and per-

sonal demands, the MDP based dynamic offloading scheduling algorithm proposed solves

a joint optimization of processing latency, energy efficiency, and diagnostic accuracy. The

stochastic process such as MDP can provide optimal solutions to multi-objective prob-

lems in reality. Nonetheless, the processing overhead of solving the problem and the

sensitivity of the solution to new changes may pose a burden on the resource-limited

mobile devices.

Historical Data Based Analytic models

Unlike stochastic process, this approach uses parametric models to abstract multiple at-

tributes (parameters) of the mobile cloud augmentation environment, analyses the ben-

efits of augmentation in terms of time and energy consumption based on historical data

of the task execution. The attributes range from CPU speed of mobile devices as well

as remote servers, network conditions (e.g., bandwidth, congestion, and latency), to the

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 43

load of remote resources. However, the disadvantage of analytic models is that the types

of attributes used in the models have to be consistent with the objective of the models.

Too many attributes without proper assumptions and too few attributes without accurate

abstraction may both downgrade the performance of the models. Many previous works

applied this method to evaluate benefits of the mobile cloud computing augmentation.

Ali et al. [6] focused on modeling the power consumption of mobile devices to en-

hance the energy efficiency of mobile cloud augmentation systems. They presented de-

tailed energy consumption models for CPU, display, wireless communication interfaces

and memory on the mobile devices. For example, the energy model for CPU is based on

the CPU frequency and utilization:

Powercpu = β f req ×U + β
f req
base , (2.1)

where β f req and β
f req
base denote frequency dependent coefficients when CPU is in the busy

and idle state respectively. U is the CPU utilization. All the coefficients in the energy

models are derived from a linear regression on the measurement results of smartphones.

However, this regression approach is device dependent and may not be accurate when

applied to other mobile devices.

Rahimi et al. [184] took into consideration device mobility when making augmenta-

tion decisions by modeling mobile applications as a location-time workflows. The mobile

device is assumed to move in a partition of a 2D area. The mobility sensitive workflow

models are derived by integrating the locations (i.e., coordinates) of the mobile device

and time duration of the device on that location into the workflow models. It is repre-

sented as follows:

W(uk)
L
T , (w(uk)

l1
t1

, w(uk)
l2
t2

, · · · , w(uk)
ln
tn
), (2.2)

where uk is the kth mobile user and w(uk)
ln
tn

is the user workflow in location ln for time tn.

Such models can assist mobile cloud augmentation services to meet QoS requirements

considering mobile device movements. However, the accuracy of the proposed models

needs to be further studied and improved since the mobile user trajectory are obtained

from some conventional mobility models such as Random Point Walk and Manhattan

models [27].

44 Literature Review

Chen [37] proposed a set of analytic models for processors and wireless network in-

terfaces in terms of both computation and communication. For the computation models,

the author proposed execution time models and energy consumption models which are

both related to the computation size of tasks. The models are as follows:

Tl
n =

Dn

Fl
n

, El
n = νnDn, (2.3)

where Dn is the computation amount, νn is the coefficient of the energy consuming rate

per CPU cycle, and Fl
n is the computation capability. Similarly, for the communication,

the models are proposed based on the size of input data Bn, the network speed Rn, and

wireless network power consumption rate Pn of user n.

Resource monitoring and profiling

In order to overcome the issues of context adaptability in analytic model approach, re-

source monitoring and profiling are adopted in mobile cloud computing. This approach

involves the implementation of multiple profilers and monitors on mobile devices to con-

stantly monitor the context changes and the behaviour of the mobile device. Then the

obtained data is put through the decision logic to evaluate the execution benefits and

makes augmentation decisions based on the objective and user preferences. Many works

have been proposed using this approach. We will discuss a few representative ones.

Benkhelifa et al. [17] proposed a genetic algorithm based resource augmentation for

mobile device cloud to minimize energy consumption. A social cloud resource profil-

ing and negotiating system are implemented, including a logger module which focuses

on profiling the energy usage of applications on mobile devices under different circum-

stances such as using different wireless interfaces, executing tandemly with other appli-

cations, and executing at the different time of the day. However, the process of a large

amount of gathered data against the storage limited mobile device is not presented.

On the other hand, history-based resource profiling with compressed data storage

model can solve the above issue. Kaya et al. [112] implemented a set of profilers to

monitor the application usage such as running time and CPU usage on mobile devices

and cloud VMs. The history-based profiles are then constructed in call graph model that

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 45

axes redundant information to reduce the storage. In case the application has never been

executed before, the profiling mode would be invoked first and run several times with all

possible use cases. However, this process puts unnecessary extra time for the application

users, which would affect user experiences.

ThinkAir [122] implements a set of profilers on Android that observe a more com-

prehensive range of system parameters to assist its Execution Controller for augmentation,

including hardware profilers, application profilers, and network profilers. All the profil-

ers are implemented using the system APIs provided by Android.

Discussion. In this section, we discussed three major types of offloading decision

making techniques. The stochastic process discussed above provides a statistical ap-

proach of devising offloading decisions based on the states of the system and the transi-

tion probabilities obtained from different distributions. The accuracy of statistical dis-

tributions abstracting the mobile cloud systems can have a significant impact on the

offloading decision. The analytic model approach has a similar component of system

abstracts as stochastic processes, but instead, it devises offloading decisions based on

historical execution data of the system rather than statistic distributions. Unlike these

two approaches that are unagile to the context change of system environment, the re-

source monitoring and profiling approach make offloading decisions based on real-time

observations of task executions in mobile cloud systems. The main difference between

the three approaches is the execution data that they make offloading decisions. Note that

these three approaches can be used as combinations to provide more accurate results.

2.3.6 Task Allocation and Scheduling Decision Making

In a heterogeneous mobile cloud environment, each mobile device can outsource tasks

via augmentation techniques to other resources using wireless networks. After the exe-

cution monitoring on the context parameters is completed, mobile tasks submitted from

mobile devices need to be allocated to execute either in local or offload to other com-

puting resources. Moreover, these tasks also need to be scheduled among the shared

resources pool to achieve the objective of the system, such as optimal task completion

time or minimum energy consumption. Therefore, task allocation and scheduling algo-

rithms are required to distribute mobile tasks among the shared resources. Although

46 Literature Review

there have been many task scheduling algorithms developed for distributed comput-

ing environments such as grid and cloud computing, the unique characteristics of het-

erogeneous mobile clouds such as intermittent wireless networks, unstable devices, and

human-related behaviours make it difficult for the conventional scheduling algorithms

to be applied. Hence, new algorithms and mechanisms are needed. Many task schedul-

ing algorithms have been adapted to solve task allocation and scheduling problems in

heterogeneous mobile clouds. They can be classified into four categories: heuristics,

combinatorial optimization, metaheuristics, and game theory, based on their approach

to solving the allocation and scheduling problem, as shown in Figure 2.7.

Heuristics are search algorithms that rank and select the solution subjects at each step

of the searching process based on the most current information. They are often consid-

ered as a faster, less complex type of algorithms for solving optimization problems [175].

This is suitable for executing the algorithms on mobile devices that require lightweight

processes. Greedy algorithms, listing heuristics, Min-Min algorithm are among many of

the mostly used scheduling algorithms proposed for mobile cloud augmentation. Li et

al. [132] proposed six online and batch scheduling based heuristics for scheduling inde-

pendent tasks onto mobile nodes in mobile device cloud to reduce energy consumption.

Trneberg et al. [222] proposed an iterative local search algorithm to find near-optimal

solutions for application placement on mobile cloud resources. However, in exchange

for the processing efficiency, heuristics are only able to provide local optimal solutions as

they have no knowledge of the future events.

On the contrary, combinational optimization can devise global optimal solutions for

the task scheduling optimization problems in mobile cloud augmentation. It searches the

entire space of the feasible solution candidates and finds the best one as the optimal so-

lutions. The computation efficiency of this method can be exhaustive if the search space

is significantly large. Therefore, it usually deploys on a more powerful tier of computing

resources in the heterogeneous mobile clouds. Methods such as (integer) linear program-

ming, dynamic programming, and A* search algorithm have been applied in the mobile

cloud augmentation. Gai et al. [73] presented a dynamic programming based algorithm

to minimize the energy consumption of wireless communication in mobile cloud sys-

tems. Yang et al. [243] solved a joint optimization of task placement and load balancing

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 47

with linear programming, and further proposed a greedy heuristic with low complexity.

As we can observe, heuristics are possible alternatives when combinational optimization

is infeasible to solve in real time. Another alternative is approximation algorithm, which

aims to reduce the original problem to a similar, conventional problem, and is solved

with approximation algorithms to the reduced problem. Some recent works have pro-

posed solutions with this method [108, 197, 240].

Another alternative is metaheuristic, which is a high-level algorithm to select and

guide a heuristic to generate near-optimal solutions. They often refers to the nature-

inspired algorithms such as genetic algorithms, ant colony algorithms, and simulated

annealing. Metaheuristics usually adapt randomization and stochastic process in each of

its evolutionary searches to reduce the search space and generate the solutions in a rea-

sonable amount of time. Many recent works have been proposed to solve task scheduling

problem in heterogeneous mobile cloud augmentation using metaheuristics such as ge-

netic algorithms [17, 72, 82], swarm optimization [81, 180], and ant colony optimization

[186, 232].

Game theory based methods can also be leveraged to solve optimization problems,

especially for mobile cloud augmentation where mobile users can be considered as play-

ers in task outsourcing games. It can abstract the heterogeneous mobile cloud in a more

realistic approach in which the mobile device users can apply some strategies to max-

imize their interest. The game theoretic scheduling algorithm aims to find the optimal

task augmentation schedules that can achieve a Nash equilibrium so that no strategy

change from one player can change the results of optimal solutions. A few recent works

have presented the game theory based algorithms for task offloading and scheduling in

mobile cloud systems [37, 38, 215].

Discussion

The task allocation and scheduling algorithms proposed in mobile cloud augmentation

systems aim to provide optimal mobile task execution solutions to achieve the system

objectives, such as optimal execution time and minimized mobile device energy con-

sumption. As we discussed, the performance of these algorithms depends on the types

of mobile applications, user preferences, SLAs (service level agreement), and the context

48 Literature Review

Supporting
Techniques

Mobility
Modelling

Entity
Mobility

Random
Walk

Random
Waypoint

Random
Gauss-Markov

Manhattan
Mobility

Group
Mobility

RPGM

RRGM

Fault
Tolerance

Proactive Fault
Tolerance

Reactive Fault
Tolerance

Checkpointing

Replication

Figure 2.8: Taxonomy of supporting techniques for computation augmentation

of mobile cloud augmentation systems. Therefore, the algorithms need to be designed

with the consideration of all the factors discussed.

2.3.7 Mobility Model for Mobile Device Cloud

In the following two sections, we discuss the mobility impact of mobile devices and fault

tolerance techniques caused by the device’s mobility. These are the supporting tech-

niques for the heterogeneous mobile cloud augmentation. A detailed taxonomy of the

supporting techniques is presented in Figure 2.8. The mobility modeling is important for

mobile cloud computing, especially for mobile device cloud which consists of an ad-hoc

network of mobile devices. The decision making logics in a mobile cloud augmenta-

tion system can utilize the information obtained from the mobility models to estimate

the availability and reliability of the mobile devices in the network and further make

augmentation decisions. There are two types of mobility models commonly used: trace-

based models and synthetic models. Trace-based models refer to the models built on

real-world moving traces, which contains accurate information of the mobility behav-

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 49

iors. However, the real-world traces require long period observation and a large number

of participants. Therefore it is only useful case by case. On the other hand, synthetic

models try to capture the mobility patterns without the assist of traces. The synthetic

mobility models are categorized as entity mobility models and group mobility models.

Entity mobility models

Entity models aim to mimic the moving patterns of a single mobile node, without the

interaction with other nodes in the proximity. We present four most commonly used

entity models: Random Walk model, Random Waypoint model, random Gauss-Markov

model, and Manhattan mobility model. A few available simulators such as ns2, ns3 can

be used to simulate the node mobility.

The Random Walk model was firstly introduced by Karl Person [176] in 1905. It de-

scribes a walk path that consists of a series of random steps on a single or multiple di-

mension space. In the mobile cloud scenario, it is usually a 2-D space. At each stepping

point, the mobile node chooses a random direction from [0, 2π] and a random speed

from a range set by the model, so that the patterns can be limited to a certain area. The

Random Waypoint model is very similar to Random Walk model. The only difference

is that Random Waypoint model adds a randomly chosen pause time to every stepping

point. These two mobility models have been widely applied in mobile cloud computing

[134, 155, 214]. However, from the description, we can observe that Random Way model

is a stateless random process that does not remember that information of previous steps.

This property makes Random Walk generate unrealistic walking patterns since there may

be sudden stops or sharp turns.

In order to solve the sudden stops and turns issue, the random Gauss-Markov model

(RGM) can be applied in mobility modelling for mobile cloud augmentation. RGM

moves mobile node in time intervals. At each time interval, the next location dnext and

speed snext are calculated based on its current location dpre and speed spre:

snext = αspre + (1− α)s +
√
(1− α2)sran (2.4)

dnext = αdpre + (1− α)d +
√
(1− α2)dran (2.5)

50 Literature Review

where α is the tuning parameter to vary the randomness. s, d represent the mean values,

and sran, dran are two random variables from a Gaussian distribution. RGM avoids the

sudden change issue by letting past states influence the future states. A few works have

RGM implemented [13, 160, 181].

For some special mobile devices like devices on vehicles, nodes move on an urban

grid which includes only horizontal and vertical movements. Manhattan mobility model

captures such movement patterns. In this model, each mobile node at each intersection

is allowed to choose to go straight with 0.5 probability or to turn left or right with 0.25

probability. This model is implemented in [103, 184].

Group mobility models

Different from entity mobility models, group mobility models consider the influence of

mobile device between each other that may affect the movement. In mobile cloud sys-

tems, especially mobile device cloud, nodes tend to move together such as a tourist group

or a group of soldiers. Two most commonly applied models are Reference Point Group

Mobility (RPGM) model and Reference Region Group Mobility (RRGM) model.

RPGM [91] is one of the most used group-based mobility models. Each group will

have a central node as the leading node which follows an entity mobility model and sets

the speed and direction for the entire group. The other mobile nodes in the network will

be paired with a reference point that follows the leader point’s movement in same direc-

tion and speed. When the reference points move to the new location, its associated points

will move to a random location within a circle of radius R around the reference point. A

few RPGM based mobility models have been proposed for mobile cloud augmentation

in [11, 94]. However, the RPGM model should avoid using Random Walk based models

that could generate sudden stops.

RRGM [167] further extends the RPGM to use a real-time determined sequence of

regions to lead the group to some destination. The reference region is determined dy-

namically by user-defined node density and the size of the group. Members linked to the

reference region will move to a random location in the region and then follows random

waypoint model to wait until all members arrive in the region. The group will eventually

move to the target destination following the reference regions. The advantage of RRGM

2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques 51

is that it can mimic the real scenario where a large group can be divided into sub-groups

and merge back together after some movements.

2.3.8 Fault Tolerance

As a computing environment with heterogeneous mobile devices, remote servers, and

wireless network interfaces, maintaining a continuous service to avoid and recover from

service interruptions caused by failures is one of the difficult challenges. Existing fault

tolerance strategies proposed in distributed computing can be applied to mobile cloud

augmentation environment with adaptations to its unique challenges such as device mo-

bility and loss of wireless connections.

Mobile devices play the significant part of mobile cloud systems as it is not only the

consumer of the systems but also can be resource providers (i.e., mobile device cloud).

As resource providers, mobile devices can enter and leave the system environment un-

predictably in case it moves out of the wireless network range or the network connection

is disrupted. Therefore, the faults considered in the context of mobile clouds are related

to the mobility and availability of the mobile devices and remote servers as well as the

stability of wireless network conditions. There are two main types of fault tolerance

strategies: proactive fault tolerance and reactive fault tolerance.

Proactive fault tolerance

Proactive fault tolerance aims to prevent system faults by monitoring system through

preventative measures to predict potential faults and prevent them from taking place.

When a node failure is indicated, the fault tolerance mechanism preemptively migrates

parts of the mobile application from the nodes about to fail. The basic form of proactive

fault tolerance applies feedback-loop control over the distributed nodes in the system,

i.e., mobile devices and cloud servers. The feedback loop consists of continuous node

monitoring and reallocation of application partitions. However, proactive fault tolerance

policies predict only before the task is dispatched, with no further action even if failure

happens during task execution.

Hummel and Jelleschitz [96] proposed a proactive and reactive combined fault tol-

52 Literature Review

erance mechanism for the ad-hoc mobile grid. The proactive fault tolerance policy uses

two mechanisms: redundant execution and super-peer access. Super peers refer to nodes

that are constantly available and able to perform critical tasks. The unstable nodes use

super-peer access to perform the execution and usually apply redundant execution on

more than one node. Park et al. [171] proposed a Markov process-based approach to

analyse and predict resource states to improve the system’s resistance to fault problems

related to the mobility of mobile devices. Ravi and Peddoju [187] presented a handoff

strategy for the offload mobile tasks that proactively monitor the execution conditions

of the mobile cloud augmentation system. The proactive failure evaluation adopts fuzzy

logic based multi-criteria decision making algorithm. The handoff strategy is decided by

monitoring energy consumption produced by using services from other resources and

the remaining available time of mobile devices.

Reactive fault tolerance

On the other hand, reactive fault tolerance policies aim to reduce the effect of system

faults that already happened. Mostd applied reactive fault tolerant mechanisms are

checkpointing, and replication.

Checkpointing allows applications to restart at the most recent checkpoint when a

failure is detected. Sonara [36] is a platform that aims to provide continuous mobile cloud

augmentation service. Sonara’s execution engine enables a fault-tolerant distributed run-

time that performs checkpointing based partial rollback recovery scheme. It adopted

Chandy and Lamport’s snapshot protocol [30] that carries out a global checkpointing

throughout the system periodically.

Replication strategy is another well-known fault tolerance mechanism. In order to

keep the service operate continuously after system faults occurred, multiple replicas of

the task are distributed and run on different resources until the task is complete. How-

ever, replication will bring the challenge of adding redundancy into the system as well

as synchronization problem. Choi et al. [41] proposed a fault tolerance scheduling algo-

rithm for a content addressable network (CAN) based mobile cloud augmentation sys-

tem. This is done by using cloud service replication. When the cloud server receives

a request for cloud service, the server returns with two or more proper resources from

2.4 Taxonomy and Survey of Mobile Storage Augmentation Techniques 53

other mobile devices that can meet the QoS and operate the service on all the resources.

A summary of the existing implemented frameworks in the mobile cloud computa-

tion augmentation techniques is presented in Table 2.1.

2.4 Taxonomy and Survey of Mobile Storage Augmentation Tech-
niques

Mobile devices are equipped with limited storage that cannot match mobile applica-

tion’s growing needs of larger data storage consumption. On the other hand, public

cloud also provides the Data-as-a-Service (DaaS). DaaS enables users to offload a large

amount of data to cloud storage services that mobile device storage cannot provide. For

example, Amazon web service provides Simple Storage Service for object storage and

charges based on the usage. Therefore, data storage augmentation by storing mobile

data on cloud servers is of interest for mobile cloud augmentation systems. The sensitive

data transmission such as location coordinates and healthcare information via wireless

communication mediums and data storage on other computing resources bring security

challenges into mobile cloud computing. We present a taxonomy of mobile storage aug-

mentation in Figure 2.9.

2.4.1 Mobile Storage Offloading

Despite that mobile devices have been improved regarding hardware, the lack of sub-

stantial storage and computing capacity are still hindering mobile devices from better

user experiences. Cloud has become a primary resource for enhancing mobile devices in

terms of computation as well as storage.

54
Literature

R
eview

Table 2.1: Comparison of mobile cloud computation augmentation frameworks

Framework Cloud Resource
Type

Code
Offloading

SOA Task
Delegation

Parallel
Execution

Opportunistic
Collaboration

Context-aware
Execution

Monitoring

Task Allocation &
Scheduling

Mobility
Management

Fault Tolerance

MobileFBP Nearby servers Flow-based
programming

— — — Resource
profiling

Single user, heuristic — —

MAUI Nearby servers .Net common
language
runtime

— — — Resource
profiling

Single user, minimum
makespan and energy,

ILP

— Checkpoint

ThinkAir Public clouds Java reflection — — — Resource
profiling

Single user, heuristic — Memory error
detection

COMET Public clouds Distributed
shared memory

— — — Thread execution
profiling

Single user, heuristic — Checkpoint

Cloudlet Nearby servers Live VM
migration

— — — — Single user, heuristic — —

Clonecloud Public clouds Live VM
migration

— — — Analytic models Single user, minimum
makespan and energy,

ILP

— —

JADE Public clouds Mobile
agent(Java)

— — — Analytic models Single user, heuristic — —

Scavenger Nearby servers Mobile
agent(Python)

— — — Resource
profiling

Multi users, heuristic — —

Spectra Nearby servers — Remote
procedure
call(RPC)

— — — Single user, heuristic — Proactive prediction
on usage demand

Cuckoo Nearby servers — Android
interface defined

language

— — Not required Single user, heuristic — —

SAMI Public clouds — SOA-based
middleware

— — Not required Multi users, heuristic — —

MCM Public clouds — SOA-based
middleware

— — Not required Multi users, heuristic — —

AIOLOS Public clouds — OSGi — — Not required Multi users, heuristic — Checkpoint
AlfredO Mobile device

cloud
— OSGi — — Not required Multi users, heuristic — Redundant execution

MOCHA Mobile device
cloud and

public clouds

— — GPU
computing
with CUDA

— Analytic models Multi users, heuristic — —

Hyrax Mobile device
cloud

— — MapReduce — — Single users, heuristic — Redundant execution

[202] Mobile device
cloud and

public cloud

— — OpenCL — Analytic models Multi users, heuristic — Imprecise
computation model

[64] HPC clusters — — OpenCL — Resource
profiling and

discovery

Single user, heuristic — Monitoring error code
implemented in each

method
mCloud Mobile device

cloud, Cloudlet,
public cloud

Live VM
migration

— — Ad-hoc
network

Resource
profiling and

discovery

Single user, heuristic — Heartbeat, checkpoint

Transient
Clouds

Mobile device
cloud

— — — Ad-hoc
network

Resource
profiling and

discovery

Multi users, heuristic — —

Handoff
scheme

Mobile device
cloud and

public cloud

— — — Ad-hoc
network

Resource
profiling and

discovery

Multi users, heuristic — Fuzzy multi-criteria
decision making based

handover strategy
Follow-Me

Cloud
Public clouds — SOA-based

middleware
— — Resource

profiling
Single user, minimum

makespan, MDP
Random Walk

Model
—

[181] Mobile device
cloud

— — — Ad-hoc
network, edge

computing

— Multi-user, MDP Gauss-Markov
model

—

MobiCloud Mobile device
cloud

— SOA-based
middleware

— Ad-hoc
network

Resource
profiling

— RPGM —

2.4 Taxonomy and Survey of Mobile Storage Augmentation Techniques 55

Figure 2.9: Taxonomy of mobile storage augmentation

Many approaches and techniques have been adopted in mobile cloud storage aug-

mentation to solve the problems such as storage augmentation, data distribution, data

access, and data synchronization.

Most commonly used mobile storage augmentation solutions involve public cloud

storage services. In order to extend mobile storage, the solutions propose middleware

between cloud services and mobile devices to provide data offloading and data manage-

ment functions. Zheng et al. [253] presented a novel cloud storage augmentation frame-

work called SmartBox. It introduces a concept called “shadow storage” services to extend

the storage on mobile devices. The shadow storage service will automatically back up

the data stored on mobile devices to the cloud storage when the device is connected to

SmartBox, and share data between different mobile devices. Hung et al. [97] proposed a

mobile storage augmentation system based on Trusted Architecture for Securely Shared

Service (TAS3) [118]. It is a secure network for user-centric storage by using a rule-based

policy framework to let service users store and process their private data in distributed

applications on both mobile devices and cloud servers. However, mobile storage aug-

mentation using public cloud services heavily relies on wireless networks, which makes

it a disadvantage in case there are wireless network outages.

In order to avoid such wireless network bottleneck, some approaches applied mobile

device cloud as the storage augmentation resources. Phoenix [170] is a protocol designed

to make opportunistic use of mobile devices in the MANET to provide a short-term stor-

56 Literature Review

age service to clients in the proximity of each other. The distributed and asynchronous

protocol breaks content into blocks and stores copies of blocks on multiple mobile de-

vices so that it can ensure some degree of storage redundancy despite hardware failures,

device mobility, and wireless communication failures. Additionally, Phoenix implements

an advertisement model for maintaining and managing the blocks among the distributed

mobile device storage. Similarly, Chen et al. [34] proposed a fault-tolerant data storage

management algorithm for mobile device cloud that only contains mobile devices. The

algorithm introduces a “k-out-of-n” strategy, which is a well-studied reliability control

strategy [48]. The strategy distributes multiple copies among the number of n mobile

devices and ensures that the system operates correctly as long task copies are available.

Different from using mobile device cloud to solve the network bottleneck, Cui et al.

[53] investigated the wireless network bandwidth and data sync traffic directly. They

proposed a system called QuickSync to improve the synchronization inefficiency problem

in mobile cloud storage augmentation services.

2.4.2 Data Protection

For most mobile applications such as healthcare applications and OCR applications that

get benefits from mobile cloud augmentation services, the data in transmission often con-

tains sensitive and private information, and therefore needs to be protected. We discuss

three major related issues, namely data security, accessibility, and authentication.

Data security

There are three important attributes of data security, which are confidentiality, integrity,

and availability.

Confidentiality guarantees that the sensitive data is only exposed to users with proper

authority. One of the commonly used approaches for confidentiality is data encryption.

By encrypting the data with private information (e.g., public/private key pair), it can

only the authenticated users have access to the data. Examples include SSL/TLS and

HTTPS which are communication protocols for secure information exchange.

Data integrity maintains the consistency and accuracy of the data. The most widely

2.4 Taxonomy and Survey of Mobile Storage Augmentation Techniques 57

applied methods for protecting data integrity include data hashing technologies such

as MD5 and SHA that capture the signature of the original data with certain hashing

methods and compare it with the received data.

Data availability refers to the property that authorized entities can exclusively access

the information on demand. A common solution for improving data availability is do-

ing regular offline data backups, which is used to restore the data and services when the

original data is damaged or under attack like the DDoS attack. Many works have been

proposed for the mobile storage augmentation to ensure the above-mentioned three at-

tributes of data security. Common topics include encryption, access control, authentica-

tion, data synchronization, and privacy.

Zhou and Huang [256] present a new Privacy Preserving Cipher Policy Attribute-

Based Encryption (PP-CP-ABE) to ensure the confidentiality of the data. The encryption

algorithm is based on CP-ABE [18], which is used to simplify the process of key pairs

generating and access control. However, CP-ABE requires intensive computation that

is not suitable for mobile devices. PP-CP-ABE provides a solution to this problem by

outsourcing encryption and decryption operations to cloud with privacy preservation by

performing the last step of decryption at the decryptors.

Yuan and Yu [248] investigated the data integrity checking techniques for cloud data

sharing with multi-user data modification. They proposed integrity checking scheme

with constant computational cost by using polynomial-based authentication tags which

allow aggregation of tags of different data segments. Therefore, the scheme can tag files

in batches from different users on the cloud and ensure a constant performance with

scalability. Wang et al. [226] proposed a similar approach but without the need of entire

data file for integrity checking. This is enabled by utilizing re-signatures for file blocks

on a public verifier.

Li et al. [135] adapted Chase and Chow’s attribute-based encryption (ABE) scheme

[32] into mobile cloud computing with substantial communication and computation over-

head reduction to provide a low complexity multi-authority ABE scheme (MA-ABE) mo-

bile devices sharing their storage. The overhead reduction is made by introducing a cloud

server based semi-trusted-authority, where the computation of keys for encryption and

decryption are taken places.

58 Literature Review

Different from the above approaches, Khan et al. [115] consider the limited resource

on mobile devices when adopting data encryption for mobile cloud computing. They

proposed an increment-based proxy re-encryption scheme that improves file modifica-

tion operations. A trusted entity was introduced so that the re-encryption services are

offloaded on it instead of performing on the mobile device itself.

Authentication and access control

In mobile cloud storage augmentation systems, mobile users usually share files among

multiple computing resources as well as other mobile users. To support the data protec-

tion requirements, mechanisms for access control and authentication need to be provided

to ensure only the verified user groups have access to certain files.

Zhou and Huang [256] proposed a set of access control schemes called Attribute

Based Data Storage (ABDS) for energy-efficient and secure storage augmentation ser-

vices in mobile cloud computing as well. The ABDS access control is managed by an

access policy tree that consists of leaf nodes and branch nodes. The leaf nodes represent

parameters that carry the information of the access request, and each branch node is a

logical gate, such as “AND” and “OR”. The mobile users requesting the MSA services

will be determined by each access policy tree defined for different user groups.

Lomotey and Deters et al. [148] designed a framework called ALILI to solve the group

file sharing problems in mobile cloud systems. ALILI aims at ensuring data synchro-

nization and user authentication among the mobile device users as well as cloud service

platforms. The authentication is based on OAuth 2.0 mechanism to enable the user with

secure tokens and basic information retrieved from social media credentials servers. It

also makes the authentication process easier to map the user shared files in a shared stor-

age.

Wang et al. [228] proposed a key distribution mechanism for mobile devices in In-

ternet of Things, considering real-time data collection and monitoring. The proposed

mechanism secures real-time key distribution in batch for the parallel mobile services

while keeping the communication cost consistent with the number of mobile clients.

2.4 Taxonomy and Survey of Mobile Storage Augmentation Techniques 59

2.4.3 Data Interoperability

The heterogeneity of mobile cloud augmentation systems brings the problem of data in-

teroperability. Since mobile devices may have different operating systems and hardware

settings, the application data, and APIs for communicating with each other may vary in

data formats. Issues such as data interoperability between various service APIs on cloud

and mobile devices, data portability among different types of data warehouse facilities,

and data migration from mobile devices to cloud services or across different cloud service

vendors need to be studied.

One of the solutions is applying standardized service frameworks and message ex-

changing techniques such as SOA, REST, XML and JSON to mobile augmentation sys-

tems. Abolfazi et al. [2] proposed a SOA-based mobile device cloud called MOMCC.

Since SOA defines standard service APIs for mobile devices and cloud services and ser-

vices apply SOAP to exchange messages, mobile applications only need a small amount

of modification to provide services across heterogeneous platforms.

Mobile social networks (MSN) are social networking where mobile device users hav-

ing common interests connect and interact with each other through their mobile de-

vices. In MSNs, the heterogeneity of software platforms on mobile devices and intrinsic

user data and content raise the need to develop uniformed mobile application platform.

Toninelli et al. [219] proposed a middleware called Yarta for mobile social systems. To

achieve this, a representative model based on the Resource Description Framework 8 is

presented. The mobile social applications developed with the representative model can

share and reuse their respective data interoperably.

Doukas et al. [59] presented a mobile healthcare application framework for Android

OS that provides trusted healthcare information online storage, retrieval, and update us-

ing cloud services. The data management of healthcare data in mobile cloud augmenta-

tion systems involves problems such as data privacy and interoperability. They presented

a data management system called HealthCloud that implements a series of REST APIs for

utilizing the storage services on the cloud. To ensure the data security, all the transferred

data are compressed and sent via SSL enabled links.

8https://www.w3.org/TR/rdf-primer/

60 Literature Review

2.5 Summary

We presented a comprehensive taxonomy and survey on the augmentation techniques

applied in mobile clouds. Firstly, the terms and definitions used throughout the sur-

vey are explained, including cloud computing and mobile cloud computing concepts.

Secondly, the existing mobile cloud augmentation techniques for both computation and

storage are discussed in two detailed taxonomies. The taxonomy of computing capac-

ity augmentation discussed the approaches and techniques that have been applied in

mobile cloud augmentation to merge the hybrid cloud resources into a shared resource

pool for mobile devices to provide reliable and energy-efficient computation outsourcing

mobile-cloud-as-a-service. The advantages and disadvantages of each type of technique

are compared, and the challenges for existing technologies to adapt the new hybrid mo-

bile cloud computing environment are identified. Regarding mobile storage augmenta-

tion, the taxonomy discussed the data-oriented architecture for storing data on distant

clouds as well as mobile device cloud. Moreover, it covered the most critical issues in

mobile cloud augmentation systems, namely data protection and data interoperability.

From the literature, we have identified that most of the existing technologies focus on

building solutions for a onefold mobile-to-cloud architecture, which lacks the adaptabil-

ity to the more powerful and efficient heterogeneous mobile cloud environment. There-

fore, in this thesis, we aim to design a mobile cloud offloading enabling architecture

for the heterogeneous mobile cloud environment (Chapter 3), with context-aware task

offloading algorithms (Chapter 3, and 4) and supporting algorithms including a fault

tolerant mechanism (Chapter 5) and an incentive mechanism (Chapter 6) to provide the

seamless mobile-cloud-as-a-service.

In the next chapter, we present the proposed context-aware task offloading algorithm

for heterogeneous mobile cloud offloading service as well as the offloading enabling tech-

nique and a designed mobile task offloading service architecture.

Chapter 3

A Context-aware Task Offloading
Decision Algorithm and Enabling

Framework

As a dynamic network of mobile devices and cloud resources connected via wireless mediums, the

context of the mobile cloud offloading service changes constantly. To realize the benefits of heteroge-

neous mobile cloud offloading services in terms of performance enhancement and energy efficiency, an

efficient offloading enabling technique and corresponding service framework are required to provide a

cross-platform approach for different mobile devices and cloud platforms. In this chapter, we propose

a context-aware offloading decision algorithm aiming to provide code offloading decisions at runtime

on selecting the type of computing resources to offload a task as well as the wireless medium for data

transmission. Also, we propose an offloading framework called mCloud to enable the task offloading

algorithm proposed. The framework is implemented on Android platform, and is used to evaluate the

performance of the proposed offloading decision algorithm.

3.1 Introduction

MOBILE cloud computing (MCC) provides services by bringing abundant re-

sources in cloud computing [25] to the proximity of mobile devices to improve

the mobile applications performance and conserve the battery lifetime. One of the tech-

This chapter is derived from:

• Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Satish Narayana Srirama, and Rajkumar
Buyya, “A context Sensitive Offloading Scheme for Mobile Cloud Computing Service.” in Proceedings
of IEEE 8th International Conference on Cloud Computing (CLOUD), New York City, NY, USA, 27 June-2
July, 2015, Pages: 869-876.

• Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Satish Narayana Srirama, and Rajkumar
Buyya, “mCloud: A Context-Aware Offloading Framework for Heterogeneous Mobile Cloud.” IEEE
Transactions on Services Computing, Volume 10, Issue 5, September/October 2017, Pages: 797 - 810.

.

61

62 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

niques adopted in mobile cloud computing is code offloading [52]. It identifies the com-

putation intensive code of a mobile program, and offloads the task to a cloud service via

wireless networks. In the concept of code offloading, cloud resources used for offload-

ing have many different types. First, the most common resource is public cloud services,

such as Amazon, Google, and Microsoft Azure, which provide pay-as-you-go services

over the Internet. Second, a nearby server named cloudlet [200] can be considered as a

cloud resource with fast network connection as well as powerful processors. Cloudlet

serves as a middle layer between mobile devices and public cloud services to reduce the

network delay and accelerates the computing. Last but not the least, a local mobile de-

vice ad-hoc network forming a device cloud [213] is another potential cloud resource,

especially when there is no access to the Internet.

Code offloading in MCC has been comprehensively studied during the past few years

[43,80,122,124,154,252]. These works mainly focus on the code partitioning and offload-

ing techniques, assuming a stable network connection and sufficient bandwidth. How-

ever, the assumption is rather unrealistic. As in reality, the context of a mobile device, e.g.

network conditions and locations, changes continuously as the device moves throughout

the day. For example, the network connection can be unavailable or the signal strength is

low. Since a mobile device usually has multiple wireless mediums, such as WiFi, cellular

networks and Bluetooth, and each connection performs differently in terms of speed and

energy consumption, the strategy of utilizing wireless interfaces can significantly impact

the performance of the mobile cloud system as well as the user experience. Moreover, as

we described above, there are multiple options of cloud resources that can be selected for

code offloading under different conditions. As an example, in case the Internet connec-

tion is inaccessible, a group of mobile device users can still configure a code offloading

service by setting up a wireless mobile ad-hoc network. Alternatively, a mobile device

user can also connect to a nearby cloudlet to outsource the computation intensive mobile

tasks when it is infeasible to use mobile data. The heterogeneity of MCC has not been

rigorously studied in the literature as previous works only target the public cloud service.

To tackle the issues mentioned above and improve the service performance in mobile

cloud computing, in this chapter, we propose a context-aware decision making algorithm

based on Multi-Criteria Decision Making (MCDM) methods that takes the advantages

3.2 System Architecture 63

of the changing context of a mobile device and multiple cloud resources to provide an

adaptive mobile code offloading service, and design a system framework called mCloud

to provide mobile cloud task offloading services. The objective of mCloud is to devise of-

floading decisions under the context of the mobile device and cloud resources to provide

better performance and less battery consumption.

The remainder of this chapter is organized as follows. We first present an insight

of mCloud architecture in Section 3.2. Then we introduce the system models and pro-

pose the context-aware offloading algorithm in Section 3.3. The approaches for system

implementation are introduced in Section 3.4, followed by a discussion on the system

evaluation and experiment results in Section 3.5. Finally in Section 3.6, we summarize

the chapter.

3.2 System Architecture

In this section, we give an insight of mCloud’s architecture to address the issue of context

aware code offloading in a heterogeneous mobile cloud environment. We first describe

an overview of the MCC environment that mCloud fits in. Then, the design of main

components is presented in details.

3.2.1 System Overview

Figure 1.1 illustrates the overview of the proposed system for the heterogeneous mobile

cloud environment. The device requesting the offloading service is regarded as a client.

The proposed system leverages three types of mobile cloud resources, namely cloud,

cloudlets, and mobile device clouds.

First, cloud provides Infrastructure-as-a-Service with scalable computation and stor-

age, which can be connected from mobile clients via WiFi or cellular network. It has the

ability to host tasks requiring high computation and communication.

Second, a cloudlet is a local ”datacenter in a box”, which resembles a cluster of multi-

core processors and a high-bandwidth WLAN connection with considerable low power

consumption [200]. A task with limited delay-resistance is well-suited in cloudlets.

Third, a mobile device cloud that is formed by a group of ad-hoc mobile devices in

64 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

the client’s proximity via short-range wireless network technologies, e.g. Bluetooth and

WiFi Direct. Due to mobility of the devices, the mobile device cloud can be unstable. To

ensure the stability of the mobile ad-hoc cloud in the mCloud framework, we adopt a

one-hop topology for the mobile ad-hoc network.

3.2.2 Framework Components

The main components of the mCloud framework belong to two parts: client part and

cloud server part. As depicted in Figure 3.1, there are five main components on the client

side: Context Monitor, Decision Module, Task Manager, Communication Manager and Failure

Recovery. On the cloud server side, main components include Communication Handler,

Task Manager and corresponding mobile cloud infrastructures.

Context Monitor

The Context Monitor offers the context-awareness for the system by profiling multiple

context parameters at runtime, and assists the Decision Engine when needed. Since the

context of the mobile device has significant effect on the decision making accuracy, the

system provides three relevant profilers: a program profiler, a device profiler, and a net-

work monitor. However, profiling incurs additional runtime overhead and extra energy

consumption. To avoid the high overhead, the profilers adopt the on-demand monitoring

strategy, which only fetches context data when the offloadable methods are invoked.

a) Program Profiler: The program profiler tracks the execution of a program on the

method level. The attributes being monitored include:

• the overall instructions executed,

• the execution time,

• the memory allocated,

• the number of calls of this method,

• the type of mobile cloud infrastructure resource for the execution (e.g. local, cloud,

cloudlet),

3.2 System Architecture 65

Figure 3.1: Main components of the framework

• and the data size of inputs.

The profile is updated at every invocation, and stored in the Context Profile database.

Later the program profile is passed to Cost Estimation module to estimate the execution

cost (i.e. running time, energy consumption) for decision making. The details of cost

models are discussed in Section 3.3.2.

b) Device Profiler: The hardware profiles collected by the profiler represent the oper-

ating conditions of the mobile device being monitored. Same as the program profile, the

device profile is fed into Decision Engine when needed to assist the cost estimation. The

profile includes:

• the average CPU frequency,

66 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

• the average CPU usage,

• the maximum CPU frequency,

• and battery level.

c) Network Monitor: The network monitor collects the network information of the

mobile device asynchronously at runtime so that it can record any change in the context.

The profile is passed to cost estimation models when needed. The following network

conditions are monitored:

• cell connection state and its bandwidth,

• WiFi connection state and its bandwidth,

• Bluetooth state,

• the congestion level of the connection (RTT) to VMs on the cloud,

• and the signal strength of cell and WiFi connection.

Decision Module

This component has the responsibility to decide whether and how to offload the mobile

task, and dispatch the task to the appropriate mobile cloud infrastructure (i.e. cloud,

cloudlet, or MANET) based on the current context. It consists of two main modules: Cost

Estimation and Decision Engine. Based on the context profiles, Cost Estimation provides a

set of cost estimation models that calculate the execution time of each offloadable task

running on three types of mobile cloud infrastructure respectively, with the correspond-

ing energy consumption on the client. Decision Engine then applies the cost estimations

to the proposed context-aware decision making algorithm to provide the offloading de-

cisions. We give a detailed discussion on the cost models and decision making algorithm

in Section 3.3.

Task Manager

This component works as a middle layer between Decision Module and Communication

Manager. It receives the decision, i.e. method name, offloading location, and network

3.2 System Architecture 67

interface, from the upper layer. Then the Manager collects the related information, such

as the method inputs, libraries for running the offloaded task, and network address of

the offloading location. Last, it persists them into a format called Task Specs and passes

the information to Communication Manager. When receiving the task results, Task Manager

stores them in the device database.

Communication Manager

The communication manager on both client and server side handles connections between

client mobile device and the remote execution in either mobile ad-hoc cloud or remote

cloud VMs. It consists of a mobile cloud infrastructure discovery service and a commu-

nication handler. Once the decision engine generates the offloading decision, the com-

munication manager takes over the task and executes based on the offloading decisions.

Moreover, the Communication Manager corporates with Failure Recovery service to detect

failures and start the recovery process.

a) Discovery Service: This module is responsible for discovering the mobile cloud

infrastructure resources, i.e. the available mobile devices in the MANET, cloudlets, and

cloud VMs. The service updates the information of the detected resources, such as net-

work congestion level, IP address, computation capacity, etc., and stores the information

in Device Profiler. Particularly, for the mobile ad-hoc cloud, the Discovery Service detects

the available mobile devices in the proximity, forms an mobile ad-hoc cloud, and main-

tains the network at runtime. Nevertheless, the discovery via network interfaces can

potentially incur additional overhead and energy consumption. To avoid the high de-

tection overhead, the Discovery Service applies the periodic detection strategy, which asyn-

chronously searches for the available devices in certain intervals periodically. We present

the detailed implementation of the Discovery Service in Section 3.4.3.

b) Communication Handler: The Handler operates on both client and mobile cloud

infrastructures to handle the communications and data transfer generated in between,

which include mobile cloud infrastructure detection, offloading code, state synchroniza-

tion between client and servers, failure detection, etc. In particular, when offloading a

mobile task, the Communication Handler on the client serializes the code, related input,

and the information of libraries needed to execute the code into the offloading package.

68 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

Then it dispatches the package to the address provided by Task Manager. On the server

side, the Handler unpacks the package and starts to synchronize the missing libraries de-

scribed in the package with the client device. Once all the states are synchronised, it

passes the deserialized code to the mobile cloud infrastructure for execution, and returns

the result to client device upon completion.

Failure Recovery

It works with Decision Module and Communication Manager to detect the failures and re-

cover the system. The details regarding the types of failures handled by Failure Recovery

service, and the detection algorithm are presented in Section 3.3.4.

3.3 Cost Estimation Model and Algorithm

We first introduce the system model and the problem formulation. Then we present the

details of our cost estimation model and the context-aware offloading algorithm.

3.3.1 System Model and Problem Formulation

The system considers a heterogeneous mobile cloud environment, consisting of a mobile

ad-hoc cloud, the nearby cloudlets and remote public cloud. There is a set of mobile

device users that run applications seeking opportunities to offload tasks to the mobile

cloud infrastructure.

Task modelling

Different mobile applications have different QoS requirements. For example, face detec-

tion application requires short processing time while anti-virus applications are usually

delay-tolerant. In this model, we model the tasks being offloaded as independent and can

be partitioned into subtasks for parallel execution. Thus, let t denote the task generated

by the application,

t = 〈s, w〉 (3.1)

3.3 Cost Estimation Model and Algorithm 69

s is the file size of the task, and w denotes the number of instructions of task t to execute2.

All the symbols used in the models are listed in Table 3.1.

Mobile ad-hoc cloud modelling

We apply a one-hop mobile ad-hoc network (MANET) in mCloud to improve the net-

work stability. This is because using multi-hop MANET can cause considerable delay

and increase the possibility of node failures. Moreover, when the number of hops is more

than two, cloud VMs are the most preferred as they have less communication delay in

comparison to MANET [69]. Hence, we only consider a one-hop MANET in mCloud.

Given the one-hop network topology, we assume that the node movement within

the signal range does not affect the topology of the MANET and the channel data rate

remains the same. Let M = { m1, m2,..., mn } be the set of available mobile devices in

the mobile ad-hoc cloud. µn denotes the CPU speed of node mn. τn denotes the link

congestion level between node mn and the client device. Then the mobile ad-hoc cloud

can be modelled as

mn = 〈µn, τn〉, ∀mn ∈ M (3.2)

Cloud and cloudlet modelling

As described in Section 3.2, the client connects to cloudlet via WiFi, and to cloud via

WiFi or cellular network. On both cloud and cloudlet, we deploy single-core VMs as the

offloading solution. VMs within a cloudlet or cloud are considered homogeneous, while

they are heterogeneous across clouds and cloudlets in terms of computation capacity and

network delay. Then we model VMs on cloud and cloudlet as follows.

vi = 〈µi, ri, θi〉 (3.3)

where µi is the CPU speed, ri is the network delay from the client to VM, and θi is the

average CPU usage.

The heterogeneity of VMs between cloudlet and cloud reflects on the different µ, r

values in the model.
2Our system considers the Android Dalvik bytecode instructions

70 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

Table 3.1: Notations of cost models

Symbol Description

t the mobile task being considered to offload
s the data size of the offloadable task t that need to be transferred during

offloading, in byte
w the number of instructions for task t to complete
M a set of mobile device as a mobile ad-hoc cloud
mk mobile device k in the mobile ad-hoc cloud
µ the average CPU speed of the mobile devices or VMs
τn link delay between client and local mobile device cloud
θ the average CPU usage
ri data transferring time for task i

wmi the wireless medium used for offloading task i
li the execution location of task i

α1, α2 weight factors used in the general cost model to adjust the user prefer-
ence

ρd coefficient of channel energy consumption reflecting on execution per-
formance

Bchannel the bandwidth of the wireless medium, namely WiFi, 3G, and Blue-
tooth, in MB/s

C(ti) general overall cost of task i
D(ti) execution time of task i running on cloud resource
E(ti) energy consumption of offloading task i

∆Echannel the energy consumption of task i under certain bandwidth
βchannel the estimated channel energy consumption per time unit

βtail wireless medium tail time energy per time unit
Ttail wireless channel active tail time

Problem formulation

Having presented the models of the system, we formulate the decision making problem

as to find a solution of selecting where to execute the task and how to offload so that

the overall execution time and energy consumption is the lowest among all the cloud

resources in the mobile cloud infrastructure based on the current context of the client

device. Specifically, given a set of n tasks T, a set of cloud VMs C, a set of cloudlets CL,

and a mobile ad-hoc cloud with h mobile devices M, then the overall cost of executing a

set of n tasks is

Ctotal =
n

∑
i=1

∆C(ti, li, wmi) (3.4)

3.3 Cost Estimation Model and Algorithm 71

where ∆C denotes execution cost of running task ti, including execution time and energy

consumption. li represents the execution location for task ti, which includes local, mobile

ad-hoc cloud M, cloudlet CL, or cloud C. wmi is the wireless medium used to offload

ti, including Bluetooth, WiFi, and cellular network. Thus, the problem is to provide an

offloading decision 〈li, wmi〉 for ∀ti ∈ T to minimize the overall cost.

3.3.2 Cost Estimation Models

fareThe cost model consists of two parts, namely the task execution time denoted by D,

and the wireless channel energy consumption denoted by E. Then the general model for

overall cost of executing tasks ti is as follows:

C(ti) = α1 ∗ D(ti) + α2 ∗ ρd ∗ E(ti) (3.5)

α1 + α2 = 1, α1, α2 > 0 (3.6)

where α1 and α2 are weight factors to adjust the portion of time and energy consumption

in the overall cost. α1 and α2 are considered to capture user preferences on the factors. If

the user is not expert, methodologies like AHP can be used to generate the factors from

linguistic values provided by users. The value of execution time and energy consumption

in the cost model are normalized in a 0-100 scale with basis normalization upper and

lower bound data profiled from real application results. We adopted ρd in our model to

represent the effect of hardware settings (DVFS levels and wireless channel rate) on the

device performance [35]. ρd will be set on a 0-1 scale based on the processor DVFS level

and wireless channel rate.

Given the general cost models in Equation 3.5, we describe the specific cost models

for each type of the mobile cloud infrastructure resource.

Mobile device cloud cost model

First, we model the execution time D for tasks running in the mobile ad-hoc cloud. Given

a set of independent tasks T = {ti | 1 ≤ i ≤ n } and a set of heterogeneous mobile

devices M = {mk | 1 ≤ k ≤ h }, execution time D can be obtained by calculating the

72 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

earliest finishing time (EFT) among all tasks mapped to the mobile ad-hoc cloud. This

independent task scheduling problem is proved to be NP-complete [66]. Therefore the

use of heuristics is a suitable approach. For mapping independent tasks to heterogeneous

machines, Min-Min heuristic takes less processing time with the result as good as other

heuristics [24]. Thus we adopt Min-Min in our cost model.

The Min-min heuristic maps unassigned tasks to available machines. It firstly calcu-

lates minimum completion times (MCT):

MCT(ti, mk) = [min1≤k≤h(CT(ti, mk)), ∀ti ∈ T] (3.7)

where CT(ti, mk) is the completion time for task ti on device mk. Then task ti with MCT is

selected and assigned to machine mk, and ti is removed from T, and the iterations repeat

until all tasks are mapped (i.e., T is empty).

In the next step, we model the energy consumption E of the client device. Based

on the results from Min-Min, we calculate the device communication energy cost for

transferring data to the MANET and receiving the results. Let Bchannel denote the channel

data rate. ti = 〈si, wi〉 represents the task ,where si is the data need to be transferred and

wi is the workload. The channel energy consumption for transferring data is given as:

∆Echannel(si, Bchannel) = βchannel ∗ (
si

Bchannel
+

sresult

Bchannel
) + βtail ∗ Ttail (3.8)

where βchannel is the power consumption rate related to the transferring time and βtail is

the wireless channel tail time power consumption rate. These two values are adopted

from the models in [15].

Let M denote the set of mobile devices in the mobile ad-hoc cloud. µk is the CPU

speed of device mk that selected by the MinMin algorithm and θk is the average CPU

usage. Then the overall execution cost is as follows:

Cti = α1(
wi

µk ∗ θk
+

si + si result

Bchannel
) + α2 ∗ ρd ∗ ∆Echannel(sj, Bchannel) (3.9)

3.3 Cost Estimation Model and Algorithm 73

Cloud and cloudlet cost models

Let ti = 〈wi, si〉 denote a mobile task. There are m VMs available on cloud or cloudlet.

µVM denotes the computing capacity, θVM denotes the average usage of the VM, and lVM

denotes the network latency of the VM. The tasks can be partitioned into subtasks, and

VMs on cloud or cloudlet are homogeneous. Hence each task can be evenly partitioned

and processed among the machines based on the number of available VMs. Then the cost

of running task ti can be modelled as follows.

Cti = α1 · (
wi

m · µVM · θVM
+

si + si result

Bchannel
+ lVM) + α2 · ρd · ∆Echannel(si, Bchannel) (3.10)

This cost model is utilized to estimate the task execution cost on cloud and cloudlet

VMs by alternating the parameters µVM, θVM, lVM.

Local execution cost

For local cost estimation, we use a history data strategy to reduce the overhead. The local

execution time of a method and energy consumption incurred by the device is stored in

the database and applied later to the general cost model in Equation 3.5 for comparison.

The estimation costs are then used as the input of the decision making algorithm.

3.3.3 Context-aware Decision Making Algorithm

Having shown how to estimate the task execution time and energy consumption with

the cost models, we present the algorithm in this section. In order to obtain the lowest

execution cost for the offloadable tasks under the context, based on Equations 3.9 and

3.10, the context-aware decision algorithm considers a set of context parameters, multiple

wireless medium and mobile cloud infrastructure resources to decide when it is beneficial

to offload, which wireless medium is used for offloading and which resources to use as

the offloading location.

74 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

Wireless medium selection

Most existing offloading frameworks in the literature only consider network speed and

energy consumption when they make offloading decisions. Unlike those, mCloud fo-

cuses on utilizing multiple types of mobile cloud resources (i.e., cloud, cloudlet and mo-

bile ad-hoc cloud) and wireless mediums based on device context to improve the of-

floading service availability and performance. Multiple criteria regarding device con-

text including resource availability, wireless medium availability, network congestion,

cost, energy consumption, etc. have been considered for making offloading decisions in

mCloud. Therefore, we need a multi-criteria decision making approach (MCDM) in the

proposed framework.

Among MCDMs, we apply Technique for Order of Preference by Similarity to Ideal

Solution (TOPSIS) [98] for wireless medium selection considering abovementioned crite-

ria. TOPSIS offers lightweight processing and shorter response time comparing to other

MCDMs [223]. It helps reduce the overhead of the proposed offloading decision making

algorithm, considering it is running on mobile devices. Moreover, TOPSIS can be eas-

ily modified to consider more criteria if necessary, and the complexity remains the same

regardless of the number of criteria.

In the mCloud framework, the decision making algorithm considers six criteria re-

lated to performance when selecting the wireless interface:

• energy cost of the channel,

• the link speed of the channel,

• the availability of the interface,

• monetary cost (i.e. cost when using mobile data),

• the congestion level of the channel (RTT),

• and the link quality of the channel (signal strength).

Note that for the monetary cost, the algorithm only considers the cost generated by

using the mobile data. Other cost such as cloud VM reservation is negligible from the mo-

bile device’s perspective as a mobile task generally occupies a negligible time comparing

to the cloud VM lifetime.

3.3 Cost Estimation Model and Algorithm 75

Table 3.2: Importance scale and definition

Definition Intensity of importance

Equally important 1
Moderately more important 3
Strongly more important 5
Very strongly more important 7
Extremely more important 9
Intermediate 2,4,6,8

For the alternatives, the algorithm considers Bluetooth, WiFi, and 3G in this system,

but more interfaces can be added if new techniques emerge. Then the process of wireless

interface selection is as follows.

First, the relative weights for criteria being considered in TOPSIS are obtained by

using analytic hierarchy process (AHP) [194]. The pairwise comparison results are pre-

sented in a matrix.

A =


a11 a12 . . . a16

a21 a22 . . . a26
...

...
. . .

...

a61 a62 . . . a66

 , ann = 1.amn =
1

anm
(3.11)

The pairwise comparisons of six criteria are generated based on the standardized

comparison scale of nine levels shown in Table 3.2. Then TOPSIS uses matrix A to cal-

culate the weights of the criteria by obtaining the eigenvector ω related to the largest

eigenvalue λmax.

Aω = λmaxω (3.12)

Since the output of AHP is strictly related to the consistency of the pairwise comparison,

it is necessary to calculate the consistency index [236]:

CI =
λmax − n
(n− 1)

CR =
CI

(n− 1) ∗ RamdomIndex

(3.13)

CR, which is the consistency ratio of CI, should be less than 0.1 to have a valid relative

76 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

weight output.

After the weights are generated, a evolution matrix consisting of three alternatives

and six criteria is created, denoted by M = (xmn)3×6. The values of the criteria are col-

lected at runtime by the Context Monitor, and normalized using Equation 3.14.

NMmn =
Mmn

∑6
n=1 M2

mn
(3.14)

Then the weights obtained from AHP method are applied to the normalized matrix

N = (tmn)3×6.

Mw = ωn ∗ N (3.15)

where ωn represents the weight. The best solution and the worst solution are then cal-

culated from the weighted matrix Mw, denoted by S+ = {〈min(tmn|m = 1 . . . 6)|n ∈

J-〉, 〈max(tmn|m = 1 . . . 6)|n ∈ J+〉} and S - = {〈max(tmn|m = 1 . . . 6)|n ∈ J-〉, 〈min(tmn|m =

1 . . . 6)|n ∈ J+〉} respectively, where J+ is the positive criteria to the cost and J- is the neg-

ative criteria to the cost.

At last, the wireless medium is selected by calculating the Euclidean distance between

each alternative and the best and worst solution D+
m and D-

m respectively. and ranking

the alternatives by applying a closeness score to the best solution,

D+
m =

√√√√ 6

∑
n=1

(tmn − t+mn)2

D-
m =

√√√√ 6

∑
n=1

(tmn − t−mn)2

(3.16)

Then rank the alternatives by applying a closeness score Rm to the best solution. The al-

ternative with the highest Rm is selected as the output of the wireless selection algorithm.

Rm =
D-

m

D+m + D-m
(3.17)

However, one drawback of TOPSIS is its sensitiveness to rank reversal, thus in our sys-

tem, if a new alternative appears, the algorithm will be triggered to generate the new

weights and related matrix.

3.3 Cost Estimation Model and Algorithm 77

Algorithm 1 Context-aware decision algorithm

1: procedure GETDECISION(context,tasks)
2: para[]← context
3: task[]← tasks
4: programPro f ile← get method pro f ile
5: start discovery service and gather resources pro f iles
6: local cost← estimate execution cost on client device
7: manet cost← estimate execution cost on mobile device
8: cloud using MinMin heuristic
9: cloudlet cost← estimate execution cost on cloudlet

10: cloud cost← estimate execution coston public cloud
11: check network interface state
12: if only cell network is available then
13: check cloud availability
14: if cloud is available then
15: decision← minCost(local, cloud)
16: return decision
17: else
18: return decision(local execution, null)
19: else if only WIFI is available then
20: check cloud, cloudlet and manet availability
21: decision← minCost(local, cloud, manet, cloudlet)
22: return decision
23: else if only Bluetooth is available then
24: check manet availability
25: if manet is available then
26: decision← minCost(local, manet)
27: return decision
28: else
29: return decision(local execution, null)
30: else
31: inter f ace← TOPSIS(context)
32: if inter f ace is Wifi then
33: decision← minCost(local, cloud, manet)
34: if inter f ace is 3G then
35: decision← minCost(local, cloud)
36: if inter f ace is Bluetooth then
37: if manet is available then
38: decision← minCost(local, manet)
39: else
40: return decision(local execution, null)

78 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

Decision making

The context-aware decision making algorithm is composed of two main phases, which

are summarized in Algorithm 1. The first phase is estimation phase (step 2-11), during

which the context parameters such as context profiles and wireless interface states are

collected from the corresponding modules. Then the cost estimation models calculates

the execution cost for each offloading request. In the selection phase (step 12-40), the

algorithm gives offloading decision based on the available wireless interfaces and the

cost estimations. In case there are multiple wireless interfaces available, the algorithm

applies TOPSIS model to select the best interface under current context such as data rate,

workload size to obtain the best data transfer performance as well as minimum energy

consumption. Based on the wireless interface selection result, the algorithm selects the

offloading location that has the lowest execution cost. Finally, the algorithm returns the

decision pair of 〈o f f load location, wireless medium〉.

The complexity of the proposed algorithm is O(MNlogN), where M is the number

of devices in mobile ad-hoc cloud and N is the number of tasks. The first phase of the

proposed algorithm uses an improved MinMin (in terms of time complexity) [111] (step

7). Each machine maintains a sorted queue of completion time of all tasks on the ma-

chine. It takes O(MNlogN) to construct the queues. In addition, the scheduling takes

O(MN) to compare the head of each queue at each scheduling iteration. Thus, the over-

all complexity is O(MNlogN). Next, for cloud and cloudlet cost estimation (step 9-10),

the time complexity is O(N). Therefore, the time complexity of the first phase in the pro-

posed algorithm is O(MNlogN + N) = O(MNlogN). The second phase of the algorithm

generates the offloading decision with the time complexity of O(1). Therefore, the time

complexity for the proposed algorithm is O(MNlogN).

3.3.4 Failure Recovery

The mobility of mobile devices can incur node failures in the proposed mobile cloud

environment, especially the mobile ad-hoc cloud. Although mCloud only considers a

one-hop network topology, it is necessary to ensure the consistency of results once the

failure occurs. Therefore, we apply a pair of failure detection and recovery policy. The

3.3 Cost Estimation Model and Algorithm 79

Algorithm 2 Failure detection policy

1: procedure DETECTION

2: count[]← initialized
3: state[]← CONNECTED
4: in f o[]← initialized
5: for checkpoint i to checkpoint n until target time do
6: Send out con f irming message to each node
7: counter ← counter + 1
8: for all node i in count do
9: if Confirmation message received then

10: count[i]← count[i] + 1
11: f etch the task running states on node i
12: in f o[i]← running states
13: for node i ∈ count[] do
14: gap← counter− count[i]
15: if gap > λd then
16: state[i]← FAILURE
17: gap← 0
18: update available node list
19: Recover(state[], in f o[])
20: for node i ∈ state[] == CONNECTED do
21: if no result returned then
22: Recover(node i, in f o[])

failures considered by the policy include remote nodes crash, remote nodes out of com-

munication range, and message omissions.

Failure detection

The system adopts checkpointing to detect remote node crash and communication lost in

Algorithm 2.

The discovery service inside communication manager periodically broadcasts mes-

sages to the remote nodes within the system at each checkpoint and waits for the confir-

mation message returned by the remote nodes. The discovery service updates a vector

that stores the number of confirmation message received from each available node. Then

at the end of each checkpoint period, the discovery service calculates the gap between

the number of messages received for each node and its own counter. Nodes with same

number as the counter or within the distance of λd are considered as working, and are

80 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

tagged as CONNECTED. Nodes that the gap is larger than λd are then considered failure,

and are tagged as FAILURE. Since we only consider one-hop network between the host-

ing device, MANET devices and cloud VMs, the delivery of the message is not effected

by the route change. The failure is mostly likely node crash or dropping out of commu-

nication range. In this case, we set λd to 3. In case mCloud adopts more complicated

network topology in the future, we can adjust the number to fulfil the failure detection

requirement.

Moreover, the detecting policy puts the target time on completing the offloading

tasks. The target time is related to the estimated execution time provided by the cost

models inside decision engine. When the time of checkpoint looping is beyond the target

time, the discovery service considers a failure happened in the node that has not returned

the result, and proceeds the failure recovery on the tasks from that node.

Recovery

When failures happen, the discovery service fetches the current running states of the

tasks on each node at each checkpoint during failure detection. The information includes

task ID, the point of failure, and the partial result obtained. If the failure is confirmed

by the detection policy, the Discovery Service sends a recovery request to the decision

engine. Then the Decision Engine packs all the information of the failed task and choose

another available cloud resource node for further execution. If there are no suitable nodes

under the current context, the task is then executed locally on the device itself.

3.4 System Design and Implementation

The implementation of our prototype framework is built based on ThinkAir [122]. The

system is implemented on Android operating system. We apply VM migration technol-

ogy using Java Reflection [157] as our offloading method in mCloud to minimize the

modifications of the existing or developing mobile applications. The system and pro-

gramming APIs are implemented as a library for the Android application developers.

Android x86 system[92] is deployed on the cloud and cloudlet VMs. In this section, we

explain in details the design and implementation of mCloud and programming APIs.

3.4 System Design and Implementation 81

public c l a s s Example {
private i n t expA ;
private i n t expB ;
@OFFLOAD
public i n t solve () {

return ;
}
public void otherMethods () {
}
}

Listing 3.1: Offloading example

3.4.1 Android x86

In order to leverage the cloud resources, the framework needs to offload the mobile tasks

from the ARM-based system application to an x86-based cloud VM. Android x86 is an

open-source project to port Android operating system to an x86 or AMD host. It pro-

vides major functions of an Android device on desktop system like Windows. As a re-

sult, our proposed framework can fit into most of the existing and developing Android

applications and cloud services without modifications on the program. We deployed the

Android x86 system on Virtualbox virtual machines running on commercial public cloud

services.

3.4.2 Offloading Method

We use Java reflection as mCloud’s offloading method. Java reflection allows the pro-

gram to inspect the available Java classes, methods, interfaces and their properties within

the system or itself at runtime [14]. We can manipulate programs with certain classes,

retrieve related properties like parameter types and fields, and invoke the methods of

other programs remotely. Our proposed mCloud framework implements the offloading

and remote execution by using Java reflection and Java annotations.

We provide a simple annotation @OFFLOAD for developers to annotate the methods

to be considered for offloading. The annotated methods will be processed at the compile

time via Java Reflection. Listing 3.1 shows an example of using Java annotation for of-

floading. At runtime, the application program can inspect and invoke method solve in

the offloading example.

82 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

Figure 3.2: Execution dataflow: 1) sending offloading request to the decision engine, 2)
collecting context parameters from context monitor, 3) get information of available cloud
resources, 4) Task Manager starts once the decision is made to offload, 5) Communica-
tion Manager divides the jobs into subtasks for parallel processing, 6) Offload to cloud
resources for remote execution, 7) pause until receiving the result, 8) aggregate results
from parallel processing and store the result of execution time and energy consumption
in database, 9) and 10) send result back to device for presentation

3.4.3 Execution Environment

The execution dataflow is depicted in Figure 3.2. Five main components are imple-

mented, namely Context Monitor, Decision Engine, Task Manager, Communication Man-

ager, and Discovery Service. These components constitute the execution environment for

the code offloading tasks.

Discovery Service

The Discovery Service starts when the application is opened on the device. It detects two

different types of resources: the available Android x86 VMs in the remote, and mobile

devices in the proximity. The Service first contacts a root server on the cloud VM and

retrieves a list of available Android x86 VMs and their IP addresses on the public cloud

and local cloudlets. Meanwhile, the Discovery Service starts an new thread in the back-

ground, which establishes a WiFi hotspot to let the mobile devices nearby connect to the

client device. Then the Service can simply ping within a certain IP address range to de-

tect the available mobile devices. The benefit of this approach is that in most cases when

the public cloud services are not available, for example at a disaster recovery site, using

3.4 System Design and Implementation 83

public void networkProf i l e r () {
networkStateReceiver = new BroadcastReceiver () {

public void onReceive () {
n e t I n f o=connectivityManager . getActiveNetworkInfo () ;
networkType = n e t I n f o . getTypeName () ;
}}}

Listing 3.2: Profiler implemented with BroadcastReceiver

hotspots to form an ad-hoc network is stable and easy to establish.

The service will search devices in periodical searching strategy to keep the available

mobile device list updated. Additionally, the Service also considers Bluetooth connection

in Discovery Service. It will activate the Bluetooth module on the client device when the

service starts at the beginning and initialize a Bluetooth discovery session that detects

other Bluetooth capable devices in the range. The hosting mobile device then gets a list

of bonded devices and other available devices for connection. All the information of the

mobile devices discovered by the system will be stored for the further decision engine

evaluation.

Context Monitor

Device profiler, network profiler and program profiler are implemented in the Context

Monitor. The Context Monitor is designed to collect context data in an on-demand mon-

itoring strategy in order to reduce the overhead. Hence, the profilers are implemented

with BroadcastReceiver3 to receive the context data only when the context changes. List-

ing 3.2 shows an example of the network profiler. The profiler in the example will detect

the current active network connection type when it is changed.

Communication Manager

The communication manager extracts the information of the IP address of the offloading

location, offloading task ID, method name, input parameters, and wireless medium type

being used generated by task manager. Then it starts a new asyncTask4 in the background

to initialize the connection to the selected cloud resource. The communication manager

3An Android class that can receive broadcasts across the applications
4An Android class that allows to perform background operations and publish results on the UI thread

without having to manipulate threads and/or handlers.

84 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

private void remoteExecution (InputStream ob j In){
obj = ob j In . readObject () ;
name = ob j In . readObject () ;
parameters = ob j In . readObject () ;
paraTypes = ob j In . readObject () ;
/ / Get t h e c l a s s
c l a s s = obj . ge tClass ()
/ / c o n s t r u c t c l a s s in r e mo t e h o s t
c o n s t r u c t o r = c l a s s . ge tConstructor () ;
i n s t a n c e = c o n s t r u c t o r . newInstance () ;
/ / Get t h e o f f l o a d i n g method
runMethod = c l a s s . getDeclaredMethod (name ,

paraTypes) ;
runMethod . s e t A c c e s s i b l e (t rue) ;
/ / i n v o k e t h e r e mo t e method with i n p u t p a r a m e t e r s
r e s u l t = runMethod . invoke (c lass , parameters) ;
}

Listing 3.3: An example of remote execution

detects if connected cloud resource has the application files and relevant libraries, and

sends missing files. Then the Manager waits until the asyncTask collects the results.

Decision Engine

Upon receiving the offloading request, the Decision Engine first fetches all the informa-

tion from Context Monitor and Discovery Service. Then it passes all the context pa-

rameters and available device information to the decision algorithm for evaluation. The

decision is packed into an array as execution location, machine IP address, offloading

method name, input parameters, and wireless channel for communication.

Once the Decision Engine makes the offloading decision, the framework starts the re-

mote execution. Listing 3.3 gives an example of the remote execution. The remote cloud

resource first unpacks and get the parameters regarding the execution environment, such

as method name, input parameters, and return types. Then it use Java reflection to create

a new instance of the offloaded class. Last, it invokes the annotated method to execute

and return the results to the hosting mobile device. During the remote execution, the

hosting mobile device is on hold until all the results are returned from the cloud re-

sources.

3.5 Performance Evaluation 85

Table 3.3: Criteria weights for TOPSIS

Criteria Weight CR

Power Consumption 0.180
Bandwidth 0.130

Cloud Resource Availability 0.514 0.052
Congestion Level 0.081
Signal Strength 0.062

Cost 0.033

3.5 Performance Evaluation

3.5.1 Experiments Settings

To the best we know, there are no available standard testbeds that are suitable for the

performance evaluation. Thus, to evaluate the effectiveness of mCloud and offloading

scheme on different kinds of mobile applications, we implement two Android applica-

tions. The applications represent two different types of tasks, one is small file size with

high computation, and the other one is big file size with high computation. For the first

type, we implement an application that performs math operations based on the input

data, and for the second type we implement a face detection application.

We deploy the applications on one HTC G17, one Samsung I997, and one Nexus

5, which form a device cloud for the experiments. One Android x86 clone is installed

within VirtualBox on an Intel i5 laptop serving as cloudlet, the emulated CPU speed was

adjusted from VirtualBox to match the processing speed of cloudlet. Two Android x86

clones are set up in an Amazon EC2 t2.medium instance. Moreover, we use PowerTutor

[250] to monitor the energy consumption of CPU and communication. Unrelated appli-

cations, background services (e.g. GPS, audio, etc.) and screen of the mobile devices

are shut down during experiments. The relative weights for criteria in TOPSIS model

is generated based on the system priority. Due to the concern on the processing delay

and energy consumption, we set the order of priority set for the six criteria using the pair

comparison method in AHP: resource availability > power consumption > bandwidth >

channel congestion level > signal strength > monetary cost. Based on this assumption we

calculate the weights from AHP and the results are shown in Table 3.3. The consistency

86 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

Table 3.4: Experiment scenarios

No. Application Scenario User Preference

1 Math application,
face detection

stable device context,
test performance
against baselines

time sensitive
energy sensitive

time energy

2 Math application

unstable mobile cloud
resource availability,

stable network
(Table 3.7)

time energy

3 Math application

stable mobile cloud
resource availability,

unstable network
(Table 3.8)

time energy

ratio 5 value is 0.052 (less than 0.1), thus the weights are valid.

We conducted three sets of experiments. A summary of the scenarios is listed in Ta-

ble 3.4. In the first scenario, two applications are executed in a stable device context (i.e.

all mobile cloud resources and wireless mediums are available and stable) to evaluate

the performance of mCloud in terms of time and energy consumption, under three user

preference policies. Then we compare them with the baselines of local only. In the second

scenario, we conduct experiments under multiple cases of mobile cloud resource avail-

ability, while in the third test scenario, mCloud is tested under unstable network condi-

tions. These results are then compared with the existing work ThinkAir. In summary, the

second and third set of experiments aim to demonstrate the advantages of mCloud in an

unstable mobile cloud context.

3.5.2 Results and Analysis

We run the two implemented mobile applications with 500 input tasks respectively under

three offloading policies, namely time sensitive, energy sensitive, and time energy. Then the

results are compared with the baselines that runs workload in offloading policy local only.

The characteristics of the generated workloads is listed in Table 3.5. Workload S L and

S H are generated by the calculation application, and workload B H is generated by the

face detection application. Each measurement result is calculated by the average of 10

5Calculated by Equation 3.13

3.5 Performance Evaluation 87

Table 3.5: Workload for experiments

Workload
Average

data size (byte)

Average
Android bytecode
instructions (MI)

Number of tasks

S L 725 5.8 500
S H 650 24 500
B H 3000 29.5 500

(a) Time(s) (b) Energy(J)

Figure 3.3: Overall time and energy consumption for each workload under different poli-
cies

trails. Figure 3.3a and Figure 3.3b compare the execution time and energy consumption

respectively of each workload under three offloading policies, which are time sensitive,

energy sensitive and time energy combination. Table 3.6 lists the proportion of the tasks

allocated to the multiple cloud resources in mCloud’s mobile cloud environment.

As shown in Figure 3.3a, for workload S L, the execution time is reduced by around

55% under time sensitive policy comparing to local only policy. 75.4% of the tasks are

scheduled by the decision engine to the cloudlet server (shown in Table 3.6) that has a

much lower network latency than public cloud. In Figure 3.3b, the energy consumption

for workload S L is reduced by 55.6% under energy sensitive policy, which has the best

performance among all policies. 84.2% of the tasks are scheduled to the MANET due

to the low energy consumption on data transferring via Bluetooth. For the time energy

policy, the result shows in Table 3.6 that 9.6% tasks are executed in local, 70.4% tasks

in cloudlet, and 20% in public cloud, with the consideration of network condition and

available cloud resources.

88 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

Table 3.6: Proportion of tasks mapped at each location under different policies (T:
time sensitive, E: energy sensitive, TE: time energy)

Workload Policy Local Manet Cloudlet cloud

S L
T 1 0 75.4 23.6
E 15.8 84.2 0 0

TE 9.6 0 70.4 20

S H
T 0 0 31.6 68.4
E 0 82.1 17.9 0

TE 0 0 79.3 20.7

B H
T 41.2 0 58.8 0
E 60.8 39.2 0 0

TE 33.5 12.6 53.9 0

(a) Time(s) (b) Energy(J)

Figure 3.4: Task processing time and offloading overhead of workload S H under lo-
cal only(L), time sensitive(T), energy sensitive(E) and time energy(TE) policies

We can also observe similar results that, for workload S H, mCloud gives the best

performance by achieving 65% of time reduction under time sensitive policy and 70% of

energy reduction under energy sensitive policy. For workload B H, mCloud achieves 25%

of time reduction and 30% of energy reduction on average. The experiment results show

the mCloud is most beneficial to the tasks that have low data size and high computation.

Figure 3.4 and Figure 3.5 break down time and energy consumption of workload S H

and B H respectively. For workload S H in Figure 3.4a, the offloading overhead under

different policies is around 20% on average, while the offloading overhead of workload

B H in Figure 3.5a is much larger. The difference of offloading overhead between these

two workloads is due to the time consumed in transferring the data. The energy con-

sumption of communication is fairly small since the workload S H includes tasks with

3.5 Performance Evaluation 89

(a) Time(s) (b) Energy(J)

Figure 3.5: Task processing time and offloading overhead of workload B H under differ-
ent policies

small data sizes (Figure 3.4b). On the contrary, workload B H contains tasks with large

data sizes that increase the energy consumption of transferring the data (Figure 3.5b).

The communication of workload S H costs around 13.6% of the total energy consump-

tion on average, while for workload B H it costs more than 30% on average. Figure 3.5a

shows the overall time under time sensitive is greater than energy sensitive, while the exe-

cution time under time sensitive is smaller. This is because the tasks under time sensitive

policy were scheduled among local and cloudlets via a WiFi public access point on our

site with long latency, and tasks under energy sensitive policy were scheduled among local

and Manet via Bluetooth and WiFi-direct, which has almost no network latency. Conse-

quently, for workload B H that has large data size to transfer, although the task execution

time is lower, more time spent on waiting for results and transmission under time sensitive

policy. The overall time will be shorter under time sensitive when using a lower latency

access point.

Furthermore, to explore the performance of mCloud in terms of execution time and

energy consumption under unstable contexts, we conduct the experiment using work-

load S H with different combinations of available cloud resources and network condi-

tions under time and energy combined policy, and compare performance with ThinkAir.

First, we evaluate the performances in different available cloud resources conditions

while the network condition is stable. The test cases are listed in Table 3.7.

Case 1 indicates all resources are available while case 2 to case 4 represent the absence

of public cloud service, cloudlet service, and nearby wireless mobile ad-hoc network

90 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

Table 3.7: Number of each type of cloud resources

Case Cloud VM Cloudlet MANET

1 2 2 3
2 0 2 3
3 2 2 0
4 0 0 3

(a) Time(s) (b) Energy(J)

Figure 3.6: Performance under available resource changing conditions

respectively. The results are illustrated in Figure 3.6.

Figure 3.6a and Figure 3.6b show the execution time and overall energy consumption

of the workload in each case for our proposed system and ThinkAir respectively. In

Figure 3.6a, it shows that mCloud outperformed ThinkAir in terms of time saving in

all the four cases. Especially in case 2 and case 4, due to the unavailability of public

resources, ThinkAir chooses to run all the tasks locally on the device, while mCloud

offloaded part of the tasks to the mobile clones on cloudlet and the nearby mobile device

cloud, which conserved around one third of the time ThinkAir took for execution. The

similar result can be observed for energy consumption of the two systems in Figure 3.6b.

The results show that our proposed system can provide code offloading services when

the mobile cloud environment is short of public cloud resources and help conserving

execution time and battery, unlike many existing mobile cloud frameworks.

Second, we compare mCloud with ThinkAir under unstable network condition. The

experiments are conducted by executing workload B H under changing network con-

text. We alter the bandwidth of Internet connection and 3G connection to simulate the

changing network condition in the real world. Table 3.8 lists the four test cases. The max-

3.5 Performance Evaluation 91

Table 3.8: Average network speed for each test case

Case Wifi (MB/s) 3G (MB/s) Bluetooth (MB/s)

1 14.3 3.5 2.8
2 0 3.2 3.0
3 0 0 2.2
4 1.7 3.3 2.5

(a) Time(s) (b) Energy(J)

Figure 3.7: Performance under different network conditions

imum bandwidth of our testing devices’ WiFi connection was 14.3 MBps, the average 3G

connection speed was 3 MB/s. The Bluetooth speed was the same throughout the exper-

iment. When the speed was set to 0, it represents the unavailability of the corresponding

wireless channel. In order to alter the bandwidth of the network, we set up a virtual

access point on the laptop and connect DummyNet [28] to the virtual AP to manage the

network bandwidth, latency, etc.

Case 1 represents the scenario where all the wireless channels are available and oper-

ating at full speed. Case 2 represents the scenario where WiFi connection is not available.

Case 3 represents neither WiFi nor 3G is available. Case 4 represents the WiFi connection

speed drops from full speed to low speed that is slower than 3G and Bluetooth. Fig-

ure 3.7a and Figure 3.7b show the execution time and overall energy consumption of the

workload in each case for our proposed system and ThinkAir respectively.

As illustrated in Figure 3.7a and Figure 3.7b, test case 1 shows that mCloud has close

performance as ThinkAir in terms of execution time and energy consumption. For case 2,

3 and 4, mCloud has around 20% performance gain comparing to ThinkAir. For test case

2, when only mobile data and Bluetooth are available, mCloud schedules the offloading

92 A Context-aware Task Offloading Decision Algorithm and Enabling Framework

tasks to either MANET through Bluetooth or local due to the consideration of monetary

cost. The result of test case 4 shows that when the network is unstable or slow, mCloud

can save more execution time and energy than ThinkAir because of the multiple cloud

resources and context being considered in mCloud.

3.6 Summary

In this chapter, we proposed a context-aware offloading decision algorithm that takes

into consideration context changes (e.g. network conditions and heterogeneous mobile

cloud resource) to provide decisions on wireless medium and mobile cloud infrastruc-

ture resources to utilize at runtime. It also provides a general cost estimation model for

mobile cloud infrastructure resources to estimate the task execution cost including exe-

cution time, energy consumption. The models can be easily modified for the new cloud

resources. A prototype system designed and implemented that considers three types of

cloud resources (mobile device cloud, cloudlet and public clouds) and a decision engine

that runs the proposed algorithm and related cost estimation models. The evaluation of

mCloud is presented, and results showed that the system can provide offloading deci-

sions based on the current context of mobile devices to lower the cost of execution time

and energy.

However, a drawback of the proposed context-aware offloading decision algorithm

is that it only makes decisions from a single view of the mobile device. Since the het-

erogeneous mobile cloud environment we proposed leverages a shared resource pool

where all the devices within the environment can offload tasks and execute the offloaded

tasks from others, an optimal task offloading schedule with load balancing consideration

is needed to provide an overall better performance. Therefore, in the next chapter, we

propose an online task offloading and scheduling algorithm for the task offloading in

heterogeneous mobile clouds.

Chapter 4

Execution Optimization for Task
Offloading and Scheduling

A mobile device within the heterogeneous mobile cloud environment can both offload mobile tasks

and run the offloaded tasks. The offloading decision making and tasks scheduling among heteroge-

neous shared resources in mobile clouds are becoming challenging problems in terms of providing

global optimal task response time and energy efficiency with load balancing. In this chapter, we ad-

dress these two problems together as an optimization problem. The proposed optimization problem

considers unique contexts of mobile clouds such as wireless network connections and mobile device

mobility, which makes the problem more complex. We propose an offline optimal solution based on

mixed integer programming model for making the offloading decisions and scheduling the offloaded

tasks among the shared computing resources in heterogeneous mobile clouds to minimize the global

task completion time and provide load-balanced schedules. To solve the problem in real-time, we fur-

ther propose an online scheduling algorithm named OCOS based on the rent/buy problem and prove

the algorithm is 2-competitive. Performance evaluation results show that the OCOS algorithm can

generate schedules that have around 2 times shorter makespan than conventional independent task

scheduling algorithms.

4.1 Introduction

MOBILE computing technologies developed enormously in recent years, mobile

devices (e.g., smartphones, tablets, and wearable devices) have been involved

as part of people’s daily activities [56]. Mobile applications such as cognitive applica-

tions (e.g., optical character recognition, face detection) and augmented reality are gain-

ing popularity among mobile device users. These applications typically require intensive

This chapter is derived from: Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and Rajkumar
Buyya, “An Online Algorithm for Task Offloading in Heterogeneous Mobile Clouds,” ACM Transactions on
Internet Technology, Volume 18 Issue 2, Article No. 23, March 2018.

93

94 Execution Optimization for Task Offloading and Scheduling

computation as well as considerable energy consumption. However, compared to desk-

top computers, mobile devices still provide a relatively inferior performance in terms of

processing capacity, memory, storage capacity and battery life to support long-term ser-

vices. As a result, the gap between resource-constrained mobile devices and computing

intensive applications has posed a significant challenge.

Previous works [37, 125] have seen limits of only offloading to cloud since wireless

networks can cause the performance bottleneck. To overcome this challenge, it is of in-

terest to provide mobile cloud service users with alternative computing paradigms. Due

to the improvement in short range wireless networks and mobile devices, mobile cloud

computing has evolved beyond the onefold public cloud resource into a heterogeneous

network of computing resources.

As illustrated in Figure 1.1, the heterogeneous mobile cloud (HMC) environment

contains different types of computing resources such as public clouds, private clouds,

cloudlets [200], and mobile ad-hoc networks (MANET). For each mobile device, it is im-

portant to make the offloading decision based on its context such as network conditions,

load of other machines, and mobile device’s own constraints (e.g., mobility and battery).

Moreover, to achieve a global optimal task completion time for tasks from all the mobile

devices, it is necessary to devise a task scheduling solution that schedules offloaded tasks

in real time.

In this chapter, we jointly investigate the mobile code offloading problem and task

scheduling problem for offloaded tasks as a mobile code offloading and scheduling prob-

lem (MCOSP). MCOSP not only makes decisions of whether, when and how to offload

tasks for each mobile device, but also aims to schedule offloaded tasks among shared ma-

chines in heterogeneous mobile clouds. MCOSP takes into consideration the constraints

of the shared computing resources (i.e., load of the resources, network conditions, and

limits of battery lifetime) when scheduling, such that the overall task completion time is

minimized. Our work considers a common task scheduling model where the mobile de-

vice within the heterogeneous mobile cloud environment generates independent tasks at

arbitrary time, and one machine may only process one task at a time. The heterogeneity

in both tasks and machines makes MCOSP an NP-hard problem [76]. We study the opti-

mization of MCOSP in both offline and online cases. Table 4.1 lists the acronyms used in

4.1 Introduction 95

Table 4.1: List of acronyms

Acronyms Description

HMC Heterogeneous Mobile Clouds
MCOSP Mobile Code Offloading and Scheduling Problem
OCOS Online Code Offloading and Scheduling algorithm
LCSD Low Computation Small Data Size workload
HCSD High Computation Small Data Size workload
HCLD High Computation Large Data Size workload

VM Virtual Machine
OCR Optical Character Recognition
OLB Opportunistic Load Balancing algorithm
LO Mobile Local Only
CO offloading to Cloud Only

this chapter. The key contributions of this chapter are:

• First, we propose the models of computation, energy consumption, monetary cost

and time-to-failure for mobile devices that represent the heterogeneity of the pro-

posed heterogeneous mobile cloud environment.

• Second, we formulate MCOSP as a mixed integer nonlinear programming problem

based on the models of the proposed heterogeneous mobile clouds and provide an

analysis on its hardness. Then we transform it into a mixed integer linear program-

ming formulation using linearization and solve the problem using the branch-and-

bound algorithm.

• Finally, to provide a practical solution for the problem, an online real-time schedul-

ing algorithm for MCOSP based on a generalization of rent/buy problem frame-

work is proposed to obtain competitive schedules for large workloads. Experi-

mental results demonstrate that the proposed online algorithm OCOS generates

2-competitive makespan on average comparing to offline optimal solution in terms

of scheduling performance, and scales well in terms of offloading gains when the

number of mobile users in the system increases.

The remainder of the chapter is organized as follows. In Section 4.2, the system mod-

els for task scheduling are introduced, followed by a description on MCOSP and the

MIP-based formulation in Section 4.3. Then we proposed the online solutions and its

96 Execution Optimization for Task Offloading and Scheduling

competitive analysis in Section 4.4. The experiment settings are explained and the per-

formance evaluation results are discussed in Section 4.5. Finally, we conclude the chapter

in Section 4.6.

4.2 System and Cost Models

4.2.1 Motivation Example

A group of overseas tourists are travelling at a local museum. Since they do not speak the

local language, an optical character recognition (OCR) application is installed on smart-

phones and tablets to help them read museum exhibit descriptions. The OCR application

takes photos of the descriptions, processes to extract the text from the photos, and sends

extracted texts over the Internet to its back end services in cloud for translation. How-

ever, some mobile devices do not have enough computing capacity to perform the text

extraction, and some other mobile devices do not have an Internet connection to get the

translation. In order to enable every group member to use the OCR application on his

or her device, mobile devices, including smartphones, tablets and laptops, and public

cloud VMs running back end services, form a network of shared computing resources

(i.e., HMC). The individual mobile device that lacks resources is able to utilize the shared

computing and network resources by offloading tasks to other devices or the cloud.

The challenge in the scenario is deciding whether, where and how to offload a mo-

bile task, as well as scheduling the offloaded tasks with load balance among the shared

resources to achieve optimal task completion time.

4.2.2 Resource Models

Suppose a set of heterogeneous machines m ∈ M are connected via different wireless

technologies. M consists of three types of computing resources: virtual machines on a

single public cloud service, nearby cloudlets, and mobile devices in proximity. The het-

erogeneity of each machine m is modelled in terms of computing and network capability.

The model is given as m , 〈µ, l, r, θ, PRactive, PRidle, Etotal , tjoin, tleave, Cbudget〉, ∀m ∈ M,

where µ is the processing speed of machine m, l is the network latency between the client

4.2 System and Cost Models 97

Table 4.2: Symbols of the HMC modeling

Symbol Description

M the set of heterogeneous machines such as cloud VMs, cloudlets and MANET
S the set of independent tasks to be scheduled
m machine m in HMC environment
i mobile task i
fi the data size of task i

vi the computation workload of task i
tarrive
i the arrival time of task i
µ the processing speed of the machines
l network latency of the HMC network
r the charge rate per time unit for cloud instance in M
θ the proportion of battery energy provided by mobile device in M

νm the energy consumption rate of CPU on machine m
PRactive energy consumption per time unit when the machine is in the active mode
PRidle energy consumption per time unit when the machine is in the idle mode
Etotal

m the total battery energy of mobile device m
tjoin
m the time when machine m join the HMC network

tleave
m the time when machine m leave the HMC network

Texec
i,m the processing time of task i on machine m

Ttrans
i,ch the data transferring time of task i using wireless channel ch

Eexec
i,m the energy consumption for executing task i on machine m

Etrans
i,m the energy consumption for transferring task i to machine m using wireless channel ch
xi,m the binary variable indicating task i is assigned to machine m in HMC

wi, ci, bi the binary variables indicating the wireless medium used to offload task i
oi,j,m the binary variable indicating whether task i is scheduled before task j on node m
tstart
i,m the real variable representing the start time of task i on machine m

t f inish
i,m the real variable representing the finishing time of task i on machine m

T a constant greater than the worst case makespan
Ri renting cost of task i

Bi,m buying cost of dispatching task i to machine m
Cbudget

m the monetary budget of machine m
Ctrans

i the monetary cost of transferring data of task i via mobile data
CVM

i the monetary cost of executing task i on cloud VMs

device and m, r is the charge rate per time unit for cloud instance, θ denotes the pro-

portion of energy machine m will provide to execute offloaded tasks. M represents the

set of machines that form the shared resource pool. Note that θ is an exclusive property

for mobile devices. The value of this metric for other types of computing resources is

set to 0. PRactive represents the energy consumption rate per time unit of the mobile de-

vice in active mode, and PRidle represents the energy consumption per time unit in idle

mode. Etotal is the total battery energy of machine m. The mobility of mobile devices are

represented by the joining time and leaving time respectively as tjoin and tleave. Cbudget de-

notes the monetary budget of machine m for using the mobile cloud service and cellular

98 Execution Optimization for Task Offloading and Scheduling

network data usage.

Mobile devices are not always available due to the mobility of users, and the available

time of the machines in HMC has a vital impact when scheduling mobile tasks. To enable

a tractable analysis, we first assume that network settings (i.e. signal strength, network

speed and latency) remain unchanged throughout the time when the mobile device is

within HMC environment. This is reasonable considering a group based environment

such as offices or group travelling.

In each proposed HMC network, a task scheduler is deployed to receive task offload-

ing requests from mobile devices within the network and schedule the tasks based on

the proposed scheduling algorithms. To reduce scheduling overhead, the scheduler is

placed on the nearby cloudlet to reduce network latency. In case the cloudlet is not avail-

able or in failures, the scheduler is placed on the VM on the public cloud as a backup.

The proposed HMC environment is enabled by the mCloud framework we proposed in

chapter 3. A summary of the notions used in the system models is listed in Table 4.2.

4.2.3 Workload Model

Based on the experimental results in Chapter 3, only tasks with high computation and

small data input size are beneficial from mobile cloud offloading (e.g. OCR and GPS-

based applications), and we call it offloading tasks. Consider an application is composed

of offloading tasks and other tasks, the proposed algorithm only considers offloading

tasks for scheduling. Therefore, each application can only submit the offloading tasks to

the scheduler. We assume that the tasks evaluated at the scheduler are independent and

non-preemptive of each other. We define a 3-tuple for offloading tasks i , 〈 fi, vi, tarrive
i 〉,

where fi is the data size of the task i to be offloaded, vi denotes CPU cycles needed to

complete task i, and tarrive
i represents the arrival time of task i at the scheduler. The mobile

device user can adopt the methods proposed by Cuervo et al. [52] and Chun et al. [43] to

obtain the value of f and v. Tasks are generated at arbitrary time. Due to the concern of

communication overhead, once offloading tasks are generated, only the information of

3-tuple model is sent to the central scheduler at the stage of scheduling.

4.2 System and Cost Models 99

4.2.4 Computation and Communication Models

The execution time and energy consumption required to execute a task are two major

factors considered in the process of making offloading decision. CPU and wireless trans-

mitter are two major energy consumption sources for mobile devices in mobile cloud

computing. Typically the power consumption of these hardware components depends

on their operating state (i.e., utilization, data rate, etc.). Without loss of generality, we as-

sume that the CPU operates at full utilization when executing mobile tasks and the data

rate of the wireless channel is constant and stable. In our model, the scheduler takes into

account two metrics: the computation time, and the energy consumption of processors

and transmitters.

Suppose that an offloading task i is waiting to be scheduled to M. The computa-

tion execution time of task i on machine m is composed of CPU computation time and

memory I/O access time. Since memory access is tightly coupled with the type of ap-

plication and instructions executed and can vary on different hardware architectures, the

model takes on a high level abstraction of memory access based on cache misses model

proposed by Fan et al. [65].

Texec
i,m =

vi

µm
+ taccess ∗ Nmiss,

where taccess and Nmiss represent memory access time and number of cache misses respec-

tively. These two parameters can either be obtained from hardware specifications or from

existing performance counters on many modern processors [65]. If machine m is not the

one that generates task i, a task offloading occurs with extra cost in terms of time and

energy required for data transmitting. The data transmission time is given as

Ttrans
i,m =

fi

BWch
,

where BWch denotes the network speed of the wireless channel used to offload data. The

computation execution time for an offloaded task is the sum of Texec
i,m and Ttrans

i,m . Note that

the time and energy cost for sending computation results back to mobile device user are

neglected, due to the fact that the data size of results for the considered applications (i.e.

cognitive applications) is much smaller comparing to the offloaded data (i.e., input data,

100 Execution Optimization for Task Offloading and Scheduling

and application code).

Similar to computation models, the energy consumption model consists of the execu-

tion of offloaded tasks, and energy consumed by data transmission if offloading occurs.

The energy consumption model for task i executing on machine m is given as

Eexec
i,m = νm

vi

µm
,

where νm represents the energy consumption rate of m executing tasks based on the pro-

cessor’s frequency [233]. Eexec
i,src is the energy consumption for machine m if the scheduler

decides to execute task i locally. For the computation offloading, the amount of energy

incurred by data transfer, Etrans
i,m , depends on the size of the data and the wireless medium

that carries the transmission.

Etrans
i,m = ρch

fi

BWch
,

where ρch denotes the energy consumption rate of the wireless medium applied, and

BWch is the network speed. Accordingly, the energy consumption of task i executing

locally is Etrans
i,src .

4.2.5 Monetary Cost

We assume that each individual mobile device has a monetary cost budget set by the

mobile user for using the proposed mobile cloud services. The monetary cost is generated

by transferring data via cellular networks and using public cloud services. The scheduler

needs to make offloading decisions without violating budget constraints. In our system

model, the data transferring cost of offloading task i is calculated as Ctrans
i = κ(fi + fres),

where κ is the cost per megabyte of cellular networks, and fi, fres denotes the data size of

task i and computation results respectively.

The cost of using public cloud services is based on the type of service and the usage.

The spending on running task i on cloud VM m is calculated as CVM
i = rvm

vi
µvm

, where rm

is the cost per time unit of cloud instance m.

4.3 Mobile Offloading Scheduling Problem Formulation 101

4.2.6 Failure Model

Mobile devices are unreliable due to its mobility and unstable wireless network con-

nections. The disconnections of mobile devices from the mobile cloud environment can

cause failures in execution of offloaded tasks. Therefore, considering the availability of

machines is important for making offloading decisions. Note that the study of mobility

patterns of mobile devices is not the focus of this chapter. Instead, the system model

adopts the time-to-failure metric to represent the availability of the machines. Time-to-

failure represents the time between the machine joining (i.e. tjoin
m) and being disconnected

from the shared resource pool (i.e. tleave
m).

To obtain the time-to-failure of mobile devices, Weibull distribution is adopted since it

can well represent the case where failure rate is constant as well as the case where failure

rate increases or decreases as time goes by [129], and is shown to be useful for modelling

lifetime data in engineering sciences [128]. The PDF of Weibull distribution is given by:

f (t) =
β

η
(

t
η
)β−1e−(

t
η)

β

,

where β is the shape parameter and η is the slope parameter of the distribution. Time-to-

failure of each machine can be randomly obtained from the inverse function of Weibull

distribution. tleave
m of machine m can be calculated by padding the time-to-failure after

tjoin
m of the machine.

4.3 Mobile Offloading Scheduling Problem Formulation

In our system model, mobile tasks, machines, and wireless networks are all considered

heterogeneous. To guarantee a consistent user experience for all mobile cloud service

users, we target on the balanced utilization of the shared computing resources with the

minimized overall task completion time, considering the heterogeneity and constraints

of the HMC environment. In such case, task completion time for individual user may

not be optimal, but for all the service users, the task completion time of all mobile tasks

submitted by mobile devices is minimized to ensure the balanced and fair use of the

shared computing resources.

102 Execution Optimization for Task Offloading and Scheduling

4.3.1 Mixed Integer Programming Based Offline Optimal Formulation

The mobile code offloading and scheduling problem (MCOSP) aims to decide on which

machine to execute each mobile task, as well as which wireless medium to use if an

offloading is required. Furthermore, it needs to devise an optimal schedule for the mobile

task execution with minimum makespan, subject to constraints from the proposed HMC

environment.

Based on proposed system models, we presented a mixed integer programming (MIP)

based problem formulation for MCOSP. In the MIP formulation, 5 binary variables and

2 continuous variables are defined to devise the optimal solution. Note that the term

machine is used to represent any types of computing resources in the proposed HMC

environment.

Let tstart
i,m and t f inish

i,m be the starting time and finishing time of task i executing on ma-

chine m respectively. The binary variable xi,m represents whether task i is scheduled on

machine m.

xi,m =


1, if task i ∈ S is assigned to machine m ∈ M

0, otherwise

Then the variables for the wireless medium used for data offloading are defined as binary

variable wi, ci and bi. The variables represent whether the data is offloaded via WiFi, cel-

lular network, or Bluetooth respectively. The variable that represents the utilized wireless

medium for task i is set to 1, otherwise it is set to 0. As an example, the definition of wi is

given below.

wi =


1, if task i is offloaded via WiFi

0, otherwise

In order to simplify the calculation of task completion time, binary variable oi,j,k is defined

to represent the order of tasks scheduled on each machine.

oi,j,m =


1, if task i is scheduled before task j on machine m

0, otherwise

4.3 Mobile Offloading Scheduling Problem Formulation 103

The MIP formulation is given as follows.

Minimize: max{t f inish
i,m }, ∀i ∈ S, ∀m ∈ M (4.1)

Subject to: ∀i ∈ S, ∑
m∈M

xi,m = 1 (4.2)

wi + ci + bi + xi,src = 1 (4.3)

T(oi,j,m − 1) 6 t f inish
j,m − tstart

i,m 6 T ∗ oi,j,m (4.4)

xi,m + xj,m + oi,j,m + oj,i,m 6 3 (4.5)

oi,j,m + oj,i,m 6 1 (4.6)

tstart
i,m > tarrive

i (4.7)

tstart
i,m > tjoin

m + T(xi,m − 1) (4.8)

tstart
i,m > t f inish

j,m − T(1− oj,i,m)− T(2− xi,m − xj,m) (4.9)

t f inish
i,m 6 tleave

m (4.10)

t f inish
i,m = tstart

i,m + xi,m ∗ (Texec
i,m + Ttrans

i,m) (4.11)

ttrans
i,m =wi · Ttrans

i,WiFi · Im
wi f i + ci · Ttrans

i,3g · Im
3g + bi · Ttrans

i,bl · Im
bl) (4.12)

Texec
i,src > xi,m ∗ (Texec

i,m + Ttrans
i,m) (4.13)

∑
i∈S

xi,m · Eexec
i,m 6 Etotal

m · θm (4.14)

νsrc · Eexec
i,src > Etrans

i (4.15)

∑
i∈S

ci · Ctrans
i + ∑

m∈M
xi,m · CVM

i 6 Cbudget
m (4.16)

∀i, j ∈ S, ∀m ∈ M (4.17)

The objective function minimizes the maximum of the task completion time from all the

machines. Constraints (4.2)-(4.12) ensure a valid schedule of the tasks. Constraint (4.2)

ensures that each task needs to be assigned to one and only one machine (either local

execution or offloading to another machine). Constraint (4.3) ensures that for each task

being scheduled, either it is executed locally (xi,src) or offloaded via one and only one of

the wireless network (wi, ci, bi). Different tasks are scheduled with one of the different

type of wireless networks and it can be different for each task based on its execution

conditions. xi,src is one of the binary variables xi,m.

Constraint (4.4) assigns values to the order variable oi,j,m for each pair of tasks sched-

uled on the same machine based on the difference between the finish and start time of

each task. T is the constant greater than the worst case makespan. Constraint (4.5) and

(4.6) restrict that the tasks scheduled on the same machine from overlapping, that is, each

104 Execution Optimization for Task Offloading and Scheduling

machine can only run one task at a time. Since the tasks are generated randomly at times,

constraint (4.7) ensures a valid schedule of tasks starting after the task arriving time.

Additionally, the starting and finishing time of a task being scheduled to another mo-

bile device should be within the range of that device’s joining and leaving time. This

is guaranteed by constraint (4.8) and (4.10). If the task i is not assigned to machine m,

tstart
i,m will be set to a value greater than the worst case makespan by constraint (4.8). Con-

straint (4.9) indicates that the task is scheduled to an available time slot of the machine.

Constraint (4.10) calculates the finish of task i on machine m. The finish time of task i on

machine m is equal to the sum of its start time tstart
i,m , the execution time Texec

i,m and the data

transferring time Ttrans
i,m if xi,m equals to 1.

Constraint (4.13)-(4.16) describe the unique constraints of code offloading in proposed

heterogeneous mobile clouds. Constraint (4.13) specifies that tasks that are offloaded

should have a shorter execution time than that of local execution. Im
channel is a binary

indicator that represents the availability to access machine m via each type of wireless

interfaces. It is set by the machine when it is initially connected to the network. In the

system model, each mobile device is only contributing θm proportion of its battery en-

ergy for running the offloaded tasks from other mobile device users. This is enforced

by constraint (4.14) for each mobile device. When a task is scheduled to offload to an-

other machine, the energy consumption of the data communication should be less than

that of executing the task locally. The energy consumption constraint is described in

constraint (4.15). The left part of the inequation represents the energy consumption of

executing the task i on local processor, and the right side is the energy of computing it

on machine m. νsrc is the energy consumption rate of the original machine of of task i.

Finally, constraint (4.16) guarantees that the monetary cost of each machine by using the

public cloud services and mobile data does not exceed its limit Cbudget
m .

We can observe that the formulation is a non-linear model since constraint (4.1), (4.11),

(4.13). Generally the mixed integer non-linear programming model is not solvable with

the optimization software. Therefore, the model needs to be linearized.

The objective function is a min-max function that can be linearized by minimizing a

continuous variable T and adding the following constraint:

T ≥ t f inish
i,m , ∀i ∈ S, ∀m ∈ M. (4.18)

4.3 Mobile Offloading Scheduling Problem Formulation 105

To linearize constraint (4.11), (4.13), three new binary variables δmedium
i,m are defined as

follows.

δmedium
i,m = xi,m ·mediumi, (4.19)

where mediumi is wi, ci or bi. All the quadratic terms in constraint(4.11), (4.13) can be

equivalently replaced by δmedium
i,m , and three constraints are added:

δmedium
i,m 6xi,m (4.20)

δmedium
i,m 6mediumi (4.21)

δmedium
i,m >xi,m + mediumi − 1 (4.22)

Therefore the mixed integer linear programming formulation is given as:

Min : T (4.23)

s.t. : (4.2)− (4.18), (4.20)− (4.22).

4.3.2 Complexity Analysis

MCOSP is based on task scheduling problem for heterogeneous computing [220]. Given

a heterogeneous computing environment that has processors with different processing

speed, and a set of tasks modelled by a directed acyclic graph waiting to be scheduled

onto the machines, the objective of the heterogeneous task scheduling problem is to mini-

mize the maximum task completion time while the schedule satisfies the task precedence.

The task scheduling in heterogeneous systems is proven to be an NP-hard problem [89],

[99]. The main differences of MCOSP are that it considers a set of independent, non-

preemptive tasks. Moreover, our proposed problem considers the unique constraints of

the shared computing resources to offload in HMC in terms of computing capacity, bat-

tery limits, the availability of mobile devices, and network conditions. Therefore, based

on the proposed MILP formulation, the MCOSP is an NP-hard problem.

Generally, an MILP problem is solved by Branch-and-Bound method [8]. As a result,

there exists a large search space when being solved by branch and bound method due to

the number of variables, which is related to the size of the task set and machines. Hence,

the optimal results can only be devised for a small set of problem instances. The efficiency

of the proposed MILP solution is evaluated in the experiments (Section 4.5). Therefore,

an online, lightweight scheduling algorithm for MCOSP is of interest.

106 Execution Optimization for Task Offloading and Scheduling

4.4 Online Code Offloading and Scheduling Algorithm

In our proposed heterogeneous mobile cloud environment, the central scheduler has no

knowledge of future task arrivals. Hence, the scheduler has to make decisions of task

offloading and scheduling at runtime without knowing the entire input sequence (i.e.

task arrival times). An online optimization framework is therefore needed to solve the

MCOSP in real time. We proposed the OCOS algorithm based on the rent/buy problem to

tackle this challenge.

4.4.1 Mobile Code Offloading and Scheduling Problem

Many online problems involve a sub-problem called rent/buy problem. One has to decide

whether to stay in current state with a certain amount of cost per time unit, or pay some

fixed cost to move to another state.

Ski rental[109] is a classic example. Suppose a person is skiing for an unknown num-

ber of days. He needs to either buy the equipment or rent from the shop. Renting costs

r per day while buying costs B, where B > r. The objective is to make renting or buying

decision online in order to minimize the total cost on skiing.

A well-known generalization of this classical rent/buy problem is TCP acknowledge-

ment problem [109]. The system needs to decide how long a packet waits before sending

the acknowledgement. Waiting incurs delay cost while acknowledging incurs some cost

that is more than delay cost. It can be beneficial as multiple packets can potentially be

acknowledged together.

Consider the MCOSP problem in the online manner. Similar as TCP acknowledge-

ment problem, MCOSP can be considered as a generalization of rent/buy problems. Mul-

tiple jobs can be submitted to the scheduler at the same point of time. Hence as the service

continues, there will be several mobile tasks waiting on the scheduler to be dispatched.

In particular, consider the problem as to whether to hold a task waiting in the scheduler

or offload to one of the machines in HMC to execute. The tasks may finish execution

earlier if they wait in the scheduler for some time and execute on another machine that

is available later other than the current available ones. A task waiting to be processed

sometime in the future generates a waiting cost of 1 for each time unit. Otherwise, it can

4.4 Online Code Offloading and Scheduling Algorithm 107

pay an additional cost B to execute on one of the machines immediately. Obviously, if the

scheduler somehow knows the task needs to wait for at least B time periods, it is optimal

to pay a higher cost and run the task immediately in one of the machines at the beginning.

However, in reality the scheduler has no knowledge of that. Therefore, for each task in

the queue, the scheduler needs to decide at each time period whether to keep the task

waiting or offload to a machine considering the scheduler does not have any knowledge

of the next task arrival. We define the following entities in the context of MCOSP:

1. Rent: The scheduler holds the task awaiting in the queue for one time period.

2. Buy: The scheduler dispatches the task to one of the machines for execution.

3. Renting cost Ri: Renting incurs one cost per time unit. Thus, the renting cost Ri of

task i refers to the time period task i waited before being dispatched. Ri is defined

as:

Ri = Twait
i

4. Buying cost Bi,m: Buying cost refers to the time consumed for the task to finish

execution. Assume task i is assigned to machine m for execution. Bi,m is defined as:

Bi,m = Tavail
m + Texec

i,m + Ttrans
i,m − Tarrival

i ,

where Tavail
m is the earliest available time of machine m, Texec

i,m is the execution time of

task i on machine m, Tarrival
i is the arriving time of task i. To calculate task execution

time of task i on machine m, if there is an task offloading required, the data trans-

mission time for offloading is calculated based on the wireless channel availability

of machine m (i.e. Im
wi f i, Im

3g, Im
bt) in Eqn.(4.12). If multiple channels are available,

then the channel with minimum transmission time is selected. The leaving time of

a machine is considered when calculating the cost. That is, if the leaving time of a

machine m is before a task i can finish computation, Texec
i,m is set to infinity so that

the overall buying cost would be infinity.

4.4.2 Online Code Offloading and Scheduling Algorithm

Based on the problem definition above, we proposed an online code offloading and

scheduling algorithm (OCOS) based on break-even algorithm. The break-even algorithm

108 Execution Optimization for Task Offloading and Scheduling

Algorithm 3 Online Code Offloading and Scheduling Algorithm

1: Initialize : waitlist L, n← 0
2: for ∀m ∈ M do
3: initialize machine properties µm, rm, θm, νm, PRactive, PRidle

4: while n 6 D do
5: Upon receiving a task i: L← i
6: Ri ← 0
7: for ∀m ∈ M do
8: update Tm

avail
9: Bi,m ← 0

10: for ∀i ∈ L do
11: for machine m ∈ M do
12: calculate Bi,m

13: Bi,m∗ ← minm∈MBi,m
14: for ∀i ∈ L do
15: Rmin ← MAX VALUE
16: if Ri > Bi,m∗ and Ri < Rmin then
17: Rmin ← Ri
18: tag← i
19: if Ctag,m∗ + Ccurrent

m∗ 6 Cbudget
m∗ and Etag,m∗ + Ecurrent

m∗ 6 Etotal
m∗ · θm∗ then

20: Schedule task tag to machine m∗

21: Remove task tag from L
22: for ∀i ∈ L do
23: Ri ← Ri + 1
24: Update Ri

25: n← n + 1

[110] has been widely used to design the online algorithms. A break-even point refers to

the time when the renting cost equals to the buying cost. The algorithm decides to buy

the resources after the break-even point. It has been proven to be 2-competitive [110].

A discrete time horizon of D epochs is considered, where D could possibly be in-

finite. Starting from time 0, the tasks arrive at the scheduler at arbitrary epoch. The

pseudo code of the proposed algorithm is given in Algorithm 3. Firstly, the scheduler ini-

tializes a waitlist L and updates all the information of the machines available (e.g. earliest

available time, processing speed, energy rate, etc.) by sending a request to each machine

(step 1-3). If there is any change of the information, it will be sent to the scheduler peri-

odically. When a task is generated, its information is sent to scheduler and is added into

the waitlist and its renting cost is set to 0 (step 5-6). At the beginning of each scheduling

epoch, the scheduler updates the earliest available time of each machine (step 10-12). The

4.4 Online Code Offloading and Scheduling Algorithm 109

machine m∗ that has the minimum buying cost is selected (step 13). Then it calculates the

renting cost and buying cost on every machine for each task in the waiting list. Tasks

meeting the following condition will be selected and scheduled to the corresponding

machine m with the least buying cost Bi,m:

Ri > min
m∈M

Bi,m. (4.24)

If there are more than one task meeting the above-mentioned condition for the same

machine, the task with the lowest R will be scheduled (step 14-18). Note that to follow

the energy and monetary cost constraints, the algorithm maintains two variables, Ccurrent
m

for current total monetary cost of machine m (i.e., mobile user m) and Ecurrent
m for current

overall energy consumption for machine m, to reject the schedule if the conditions are

not met (step 19-21). Scheduled tasks will be removed from the waiting list. Then the

scheduler updates the renting cost of tasks in the waitlist by adding one time unit (step

29-32).

The complexity of the proposed algorithm is O(|M| · |S|), given that |S| tasks arrived

during the time period D and there are |M| machines available. Step 6 takes O(|M|) to

update the available time at each epoch. Updating buy cost for each task in the waiting

list takes O(|M| · |S|) (step 6-10). Step 11 takes O(|S|log|M|) to check each task’s condi-

tion. Therefore the overall algorithm takes O(|M| · |S|+ |M|+ |S|log|M|) at each epoch,

which can be summed as O(|M| · |S|). We then present a competitive analysis on the

online algorithm as follows.

Definition 4.1 (Competitive Ratio). An online algorithm ALG is c-competitive if for all finite

input sequences I,

ALG(I) ≤ c ·OPT(I) + α

where ALG(I) is the cost of the online algorithm and OPT(I) is the cost of the offline optimal [20].

A c-competitive online algorithm ALG is also a c-approximation algorithm with the restriction

that ALG must compute online.

The competitive ratio is evaluated to show the performance of the proposed online

algorithm by calculating the total completion time of the tasks in a time period for the

offline optimal solution and the online algorithm.

Let TALG
σ,m and TOPT

σ,m denote the makespan of tasks scheduled on machine m by the

proposed OCOS algorithm and offline optimal respectively, where σ denotes the set of

110 Execution Optimization for Task Offloading and Scheduling

tasks scheduled to machine m by OCOS or offline optimal. Given a heterogeneous set

of machines M, and an arbitrary task sequence σ to schedule among machines in M, we

obtain the following:

Lemma 4.1. For ∀m ∈ M, TALG
σA,m 6 2 TOPT

σO,m , where σA ∈ σ, σO ∈ σ are the task sequences

scheduled to machine m by OCOS algorithm and offline optimal algorithm respectively.

Proof. For task set σA and σO, there are two cases to discuss where σA = σO and σA 6= σO.

First, if σA = σO, based on the scheduling policy of OCOS algorithm (Equation 4.24),

TALG
σA,m = ∑

i∈σA

(Ri + Bi,m) = 2 ∑
i∈σA

Bi,m

TOPT
σO,m = ∑

i∈σO

Bi,m = ∑
i∈σA

Bi,m =
1
2

TALG
σA,m .

Thus, for σA = σO, TALG
σA,m = 2 TOPT

σO,m

Second, if σA 6= σO, the possible relations between σA and σO are either σA ⊂ σO or

σA 6⊂ σO. We proof by contradiction that the case of σA 6⊂ σO does not exist.

Assume σA 6⊂ σO exists, then let σ′ = σA − σO that σ′ is scheduled to machine m

by the OCOS algorithm. Based on OCOS algorithm’s scheduling policy that dispatches

task i only when the renting cost Ri is equal to the minimum of buying cost Bi,m among

M (Equation 4.24), ∑i∈σ′ Bi,m is the minimum. On the other hand, since σ′ is scheduled

to another machine by the offline optimal algorithm, for instance, machine n, we have

∑i∈σ′ Bi,n 6 ∑i∈σ′ Bi,m, which is contradicted to the case which ∑i∈σ′ Bi,m is the minimum.

Therefore, σA 6⊂ σO does not exist.

When σA ⊂ σO,
TALG

σA,m

TOPT
σO,m

=
TALG

σA,m

TOPT
σA,m + TOPT

(σO−σA),m

6
TALG

σA,m

TOPT
σA,m

= 2.

Therefore, for ∀m ∈ M, TALG
σA,m 6 2 TOPT

σO,m . This completes the proof.

Theorem 4.1. The proposed OCOS algorithm for task scheduling on heterogeneous mobile cloud

environment is 2− competitive.

Proof. Let ALG denote the proposed OCOS algorithm and OPT denote the offline optimal

algorithm. Let σ = (t1, t2, ..., tn) be an arbitrary tasks sequence submitted for scheduling,

and ∀m ∈ M be a machine in the environment to execute tasks. ALG(σ) and OPT(σ) de-

note the makespan of the schedule generated by OCOS algorithm and the offline optimal

schedule respectively on the input sequence σ.

4.5 Performance Evaluation 111

Without loss of generality, we assume that σ = σ1 ∪ σ2 ∪ ... ∪ σm is the task sequence

scheduled on each machine by algorithm OPT, and

OPT(σ1) 6 OPT(σ2) 6 ... 6 OPT(σm),

Let σ = σ′1 ∪ σ′2 ∪ ...∪ σ′m be the task sequence scheduled by algorithm ALG and

ALG(σ′1) 6 ALG(σ′2) 6 ... 6 ALG(σ′m),

where σm and σ′m are tasks scheduled to machine m by OPT and ALG respectively. Thus,

the makespan OPT(σ) = OPT(σM) and ALG(σ) = ALG(σ′m).

Based on the definition of competitive ratio and Lemma 1,
ALG(σ)

OPT(σ)
=

ALG(σ′m)

OPT(σm)
6 2.

Hence, the competitive ratio of OCOS algorithm is 2.

4.5 Performance Evaluation

In this section, we evaluate the proposed algorithms in two aspects, namely the schedul-

ing performance (i.e., the makespan of the tasks) and the offloading performance (i.e.,

total execution time and energy saved). Six sets of experiments are conducted to eval-

uate the proposed offline and online scheduling solutions in terms of scheduling per-

formances, algorithm efficiency and the effect of the parameters considered by the algo-

rithms. For the scheduling performance, the proposed algorithms are compared with the

online mode independent task scheduling heuristic opportunistic load balancing (OLB)

[24]. For the offloading performance, the proposed algorithms are compared with the

offloading policies in ThinkAir [122].

4.5.1 Experiment Settings

For the offline mixed integer linear programming model proposed, the offline optimal

algorithm is implemented in Gurobi Optimizer 6.5 [168] to provide the offline optimal

solutions of the model. The optimization is undertaken on an m1.xlarge instance on Nec-

tar Cloud [165] with 8 vCPUs and 32 GB RAM. For the online algorithm evaluation, we

develop our own experiment environment to evaluate the performance of the proposed

algorithms. The scheduler runs on a local computer that has a Intel Core i7 CPU with 3.4

GHz and 8GB RAM. Experiment settings and workload parameters are listed in Table 4.3.

112 Execution Optimization for Task Offloading and Scheduling

Table 4.3: Parameter settings for evaluation

Parameter Value

Task data size (f) [0.05,0.5],[1,5]
Task computation (v) [1,10],[50,100]
Mobile device CPU Frequency (µ) {0.2,0.5,0.8,1.0,1.2}
Cloudlet CPU Frequency 2.5
Cloud VM CPU Frequency 3.6
Cloud VM charge rate 0.84
Battery limit fraction (θ) Uniform(0.2,0.5)
Active CPU power consumption rate (PRactive) 0.07,0.34,0.48,0.56,0.6
Idle CPU power consumption rate 0.002
WiFi data rate (BWwi f i) 1
Bluetooth data rate (BWbt) 0.26
Cellular data rate (BWcell) 0.85
WiFi power rate (ρwi f i) 1.94
Bluetooth power rate (ρbt) 0.28
Cellular power rate (ρcell) 5.56
Weibull parameters (α, β) (1.9543,326.87),(1.2861,178.56), (0.8712,276.87), (1,163)

Table 4.4: Characteristics of workloads

Type Data Size (MB) CPU Cycle (Giga)

LCSD [0.05, 0.5] [1, 10]

HCSD [1, 5] [50, 100]

HCLD [1, 5] [50, 100]

Due to the lack of real-world traces that are suitable for HMC environment and mo-

bile device constraints, workloads are obtained by profiling the cognitive applications

running on mobile devices in the experimental environment. The workload consists of

three types of task sets that represent the diversity of mobile application tasks, namely

low computation small data size (LCSD), high computation small data size (HCSD), and

high computation large data size (HCLD). In order to profile values of the parameters of

task sets, an open-source OCR application2 is executed on Android with Android Stu-

dio performance analysis tools to profile the OCR application on the method level. The

profile, which consists of data size of the captured picture frame and inclusive CPU run-

ning time of each operation (i.e. methods for Android application) for processing, is then

classified into the three workload types. In workload LCSD, the range of data size of

tasks lies in the interval [0.05, 0.5] megabytes, and the computation of completing each

task distributes in the interval [1, 10] giga CPU cycles. Similarly in workload HCSD and

2Available at https://github.com/rmtheis/android-ocr

4.5 Performance Evaluation 113

HCLD, data size of the tasks are in the interval of [0.05, 0.5] and [1, 5] megabytes respec-

tively, and the computation of both task set is in a interval of [50, 100] giga CPU cycles.

A summary of the workloads used in the experiment is listed in Table 4.4.

Regarding the experiment environment, it includes 2 identical cloudlets and 3 iden-

tical VMs in the public cloud. The number of mobile devices varies based on different

experiments conducted. The hardware information is profiled from a number of Android

smartphones. For each mobile device, the CPU speed µ is randomly assigned from the

set {0.2, 0.5, 0.8, 1.0, 1.2}GHz for the mobile devices. These CPU frequencies are obtained

from different mobile devices such as Nexus 4, HTC G13, HTC G3, and Samsung I997.

The CPU speed of cloudlet is 2.5 GHz, and cloud VM CPU speed is 3.6 GHz following

the Amazon EC2 C3 instances. The monetary cost of cloud VM is $0.84 per offloading

request. θi is uniformly selected from the interval [0.2, 0.5]. For the energy aspect of the

mobile devices, the parameters given in the energy models proposed by Ali et al. [6] are

adopted in the experiments. The active CPU energy consumption rate PRactive is set from

{0.07,0.34,0.48,0.56,0.6} based on the above-mentioned CPU frequency accordingly. The

idle power consumption rate PRidle is set to 0.002 for all devices.

The network of the experiment environment consists of three types of wireless medi-

ums, namely mobile cellular network, Bluetooth, and WiFi. Network parameters are

obtained by profiling the network conditions in our experiment environment using file

transferring applications on the mobile device. WiFi network speed BWwi f i is set to 1

MBps, Bluetooth transmission speed BWbl is set to 0.26 MBps, and cellular network speed

BWcell is set to 0.85 MBps. The network latency to public cloud service is set to 0.1s. It

is profiled by testing the delay to the Amazon EC2 service in Sydney region. Moreover,

the energy consumption parameters of WiFi, Bluetooth, and cellular network are set to

ρwi f i = 1.94 W, ρbt = 0.28 W and ρcell = 5.56 W respectively based on the energy model

proposed by Balasubramanian et al. [15]. A 2-parameter Weibull distribution is used to

obtain the leaving time of the mobile device from HMC. To capture the mobility patterns

of real mobile devices in the wireless network, the CRAWDAD tracesets [123] are used to

obtain valid values for the shape parameter α and the slope parameter β in the Weibull

distribution. The traceset is composed of the system logs of WiFi access points on Dart-

mouth campus from September 1, 2005 to October 4, 2006. The number of sessions in

114 Execution Optimization for Task Offloading and Scheduling

8070605040302010

1500

1200

900

600

300

0

160k

140k

120k

100k

80k

60k

40k

20k

0

Number of Tasks

M
a

k
e

s
p

a
n

(s
)

R
u

n
n

in
g

T
im

e
(s

)

Running Time

Figure 4.1: Makespan and running time of the offline optimal approach

every minute is extracted from the trace to generate the probability function using rank

regression [191]. Then the time-to-failure of each machine is randomly obtained from the

inverse function of Weibull distribution in order to generate the tleave.

4.5.2 Experiment Results

Offline Approach Performance Evaluation

Figure 4.1 shows the time taken to generate the solution and the makespan of tasks in

the workload by using the offline approach. The task set for the experiment is obtained

from workload HCLD. Note that, since the offline approach uses Branch-and-Bound (BB)

algorithm to solve the MILP model formulated, the search space of BB algorithm is only

based on the number of tasks and machines rather than the heterogeneity of the tasks and

machines. Hence, either workload can be used for the evaluation of the offline approach.

Results of makespan for the offline optimal are used as a benchmark for the online algo-

rithms evaluation. As shown in Figure 4.1, the processing time for generating the optimal

solution increases expeditiously as the number of tasks grows. This is because the com-

plexity of our proposed MILP model is a product of the number of tasks, machines, and

the variables defined. Hence, solving an offline optimal schedule that involves large data

sets would require an unreasonably large amount of time for the mobile cloud offload-

ing systems, which demands lightweight and timely offloading decisions. Therefore, the

4.5 Performance Evaluation 115

543210

3.0k

2.5k

2.0k

1.5k

1.0k

0.5k

0

Data Size of Tasks(MB)

M
a

k
e

s
p

a
n

(s
)

Offline

OCOS

OLB

(a) Makespan

543210

2.0

1.75

1.5

1.25

1.0

0.75

0.5

Data Size of Tasks(MB)

E
n

e
rg

y
(k

J)

Offline

OCOS

OLB

(b) Energy consumption

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

20

40

60

80

100

Data Size of Tasks(MB)

OCOS-Cloud OCOS-Mobile OLB-Cloud OLB-Mobile

(c) Percentage of tasks offloaded to cloud
and peer mobile devices

Figure 4.2: Performance of OCOS algorithm with different task data size

results show necessity of the online scheduling algorithm to solve the proposed mobile

cloud offloading and scheduling problem with low processing delay.

OCOS algorithm Performance Evaluation

The performance of the proposed OCOS algorithm is investigated. The online solutions

under all three types of workloads are evaluated and compared with the non-preemptive

task scheduling heuristic OLB as well as the benchmark offline optimal schedule. The

OLB heuristic schedules tasks to the machine with the earliest available time when tasks

arrive at the scheduler. Note that, OLB heuristic is different from OCOS algorithm that it

does not consider the offloading benefits (e.g. whether the offloading would shorten the

task completion time) when scheduling the tasks. Two metrics are considered, namely

makespan and the overall energy consumption. The makespan represents the maximum

task completion time of the set of scheduled tasks. The overall energy consumption is

the sum of each mobile device’s energy consumption for running the scheduled tasks.

To compare the impact of different offloading data sizes on the performance of OCOS

116 Execution Optimization for Task Offloading and Scheduling

algorithm, tasks from workload HCSD and HCLD are categorized into 10 task sets based

on the offloading data size (from 0.5 MB to 5 MB), CPU cycles from 50 to 60 giga cycles.

Results are averaged by 50 runs. Figure ?? depicts that the makespan of OCOS algorithm

and offline approach algorithm only have a small increase as the offloading data size of

the tasks increases. OLB heuristic generates much higher makespan. This is caused by

its scheduling strategy that only considers earliest available time of the machines, which

makes the load of machines unbalanced. Also, as the data size increases, there is a much

faster growth in makespan than OCOS algorithm and offline approach since mobile de-

vices take longer time to transfer the offloaded data. The results indicate that, for the

cognitive application with offloading data size less than 5MB, the performance of OCOS

is not affected by the data size. It can also be observed makespans generated by the on-

line algorithm are around 2.6 times as much as the offline approach on average, while

OLB heuristic is 5 times longer. Different from the 2x makespan shown in Theorem 5.3,

the 2.6x makespan yielded by the experiment is caused by the difference of modelling

and hardware in machines. The models for task execution time have a high level of hard-

ware abstraction to eliminate the complexity lying in hardware (which is not the focus of

this work). However, in reality machines have multi-core CPU and multi-level memory

hierarchy I/O that will affect the task execution time. Moreover, in reality, mobile de-

vices and HPC servers run many background activities that will affect and lengthen the

execution time of tasks in the HMC environment.

The overall energy consumption of the mobile devices in the experiments (Figure 4.2b)

increases as the data size grows. For OLB heuristic, the percentage of tasks scheduled to

cloud and peer mobile devices does not have much fluctuation (shown in Figure 4.2c)

with the growth of data size, due to the earliest-available-time-only scheduling strategy.

The increase in the energy consumption of the scheduled made by the OLB heuristic is

caused by the larger data size and the higher makespan as the data size increases. For

OCOS algorithm, more tasks are scheduled to peer mobile devices (shown in Figure 4.2c)

other than cloud as the data size of tasks grows. This is because OCOS considers the task

completion time as well as the energy consumption of executing tasks. Tasks with larger

data size tend to be offloaded to peer mobile devices rather than cloud to reduce the data

offloading energy consumption as well as the transferring time and generate balanced

4.5 Performance Evaluation 117

100806040200

5k

4k

3k

2k

1k

0

Number of CPU Cycles(Giga)

M
a

k
e

s
p

a
n

(s
)

Offline

OCOS

OLB

(a) Makespan with different WiFi band-
width usages

10080200

4

3

2

1

0
40 60

Number of CPU Cycles(Giga)

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
(k

J
)

Offline

OCOS

OLB

(b) Average energy consumption per ma-
chine with different WiFi bandwidth usages

10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

Number of CPU Cycles(Giga)

OCOS-Cloud OCOS-Mobile OLB-Cloud OLB-Mobile

(c) Makespan with different Weibull Distri-
bution (α: shape, β: scale)

Figure 4.3: Performance of OCOS algorithm for tasks with different computing require-
ments

schedules. As a result, the overall energy consumption of all mobile devices increases. In

addition, the growth in data size also increases the energy consumption of the wireless

transmitters.

Furthermore, for tasks with different computing resource requirements, the impact

on the performance of the proposed algorithms is evaluated. For each run, the tasks

from workload type LCSD and HCSD are categorized into the 10 task sets based on the

CPU cycles required (10 to 100). Results are averaged by 50 runs. The makespan of

schedules, total energy consumption and portion of tasks offloaded to cloud as well as

peer mobile devices are shown in Figure 4.3. In Figure 4.3a, the makespans generated

by all three algorithms increase with the increase in computation load. The makespan

generated by OLB heuristic grows much faster than that of OCOS algorithm due to its

offloading strategy that tasks with high computation requirements are scheduled to low

computing capacity mobile devices. Eventually, the makespan of the unbalanced sched-

118 Execution Optimization for Task Offloading and Scheduling

ule becomes higher. On the other hand, the growth of makespan generated by OCOS

algorithm is much slower than that of the OLB heuristic. This is because the OCOS al-

gorithm compares the current renting cost (waiting time) of the task with its buying cost

(task completion time) on different machines when making the scheduling decisions,

and thus generates a more load balanced schedule comparing to OLB. In terms of energy

consumption, Figure 4.3b shows that the differences of growth trend between three al-

gorithms are similar to those of the makespan in Figure 4.3a. This is because the longer

the execution time of the task is, the higher energy mobile devices consume. Therefore,

as the computation requirements of the tasks grow, the overall energy consumption of

the mobile devices increases. In average, the energy consumed executing the tasks of

the schedule generated by OCOS algorithm is around 2 times less than that of OLB, and

around 1.5 times more than that of the offline approach.

Figure 4.3c shows the percentage of tasks scheduled to offload to cloud and peer mo-

bile devices by OCOS algorithm and OLB heuristic respectively under different comput-

ing requirements. For OCOS algorithm, the portion of tasks offloaded to cloud and the

total portion of tasks offloaded both increase with the increase of computing require-

ments of tasks. This is because OCOS considers the task completion time as well as how

much time and energy can be saved when deciding the schedule. Therefore, as the com-

puting requirements of the tasks increase, OCOS schedules more tasks to cloud to reduce

the makespan. On the contrary, OLB heuristic only considers the earliest available time of

the machine when scheduling tasks. Thus, most of the tasks (90 percent on average) are

offloaded to cloud and other mobile devices regardless of the offloading benefits. This

scheduling strategy also causes unbalance schedules among tasks (shown in Figure 4.3a),

comparing to OCOS that takes machine load balance into consideration.

Based on the results obtained from the two sets of experiments conducted above, com-

pared to OLB, OCOS algorithm has a steady performance on makespan and energy con-

sumption for cognitive applications with task data size between 1MB and 5MB. The per-

formance ratio of the online algorithm over offline approach is around 2 for makespan.

To observe the performance of algorithm in terms of mobile device reliability, two

sets of experiments are conducted. The first set compares the makespan and energy con-

sumption of the three algorithms with different task arriving rates (i.e. λ). The second

4.5 Performance Evaluation 119

0

0.5k

1.0k

1.5k

2.0k

2.5k

3.0k

3.5k

4.0k

4.5k

5.0k

10 5 4 3 2 1 0.5 0.1 0.05 0.01

offline

OCOS

OLB

λ

M
ak

e
sp

an
(s
)

(a) Makespan with different WiFi band-
width usages

4

6

8

10

12

14

16

10 5 4 3 2 1 0.5 0.1 0.05 0.01

offline
OCOS
OLB

En
er

gy
(k
J)

λ

(b) Average energy consumption per ma-
chine with different WiFi bandwidth usages

0

0.5k

1.0k

1.5k

2.0k

2.5k

3.0k

3.5k

4.0k

α=1.9543
β=326.87

α=1.2861
β=178.56

α=1
β=163

α=0.8721
β=276.87

offline

OCOS

OLB

M
ak

es
p

an
(s

)

(c) Makespan with different Weibull Distri-
bution

Figure 4.4: Makespan with different Weibull Distribution (α: shape, β: scale)

experiment tests the effect of different mobile device reliability (i.e. device leaving time)

on makespans of scheduled tasks. Tasks from workload HCSD are used for both sets of

experiments. Results are shown in Figure 4.4a-4.4c. From Figure 4.4a and Figure 4.4b we

can observe that task arriving rate does not have much influence on makespan and over-

all mobile device energy consumption since the results do not have fluctuations over

different arriving rates. This is due to the fact that all three algorithm aim to schedule

multiple tasks that match its scheduling policies at the same time. Moreover, makespan

and energy consumption generated by OCOS algorithm are around 65% and 57% of OLB

algorithm respectively, and 2.2 and 1.5 times of offline algorithm respectively.

To test the performance of proposed algorithms on mobile device reliability, multi-

ple cases are tested to represent different device mobility as device leaving time. The

120 Execution Optimization for Task Offloading and Scheduling

device leaving time are obtained from the above-mentioned Weibull distributions in Sec-

tion 4.5.1 using CRAWDAD tracesets. The shape (α) and scale (β) parameters for the

Weibull distributions are listed in Table 4.3. The same task set from workload HCSD is

used for all the cases. α, β for first two cases are extracted from data between 1pm and

8pm in tracesets, the fourth case is obtained from data between 5am and 1pm, and the

third case is a synthetic pair of parameters for comparison. α < 1 indicates device failure

rate decreases with time, that is, mobile devices have short connection time. α > 1 indi-

cates device failure rate increases with time and mobile devices have longer connection

time, while α = 1 represents a constant failure rate. In Figure 4.4c, it shows that as device

failure rate increases (i.e., mobile device connection time decreases), the makespan gener-

ated by OCOS has an approximate 10% increase throughout four cases, while makespans

generated by OLB have 20% increase. This is due to the fact that more tasks are scheduled

onto cloud servers instead of mobile devices that left the environment. The makespans of

OCOS algorithm are around 37% less of those generated by OLB algorithm since OCOS

considers load balancing of machines during scheduling.

Moreover, the performance of OCOS algorithm in terms of offloading benefits (e.g.

execution time and energy saved) against conventional offloading strategies is evalu-

ated. Upon comparison, three baselines are implemented. The first baseline, offloading

to cloud only (CO), always offloads the submitted mobile tasks to the cloud VMs. The

second base online, Mobile Local Only (LO) always executes mobile tasks on its own mo-

bile device locally. The third baseline algorithm is the mobile code offloading strategies

proposed in ThinkAir with the execution time priority policy [122]. Note that the offload-

ing decision making algorithm in ThinkAir only considers the context of a single mobile

device to cloud offloading model. All algorithms are evaluated with same task sets from

workload type HCLD. The size of the task set is 20 tasks generated per mobile device on

average. Results are shown in Figure 4.5 with different number of mobile devices.

As shown in Figure 4.5a, the makespan generated by all four algorithms increase as

the number of mobile device users increases. For baseline LO and CO, the growth of CO

is much faster than that of the LO. Similarly, the makespan generated by ThinkAir in-

creases faster than the LO baseline. The results indicate that as the number of mobile de-

vice users increases, the benefits of offloading to fixed public cloud resources decreases.

4.5 Performance Evaluation 121

252015105

10k

8k

6k

4k

2k

0

M
a

k
e

s
p

a
n

(s
)

LO

CO

OCOS

ThinkAir

Number of Mobile Devices

(a) Makespan with different WiFi band-
width usages

252015105

2.5

2.0

1.5

1.0

0.5

0

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
(k

J
)

LO

CO

OCOS

ThinkAir

Number of Mobile Devices

(b) Average energy consumption per ma-
chine with different WiFi bandwidth usages

252015105

300

250

200

150

100

50

900

800

700

600

500

400

300

200

100

0

Number of Mobile Devices

C
o

m
m

u
n

ic
a

ti
o

n
 O

v
e

rh
e

a
d

(s
)

N
u

m
b

e
r o

f M
e

s
s
a

g
e

s

OCOS

ThinkAir

Number of Messages

(c) Makespan with different Weibull Distri-
bution (α: shape, β: scale)

Figure 4.5: Performance comparison of different offloading strategies

This is because both baseline algorithms make individual offloading decisions without

considering the overall computation load of the cloud resources. As a result, the task

offloaded by one mobile device may be delayed in the cloud VM, which ends up with

a longer makespan. On the contrary, the makespan generated by OCOS algorithm in-

creases much slower comparing to the other three baselines. This is because OCOS uses

the peer mobile devices in HMC environment, and considers the computation load of

each machine in the environment when making the offloading decisions. It can also be

observed that the ratio of the makespan of ThinkAir over that of the OCOS algorithm

increases as the number of users increases. The growth shows that OCOS algorithm

outperforms conventional offloading strategies (e.g., CO, LO and ThinkAir) when the

number of mobile users is large.

Furthermore, the performance of OCOS algorithm in terms of overall mobile device

energy consumption is illustrated in Figure 4.5b. It shows that the overall mobile device

122 Execution Optimization for Task Offloading and Scheduling

energy consumption in HMC for all the algorithms increases with the growth in number

of mobile users. The energy consumption of algorithm CO and ThinkAir is relatively

low comparing to the other two algorithms since the mobile devices consume much less

energy in the idle mode when offloading tasks to cloud. Compared to that, for OCOS

algorithm, the overall energy consumption for all the mobile devices is around 50% of

LO on average, and twice as much as that of CO and ThinkAir. This is because the

objective of OCOS algorithm is to minimize the makespan with the constraints of mobile

devices such as battery lifetime and mobility. Thus, although the energy consumption is

higher than CO and ThinkAir, the makespan generated by OCOS algorithm is one fourth

and half of the makespan generated by CO and ThinkAir respectively, and can get much

lower when the number of mobile users scales up (as shown in Figure 4.5a).

In addition, the communication time overhead for operations related to communica-

tion such as data offloading and messages passing are evaluated, and results are shown

in Figure 4.5c. The communication overhead of OCOS is slightly larger than that of

ThinkAir due to the use of Bluetooth when offloading to a peer mobile device, which

incurs a longer communication time comparing to WiFi. The average communication

time overhead for OCOS algorithm is around 12% of the makespan. Although it is

slightly larger than ThinkAir, the offloading gain (i.e. makespan saved) is much more

than ThinkAir. Furthermore, as a centralized scheduling algorithm, it is necessary to

measure the behaviour of the number of control messages sent by the scheduler to up-

date the hardware information of the mobile devices and cloud. The results are shown in

Figure 4.5c with the dash line. The number of messages sent by the scheduler increases as

more mobile users join the environment. Since ThinkAir makes offloading decisions lo-

cally on each mobile devices, it has less communication overhead than OCOS. However,

the difference of the communication overhead is rather small comparing to the shorter

makespan enabled by OCOS.

In reality, there are usually limited numbers of WiFi access points available in a mo-

bile cloud network, therefore the limited network bandwidth may affect the performance

of the proposed algorithm. A set of experiments are conducted to analyse the influence

of network bandwidth usages. The effects of cellular network, WiFi-direct and Bluetooth

are not considered here as their bandwidths are not affected by the number of machines

4.5 Performance Evaluation 123

in the network. The experiment is set with one available WiFi access point and it provides

the fixed bandwidth of 10 Mbps. All the machines share the network bandwidth evenly.

The task set containing a number of 500 tasks obtained from workload type HCLD are

used for the experiments. The results are averaged by 50 runs and shown in Figure 4.6a

and Figure 4.6b in comparison with results of ThinkAir. In Figure 4.6a, as the average

bandwidth per machine decreases from 1 Mbps, the makespan of OCOS increases from

around 2000 seconds to 5000 seconds, and becomes stable after 0.4 Mbps since the band-

width does not change too much after that, while the makespan of ThinkAir increases

more rapidly. The increase of makespan is due to the competition of bandwidth between

devices leading to longer data transferring time over WiFi to public clouds. Also, OCOS

schedules some tasks with large data size to run local instead, which generates longer

makespan. The similar results also reflect on the average energy consumption per mo-

bile device. The shorter makespan and less energy consumption generated by OCOS,

especially with more devices, is because of the use of mobile device cloud that is able to

load balance the computation among the entire network.

Since machines especially mobile devices may drop out of the network before its es-

timated leaving time, the robustness of OCOS algorithm is evaluated. The makespans

generated over different task computation workload are compared in three cases: 1) no

machine dropouts, 2) 2 randomly chosen machines dropping out at random time before

its estimated leaving time, and 3) no machine dropouts but without the two machines

chosen in case 2 in the network. The results are averaged by 50 runs and depicted in

Figure 4.6c. OCOS NO represents case 1, OCOS 2D represents case 2, and OCOS NO2

represents case 3. As shown in Figure 4.6c, the machine dropouts do not have a signifi-

cant effect on the makespan generated by OCOS algorithm. Compared with the results of

OCOS NO, the makespan has around 0.05% increase for different amount of computation

workload with machines accidentally dropping out of the network. This is because the

OCOS algorithm receives updates on the earliest available time from each machine in the

network at the beginning of each scheduling epoch. If a machine drops out before its es-

timated leaving time, the scheduler is able to detect it and considers the rest of machines.

Moreover, the makespans of OCOS algorithm with machine dropouts (OCOS 2D) are

lower than those generated by OCOS algorithm with two less machines in the network

124 Execution Optimization for Task Offloading and Scheduling

0

2k

4k

6k

8k

10k

12k

10/1 15/0.67 20/0.5 25/0.4 30/0.33 35/0.29 40/0.25 45/0.22 50/0.2

M
ak

e
sp

an
(s

)

OCOS

ThinkAir

(a) Makespan with different WiFi band-
width usages

0.4

0.6

0.8

1

1.2

1.4

10/1 15/0.67 20/0.5 25/0.4 30/0.33 35/0.29 40/0.25 45/0.22 50/0.2

En
e

rg
y

C
o

n
su

m
p

ti
o

n
(k

J)

OCOS

ThinkAir

(b) Average energy consumption per ma-
chine with different WiFi bandwidth usages

100908070605040302010

5.5k

5.0k

4.5k

4.0k

3.5k

3.0k

2.5k

2.0k

Number of CPU Cycles(Giga)

M
a

k
e

s
p

a
n

(s
)

OCOS_2D

OCOS_NO

OCOS_NO2

(c) Makespan with different Weibull Distri-
bution (α: shape, β: scale

Figure 4.6: Effect of network bandwidth on the scheduling performance

from the beginning (OCOS NO2) due to the load balancing of OCOS algorithm.

4.6 Summary

In this chapter, we discussed the mobile code offloading and scheduling problem (MCOSP)

in the heterogeneous mobile cloud environment. We formally defined the problem with

a mixed integer programming model and devised optimal offloading and scheduling

results by solving the optimization model offline. In order to provide an online schedul-

ing solution for our proposed mobile code offloading and scheduling problem that is

near-optimal, we further designed a real-time scheduling algorithm based on the ski-

rental framework. We show that the proposed online scheduling algorithm OCOS is

2− competitive of the offline optimal solution. The experimental results show that the

OCOS algorithm is consistent with the offline optimal solution in terms of competitive-

4.6 Summary 125

ness. The algorithm generates shorter makespans and less energy consumption with the

cognitive applications such as OCR and face detection applications comparing to OLB

heuristic, and also scales well comparing to other previous proposed mobile code of-

floading strategies when the number of mobile device users increases in the system.

The previous two chapters provide the offloading enabling technique and the sys-

tem framework, with context-aware code offloading and scheduling algorithms for the

proposed heterogeneous mobile cloud system to achieve near-optimal offloading perfor-

mance. As an offloading service provided by wireless ad-hoc network of mobile devices,

fault tolerance and reliability are among the most challenging issues. In the next chapter,

we focus on developing a standalone fault tolerant mechanism for the proposed mobile

cloud system mCloud to improve the its service reliability and provide a more complete

failure tolerant solution to the fault tolerant module of mCloud.

Chapter 5

A Group-based Adaptive Fault
Tolerant Mechanism

The availability and mobility management of mobile devices in the network can significantly hin-

der the performance of mobile cloud systems due to the frequent system faults caused by dynamic

changes, and prevent applications from offloading to mobile ad-hoc networks. In order to improve the

mobile cloud service reliability, in this chapter, we propose a group-based fault tolerant mechanism

GFT-mCloud that classifies mobile devices into groups based on its processing capacity, mobility, and

reliability. Different fault tolerance techniques are then devised adaptively based on the task offloading

schedules and the specific group of machines it’s offloaded. GFT-mCloud is designed as a standalone

module that can work with existing mobile cloud code offloading systems. Extensive experiments

have been conducted to evaluate the proposed mechanism. The results show that our fault tolerant

mechanism is able to outperform conventional fault tolerant algorithms in the mobile cloud offloading

environment.

5.1 Introduction

MOBILE cloud systems consist of mobile devices and servers connected via wire-

less networks, the mobility of the devices and intermittent network connections

have become the major issues that induce system failures and further hinder the system

reliability. Many fault tolerance solutions have been proposed to tackle the reliability

issue in distributed computing systems, e.g. computer grids, mobile grids, and cloud

computing systems. These approaches mostly consider a homogeneous computing envi-

This chapter is derived from:

• Bowen Zhou and Rajkumar Buyya, “A Group-Based Fault Tolerant Mechanism for Heterogeneous
Mobile Clouds,” in Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services (MobiQuitous 2017), Melbourne, VIC, Australia, November 7 - 10,
2017.

127

128 A Group-based Adaptive Fault Tolerant Mechanism

ronment composed of identical machines and wired network connections. As a result, the

fault tolerant policies proposed are often onefold solutions that lack adaptivity to the het-

erogeneous computing environment. On the contrary, mobile clouds are often composed

of devices and wireless networks that have different specifications such as CPU speed,

data throughput and signal strength. Therefore, existing fault tolerance approaches may

not be able to maintain a similar system reliability level on mobile cloud systems as they

are on grid computing systems.

In this chapter, we aim to propose a standalone fault tolerant mechanism that can

work with existing frameworks and utilizes task offloading schedules devised from ex-

isting mobile code offloading algorithms to maintain the reliability of mobile cloud sys-

tems.

In order to make the fault tolerant mechanism adaptive to the heterogeneous mo-

bile cloud, we propose a group-based fault tolerant mechanism GFT-mCloud for mobile

cloud systems using reactive fault tolerant techniques. The machines such as mobile de-

vices, cloudlets and public cloud servers are classified into different groups based on their

hardware properties such as processing speed, reliability, and battery lifetime. The pro-

posed GFT-mCloud mechanism can dynamically adjust different fault tolerant policies

for different resource groups as well as different critical level of mobile tasks in a mobile

application to improve the system reliability with lower processing overhead from the

redundancy incurred. The key contributions of this chapter are as follows.

• We present a machine grouping algorithm for dynamically classifying machines in

mobile cloud systems into multiple groups that have machines with similar capa-

bilities. The groups can then be utilized by the proposed fault tolerant mechanism

to obtain customized fault tolerant policies. The machine grouping algorithm is

designed to be expandable for more grouping criteria.

• We propose a standalone fault tolerant mechanism GFT-mCloud for mobile cloud

systems based on mCloud. It aims to work with mobile code offloading algorithms,

and is able to devise different fault tolerant policies adaptively for different ma-

chine groups with the consideration of minimizing the overhead generated by the

redundancy.

5.2 Related Work 129

• The proposed fault tolerant mechanism is implemented as a library that can be

added into the existing Android mobile cloud offloading frameworks as well as

simulation environments.

• We implement a simulation environment of heterogeneous mobile clouds based on

BRITE [158] and Weka, and test the proposed algorithm with various experiment

scenarios as well as the efficiency of working with existing code offloadng algo-

rithms in mobile cloud computing.

The rest of this chapter is organized as follows. Section 5.2 discusses the related works

on the fault tolerant approaches in grid computing, mobile ad-hoc networks, and mobile

clouds. Then we present the system modelling for the fault tolerant mechanism in Sec-

tion 5.3. With the help of the models, we propose the group-based fault tolerant schedul-

ing algorithm for HMC in Section 5.4. Section 5.5 presents the evaluation and discussions

on the experimental results. Finally, a summary of this chapter is presented in Section ??.

5.2 Related Work

Checkpointing and replication are two commonly used reactive fault tolerance tech-

niques [221]. Checkpointing periodically takes snapshots of applications that contain

running states and saves snapshots on reliable storage. The time between checkpoints

depends on the system reliability. On the contrary, replication does not require state

saving. Instead, it runs the replication of an application simultaneously on multiple com-

puting resources to ensure task complete execution percentage meets certain level.

5.2.1 Fault Tolerance in Distributed Computing

Distributed computing paradigms include cluster computing, grid computing, mobile

grids, etc. The loosely coupled computing resources connected via networks require fault

tolerance management to maintain the system reliability. Dobber et al. [57] compared the

performance of job replication (JB) and dynamic load balancing (DLB) on distributed sys-

tem robust level. They provided a threshold value Y of Y∗ based on job execution time

that JB outperformed DLB when Y < Y∗. Naksinehaboon et al. [163] proposed an incre-

130 A Group-based Adaptive Fault Tolerant Mechanism

mental checkpoint and restart model for high performance computing (HPC). To reduce

the overhead of checkpointing, the model aims to perform a set of incremental check-

points between two full checkpoints by only saving address space that has changed since

the last checkpoint. Noticeably, the fault tolerance in distributed computing systems

only considers machine crash failures since the wired networks are stable. However, for

a wireless computing system such as mobile cloud, device mobility and network link

stability are of concern. Litke et al. [142] presented a replication-based algorithm, which

utilizes the Weibull distribution for mobility analysis to estimate the number of replicas

in order to maintain a certain level of fault tolerance for mobile grids. Most of the ex-

isting algorithms only apply the onefold fault tolerance policy, which is impractical for

resource-scarce mobile devices involved computing systems as there is no guarantee for

available computing nodes.

5.2.2 Fault Tolerance in Mobile Cloud Computing

A few fault tolerance algorithms were proposed for mobile cloud computing based on

grouping. Chen et al. [33] proposed the k-out-of-n reliability control method to achieve

energy efficiency and maintain system reliability level for data storage and processing in

mobile cloud. The failure probability of a node is estimated by three factors: remaining

battery, node mobility, and application factor. Park et al. [172] presented a fault tolerant

algorithm for mobile cloud resource management. Different fault tolerance techniques

such as checkpoint and replication are applied to different groups based on its availabil-

ity and mobility. However, the grouping algorithm only considers device mobility and

utilization rate. It is inextensible for more criteria. Choi et al. [42] classified devices in

mobile grids into groups based on similar hardware properties. For tasks dispatched to

low reliability groups, task replication is applied for fault tolerance, whereas the tasks

dispatched to high reliability groups are migrated to another device upon failures.

5.3 System Modelling

In this section, we formally present the models of the mobile cloud system, including

application models, machine models, and the mobility model. We consider the mobile

5.3 System Modelling 131

cloud computing system as a network of heterogeneous machines consisting of mobile

devices, nearby cloudlets, and public cloud VMs. The machines are loosely connected

via various types of wireless networks such as Bluetooth and WiFi. The mobile devices

are free to join and leave the network at any time while the cloudlets and public cloud

VMs are considered stable. Therefore, the failures considered by this work are: 1) Ma-

chine crash failures, where machines either halt or do not response; 2) Loss of connection

failures, where either wireless connections are disrupted or machines move out of the

range of the mobile cloud network. The Byzantine failures [127] are not the focus of this

work.

5.3.1 Application Model

Each mobile device in the network runs a mobile application where its tasks are evaluated

to either offload to another machine or not. An application is modelled as a directed

acyclic graph (DAG) A = 〈S, E〉 (example shown in Figure 5.1), where S represents the

set of tasks si within the application, and E represents the dependencies of the tasks. The

weight of each edge denotes the execution time of its pointed task. For instance, task s1

in Figure 5.1 takes 3 time units to complete after task s0 completed. It is assumed that a

mobile task cannot be divided into subtasks and that it needs to be executed as a whole

on a single processor of the machine. Each task is associated with a time variable Tsi
t f

called total float, which is the amount of time a task can be delayed without delaying

the completion of the entire application. Tsi
t f of task si can be obtained by calculating the

difference between its latest finish time and earliest finish time. Then the critical path of

a DAG can be identified as a path of tasks with 0 total float, which indicates the longest

task execution time, i.e., the earliest finishing time of the application [102]. The rest of

tasks can be finished as late as its total float and will not affect the completion time of the

application. Therefore, tasks on critical paths of an application should be applied with

fault tolerant policies to ensure the application to complete on time.

132 A Group-based Adaptive Fault Tolerant Mechanism

Figure 5.1: An example of application model. Critical path is marked in red

5.3.2 Machine Model

We consider the mobile cloud computing infrastructure M as a network of n heteroge-

neous machines. mi ∈ M(i = 1, 2, · · · , n) denotes the ith machine. The term ”machine”

refers to either mobile devices, cloudlets, or cloud instances. We model the hardware

specifications of a machine as follows.

mi ,< µi, θi, Iwi f i
i , Icell

i , Ibt
i , Bwi f i

i , Bcell
i , Bbt

i , Tavail
i , Tr

i > (5.1)

µi represents the processing speed of the machine. θi represents the utilization rate

of the processor. Iwi f i
i , Icell

i , Ibt
i are binary indicators denoting if the machine is equipped

with that type wireless interface. For instance, if Iwi f i
i = 1, machine mi has access to WiFi,

otherwise if Iwi f i
i = 0. Variables Bwi f i

i , Bcell
i , Bbt

i represents the bandwidth of the wireless

medium on machine mi. The network speed of each wireless medium is the product of

bandwidth and binary indicators Ii, plus current network latency. Tavail
i is the earliest

available time of machine mi, which represents the current workload of the machine. Tr
i

denotes the time between failures of machine mi. It is obtained by modelling the mobility

of the machine.

5.3.3 Reliability Model

In order to take into account the machine reliability, the available time of a machine is

considered. Note that the study of mobility model and trajectory is not the focus of this

chapter.

To obtain the available time of a machine, the mean time between failures (MTBF) is

adopted as Tr
i . MTBF describes the expected time of a machine between failures. In this

5.4 Group-based Fault Tolerant Mechanism GFT-mCloud 133

case, it represents the expected operating time of a machine before it is disconnected from

the network. The Weibull distribution is often applied to effectively represent the ma-

chine availability in distributed computing environments [191]. The MTBF of a machine

can be calculated from the Weibull distribution that abstracts the machine’s behaviour.

The probability density function of a 2-parameter Weibull distribution is given by:

f (t) =
β

η
(

t
η
)β−1e−(

t
η)

β

. (5.2)

The history of the machine connection time to the mobile cloud network is used to esti-

mate the shape parameter β and scale parameter η of the Weibull distribution. It consists

of records of the time of that machine established a wireless connection as well as the

duration of that connection.

The estimation of Weibull distribution parameters are obtained by applying the linear

regression method to the cumulative distribution function (CDF) of Weibull distribution:

F(x) = 1− e−(
x
η)

β

. (5.3)

Then Equation 5.3 is converted into a linear equation form as

ln(ln(
1

1− F(t)
)) = βln(t)− βln(η). (5.4)

Then the parameters can be calculated using median ranks and least-squares fit on the

data points generated from the history of the machine connection time in the network.

5.4 Group-based Fault Tolerant Mechanism GFT-mCloud

The mobile cloud computing environment usually comprises heterogeneous mobile de-

vices, virtual machine instances on the cloud, and intermittent wireless network con-

nections. To cope with the dynamics and heterogeneity, in this chapter, we propose a

group-based fault tolerant mechanism GFT-mCloud that classifies machines into differ-

ent groups based on its capability and adjusts different fault tolerance policies for tasks

offloaded to different groups of machines.

5.4.1 Machine Grouping Algorithm

The GFT-mCloud is designed to operate on the offloading schedules of existing task of-

floading frameworks in mobile cloud computing. The position of the proposed stan-

dalone fault tolerant mechanism with the existing mobile cloud offloading frameworks

134 A Group-based Adaptive Fault Tolerant Mechanism

Task Offloading
Decision Engine

Offloading Plan
Editor

Fault Tolerance
Module

Fault Tolerant
Policy Generator

Machine
Classifier

Offloading Scheduler

Offload

Request Request

Figure 5.2: The proposed fault tolerant mechanism as a standalone module

is shown in Figure 5.2 and the proposed fault tolerant policies generating procedures in

the view of one of the mobile devices are depicted in Figure 5.3. All the mobile devices

follow the same procedures. The Code Offloading Scheduler is provided by the existing

mobile cloud frameworks that have a decision engine to schedule the offloading tasks.

We name the outputs of the decision engine as schedule plans. GFT-mCloud works as

an add-on module to the framework. It includes a Machine Classifier for grouping ma-

chines, a Policy Generator for devising fault tolerant policy for each task, and a Plan Editor

to decode the offloading schedule plan and encode the fault tolerant policy generated.

The grouping algorithm considers three criteria: machine processing capability, ma-

chine availability, and communication condition of the machine. In order to provide an

automatic classification approach that can adopt an arbitrary number of criteria, cluster-

ing and decision tree learning are adopted in the machine grouping algorithm. Decision

tree [60] is a tree-like graph that is comprised of interior nodes each representing a prop-

erty variable, and leaf nodes each representing a class label. The path from the root node

to each leaf node represents the values of the properties that classify the machines.

5.4 Group-based Fault Tolerant Mechanism GFT-mCloud 135

Classify machines

Classification Results

Mobile

Device 1

Code Offloading

Scheduling

Fault Tolerance

Controller

Mobile

Device 2

Mobile

Device m
…

Join network Join network Join network

Offloading request

Scheduling

Schedule plans

Generating fault

tolerant policies

FT policy results Offloading schedules

& FT policies

Task migration

Task execution on
mobile device 2

Results

Figure 5.3: Interaction procedures of proposed fault tolerant mechanism

For each interior node, there is a set of split values that divide the set of objects into

different groups. Moreover, the property variable on each level of the decision tree needs

to be selected in order to provide an accurate classification. The decision tree structure

can be trained from a set of supervised object data with the property values and its class

label. The machine grouping algorithm includes two phases: data pre-processing phase

and decision tree generating phase.

Data Pre-processing

First, the data set of machine instances with property values needs to be labelled so that

it can be used to train the decision tree. The k-means clustering method [151] is used

for labelling the data set with sub-classes based on each of the three criteria. The three

criteria are further set with sub-classes based on the characteristics of the mobile cloud

system. The machine processing capability criteria (P) is divided into slow, medium

and high processing speed. The machine availability criteria (A) is divided into low

and high since the machines in mobile cloud systems are mostly mobile devices and

stationary machines. The communication condition criteria (C) is divided into poor and

good group. The types of criteria and number of sub-classes of criteria can be set by users

136 A Group-based Adaptive Fault Tolerant Mechanism

in order to cooperate with the requirements of different executing conditions. In our case,

a total of 12 labels are considered.

Second, each criteria needs to be quantified based on the property values from the

machine data set. The processed data set is named as learning set. The processing ca-

pability is quantified by calculating the CPU speed of the machine and its utilization as

follows.

Pi = µi ∗ θi, (5.5)

where Pi is the processing capability of machine mi, µi is the CPU speed, and θi is the

utilization of the CPU.

For machine availability, the algorithm considers the device mobility and the remain-

ing battery lifetime of the device. Based on the mobility model described in Section 5.3,

the device mobility is represented by its available time in the mobile cloud network. Since

the longer the available time of device there is and the more battery there remains, the

higher its availability is, the availability is defined as follows.

Ai = αavailTr
i + βavailρbattery, (5.6)

where Tr
i is the device available time obtained from the mobility model, and ρbattery de-

notes the remaining battery percentage. αavail , βavail are weight factors that can be ad-

justed based on user preferences, and αavail + βavail = 1. The two components of the

equation are normalized to a range of 0 to 1.

The communication condition reflects on the data throughput of the wireless net-

works in mobile cloud systems. For both checkpointing and replication policy GFT-

mCloud considers, it requires fast communication and low energy consumption to con-

strain the incurred overhead. Therefore, the direct connections to other machines as well

as the speed of the wireless connection are both considered. The communication condi-

tion is quantified as follows.

Ci = ∑
w
(αconnBw

i + βconn ∗
kw

n
) ∗ Iw

i , (5.7)

where Bw
i is bandwidth of wireless medium w, kw is number of machines that machine

mi directly connected to via wireless medium w, and n is the total number of machines

in its current mobile cloud network. The bandwidth of the wireless link Bw
i explicitly

represents the data transmission speed. kw reflects the level of redundancy machine mi

can achieve in the network as the more machines it has direct connections to, the more

5.4 Group-based Fault Tolerant Mechanism GFT-mCloud 137

Algorithm 4 Generate Decision Tree

1: procedure GETDECISIONTREE(S, C, V, L)
2: n← create a root node for the tree
3: for all ai ∈ A do
4: eni = entropy(S, ai)

5: Gain(ai) = entropy(S)−∑v∈V
|Sv|
|S| eni

6: a∗ ← MAX(Gain(ai))
7: assign attribute a∗ to node n
8: Svj ← seperate S based on values in Va∗ , vj ∈ Va∗

9: for all Svj do
10: if Svj is empty then
11: mark Svj as a leaf node and end the branch
12: else if Svj only contains items of label ln ∈ L then
13: put ln as the leaf node and end the branch
14: else
15: A = A− a∗

16: ID3(Svj , A, V)

17: return T ← ID3(S, A, V)

machines can be chosen for its fault tolerance redundancy. αconn, βconn are the weight

factors that can be adjusted by the system, and αconn + βconn = 1. The two components of

the equation are normalized to a range of 0 to 1.

Machine Grouping Algorithm

The machine grouping algorithm operates on the learning set with ID3 (Iterative Di-

chotomiser 3) algorithm [182] to generate the decision tree for further machine grouping.

The pesudocode is shown in Algorithm 4.

S represents the learning set, C is the set of criteria (in this case, three criteria consid-

ered), V denotes the set of split values for each criteria, and L is the set of class labels.

Algorithm 4 returns the decision tree T for machine grouping. The algorithm first creates

a root node for the tree. Then the criterion with the maximum entropy value is selected

as the criteria for the root node (step 1-7). The entropy is used to evaluate differences

between groups and is calculate as entropy(S, ai) = ∑v∈Vai
−vlog2(v). The items in S are

separated into sub-groups Vj based on split values Va∗ of criteria a∗ (step 8). For sub-

groups Vj (step 9-18), if it is empty then marked as an end node; If it only contains items

of label ln, then make a node of this branch as label ln; Otherwise, remove criteria a∗ from

138 A Group-based Adaptive Fault Tolerant Mechanism

A and run ID3 with the sub-group Svj iteratively until the items in S are classified. The

decision tree generated by Algorithm 4 can be updated with more machine data obtained

or new criteria need to be added.

5.4.2 Group-based Fault Tolerant Algorithm

Due to the heterogeneity of mobile cloud system, a onefold fault tolerant policy approach

may not adapt different execution conditions. For instance, applying replication method

to the group with high reliability machines incur more operating overhead than check-

pointing. On the contrary, applying checkpointing to low reliability machines can in-

troduce unnecessary storing snapshots of checkpoints. Moreover, as the task offloading

decision modules in mobile cloud systems have already devised an offloading schedule

for mobile tasks, the fault tolerance algorithm needs to consider the execution location of

the task being offloaded to maintain the offloading benefits as well as load balance.

In order to tackle this issue, we propose a group-based fault tolerance algorithm that

takes into consideration the properties of different machine groups and adaptively select

either checkpointing or replication as fault tolerant policy for the task based on the group

of the machine the task is offloaded onto. The proposed fault tolerant mechanism oper-

ates on the task offloading schedules made by the mobile cloud frameworks in order to

make the mechanism adaptive to the existing mobile cloud frameworks. Furthermore,

the mobile tasks of different mobile applications on the devices are differentiated if they

are on the critical path in order to adjust the fault tolerance policies.

Since the proposed fault tolerance mechanism adaptively applies checkpointing and

replication methods, the number of replications as well as the frequency of checkpointing

need to be determined.

Replication

The task replication is sent to machines in the same group of the original scheduled

machine where the task is offloaded in order to maintain the offloading benefit in terms of

execution time and energy consumption. Too many replications can incur large resource

redundancy with high energy overhead. To overcome this issue, the machine for replicas

is selected by ranking the machines in the group by reliability. The machines are ranked

based on the failure rate, the execution time for the replication and number of directly

5.4 Group-based Fault Tolerant Mechanism GFT-mCloud 139

connected machines.

rank(m) = αTm
comp + βpm

f ail + γ
Nconn

Ngroup
, α + β + γ = 1, (5.8)

where α, β, γ are weight factors can be adjusted by users, Tm
comp is the normalized task

completion time on machine m in the scale of 0 to 1, Nconn denotes the number of ma-

chines in the group that machine m has direct connections with, Ngroup is the total num-

ber of machines in the current group, and pm
f ail is the task execution failure rate calculated

as:

pm
f ail =

Nm
f ail

Nm
total

, (5.9)

and Nm
f ail , Nm

total are the number of failed tasks and the number of total tasks executed

on machine m. Then the machine with the lowest ranking score is considered the most

reliable machine in the group and selected to deploy the replica of the task.

Checkpointing

The checkpointing method saves a snapshot of the running process periodically. The

frequency of checkpoints is critical since it generates extra network traffic for the wireless

communications and the checkpointing also incurs time overhead. Hence, the frequency

needs to be determined based on the failure rate and the time taken by checkpointing.

The method proposed in Young [247] is adopted to decide the frequency of checkpointing

as follows.

Tc =
√

2TsTf , (5.10)

where Tc is the time interval between checkpoints, Ts is the time of checkpointing, and Tf

is the time between failures.

The proposed fault tolerant algorithm is listed in Algorithm 5. TR represents the de-

cision tree generated by Algorithm 4, M is the set of machines available in the mobile

cloud network, and J is the set of tasks generated from mobile applications running on

the mobile devices in M. First, TR is updated if more machine observations are cap-

tured in the system (step 2-3). Then, all the machines in M are classified into different

groups through decision tree TR (step 4-5). Moreover, the tasks from each application

are divided into critical and uncritical tasks using critical path analysis (step 6). After the

machines and tasks are classified, the fault tolerance scheduler waits for an offloading

decision of a task made by the offloading decision module of the system. Upon receiving

the task with the offloading decision, the proper fault tolerance policy is selected (step

140 A Group-based Adaptive Fault Tolerant Mechanism

Algorithm 5 Group-based fault tolerance algorithm

1: procedure GROUPBASEDFT(TR, M, J)
2: if TR needs to update then
3: TR← ID3(S, A, V)

4: for all m ∈ M do
5: GTR ← Classi f y(TR, M)

6: {C, UC} ← classify the critical path of tasks inJ
7: while s ∈ J is scheduled by the offloading algorithm do
8: g← GTR(s)
9: if s ∈ UC then

10: if Ts
comp < Ts

t f then
11: resend task s to originally scheduled machine
12: if machine is not available then
13: send s to the machine with EFT in g
14: else
15: goto 17
16: else if s ∈ C then
17: if g contains L reliabiltiy property then
18: calculate ranks of machines in group g
19: m∗ ← lowest ranking machine
20: m∗ ← sr
21: else if g contains H reliabiltiy property then
22: Tc ← calculate checkpoint frequency
23: s← insert checkpoint with Tc

7-23). First, the group label g of the machine that task s scheduled is identified (step 8),

then the task is identified whether it is a task on the critical path of its application. If it

is uncritical and the total float Ts
t f is long enough for re-execution (step 10), the task will

be resent to the machine scheduled by the offloading decision module upon receiving a

failure occurrence. When the machine is not available, the task will be scheduled to the

machine within the same group that has the earlier finishing time (EFT) for the task (step

9-15). If the task is on its application’s critical path, the fault tolerance policy applied

is based on the group of the machine that the task is scheduled. If the group is with L

reliability property, replication is applied. The replica of tasks is sent to the machine with

the highest reliability ranking (step 17-20). If the group is with H reliability property,

checkpointing is applied. The checkpoint frequency is calculated based on Equation 5.10

(step 21-23).

The time complexity analysis of GFT-mCloud.Assume there are m machines in the

5.5 Performance Evaluation 141

Table 5.1: The configuration for simulations

Workload

Application: Optical Character Recognition, Chess game
Number of applications: 50
Computation length (No. of instructions): Uniform(50000, 100000)
Data size (MB): Uniform(0.5, 10)

Machine

Processing Speed (MIPS): Uniform(5000,200000)
Total available time (s): Uniform(1000,30000)
Failure time point: Weibull distribution(α = 1.25, β = 92.74)
WiFi bandwidth(MBps): Uniform(1.0,1.2)
Bluetooth bandwidth(MBps): Uniform(0.2,0.3)
Cellular bandwidth(MBps): Uniform(0.8,0.9)
Number of machines: Uniform(20,50)

network, and n tasks pass through the fault tolerance algorithm. The machine classifi-

cation (step 4-5) takes O(m) for grouping. For the fault tolerance policy selection part,

the checkpoint frequency calculation (step 21-23) takes O(1) and machine ranking cal-

culation for replication costs O(m). Therefore, the worst case scenario for selecting fault

tolerance policy for n tasks costs O(mn). Hence, the overall time complexity of the pro-

posed algorithm is O(m + mn).

5.5 Performance Evaluation

In order to evaluate the performance of the proposed fault tolerant mechanism, a series of

simulations are conducted. The application completion time (i.e. makespan), the mech-

anism running overhead, and the number of control messages for fault tolerance are the

three metrics for evaluation. Results from the proposed algorithm are then compared

with other conventional fault tolerance algorithms.

5.5.1 Experimental Setup

We implement a simulator based on BRITE [158] to simulate the mobile cloud networks.

BRITE is able to generate realistic Internet topologies with different bandwidth and delay

values for each link of the topologies. We also adopted Weka [235] in the simulation to

implement the machine learning methods in the proposed grouping algorithm. Table 5.1

lists the configuration for the simulation.

142 A Group-based Adaptive Fault Tolerant Mechanism

Due to the lack of real-world traces that are suitable for the heterogeneous mobile

cloud environment described above, the workloads used in the simulation are obtained

by profiling an OCR application and a chess game application running on mobile de-

vices in our experimental environment. The workload contains a set of applications rep-

resented by randomly generated DAGs. Each vertex in the DAG represents a task of the

application, and has two values, the amount of computation and data size. The two val-

ues are generated from uniform distribution with the range obtained from the application

profiling.

The parameters used to characterize the machines in the experimental environment

are also listed in Table 5.1. MIPS (Million Instructions per Second) is adopted in the

simulation to represent the processing speed of the machine. It can be profiled by running

a multi-thread integer computation looping program with a number of instructions and

estimating the elapsed time upon completion. In order to simulate the machine failures,

a 2-parameter Weibulll distribution is used for randomly generating the time between

failures, and the failure time points are calculated by appending the time generated from

the distribution to the machine start time. To capture the mobility patterns of real mobile

devices in an area, the CRAWDAD trace sets [123] are used to obtain the shape and slop

parameters of the Weibull distribution. The trace set is composed of system logs of WiFi

access points on Dartmouth campus from September 1st, 2005 to October 4th, 2006. The

number of sessions in every minute is extracted from the trace to generate the probability

functions using rank regression.

5.5.2 Design and Implementation of Simulator

We implement a simulator based on BRITE [158] to simulate the mobile cloud networks.

BRITE is able to generate realistic Internet topologies with different bandwidth and delay

values for each link of the topologies. We also adopted Weka [235] in the simulator to

implement the machine learning methods in the proposed grouping algorithm. In this

section, we explain the design and implementation of the simulator and the library that

can be used to implement the proposed mechanism on the Android platform.

The simulator developed consists of two parts: a set of simulator for mobile appli-

cations and mobile devices, and a library that implements the GFT-mCloud functions.

5.5 Performance Evaluation 143

Settings
Profile

Machine
Generator

DAG
Generator

Task
Classifier

Machine
Classifier

Machine Network
Generator

Workload
Generator

Offloading
Scheduler

Policy
Generator

Figure 5.4: Implemented modules for the simulator

Figure 5.4 illustrates the design of the simulator. The set of simulator tools include DAG

generator, machine generator, machine network generator, and the workload genera-

tor. The library implements the functions of task classifier, machine classifier, offloading

scheduler and the fault tolerant policy generator based on the proposed algorithms in the

GFT-mCloud.

The settings profile is used to store the simulation settings (shown in Table 5.1), and

can be read by the multiple generators to produce simulation data. The DAG Generator

generates random DAGs that simulate the mobile tasks and their dependencies within

the mobile applications, and the Machine Generator outputs information of mobile de-

vices from the device profile based on the simulation requirements. These two generators

are implemented using Uncommons Maths library2 for statistic distributions. The Ma-

chine Network Generator is for producing random mobile device networks in the HMC

environment for simulation. The function is implemented using BRITE3 to generate ran-

2https://maths.uncommons.org/
3http://www.cs.bu.edu/brite/

144 A Group-based Adaptive Fault Tolerant Mechanism

dom network topology with random connections between nodes and random link speed

of the connections. Task Classifier and Machine Classifier are implemented using the

Weka4 library for decision tree methods.

At the start of the simulation, DAG Generator and Machine Generator read the set-

tings from the simulation profile. Then the Machine Network Generator takes the device

information and produces an HMC network. The Task Classifier and Machine Classifier

apply the classification of the DAGs and devices in the machine network with group class

labels based on the proposed machine grouping algorithm. Then the Workload Gener-

ator takes in the classified DAGs and machine network to randomly assigned tasks to

machines as the tasks’ generating location. At last, the Offloading Scheduler implements

existing mobile cloud offloading algorithms, and the Policy Generator applies the fault

tolerant policies to the offloading schedules based on the proposed mechanism.

5.5.3 Evaluation Results and Analysis

Machine Grouping Algorithm Performance Evaluation

In the first set of experiments, the accuracy of the proposed machine classification algo-

rithm with multiple machine instances is evaluated. In order to improve the accuracy of

the decision tree model proposed, the training set of machine instances should cover as

many types of machine instances as possible. Since MIPS is used to represent the pro-

cessing speed of machine (reflecting on CPU, cache and memory) that is either mobile

device, or remote servers, we adopted the MIPS profiles obtained from CPU benchmarks

[234], which include CPUs for desktops, laptops, and mobile devices. The overall avail-

able time of a machine is randomly generated from a uniform distribution. The network

of machines in the mobile cloud system is generated by BRITE with different bandwidth

on different links to represent multiple types of wireless medium. For the validation sets,

three sets of machine instances are extracted from the real-world traces. The first set is

a synthetic set that is generated from the same data distribution as the training set. The

second and third validation set are extracted from the CRAWDAD trace.

Three features of the machines are considered in the machine grouping algorithm

4https://www.cs.waikato.ac.nz/ml/weka/downloading.html

5.5 Performance Evaluation 145

Table 5.2: Results of the cross validation

Item Synthetic Set CRAWDAD
Set 1

CRAWDAD
Set 2

CRAWDAD
Set 3

Correctly Classified
Instances 997 1397 3986 3575

Incorrectly Classified
Instances 5 3 14 7

Mean absolute error 0.0008 0.0004 0.0009 0.0003
Relative absolute error 0.6503% 0.2777% 0.6847% 0.2133%

Total number of instances 1002 1400 4000 3582
Accuracy 99.501% 99.786% 99.649% 99.805%

when classifying machines: processing speed, availability, and communication capacity.

Processing speed is split into three sub-groups: fast, medium, and slow. The availabil-

ity and communication capacity are both split into two sub-groups: high and low. The

weight factors αavail , βavail , αconn, βconn in Equation 5.6 and 5.7 are all set to 0.5. Note that

these weight factors will not influence the performance of the classification since both

training sets and validation sets are using the same weight factor configuration to quan-

tify machine features. The results of cross validation using WEKA are reported in Ta-

ble 5.2. As we can observe from the WEKA results, the grouping algorithm gives an

accuracy of 99.5% on the synthetic machine instances and for the three real-world trace

machine instances, it gives 99.79%, 99.65% and 99.8% accuracy respectively. Also, the

reported accuracy remains similar while the number of instances grows. These results

show that the proposed machine grouping algorithm can accurately classify the machines

into different groups based on the three features.

Group-based Fault Tolerant Mechanism Performance Evaluation

First, the weight factors α, β, γ used in the models (Equation 5.8) are set in different com-

binations to test their effects on the fault tolerance performance. The configurations of

weight factors are listed in Table 5.3. The same network topology that contains a total

number of 30 machines are used as the simulation environment. 50 randomly generated

application DAGs are generated as the testing workload. The task offloading schedules

of the application DAGs among the machine network used are obtained from the list

scheduling heuristic HEFT (Heterogeneous Earliest Finish Time) [220] for the remaining

146 A Group-based Adaptive Fault Tolerant Mechanism

Table 5.3: Weight factor setting cases

Case α β γ Case α β γ
1 1 0 0 7 0.2 0.6 0.2
2 0.8 0.1 0.1 8 0.2 0.2 0.6
3 0.6 0.3 0.1 9 0.1 0.7 0.2
4 0.6 0.1 0.3 10 0.1 0.2 0.7
5 0.4 0.4 0.2 11 0 1 0
6 0.4 0.2 0.4 12 0 0 1

121110987654321

350

300

250

200

150

100

50

0

Case

A
p

p
li
c
a

ti
o

n
 C

o
m

p
le

ti
o

n
 T

im
e

(s
)

Figure 5.5: Average application completion time for different weight factor cases

sets of experiments in this section. The schedule plans are then put through the proposed

FT mechanism and the other three policies for experiments. The results of application

completion time (ACT) are depicted in Figure 5.5. As the results show, the best weight

factor setting with the lowest ACT is from case 7, which is α = 0.2, β = 0.6, γ = 0.2.

The average ACTs slightly decrease as the value of α decreases and the value of β in-

creases. However, the ACT begins to increase again when the value of γ increases from

0.5 (case 6,8,10,12). These results indicate that the weight factor β that represents the

weight of a machine’s number of failures dominates the efficiency of the replication, and

further influences the performance of GFT-mCloud in terms of overall application com-

pletion time. This is because when the mechanism selects replicas based on equation 5.8,

the more reliable the machine is, the less probability that the replication fails to com-

plete, which leads to a lower application completion time. The weight factor setting

α = 0.2, β = 0.6, γ = 0.2 will be used for the rest of the experiments in this section.

Secondly, we evaluate the GFT-mCloud in terms of the adaptivity on generating dif-

ferent fault tolerant policies based on different types of machines and tasks. The pro-

posed mechanism is tested with 500 randomly generated application DAGs and machine

5.5 Performance Evaluation 147

120110100908070605040302010

4000

3500

3000

2500

2000

Median Time Between Failure(s)

A
p

p
li

c
a

ti
o

n
 C

o
m

p
le

ti
o

n
 T

im
e

(s
)

GFT-mCloud
ReOnly

CheckOnly

NoFT

(a) Overall application completion time

1201101009040302010

600

500

400

300

200

50 60 70 80

R
u

n
n

in
g

 O
v

e
rh

e
a

d
(s

)

GFT-mCloud
ReOnly

CheckOnly

Median Time Between Failure(s)

(b) Running overhead

1201101009040302010

3500

3000

2500

2000

1500

1000

500

50 60 70 80

N
u

m
b

e
r

o
f

M
e

s
s
a

g
e

s

GFT-mCloud
ReOnly

CheckOnly

Median Time Between Failure(s)

(c) Number of messages for fault tolerance
management

Figure 5.6: Performance under different machine availability

networks, and results are averaged with 50 runs. Each DAG is generated with a random

number of vertex as tasks and edges as task dependency. The tasks are coupled with data

size and the amount of computation from the application profiling. The results are then

compared with three other fault tolerance baselines: 1) replication only policy (ReOnly),

2) checkpointing only policy (CheckOnly), and 3) no fault tolerant policy (NoFT). Re-

Only only applies replication of tasks as fault tolerance solution, while CheckOnly only

uses checkpoint approach to maintain the task completion reliability. Three test cases are

conducted below to evaluation the fault tolerance performance of GFT-mCloud. Case A

study the influence of machine availability reflecting on its median time between failures.

Case B and case C consider the effect of task computation and data size respectively on

fault tolerance performance of the GFT-mCloud, since these two factors may affect the

mobile cloud offloading.

Test case A. In the first case, the performance of the proposed FT mechanism for dif-

ferent machine availability is evaluated. The machine availability is represented by the

148 A Group-based Adaptive Fault Tolerant Mechanism

median of time between failures (MTBF) of the machines. The failure time points of each

machine are generated from the Weibull distribution above-mentioned. The average ap-

plication completion time of different machine availability are shown in Figure 5.6a. As

we can observe, GFT-mCloud outperformed the other three baselines. When the median

time between failures is as small as 10 and 20 (i.e., machines are highly unavailable),

the NoFT baseline generates the worst completion time of more 4000 seconds. Check-

Only generates the second worst completion time of around 3000. On the contrary, GFT-

mCloud and ReOnly generated the application completion time below 2000, which is

the lowest among the four algorithms compared. This is due to the fact that when the

failure happens more frequent, the NoFT baseline and CheckOnly baseline keeps restart-

ing the task execution, which leads to a higher overall application completion time than

proposed mechanism and ReOnly baseline.

Moreover, when the machines have frequent failures, GFT-mCloud tends to apply

replication as the policy, which makes its results similar to the ReOnly baseline when

the MTBF is low. As the MTBF grows, the application completion time of NoFT and

CheckOnly baseline decreases, and GFT-mCLoud and ReOnly baseline increases. This is

because as the machine can execute tasks for longer time, the number of restarts for NoFT

and CheckOnly becomes less as well as the remaining execution of the task if failures

happen, which leads to a shorter makespan. Also, as machines become more available,

the replicas are delayed to run on the backup machine since it needs to finish its own tasks

first, which leads to a longer makespan for ReOnly. All four algorithms generate stable

results when the median time between failures are greater than 90. This is because as the

machines become more reliable, ReOnly baseline generates more redundancy overhead

for replica transmissions than CheckOnly baseline (Figure 5.6b). As the median time

becomes longer, most of the tasks complete before failures happen, which makes the

completion time generated more stable.

As shown in Figure 5.6b and Figure 5.6c, the running overhead and number of mes-

sages incurred with the overhead are decreasing and become stable, which is consistent

with the overall application completion time. The running overhead of the proposed FT

algorithm accounts for around 9% after being stable.

Test case B. In the second case, the algorithms are evaluated with DAGs that have

5.5 Performance Evaluation 149

360033003000270024002100180015001200900600300100

5000

4000

3000

2000

1000

0

kMIPS

A
p

p
li

c
a

ti
o

n
 C

o
m

p
le

ti
o

n
 T

im
e

(s
)

GFT-mCloud
ReOnly

CheckOnly

NoFT

(a) Overall application completion time

360033003000270024002100180015001200900600300

600

500

400

300

200

100

0

MIPS

R
u

n
n

in
g

 O
v

e
rh

e
a

d
 (

s
)

GFT-mCloud

ReOnly

CheckOnly

(b) Running overhead

360033003000270024002100180015001200900600300

4000

3000

2000

1000

0

kMIPS

N
u

m
b

e
r

o
f

M
e

s
s
a

g
e

s

GFT-mCloud
ReOnly

CheckOnly

(c) Number of messages for fault tolerance
management

Figure 5.7: Performance under different task computation requirements

different amount of task computation requirements in terms of MIPS, to show the per-

formance of the proposed FT mechanism with different applications. Machines used in

this experiment are generated with the median time between failures from 90s to 120s.

The average application completion time generated by four algorithms is depicted in Fig-

ure 5.7. When the computation amount is low, the application completion time generated

by the four algorithms are almost same. As the computation requirement grows, the com-

pletion time grows in the similar speed, with NoFT giving the worst results among the

four algorithms and GFT-mCloud outperforming the other three baselines. The growths

of the completion time from the four algorithms are similar. This is consistent with the

results shown in Figure 5.6 when the machine’s median time between failures is around

90s to 120s. Additionally, GFT-mCloud performs the best when the average task compu-

tation requirement is above 1500 kMIPS as we can observe in Figure 5.7.

Additionally, Figure 5.7b and Figure 5.7c show the running overhead and control

messages incurred by the redundancy of the fault tolerance management for GFT-mCloud,

150 A Group-based Adaptive Fault Tolerant Mechanism

6.05.55.04.54.03.53.02.52.01.51.00.5

3400

3200

3000

2800

2600

2400

2200

Data Size (MB)

A
p

p
li

c
a

ti
o

n
 C

o
m

p
le

ti
o

n
 T

im
e

(s
)

GFT-mCloud
ReOnly

CheckOnly

NoFT

(a) Overall application completion time

6.05.55.04.54.03.53.02.52.01.51.00.5

1600

1400

1200

1000

800

600

400

200

0

Data Size (MB)

R
u

n
n

in
g

 O
v

e
rh

e
a

d
(s

)

GFT-mCloud
ReOnly

CheckOnly

(b) Running overhead

6.05.55.04.54.03.53.02.52.01.51.00.5

2000

1500

1000

500

0

Data Size (MB)

N
u

m
b

e
r

o
f

M
e

s
s
a

g
e

s GFT-mCloud
ReOnly

CheckOnly

(c) Number of messages for fault tolerance
management

Figure 5.8: Performance under different task data sizes

ReOnly and CheckOnly baselines. For ReOnly baseline, the overhead and number of

control messages have not fluctuated much under machine availability change, because

ReOnly baseline generates replicas for all tasks in the application. However, the running

overhead and control messages increased for GFT-mCloud and CheckOnly since more

checkpointing snapshots were generated when the task execution is longer.

Test case C. In the third case, the performance of the proposed FT mechanism is tested

with different amount of data (i.e., data size) to see its effect in case of task migrations

due to failures. The median of task computation in the workload is 1800 kMIPS. Machines

used in this experiment are generated with the median time between failures from 90 sec-

onds to 120 seconds. Results from the proposed algorithm along with the three baselines

are shown in Figure 5.8.

In Figure 5.8a, the makespans generated by NoFT, which are around 3300, do not

fluctuate too much when data size grows. For GFT-mCloud and CheckOnly baseline,

the makespan increased slowly as the data size grows, while the makespan of ReOnly

5.5 Performance Evaluation 151

increased more rapidly. This is due to the growth of data size having a greater impact

on replication as each task has to maintain its replica in the beginning, but only small

impact on checkpointing as it only requires task migration when failure happens. It can

be further observed from Figure 5.8b and Figure 5.8c that the data size growth has little

impact on GFT-mCloud and ReOnly as the running overhead remain stable, while the

running overhead of ReOnly increased due to the replication requires more time for mi-

gration and processing. Moreover, the number of fault tolerant related control messages

for the three algorithms do not change much with the data size growth. Comparing to

the results in Figure 5.6c and Figure 5.7c, the number of control messages will only be

affected by the machine availability and task computation amount instead of data size.

Discussion. The results from four sets of experiments conducted showed that the pro-

posed GFT-mCloud is able to adapt its policies to different execution conditions, such as

different machine availability and different applications (computation requirement and

data size), and can generate the lowest makespan among the algorithms compared with

around 5-10% running overhead and a small number of control messages. The applica-

tion computation intensity (Figure 5.7) has the most effect on the performance of the pro-

posed FT mechanism, while the data size of applications have limited impact of around

8% (Figure 5.8) in terms of makespan.

Scalability of GFT-mCloud Mechanism

For this set of experiments, we evaluate the scalability of the proposed GFT-mCloud

mechanism when the number of mobile devices and tasks increases. Since the hetero-

geneous mobile cloud environment is an ad-hoc network of mobile devices and other

computing resources, it is possible that there would be a very fluctuant number of de-

vices connecting to the GFT-mCloud enabled mobile cloud systems simultaneously. In

addition, when there are more devices participating in the HMC network, the proposed

mechanism should be able to utilize the added resources to provide equal or better fault

tolerant performance. Therefore, the scalability of the mechanism in terms of fault toler-

ance are evaluated.

The evaluation metrics tested in this experiment is the average task completion time

and the time overhead generated by the fault tolerant processing. 500 randomly gen-

152 A Group-based Adaptive Fault Tolerant Mechanism

900

1400

1900

2400

2900

3400

10 15 20 25 30 35 40 50 60

Ta
sk

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

Number of Devices

GFT-mCloud

mCloud

(a) Overall application completion time

190

200

210

220

230

240

250

260

10 15 20 25 30 35 40 50 60

R
u

n
n

in
g

O
ve

rh
e

ad
 (

s)

Number of Devices

GFT-mCloud

mCloud

(b) Running overhead

Figure 5.9: Scalability of GFT-mCloud with low machine availability

1800

2000

2200

2400

2600

2800

3000

3200

3400

10 15 20 25 30 35 40 50 60

Ta
sk

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

Number of Devices

GFT-mCloud

mCloud

(a) Overall application completion time

150

160

170

180

190

200

210

220

230

240

10 15 20 25 30 35 40 50 60

R
u

n
n

in
g

O
ve

rh
e

ad
 (

s)

Number of Devices

GFT-mCloud

mCloud

(b) Running overhead

Figure 5.10: Scalability of GFT-mCloud with high machine availability

erated DAGs with the amount of computation and data size drawn from the uniform

distribution listed in Table 5.1 are used for running on the machine networks with dif-

ferent number of nodes. The machine networks are generated using the implemented

BRITE machine network generator. The results are averaged by 50 runs. We compare

the performance with low machine availability case and high machine availability case.

The median time between failures for machine availability is drawn from the uniform

distribution (20, 50) and (100, 120) respectively. The performance of the proposed algo-

rithms in terms of task completion time and overhead are compared with the offloading

algorithm in mCloud without fault tolerant policies applied, and are shown in Figure 5.9

and Figure 5.10.

Figure 5.9 shows the results of low machine availability scenario. As can be observed

in Figure 5.9a, both results from GFT-mCloud and mCloud have shown declining task

completion time due to the more mobile devices participating in offloading services.

5.6 Summary 153

However, comparing to mCloud, the results from GFT-mCloud have a faster decline

when the number of mobile devices is increasing. This is because the mCloud offloading

policy only restarts a mobile task when there is a fault happening, while the GFT-mCloud

adaptively applies the checkpointing and replication to the mobile tasks. Regarding the

process overhead, Figure 5.9b shows that the GFT-mCloud produces slightly more time

overhead than mCloud, but it accounts for only a small fraction in terms of the overall

task completion time reduced.

Figure 5.10 shows the results of high machine availability scenario. Comparing to re-

sults in Figure 5.9a, the task completion time with high machine availability has a slower

decline as the number of devices increases, due to devices in the network have failures

less frequently. It is also noticeable that the processing overhead shown in Figure 5.10b

indicates that when the device availability is high, the proposed GFT-mCloud generates

lower overhead that the mCloud, and as the number of devices increases, the overhead

stays around 185 seconds. This is because checkpointing policy are mostly applied to

mobile offloading tasks GFT-mCloud mechanism when the device is more stable, while

the mCloud policy only restarts the task by sending another copy when failures happen.

5.6 Summary

The mobility of mobile devices, as well as the intermittent wireless connections, makes

mobile cloud computing systems vulnerable to failures. As the existing fault tolerant al-

gorithms for distributed systems only focus on machine crash failures, they do not suit

mobile cloud environment that involves wireless network failures. In this chapter, we

proposed a group-based fault tolerance mechanism that works as a standalone module

with the existing mobile cloud offloading frameworks. It classifies the machines in the

mobile cloud network into different groups based on its capabilities using decision tree

method. Different fault tolerant policies such as checkpointing and replication are adap-

tively applied based on the offloading tasks and the group of its offloaded machine in

order to select a machine within that group for redundancy. The experimental results

have shown that the proposed fault tolerance mechanism is able to adapt different ma-

chine capability and generate stable makespans, with low running overhead.

154 A Group-based Adaptive Fault Tolerant Mechanism

Having provided solutions for mobile code offloading, load-balanced task scheduling

and fault tolerant mechanism for the heterogeneous mobile cloud environment, there

are still concerns that mobile users may lack incentive to use the proposed offloading

services due to the battery lifetime concern. Therefore, in the next chapter, we design a

reverse auction-based incentive mechanism that encourages mobile users to participate

with rewards in the HMC offloading service.

Chapter 6

A Reverse Auction Based Incentive
Mechanism

The previous chapters have introduced solutions to enable a load balanced, fault tolerant task of-

floading service in the heterogeneous mobile cloud environment. However, mobile users may be dis-

couraged from sharing their devices for running foreign tasks due to the concern of battery lifetime and

security. To incentivize mobile device users to utilize and participate in the proposed task offloading

service, in this chapter, we design a task offloading market for the heterogeneous mobile cloud service,

where a mobile user can compete as a seller with others by bidding its redundant computing resources,

and another mobile user as a buyer can pay the bidding price and offload the task to the winning user.

To enable an incentive and fair auction of the mobile cloud offloading market, we propose a reverse

auction-based incentive mechanism, mCloudAuc, to provide real-time auctions. The proposed auction

algorithm demonstrates computation efficiency, truthfulness, and individual rationality for the par-

ticipants through proof and multiple simulations. Our prototype implementation mCloudAuc based

on the proposed mCloud framework on Android platform has also shown its feasibility in practice.

MOBILE cloud computing is a computing paradigm that enables mobile devices

to outsource their computation intensive tasks onto cloud computing resources

for execution to conserve the battery on mobile devices and improve the performance

of mobile cloud applications. Take optical character recognition (OCR) application for

example, a mobile user can take a photo of a piece of paper containing text in a foreign

language, and the app will process the photo and show the translated text on the display.

Alternatively, the user can subscribe to the cloud service provided by the application

provider by paying for the subscription fee to offload the photo to cloud services for pro-

cessing, and release the device from halting. However, network bottleneck and lack of

performance improvement of offloading to cloud have been the major problem of adapt-

This chapter is derived from: Bowen Zhou, Satish Srirama, and Rajkumar Buyya, “An Auction-Based
Incentive Mechanism for Heterogeneous Mobile Clouds,” Journal of Parallel and Distributed Computing, 2018
(Under review).

155

156 A Reverse Auction Based Incentive Mechanism

Figure 6.1: An example of a local mobile device network using heterogeneous mobile
cloud services

ing the mobile cloud paradigm. For example, a chess game on the Samsung Galaxy S3

will only benefit from offloading to an m3.medium or more powerful instance on Ama-

zon EC2, which generates more monetary cost and reduce the user incentive of using

mobile cloud offloading services [210].

Figure 6.1 shows an example of the mobile cloud collaboration scenario in the hetero-

geneous mobile cloud environment (HMC), where the mobile devices in a local area form

a wireless ad-hoc network through short-range wireless network such as WiFi, Bluetooth

and WiFi-direct. In addition, some users also own cloudlets that are publicly connectible

for other mobile devices via WiFi (e.g., a café owner), and some users have subscribed to

the application’s cloud service with dedicated instances running in the cloud. However,

as an opportunistic network of computing resources, the mobile users may not be willing

to provide their own devices to other users for running tasks due to the limited battery

or privacy concerns. Therefore, the key to attaining full benefits of offloading in HMC

is incentivizing all the mobile users to commit their computing resources to the mobile

cloud offloading service.

In this chapter, we propose an incentive mechanism for heterogeneous mobile cloud

offloading to encourage mobile users to participate and get appropriate rewards in re-

turn. Particularly, we design an offloading market where the mobile users who wish to

157

offload their mobile tasks to remote resources are considered as buyers who submit of-

floading requests to the market and the mobile users who have redundant resources are

considered as sellers that can announce the prices they are charging and compete on the

market to lease their resources to the buyers for offloading. Within the HMC environ-

ment, the challenges for the designed offloading market are:

• The mobile devices can be both buyer and seller, and each device may have dif-

ferent amount of computing resources since the devices are heterogeneous and can

own other types of resources such as cloudlets and cloud instance subscriptions.

Therefore, the execution cost for each mobile device to complete the same offload-

ing task may be different.

• Since the objective of mobile cloud offloading is to conserve energy and execution

time, the offloading decisions made by the proposed incentive mechanism need to

guarantee these offloading benefits.

• As individual mobile users, sellers on the offloading market may try to gain more

income by overpricing their offloading services, or lose income as a result of un-

fair competition and underpricing. Therefore, the proposed incentive mechanism

needs to guarantee a fair market with truthfulness and individual rationality.

• Since mobile devices may leave the market before the offloading tasks they are

serving are completed, the incentive mechanism needs to introduce penalty and

fault recovery mechanism to reduce service disruptions.

In order to tackle these challenges, we propose a reverse auction based incentive

mechanism for the designed offloading market in the HMC. The proposed mechanism

consists of two parts: an auction algorithm that is responsible for allocating the offload-

ing tasks (buyers) to the resource sellers and deciding the payments for sellers, and the

penalty scheme for the failed sellers. The proposed auction algorithm aims to guaran-

tee the trustfulness and individual rationality of the auction participants. The proposed

incentive mechanism is evaluated under substantial simulations with real-world work-

load traces and real experiments with the prototype system implemented on the Android

platform. In summary, the main contributions of this work are as follows.

158 A Reverse Auction Based Incentive Mechanism

1. We model the task offloading service in the heterogeneous mobile clouds as an

offloading market where the mobile devices requesting to offload are considered as

buyers and the mobile devices that offer their redundant resources for offloading

are considered as sellers. Sellers compete on the market by bidding the different

types of resources such as their mobile device resources and cloudlets or cloud

subscriptions to other buyers.

2. We propose a reverse auction based incentive mechanism for allocating the buyers’

requests to sellers’ bids and a pricing policy to decide the payment from the buyers

to the sellers. Also, a fault recovery and penalty mechanism as part of the incen-

tive mechanism is proposed to cope with sellers who cannot complete the requests

assigned.

3. The reverse auction based algorithm is designed as the online algorithm and has a

low time complexity. It can guarantee the individual rationality and trustfulness of

participants in the auction.

4. We implement a prototype of the incentive mechanism on top of the code offloading

framework mCloud we proposed. The incentive mechanism is then evaluated with

both simulations and real experiments on the prototype.

The rest of this chapter is organised as follows. We first discuss the related works for

incentive mechanism in mobile cloud computing in Section 6.1. Then the system models

and the problem formulation are given in Section 6.2. The design of proposed incentive

mechanism and the economic property proofs are presented in Section 6.3, followed by a

description of the prototype implementation and performance evaluation in Section 6.4.

Finally, we give a conclusion in Section 6.5.

6.1 Related Work

6.1.1 Incentive Mechanisms in Mobile Opportunistic Computing

Incentive mechanisms are essential for a computing environment that involves oppor-

tunistic and volunteering mobile device users, such as Internet-of-Things (IoT) and mo-

6.1 Related Work 159

bile crowdsourcing [23]. Tian et al. [217] designed the incentive mechanism based on

the devices’ movements, which motivates participants to move around and gather more

sensing data. A greedy algorithm was proposed to solve the task allocation problem.

Zhang et al. [251] proposed a multi-market dynamic double auction mechanism, Mobi-

Auc, for the proximity-based mobile crowd service. MobiAuc addressed the overlapping

multi-group mobile device problem, and it is trustful and individually rational. Wang et

al. [230] presented a reverse auction formulation for quality-aware mobile crowdsensing

system to minimize the overall expenditure of the system. A quality score is assigned

to each user based on the availability, accuracy of sensor data, reputation, etc. A game-

based incentive mechanism for multi-resource sharing was proposed by Gan et al. [74]

to share their idle resources in mobile social crowdsourcing. A task allocation process,

profit transfer process and reputation management process are combined to achieve a

trustfulness and individual rationality for the proposed incentive mechanism. Liu et al.

[147] studied the incentive mechanism for computation offloading in IoT by proposing a

Stackelberg game-based approach. The approach was shown to be guaranteed to reach

a unique Nash equilibrium. As we can observe from the related works, two main ap-

proaches for incentive in the voluntary computing network are auction based and game

theory based.

6.1.2 Incentive Mechanisms in Mobile Cloud Computing

Only few works have studied the incentive issue for heterogeneous mobile clouds. One

closely related work is presented by Jin et al. for HMC [105]. They considered the mobile

devices as buyers only and the cloudlets and public clouds as sellers only. A two-stage

double auction is designed to determine the winners and prices in buyers and sellers

to allocation the offloaded tasks, and further select seller candidates for buyers who

won more than one auction. Similarly, Xie et al. [239] designed a distributed multi-

dimensional pricing mechanism based on game theory for cloudlet-based offloading al-

location and scheduling. Three types of prices such as multi-dimensional price, penalty

price, and discount price are designed to motivate resource sharing. Tang et al. [215]

proposed a double auction based incentive mechanism for mobile ad-hoc network cloud

with a single market-clearing price policy. Different user behaviour of price taking and

160 A Reverse Auction Based Incentive Mechanism

price anticipating are analysed with a game-theoretic approach.

The existing works have not studied the incentive issue in the proposed HMC envi-

ronment where all devices can be both sellers and buyers. Moreover, the computation ef-

ficiency of incentive mechanisms is vital for mobile devices and auction mechanisms such

as double auction have high time complexity and are hard to implement [162]. Hence,

we proposed a reverse auction based incentive mechanism for HMC environment that

satisfies trustfulness and individual rationality, with low computation complexity.

6.2 System Model and Problem Formulation

In this section, we first present the system model that abstracts the various characteris-

tics of the proposed mobile task offloading market. Then, based on the system models,

we formulate the task offloading problem in HMC as the offloading market problem in

the form of integer linear programming. The objective of the problem is to maximize

the income of the mobile device users for sharing resources, with the consideration of

offloading benefits and the unique constraints in the HMC environment.

6.2.1 System Model

As depicted in Figure 6.1, there are three types of computing resources considered in

our heterogeneous mobile cloud environment: mobile devices such as smartphones and

tablets, nearby cloudlets like laptops, and public cloud instances managed by the mobile

app provider.

Consider there are a number of m mobile devices on the market. The mobile devices

have at least one of the wireless network interfaces available, including WiFi, cellular net-

work, or short range mediums such as Bluetooth and WiFi-direct. All devices within the

network are running the same mobile cloud application. The mobile device is modelled

as follows.

mi =< µi, θi, Iwi f i, Icell , Ibt, Pactive
i , Tavail

i > (6.1)

where µi represents the processing speed of device mi, θi represents the utilization of

the processor, Iwi f i, Icell , Ibt are the binary indicator for the wireless medium availability,

Pactive
i is the energy consumption rate when the device is active, and Tavail

i is the device’s

6.2 System Model and Problem Formulation 161

Table 6.1: Symbols of the system model

Notation Description

mi mobile device
µi processing speed of device mi
θi processor utilization of device mi
Icell , Iwi f i, Ibt binary indicator of the wireless medium availability of de-

vice mi
Pactive

t active energy consumption rate of mobile device i
Tavail

i available time of device i in the network
ci required amount of computation of an offloading task
di deadline of an offloading task
Scom

j cloud instance subscription
ωj processing speed of cloud instance subscription Scom

j

ts
j , t f

j starting and finishing time of cloud instance subscription
Scom

j
pcom

j the price of the subscription Scom
j

Tcomp
ij , Ecomp

ij execution time and energy consumption of task i running
on device j

xij binary decision variable for task i offloading to device j
yj binary decision variable for winner device j of the market

available time in the network.

The cloudlets are mobility-enhanced small-scale cloud data centres that are located at

the edge of the Internet. Each cloudlet is considered as an always available and stable

computing resource owned by one of the users on the market. The cloudlet is accessible

via wireless networks. The hardware properties can be abstracted using the same model

as the mobile device. The public cloud services are provided and managed by the mobile

cloud application provider via app service module. It is enabled within the app in the

form of subscriptions. The subscriptions contain service description including capacity,

service time, and price. The public cloud instances will be dedicated to the user for the

purchased period. The subscriptions can be modelled as follows.

Scom
j =< ωj, Tcom

j , pcom
j >, (6.2)

where ωj represents the processing speed of the cloud instance subscription Scom
j , Tcom

j is

the purchased duration of purchased subscription Scom
j , and pcom

j denotes the price rate

of the subscription.

We consider the task offloading in HMC as an offloading market, where the mobile

user can run the application entirely on his local mobile device or offload the computa-

tion intensive tasks to other computing resources in the network which are sharing the

162 A Reverse Auction Based Incentive Mechanism

redundant resources. On the offloading market, the mobile users who wish to offload

their computation intensive task are considered as buyers, while mobile users who wish

to share their redundant resources are considered as sellers who compete with different

prices to fulfil the buyers’ offloading requests. The redundant resources can be the local

resource of other mobile devices, nearby cloudlet resources owned by other users, and

public cloud resources owned by the app users who have purchased them. In order to

abstract the task offloading processes, the offloading request is modelled as follows.

The user who wishes to offload his tasks to other resources can submit a task offload-

ing request to the auctioneer in the HMC network. The request contains the requested

resources and the demand of the resource usage including requested amount of compu-

tation and task deadline.

ri =< ci, di >, (6.3)

where ci represents the demanded amount of computation for the offloading task, and di

represents the deadline of the offloading task.

Similarly, the user who wishes to sell their redundant resources on the market can

submit a service offer to the auctioneer in the network. The service offer contains the

specifications of the resources, and it is modelled as follows.

sj =< ωj, ts
j , t f

j , bj > (6.4)

where ωj represents the processing speed of the service offersj, ts
j and t f

j are the starting

and finishing time of sj, and bj denotes the bid of the seller. bj is determined by the seller,

and it is supposed to be reported truthfully to his real valuation of the job with the help

of the auction algorithm design.

At last, the cost of task execution is modelled in terms of exectuion time and energy

consumption for the offloading tasks. Assuming there are a number of i task offloading

requests and a number of j devices offering the offloading services, then the execution

time for task i on the leased resource of device j is

Tcomp
ij =

ci

ωj
+

Ii + Oi

bij
,

ωj = µjθj,
(6.5)

where Ii and Oi are the input data isze and output data size of task i, and bij denote the

bandwidth for offloading task i onto device j.

The energy consumption for task i on the leased resource of device j can be modelled

6.2 System Model and Problem Formulation 163

as follows.

Ecomp
ij = Pactive

j Tcomp
ij + σ

Ii + Oi

bij
, (6.6)

where σ is the energy consumption rate of the wireless medium transmission, and it

varies depending on the type of the wireless medium. Therefore, the overall cost of

executing task i on the resource of device j is

Ccomp
ij = αTcomp

ij + βEcomp
ij , (6.7)

where α, β are two weight factors that can be adjusted by the app providers. α + β = 1.

Moreover, mobile users need to value the cost of tasks executing on their own devices

before submitting an offloading requests. The local task execution cost can be modelled

as follows.
Tcomp

im =
ci

ωm
,

Ecomp
im = Pactive

m Tcomp
im ,

Ccomp
im = αTcomp

im + βEcomp
im .

(6.8)

The subscript m is used as a sign of local execution. The time execution and energy

consumption are similar to the offloading cost models, without the data transmission.

The notations of the models are summarized in Table 6.1.

6.2.2 Problem Formulation

Traditionally, the resource allocation phase in the auction will decide the allocation results

solely based on the bids from the buyers and sellers. That is, the seller who offers the

highest bid in the reverse auction wins. However, in the proposed offloading market

for HMC, the auctioneer also needs to consider the offloading benefits for each mobile

device, i.e., conserving energy and reducing execution time. Therefore, we formulate

the proposed offloading market problem as to maximize the overall revenues for all the

participants in the auction, with the consideration of the offloading benefits and system

constraints of HMC environment. The problem is formulated in the form of integer linear

programming (ILP) as follows.

Given a set of offloading requests ri ∈ R and a set of services sj ∈ S, the problem

consists of two parts. The first part is how to allocate the requests to the available service

offers so that each mobile device user can gain maximum revenue from sharing their

redundant resources (from service providers’ perspective), while the cost of executing

164 A Reverse Auction Based Incentive Mechanism

tasks in terms of time and energy are minimized (from task offloading perspective), since

a mobile device user can be both a resource seller and a resource buyer for offloading.

The second part of the problem is to decide the payment for the sellers.

We first define the binary decision variables for the allocation results. Let xij denote

that request ri is allocated to service offer sj if xij = 1, otherwise if xij = 0. Let yj denote

that service offer sj wins the auction if yj = 1 and otherwise if yj = 0. In order to ensure

a valid task schedule for the machines, two supporting variables are introduced. Let ts
ij

be a continuous variable representing the execution starting time of the task i on service

j, and oikm be a binary variable representing the order of task schedule, for which oikj = 1

if task i is in front of task k on the service j. Then t f
ij can represents the finishing time of

task i on service j, where t f
ij = (ts

ij + Tcomp
ij)xij. The problem is formulated as follows.

max ∑
j∈S

yj ∑
i∈R

bijxij −∑
i∈R

∑
j∈S

Ccomp
ij xij (6.9)

s.t.

xij 6 yj, ∀i ∈ R, ∀j ∈ S (6.10)

∑
j∈S

xij = 1, ∀i ∈ R (6.11)

xijC
comp
ij + T(xij − 1) 6 Ccomp

im , ∀i ∈ R, ∀j ∈ S (6.12)

∑
i∈R

xijT
comp
ij 6 yjTj, ∀j ∈ S (6.13)

t f
ij 6 tarrival

i + di, ∀i ∈ R, ∀j ∈ S (6.14)

xik + xki + oikj + okij 6 3, ∀i, k ∈ R, ∀j ∈ S (6.15)

T(oikj − 1) 6 t f
kj − ts

ij 6 Toikj, ∀i, k ∈ R, ∀j ∈ S (6.16)

ts
ij > tjoin

j + T(xij − 1), ∀i ∈ R, ∀j ∈ S (6.17)

ts
ij > tarrival

i + T(xij − 1), ∀i ∈ R, ∀j ∈ S (6.18)

t f
ij 6 tleave

j + T(xij − 1), ∀i ∈ R, ∀j ∈ S (6.19)

xij, yj ∈ {0, 1}, ∀i ∈ R, ∀j ∈ S (6.20)

The first component in the objective function (6.9) represents the overall payment re-

ceived by service sellers on the market, which is the sum of the winning bids, and the

second component in the objective function (6.9) represents the overall execution cost of

the task requests on the market. Constraint (6.10) ensures that only the devices that have

won the auction can be used for offloading. Constraint (6.11) shows that one task can be

offloaded to one and only one device for execution, that is, the task is either offloaded

6.2 System Model and Problem Formulation 165

to a mobile device that offers its resources (device j), or executed on its own device i.

Constraint (6.12) guarantees that the execution cost of the task on an offloaded device

is less than running locally. Constraint (6.13) ensures the tasks allocated to the device is

less than or equal to the device maximum available time for the offloading services. Con-

straints (6.14) prevent the task from finishing after its deadline. Constraints (6.15)-(6.19)

ensure that there is one and only one task executing at a time on the service providing

machines, and there is no overlapping on the execution orders. At last, Constraint (6.20)

ensures the decision variables are either 0 or 1.

The optimal solution can be obtained by solving the proposed ILP model. However,

the problem is NP-hard as it can be shown that the knapsack problem can be polynomi-

ally reduced to the proposed problem (6.9)-(6.20).

Theorem 6.1. The proposed offloading market problem is NP-hard.

Proof. We first show that a simplification of the proposed offloading market problem is

NP-hard by giving a solution from reducing polynomially from the Knapsack problem.

Then the simplification is relaxed to the original problem and prove it is NP-hard.

Assume that each mobile device on the market has a number of identical tasks to of-

fload. Each mobile device as the resource seller has different processing capacity and a

maximum service period limit. Therefore, the identical tasks may have different execu-

tion costs Ccomp
ij on different sellers. Then this simplified offloading case can be seen as

a multiple knapsack problem where the assigned tasks on a knapsack (mobile device)

cannot exceed its maximum service time.

Now we relax the assumption that each mobile device can offload heterogeneous

tasks. Since there are finite number of tasks from each mobile devices and a finite num-

ber of mobile devices on the offloading market, it takes polynomial time to calculate the

execution cost of each task on each mobile device, and then devising the allocation of

the set of offloading tasks onto mobile devices is corresponding to the simplified case.

Therefore, the proposed offloading market problem (6.9)-(6.20) is NP-hard.

We can observe that the term yj ∑i∈R bijxij is the product of two binary variables,

which is not a linear expression. This can be relaxed to a linear form by adding another

binary variable and related constraints to replace the quadric term. The linearisation is

166 A Reverse Auction Based Incentive Mechanism

as follows. First, a binary variable zij is defined as

zij = xij ∗ yj. (6.21)

Then the quadric term is replaced by the zij equivalently with the following additional

constraints:

zij 6 xij, (6.22)

zij 6 yj, (6.23)

zij > xij + yj − 1. (6.24)

Therefore, the integer linear programming formulation of the proposed problem is given

as:
max : ∑

i∈R
∑
j∈S

(bijzij − Ccomp
ij xij)

s.t. : (6.9)− (6.24)

(6.25)

The optimal allocation results can only be devised for the small-scale HMC network.

It is too time-consuming for the auctioneer to obtain optimal solutions when there are a

large number of mobile devices and offloading requests. Therefore, an online incentive

mechanism is needed to solve this problem at runtime and produce the near-optimal

solutions. Moreover, since the true cost and valuation of the offloading requests for the

buyers and sellers are confidential to themselves only, the only information exposed to

the auctioneer is the offloading request and the bidding price of the seller to fulfil the

request. Hence, the incentive mechanism should guarantee a few economic properties of

the auction to force both sides to report their true valuations. Based on the demand of

the proposed offloading market for HMC, the online auction mechanism should fulfil the

following properties [173].

• Computational efficiency: the auction outcome including winning sets of buyers

and sellers, the mapping, and the clearing price and payment, are solved with a

polynomial time complexity.

• Individual rationality: no person should lose money from joining the auction. In

particular, let pj be the payment for sj set by the auctioneer, and bj be the bid, pj > bj.

• Truthfulness: All players should use the strategy of only reporting his true valua-

tion. No buyers or sellers can improve their utility by reporting a bid/ask different

from its true valuation.

6.3 The Incentive Mechanism 167

Therefore, we propose a greedy algorithm for resource allocation and pricing in the

incentive mechanism to solve the ILP model and achieve near optimal results as well as

the abovementioned economic properties.

6.3 The Incentive Mechanism

In this section, we present a greedy reverse auction algorithm that allocates the buyers’

offloading requests with the sellers’ service offers, and decides the payments for the suc-

cessful transactions. The proposed algorithm takes into consideration the offloading ben-

efits as well as the constraints in the HMC environment when allocating task offloading

requests. Furthermore, the proofs of the economic properties of the proposed algorithm

are presented.

6.3.1 The Greedy Reverse Auction

The online reverse auction in the proposed offloading market can be described as a series

of auctions on a timeline that consists of discrete time epochs. Sellers offers si and the

buyer offloading requests ri arrive at arbitrary times. For each si, it publishes the service

information including its service type, capacity, bid, and available period to the auction-

eer. The published information will be discarded after its available period. For each

request ri, it contains the requested amount of computation and the user nominated task

completion deadline. In each auction time epoch, the greedy reverse suction algorithm

performs two phases: resource allocation, and payment determination.

In the resource allocation phase, although there may be more than one offloading re-

quest submitted to the auctioneer in the current auction epoch, it rarely happens when

two offloading requests arrive at the auctioneer at the exact same time. Therefore, all

the submitted offloading requests are put in a queue based on the order of arrival. The

greedy reverse auction algorithm processes the requests in the queue one per time to al-

locate to the available service offers based on the task requirement, offloading benefits

and environment constraints in HMC. The details of the proposed resource allocation

algorithm are listed in Algorithm 6. The algorithm takes the set of offloading requests

R and the set of service offers S as inputs, and returns the values of the decision vari-

168 A Reverse Auction Based Incentive Mechanism

Algorithm 6 Resource Allocation Algorithm

1: procedure RESALLOC(R, S)
2: Initialize Rsort, Ssort, xij, yj;
3: for all ri ∈ R do
4: Rsort ← Sort(Rsort, ri, ci, di, ”descend”);
5: for all sj ∈ S do

6: Ssort ← Sort(Ssort, sj,
bj
ωj

, ”ascend”);

7: for all ri ∈ Rsort do
8: for all sj ∈ Ssort do
9: if ci

ωj
6 di ∧ ci

ωj
6 Tj ∧ Ccomp

ij 6 Ccomp
im then

10: if yj 6= 1 then
11: sj ← update(Tj,

ci
ωj
);

12: yj = 1;
13: xij = 1;
14: break;

ables xij, yj as outputs. The algorithm first sorts the queue of offloading requests in the

descending order of the value of ci
di

, which reflects the priority of the requests in terms of

computation amount and deadline of the task (step 3-4). That is, the request with large

computation or urgent deadline will be processed first. Similarly, the service offers are

also sorted into the list Ssort in the ascending order based on the value of bj
ωj

(step 5-6) so

that the service with lower bid and higher processing speed will be placed in front. Then

the algorithm takes the sorted requests and offers to start the auction process (step 7-14).

For each request ri at the front of the queue Rsort, the algorithm iterates through Ssort to

find the winners when three conditions are satisfied (step 8-14): 1) the offloading request

can be completed before its deadline (ci
ωj

6 di); 2)the service can finish the offloading

request before its available time ends (ci
ωj

6 Tj); 3)the offloading benefit for request ri is

ensured (Ccomp
ij 6 Ccomp

im). The winner yj will be assigned to the request xij and considered

unavailable to other requests in this auction epoch. The available time Tj of service sj is

updated substituting the execution time of ri (step 11). At last, the algorithm returns the

results of xij, yj after all the offloading requests are processed.

In the second phase of the greedy reverse auction algorithm, the payments of the

winners are determined. Traditionally, the payment can be determined by calculating

the difference of the optimal result of the objective function with and without the partic-

ipation of the winners. Mathematically, let FS−j denote the optimal result of the objective

6.3 The Incentive Mechanism 169

Algorithm 7 Payment Determination

1: procedure PAYDET(R, Ssort)
2: s∗ ← critical(Ssort)
3: Swin ← winnerSelect(Ssort)
4: for all sj ∈ Swin do
5: pj ← b∗

ω∗ωj

Algorithm 8 Greedy Reverse Auction Algorithm

1: procedure GREEDYAUCTION(D)
2: for all dk ∈ D do
3: R← current available offloading requests
4: S← current available resource sellers
5: xdk

ij , ydk
ij , Ssort ← ResAlloc(R, S)

6: pdk
j ← PayDet(R, Ssort)

function without the presence of service j, and F−j
S denote the optimal result of the objec-

tive function without considering the bid of service j, given j as the winner in the optimal

allocation results of the formulation. Then the payment is calculated as:

pj = FS−j − F−j
S . (6.26)

Since the obtaining optimal results of the objective function is not feasible at runtime, we

proposed the payment algorithm based on the allocation results of the greedy auction

algorithm. Similar to the optimal payment policy, the payment to the winner is the dif-

ference of the overall system utility with and without the presence of the winner. After

all the offloading requests have been allocated to services in S by the greedy auction algo-

rithm, the next unallocated service offer s∗ in the sorted list Ssort is selected as the critical

service. If all the service offers are winners, then the last winner is selected as the critical

service. The critical service represents the difference of overall system utility when taking

out one of the winners in Ssort, due to the fact that since the service offers are sorted in

the ascending order of the bid, the winners are in front of s∗ in Ssort, and when taking out

one of the winners the critical service s∗ will be the winner of the original auction. The bid

of the critical service is called the critical price b∗. Then the payment to winner sj can be

calculated as pj =
b∗
ω∗ωj. The payment determination algorithm is listed in Algorithm 7.

Assuming there are m offloading requests and n service offers, the computation com-

plexity of the proposed greedy reverse auction algorithm in one auction time epoch is

O(mn(m log m + n log n)), where the lowest complexity of sorting of the request set and

170 A Reverse Auction Based Incentive Mechanism

offer set are O(m log m) and n log n respectively. Then assuming for the worst case, al-

locate one request to the service cost n operations, then m iterations cost mn operations.

Therefore the overall computation complexity of the proposed algorithm is O(mn(m log m+

n log n)). The proposed greedy reverse auction algorithm in the scale of a series of D auc-

tion time epochs is listed in Algorithm 8. In each auction time epoch dk, the algorithm

collects the available offloading requests and service offers from the mobile users on the

offloading market first. Then the allocation results and payments are determined by the

Algorithm 6 and Algorithm 7 respectively. The algorithm returns the overall allocation

results XD
ij , YD

j and payments PD
j after |D| time epochs.

6.3.2 Failure Recovery and Penalty Policy

Since the mobile devices on the offloading market can join and leave at any time, the

failure penalty policy is needed to prevent mobile device users who win an auction from

deliberately failing the requests. We propose a penalty policy that only utilizes the avail-

able resources on the market and the support of the application provider.

When a mobile user who won the offloading request leaves the market and can not

complete the request, the current state of the offloading task will be checkpointed [121]

and is sent to the cloud instance provided by the application provider. The remaining

of the failed task will be completed on the cloud instance and the application provider

charges the cost of this execution to the leaving mobile device user as a penalty, and

the payment for the leaving user is reversed. In this way, the offloading user will lose

nothing and have the offloading request completed, while the leaving user will pay the

cost of execution as a penalty.

6.3.3 Economic Property Analysis

Having proposed the reverse auction based incentive mechanism, we prove that the pro-

posed incentive mechanism satisfies the economic properties of individual rationality

and truthfulness. These properties guarantee that the participants on the offloading mar-

ket will not benefit from cheating, and avoid the manipulation of the offloading market.

6.3 The Incentive Mechanism 171

Theorem 6.2. Truthfulness: the greedy reverse auction algorithm implements a truthful auction

where no participants can increase its utility by bidding a price different from its private true

valuation.

Proof. Since the true valuation of the resource provided by the sell is private, the incentive

mechanism should guarantee sellers to report their true valuation so that they will not

cheat to gain more by bidding a higher price than their true costs. Let bj be the bid of

seller sj, vj be the true valuation of the seller’s cost, and ubj , uvj be the utility of the two

biddings respectively. There are two cases need to be considered, which are bj < vj and

bj > vj.

First, when bj < vj, the outcomes of the auction for seller sj can be: (A)sj loses the

auction by bidding vj and bj; (B)sj wins by bidding bj but loses by bidding vj; and (C) sj

wins by bidding either bj or vj. Note that the case where sj wins by bidding vj and loses

with bid bj does not exist since the sellers’ offers are sorted in the ascending order of bids

in Algorithm 6.

For case (A), the utilities of seller sj by bidding bj and vj are both equal to 0 since the

requests are allocated to the sellers with cheaper bids. That is, ubj = uvj = 0.

For case (B), based on the payment policy which finds the critical price b∗ among

all sellers’ bids, there exists bj
ωj

< b∗
ω∗ <

vj
ωj

. Since the utility of the winner is calculated

as ubj = pj − vj, the winner sj in this case would obtain a negative utility. Therefore,

the seller sj would choose to either lose the utility or lose the auction, which results as

ubj 6 0.

For case (C), since the sellers’ offers are sorted in the ascending order of the bids,

the seller would be placed closer to the from of the list Ssort when bidding with bj than

vj. However, since this has no effect of the value of the critical price b∗, the utility of

ubj = uvj = b∗ − vj.

As a result, for all the possible auction outcomes when the seller sj bids lower than

his private true valuation, the utility is less or equal to the utility of bidding the true

valuation, i.e., ubj 6 uvj . It can be proved in a similar way that ubj 6 uvj when bj > vj.

Therefore, the proposed greedy reverse auction algorithm can guarantee the truthfulness

of the participants.

172 A Reverse Auction Based Incentive Mechanism

Theorem 6.3. Individual Rationality: The proposed greedy reverse auction algorithm is individ-

ual rational that no participants would lose money from joining the offloading market.

Proof. In order to prove the individual rationality of the proposed algorithm, we need to

prove that pj > bj for all the winners sj ∈ S. According to the Algorithm 7, each winner

will be paid with the value of b∗
ω∗ωj, which is based on the bid of the first unallocated

seller or the last seller if all sellers are allocated. Recall that all the sellers are sorted in the

ascending order of bj
ωj

in Algorithm 6, then for each winner sj we have

pi =
b∗

ω∗
ωj

>
bj

ωj
ωj = bj

(6.27)

Therefore, for any winner in the auction, the winner’s payment pj > bj, and the proof is

complete.

6.4 Performance Evaluation

In this section, we present the performance evaluation of the proposed greedy reverse

auction algorithm. The experiments are discussed in two parts. First, the proposed al-

gorithm is evaluated under intensive simulations to test the performance in terms of the

social welfare, offloading benefits, the fairness of the auction results, and the truthfulness

and individual rationality enforced by the algorithm. Second, we implement the proto-

type of the incentive mechanism on the Android operating system and test the feasibility

of the mechanism in real setting experiments. For the rest of this section, we refer to our

proposed incentive mechanism as mCloudAuc.

6.4.1 Simulation Settings

We conduct the simulations based on a real-world trace of mobile user activities and

mobile application profiles. The main parameters for the simulations are listed in the

Table 6.2.

First, we profile an OCR application2 on an Android mobile phone to generate the

task workloads for the simulations. The Android Studio performance analysis tools are
2Available to download at https://github.com/rmtheis/android-ocr

6.4 Performance Evaluation 173

Table 6.2: The configuration of simulations

Workload

Application: Optical Character Recognition
Task arrival rate: 0.5
Computation required (Instructions): Uniform(50000, 100000)
Input data size (MB): Uniform(0.5, 10)

Mobile device

Behaviour trace: MIT Reality Mining traces
Processing Speed (MIPS): Uniform(5000,200000)
Energy consumption rate (W): Uniform(0.07,0.6)
WiFi bandwidth(MBps): Uniform(1.0,1.2)
Bluetooth bandwidth(MBps): Uniform(0.2,0.3)
Cellular bandwidth(MBps): Uniform(0.8,0.9)
Energy consumption rate of wireless medium: ρwi f i =
1.94W, ρbt = 0.28W, ρcell = 5.56W

used for the profiling of the application on the method level. The profile contains the in-

put data size of the captured photos, and the inclusive CPU running time of each method

for offloading to calculate the amount of computation in instructions. The task arriving

rate λ at the auctioneer is 0.5.

Second, the dataset MIT Reality Mining [62] is used to extract the mobile device be-

haviour trace for our experiments. The dataset contains the trace of 100 mobile devices in

the MIT Media Lab, which consists of the location and staying duration, other devices in

its proximity, idle/charging state, etc. We only consider the logs related to the cell tower

associated with ’Work’. The list of such cell towers is provided by the project[61]. We

first filter the datasets with the cell tower IDs to find devices connected to each of the

cell towers and the corresponding connection time. Then for each set of devices found

connected to each cell tower, the groups of mobile devices in each other’s proximity are

identified, and each group is assigned with a unique group ID. Last, the state including

charge, active, and on/off are retrieved from the datasets for each device in the found

groups.

In addition, the hardware properties such as processing speed and energy consump-

tion rates are appended to the trace. Million Instructions per Second (MIPS) is used to

quantify the processing speed, and is generated from a uniform distribution of (5000, 200000).

The energy consumption rates of mobile devices are obtained from the uniform distribu-

tion of (0.07, 0.6)W corresponding to the processing speed of the processor. The power

174 A Reverse Auction Based Incentive Mechanism

0.08 0.89 3.25 9.67

37.63

125.6

209.84

0

50

100

150

200

250

5 10 15 20 30 40 50

So
vl

in
g

Ti
m

e
(s

)

OPT

(a) Optimal solution

8
10 11

16

21

26

39

5

15

25

35

45

5 10 15 20 30 40 50

So
vl

in
g

Ti
m

e
 (

m
s)

mCloudAuc

(b) mCloudAuc

Figure 6.2: Time of devising allocation results with different number of machines

consumption rate of WiFi, Bluetooth, and cellular network are set as ρwi f i = 1.94W, ρbt =

0.28W, ρcell = 5.56W respectively [15]. Finally, the network speed (MBps) of WiFi, Blue-

tooth and cellular network are set as Bwi f i = Uni f orm(1.0, 1.2), Bbt = Uni f orm(0.2, 0.3), Bcell =

Uni f orm(0.8, 0.9) respectively by profiling the available network in our experiment en-

vironment.

6.4.2 Numerical Results and Analysis

We conduct 5 sets of experiments for simulation to evaluate the economic properties and

the performance in terms of offloading benefits for the proposed incentive mechanism.

Running Time Analysis

First, we the running time of obtaining the solutions of the optimal ILP model and the

proposed greedy reverse auction algorithm are compared for a different number of mo-

bile devices on the offloading market. The optimal solution of the ILP model is obtained

by using the Gurobi optimization solver [168]. The running time of generating the allo-

cation solution for the optimal algorithm and the proposed greedy auction algorithm are

compared against different a number of mobile devices on the offloading market. The

generating rate of offloading task requests for each device is randomly drawn from the

uniform distribution(0.5, 2). The number of task requests in each test run is managed

to be around 100. All the tests are conducted on a desktop with 3.40GHz Intel Core i7

processor and 16 GB RAM. The results of the solving time with different numbers of

machines are depicted in Figure 6.2.

6.4 Performance Evaluation 175

The first observation of the difference between the optimal solution and the proposed

mCloudAuc algorithm in Figure 6.2 is that the optimal solution takes a significantly more

amount of time to devise allocation results for the auction, as it only takes below 40

milliseconds for mCloudAuc (Figure 6.2a) to obtain results while the optimal solutions

took from 80 milliseconds up to 209 seconds (Figure 6.2b). The running time for both

algorithms increase with more mobile devices participating, and the optimal solution

increases more rapidly. These results indicate a useful setting for the auction system

configuration. Since the auction is designed to conduct on the cloudlet in the offloading

market (Figure 6.1), the service providers can set up a threshold of the number of mobile

devices based on their SLAs. The auctioneer can apply optimal solution when the actual

number of participants is below the threshold, or the mCloudAuc algorithm when it is

above the threshold.

Economic property evaluation

In the next three sub-sections, the performance of the proposed auction algorithm is eval-

uated regarding the three economic properties: social welfare, individual rationality, and

truthfulness. Three algorithms are compared, including 1) the optimal solution from ILP

model as the benchmark, referred as OPT; 2) a reverse auction based incentive algorithm

proposed in [241] referred as BaseR; 3) and the proposed incentive algorithm referred as

mCloudAuc. The BaseR algorithm sort bidders in a non-decreasing order of ωi
di

, where

ωi represents the valuation of the task for each bidder, and di represents the degree of the

bidder in its current computing network. Since the network in our case can be consid-

ered as a complete graph, the BaseR is adapted to sort by the value of ω. The adapted

BaseR algorithm sorts the bidders at once at the beginning, and the order will be fixed.

The tasks are assigned on arrival with a winner from the sorted list of bidders. Firstly,

the performance of the proposed mCloudAuc against the benchmark and baselines in

terms of the overall utility of all participants are analysed with different task arrival rates

and different numbers of devices on the market. The utility refers to the revenue that a

participant receives. In addition, the overall task execution time and energy consump-

tion of all the submitted tasks are compared. The task generating rate for each mobile

device is set to follow a Poisson process with λ = 0.5. The results of each test are av-

176 A Reverse Auction Based Incentive Mechanism

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5 10 15 20 30 40 50

To
ta

l U
ti

lit
y

OPT

mCloudAuc

BaseR

(a) Overall utility

5 10 15 20 30 40 50

OPT 1830.7 2891.1 4978.33 7209.38 9243.42 12595.2 15896

mCloudAuc 1951.6 3015 5487.81 7820.57 9831 14324.4 18859.1

BaseR 1909 3299 5668 8013 10866 14654 19507

1500

3500

5500

7500

9500

11500

13500

15500

17500

19500

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (

s)

OPT

mCloudAuc

BaseR

(b) Overall task execution Time

5 10 15 20 30 40 50

OPT 240.34 764.18 1671.27 2121.2 2239.89 3152.97 3624.8

mCloudAuc 524 885.84 1845.9 2233 2534 4225 5448.26

BaseR 504 980 1921.73 2386 2713 4888 5813

0

1000

2000

3000

4000

5000

6000

To
ta

l E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 (
J)

 OPT

mCloudAuc

BaseR

(c) Overall device energy consumption

Figure 6.3: Overall utility with different number of participants

eraged by 50 runs, and depicted in Figure 6.3. Figure 6.3a shows the sum of the utility

for each participating mobile device on the offloading market. In comparison with the

other algorithms, mCloudAuc generates close results to the optimal algorithm, and out-

performs the well-designed BaseR algorithm when the number of participants grows. In

terms of task offloading benefits such as task execution and energy conservation, Fig-

ure 6.3b and Figure 6.3c show that all three algorithms perform closely to each other,

while mCloudAuc can conserve more energy and execution time compared to BaseR.

This is due to the dynamic ordering of both task requests and resource seller offers dur-

ing each round of the auction in mCloudAuc, whereas BaseR applies a fixed order of

offers when having auctions.

Moreover, the performance of overall utility for the algorithms is tested with different

task arrival rates (or task request submission rates) for the mobile participants. Since the

task arrival follows the Poisson process in our simulation, the λ is set from 0.2 up to 1.6,

and eight sets of simulation are conducted to compare the overall utility, total execution

6.4 Performance Evaluation 177

40 50

200

700

1200

1700

2200

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

To
ta

l U
ti

lit
y

OPT

mCloudAuc

BaseR

(a) Overall utility

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

OPT 18057 8848.9 7059.6 5046.9 4012 3730 3256.9 3157.8

mCloudAuc 19076 9553 7638 5325 4229 3983 3184 3048

BaseR 20281 10918 8053 5926 4550 4066 3434 3137

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (

s)

OPT

mCloudAuc

BaseR

(b) Overall task execution Time

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

OPT 5650.5 4135.5 2432.1 1436.5 1237.8 1188.7 1095 1004.1

mCloudAuc 6129 4911 2692 1639 1343 1287 1204 1037

BaseR 6295 5117 3243 1723 1451 1326 1242 1114

1000

2000

3000

4000

5000

6000

To
ta

l E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

 (
J) OPT

mCloudAuc

BaseR

(c) Overall device energy consumption

Figure 6.4: Overall utility with different task arrival rates

time and device energy consumption. The workload for each test case is obtained by gen-

erating the task requests up to from 0 to 100 second of the arrival time. The results are

averaged with 50 runs of each set of test and are illustrated in Figure 6.4. As seen in Fig-

ure 6.4a, the total utility of mobile participants decreases as the task arrival rate decreases

from 0.2 to 1.6, due to fewer task requests submitted during the 100-second auction win-

dow. Noticeably, the utility generated by mCloudAuc when the arrival rate is greater

than one is as close as that of the OPT. The result indicates that the proposed mCloudAuc

can give near-optimal allocation results when the task arrival rate is low (> 1). The cor-

responding execution time and device energy consumption (Figure 6.4b and 6.4c) are

consistent with the utility results. Three algorithms all generate close results, with the

proposed mCloudAuc slightly outperforms BaseR. The two sets of simulation conducted

above show that the proposed incentive algorithm can generate resource allocation that

is close to the optimal solution and maintain the offloading benefits of mobile cloud of-

floading at the same time.

178 A Reverse Auction Based Incentive Mechanism

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Machine No

Payment

Bid

Figure 6.5: Individual rationality of mCloudAuc

Secondly, the price determination algorithm of mCloudAuc is evaluated to valid the

individual rationality of the proposed incentive algorithm. The individual rationality of

an auction mechanism ensures that participants of all parties would not lose profit from

joining the auctions. Since the designed offloading market implements a reverse auction,

the evaluation only focuses on the resource sellers’ profits. A workload of 100 task re-

quests randomly generated from the mobile device participants on the offloading market

is tested. The bid and price paid for each resource seller and buyer pair are compared.

In case a seller wins multiple task requests from different buyers, the sum of the bids

and price paid are compared. The results are averaged with 50 runs, and are shown in

Figure 6.5. The results with 0 (e.g., machine 1,4,8) indicate that the mobile device has

not won any task requests. As can be observed in Figure 6.5, all the mobile devices (or

resource sellers) receive payments are at least no less than what their bids are. Therefore,

the proposed mCloudAuc incentive mechanism can achieve the individual rationality as

the Theorem 6.3 shown.

Finally, we evaluate the truthfulness of the proposed mCloudAuc algorithm. A brief

remind that truthfulness of an auction mechanism enforces participants to only bid on

their true valuation of the tasks. That is, no participants would gain more profits by bid-

ding more than their true cost. In order to test the truthfulness performance of mCloudAuc,

a time-based simulation with several rounds of auctions held in between is conducted to

test the utility changes of the participants. Mobile device participants may join and leave

at each round. Instead of generating from the distributions in Table 6.2, the participant’s

joining and leaving time used in this test are extracted from a part of the MIT Reality

Mining traces. The workload consists of task requests submitted from the participants

over the rounds of auctions, following a Poisson process with λ = Uni f orm(0.2, 1). One

6.4 Performance Evaluation 179

0

2

4

6

8

1 6 11 16 21 26
No. of Round

ΔU-0.5

(a) δ = 0.5

0

2

4

6

8

10

1 6 11 16 21 26
No. of Round

ΔU-0.8

(b) δ = 0.8

0

2

4

6

8

10

1 6 11 16 21 26
No. of Round

ΔU-1.2

(c) δ = 1.2

0

2

4

6

8

1 6 11 16 21 26
No. of Round

ΔU-1.5

(d) δ = 1.5

Figure 6.6: Utility loss (∆U) with different bid manipulation factor δ

mobile device participant is randomly chosen as the reference device. In each round of

auctions, the selected device is manipulated to bid untruthfully from its true valuations,

that is, bi = δci, where δ is a weight factor to control the variation. Then the utility loss

∆U = UmCloudAuc −UmCloudAuc−M generated by mCloudAuc between manipulated set-

tings mCloudAuc−M and original settings mCloudAuc is depicted in Figure 6.6, with

different values of δ including 0.5 (Figure (6.6a)), 0.8 (Figure (6.6b)), 1.2 (Figure (6.6c)),

and 1.5 (Figure (6.6d)), which represent the selected seller underbidding his or her true

cost or overbidding. Each auction epoch is set as 30 seconds.

All four subfigures show non-negative utility loss under different manipulation factor

δ. The different variations for the four cases are due to the resource allocation policy

and price determination policy proposed in mCloudAuc, in which the task requests and

service bids are sorted at each auction round, and the payment price (or critical price)

changes when the order of service bids changes with untruthful bids. The results indicate

that the proposed price determination algorithm in mCloudAuc can ensure truthfulness

for the participants during auctions when there are malicious participants try to gain

180 A Reverse Auction Based Incentive Mechanism

extra utility by underbidding or overbidding their true private valuations.

The above sub-sections evaluates the computation efficiency and economic properties

of the proposed incentive mechanism mCloudAuc by simulations. The results show that

mCloudAuc performs consistently with Theorem 6.2 and Theorem 6.3, and can provide

near-optimal performance in terms of utility and mobile offloading benefits.

The Implementation of mCloudAuc on Android Operating System

In order to test the feasibility of the proposed mCloudAuc mechanism on real applica-

tions, we implement a prototype of the incentive mechanism framework on the Android

platform (Android 5.0 with API level 21). The framework is designed in a server-client ar-

chitecture where the client layer runs in Android applications, and the auctioneer server

runs on a cloudlet in an HMC network (as shown in Figure 6.1). In this section, the de-

sign and interaction of the modules in the framework are explained first for the client and

the server, then a set of experiments are conducted on the implemented prototype using

a mobile OCR application to evaluate the response delay of the proposed mCloudAuc

framework running with real mobile applications. Figure 6.7 illustrates an example of

one auction process and the related interactions between modules on the client and the

server.

The client side of the framework is implemented on the Android platform. The client

framework provides the functions including a Communication module, an Offloading Han-

dler, and a Resource Sharing Handler. The Communication module runs in a thread to deal

with data encoding and decoding, commands exchange and handling with the auction

server. The Offloading Handler offloads mobile tasks and receives results. The Resource

Sharing Handler registers the service offers with bids and executes the offloaded tasks

from other mobile users on the shared resources.

On the auction server side of the mCloudAuc framework, five modules are imple-

mented, including a Communication module, a task offloading request registry TaskReg-

istry, a service offer registry ServiceRegistry, a Resource Allocator, and a Balance Database.

Similar as the client, the Communication module handles the data transmission and com-

mands sent from the connected mobile devices, and it runs in a separate thread. The

ServiceRegistry and TaskRegistry maintain the currently available service offers and task

6.4 Performance Evaluation 181

Mobile Device A

A
p

p
lic

at
io

n
 C

o
m

m
u

n
icatio

n

Offloading
Handler

Resource
Sharing
Handler

Mobile Device B

A
p

p
licatio

n
 C

o
m

m
u

n
ic

at
io

n

Offloading
Handler

Resource
Sharing
Handler

Auctioneer

Communication

Balance
Database

Resource
Allocator

Task
Registry

Service
Registry

②

①
①

③

④

④

⑤

⑥ ⑥ ⑥

⑦

④

⑦
⑦ ⑦

⑧

⑧ ⑧

⑧

⑨

Figure 6.7: An example of one auciton process and interactions of modules in the frame-
work

offloading requests respectively. The Resource Allocator implements the proposed auction

logic to assign task requests to the service offers and proceeds the payments. The Bal-

ance Database is implemented with the NoSQL database MongoDB to provide a fast and

lightweight data storage solution for managing the credit balance for users registered

with the auctioneer. The example in Figure 6.7 shows the interactions of modules on mo-

bile devices and the auctioneer, where the auctioneer allocates a task offloading request

from the buyer Device B to a seller Device A. 1©: Device A sends a service offer registration

{SERVICE REGISTRATION,offer} through its Resource Sharing Handler to the Auctioneer

with provided processing capacity, available time and the bidding price. 2©: the ser-

vice offer is added to Service Registry. 3©: Auctioneer sends back the confirmation with

the assigned UUID {REGISTRATION SUCCESS, service UUID} to Device A. 4©: Device

B submits a task offloading request {SUBMIT TASK REQUEST, task}with the task and

deadline through its Offloading Handler. 5©: the Auctioneer adds the offloading request to

its Task Registry. 6©: When each round of the auction starts, the Resource Allocator takes

in the list of available services and task requests to allocate the tasks using the proposed

auction algorithm. 7©: After Auctioneer makes the decision to allocate task request from

Device B to service offer provided by Device A, it sends the task {OFFLOAD TASK, task}

to Device A. 8©: The application on Device A executes the offloaded task as an AsyncTask

at background and sends the execution results {SUBMIT RESULT, result} to Device B. If

Device A is sharing its cloud subscription, the task will be sent to its dedicated instance

on the cloud to execute. 9©: The Communication module periodically stores the payment

182 A Reverse Auction Based Incentive Mechanism

(a) User interface (b) OCR results (c) Application set-
tings

(d) Auction settings

Figure 6.8: The user interface of the implemented mobile translator application

and balance information to the Balance Database. We implement the testing application

with the framework based on an open-source Android OCR (Optical Character Recog-

nition) application3. Figure 6.8 shows the user interface and application settings of the

application. The user is able to change the settings that are related to the OCR, trans-

lation, and auction offloading in application settings. The experiment is conducted with

three Android devices (one Nexus 5, one HTC EVO 3D, and one Samsung I9000) running

the mobile translator application, a laptop running the auctioneer server, and an Amazon

EC2 m4.xlarge instance running Genymotion on-demand Android 5.1 image as the cloud

subscription. The translation application is set up to run at the background with a server

socket open to listen for task offloading execution in the instance. The response delay

of the auction processing time and the offloaded OCR + translation task execution time

are measured using the implemented application to valid the feasibility of the proposed

incentive mechanism in the real execution environment. In order to keep the results con-

stant, we run the application on HTC EVO 3D with the same set of 10 photos and obtain

averaged results of 50 runs. The results of response time and auction process time are

shown in Figure 6.9. Note that since different photos have different OCR processing time

based on the photo quality and text content, the results in Figure 6.9 are not comparable

photo-wise. In Figure 6.9, the blue bar one the left of each photo item represents the local

execution time of the image OCR and translation, the green bar on the right represents

3Available at: https://github.com/rmtheis/android-ocr

6.5 Summary 183

1 2 3 4 5 6 7 8

0

2

4

6

8

10

12

14

16

18

Ti
m

e
 (

s)

Auction
Offload
Local

Figure 6.9: Comparison of task response time between local execution and using the
mobile cloud offloading service

the execution time of the image OCR and translation when using the offloading service,

and the red bar represents the processing time of communication plus the auction pro-

cessing from the auction server. As can be observed from the figure, the auction process

only takes around 0.3 second, which accounts for less than 10% of the whole task re-

sponse time of the offloaded tasks. Moreover, the task response time for the image OCR

is reduced by over 50% on average when using the offloading service, and the additional

processing time of the auction process is negligible compared to the task response time.

The experiments using the implemented mCloudAuc system demonstrate that the pro-

posed auction process added to the offloading service is short for the whole application

OCR processing (less than 300 ms), and can provide significant performance enhance-

ment to the application task response time. Therefore, the prototype implementation of

mCloudAuc shows the feasibility in practice.

6.5 Summary

Since the mobile cloud offloading services in HMC work in the form of opportunistic mo-

bile network, the mobile device users may lack incentive to share their own resources due

to the battery lifetime concern. In order to encourage users to commit in the offloading

services, we propose an incentive mechanism in this chapter. The problem is formulated

as an offloading market auction problem using ILP, where a mobile user who uses the

mobile cloud offloading service can be a seller or a buyer, or both at the same time. A

184 A Reverse Auction Based Incentive Mechanism

seller refers to a mobile user who wishes to share the redundant resources for others to

offload, and a buyer refers to a mobile user who requests remote resources for offloading

his or her tasks. The sellers compete by bidding different prices for the task requests on

the market, and receive payments from the buyers.

We proposed a reverse auction-based mechanism that includes an online resource

allocation algorithm and a payment determination algorithm. The resource allocation

algorithm schedules the offloading task requests with the available bids based on the

offloading benefits and constraints in the HMC environment. We demonstrate the com-

putation efficiency, individual rationality and truthfulness of the proposed algorithm by

both theoretical proof and simulations. The simulation results show that the proposed

algorithm has a near-optimal performance compared to the results obtained from the ILP

models. We also implement a prototype system of the proposed incentive mechanism on

top of our mCloud framework on the Android platform with a mobile OCR translation

application to show its feasibility in practice.

Chapter 7

Conclusions and Future Directions

This chapter summarises the research works on enabling efficient and seamless task offloading ser-

vices in the heterogeneous mobile cloud environment in this thesis. In addition, this chapter identifies

some future directions to pursue in this area.

7.1 Conclusions and Discussion

MOBILE cloud computing has gained popularity in both industries and academia

in recent years. As the three-tier cloud computing service model can provide

layered, elastic, pay-as-you-go computing and storage services, it enables the resource-

constrained mobile devices to utilize the cloud computing services to enhance its battery

lifetime and mobile application performances. Task offloading is a major approach to

bring the power of cloud computing to the mobile device’s proximity. It provides so-

lutions to identify the computation intensive tasks in a mobile application and migrate

them to cloud resources for remote execution so that the battery of mobile devices can be

conserved and the application performance is enhanced.

However, this conventional mobile-to-cloud offloading service model has a signifi-

cant performance bottleneck caused by the wireless network condition, which affects the

time needed for the task migration. As the recent development of hardware on smart

mobile devices with advanced processor and sensors, the mobile device itself can also

be a potential resource provider for the mobile task offloading service. Therefore, in this

thesis, we proposed a new mobile cloud computing offloading service environment, the

heterogeneous mobile cloud (HMC). In the HMC environment, public and private cloud

This chapter is partially derived from: Bowen Zhou and Rajkumar Buyya, “Augmentation Techniques
for Mobile Cloud Computing: A Taxonomy, Survey, and Future Directions,” ACM Computing Surveys, Vol-
ume 51, No. 1, Article No. 13, Pages: 1-38, ISSN 0360-0300, ACM Press, New York, USA, January 2018.

185

186 Conclusions and Future Directions

instances, cloudlets, and an ad-hoc network of smart mobile devices in each other’s prox-

imity form a resource sharing pool, in which each device can be a resource provider and

a consumer to offload tasks at the same time. The new service environment creates a

few new challenges, e.g. lightweight task offloading and scheduling algorithms, adap-

tive fault tolerant strategies, etc. that the traditional distributed system solutions have

not considered. Chapter 1 particularly discussed the concepts, challenges, and the main

contributions of this thesis to solve these new challenges.

In this thesis, the challenges of providing seamless HMC offloading services are clas-

sified and studied with two main aspects: 1) a cross-platform task offloading enabling

technique for the defined heterogeneous mobile cloud (HMC) environment, and the

lightweight task scheduling algorithms that can generate competitive schedules for of-

floading tasks among the hybrid cloud resources; 2) the supporting techniques to ensure

the HMC system can provide reliable services and guarantee participants to gain benefits

from participating.

Firstly, Chapter 2 conducted a literature review based on the above-mentioned chal-

lenges. A taxonomy and related survey are presented to investigate the state-of-the-art

techniques adopted in the mobile cloud augmentation in terms of computation and mo-

bile storage. In the first part, for the computation augmentation, related techniques that

have been adopted in the literature are discussed, including the details of the technol-

ogy, representative existing projects, and its advantages and disadvantages. In addition,

the supporting techniques including context monitoring, decision making, and fault tol-

erance are also presented. In the second part of the literature review, frameworks and

approaches for mobile cloud storage augmentation are discussed and compared.

In Chapter 3, a mobile task offloading service framework was proposed to enable

the offloading service for the HMC environment. Modules and interactions between

each module are explained to show the workflow of the system. A detailed discus-

sion of the offloading technology and examples of the usage are presented. Moreover,

a context-aware offloading decision making approach based on multi-criteria decision

making method was proposed to decide whether to offload a mobile task based on the

context changes of the execution environment in order to save battery and accelerate the

task execution.

7.1 Conclusions and Discussion 187

Chapter 4 took a further step to investigate the optimization of overall minimized

application response time for all the mobile users within the HMC environment, sub-

ject to the context constraints of the HMC such as battery limit, device mobility, and of-

floading enhancement. To achieve this, a mobile cloud offloading and scheduling prob-

lem (MCOSP) is formulated using the mixed linear programming, and offline optimal

results are obtained from optimization solving algorithms. Due to the NP-hardness of

the proposed problem, an online, lightweight scheduling algorithm based on ski-rental

framework was proposed to solve MCOSP at runtime to provide timely offloading and

scheduling decisions for the HMC offloading service. Experiments showed that the pro-

posed online algorithm can achieve a 2-competitive performance of the optimal solution.

Chapter 5 and 6 focused on the challenge of maintaining system reliability and in-

creasing user participation to support a seamless and reliable task offloading service in

the HMC environment.

In particular, Chapter 5 introduced a group-based fault tolerant mechanism for the

proposed HMC system. Due to the heterogeneity of the devices and machines participat-

ing, a onefold fault tolerant strategy may downgrade the performance. Therefore, this

chapter first proposed a machine grouping algorithm based on the decision tree method

to dynamically classify devices and machines into different ability group based on cri-

teria such as capability, reliability, and availability. Then different fault tolerant policies

such as replication and checkpointing are applied to the offloaded tasks based on the

execution requirement and machine group the tasks are being offloaded. The proposed

mechanism is designed as a standalone module that can be added to work with the ex-

isting mobile cloud offloading frameworks. Hence, it can take the offloading schedules

devised from the existing framework as inputs and generates the fault tolerant policies.

The experiments conducted showed that the proposed mechanism outperformed the tra-

dition onefold fault tolerant strategies that adopted on the existing distributed computing

systems.

Chapter 6 focused on the incentive issue of the mobile cloud offloading services in the

HMC environment. Since mobile users may lack motivations to share their device to run

foreign tasks due to the battery concern, a reverse-auction based incentive mechanism

was proposed to increase the participation of mobile users and ensure all the partici-

188 Conclusions and Future Directions

Figure 7.1: Future research directions

pants obtain benefits by offering their redundant computing resources. The proposed

algorithms are proved to guarantee computation efficient, truthful, and individual ratio-

nality for each participant through mathematical analysis and experiments. A prototype

is also implemented on mCloud framework to show its feasibility in practice.

7.2 Future Directions

Nowadays, innovations on mobile devices have gone beyond mobile phones to all types

of devices such as wearable devices, smart home appliances, and smart sensors. The

connectivity and processing power of these devices make it possible to build a machine-

to-machine network where the research works proposed in this thesis can be further ex-

tended to. This section gives some insights into a few unexplored research fields. Fig-

ure 7.1 summarise the future research directions we propose.

7.2 Future Directions 189

7.2.1 Context Aware Management of Resources

Within the heterogeneous mobile cloud environment, the context information such as

user mobility, social information among users, network conditions, and device informa-

tion can provide additional assistance for decision modules to devise more comprehen-

sive mobile augmentation solutions based on different objectives. The multi-tier HMC

framework makes it possible to enable service providers to process the context changes so

that the quality of their services can be improved, and bring the opportunities for mobile

cloud social-aware applications. However, the rapidly changing execution environment

hinders the efficiency of continuous context monitoring and analysis that produce con-

siderable overhead on mobile devices. Therefore, designing resource and energy efficient

task allocation and scheduling mechanisms for multi-tier mobile augmentation systems

is necessary.

7.2.2 Quality of Service Management

The Quality of Service (QoS) in HMC offloading services refers to the criteria such as

service response time (delay), constant wireless communication, availability and scala-

bility of services, the fair use of services, and mobility management. For mobile device

based systems, the fundamental problem for improving QoS is mobility management.

Hence, an efficient mobility management scheme to estimate mobile device’s available

time within the system is in crucial need. With the support of mobility management, we

can further improve the service response time by utilizing computing resources such as

other mobile devices and Cloudlets in vicinity based on the mobile task requirements. On

the other hand, it is challenging to design a service model that can manage a large num-

ber of mobile clients and wireless communication system while ensuring the availability

of services. Therefore, efficient and continuous provisioning of resources and services in

mobile augmentation service systems is a research perspective that needs investigation.

7.2.3 Security and Privacy

Due to the data transmission between mobile devices and other computing resources like

cloud and mobile devices in the vicinity, data safety, and privacy are important concerns.

190 Conclusions and Future Directions

Despite an enormous amount of research has been proposed for security issues in the

cloud, it is still one of the major gaps in mobile cloud-based systems. First, the security

and privacy mechanism needs to be lightweight to reduce the overhead on mobile de-

vices. Second, due to a large amount of data transmission over wireless networks, data

protection for integrity and confidentiality in wireless networks need to be considered.

Last but not least, a trustworthy distributed computing model is expected to cope with

the computation taken place on the remote server and mobile devices and prevent unau-

thorized access as well as potential data leakage.

7.2.4 Internet-of-Things and Fog Computing

As the wireless technologies and innovations on mobile devices continue to develop,

things in our life from refrigerators to cars, or from watches to textbooks, have been

equipped with wireless connectivity and a certain level of processing capability. There-

fore, the concept of Internet-of-Things (IoT) has come to reality. IoT applications uti-

lize the hierarchical architecture of sensors, smart devices, and cloud services to provide

intelligence virtually to everything. An extension to our currently proposed mCloud

system framework can be developed to make it compatible with the IoT environment.

Mechanisms such as energy efficient resource management in the IoT system and service

orchestration on the different layer of the hierarchy can be developed based on the ex-

tended framework. Since currently there is no technical standard for IoT implementation,

many available technologies such as ZigBee, WiFi, and Bluetooth can be used. Therefore,

issues like compatibility with different technologies and multiple cloud vendors can also

be further investigated.

7.2.5 Container-based Services

The current mobile cloud computing service models mostly leverage virtual machines

(VMs) based cloud resources. One of the issues is that the service usage and VM utiliza-

tion for the mobile cloud offloading service as the cloud VM instance is usually dedicated

to an offloading service user and mobile applications only offload part of the tasks from

time to time. Recently, container technology has emerged and gained popularity among

7.2 Future Directions 191

industries. There are several benefits of adopting container technology. Instead of hard-

ware level virtualization, containers use operating system level virtualization. Only the

application, and the libraries and file system needed are packed in a container. It en-

ables not only lightweight deployment and easy migration since the size of a container

is usually small, but also can increase the scalability and the cross-platform compatibility

which will be beneficial to the proposed HMC systems. In order to provide an efficient

container powered HMC services, algorithms regarding container service orchestration,

and scheduling and migration algorithms need to be investigated.

7.2.6 Virtual Reality, Augmented Reality and Artificial Intelligence on Mo-
bile Devices

The larger display and more powerful hardware on mobile devices make it widely pop-

ular to build augmented reality (AR) and virtual reality (VR) mobile applications. These

types of mobile applications require constant camera data streaming of the captured

frames on cameras and always-on display. In addition, artificial intelligence (AI) tech-

nologies are used to enable devices to make cognitive recognition like human beings to

discover useful information from the captured data. Recent research has seen the devel-

opment in this field. FlashBack [19] is a system proposed for VR head-mounted devices

to pre-compute and cache all possible encountering images to reduce the computational

burden on the device GPU. Furion [126] is a mobile VR framework that enables QoS

focused application developing on mobile devices using cloud offloading. MobileDeep-

Pill [249] is a mobile AR system for smartphones to help identify unknown prescription

pills captured by the phone’s camera by using a proposed deep learning image recog-

nition algorithm. The constant data streaming and high computational requirement of

AI from these types of applications yield challenges for mobile devices regarding energy

efficiency, data streaming management, pre-stored data management for reuse, and net-

work throughput optimization. Designing efficient mobile cloud offloading system for

these applications can provide possible solutions.

192 Conclusions and Future Directions

7.3 Final Remarks

Cloud computing and innovations on mobile devices have made it possible for mobile

users to collaborate using a heterogeneous mobile cloud offloading system. In this the-

sis, approaches including context-aware task offloading technique, task scheduling algo-

rithms for optimal application performance, adaptive fault tolerant generating algorithm,

and auction-based incentive mechanism are investigated and developed to provide an ef-

ficient and seamless mobile cloud offloading service. These proposed solutions provide

opportunities for further innovation and development in the world of Internet-of-Things

and edge computing.

Bibliography

[1] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, “Cloud-based augmenta-

tion for mobile devices: motivation, taxonomies, and open challenges,” IEEE Com-

munications Surveys & Tutorials, vol. 16, no. 1, pp. 337–368, 2014.

[2] S. Abolfazli, Z. Sanaei, M. Shiraz, and A. Gani, “Momcc: Market-oriented architec-

ture for mobile cloud computing based on service oriented architecture,” in Proceed-

ings of 2012 1st IEEE International Conference on Communications in China Workshops

(ICCC), Aug 2012, pp. 8–13.

[3] R. Achary, V. Vityanathan, P. Raj, and S. Nagarajan, Dynamic job scheduling using

ant colony optimization for mobile cloud computing. Cham: Springer International

Publishing, 2015, pp. 71–82.

[4] E. Ahmed, A. Gani, M. K. Khan, R. Buyya, and S. U. Khan, “Seamless applica-

tion execution in mobile cloud computing: Motivation, taxonomy, and open chal-

lenges,” Journal of Network and Computer Applications, vol. 52, pp. 154 – 172, 2015.

[5] E. Ahmed, A. Gani, M. Sookhak, S. H. A. Hamid, and F. Xia, “Application optimiza-

tion in mobile cloud computing: Motivation, taxonomies, and open challenges,”

Journal of Network and Computer Applications, vol. 52, pp. 52 – 68, 2015.

[6] F. A. Ali, P. Simoens, T. Verbelen, P. Demeester, and B. Dhoedt, “Mobile device

power models for energy efficient dynamic offloading at runtime,” Journal of Sys-

tems and Software, vol. 113, pp. 173 – 187, 2016.

[7] M. Ali, J. M. Zain, M. F. Zolkipli, and G. Badshah, “Mobile cloud computing &

mobile battery augmentation techniques: A survey,” in Proceedings of 2014 IEEE

Student Conference on Research and Development, Dec 2014, pp. 1–6.

193

194 BIBLIOGRAPHY

[8] A. D. Alisa Land, “An automatic method of solving discrete programming prob-

lems,” Econometrica, vol. 28, no. 3, pp. 497–520, 1960.

[9] O. Alliance, “Osgi the dynamic module system for java,” accessed, May, vol. 25,

2009.

[10] ——, “Osgi alliance,” Available online http://www.osgi.org/ (accessed 31 November

2010), 2010.

[11] H. M. Ammari, “Using group mobility and multihomed mobile gateways to con-

nect mobile ad hoc networks to the global ip internet,” International Journal of Com-

munication Systems, vol. 19, no. 10, pp. 1137–1165, 2006.

[12] P. Angin and B. K. Bhargava, “An agent-based optimization framework for mobile-

cloud computing,” Journal of Wireless Mobile Networks, Ubiquitous Computing, and

Dependable Applications, vol. 4, no. 2, pp. 1–17, 2013.

[13] A.-F. Antonescu, A. Gomes, P. Robinson, and T. Braun, “Sla-driven predictive or-

chestration for distributed cloud-based mobile services,” in Proceedings of 2013 IEEE

International Conference on Communications Workshops (ICC), June 2013, pp. 738–743.

[14] K. Arnold, J. Gosling, D. Holmes, and D. Holmes, The Java programming language.

Addison-wesley Reading, 1996, vol. 2.

[15] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy con-

sumption in mobile phones: A measurement study and implications for network

applications,” in Proceedings of the 9th ACM SIGCOMM Conference on Internet Mea-

surement Conference, ser. IMC ’09. New York, NY, USA: ACM, 2009, pp. 280–293.

[16] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptography and ap-

plication to virus protection,” in Proceedings of the 27th Annual ACM Symposium on

Theory of Computing, ser. STOC ’95. New York, NY, USA: ACM, 1995, pp. 45–56.

[17] E. Benkhelifa, T. Welsh, L. Tawalbeh, A. Khreishah, Y. Jararweh, and M. Al-Ayyoub,

“Ga-based resource augmentation negotation for energy-optimised mobile ad-hoc

cloud,” in Proceedings of 2016 4th IEEE International Conference on Mobile Cloud Com-

puting, Services, and Engineering (MobileCloud), March 2016, pp. 110–116.

BIBLIOGRAPHY 195

[18] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryp-

tion,” in Proceedings of 2007 IEEE Symposium on Security and Privacy (SP ’07), May

2007, pp. 321–334.

[19] K. Boos, D. Chu, and E. Cuervo, “Flashback: Immersive virtual reality on mobile

devices via rendering memoization,” in Proceedings of the 14th Annual International

Conference on Mobile Systems, Applications, and Services. New York, NY, USA: ACM,

2016, pp. 291–304.

[20] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis. New

York, NY, USA: Cambridge University Press, 1998.

[21] A. Bourd. (2016, March) The opencl specification. Khronos OpenCL Work-

ing Group. [Online]. Available: https://www.khronos.org/registry/cl/specs/

opencl-2.2.pdf

[22] D. Box and T. Pattison, Essential .NET: The Common Language Runtime. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[23] D. C. Brabham, Crowdsourcing. Wiley Online Library.

[24] T. D. Braun, H. J. Siegel et al., “A comparison of eleven static heuristics for mapping

a class of independent tasks onto heterogeneous distributed computing systems,”

Journal of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–837, 2001.

[25] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing

and emerging it platforms: Vision, hype, and reality for delivering computing as

the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.

[26] H. Byun, B.-K. Park, and Y.-S. Jeong, Mobile agent oriented service for offloading on

mobile cloud computing. Singapore: Springer Singapore, 2017, pp. 920–925.

[27] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad-hoc network

research,” Wireless Communications and Mobile Computing, vol. 2, no. 5, pp. 483–502,

2002.

[28] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM Computer Com-

munication Review, vol. 40, no. 2, pp. 12–20, 2010.

https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf

196 BIBLIOGRAPHY

[29] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei, V. Grassi, F. Lo Presti,

and V. Piccialli, “A game-theoretic approach to computation offloading in mobile

cloud computing,” Mathematical Programming, vol. 157, no. 2, pp. 421–449, 2016.

[30] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining global states

of distributed systems,” ACM Transsaction on Computer Systems, vol. 3, no. 1, pp.

63–75, Feb. 1985.

[31] C. Chang, S. N. Srirama, and S. Ling, An Adaptive Mediation Framework for Mobile

P2P Social Content Sharing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,

pp. 374–388.

[32] M. Chase and S. S. Chow, “Improving privacy and security in multi-authority

attribute-based encryption,” in Proceedings of the 16th ACM Conference on Computer

and Communications Security. New York, NY, USA: ACM, 2009, pp. 121–130.

[33] C. Chen, W. Bao, X. Zhu, H. Ji, W. Xiao, and J. Wu, “Agile: A terminal energy

efficient scheduling method in mobile cloud computing,” Transactions on Emerging

Telecommunications Technologies, vol. 26, no. 12, pp. 1323–1336, 2015.

[34] C.-A. Chen, M. Won, R. Stoleru, and G. G. Xie, “Energy-efficient fault-tolerant data

storage and processing in mobile cloud,” IEEE Transactions on Cloud Computing,

vol. 3, no. 1, pp. 28–41, Jan 2015.

[35] S. Chen, Y. Wang, and M. Pedram, “A semi-markovian decision process based con-

trol method for offloading tasks from mobile devices to the cloud,” in Proceedings

of 2013 IEEE Global Communications Conference (GLOBECOM), Dec 2013, pp. 2885–

2890.

[36] X. Chen, I. Beschastnikh, L. Zhuang, F. Yang, Z. Qian, L. Zhou, G. Shen, and J. Shen,

“Sonora: A platform for continuous mobile-cloud computing,” Tech. Rep., March

2012.

[37] X. Chen, “Decentralized computation offloading game for mobile cloud comput-

ing,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 4, pp. 974–983,

April 2015.

BIBLIOGRAPHY 197

[38] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading

for mobile-edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24,

no. 5, pp. 2795–2808, October 2016.

[39] Z. Cheng, P. Li, J. Wang, and S. Guo, “Just-in-time code offloading for wearable

computing,” IEEE Transactions on Emerging Topics in Computing, vol. 3, no. 1, pp.

74–83, March 2015.

[40] D. Chess, C. Harrison, and A. Kershenbaum, Mobile agents: Are they a good idea?

Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 25–45.

[41] S. Choi, K. Chung, and H. Yu, “Fault tolerance and qos scheduling using can in

mobile social cloud computing,” Cluster Computing, vol. 17, no. 3, pp. 911–926, 2014.

[42] S. Choi, M. Baik, J. Gil, S. Jung, and C. Hwang, “Adaptive group scheduling mech-

anism using mobile agents in peer-to-peer grid computing environment,” Applied

Intelligence, vol. 25, no. 2, pp. 199–221, 2006.

[43] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic ex-

ecution between mobile device and cloud,” in Proceedings of the 6th conference on

Computer systems. ACM, 2011, pp. 301–314.

[44] E. Cinlar, Introduction to stochastic processes. Courier Corporation, 2013.

[45] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield, “Live migration of virtual machines,” in Proceedings of the 2nd Con-

ference on Symposium on Networked Systems Design & Implementation - Volume 2, ser.

NSDI’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 273–286.

[46] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum,

and L. Viennot, “Optimized link state routing protocol (olsr),” 2003.

[47] P. Clements, T. Papaioannou, and J. Edwards, “Aglets: Enabling the virtual enter-

prise,” in Proceedings of the Managing Enterprises-Stakeholders, Engineering, Logistics

and Achievement InternationalConference (MESELA97), 1997.

198 BIBLIOGRAPHY

[48] D. W. Coit and J. C. Liu, “System realiability optimization with k-out-of-n sub-

systems,” International Journal of Reliability, Quality and Safety Engineering, vol. 07,

no. 02, pp. 129–142, 2000.

[49] comScore, “The 2017 u.s. cross-platform future in focus,” Tech.

Rep., 2017. [Online]. Available: http://www.comscore.com/Insights/

Presentations-and-Whitepapers/2017/2017-US-Cross-Platform-Future-in-Focus

[50] ——, “Mobiles hierarchy of needs,” Tech. Rep., 2017. [Online]. Avail-

able: http://www.comscore.com/Insights/Presentations-and-Whitepapers/

2017/Mobiles-Hierarchy-of-Needs-MMA-Forum-Singapore-2017

[51] M. Conti and S. Giordano, “Mobile ad hoc networking: Milestones, challenges, and

new research directions,” IEEE Communications Magazine, vol. 52, no. 1, pp. 85–96,

January 2014.

[52] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and

P. Bahl, “Maui: Making smartphones last longer with code offload,” in Proceedings

of the 8th international conference on Mobile systems, applications, and services. ACM,

2010, pp. 49–62.

[53] Y. Cui, Z. Lai, X. Wang, N. Dai, and C. Miao, “Quicksync:improving synchroniza-

tion efficiency for mobile cloud storage services,” in Proceedings of the 21st Annual

International Conference on Mobile Computing and Networking. New York, NY, USA:

ACM, 2015, pp. 592–603.

[54] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clus-

ters,” ACM Communication, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[55] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation offloading for ser-

vice workflow in mobile cloud computing,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 26, no. 12, pp. 3317–3329, Dec 2015.

[56] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud comput-

ing: architecture, applications, and approaches,” Wireless communications and mobile

computing, vol. 13, no. 18, pp. 1587–1611, 2013.

http://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/2017-US-Cross-Platform-Future-in-Focus
http://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/2017-US-Cross-Platform-Future-in-Focus
http://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/Mobiles-Hierarchy-of-Needs-MMA-Forum-Singapore-2017
http://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/Mobiles-Hierarchy-of-Needs-MMA-Forum-Singapore-2017

BIBLIOGRAPHY 199

[57] M. Dobber, R. van der Mei, and G. Koole, “Dynamic load balancing and job repli-

cation in a global-scale grid environment: A comparison,” IEEE Transactions on

Parallel and Distributed Systems, vol. 20, no. 2, pp. 207–218, Feb 2009.

[58] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, and V. H. Tuulos, “Misco:

A mapreduce framework for mobile systems,” in Proceedings of the 3rd International

Conference on Pervasive Technologies Related to Assistive Environments, ser. PETRA ’10.

New York, NY, USA: ACM, 2010, pp. 32:1–32:8.

[59] C. Doukas, T. Pliakas, and I. Maglogiannis, “Mobile healthcare information man-

agement utilizing cloud computing and android os,” in Proceedings of 2010 Annual

International Conference of the IEEE Engineering in Medicine and Biology, Aug 2010,

pp. 1037–1040.

[60] R. O. Duda, P. E. Hart, D. G. Stork et al., Pattern classification. Wiley New York,

1973, vol. 2.

[61] N. Eagle, A. S. Pentland, and D. Lazer, “Inferring friendship network structure by

using mobile phone data,” Proceedings of the National Academy of Sciences, vol. 106,

no. 36, pp. 15 274–15 278, 2009.

[62] N. Eagle and A. (Sandy) Pentland, “Reality mining: sensing complex social sys-

tems,” Personal and Ubiquitous Computing, vol. 10, no. 4, pp. 255–268, May 2006.

[63] D. Ehringer, “The dalvik virtual machine architecture,” Technical report, vol. 4, p. 8,

2010.

[64] H. Eom, P. S. Juste, R. Figueiredo, O. Tickoo, R. Illikkal, and R. Iyer, “Opencl-based

remote offloading framework for trusted mobile cloud computing,” in Proceedings

of 2013 International Conference on Parallel and Distributed Systems (ICPADS), Dec

2013, pp. 240–248.

[65] X. Fan, C. S. Ellis, and A. R. Lebeck, The Synergy Between Power-Aware Memory Sys-

tems and Processor Voltage Scaling. Berlin, Heidelberg: Springer Berlin Heidelberg,

2005, pp. 164–179.

200 BIBLIOGRAPHY

[66] D. Fernández-Baca, “Allocating modules to processors in a distributed system,”

IEEE Transactions on Software Engineering, vol. 15, no. 11, pp. 1427–1436, 1989.

[67] N. Fernando, S. W. Loke, and W. Rahayu, “Dynamic mobile cloud computing: ad

hoc and opportunistic job sharing,” in Proceedings of 2011 4th IEEE International

Conference on Utility and Cloud Computing (UCC), Dec 2011, pp. 281–286.

[68] ——, “Mobile cloud computing: A survey,” Future Generation Computer Systems,

vol. 29, no. 1, pp. 84–106, 2013.

[69] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of cloudlets on interactive

mobile cloud applications,” in Proceedings of the 16th IEEE International Enterprise

Distributed Object Computing Conference. IEEE, 2012, pp. 123–132.

[70] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing performance, energy, and

quality in pervasive computing,” in Proceedings of the 22nd International Conference

onDistributed Computing Systems, 2002, pp. 217–226.

[71] H. Flores and S. N. Srirama, “Mobile cloud middleware,” Journal of Systems and

Software, vol. 92, pp. 82 – 94, 2014.

[72] K. Gai, M. Qiu, and H. Zhao, “Cost-aware multimedia data allocation for heteroge-

neous memory using genetic algorithm in cloud computing,” IEEE Transactions on

Cloud Computing, 2017.

[73] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-aware cloudlet-

based mobile cloud computing model for green computing,” Journal of Network and

Computer Applications, vol. 59, pp. 46 – 54, 2016.

[74] X. Gan, Y. Li, W. Wang, L. Fu, and X. Wang, “Social crowdsourcing to friends: An

incentive mechanism for multi-resource sharing,” IEEE Journal on Selected Areas in

Communications, vol. 35, no. 3, pp. 795–808, March 2017.

[75] A. Ganesh, M. Sandhya, and S. Shankar, “A study on fault tolerance methods in

cloud computing,” in Proceedings of 2014 IEEE International Advance Computing Con-

ference (IACC), Feb 2014, pp. 844–849.

BIBLIOGRAPHY 201

[76] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of

NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[77] P. Garg and V. Sharma, “An efficient and secure data storage in mobile cloud com-

puting through rsa and hash function,” in Proceedings of 2014 International Confer-

ence on Issues and Challenges in Intelligent Computing Techniques (ICICT), Feb 2014,

pp. 334–339.

[78] A. Goldsmith, Wireless communications. Cambridge university press, 2005.

[79] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and Z. M. Mao, “Ac-

celerating mobile applications through flip-flop replication,” in Proceedings of the

13th Annual International Conference on Mobile Systems, Applications, and Services, ser.

MobiSys ’15. New York, NY, USA: ACM, 2015, pp. 137–150.

[80] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen, “COMET:

Code offload by migrating execution transparently,” in Proceedings of the 10th

USENIX conference on Operating Systems Design and Implementation. Hollywood,

CA: USENIX, 2012.

[81] M. Goudarzi, M. Zamani, and A. T. Haghighat, “A fast hybrid multi-site compu-

tation offloading for mobile cloud computing,” Journal of Network and Computer

Applications, vol. 80, pp. 219 – 231, 2017.

[82] M. Goudarzi, M. Zamani, and A. Toroghi Haghighat, “A genetic-based decision

algorithm for multisite computation offloading in mobile cloud computing,” Inter-

national Journal of Communication Systems, 2016.

[83] M. Goyal and P. Saini, “A fault-tolerant energy-efficient computational offloading

approach with minimal energy and response time in mobile cloud computing,”

in Proceedings of 2016 4th International Conference on Parallel, Distributed and Grid

Computing (PDGC), Dec 2016, pp. 44–49.

[84] M. Green and G. Ateniese, Identity-Based Proxy Re-encryption. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2007, pp. 288–306.

202 BIBLIOGRAPHY

[85] W. Gropp, E. Lusk, and A. Skjellum, “Using mpi: portable parallel programming

with the message-passing interface,” 1994.

[86] G. Guerrero-Contreras, J. L. Garrido, S. Balderas-Diaz, and C. Rodriguez-

Dominguez, “A context-aware architecture supporting service availability in mo-

bile cloud computing,” IEEE Transactions on Services Computing, 2017.

[87] Q. B. Hani and J. P. Dichter, “Energy-efficient service-oriented architecture for mo-

bile cloud handover,” Journal of Cloud Computing, vol. 6, no. 1, p. 9, 2017.

[88] D. T. Hoang, D. Niyato, and P. Wang, “Optimal admission control policy for mo-

bile cloud computing hotspot with cloudlet,” in Proceedings of 2012 IEEE Wireless

Communications and Networking Conference (WCNC), April 2012, pp. 3145–3149.

[89] B. Hong and V. Prasanna, “Adaptive allocation of independent tasks to maximize

throughput,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 10,

pp. 1420–1435, Oct 2007.

[90] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Koldehofe, “Mo-

bile fog: A programming model for large-scale applications on the internet of

things,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Mobile Cloud Com-

puting, ser. MCC ’13. New York, NY, USA: ACM, 2013, pp. 15–20.

[91] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “A group mobility model for ad hoc

wireless networks,” in Proceedings of the 2nd ACM International Workshop on Model-

ing, Analysis and Simulation of Wireless and Mobile Systems, ser. MSWiM ’99. New

York, NY, USA: ACM, 1999, pp. 53–60.

[92] C.-W. Huang, M. Chen, and D. Zavin. (2015) Android-x86 - porting android to x86.

[Online]. Available: http://www.android-x86.org/

[93] D. Huang, Z. Zhou, L. Xu, T. Xing, and Y. Zhong, “Secure data processing frame-

work for mobile cloud computing,” in Proceedings of 2011 IEEE Conference on Com-

puter Communications Workshops (INFOCOM WKSHPS), April 2011, pp. 614–618.

[94] D. Huang, X. Zhang, M. Kang, and J. Luo, “Mobicloud: Building secure cloud

framework for mobile computing and communication,” in Proceedings of 2010 5th

http://www.android-x86.org/

BIBLIOGRAPHY 203

IEEE International Symposium on Service Oriented System Engineering (SOSE), June

2010, pp. 27–34.

[95] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for mobile

devices,” in Proceedings of the 1st ACM Workshop on Mobile Cloud Computing &

Services: Social Networks and Beyond, ser. MCS ’10. New York, NY, USA: ACM,

2010, pp. 6:1–6:5.

[96] K. A. Hummel and G. Jelleschitz, “A robust decentralized job scheduling approach

for mobile peers in ad-hoc grids,” in Proceedings of the 7th IEEE International Sympo-

sium on Cluster Computing and the Grid (CCGrid ’07), May 2007, pp. 461–470.

[97] S.-H. Hung, T.-T. Tzeng, G.-D. Wu, and J.-P. Shieh, “A code offloading scheme

for big-data processing in android applications,” Software: Practice and Experience,

vol. 45, no. 8, pp. 1087–1101, Aug. 2015.

[98] C.-L. Hwang, Y.-J. Lai, and T.-Y. Liu, “A new approach for multiple objective deci-

sion making,” Computers Operations Research, vol. 20, no. 8, pp. 889 – 899, 1993.

[99] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent tasks

on nonidentical processors,” Journal of the ACM (JACM), vol. 24, no. 2, pp. 280–289,

1977.

[100] IBM. (2016) Ibm netezza data warehouse appliances. [Online]. Available:

https://www-01.ibm.com/software/data/netezza/

[101] W. Itani, A. Kayssi, and A. Chehab, “Energy-efficient incremental integrity for se-

curing storage in mobile cloud computing,” in Proceedings of 2010 International Con-

ference on Energy Aware Computing, Dec 2010, pp. 1–2.

[102] J. James E. Kelley, “Critical-path planning and scheduling: Mathematical basis,”

Operations Research, vol. 9, no. 3, pp. 296–320, 1961.

[103] J. Jeong, H. Jeong, E. Lee, T. Oh, and D. Du, “Saint: Self-adaptive interactive nav-

igation tool for cloud-based vehicular traffic optimization,” IEEE Transactions on

Vehicular Technology, vol. 65, no. 6, pp. 4053–4067, June 2016.

https://www-01.ibm.com/software/data/netezza/

204 BIBLIOGRAPHY

[104] W. Jia, H. Zhu, Z. Cao, L. Wei, and X. Lin, “Sdsm: A secure data service mechanism

in mobile cloud computing,” in Proceedings of 2011 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), April 2011, pp. 1060–1065.

[105] A. L. Jin, W. Song, P. Wang, D. Niyato, and P. Ju, “Auction mechanisms toward effi-

cient resource sharing for cloudlets in mobile cloud computing,” IEEE Transactions

on Services Computing, vol. 9, no. 6, pp. 895–909, Nov 2016.

[106] J. Jubin and J. D. Tornow, “The darpa packet radio network protocols,” Proceedings

of the IEEE, vol. 75, no. 1, pp. 21–32, Jan 1987.

[107] W. Junior, A. Frana, K. Dias, and J. N. de Souza, “Supporting mobility-aware com-

putational offloading in mobile cloud environment,” Journal of Network and Com-

puter Applications, vol. 94, pp. 93 – 108, 2017.

[108] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency optimal

task assignment for resource-constrained mobile computing,” IEEE Transactions on

Mobile Computing, 2017.

[109] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki, “Competitive ran-

domized algorithms for non-uniform problems,” in Proceedings of the 1st annual

ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied

Mathematics, 1990, pp. 301–309.

[110] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator, “Competitive snoopy

caching,” in Proceedings of the 27th Annual Symposium on Foundations of Computer

Science, Oct 1986, pp. 244–254.

[111] E. Kartal Tabak, B. Barla Cambazoglu, and C. Aykanat, “Improving the perfor-

mance of independent task assignment heuristics minmin,maxmin and sufferage,”

IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 5, pp. 1244–1256,

May 2014.

[112] M. Kaya, A. Koyiit, and P. E. Eren, “An adaptive mobile cloud computing frame-

work using a call graph based model,” Journal of Network and Computer Applications,

vol. 65, pp. 12 – 35, 2016.

BIBLIOGRAPHY 205

[113] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, Cuckoo: A computation offloading frame-

work for smartphones. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.

59–79.

[114] A. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of mobile cloud

computing application models,” IEEE Communications Surveys & Tutorials, vol. 16,

no. 1, pp. 393–413, 2014.

[115] A. N. Khan, M. L. M. Kiah, S. A. Madani, M. Ali, A. u. R. Khan, and S. Shamshir-

band, “Incremental proxy re-encryption scheme for mobile cloud computing envi-

ronment,” The Journal of Supercomputing, vol. 68, no. 2, pp. 624–651, 2014.

[116] A. N. Khan, M. M. Kiah, S. U. Khan, and S. A. Madani, “Towards secure mobile

cloud computing: A survey,” Future Generation Computer Systems, vol. 29, no. 5, pp.

1278–1299, 2013.

[117] A. N. Khan, M. L. Mat Kiah, S. A. Madani, A. u. R. Khan, and M. Ali, “Enhanced

dynamic credential generation scheme for protection of user identity in mobile-

cloud computing,” The Journal of Supercomputing, vol. 66, no. 3, pp. 1687–1706, 2013.

[118] T. Kirkham, S. Ravet, S. Winfield, and S. Kellomki, “A personal data store for an

internet of subjects,” in Proceedings of 2011 International Conference on Information

Society (i-Society), June 2011, pp. 92–97.

[119] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda file sys-

tem,” ACM Transactions on Computer Systems, vol. 10, no. 1, pp. 3–25, Feb. 1992.

[120] A. Klein, C. Mannweiler, J. Schneider, and H. D. Schotten, “Access schemes for mo-

bile cloud computing,” in Proceedings of 2010 11th International Conference on Mobile

Data Management, May 2010, pp. 387–392.

[121] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed sys-

tems,” IEEE Transactions on Software Engineering, vol. SE-13, no. 1, pp. 23–31, Jan

1987.

[122] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic re-

source allocation and parallel execution in the cloud for mobile code offloading,”

206 BIBLIOGRAPHY

in Proceedings of 2012 IEEE International Conference on Computer Communications (IN-

FOCOM). IEEE, 2012, pp. 945–953.

[123] D. Kotz, T. Henderson, I. Abyzov, and J. Yeo, “CRAWDAD

dataset dartmouth/campus (v.2009-09-09),” Downloaded from

http://crawdad.org/dartmouth/campus/20090909/syslog, Sep. 2009, trace-

set: syslog.

[124] M. D. Kristensen, “Scavenger: Transparent development of efficient cyber forag-

ing applications,” in Proceedings of 2010 IEEE International Conference on Pervasive

Computing and Communications (PerCom), March 2010, pp. 217–226.

[125] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can offloading com-

putation save energy?” Computer, vol. 43, no. 4, pp. 51–56, April 2010.

[126] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai, “Furion: Engineering high-quality

immersive virtual reality on today’s mobile devices,” in Proceedings of the 23rd In-

ternational Conference on Mobile Computing and Networking. Snowbird, Utah, USA:

ACM, October 2017.

[127] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM

Transactions on Programming Languages and Systems, vol. 4, no. 3, pp. 382–401, Jul.

1982.

[128] J. F. Lawless, Statistical models and methods for lifetime data. John Wiley & Sons, 2011,

vol. 362.

[129] J. Lee, S. Choi, T. Suh, H. Yu, and J. Gil, “Group-based scheduling algorithm for

fault tolerance in mobile grid,” in Security-Enriched Urban Computing and Smart

Grid. Springer, 2010, pp. 394–403.

[130] J. Lee and D. Hong, “Pervasive forensic analysis based on mobile cloud comput-

ing,” in Proceedings of 2011 Third International Conference on Multimedia Information

Networking and Security, Nov 2011, pp. 572–576.

BIBLIOGRAPHY 207

[131] G. Lewis and P. Lago, “A catalog of architectural tactics for cyber-foraging,” in

Proceedings of 2015 11th International ACM SIGSOFT Conference on Quality of Software

Architectures (QoSA), May 2015, pp. 53–62.

[132] B. Li, Y. Pei, H. Wu, and B. Shen, “Heuristics to allocate high-performance cloudlets

for computation offloading in mobile ad hoc clouds,” The Journal of Supercomputing,

vol. 71, no. 8, pp. 3009–3036, Aug 2015.

[133] ——, “Heuristics to allocate high-performance cloudlets for computation offload-

ing in mobile ad hoc clouds,” The Journal of Supercomputing, vol. 71, no. 8, pp. 3009–

3036, 2015.

[134] C. Li and L. Li, “Phased scheduling for resource-constrained mobile devices in mo-

bile cloud computing,” Wireless Personal Communications, vol. 77, no. 4, pp. 2817–

2837, 2014.

[135] F. Li, Y. Rahulamathavan, M. Rajarajan, and R. C.-W. Phan, “Low complexity multi-

authority attribute based encryption scheme for mobile cloud computing,” in Pro-

ceedings of 2013 IEEE 7th International Symposium on Service Oriented System Engi-

neering (SOSE), March 2013, pp. 573–577.

[136] J. Li, K. Bu, X. Liu, and B. Xiao, “Enda: Embracing network inconsistency for dy-

namic application offloading in mobile cloud computing,” in Proceedings of the 2nd

ACM SIGCOMM Workshop on Mobile Cloud Computing. New York, NY, USA: ACM,

2013, pp. 39–44.

[137] W. Li, Y. Zhao, S. Lu, and D. Chen, “Mechanisms and challenges on mobility-

augmented service provisioning for mobile cloud computing,” IEEE Communica-

tions Magazine, vol. 53, no. 3, pp. 89–97, March 2015.

[138] X. Li, H. Zhang, and Y. Zhang, “Deploying mobile computation in cloud service,”

in Proceedings of the 1st International Conference on Cloud Computing. Berlin, Heidel-

berg: Springer-Verlag, 2009, pp. 301–311.

[139] Y. Li, M. Chen, W. Dai, and M. Qiu, “Energy optimization with dynamic task

scheduling mobile cloud computing,” IEEE Systems Journal, vol. PP, no. 99, pp. 1–

10, 2015.

208 BIBLIOGRAPHY

[140] H. Liang, D. Huang, and D. Peng, On Economic Mobile Cloud Computing Model.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 329–341.

[141] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with dynamic voltage

and frequency scaling for energy minimization in the mobile cloud computing

environment,” IEEE Transactions on Services Computing, vol. 8, no. 2, pp. 175–186,

March 2015.

[142] A. Litke, D. Skoutas, K. Tserpes, and T. Varvarigou, “Efficient task replication and

management for adaptive fault tolerance in mobile grid environments,” Future

Generation Computer Systems, vol. 23, no. 2, pp. 163 – 178, 2007.

[143] K. Liu, J. Peng, H. Li, X. Zhang, and W. Liu, “Multi-device task offloading with

time-constraints for energy efficiency in mobile cloud computing,” Future Genera-

tion Computer Systems, pp. 1 – 14, 2016.

[144] Q. Liu, X. Jian, J. Hu, H. Zhao, and S. Zhang, “An optimized solution for mobile

environment using mobile cloud computing,” in Proceedings of 2009 5th International

Conference on Wireless Communications, Networking and Mobile Computing, Sept 2009,

pp. 1–5.

[145] X. Liu, C. Yuan, Z. Yang, and Z. Zhang, “Mobile-agent-based energy-efficient

scheduling with dynamic channel acquisition in mobile cloud computing,” Jour-

nal of Systems Engineering and Electronics, vol. 27, no. 3, pp. 712–720, June 2016.

[146] Y. Liu, M. J. Lee, and Y. Zheng, “Adaptive multi-resource allocation for cloudlet-

based mobile cloud computing system,” IEEE Transactions on Mobile Computing,

vol. 15, no. 10, pp. 2398–2410, Oct 2016.

[147] Y. Liu, C. Xu, Y. Zhan, Z. Liu, J. Guan, and H. Zhang, “Incentive mechanism for

computation offloading using edge computing: A stackelberg game approach,”

Computer Networks, 2017.

[148] R. K. Lomotey and R. Deters, “Reliable consumption of web services in a mobile-

cloud ecosystem using rest,” in Proceedings of 2013 IEEE 7th International Symposium

on Service Oriented System Engineering (SOSE), March 2013, pp. 13–24.

BIBLIOGRAPHY 209

[149] Y. Lu, B. Zhou, L.-C. Tung, M. Gerla, A. Ramesh, and L. Nagaraja, “Energy-efficient

content retrieval in mobile cloud,” in Proceedings of the 2nd ACM SIGCOMM Work-

shop on Mobile Cloud Computing. New York, NY, USA: ACM, 2013, pp. 21–26.

[150] C. M. MacKenzie and K. Laskey, “Reference model for service oriented architecture

1.0,” 2006.

[151] J. MacQueen et al., “Some methods for classification and analysis of multivariate

observations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability, vol. 1, no. 14. Oakland, CA, USA., 1967, pp. 281–297.

[152] A. Malhotra, S. K. Dhurandher, and B. Kumar, “Resource allocation in multi-hop

mobile ad hoc cloud,” in Proceedings of 2014 Recent Advances in Engineering and Com-

putational Sciences (RAECS), March 2014, pp. 1–6.

[153] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for mobile-

edge computing with energy harvesting devices,” IEEE Journal on Selected Areas in

Communications, vol. 34, no. 12, pp. 3590–3605, Dec 2016.

[154] E. E. Marinelli, “Hyrax: cloud computing on mobile devices using mapreduce,”

Ph.D. dissertation, Carnegie Mellon University, 2009.

[155] C. X. Mavromoustakis et al., “A social-oriented mobile cloud scheme for optimal

energy conservation,” Resource Management of Mobile Cloud Computing Networks and

Environments, pp. 97–121, 2015.

[156] A. Mayberry, Y. Tun, P. Hu, D. Smith-Freedman, D. Ganesan, B. M. Marlin, and

C. Salthouse, “Cider: Enabling robustness-power tradeoffs on a computational eye-

glass,” in Proceedings of the 21st Annual International Conference on Mobile Computing

and Networking. New York, NY, USA: ACM, 2015, pp. 400–412.

[157] G. McCluskey, “Using java reflection,” Java Developer Connection, 1998.

[158] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to universal

topology generation,” in Proceedings of the Ninth International Symposium in Model-

ing, Analysis and Simulation of Computer and Telecommunication Systems. Washing-

ton, DC, USA: IEEE Computer Society, 2001, pp. 346–356.

210 BIBLIOGRAPHY

[159] P. Mell and T. Grance, “The nist definition of cloud computing,” 2011.

[160] H. Miyake and N. Kami, “Qoi-based data upload control for mobility-aware cloud

services,” in Proceedings of 2015 3rd IEEE International Conference on Mobile Cloud

Computing, Services, and Engineering, March 2015, pp. 16–23.

[161] J. P. Morrison, Flow-based programming: a new approach to application development.

CreateSpace, 2010.

[162] R. B. Myerson and M. A. Satterthwaite, “Efficient mechanisms for bilateral trad-

ing,” Journal of Economic Theory, vol. 29, no. 2, pp. 265 – 281, 1983.

[163] N. Naksinehaboon, Y. Liu, C. Leangsuksun, R. Nassar, M. Paun, and S. L. Scott,

“Reliability-aware approach: An incremental checkpoint/restart model in hpc en-

vironments,” in Proceedings of 2008 Eighth IEEE International Symposium on Cluster

Computing and the Grid, May 2008, pp. 783–788.

[164] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, and A. Y. Zomaya, “Cost-effective

processing for delay-sensitive applications in cloud of things systems,” in Proceed-

ings of 2016 IEEE 15th International Symposium on Network Computing and Applica-

tions (NCA), Oct 2016, pp. 162–169.

[165] Nectar, URL: https://nectar.org.au/research-cloud/, 2015.

[166] B. J. Nelson, “Remote procedure call,” Ph.D. dissertation, 1981.

[167] J. M. Ng and Y. Zhang, “A mobility model with group partitioning for wireless

ad hoc networks,” in Proceedings of the 3 rd International Conference on Information

Technology and Applications (ICITA’05), vol. 2, July 2005, pp. 289–294.

[168] G. Optimization et al., “Gurobi optimizer reference manual,” URL: http://www.

gurobi. com, 2015.

[169] Oracle, Java Remote Method Invocation, may 2016. [Online]. Available: http:

//docs.oracle.com/javase/6/docs/technotes/guides/rmi/index.html

[170] R. K. Panta, R. Jana, F. Cheng, Y.-F. R. Chen, and V. A. Vaishampayan, “Phoenix:

Storage using an autonomous mobile infrastructure,” IEEE Transactions on Parallel

and Distributed Systems, vol. 24, no. 9, pp. 1863–1873, Sept 2013.

http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/index.html

BIBLIOGRAPHY 211

[171] J. Park, H. Yu, K. Chung, and E. Lee, “Markov chain based monitoring service

for fault tolerance in mobile cloud computing,” in Proceedings of 2011 IEEE Work-

shops of International Conference on Advanced Information Networking and Applications

(WAINA), March 2011, pp. 520–525.

[172] J. Park, H. Yu, H. Kim, and E. Lee, “Dynamic group-based fault tolerance technique

for reliable resource management in mobile cloud computing,” Concurrency and

Computation: Practice and Experience, vol. 28, no. 10, pp. 2756–2769, 2016.

[173] S. Parsons, J. A. Rodriguez-Aguilar, and M. Klein, “Auctions and bidding: A guide

for computer scientists,” ACM Computing Surveys, vol. 43, no. 2, pp. 10:1–10:59, Feb.

2011.

[174] A. Pashtan, Mobile web services. Cambridge University Press, 2005.

[175] J. Pearl, Heuristics: Intelligent search strategies for computer problem solving. Addison-

Wesley Pub. Co., Inc.,Reading, MA, Jan 1984.

[176] K. Pearson, “The problem of the random walk,” Nature, vol. 72, no. 1865, p. 294,

1905.

[177] G. Pei, M. Gerla, and T.-W. Chen, “Fisheye state routing: A routing scheme for

ad hoc wireless networks,” in Proceedings of 2000 IEEE International Conference on

Communications, vol. 1. IEEE, 2000, pp. 70–74.

[178] T. Penner, A. Johnson, B. V. Slyke, M. Guirguis, and Q. Gu, “Transient clouds: As-

signment and collaborative execution of tasks on mobile devices,” in Proceedings of

2014 IEEE Global Communications Conference, Dec 2014, pp. 2801–2806.

[179] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance vector

(aodv) routing,” Tech. Rep., 2003.

[180] Q. Qi, J. Liao, J. Wang, Q. Li, and Y. Cao, “Dynamic resource orchestration for

multi-task application in heterogeneous mobile cloud computing,” in Proceedings

of 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WK-

SHPS), April 2016, pp. 221–226.

212 BIBLIOGRAPHY

[181] Y. Qiao, Y. Cheng, J. Yang, J. Liu, and N. Kato, “A mobility analytical framework

for big mobile data in densely populated area,” IEEE Transactions on Vehicular Tech-

nology, vol. 66, no. 2, pp. 1443–1455, Feb 2017.

[182] J. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81–106,

1986.

[183] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V. Vasilakos, “Map-

cloud: mobile applications on an elastic and scalable 2-tier cloud architecture,” in

Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and Cloud

Computing. Washington, DC, USA: IEEE Computer Society, 2012, pp. 83–90.

[184] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “MuSIC: Mobility-

aware optimal service allocation in mobile cloud computing,” in Proceedings of the

6th IEEE International Conference on Cloud Computing. IEEE, 2013, pp. 75–82.

[185] S. Rallapalli, A. Ganesan, K. Chintalapudi, V. N. Padmanabhan, and L. Qiu, “En-

abling physical analytics in retail stores using smart glasses,” in Proceedings of the

20th Annual International Conference on Mobile Computing and Networking. New

York, NY, USA: ACM, 2014, pp. 115–126.

[186] S. Rashidi and S. Sharifian, “A hybrid heuristic queue based algorithm for task

assignment in mobile cloud,” Future Generation Computer Systems, vol. 68, pp. 331 –

345, 2017.

[187] A. Ravi and S. K. Peddoju, “Handoff strategy for improving energy efficiency and

cloud service availability for mobile devices,” Wireless Personal Communications, pp.

1–32, 2014.

[188] H. Reading, “The mobile cloud market and outlook to 2017,” Heavy Reading, Tech.

Rep., 2013.

[189] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-osgi: Distributed applications

through software modularization,” in Proceedings of the ACM/IFIP/USENIX 2007

International Conference on Middleware. New York, NY, USA: Springer-Verlag New

York, Inc., 2007, pp. 1–20.

BIBLIOGRAPHY 213

[190] J. S. Rellermeyer, O. Riva, and G. Alonso, “Alfredo: An architecture for flexible

interaction with electronic devices,” in Proceedings of the 9th ACM/IFIP/USENIX In-

ternational Conference on Middleware. New York, NY, USA: Springer-Verlag New

York, Inc., 2008, pp. 22–41.

[191] H. Rinne, The Weibull distribution: a handbook. CRC Press, 2008.

[192] S. Robinson, “Cellphone energy gap: desperately seeking solutions,” Strategy Ana-

lytics, 2009.

[193] C. Rossi, M. H. Heyi, and F. Scullino, “A service oriented cloud-based architecture

for mobile geolocated emergency services,” Concurrency and Computation: Practice

and Experience, vol. 29, no. 11, 2017.

[194] T. L. Saaty, “The analytic hierarchy process: planning, priority setting, resources

allocation,” New York: McGraw, 1980.

[195] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile cloud

computing: taxonomy and open challenges,” IEEE Communications Surveys Tutori-

als, vol. 16, no. 1, pp. 369–392, First 2014.

[196] Z. Sanaei, S. Abolfazli, A. Gani, and M. Shiraz, “Sami: Service-based arbitrated

multi-tier infrastructure for mobile cloud computing,” in Proceedings of 2012 1st

IEEE International Conference on Communications in China Workshops (ICCC), Aug

2012, pp. 14–19.

[197] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and com-

putational resources for multicell mobile-edge computing,” IEEE Transactions on

Signal and Information Processing over Networks, vol. 1, no. 2, pp. 89–103, June 2015.

[198] M. Satyanarayanan, “Pervasive computing: vision and challenges,” IEEE Personal

Communications, vol. 8, no. 4, pp. 10–17, Aug 2001.

[199] ——, “Mobile computing: the next decade,” ACM SIGMOBILE Mobile Computing

and Communications Review, vol. 15, no. 2, pp. 2–10, Aug. 2011.

214 BIBLIOGRAPHY

[200] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based

cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23,

Oct 2009.

[201] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura, “Cosmos:

Computation offloading as a service for mobile devices,” in Proceedings of the 15th

ACM International Symposium on Mobile Ad Hoc Networking and Computing. New

York, NY, USA: ACM, 2014, pp. 287–296.

[202] C.-S. Shih, Y.-H. Wang, and N. Chang, “Multi-tier elastic computation framework

for mobile cloud computing,” in Proceedings of 2015 3rd IEEE International Conference

on Mobile Cloud Computing, Services, and Engineering (MobileCloud), March 2015, pp.

223–232.

[203] M. Shiraz, A. Gani, R. H. Khokhar, and R. Buyya, “A review on distributed applica-

tion processing frameworks in smart mobile devices for mobile cloud computing,”

IEEE Communications Surveys Tutorials, vol. 15, no. 3, pp. 1294–1313, Third 2013.

[204] M. Shiraz, A. Gani, A. Shamim, S. Khan, and R. W. Ahmad, “Energy efficient com-

putational offloading framework for mobile cloud computing,” Journal of Grid Com-

puting, vol. 13, no. 1, pp. 1–18, 2015.

[205] J. Shuja, A. Gani, M. H. Rehman, E. Ahmed, S. A. Madani, M. K. Khan, and K. Ko,

“Towards native code offloading based mcc frameworks for multimedia applica-

tions: A survey,” Journal of Network and Computer Applications, vol. 75, pp. 335 – 354,

2016.

[206] F. A. Silva, P. Maciel, R. Matos et al., “A scheduler for mobile cloud based on

weighted metrics and dynamic context evaluation,” in Proceedings of the 30th An-

nual ACM Symposium on Applied Computing. ACM, 2015, pp. 569–576.

[207] S. Soo, C. Chang, and S. N. Srirama, “Proactive service discovery in fog comput-

ing using mobile ad hoc social network in proximity,” in Proceedings of 2016 IEEE

International Conference on Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)

and IEEE Smart Data (SmartData), Dec 2016, pp. 561–566.

BIBLIOGRAPHY 215

[208] M. Sookhak, F. R. Yu, M. K. Khan, Y. Xiang, and R. Buyya, “Attribute-based data

access control in mobile cloud computing: Taxonomy and open issues,” Future Gen-

eration Computer Systems, vol. 72, pp. 273 – 287, 2017.

[209] T. Soyata, R. Muraleedharan, J. Langdon, C. Funai, S. Ames, M. Kwon, and

W. Heinzelman, “Combat: Mobile-cloud-based compute/communications infras-

tructure for battlefield applications,” in SPIE defense, security, and sensing. Interna-

tional Society for Optics and Photonics, 2012.

[210] S. N. Srirama, “Mobile web and cloud services enabling internet of things,” CSI

Transactions on ICT, vol. 5, no. 1, pp. 109–117, Mar 2017.

[211] S. N. Srirama, M. Jarke, and W. Prinz, “Mobile web service provisioning,” in Pro-

ceedings of Advanced International Conference on Telecommunications and International

Conference on Internet and Web Applications and Services (AICT-ICIW’06), Feb 2006,

pp. 120–120.

[212] R. W. Stevens, Unix Network Programming. Prentice Hall PTR, 1990.

[213] I. Stojmenovic, Handbook of wireless networks and mobile computing. John Wiley &

Sons, 2003, vol. 27.

[214] T. Taleb, A. Ksentini, and P. Frangoudis, “Follow-me cloud: When cloud services

follow mobile users,” IEEE Transactions on Cloud Computing, 2016.

[215] L. Tang, S. He, and Q. Li, “Double-sided bidding mechanism for resource sharing

in mobile cloud,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 1798–

1809, Feb 2017.

[216] M. B. Terefe, H. Lee, N. Heo, G. C. Fox, and S. Oh, “Energy-efficient multisite of-

floading policy using markov decision process for mobile cloud computing,” Per-

vasive and Mobile Computing, vol. 27, pp. 75 – 89, 2016.

[217] F. Tian, B. Liu, X. Sun, X. Zhang, G. Cao, and G. Lin, “Movement-based incentive

for crowdsourcing,” IEEE Transactions on Vehicular Technology, vol. 66, no. 8, pp.

7223 – 7233, 2017.

216 BIBLIOGRAPHY

[218] C. K. Toh, Ad hoc mobile wireless networks: protocols and systems. Pearson Education,

2001.

[219] A. Toninelli, A. Pathak, and V. Issarny, Yarta: A middleware for managing mobile social

ecosystems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 209–220.

[220] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-complexity

task scheduling for heterogeneous computing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 13, no. 3, pp. 260–274, 2002.

[221] M. Treaster, “A survey of fault-tolerance and fault-recovery techniques in parallel

systems,” arXiv.org, vol. abs/cs/0501002, 2005.

[222] W. Trneberg, A. Mehta, E. Wadbro, J. Tordsson, J. Eker, M. Kihl, and E. Elmroth,

“Dynamic application placement in the mobile cloud network,” Future Generation

Computer Systems, vol. 70, pp. 163 – 177, 2017.

[223] M. Velasquez and P. T. Hester, “An analysis of multi-criteria decision making meth-

ods,” International Journal of Operations Research, vol. 10, no. 2, pp. 56–66, 2013.

[224] T. Verbelen, P. Simoens, F. D. Turck, and B. Dhoedt, “Aiolos: Middleware for im-

proving mobile application performance through cyber foraging,” Journal of Sys-

tems and Software, vol. 85, no. 11, pp. 2629 – 2639, 2012.

[225] ——, “Adaptive deployment and configuration for mobile augmented reality in

the cloudlet,” Journal of Network and Computer Applications, vol. 41, pp. 206 – 216,

2014.

[226] B. Wang, B. Li, and H. Li, “Public auditing for shared data with efficient user revo-

cation in the cloud,” in Proceedings of 2013 IEEE International Conference on Computer

Communications (INFOCOM), April 2013, pp. 2904–2912.

[227] S. Wang, T. Lei, L. Zhang, C.-H. Hsu, and F. Yang, “Offloading mobile data traffic

for qos-aware service provision in vehicular cyber-physical systems,” Future Gen-

eration Computer Systems, vol. 61, pp. 118 – 127, 2016.

BIBLIOGRAPHY 217

[228] W. Wang, P. Xu, and L. T. Yang, “One-pass anonymous key distribution in batch

for secure real-time mobile services,” in Proceedings of 2015 IEEE International Con-

ference on Mobile Services, June 2015, pp. 158–165.

[229] X. Wang, W. Xu, and Z. Jin, “A hidden markov model based dynamic scheduling

approach for mobile cloud telemonitoring,” in Proceedings of 2017 IEEE EMBS In-

ternational Conference on Biomedical Health Informatics (BHI), Feb 2017, pp. 273–276.

[230] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge computing: par-

tial computation offloading using dynamic voltage scaling,” IEEE Transactions on

Communications, vol. 64, no. 10, pp. 4268–4282, Oct 2016.

[231] Z. Wang, R.-C. Hou, and Z.-M. Zhou, “An android/osgi-based mobile gateway for

body sensor network,” in Proceedings of 2016 15th International Symposium on Parallel

and Distributed Computing (ISPDC), July 2016, pp. 135–140.

[232] X. Wei, J. Fan, T. Wang, and Q. Wang, “Efficient application scheduling in mobile

cloud computing based on max–min ant system,” Soft Computing, vol. 20, no. 7, pp.

2611–2625, 2016.

[233] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application execution:

Taming resource-poor mobile devices with cloud clones,” in Proceedings of the 31st

IEEE International Conference on Computer Communications (INFOCOM), Orlando,

Florida, USA, 2012.

[234] Wikipedia. (2017, 04) Instructions per df.

[235] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine

learning tools and techniques. Morgan Kaufmann, 2016.

[236] H. Wu, Q. Wang, and K. Wolter, “Methods of cloud-path selection for offloading

in mobile cloud computing systems,” in Proceedings of the 4th IEEE International

Conference on Cloud Computing Technology and Science, Dec 2012.

[237] Q. Xia, W. Liang, Z. Xu, and B. Zhou, “Online algorithms for location-aware task

offloading in two-tiered mobile cloud environments,” in Proceedings of the 2014

218 BIBLIOGRAPHY

IEEE/ACM 7th International Conference on Utility and Cloud Computing. Washington,

DC, USA: IEEE Computer Society, 2014, pp. 109–116.

[238] L. Xiang, S. Ye, Y. Feng, B. Li, and B. Li, “Ready, set, go: Coalesced offloading from

mobile devices to the cloud,” in Proceedings of 2014 IEEE Conference on Computer

Communications, April 2014, pp. 2373–2381.

[239] K. Xie, X. Wang, G. Xie, D. Xie, J. Cao, Y. Ji, and J. Wen, “Distributed multi-

dimensional pricing for efficient application offloading in mobile cloud comput-

ing,” IEEE Transactions on Services Computing, 2017.

[240] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms for capacitated

cloudlet placements,” IEEE Transactions on Parallel and Distributed Systems, vol. 27,

no. 10, pp. 2866–2880, Oct 2016.

[241] D. Yang, X. Fang, and G. Xue, “Truthful auction for cooperative communications

with revenue maximization,” in Proceedings of 2012 IEEE International Conference on

Communications (ICC), June 2012, pp. 4888–4892.

[242] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation partitioning for la-

tency sensitive mobile cloud applications,” IEEE Transactions on Computers, vol. 64,

no. 8, pp. 2253–2266, Aug 2015.

[243] L. Yang, J. Cao, G. Liang, and X. Han, “Cost-aware service placement and load

dispatching in mobile cloud systems,” IEEE Transactions on Computers, vol. 65, no. 5,

pp. 1440–1452, May 2016.

[244] S. Yang, X. Bei, Y. Zhang, and Y. Ji, “Application offloading based on r-osgi in mo-

bile cloud computing,” in Proceedings of 2016 4th IEEE International Conference on

Mobile Cloud Computing, Services, and Engineering (MobileCloud), March 2016, pp.

46–52.

[245] I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran, and S. Guizani, “Mobile ad

hoc cloud: A survey,” Wireless Communications and Mobile Computing, vol. 16, no. 16,

pp. 2572–2589, 2016.

BIBLIOGRAPHY 219

[246] K. Yoon, “A reconciliation among discrete compromise solutions,” Journal of the

Operational Research Society, vol. 38, no. 3, pp. 277–286, 1987.

[247] J. W. Young, “A first order approximation to the optimum checkpoint interval,”

ACM Communications, vol. 17, no. 9, pp. 530–531, Sep. 1974.

[248] J. Yuan and S. Yu, “Efficient public integrity checking for cloud data sharing with

multi-user modification,” in Proceedings of 2014 IEEE Conference on Computer Com-

munications, April 2014, pp. 2121–2129.

[249] X. Zeng, K. Cao, and M. Zhang, “Mobiledeeppill: A small-footprint mobile deep

learning system for recognizing unconstrained pill images,” in Proceedings of the

15th Annual International Conference on Mobile Systems, Applications, and Services, ser.

MobiSys ’17. New York, NY, USA: ACM, 2017, pp. 56–67.

[250] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang, and L. Yang, “Accurate

online power estimation and automatic battery behavior based power model gen-

eration for smartphones,” in Proceedings of IEEE/ACM/IFIP International Conference

on Hardware/Software Codesign and System Synthesis, Oct 2010, pp. 105–114.

[251] W. Zhang, S. Tan, F. Xia, X. Chen, Z. Li, Q. Lu, and S. Yang, “A survey on deci-

sion making for task migration in mobile cloud environments,” Personal Ubiquitous

Computing, vol. 20, no. 3, pp. 295–309, Jun. 2016.

[252] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an elastic applica-

tion model for augmenting the computing capabilities of mobile devices with cloud

computing,” Mobile Networks and Applications, vol. 16, no. 3, pp. 270–284, 2011.

[253] W. Zheng, P. Xu, X. Huang, and N. Wu, “Design a cloud storage platform for per-

vasive computing environments,” Cluster Computing, vol. 13, no. 2, pp. 141–151,

2010.

[254] L. Zhou, Z. Yang, J. J. P. C. Rodrigues, and M. Guizani, “Exploring blind online

scheduling for mobile cloud multimedia services,” IEEE Wireless Communications,

vol. 20, no. 3, pp. 54–61, June 2013.

220 BIBLIOGRAPHY

[255] L. Zhou, Z. Yang, J. J. Rodrigues, and M. Guizani, “Exploring blind online schedul-

ing for mobile cloud multimedia services,” IEEE Wireless Communications, vol. 20,

no. 3, pp. 54–61, 2013.

[256] Z. Zhou and D. Huang, “Efficient and secure cata storage operations for mobile

cloud computing,” in Proceedings of the 8th International Conference on Network and

Service Management. Laxenburg, Austria, Austria: International Federation for

Information Processing, 2013, pp. 37–45.

[257] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,” Future

Generation computer systems, vol. 28, no. 3, pp. 583–592, 2012.

	1 Introduction
	1.1 Motivation and Challenges
	1.1.1 Motivation
	1.1.2 Challenges

	1.2 Research Problems and Objectives
	1.3 Methodology
	1.4 Thesis Contributions
	1.5 Thesis Organization

	2 Literature Review
	2.1 Introduction
	2.2 Overview
	2.2.1 Terms and Definitions
	2.2.2 Motivations

	2.3 Taxonomy and Survey of Computing Capacity Augmentation Techniques
	2.3.1 Code Offloading
	2.3.2 Service-oriented Task Delegation
	2.3.3 Parallel Execution
	2.3.4 Opportunistic Mobile Collaboration
	2.3.5 Task Offloading Decision Making
	2.3.6 Task Allocation and Scheduling Decision Making
	2.3.7 Mobility Model for Mobile Device Cloud
	2.3.8 Fault Tolerance

	2.4 Taxonomy and Survey of Mobile Storage Augmentation Techniques
	2.4.1 Mobile Storage Offloading
	2.4.2 Data Protection
	2.4.3 Data Interoperability

	2.5 Summary

	3 A Context-aware Task Offloading Decision Algorithm and Enabling Framework
	3.1 Introduction
	3.2 System Architecture
	3.2.1 System Overview
	3.2.2 Framework Components

	3.3 Cost Estimation Model and Algorithm
	3.3.1 System Model and Problem Formulation
	3.3.2 Cost Estimation Models
	3.3.3 Context-aware Decision Making Algorithm
	3.3.4 Failure Recovery

	3.4 System Design and Implementation
	3.4.1 Android x86
	3.4.2 Offloading Method
	3.4.3 Execution Environment

	3.5 Performance Evaluation
	3.5.1 Experiments Settings
	3.5.2 Results and Analysis

	3.6 Summary

	4 Execution Optimization for Task Offloading and Scheduling
	4.1 Introduction
	4.2 System and Cost Models
	4.2.1 Motivation Example
	4.2.2 Resource Models
	4.2.3 Workload Model
	4.2.4 Computation and Communication Models
	4.2.5 Monetary Cost
	4.2.6 Failure Model

	4.3 Mobile Offloading Scheduling Problem Formulation
	4.3.1 Mixed Integer Programming Based Offline Optimal Formulation
	4.3.2 Complexity Analysis

	4.4 Online Code Offloading and Scheduling Algorithm
	4.4.1 Mobile Code Offloading and Scheduling Problem
	4.4.2 Online Code Offloading and Scheduling Algorithm

	4.5 Performance Evaluation
	4.5.1 Experiment Settings
	4.5.2 Experiment Results

	4.6 Summary

	5 A Group-based Adaptive Fault Tolerant Mechanism
	5.1 Introduction
	5.2 Related Work
	5.2.1 Fault Tolerance in Distributed Computing
	5.2.2 Fault Tolerance in Mobile Cloud Computing

	5.3 System Modelling
	5.3.1 Application Model
	5.3.2 Machine Model
	5.3.3 Reliability Model

	5.4 Group-based Fault Tolerant Mechanism GFT-mCloud
	5.4.1 Machine Grouping Algorithm
	5.4.2 Group-based Fault Tolerant Algorithm

	5.5 Performance Evaluation
	5.5.1 Experimental Setup
	5.5.2 Design and Implementation of Simulator
	5.5.3 Evaluation Results and Analysis

	5.6 Summary

	6 A Reverse Auction Based Incentive Mechanism
	6.1 Related Work
	6.1.1 Incentive Mechanisms in Mobile Opportunistic Computing
	6.1.2 Incentive Mechanisms in Mobile Cloud Computing

	6.2 System Model and Problem Formulation
	6.2.1 System Model
	6.2.2 Problem Formulation

	6.3 The Incentive Mechanism
	6.3.1 The Greedy Reverse Auction
	6.3.2 Failure Recovery and Penalty Policy
	6.3.3 Economic Property Analysis

	6.4 Performance Evaluation
	6.4.1 Simulation Settings
	6.4.2 Numerical Results and Analysis

	6.5 Summary

	7 Conclusions and Future Directions
	7.1 Conclusions and Discussion
	7.2 Future Directions
	7.2.1 Context Aware Management of Resources
	7.2.2 Quality of Service Management
	7.2.3 Security and Privacy
	7.2.4 Internet-of-Things and Fog Computing
	7.2.5 Container-based Services
	7.2.6 Virtual Reality, Augmented Reality and Artificial Intelligence on Mobile Devices

	7.3 Final Remarks

