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RESUMO

A avaliação de políticas de gerenciamento de recursos em nuvens computacionais é uma tarefa

desafiadora, uma vez que tais ambientes estão sujeitos a demandas variáveis de usuários com

diferentes perfis de comportamento e expectativas de Qualidade de Serviço (QoS). Fatores como

overhead da camada de virtualização, indisponibilidade de dados e complexidade de cargas

de trabalho altamente heterogêneas dificultam a modelagem e caracterização de aplicações

hospedadas em nuvens. Neste contexto, caracterizar e modelar a carga de trabalho (ou simples-

mente carga) é um passo importante na sistematização da análise e simulação do desempenho de

políticas de gerenciamento dos recursos computacionais e uma estratégia particularmente útil

antes da implantação física das nuvens. Nesta tese de doutorado, é proposta uma metodologia

para modelagem e caracterização de carga visando criar perfis de utilização de recursos em

Nuvem. Os padrões de comportamento das cargas são identificados e modelados sob a forma de

distribuições estatísticas as quais são utilizadas por um controlador preditivo a fim de estabelecer

a complexa relação entre a utilização dos recursos e a métrica de tempo de resposta. Desse

modo, o controlador realiza ajustes no percentual de utilização do recursos a fim de manter

o tempo de resposta observado pelo o usuário dentro de um limiar aceitável. Assim, nossa

proposta apoia diretamente políticas de provisionamento de recursos cientes da Qualidade de

Serviço (QoS). A metodologia proposta foi validada através de aplicações com características

distintas: uma aplicação científica para o auxílio do diagnóstico de doenças pulmonares e uma

aplicação Web que emula um site de leilões. Os modelos de desempenho computacional gerados

foram confrontados com os dados reais através de métodos estatísticos gráficos e analíticos a

fim de avaliar sua acurácia e todos os modelos apresentaram um percentual de erro inferior a

10%. A modelagem proposta para o controlador preditivo mostrou-se efetiva pois foi capaz de

dinamicamente manter o tempo de resposta próximo ao valor esperado, com erro percentual

absoluto médio (MAPE) = 4.36% sem violação de SLA.

Palavras-chave: Caracterização, Modelagem, Simulação, Cargas de Trabalho, Predição, Com-

putação em Nuvem



ABSTRACT

The evaluation of resource management policies in cloud environments is challenging since

clouds are subject to varying demand coming from users with different profiles and Quality de

Service (QoS) requirements. Factors as the virtualization layer overhead, insufficient trace logs

available for analysis, and mixed workloads composed of a wide variety of applications in a

heterogeneous environment frustrate the modeling and characterization of applications hosted

in the cloud. In this context, workload modeling and characterization is a fundamental step

on systematizing the analysis and simulation of the performance of computational resources

management policies and a particularly useful strategy for the physical implementation of

the clouds. In this doctoral thesis, we propose a methodology for workload modeling and

characterization to create resource utilization profiles in Cloud. The workload behavior patterns

are identified and modeled in the form of statistical distributions which are used by a predictive

controller to establish the complex relationship between resource utilization and response time

metric. To this end, the controller makes adjustments in the resource utilization to maintain

the response time experienced by the user within an acceptable threshold. Hence, our proposal

directly supports QoS-aware resource provisioning policies. The proposed methodology was

validated through two different applications with distinct characteristics: a scientific application

to pulmonary diseases diagnosis, and a web application that emulates an auction site. The

performance models were compared with monitoring data through graphical and analytical

methods to evaluate their accuracy, and all the models presented a percentage error of less than

10 %. The predictive controller was able to dynamically maintain the response time close to the

expected trajectory without Service Level Agreement (SLA) violation with an Mean Absolute

Percentage Error (MAPE) = 4.36%.

Keywords: Cloud Computing, Simulation, Workload Modeling, Workload Profiling, Prediction.



LIST OF FIGURES

Figure 1 – Workload Modeling Proposal and Resource Management Scope. . . . . . . 22

Figure 2 – Prediction methods taxonomy (adapted from (LORIDO-BOTRAN et al.,

2014)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3 – Model based Prediction Control Process (adapted from (CAMACHO; ALBA,

2013)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4 – Workload modeling scenario (adapted from (FEITELSON, 2014)). . . . . . 46

Figure 5 – Workload modeling process. . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 6 – Resource management sequence. . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 7 – MISO system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 8 – Workload generation diagram. . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 9 – Statistical analysis of number of instructions. (a) Histogram of Browsing

profile (median of 100 rounds); (b) Number of instruction per user session

for Apache and MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 10 – Statistical analysis of instructions number. (a) Histogram of Bidding profile

(median of 100 rounds); (b) Number of instruction per user session for

Apache and MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 11 – Exploratory analysis of the observed CPU utilization for a browsing user

session. (a) Browsing profile: scatterplot of CPU utilization (b) Browsing

profile: limited axis with interval between 600 and 650 s . . . . . . . . . . . 71

Figure 12 – Quantile-Quantile plots. (a) GL with mle method; (b) GEV with PWM method 73

Figure 13 – Comparison of histogram of observed number of instructions and probability

density function of simulated number of instructions (a) Browsing profile;

(b) Bidding profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 14 – MISO Model (scenario 01): response time behavior with setpoint range

[300ms-1000ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 15 – MISO Model (scenario 02): response time behavior with setpoint range

[300ms-1850ms] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 16 – Impact of LisaMini execution in different instances. (a) CPU Utilization; (b)

CPU I/O Wait; (c) Memory Utilization; (d) Disk Read Rate; (e) Disk Write

Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



Figure 17 – Impact of LisaMini execution on A2 instance considering different geo-

graphic locations. (a) CPU Utilization; (b) CPU I/O Wait; (c) Memory

Utilization; (d) Disk Read Rate . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 18 – Impact of LisaMini execution on A1 instance considering different geo-

graphic locations. (a) CPU Utilization; (b) CPU I/O Wait; (c) Memory

Utilization; (d) Disk Read Rate . . . . . . . . . . . . . . . . . . . . . . . . 81



LIST OF TABLES

Table 2 – Summary of related work. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 3 – Studies inclusion/exclusion criteria. . . . . . . . . . . . . . . . . . . . . . . 36

Table 4 – Private cloud: Physical sever and VMs specifications . . . . . . . . . . . . . 56

Table 5 – Experiment # 1 - RUBiS client configuration . . . . . . . . . . . . . . . . . 58

Table 6 – Experimental design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 7 – Descriptive statistics: location, dispersion and shape. . . . . . . . . . . . . . 62

Table 8 – MPC: experimental design parametrization. . . . . . . . . . . . . . . . . . . 67

Table 9 – Observed metrics statistics: number of instructions, CPU, memory, and disk

utilization, and response time. . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 10 – Distributions and parameters for number of instructions. . . . . . . . . . . . 71

Table 11 – MLE parameters estimation of response time and CPU, memory and disk

utilization metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 12 – Kolmogorov-Smirnov test: number of instructions. . . . . . . . . . . . . . . 74

Table 13 – Kolmogorov-Smirnov test: response time and cpu, memory and disk utilization. 74

Table 14 – WMW test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 15 – Estimated MSE error for transfer functions. . . . . . . . . . . . . . . . . . . 77

Table 16 – Experiment 1 - Distribution parameters of different instances . . . . . . . . . 83

Table 17 – Experiment 2 - Distribution parameters of different instances in different

locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 18 – Kolmogorov-Smirnov test: Experiment 1 . . . . . . . . . . . . . . . . . . . 83

Table 19 – Kolmogorov-Smirnov test: Experiment 2 . . . . . . . . . . . . . . . . . . . 84



LIST OF ACRONYMS

ADF Augmented Dickey-Fuller

CPU Central Processing Unit

CT Computerized Tomography

DVFS Dynamic Voltage and Frequency Scaling

FFT Fast Fourier Transform

GEV Generalized Extreme-Value

GL Generalized Lambda

GoF Goodness-of-Fit

GPD Generalized Pareto Distribution

GWD Generalized Weibull Distributions

HF Histogram Fitting

HPC High-Performance Computing

HTTP HyperText Transfer Protocol

IaaS Infrastructure as a Service

IT Information technology

JEE Java Enterprise Edition

JVM Java Virtual Machine

KPSS Kwiatkowski-Phillips-Schmidt-Shin

KS Kolmogorov-Smirnov

MAPE Mean Absolute Percentage Error

MCC Mobile Cloud Computing

MIMO Multiple Input Multiple Output

MIPS Million Instructions Per Second

MISO Multiple Input Single Output

MLE Maximum Likelihood Estimation

MPC Model Predictive Control

MPS Maximum Product of Spacing

MSE Mean Squared Error

PaaS Platform as a Service

PID Proportional Integral Derivate

PWM Probability Weighted Moments



Q-Q Quantile-Quantile

QM Quantile Matching

QoS Quality de Service

QT Queuing Theory

RUBiS Rice University Bidding System

SaaS Software as a Service

SISO Single Input Single Output

SLA Service Level Agreement

SLO Service Level Objective

VM Virtual Machine

VMM Virtual Machine Manager

WMW Wilcox Mann-Whitney



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Research Questions and Methodology . . . . . . . . . . . . . . . . . . . 19

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . 25

2.1 Resource Management in Cloud Computing . . . . . . . . . . . . . . . . 25

2.2 Workload Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Challenges of Cloud Workload Modeling . . . . . . . . . . . . . . . . . . 27

2.2.2 Importance of Cloud Workload Modeling . . . . . . . . . . . . . . . . . . 28

2.2.3 Related Work in Cloud Workload Modeling . . . . . . . . . . . . . . . . . 29

2.3 Modeling Techniques for Application Prediction . . . . . . . . . . . . . 31

2.3.1 Systematic Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Importance of Cloud Workload Prediction . . . . . . . . . . . . . . . . . . 35

2.3.3 Challenges of Cloud Workload Prediction . . . . . . . . . . . . . . . . . . 36

2.3.4 Model Predictive Control (MPC) . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.4.2 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.4.3 Control Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.5 Related Work in Model Predictive Control . . . . . . . . . . . . . . . . . . 41

2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 CLOUD WORKLOAD MODELING AND PREDICTION . . . . . . . . 45

3.1 Workload Modeling Methodology . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Experimental Design and Setup . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Monitoring and Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.3 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.4 Parameters Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.5 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.5.1 Quantile-Quantile Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



3.1.5.2 Kolmogorov and Smirnov Test . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Cloud Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 MATERIAL AND METHODS . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Monitoring and Tracing: RUBiS . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Testbed Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Servers Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.3 Client Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Monitoring and Tracing: LisaMini . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Testbed Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3.1 Monitoring Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Workload Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Parameters Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Model Simulation and Validation . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Workload Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Simulation Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Prediction and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 RUBiS Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.2 Parameters Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.3 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Simulation and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 75



5.3 Prediction and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 LisaMini Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1.1 Experiment #1: Different instances . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1.2 Experiment #2: Different locations . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Performance Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.3 Godness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.4 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Research Questions Analysis . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



17

1 INTRODUCTION

This thesis proposes a methodology for Workload characterization and modeling

aiming at resource utilization profile in cloud environments. Section 1.1 contextualizes this work

by providing an overview of the resource provisioning problem in cloud computing. Section 1.2

details the thesis goals. Section 1.3 presents the research questions and discusses the methodology

employed through this work. Section 1.4 presents the thesis contributions and Section 1.5 states

the thesis scope. Finally, Section 1.6 lists the remaining structure of this document.

1.1 Contextualization

As cloud computing has grown in size, reach and popularity, it has supported various

types of applications such as Web serving, scientific High-Performance Computing (HPC), social

networking, and gaming (BUYYA et al., 2009). Such applications are subjected to different

Quality of Service (QoS) aspects which are specified in a Service Level Agreement (SLA)

negotiated between cloud providers and customers. The failure to comply with a SLA could

compromise the QoS and result in penalties to the cloud provider (AMIRI; MOHAMMAD-

KHANLI, 2017).

The development of computational Resource Management policy that supports QoS

is a challenging task (MAGALHÃES et al., 2014). To evaluate the performance of these policies

is even more challenging (COUTINHO, 2014) since clouds observe varying demand, its physical

infrastructure has different sizes, software stacks, and physical resource configurations, and users

have different profiles and QoS requirements (BUYYA et al., 2009). Therefore, to evaluate these

policies under same conditions several times is not a trivial task.

In this context, the Workload Modeling and characterization enable a systematic

analysis and simulation of resource management policies performance, which brings benefits to

cloud providers, researchers and advanced professionals working in the area. The application

models allow for adjustments to fit particular situations, controlled modification of parameters,

repetitions of evaluation conditions, and generalization of Pattern found in the applications

(FEITELSON, 2014).

For cloud providers, the evaluation and simulation of resource management policies

allow for the improvement of their QoS systems before the real deployment in large scale

environments. Moreover, the simulation of workloads based on realistic scenarios enables the
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production of trace logs, which are scarce in some level of cloud environments due to business

and confidentiality concerns (MORENO et al., 2013) (CHEN et al., 2010).

However, workload modeling and characterization are especially challenging when

dealing with a highly dynamic environment, such as cloud data centers, because (i) heterogeneous

hardware is present in a single data center; (ii) the virtualization layer involves overheads caused

by I/O processing and interactions with the Virtual Machine Manager (VMM); and (iii) complex

workloads are composed of a wide variety of applications submitted at any time, and with

different characteristics and user profiles. All these factors contribute to a lack of methodologies

to characterize the different behavioral patterns of cloud applications. Therefore, researchers

and providers will benefit from a well-defined methodology which contains a process to achieve

realistic models. They can use and extend it to generate their resource management policies and

analysis.

Application modeling increases the understanding of typical patterns presented in

the Cloud workloads and leads to a better management of available resources (MORENO et al.,

2013; KAVULYA et al., 2010). From the workload characterization, performance models can be

built to help us to answer important questions such as: How can cloud usage levels be affected

by user behavior? How can the energy efficiency of a cloud be improved as long as the quality

of service offered to users is maintained?

To ensure scalability, flexibility, and effectiveness, cloud providers need quickly to

provide computing resources in accordance with the dynamic applications demand (KHAN et

al., 2012; COUTINHO et al., 2013; BRAGA et al., 2014). To this end, performance models are

critical to improving resource management since they allow to continuously predict the workload

performance for a particular hardware and software stack (MANVI; SHYAM, 2014).

A prediction process begins with the construction of a performance model, com-

prising the behavior pattern exhibited by the application over the time. Several studies in the

literature have presented different techniques to predict the application behavior, such as Linear

Regression (RIZVANDI et al., 2012), Support Vector Regression (SVR) (YANG et al., 2012),

Hidden Markov Chain (KHAN et al., 2012), Artificial Neural Networks (ANN) with interactive

training model (KUNDU et al., 2010), and Bucket Method (DENG et al., 2012). After the

construction of a predictive model, the Accuracy of the predictor must be evaluated. The system’s

ability to estimate the resource demand in subsequent time intervals is critical to cloud providers

because it directly helps to adjust the resources dynamically to comply the QoS requirements.
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1.2 Objectives

This thesis focuses on workload modeling and prediction. Consequently, how

an application uses a computational resource (CPU, disk, memory) and how this usage varies

according to the time are described and used to build realistic performance models. These models

are used to estimate the resource demand of each application deployed in cloud environments.

This way, the computational resources can be allocated in an efficient manner.

Therefore, the main goal of this thesis is to develop a workload profiling method-

ology to produce accurate performance models that offer a good approximation to the real

scenario. Such methodology can be used to generate different synthetic loads relating to relevant

applications in cloud computing and support analysis and simulation of resource utilization in

cloud environments.

Since the elasticity is critical to cloud providers, the second goal of this thesis is

the development of a predictive model capable of capturing the complex relationship between

the resource utilization profile of the application and its performance metrics (execution time,

response) in order to guarantee the QoS. Such model should estimate this relationship in a

future time to capture the workload variation and guide resource allocation ensuring the cloud

environment elasticity.

1.3 Research Questions and Methodology

Our main research hypothesis is that well-defined methodology to generate work-

load performance models in a cloud scenario combined with an efficient prediction tech-

nique could improve the Infrastructure as a Service (IaaS) resource provisioning while

maintaining the desired QoS. To guide this investigation, four fundamental research questions

associated with the workload monitoring and prediction were suggested as follows.

Research Question #1: How do different user profiles impact on resource utilization

behavior?

Research Question #2: Do different VM instances and geographic locations affect

the resources usage patterns sufficient to justify specific models for each of them?

Research Question #3: How to develop predictive models of resources to guide the

cloud elasticity so that the workload variation has the minimum impact on performance and

availability?
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Research Question #4: How to develop models that are able to predict application

performance considering multiple parameters such as processor, memory, network and disk

usage to comply with QoS?

With respect to the methodology employed in this thesis, we carried out the 5 stages

described below:

1. Literature review: the literature is investigated to raise the motivation and key challenges to

workload modeling and prediction. From this point, significant gaps are identified: a lack

of methodologies to characterize the different behavioral patterns of cloud applications,

and a lack of detail regarding the controller parameterization, which compromises the

reproducibility of the proposals and; and a lack of formal relationship description between

the input and output of model predictive controls;

2. Monitoring: firstly, a design experiment is defining, including decisions as workloads,

metrics, factors, environment setup, etc. Later, the monitoring scenarios have been

implemented with a view to evaluating the impact of different factors on user profiles,

geographical locations, and VM instance types. And, finally, the traces are recorded and

stored for later analysis;

3. Profiling: the modeling process is performed in three steps as illustrated in Figure 1,

a) Exploratory Analysis, which analyzes the data characteristics and determines the

candidate distributions to represent the model;

b) Parameter Estimation, uses estimation methods to set the parameters of the distribu-

tions, selected in advance, based on the collected samples;

c) Good of Fitness Test, which are graphical and analytical methods to evaluate whether

the distributions and their respective parameters provide satisfactorily approximation

to the empirical data;

4. Prediction: a Model Predictive Control (MPC) is used to estimate the number of physical

resources needed to maintain the predicted output close to the application SLA. To predict

the application performance is used a linear technique called State Space Model;

5. Discrete-event simulation: the performance workload models are implemented as an

extension of a CloudSim simulator (CALHEIROS et al., 2011). After, validation is

performed to show that the simulator is able to represent the observed data accurately.

The simulation accuracy is evaluated through graphical and statistical hypothesis test

approaches.
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1.4 Contributions

Workload characterization and modeling problems have been addressed through the

creation of simple and generic models to generate synthetic workloads (FEITELSON, 2014).

Several papers have focused on resource utilization imposed by jobs, tasks and requisitions

(CHEN et al., 2010; GANAPATHI et al., 2010; KAVULYA et al., 2010; GROZEV; BUYYA,

2013; MORENO et al., 2013).

From these related work, we claim the workload characterization and modeling can

provide an understanding of non-trivial tradeoffs and behavior prediction in cloud scenarios.

However, frequently, we note that such works did not adequately justify their choices. Unfortu-

nately, this makes the experiment reproducibility difficult and, consequently, their conclusions

as well. In the expectation of improve the researh reproducibility, our main contribution is a

methodology for workload characterization and modeling aiming at resource utilization profile in

cloud environments. This methodology can be used to generate accurate and easily manageable

models that match behavior patterns for different user profiles, geographic locations, and VMs

configurations. This well-defined methodology contains steps and justifications to achieve the

distributions and parameters derived from the application analyses so that our models can be

easily reproduced and reused.ns are modeled in the form of statistical distributions. Therefore,

the patterns fluctuate based on realistic parameters in order to represent dynamic environments.

A model validation is provided through visual and analytical methods with a view to show that

the model adequately represents the observed patterns.

We can also highlight some secondary contributions as follows:

1. Implementation of the proposed models as an extension of the CloudSim simulator (CAL-

HEIROS et al., 2011), making the model available to researchers’ practical use, supported

by the cloud data center environment abstraction that CloudSim provides;

2. A case study supporting Central Processing Unit (CPU) utilization forecasting associated

with Dynamic Voltage and Frequency Scaling (DVFS) management in order to improve

energy saving;

3. A predictive model that fits the complex relationship between an application resource

utilization profile and its performance metrics in order to support resource allocation

policies aware of QoS.

Figure 1 illustrates the thesis contributions in a resource management context. Our

major contribution is highlighted in the workload modeling box which can divide into the core
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Figure 1 – Workload Modeling Proposal and Resource Management Scope.

steps: (i) data monitoring and tracing; (ii) statistical analysis, which identifies the workload

patterns, and (iii) estimationn and validation, it estimates the statistical distribution parameters

and, finally, evaluate with the statistical model offers a good fit to the empirical data. Therefore,

the statistical models generated from the methodology proposed are inputs to implementation

of the model predictive control (secondary contribution) which adjusts the resource utilization

values to maintain the application response time within an acceptable QoS. Such estimated

values can be directly used by the resource provisioning policy to guide its decision making, but

provisioning policy is not addressed in this thesis.

1.5 Scope

Some concepts and aspects identified in the cloud computing literature have not been

addressed in this thesis. However, they are related and discussed throughout the text. The main

focus of this thesis is on the workload characterization and modeling, and the secondary one is

an application performance prediction and control, as illustrated in Figure 1. It is an important

highlight that the workload concept has different interpretations in the literature. In this thesis,

we assume the workload as the Virtual Machine (VM) resource utilization (CPU, memory, disk)

and the application performance metric is the response time. The following items let clear what

is out of the thesis scope:

• Autonomic Computing: despite this thesis support the monitoring and analysis phases of

autonomic loop, this work do not consider autonomic computing;

• Multi Site Clouds: multi site clouds consist of a vast number of small data centers spread
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across a geographic area, appealing to service providers who already have distributed

development facilities interconnected by high-speed networks (COUTINHO, 2014). We

do not consider multi site clouds;

• Provisioning: the model predictive control estimates the number of resources required

to run the application to meet user expectations. Therefore, this work supports resource

allocation strategies but does not implement the strategy itself, as illustrated in Figure 1. A

provisioning procedure can be attached at any time to this work without impacting it;

• Application independent: here two different applications were used to validate the work-

load modeling methodology, (i) a scientific application for pulmonary disease diagnoses

(Section 4.1) and, (ii) a Web application that simulates an action site (Section 4.2). How-

ever, our proposal for generating statistical models that represent the applications can be

applied to any workload;

• Deployment: a cloud environment provides basically three service models. The SaaS

model provides specific purpose software systems that are available to users over the

Internet and accessible through a thin client interface. The PaaS model provides an operat-

ing system, programming languages and development environments for the applications,

aiding the implementation of software systems. And, finally, the IaaS model makes it

easier and more accessible to provide resources such as servers, network, storage, and other

key computing resources to build an on-demand application environment (COUTINHO,

2014). This thesis is dedicated to the IaaS implementation model, not addressing aspects

of the other service models.

1.6 Thesis Organization

The remainder of this dissertation is organized as follows: Chapter 2 presents the

theoretical references that guide the development of this thesis, as well the literature papers

related to our proposal. In addition, Chapter 2 highlights the importance and challenges of

workload modeling and prediction in the cloud. Chapter 3 presents the proposed workload

modeling methodology, as well as the validation and simulation approaches of the models

achieved via methodology. In addition, it discusses important parameters of the predictive

control that are critical to fit a realistic scenario. Chapter 4 presented the experimental design of

the monitoring experiments and described how the proposed methodology was implemented and

how the application model validation was conducted as an extension of the CloudSim simulator.
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Chapter 5 presents the results achieved in the monitoring, profiling, prediction and, validation and

simulation phases of this work. Finally, in Chapter 6, the main thesis conclusions are presented,

as well as the future perspectives to improve the results achieved in this work and to support new

proposals related to workload profiling and prediction in cloud scenarios.
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2 BACKGROUND AND RELATED WORK

In this chapter, we discuss relevant concepts in the context of resource management

in cloud environments. In addition, the importance and challenges of workload profiling and

prediction for efficient resource provisioning are presented. We also present some related work,

their differences and similarities to this thesis.

2.1 Resource Management in Cloud Computing

Cloud computing can be defined as a model that enables access over the network,

on demand to a set of configurable computing resources (networks, servers, storage devices,

applications, and services) that can be quickly acquired and released with a minimal management

effort or service provider interaction (YOUSEFF et al., 2008).

Clouds provide scalability, quality of service, and inexpensive computing infras-

tructure that can be accessed via a simply and pervasive way (ROSSI et al., 2016). Further to

fast elasticity and broad access, cloud computing relies on the characteristics of self-service

on demand, resource pooling, and measured service. In addition, it has three service models:

Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS)

(MELL; GRANCE, 2009).

This thesis supports the elasticity characteristic of IaaS, where the cloud provider

offers VMs, storages, firewalls, load balancer, and network devices (MANVI; SHYAM, 2014).

Elasticity is related to the ability of the system to automatically adapt to changes in demand

for resources by provisioning and deprovisioning them at runtime (COUTINHO et al., 2015;

HERBST et al., 2013). As the elastic modalities in cloud environments, there is elasticity in

two directions: vertical and horizontal. Vertical elasticity (scale-up), usually consists of adding

more processors or memory on the same host increasing its capacity. Horizontal elasticity

(scale-out) refers to the addition of more hosts to the environment. This thesis directly supports

the horizontal.

The dynamic cloud demand may result in under-provisioning of resources that pro-

motes the violation of SLA, causing dissatisfaction of user and reduced profit. On the other

hand, overprovisioning increases operating costs by wasting energy and computing resources.

Therefore, the provider must have an efficient resource management policy to ensure the mini-

mum amount of resources required to comply with the SLA (AMIRI; MOHAMMAD-KHANLI,
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2017). In this context, resource management for IaaS leads to benefits, such as scalability, quality

of service, optimal utility, and cost effectiveness.

Dynamic resource allocation in the cloud depends on virtualization technologies.

Such technologies, despite the progress, take around 10 minutes 1 to create a VM and make

it fully operational. And, the response time to changes in workload in order to achieve the

desired performance is fundamental to the elasticity (COUTINHO et al., 2015). Therefore,

the prediction of future demand is essential for the implementation of rapid elasticity and the

effective provisioning of resources. The prediction method estimates the variation in future

demand, giving the resource manager sufficient time to provide computing resources properly

(AMIRI; MOHAMMAD-KHANLI, 2017).

2.2 Workload Profiling

The problems of workload characterization and workload modeling were addressed

previously by creating a simple and general model to generate synthetic workloads similar to

real systems (FEITELSON, 2014). The modeling is obtained via monitoring of the infrastructure

during workload execution. The idea is to find patterns of behavior on the collected data. In

the context of this work, workload modeling is used for analysis and simulation of resource

utilization in cloud environments. This type of evaluation is critical for resource provisioning

so as to fulfill SLA. For this type of evaluation, good characterization and understanding of

workload burstiness are crucial.

An important aspect that should be considered during model creation is the degree

of detail. A model with the fewest number of parameters possible is easier to manage. At the

same time, it must be able to fully characterize all the important attributes of workloads.

When the collected traces are directly used to represent a workload, greater precision

can be obtained. However, those results can not be extrapolated to other system sizes or

environment settings, because the traces show a static picture of the system, leading to results

limited to the scale of the used infrastructure . If there is a need to capture different software

stacks, physical resources, and their configurations, using traces becomes expensive, since much

time and money need to be invested in the configuration of various software stacks and changing

the configuration and number of the machines.

Models appear to circumvent traces limitations through the adjustment, where it is
1 https://serverfault.com/questions/43884/speeding-up-launch-of-amazon-ec2-windows-instances
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possible to adjust the workload to fit the particular situation. Thus, the configuration of physical

resources and software stacks are model parameters, and a new workload is generated according

to these parameters. Furthermore, using a model rather than data traces brings others advantages,

such as (FEITELSON, 2014): (i) controlled modification: the parameters of the model can be

modified, one at a time, in order to investigate their influence, while other parameters are kept

constant, (ii) repetitions: it is possible to repeat experiments under similar, but not identical,

statistical conditions, (iii) additional features: missing attributes in the traces can be inserted into

models. Therefore, the models prevent the need for application installation and configuration,

and they provide a controlled input for researchers evaluate their theoretical mechanisms.

2.2.1 Challenges of Cloud Workload Modeling

The modeling and characterization of workloads are especially challenging when

dealing with a highly dynamic environment such as a cloud, for various reasons, as discussed

following:

1. Diversity of Hardware Platforms: Information technology (IT) managers update about 20%

to 25% of their platforms every year (MULIA et al., 2013), resulting in the combination of

different hardware in the same data center. In these computational infrastructures, models

are used to predict application performance in order to improve the resource management.

The needs of applications for resources vary over time, promoting VMs relocation to

maximize the IT infrastructure performance. When a VM is migrated from one host to

another, the performance model can only be applied if the target host has the same hardware

as the source host, since the same workload shows different performances according to

physical resources capacity of the machines that host the applications. Moreover, other

VMs co-located in the target host also impact the workload performance. Given the

environment heterogeneity, in many cases, the performance model needs to be completely

rebuilt. Another solution is to create a priori models of application performance for all

target hosts (KUNDU et al., 2010).

2. Business and Confidentiality: due to business and confidentiality reasons there are insuf-

ficient cloud trace logs available for analysis. Thus there is a lack of methodologies to

characterize the different behavioral patterns of cloud applications (MORENO et al., 2013;

CHEN et al., 2010). Some efforts in this direction were initiated, for example, by the

availability of Google TraceLog (REISS et al., 2011) and Yahoo!, enabling approaches to
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analysis and characterization of these data (ZHANG et al., 2011; MISHRA et al., 2010;

WANG et al., 2011; KAVULYA et al., 2010);

3. Workload Complexity: a cloud hosts a wide variety of applications that could be submitted

at any time, with different characteristics and user profiles, which have heterogeneous and

competing QoS requirements (BUYYA et al., 2009). This leads to complex workloads

depending on users behavior and resource consumption. Thus, it is challenging to predict

workload patterns over time. MULIA et al. (2013) proposed a set of cloud workload

categories and established a relationship among them and critical computer resources in

order to detect and reduce resource contention. The authors argue that the list of cloud

workload categories is a tool for common communication among service providers, IT

managers, and cloud users, what facilities the SLAs, purchase capital, and future computer

architecture design decisions;

4. Virtualization Layer: the virtualization layer causes an overhead caused by I/O processing

and interactions with the VMM. As a result, additional resources are needed. This overhead

depends on the used hardware platform. Thus, it is essential to consider these factors to

model workloads in order to improve estimation of application resources requirements

when they are consolidated in virtual environments. In this context, WOOD et al. (2008)

proposed an approach to estimate the CPU requirements of applications when they are

transferred to a virtual environment.

2.2.2 Importance of Cloud Workload Modeling

Workload modeling increases the understanding about the typical cloud workload

patterns and leads to more informed decisions to better manage resources (MORENO et al.,

2013; KAVULYA et al., 2010). From the workload characterization, performance models can be

constructed to support research domains, like energy-efficiency and resource management and

answer important research questions, such as: how are overall cloud data center utilization levels

affected by user behavior? How can cloud data center energy efficiency be improved as long as

the QoS offered to the users is maintained?

To ensure scalability, flexibility, and cost-effectiveness, cloud providers need to

provide computing resources according to the dynamic applications demands (KHAN et al.,

2012). To this end, performance models are critical to improving resource management because

they allow predicting the performance of an application for a given set of hardware resources
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and software stack continuously.

The prediction process starts with the building of the performance model, comprising

the behavior patterns exhibited by the application over time. fter the construction of the prediction

model, the predictor accuracy is evaluated. Thus, providers can use the performance model to

predict how workload patterns will change, and dynamically scale resources to meet the expected

demand.

In addition, workload modeling in cloud computing gives rise to performance anal-

ysis and simulation, which brings benefits to cloud providers and researchers as it allows: (i)

the evaluation through simulation of resource management policies allows the improvement

of cloud providers systems QoS; (ii) the evaluation of these policies without deployment and

execution in the expensive large scale environments and (iii) the simulation of realistic cloud

environments with controlled modification, adjustment, repetition and additional features. The

use of simulation models enables the production of trace logs based on realistic scenarios, filling

a gap identified in this area (MORENO et al., 2013). For example, CHEN et al. (2010) used

several combinations of parameters in a simulated Hadoop application with the purpose of

generating different workloads that arise in a real cloud production environment.

2.2.3 Related Work in Cloud Workload Modeling

The conflict of priorities between cloud providers, aiming high resource utilization

with low operating costs, and MapReduce (DEAN; GHEMAWAT, 2008) applications users

addressing small execution time, led to characterization and modeling of this application type

(CHEN et al., 2010; GANAPATHI et al., 2010; KAVULYA et al., 2010). CHEN et al. (2010)

developed a tool for generating realistic workloads with the goal of analyzing the tradeoff

between latency and resources utilization. In view of this, they used traces from one dedicated

Hadoop cluster at Facebook. These traces are modeled through statistical distributions that mimic

the workload characteristics. However, the traces do not contain important information such as

skewness, which is crucial in the choice of distributions that represent the data, and resource

utilization, which is essential for the development of the proposed work. In the attempt to obtain

resource utilization data, statistical models were used to generate the job stream processed in

the environment provided by Amazon’s Elastic Cloud Computing (EC2). However, the authors

do not present information concerning the distributions, parameters and Goodness-of-Fit (GoF)

tests. Thus, the reproduction of the model by other researchers is not possible.
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GANAPATHI et al. (2010) proposed a model to predict the execution time of

MapReduce jobs in order to maximize performance while minimizing costs. A workload

generator based on statistical models was used to guide the prediction. However, the authors did

not consider the full distribution to build the model. Instead, distribution is estimated from the

1st, 25th, 75th and 99th percentiles, causing information loss that compromises the accuracy of

the model.

KAVULYA et al. (2010) characterized resource utilization patterns and sources of

failures to predict job completion times in MapReduce applications. They did not offer an

analysis of data justifying the distributions used. Furthermore, they use only the method of

Maximum Likelihood Estimation (MLE), which is quite sensitive to outliers. Our approach uses

different estimation methods, and the results show that the estimator has great influence on the

predictor accuracy. KAVULYA et al. (2010) presented the Kolmogorov-Smirnov (KS) values

with no critical value. Thus, it is not clear which set of distributions and parameters provide

a good fit to the modeled data. Also, the values of the KS presented lose representativeness,

since no critical value was defined. Thus, it is not clear which distributions and their parameters

provide a good fit to the modeled data.

Most work discussed in this section focused on resources utilization imposed by jobs,

tasks, and requests. However, different types of users directly impact on the workload present

in the cloud. In view of this, MORENO et al. (2013) and GROZEV; BUYYA (2013) created

models based on resource utilization and users behavioral patterns. Moreno et al. (MORENO

et al., 2013) proposed a new approach for characterizing the Google trace log in the context of

both user and task in order to derive a model to capture resource utilization patterns. As in our

study, the authors developed the model in the CloudSim simulator and contrasted the logged

data against simulation experiments. However, although the model parameters are presented,

estimation methods and the results of the GoF tests are omitted. These factors compromise the

use of the model by other researchers.

Grozev and Buyya (GROZEV; BUYYA, 2013) also made use of the RUBiS workload

and implemented the model in the CloudSim. The CPU load is modeled in terms of an average

number of instructions required for a user session. However, the average is not robust, which

makes it easily influenced by peak usage. Also, the authors adopt a non-statistical approach for

modeling. Thus, they did not analyze dispersion and shape measurements, which are relevant for

a statistical workload characterization.
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Table 2 – Summary of related work.
Authors Modeling

Approach
Application
Type

Exploratory
Analysis

Parameter
Estimation

GoF
Test

Chen et al. (CHEN et al., 2010) Distribution
Analysis

MapReduce Yes No No

Ganapathi et al. (GANAPATHI et
al., 2010)

Distribution
Analysis

MapReduce No No No

Kavulya et al. (KAVULYA et al.,
2010)

Distribution
Analysis

MapReduce Yes Yes (single) Yes

Moreno et al. (MORENO et al.,
2013)

Distribution
Analysis &
Cluster

MapReduce Yes No No

Grozev and Buyya (GROZEV;
BUYYA, 2013)

Analytical
Model

Web No No No

Present Work (MAGALHAES et
al., 2015)

Distribution
Analysis

Web Yes Yes (multi) Yes

From these related work, we observe that the application characterization and model-

ing support researchers and cloud providers in understanding complex tradeoffs and predicting

applications behavior. This understanding leads to more efficient techniques for resources

management. However, the lack of a well-defined methodology, containing steps to achieve

distributions, estimate parameters, and GoF tests, prevents models reproduction and usage. A

summary of the related work is presented in Table 2.

2.3 Modeling Techniques for Application Prediction

Amiri and Mohammad-Khali (AMIRI; MOHAMMAD-KHANLI, 2017) and LORIDO-

BOTRAN et al. (2014) proposed taxonomies to classify methods capable of to predict the behav-

ior of a different application in order to support auto-scaling in the context of cloud computing.

Such taxonomies have in common three main groups as depicted in Figure 2: Queuing Theory

(QT), Machine Learning and Control Theory.

Queuing models have been used to model the Internet and traditional servers ap-

plications. In a simple elastic cloud application scenario, a single queue represents the load

balancer that dispatches requests to n VMs. In a more complex scenario (multi-tier applications),

a queueing network can be used, where each tier is a queue with one or multiple servers. A

queue system consists of a fixed architecture and a set of known parameters such as inter-arrival

time distribution, service time distribution, and a number of servers. The main limitation of QT

models is the failure to adapt to application behavior changes; consequently, the model need

be recomputed (with analytical or simulation-based tools) when there are changes in either the

architecture or the parameters. In addition, solving nonlinear equations at runtime is a complex
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and costly task. Thus, QT is an expensive alternative for dynamic ambients. As an advantage,

QT technique does not require a training phase (LORIDO-BOTRAN et al., 2014).

Machine learning techniques are applied to dynamically construct the model of

resource consumption under a specific amount of workload. In this way, different applications

can utilize the auto-scalers without customized settings and preparations. They are also more

robust to changes and can self-adaptively adjust the model on the fly in the presence of notable

events. In order hand, machine learning approaches take time to converge to a stable model

and thus causes the auto-scaler to perform poorly during the active learning period. Certainly,

the application performance is affected in this process. Furthermore, the time that is taken to

converge is hard to predict and varies case by case (QU et al., 2016).

Online machine learning in the auto-scalers context can be divided into two types(see

2): reinforcement learning, and regression. The reinforce learning algorithm’s target is to

generate a table specifying the best provision or deprovision action under each state. The

learning process is similar to a trial-and-error approach. The learning algorithm chooses an

individual operation and then observes the result. If the result is positive, the auto-scaler will be

more likely to take the same action next time when it faces a similar situation.

Regression determines the relationship among variables via a function based on

observed data. Finally, it uses this relation to making predictions. In the context of resource

estimation, auto-scaler can record system utilization, application performance, and the workload

for regression. As the training proceeds and more data are available, the predicted results also

become more accurate. Although, regression requires the user to determine the function type

(linear or quadratic). In the case of auto-scaling Web applications, it is usually safe to assume a

linear function [CHENHAO QU, 2016]. In order to achieve an accurate prediction, the model

should be able to extract all workload behavior patterns. Most of the machine learning techniques,

such as Neural Network and Markov Model, are based on fixed pattern length. Thus, they cannot

extract all useful patterns that extrapolate the fixed length. In addition, The workload behavior

changes might start after training the prediction model. The model should be retrained to adapt

to workload changes. Gathering new data and retraining the models may very time-consuming

(AMIRI; MOHAMMAD-KHANLI, 2017).

The control theory goal is to maintain the value of one or more controlled variables

(control outputs), close to a desirable set point, via manipulated variables (control inputs)

adjustment. The control systems are divided into three groups: (i) Open-loop, the system output
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is calculated based only on the current input and the system model, i.e., this control is unaware

when the output reaches the desired set point; (ii) Feedback, the output of the system is observed.

Thus, the controller can correct output deviations from the set point and; (iii) feed-forward,

predicts the output errors and reacts before the error actually occurs. The prediction may

fail. Thus, the combination of feedback and feed-forward controllers is commonly used. The

controller performance depends on the application model and the controller itself (reactive or

proactive). Many researchers consider that control theory has a great potential when combined

with resource prediction (LORIDO-BOTRAN et al., 2014).

Patikirikorala and Colman (PATIKIRIKORALA; COLMAN, 2010) highlight the

advantages of applying feedback controllers in cloud platforms. Feedback control is able

to handle unpredictable workload conditions, nonlinear characteristics and provides effective

control under disturbance and un-modeled dynamics. Furthermore, there is systematic design

process to develop an effective controller with well-proven tools and methodologies to calculate

the controller tuning parameters and validate the controller. In addition, there are many standard

controller algorithms available from control literature with formal stability proofs. Also, the

authors discuss the well-established feedback control schemes in three categories, as shown in

Figure 2: fixed gain controllers, adaptative controller and Model Predictive Control (MPC).

The Fixed gain controllers are widely adopted due to their simplicity. However, once

the model parameters are set, they remain fixed during the controller execution. An example of

this class is the Proportional Integral Derivate (PID).

In contrast, the adaptive control addresses some of the limitations of fixed gain

controllers, by adjusting the controller tuning parameters online without human intervention.

The adaptative control constructs the dynamic model of the system in each sampling instance.

This type of controller is suitable for workloads with smooth variations. However, in the

presence of sudden burst, the online estimation process may not capture the dynamics of the

system. In addition, the parameters are updated online, but the control law remains the same

(PATIKIRIKORALA; COLMAN, 2010).

Reactive systems might not be able to scale in case of sudden workload bursts

because it takes several minutes to deploy or migrate a VM image, boot the VM operating system

and application, and have the server fully operational (MAO; HUMPHREY, 2012). In view

of this, Lorido-Botran et al. LORIDO-BOTRAN et al. (2014) concluded that efforts should

be redirected towards developing proactive auto-scaling systems able to predict future needs
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and acquire the corresponding resources with enough anticipation, maybe using some reactive

methods to correct possible prediction errors.

In this context, we adopt in this work a proactive and self-optimizing technique

called MPC. The MPC uses the dynamic model and predicts future behavior of the system to

come up with the decisions to optimize the future behavior. In addition, MPC is attractive for

multi-objective scenarios and to derive close to optimal decisions in the presences of complex

policies and constraints.

The MPC establishes a relationship between the application performance and the

workload and guarantees that the performance does not exceed a predefined threshold, avoiding

SLA violations. The MPC treatment of constraints is simple, and these can be systematically

included during the design process (CAMACHO; ALBA, 2013). The main MPC drawback is the

need for an appropriate model of the system. The MPC algorithm is based on prior knowledge of

the model and is independent of it, but the benefits obtained will be affected by the discrepancies

existing between the real process and the model used (CAMACHO; ALBA, 2013). Nonlinear

controllers can model the application behavior with accuracy, however, they require complex

mathematical calculations. In this context, some controllers assume that the application behavior

is linear. This makes the model less computationally costly, but there is instability associated

with the controller (AMIRI; MOHAMMAD-KHANLI, 2017).

The MPC could be used to several inputs and outputs variables, representing the

behavior of Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO)

systems. In this thesis, we model a Multiple Input Single Output (MISO) scenarios.

2.3.1 Systematic Mapping

This search strategy was adapted from systematic review proposed by MADNI et

al. (2016) and it involves the formulation of research questions, a search of different databases,

keywords definition, and inclusion/exclusion criteria presented in Table 3. The main goal of this

search strategy is to address the following questions:

• What are the motivations to workload prediction in Cloud?

• What are the main challenges in cloud workload prediction?

• What are the main motivations for using the MPC approach?

The search decision for the required research works from 2016 to 2017 and the

databases chosen are Google Scholar and Web of Science. On the basis of the topic and the
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Figure 2 – Prediction methods taxonomy (adapted from (LORIDO-BOTRAN et al., 2014)).

proposed research questions, we define the searching keywords as a first step to formulating

the search string. The following keywords Cloud Computing, Resource Management, Model

Predictive Control are considered. We use the logical operator AND for connecting the keywords,

resulting in the following search string: “Cloud Computing” AND “Resource Management”

AND “Model Prediction Control”.

Most of the studies were screened out because their titles or abstracts were not

relevant to be incorporated in this review or they did not meet the selection criteria. The inclusion

and exclusion criteria are defined in Table 3. The initial search resulted in a total of 49 studies,

which were condensed to 12 studies on the basis of their titles and abstracts. Even if the paper did

not cite the MPC in the title or abstract, it could have a satisfactory content in the subject forward

its body. Therefore, in this first phase, a search for the MPC keyword was used throughout the

studies.

2.3.2 Importance of Cloud Workload Prediction

Infrastructure as a Service (IaaS) resource management is critical to cloud computing

since it allows for optimizing the resource utilization, which assists the management cost

reduction, energy savings, etc. Also, the resource management ensures QoS by reduction of

overhead and latency and improvement of throughput (WEINGARTNER et al., 2015). In this

work, we focus on the IaaS provider’s perspective.

IaaS resource management task involves resource allocation, provisioning, require-
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Table 3 – Studies inclusion/exclusion criteria.
Inclusion criteria Exclusion criteria
The study focuses on resource management
in Cloud Computing;

The study does not focus on resource man-
agement in another area;

The study considers the Infrastructure as a
Service (IaaS) for resource management only;

The study does not consider the Software as
a Service (SaaS) or Platform as a Service
(PaaS);

The study is written in English only; The study is not written in the English lan-
guage;

The study is peer-reviewed and published in
scholarly society;

The study is not peer-reviewed such as work-
shop, descriptions and technical reports;

The study is published in journals or confer-
ences;

The study is not published in the form of
books, abstracts, editorials or keynotes;

ment mapping, adaptation, discovery, brokering, estimation, and modeling, each one with their

own challenges (MANVI; SHYAM, 2014). This thesis focuses on resource modeling and estima-

tion. Consequently, the use of computing resource (CPU, disk, memory) by an application and

how this usage varies according to time are described and used to build performance models.

These models are used to estimate the resource demand of each application deployed in the cloud

environment. Thereby, resources can be allocated in an efficient manner.

Furthermore, the system’s ability to predict the resource demand in subsequent time

intervals directly helps the system to adjust the resources dynamically to fulfill the QoS require-

ments. Thus, this work supports the monitoring (M) and proactive analysis phase analysis(A)

phases of the MAPE loop of auto-scaling process (LORIDO-BOTRAN et al., 2014). Manvi

and Shyam (MANVI; SHYAM, 2014) raise open challenges in resource mapping, provisioning,

allocation, and adaptation.

2.3.3 Challenges of Cloud Workload Prediction

Workload prediction is especially challenging when applied in a highly dynamic

and elastic environment with resource contention scenario, multidimensional resource demands

(CPU, network, memory, disk) for multitier applications, that must meet service-level agreements

(SLAs) in the face of non-stationary workloads (ANGLANO et al., 2016). The cloud hosts a

wide variety of applications deployed and destroyed at any time, with different characteristics

and user profiles, which have heterogeneous and competing QoS requirements (CALHEIROS

et al., 2011). This leads to complex workloads depending on users’ behavior and resource

consumption.
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The use of past demands to predict future demands cannot be accurate regarding

Web-based interactive applications (PADALA et al., 2009). For this reason, the estimation

models need process each one of the computational resources in a real time manner to support

the dynamic resource management. Additionally, the cloud system should automatically adjust

the resources to the workload handled by the application with minimum human intervention

(LORIDO-BOTRAN et al., 2014).

To obtain accurate prediction models, all behavioral patterns of workload should be

captured by prediction models. For machine learning methods such as Neural Networks, Support

Vector Machine, Markov Model, based on fixed pattern length, it is an important use sliding

window to capture patterns in differents regions of workload. Otherwise, the method needs to

be retrained. The technique should guarantee the model robustness, i.e., the model predictive

ability to generalize on inexperienced workloads. Moreover, most of these methods present

discriminative learning, i.e., they do not learn workload pattern explicitly. They learn the model

parameters to optimize a utility function. But, parameters are of little interest to the resource

manager. Therefore, some methods are needed to extract knowledge from a model and improve

its transparency. Another challenge is regarding the absence of a standard testbed to evaluate

the prediction techniques. This can lead to models that super fit specific workloads (AMIRI;

MOHAMMAD-KHANLI, 2017).

2.3.4 Model Predictive Control (MPC)

Proactive auto-scaling systems able to predict future needs with enough anticipation

are critical in clouds (LORIDO-BOTRAN et al., 2014). Since anticipation is critical, the model

predictive control automates the scaling task, complementing the capacity planning and workload

migration approaches. Model Predictive Control does not designate a specific control strategy

but rather a range of control methods which make explicit use of a process to obtain the control

signal by minimizing an objective function (CAMACHO; ALBA, 2013).

The goal of the MPC is to detect the occurrence of process shifts quickly and to

take the corrective action before SLA violation happens, which means maintain the Predicted

Output close to the desired control signal (i.e. Reference Trajectory). To this end, the Predicted

Output is compared with the Reference Trajectory and the difference between them is applied

as feedback to the Optimizer. This difference is called Future Errors, as presented in Figure 3.

The Optimizer solves an optimization problem taking into account a predefined cost function
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Figure 3 – Model based Prediction Control Process (adapted from (CAMACHO; ALBA, 2013)).

to minimize the Future Errors. To define the best current control action which predicted input

trajectory gives the lowest numerical value to the cost. The MPC reduces the errors over time by

adjustment of the control variables (CPU, Memory, and Disk utilization).

To model the complex relationship among the dependent and independent variables,

the MPC predicts the future outputs, based on past inputs and outputs, and on the proposed

optimal future control actions (Section 2.3.4.1). These actions are calculated by the optimizer

(Section 2.3.4.2) taking into account the cost function, the future error, as well as the constraints.

2.3.4.1 Prediction

The MPC use is determined by the necessity to calculate the predicted output at

future instants ŷ(t + k|t) for k = 1...N, where N is the prediction horizon at each instant t. The

model might use different techniques to represent the relationship between the outputs and

the measurable inputs; the most commonly used are impulse response, step response, transfer

function, and state space model (CAMACHO; ALBA, 2013). In this work, the last two techniques

are adopted.
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In the MPC, a formal relationship between the input and output is modeled to de-

termine how a change in the former affects the output. This formal relationship is denoted as

transfer function or state space function or performance model (LORIDO-BOTRAN et al., 2014).

Transfer Function: the Transfer Function Model is widely used in the industry (CAMACHO;

ALBA, 2013). Although the derivation of the controller is more difficult, it requires fewer

parameters. The concept of transfer function G = B/A so that the output is given by:

A(z−1)y(t) = B(z−1)u(t), (2.1)

where A(z−1) = 1+a1z−1+a2z−2+ · · ·+anaz−na, B(z−1) = 1+b1z−1+b2z−2+ · · ·+bnbz−nb,

and z−1 is the backward shift operator. Thus, the prediction is given by:

ŷ(t + k|t) = B(z−1)

A(z−1)
u(t + k|t). (2.2)

This representation is valid for unstable processes as well, and it has the advantage that a set of

few parameters are required, although a priori knowledge of the process is critical, especially

that of the order of the A and B polynomials.

State Space Model: the system is described by a linear discrete time model, called State Space,

and represents the dynamics of a nth order system as a first differential equation represented by a

N size vector. It has the following representation:

xt+1 = Axt +But , (2.3)

yt =Cxt +Dt , (2.4)

where, t denotes time, xt is the state (vector), ut is the input or control, yt is the output and dt

is the disturbance. All this terms are time dependent. A, B, C and D are constants of model

represented by matrices. In this work, the disturbance is not considered, i.e, D=0. A system that

can be represented by an nth order differential equation with r inputs and m outputs, A[nxn] is
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the state matrix, B[nxr] is the input matrix and C[mxn] is the output matrix. The prediction for this

model is given by:

ŷ(t + k|t) =Cx̂(t + k|t) =C[Akx(t)+
k

∑
i=1

(Ai−1)Bu(t + k− i|t)]. (2.5)

The state space model has the advantage of multivariable processes can be used in a straightfor-

ward manner. The control law is simply the feedback of a linear combination of the state vector

(CAMACHO; ALBA, 2013).

2.3.4.2 Optimizer

The future output y is calculated by optimizing a determined criterion to keep the

process as close as possible to the reference trajectory w(t + k). This criterion usually takes the

form of a quadratic function of the errors between the predicted output signal and the reference

trajectory. The control effort ∆u is included in the objective function in most cases. The general

expression for such an objective function is:

J(N1,N2,Nu) =
N2

∑
j=N1

δ ( j)[ŷ(t + j|t)−w(t + j)]2 +
Nu

∑
j=1

λ ( j)[∆u(t + j−1)]2, (2.6)

where N1 and N2 are the minimum and maximum prediction horizons and Nu is the

control horizon. The coefficients δ ( j) and λ ( j) are the future behavior, usually constant values

or exponential sequences are considered. An advantage of MPC is that the reference is known a

priori. Thus, the system can react before the change has effectively been made, avoiding delay

in the process response.

Regarding constraints, in practice, all processes are subject to them. Normally,

bounds in the amplitude and in the slew rate of the control signal and limits in the output will be

considered.

umin ≤ u(t) ≤ umax, ∀t, (2.7)

ymin ≤ y(t) ≤ ymax, ∀t. (2.8)

By adding these constraints to the objective function, the minimization becomes

more complex, so that the solution cannot be obtained explicitly as in the unconstrained case.
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2.3.4.3 Control Law

In order to obtain values u(t + k|t) it is necessary to minimize the objective function

J of Equation 2.6. To this end, the predicted outputs ŷ(t +k|t) are computed as a function of past

values of inputs and outputs and future control signals. An analytical solution can be obtained for

the quadratic criterion if the model is linear and there are not constraints. Otherwise, an iterative

method of optimization should be used. This is not a trivial task since there will be N2−N1 +1

independent variables. To reduce this degree of freedom a certain structure may be imposed by

the control law. This structuralizing of the control law produces an improvement in robustness

and in the general behavior of the system.

The control law structure is sometimes imposed by the use of the control horizon

concept (Nu) that consists of considering that after a certain interval Nu < N2 there is no variation

in the proposed control signals:

∆u(t + j−1) = 0, j > Nu. (2.9)

Quadratic programming methods have to be used in the presence of constraints.

However, an explicit solution does exist for certain types of constraints, for example, when the

condition that the output attains the reference value at a determined instant is imposed, this

method is used in Constrained Receding Horizon Predictive (CAMACHO; ALBA, 2013).

2.3.5 Related Work in Model Predictive Control

PAUL et al. (2016) present a framework for modeling and distributing the jobs among

geographically distributed data centers. This framework uses MPC based algorithms in order

to reduce the cost of electricity and to increase renewable energy penetration. Thus, the MPC

optimization function has three major goals. Firstly, it minimizes the electricity cost incurred by

the cloud provider. Secondly, it maximizes the renewable energy usage at all locations. Thirdly,

it minimizes the number of switchings of the servers. The MPC based framework was able to

appropriately address the issue of server switching and the adverse effects associated with it,

reducing the variance of an average cost of electricity in 15.12% to 20.74%. This result mitigates

the electricity price risk and represents a considerable amount of financial cost savings.

To address workload fluctuations on Apache Storm, FARAHABADY et al. (2016b)

propose an MPC-based schedule that improves performance with highly dynamic behavior.
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The controller allocates computing resources based on decisions that consider the future states

of non-controllable disturbance parameters, e.g., arriving rate of tuples or resource utilization

in each worker node while ensuring the required QoS for the individual data streams. The

MPC-based solution was able to response to changes in a variation of workload or resource

capacity, while it maintains the CPU cores utilization of active working nodes around 80% and

achieves an average of 31% improvement in resource utilization. However, the solution needs

to find an automatic way to manage situations where unusual burst streaming of data happens

abruptly.

The applications executing in virtual platforms compete for resources and interfere

with each others’ performance, resulting in their performance variability/degradation. FARA-

HABADY et al. 2016a present a dynamic resource allocation solution based on a model predictive

controller that aims at increasing the overall resource utilization of servers while achieving QoS

level demands by users. The solution improves the overall resource utilization (MIMO) by 32%,

without a significant impact on the QoS. Such improvement results in a fewer number of active

servers and in turn contribute to an overall energy saving by 33%.

ANGLANO et al. 2016 propose a dynamic vertical scaling resource management

framework, based on MPC fuzzy control. The control is able to dynamically adjust the CPU

and memory capacity allocated to each VM, in the face of nonstationary workloads and resource

contention, in order to precisely match the workload needs. The main advantage of authors

work is the controller takes decisions by considering, at each control interval, the interference

of dynamic memory adjustment on vCPU utilization, and the sign of the performance error. In

addition, this related work details the control parametrization. As in our work, the authors makes

use of RUBiS as multi-tier application; further, the authors also model MISO controllers. To avoid

the negative effects originated by the lack of coordination between CPU and memory allocation

the controllers interact in a cascade control strategy, whereby the MISO CPU Controller controls

the MISO Mem Controller, which takes that vCPU capacity as input. As a disadvantage, the

rule base design is challenging. Simple rules do not require complex computing, but they could

not manage the resources in an efficient manner. In contrast, achieve complex rules might be

difficult and time-consuming. In addition, they are more sensitive to the workload changes.

SONG et al. 2016 propose a hybrid solution composed of a rule-based control and

a model predictive control to find the optimal load distribution, which can lower the outlet air

temperature of servers. The inlet and outlet air temperatures of servers are important because
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they need cooling to operate reliably. The inlet temperature of the server is mainly affected

by the data center cooling system (stable). In contrast, the outlet air temperatures are largely

affected by the load assigned to the servers. An unreasonable allocation of the load will result in

high-temperature areas in the outlet aisle of the rack. The objective of our control strategies is

to minimize the maximum outlet temperature of servers. The rule-based control strategy was

making the fullest use of servers with low outlet air temperature. The MPC approach solves an

optimal load distribution while minimizing the maximum outlet air temperatures of servers and

maintaining the quality of service. The simulation results show a temperature drop between 0.5

and 1 centigrade degrees comparing to others literature approaches.

Dynamic environments like the cloud, in general, present non-linear and workload-

dependent behavior. However, PADALA et al. (2009) demonstrated that such behavior could be

approximated locally by a linear model (model simplicity), the online controller is periodically

re-estimated with real-time measures of the variables of interest, allowing the model to adapt

to a different operation and workload conditions. ZHU; AGRAWAL (2010) used MPC in their

proposal and show that it was able to adjust parameters so that the application maximizes resource

utilization with little overhead. In addition, the authors showed that the control model could

capture the application behavior in an accurate manner.

In practice, MPC has proved to be a reasonable strategy for resource management

in cloud environments. In general, we observe in the related works a lack of detail regarding

the controller parameterization, which compromises the reproducibility of the proposals. In

addition, in the MPC theory, the formal relationship between the input and output (transfer

function) is modeled to determine how the input affects the output. This formalization facilitates

the researchers’ practical use. The transfer function can be used directly in the controller for

testing and validation purposes.

2.4 Concluding Remarks

The workload modeling and characterization support simulation which brings bene-

fits to researchers and providers. The models allow for adjustments to fit particular situations,

controlled modification of parameters, repetitions of evaluation conditions, and generalization

of patterns found in the application, providing a controlled input for researchers. For cloud

providers, they allow the improvement of their systems QoS without deployment and execution

in large scale environments and production of trace logs based on realistic scenarios.
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However, workload modeling and characterization are especially challenging when

dealing with a highly dynamic and heterogeneous environment, such as cloud data centers,

contributing to the lack of methodologies to characterize the different behavioral patterns of

cloud applications.

The prediction of resource demand directly helps the system to adjust the resources

dynamically to fulfill the QoS requirements. Therefore, reactive systems might not be able to

scale in case of sudden workload bursts because it takes several minutes to deploy or migrate

a VM image. In view of this, efforts should be redirected towards developing proactive auto-

scaling systems able to predict future needs and acquire the corresponding resources with enough

anticipation.

The knowledge acquired in this chapter allowed to understand the choices made in

the next chapter. As the planning of this work, the following chapter presents the workload

profiling methodology and the prediction approach used.
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3 CLOUD WORKLOAD MODELING AND PREDICTION

In this chapter, we present the proposed workload modeling methodology, discussing

all the steps to achieve the statistical models that represent the workload. After, we introduce

the model simulation through graphical and statistical hypothesis test approaches. Finally, we

show the model predictive control responsible for taking corrective actions based on predictions

to maintain the QoS acceptable with an efficient resource utilization. This controller counts on

the state space model predictor to estimate the application performance given support resource

allocation policies.

3.1 Workload Modeling Methodology

Figure 4 presents the methodology used to create the performance models of appli-

cations (MAGALHAES et al., 2015). The modeling begins with the measured data about the

workload. The workload is composed of requests submitted by Users. These requests generate

a Demand to the application server present in Cloud. The requests are processed by server

meanwhile the metrics of interest are Monitoring and Tracing, and stored in a Trace Data.

After the experiments, the Statistical Analysis enables the understanding and quan-

tification of the characteristics of data. Then, a Performance Modeling is conducted to reach the

statistical models that represent the application performance for a specific scenario.

The Performance Modeling consists of finding the mathematical functions (statistical

distributions) that are capable of representing the observed metrics. The modeling process

is composed of three steps: (i) exploratory analysis (Section 3.1.3), (ii) parameter estimation

(Section 3.1.4) and (iii) GoF tests (Section 3.1.5), as shown in Figure 5. The first one analyzes

the data characteristics and determines the candidate distributions to represent the model. The

second step uses estimation methods to set the parameters of the model based on the collected

samples, given the selected distribution chosen in advance. In the last step, the tests are composed

of graphical and analytical methods to evaluate whether the distributions and their respective

parameters provide approximation satisfactorily to the empirical data.

Therefore, the Statistical Models are created from the trace and used for either

Prediction or Simulation. In the Simulation case, the Statistical Models are used as input to

generate the users behavior that will be integrated with the set of classes that represent the

application’s entities modeled in the cloud infrastructure simulator (CALHEIROS et al., 2011)
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Figure 4 – Workload modeling scenario (adapted from (FEITELSON, 2014)).

Figure 5 – Workload modeling process.

and, finally, the proposed model can be validated.

In the Prediction case, Statistical Models can be used to build a performance predictor

to assist policies for management and provisioning of resources and energy saving for this class

of application. Moreover, the performance of the application can be examined in different

scenarios through the insertion and adjustment of parameters in the model.

The methodology proposed in this work define how to achieve performance models

with a set of rules, methods, and a Process. To this end, we instantiate the process with a well

defined steps described in the Figure 5. All steps will be described in the following subsections.
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3.1.1 Experimental Design and Setup

This step includes the definition of application and metrics to be observed. Also, it

comprises the testbed configuration and experimental design definition.

3.1.2 Monitoring and Trace

This step includes the definition of monitoring tools and configuration. Also, it

comprises the implementation of gathering scripts, and definition of data organization scheme.

3.1.3 Exploratory Analysis

Understanding the characteristics of the available sample is important to decide in

advance which distributions better approximate the collected data. In this direction, the first

step is to identify the variables types, for example, discrete and continuous or qualitative and

quantitative.

Since the data are quantitative, descriptive statistics such as mean, standard deviation

and kurtosis provide a way to characterize the data as to their shape, location, and dispersion.

They also offer an interesting way to summarize them. Such description is necessary to assist the

choice of possible distributions that can provide a good fit to data sample.

Many statistical techniques used to, for example, estimate parameters, validate the

adherence of the data to the model, assume that the data are normal. Therefore, it is interesting

to perform a pre-processing data. Then, the data normality has to be verified via normality tests.

Holding the results, changes could be made to modify the data scale to make the normality

assumption plausible.

3.1.4 Parameters Estimation

The identification of patterns in the observed data supports the modeling of appli-

cation. In this work, the patterns are modeled in the form of statistical distributions. This

section describes the set of steps used to find a mathematical function capable of representing

the observed metrics, exploratory analysis, parameter estimation, and goodness of fit tests.

Thus, the target metric has n observations, x1,x2, ...,xn, from an unknown population.

The goal is to find the probability density function (pdf) f (x,θ), where θ is the vector of

parameters estimated from the available sample, that represents the data adequately.
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After choosing the distributions that can represent mathematically the data, it is

necessary to estimate the parameters of the models. One option is to calculate the moments

of the sample and use them as estimators for the moments of the distribution. However, this

approach is highly sensitive to outliers, especially for the third and fourth moments, what limits

its utilization in the case of distributions used in this work (FEITELSON, 2014; CHALABI et

al., 2012b).

Different estimation methods are presented (CHALABI et al., 2012b) :

• MLE: considering n independent observations x1,x2, ...,xn from a sample belonging to a

distribution defined by a set of parameters θ of the probability density function f . The

mle consists in the determination of values of θ that maximize the log-likelihood function

defined by

θ̂ = argmax
θ

n

∏
i=1

ln( f (xi;θ)). (3.1)

• Histogram Fitting (HF) : the observed data is represented in the form histogram and the

probabilities at the midpoint of their bars are fitted to the GL density function. The method

Freedman-Diaconis (FREEDMAN; DIACONIS, 1981) is used in order to define how

many bars of histogram should be considered in order to obtain the best fit. This is a robust

method based on the inter-quartile range;

• Quantile Matching (QM) : this method consists of finding the parameter values that

minimize the difference between the theoretical quantiles and sample quantiles. Given

a set of probabilities, p, as a sequence of values in the range 0 < p < 1. The quantile

matching method is defined by the cumulative probability distribution F with a set of

parameters θ determined by

θ̂ = argmin
θ

1
n

n

∑
i
(F−1(pi|θ)−Q(pi))

2, (3.2)

where n is the cardinality of p, F−1(p|θ) is the quantile function of GL distribution, and

Q is the quantile function of the sample number of observed instructions.

• Probability Weighted Moments (PWM) (GREENWOOD et al., 1979): this method is

a generalization of the method of classic moments with better performance, where the
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weighted probability moments of a random variable X , with cumulative distribution

function F and set of parameters θ , is defined by

M(p,r,s) = E[X p(F(X))r(1−F(X))s], (3.3)

where p, r and s are real positive numbers. When r and s are integers, Fr(1− F)s

can be expressed as a linear combination of powers of F or powers of (1−F), ergo,

the distribution is summed through the moment M(1,r,0)(r = 0,1, ...) or the moment

M(1,0,s)(s = 0,1, ...). Assuming the notation M(1,0,s)(s = 0,1, ...) used by Hosking et

al. (HOSKING et al., 1985), we have

µs = E[X(1−Fθ (X))s],s = 0,1,2, ... (3.4)

The estimator of the first moment is found by simply assigning the value 0 to s and

replacing µ0 by the value obtained by calculating the first moment of the sample of data.

The same process is also used for estimation of the other moments.

• Maximum Product of Spacing (MPS) Estimator (CHENG; AMIN, 1983): the parameter

estimates are the values that make the spacing between the cumulative distribution func-

tions of the random variates equal. This method is more successful than mle because it is

equivalent to maximizing the geometric means of the probability spacing.

3.1.5 Goodness of Fit

Once the selected parameters and their distributions are known, the next step is

deciding which model fits to the data through the GoF tests. The GoF statistics check whether

the empirical and theoretical data belong to the same distribution. In this study, two methods are

used to assess if the selected distributions provide a good fit to the data: one graphic method

using the Quantile-Quantile (Q-Q) plots, and one analytical method using the KS test.

3.1.5.1 Quantile-Quantile Plots

The Q-Q plots technique consists of calculating empirical and theoretical distribution

quantiles and plotting one in terms of the other. If the distributions are equal, the points on the

graph are equidistant from the ordinates and abscissas axis, leading to a 45 degrees inclination

straight line (FEITELSON, 2014).
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In addition to checking whether two data sets belong to the same distribution, Q-Q

Plots method allows one to check other aspects simultaneously, for example, the presence of

outliers.

3.1.5.2 Kolmogorov and Smirnov Test

The KS test evaluates the hypothesis that the observed data belongs to a population

that follows one or more probability distributions. The test can be defined as the hypotheses: (i)

Null Hypothesis (H0): the observed data follows the specified distribution and (ii) Alternative

Hypothesis (Ha): the observed data does not follow the specified distribution. This test calculates

the maximum deviation (D) between the cumulative distribution functions of empirical and

theoretical data, for all samples (FEITELSON, 2014):

Dn = max
i=1...n

{|1
n
−F(x(i))|, |F(x(i))−

i−1
n
|}, (3.5)

where F(x) is the theoretical distribution, and n is the sample size of the data

observed. In general, the value of D is compared with a threshold called critical value to

determine if the null hypothesis is accepted or rejected. If the maximum deviation is less than

the critical value, the null hypothesis is accepted. Otherwise, it is rejected. The critical value

is extracted from predefined tables (STEPHENS, 1974), according to the sample size (n) and

the significance level (α) determined. In this work, we fix the sample size n = 100 and the

significance level at α = 0.05.

3.2 Simulation

The statistical models should be implemented as an extension of a Cloud simulator.

Validation will be realized to show that the simulator is able to represent the observed data

accurately. Model Predictive Control does not designate a specific control strategy but rather an

wide range of control methods which make explicit use of a model of the process to obtain the

control signal by minimizing an objective function.

The graphical and statistical hypothesis test approaches were used to evaluate the

accuracy of the model in the simulator by comparing the simulated against the observed data.

The Wilcox Mann-Whitney (WMW) hypothesis test (GOLD, 2007) consists of evaluating

the hypothesis that the simulated data belong to the population that follows the probability
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Figure 6 – Resource management sequence.

distribution of the observed data. If p−value > α , the hypothesis cannot be rejected. Otherwise,

the null hypothesis is rejected. The level of significance was set at α = 0.05 for all the tests.

3.3 Prediction

An efficient resource management is essential to avoid under and over provisioning

of resources. The resource management comes from the workload monitoring to the resource

provisioning policy. In this context, workload profiling is useful since it can produce workloads

with different intensities of the fluctuations and the burstiness. This improves the prediction

methods adaptability and accuracy because such methods can be evaluated under different

workloads (AMIRI; MOHAMMAD-KHANLI, 2017). Therefore, the statistical models generated

as a result of the methodology proposed in this thesis are inputs to the model prediction control

which adjusts the resource utilization values to maintain the application response time within an

acceptable QoS. Such estimated values can be directly used by the resource provisioning policy

to guide its decision making, as shown in Figure 6, whose the highlighted boxes represent the

steps covered by this thesis. According to Section 2.3.5, there is a lack of detail regarding the

controller parameterization. The greatest MPC drawback is the need for an appropriate model of

the process to be available. The control performance is directly affected by the discrepancies

existing between the real process and the model used.

3.3.1 Cloud Scenario

In this thesis, it was considered a representative application that runs on today’s

virtualized infrastructures, a 2-tier Web application that implements an auction site prototype

modeled as eBay.com. The CPU, memory and disk utilization is monitored on the application

server at VM in order to verify the behavior of the use of physical resources while processing

requests from a user. Our system consists of a MISO model shown in Figure 7, where we have
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Figure 7 – MISO system.

three inputs: u1, corresponding to the CPU; u2, corresponding to memory; And u3 corresponding

to the disk. The system has the response time as output y as well.

Dynamic resource allocation in the cloud depends on virtualization technologies.

The VM provisioning technology is able to provide a VM in minutes. The streaming VM

technology allows for a VM preview before it is entirely prepared but still take time until a

proportion of it is ready. The rapid VM cloning technique allows a VM to be created in seconds.

However, the VM preparing involves software installation, automatic patching, security checking,

thus, the acceleration of VM creation cannot reduce the overall waiting time significantly. Such

technologies take around 10 minutes to create a VM and make it fully operational. Our prediction

window was set in 1200 milliseconds. Thus, the actions taken by the resource provisioning

strategy can be fully completed and considered before further provisioning decisions are made.

In our model, the reference trajectory is set to response time value that does not

compromise the QoS. In literature, IQBAL et al. 2010 adopt an SLA that enforces one-second

maximum average response time requirements for static and dynamic resources of the RUBiS

application. WANG; WANG (2011) select 700 ms to the set point of the response time controller.

BODIK et al. (2007) define the 99th percentile of response times is less than 300 ms. So, our set

point is fixed in values between 300ms to 1000ms.

ZHU et al. (2009) have performed experiments with the same 2-tier Web application

adopted in this work. They found a behavior which is consistent with the application being

CPU-bound. Our experiments corroborate these results. Therefore, we attribute the biggest

weight to the CPU comparing with memory and disk utilization.

3.3.2 Model Assumptions

Linear Model: in general, clouds present non-linear behavior, however, PADALA et al. (2009)

demonstrated that such behavior could be approximated locally by a linear model, which

facilitates optimization as well as off-line analysis of expected closed-loop controller behavior.
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Disturbance: a disturbance model describes the behavior not reflected by the process model,

including the effect of nonmeasurable inputs, and model errors. In this work, the disturbance

was disregarded, so the value zero is assigned to the constant in the model described in Equation

2.4 (D = 0);

Noise: we assume only the presence of white noise in the input and output channels. It is

generated such that the standard deviation of each measurement is approximately 1% of its

original value under normal operating conditions.

3.4 Concluding Remarks

A well-defined methodology is described in this chapter to obtain statistical models

in a realistic manner in three steps: an exploratory analysis, parameter estimation and good of

fitness test. The exploratory analysis is critical to define a good distribution group candidate to

represent the data. Also, different parameter estimation methods are presented which is crucial to

achieving realistic models, since different methods can offer more robust parameters to a specific

distribution, offering a more accurate model. Finally, it is interesting to use graphic and analytic

methods to support the decision if two data sets belong to the same distribution.

Since performance models allow predicting of how the application patterns will

change, we present the MPC as a solution that estimates resources utilization while maintaining

this estimation inside an output trajectory (response time, execution time) acceptable in QoS

perspective.

Reactive systems might not be able to scale in case of sudden workload bursts

frequently present in the cloud. Such environments, in general, present non-linear and workload-

dependent behavior. Therefore, proactive auto-scaling systems capable of make decisions with

enough anticipation are needed. The MPC offers a local approximation of system behavior via

a linear model. Furthermore, the controller is periodically updated with real-time measures,

allowing the model to adapt to workload conditions. Thus, the MPC is capable of represents a

complex system in a simple manner.
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4 MATERIAL AND METHODS

To achieve the workload modeling methodology, a series of decisions must be

made in advance, such as: defining the workload (Web and scientific applications) used and

which characteristics should be modeled (Sections 4.1 and 4.2), setting the environment of

experimentation (Sections 4.1.4 and 4.1.4), determining which metrics are evaluated and how

data should be collected (Sections 4.1.2, 4.1.3 and 4.2.2). In addition, this chapter describe the

decisions, statistical tests and methods used to achieve the performance models (Section 4.3).

Moreover, this chapter presents a study case where an implementation of the Web application

model (Section 4.4) is developt as an extension of the CloudSim simulator (CALHEIROS et al.,

2011) to predict CPU performance to support energy efficiency domain.

4.1 Monitoring and Tracing: RUBiS

The workload behavior can be expressed by the type and amount of resources that

it demands. Currently, different workloads are running in the cloud, such as: Web Serving,

scientific HPC, social networking, and gaming, among others. FOSTER et al. (2008) emphasize

that the cloud environment is suitable for interactive real-time applications. However, researchers

have been focusing on provisioning and scheduling techniques for batch applications while

cloud resource management in interactive applications is not as explored (GROZEV; BUYYA,

2013; DUONG et al., 2012). In view of this, we utilize the reference RUBiS 1 benchmark in

order to evaluate the impact of the user in the resources consumption patterns. In the context

of cloud computing, it has been employed in the construction of a performance model of a

3-tier application in cloud environments (GROZEV; BUYYA, 2013) and on the evaluation of a

Benchmark-as-a-Service platform, enabling the determination of the bottleneck tier and to tune

the Java Enterprise Edition (JEE) servers to improve application performance (TCHANA et al.,

2014). The methodology is not limited to Rice University Bidding System (RUBiS) and it can

be extrapolated to other workload categories. Feitelson (FEITELSON, 2014) discusses several

use cases covering different workloads, where the methodology can be applied.

The RUBiS benchmark is an auction site, based on eBay.com, implementing func-

tionalities, such as selling, browsing, and bidding. It is widely used in the literature to evaluate

the scalability of application servers. This benchmark is composed of the RUBiS Client and
1 http://rubis.ow2.org/
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Tomcat and MySQL servers. The Client is responsible for simulating the user’s behavior by

generating requests that are processed by the servers. User’s behavior comprises different interac-

tions.Among them, search for items by category or region, buy or sell items, postcomments, etc.

The RUBiS Client provides two user profiles: browsing profile,including only read interactions

with the database, and the bidding profile,which includes 85% read and 15% reading and writing

in a database(CECCHET et al., 2003).

An e-commerce Web application has an interesting feature that is the dependencebe-

tween user actions, i.e., a particular action depends on the previous one. For example, a user

can not buy a product that has not been selected. RUBiS represents this characteristic through a

hierarchical model based on Markovchain (BOLCH et al., 2006), where there are tables specify-

ing the probability of a user who is on a given page, to visit another page or exit the system. In

this work, we achieved the inter-dependence between actions by a generative hierarchical model,

which mimics the process that generates the observed behavior (FEITELSON, 2014).

Since the load is generated by the users, we create a model that simulates the dynamic

behavior of the users using the system. Such behavior involves the concepts of user population,

user session, and think time. The user population is the set of users who are interacting with the

system at the same time. It covers the model of arrival of new users as well as the residence time

in the same system. Thus, the user population defines the sizes of user sessions. The residence

time from users in the system is variable and fluctuates around a certain value (FEITELSON,

2014). Our experiments involve a single user, however the population size and arrival model of

new users are parameters of the proposed model, so they are easily configured.

The user session consists of the pattern of a user’s activity during the period that

she uses the system. In the case of e-commerce, this pattern is a sequence of request, such as

interactions of searching, adding to the shopping list, and making a purchase. The time interval

between two requests of the same session is called think time (FEITELSON, 2014). The intensity

with which the user uses the system is determined by user profile (browsing or bidding). RUBiS

reproduces the think time by negative exponential distribution with mean equals to 7 seconds, as

defined by TCP-W benchmark (MENASCE, 2002). It uses the same distribution for setting the

session time of the user in the system but, in this case, the mean of distribution is equal to 15

minutes.



56

Table 4 – Private cloud: Physical sever and VMs specifications
Instance Name Configuration
Rubis Client m1.small | 2GB RAM | 1 VCPU | 20GB Disk

Servers m1.medium | 4GB RAM | 2 VCPU | 40GB Disk
Physical Server 64GB RAM | 12 VCPU (Xeon 6C E5-2620) | 2.1TB Disk

4.1.1 Testbed Configuration

The experimental environment consists of a private cloud comprising 3 high-performance

servers interconnected through a Gigabit Ethernet switch. The management of physical resources

is accomplished via OpenStack 2 (Grizzly), which provides compatibility with Amazon EC2 and

S3, thus allowing for migration of applications between these platforms. Our experiments have 2

types of VMs, small and medium, whose hardware configurations are described in Table 4. For

compatibility with the monitoring tool Bro (PAXSON, 1999), the RUBiS version 1.4.3 is used.

The client VM is configured with the RUBiS Client, which contains the load gen-

erator. The server VM hosts a Linux, Apache, MySQL and PHP (LAMP) stack. The Linux

version on the server is the same used on the client (Ubuntu 12.04.2 LTS).We opted for the multi-

threaded version of Apache Web server (2.2.22) because it is faster and consumes less memory

in most situations (ZERIGO, 2014).The MySQL relational database (14.14) is configured with

a maximum number of connections equal to the number of virtual CPUs on the server VM.

Finally, we use version 5.3.10 of the PHP scripting language. This VM also hosts the Apache

and MySQL servers. The monitoring tools running both the client and the servers are detailed in

Section 4.1.2.

4.1.2 Servers Metrics

The metric CPU is monitored on the server in order to verify the behavior of the use

of physical resources while processing requests from a user. These data are essentially important

to define a profile of resource utilization, which assists directly in the management of physical

resources. The monitoring of resources is accomplished through the Linux sysstat package

(SYSSTAT, 2013), which provides the “sar” tool. This tool allows for monitoring of individual

resources, including CPU utilization (%) per core. The sampling interval was set to 1 second for

all monitored resources.

Another metric observed on the server is the number of instructions. The RUBiS
2 http://www.openstack.org/
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benchmark randomly generates the size of user session from a negative exponential distribution.

This value is static for any CPU that processes the session. Changing this to time, according to

the CPU clock, is reasonable if all CPUs have the same characteristics (architecture, core number,

manufacturer, etc.). In the case of the characteristics of CPU from VMs are heterogeneous,

estimating the execution time is a difficult task. Therefore, the aim of capturing this metric is to

create a model to characterize the user session in terms of the number of instructions executed,

Million Instructions Per Second (MIPS). Thus, the session execution time will vary according to

the processing capacity of the hardware.

Two services are directly affected by users requests in the servers (MySQL and

Apache). Thus, we measure the total number of instructions performed by these services during

the execution of a user session. To this end, we made use of the Pin instrumentation framework

(LUK et al., 2005) that offers a tool called “inscount” able to count the number of instructions

used by an application.

4.1.3 Client Metrics

One of the main motivations for the use of Benchmark is the ability to measure the

QoS experienced by users in several controlled and repeated scenarios. However, a recent study

(HASHEMIAN et al., 2012) shows that the response time presented by the RUBiS Client is very

inaccurate due to the Java Virtual Machine (JVM) version and the TCP connection management

policy provided by Java networking library used by the benchmark. In order to work around the

problem, we use a more current JVM (1.7) and measure the response time by a set of independent

tools, i.e., we do not consider the response time reported by the RUBiS Client. To this end, we

adopt the same definition and methodology for monitoring response time proposed in this study

in order to obtain a realistic measure and avoid erroneous conclusions. In this thesis, the QoS is

evaluated through the response time, which is a metric of interest for Web applications, that must

respond to users in a timely manner. This information is useful for decision making with respect

to resource management and provisioning.

Once the connection between client and server is established, the client sends an

HyperText Transfer Protocol (HTTP) request to the server, which in turn confirms the arrival of

the request through an acknowledgment package. After processing the request, the server sends

the HTTP response via one or more packets. The time between the delivery of the HTTP request

and receiving the first packet of the HTTP response is called reply time. The time to transfer all
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Table 5 – Experiment # 1 - RUBiS client configuration
Configuration Value

Number of Clients 1
User Profile Browsing/Bidding

Session Run Time 15 minutes
Think Time 7,8 seconds

Up Ramp Time 2 mim
Down Ramp Time 1 mim

the packets that constitute the HTTP response is called transfer time and the response time is the

sum of the reply time and transfer time. We use the tools “tcpdump” (TCPDUMP/LIBPCAP,

2013) and “Bro” to measure the response time of HTTP requests experienced by the user.

4.1.4 Experimental Design

To accurately model the impact of user behavior on the processor, we define the total

number of instructions that are executed and how they arrive in the processor over the course

of a user session. Therefore, we observed the CPU utilization behavior during the user session,

which is the second metric analyzed in this study.

The sample of the two observed metrics was obtained through 100 executions of the

same experiment, which consists of the submission of requests from a single client to Apache

and MySQL servers. The data is captured throughout the processing of the user session on the

server. This process is repeated for the two user profiles presented by RUBiS. The RUBiS Client

was configured using the parameters presented in Table 5. Considering a multi-tier application in

a cloud environment, LLOYD et al.(2013) show that that the inter-tier network impact on the

overall performance variability is negligible compared to the impact of the CPU load. Therefore,

since Apache and MySQL are in the same VM, the effect of internal network is not considered

in our model.

4.2 Monitoring and Tracing: LisaMini

The cloud environment hosts multiple purposes applications, from running batch jobs

to Web applications, which have heterogeneous and competing QoS requirements (CALHEIROS

et al., 2011). Vondra and Sedivy (VONDRA; SEDIVY, 2013) indicate an efficient way to

maximize the resource utilization of cloud computing infrastructure through the mix of interactive

and non-interactive workloads. To address a realistic and efficient scenario, we adopted a
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heterogeneous mix composed for a non-interactive (scientific application) and an interactive

(web application) workloads:

The lung and lower respiratory infections diseases are in the top major killers during

the past decade. Furthermore, lower respiratory infections are the higher cause of death in low-

income countries 3. In this scenario, the LisaMini workload consists in the use of computational

vision techniques for lung segmentation from chest Computerized Tomography (CT) scans. This

tool supports the diagnosis, assessment of lung disease progression and responses to treatments.

The LisaMini procedure is as follows: the patient exam images are loaded, then the

lung segmentation is performed and, finally, quantitative data of segmentation are calculated

(volume, density, a percentage of lung aeration) and stored in a log, as a batch application. There

are no user interaction and no network communication during the LisaMini execution. The

LOLA11 4 set of chest CT scans is processed by LisaMini.

4.2.1 Testbed Configuration

The images processing and segmentation time are essential for a fast diagnosis.

Consequently, if there is an emergency demand, the elasticity provided by the computational

clouds allows for you to expand the number of resources allocated to minimize the processing

time. In addition, the cloud provides a robust infrastructure where the application is available

at any time. All monitoring experiments were performed using three different instances of

Microsoft Azure, such as A2 (4 cores, 7GB of memory), A0(1 core, 1.75 GB of memory), and

A1(2 cores, 3.5 GB of memory). Theses instances were setting with Linux (Ubuntu 14.04 LTS).

4.2.2 Metrics

Six different operational metrics were monitored in order to verify the physical

resources usage patterns during the application execution: (i) CPU utilization, consists of CPU

utilization percentage promoted by user processes and system, taking into account all core

instance. Once the environment is dedicated, the impact on the system CPU consumption is

small; (ii) CPU I/O wait corresponds to the CPU percentage which is waiting for I/O operations,

considering all instance cores; (iii) memory utilization, percentage of memory used; (iv) memory

swap, percentage of swap memory used; (v) disk read rate, number of disk sectors read per
3 http://who.int/mediacentre/factsheets/fs310/en/
4 http://lola11.com/
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second; (vi) disk write rate, number of disk sectors written per second. The network was not

taken into account as the application does not use this resource. The disk read and write rate is

important to plan the input-output operations per second (iops) of the storage system that can be

sustained. These metrics are essentially important to define a profile of resource utilization and

their monitoring was accomplished through the Linux sysstat package 5.

4.2.3 Experimental Design

4.2.3.1 Monitoring Experiments

The unpredictability of the cloud application performance is a challenge for re-

searchers and providers (ARMBRUST et al., 2010). Different factors can interfere in the

performance variation, such as location, instance type, processor models, resources not virtual-

ized, daily cycle, week cycle (SCHAD et al., 2010). In this way, the LisaMini application was

performed for lung segmentation of 10 patients from the LOLA11 set of chest CT scans (11-20),

while operating metrics are monitored and stored in logs. The number of 10 patients was chosen

in order to ascertain the difference in processing patterns of different patients.

Herein, the instance types and location factors were considered, resulting in the two

experiments. Table 6 summarize the experimental design.

Experiment 1 (Different instances): 3 Azure’s instances were considered, all of

them, located in the Western United States to address the question “Do different instances affect

the resources usage patterns sufficient to justify specific models for each of them?”

Experiment 2 (Different locations): 2 instances (A1, A2) were started in 3 loca-

tions (East USA, Occidental Europe, Southeast Asia) to address the question: “Do different

locations of the same instance affect the resources usage patterns sufficient to justify specific

models for each of them?”

The sampling interval was set to 1 second for all monitored resources. The observed

metrics figures represent the median of 5 executions of the same experiment. The median was

selected by reason of to be a more robust statistic that average, i.e., less susceptible to outliers.

A larger number of executions were collected, but all patterns were identified in 5 executions.

The average statistics (µ) and variance (σ2) were used to assist the resource usage patterns

comparison in the experiments. Regarding the metrics, the change in the number of patients only
5 http://sebastien.godard.pagesperso-orange.fr/
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Table 6 – Experimental design.
Characteristics Description
System Microsoft Azure (A0, A1, A2 instances)
Metrics CPU utilization, CPU I/O wait, memory utilization,

memory swap utilization, disk write rate, disk read
rate

Fixed parameters Experiment 1: workload, location; Experiment 2:
workload, instance (A1 and A2)

Configurable factors Experiment 1: instances (A0,A1,A2); Experiment 2:
location (East USA, Western Europe, Southeast Asia)

Evaluation technique Measurements
Workload LOLA11 (11-20)
Data analysis Interpretation of normality testes, shape characteristics,

graphics, the median behavior of operational metrics
Results presentation Tables, histograms, line charts, qq-plots, density plots

impacts in time execution. No additional pattern was found.

The swap memory consumption remained zero during application execution in all

experiments. Thus, its behavior is not shown.

4.3 Workload Profiling

4.3.1 Exploratory Analysis

Understanding the characteristics of the available sample is important to decide in

advance which distributions better approximate the collected data. We performed an exploratory

data analysis through the statistics summarized in Table 9.

Since the data is quantitative, one way to characterize them is to capture the sample

location measurements. These measures give an idea of how the data are concentrated in relation

to a central measure, such as the mean and median. Measures of dispersion and shape, such as

skewness and kurtosis, are also used.

In the direction of the goal, the first step was to identify the variables types. All

metrics observed in this study are quantitative and continuous. Then, the data normality was

verified via the Shapiro-Wilk’s test (SHAPIRO; WILK, 1965). Holding the test results, the

changes were made in order to change the data scale to make the normality assumption plausible.

Finally, the log, square-root, and inverse transformations were applied to data.
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Table 7 – Descriptive statistics: location, dispersion and shape.
Statistic Type

minimum location
1st Quartile location

median location
mean location

3rd Quartile location
maximum location

std. deviation dispersion
skewness shape
kurtosis shape

4.3.2 Parameters Estimation

Since the characteristics of the sample are known, the distributions candidates are

selected considering both user profiles. The Generalized Lambda (GL) distribution is able to

represent different shapes, including those with negative skewness (RAMBERG; SCHMEISER,

1974). Therefore, we use it as an alternative to represent the observed number of instructions.

The GL is a generalization of the four parameters of lambda distribution family (HASTINGS et

al., 1947): the first parameter is the location, represented by the median (µ), the second parameter

is the scale, represented by the inter-quartile range (σ ), the last two parameters are related to

shape, featuring the skewness (α3) and the steepness of the distribution (α4), respectively.

The GL parameterization used in this work was proposed by CHALABI et al.

(2012a), where the parameters of location and scale are defined in terms of the related quantile

statistics. The advantage of this parameterization is that it reduces the empirical data parameter

estimation to the problem of estimation of two parameters since the parameters of location and

scale can be directly estimated from their robust sampling estimators. The quantile of the sample

can always be estimated even when there are no moments of the distribution.

Another alternative selected is the Generalized Extreme-Value (GEV) distribution

(JENKINSON, 1955), widely used in the literature to model natural phenomena, especially in

the field of hydrology (HOSKING et al., 1985; MARTINS; STEDINGER, 2000). Moreno et al.

(MORENO et al., 2013) use GEV to model the consumption of CPU and memory from the data

provided by the Google MapReduce Cloud TraceLog (REISS et al., 2011). This distribution has

three parameters, location (µ), scale (σ ), and shape (ξ ) and can represent a variety of forms that

include three different distributions: (i) Gumbel, when ξ = 0, (ii) Frechet, when ξ < 0, and (iii)

Weibull, when ξ > 0.
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In order to represent the CPU utilization, 21 different continuous distributions with

positive skewness were analyzed for different user profiles, including the Generalized Pareto

Distribution (GPD). The GPD is widely used in finance, analysis of extreme events, and reliability

studies (HOSKING; WALLIS, 1987; EMBRECHTS et al., 1997). It has 3 parameters: location

(µ), scale (σ ) and shape (ξ ). This distribution has three parameters, location (µ), scale (σ )

and shape (ξ ) and it includes three different distributions as special cases: (i) Exponential,

when ξ = 0, (ii) Pareto, when ξ < 0, (iii) Uniform, when ξ = 1. For comparison, the estimate

parameters for the exponential distribution, location (µ) and scale (σ ), also are presented.

For comparison purpose, the parameters of the Normal distribution(symmetric),

location (µ) and scale (σ ), and Gumbel distribution(positively skewness), location (µ) and scale

(β ) are also estimated by the method of maximum log-likelihood.

The packages “fitgl” (CHALABI et al., 2012a) and “fExtremes” (COLES, 2001)

from the statistical tool R (R Core Team, 2013) are used for estimation of the parameters of GEV

and GL, respectively.

After choosing the distributions those that are able to represent the data mathemati-

cally, it is necessary to estimate the parameters of the models.

4.3.3 Goodness of Fit

In order to perform the GoF tests, the statistics verify whether the empirical and

theoretical data belong to the same distribution. In this study, two methods are used to assess if

the selected distributions provide a good fit to the data: one graphic method using Q-Q plots, and

one analytical method using KS test.

The KS test has an important limitation: the parameters from F(x) must be known in

advance and not estimated from the observed data, as performed in this work. There are special

tables that can be used in such cases. However, these tables exist only for a restricted set of

distributions (STEPHENS, 1974).

In order to circumvent this limitation, we used the bootstrapping provided by the

Matching (SEKHON, 2011) package from the R statistical tool. The bootstrapping process

starts with the calculation of the value of D from the original data. After that, 100 samples

are generated with replacement from F(x) and, then, the KS test is calculated. The sampling

followed by calculation of the KS test is repeated 1000 times in order to build the distribution of

D̂. Thus, the originally calculated value of D is located in the distribution of D̂. If D drops in the
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distribution body or p− value > α , the null hypothesis cannot be rejected. Otherwise, D fall

into the tails of the distribution, p− value < α , the null hypothesis is rejected.

4.4 Model Simulation and Validation

Validation is performed to show that the simulator is able to represent the observed

data accurately. CloudSim is a toolkit that enables modeling and simulation of cloud computing

systems and environments, including data centers, service brokers, provisioning, and allocation

policies. The energy modeling in CloudSim allows for switching on/off of hosts and virtual

machine migration for energy savings and integration of energy models. Furthermore, it provides

the simulation of the five different modes of DVFS (Dynamic Voltage and Frequency Scaling)

from the Linux kernel.

Thereby, the application modeling was developed in CloudSim because this simulator

contains abstractions for representing cloud infrastructures, power consumption, and it allows

energy-aware simulations, especially using DVFS.

4.4.1 Workload Generation

The process of generating the load simulator is shown in Figure 8, all classes

presented by the Workload Generation were implemented in this work and extends the CloudSim.

At the start of the simulation, the ECommerceApp class is instantiated with the parameters number

of users and arrival rate of users, which can be a fixed value or generated by a distribution, and,

finally, the user profiles (browsing and bidding). With these parameters, the ECommerceApp

instantiates the UBehavior class responsible for encapsulating the users behavior. This behavior

is defined by the statistical distributions that represent the total number of instructions and CPU

utilization, presented in Section 5.1.3. The models are developed using the R statistical language

(R Core Team, 2013) that communicate with CloudSim through the REngine library.

Once the user’s behavior, i.e. the number of requests and their arrival time and size in

terms of a number of instructions, is known, a USession is instantiated for each user. Afterwards,

USession instantiates the set of Request that will compose it. In each simulation step, one or

more requests are processed until all have been completed.
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Figure 8 – Workload generation diagram.

4.4.2 Simulation Validation

The WMW statistical hypothesis test, described in the Section 4.4 was used to

evaluate the accuracy of the model in the simulator.

The simulations were conducted in a simulated cloud computing data center environ-

ment provided by CloudSim, whose hosts and VMs follow the same configuration described in

Table 4. The simulation is set according to the scenario where data was collected (see Session

4.1.4). Thus, it is the submission of requests by a single user that is processed by the application

server, in this case, the VM. The duration of the session was set according to Table 5 and each

experiment consisted of 1000 rounds of simulation.

4.5 Prediction and Control

The relationship formalization between the input and output is crucial to determine

how the input affects the output. The Fast Fourier Transform (FFT) is used in this work to

estimate the transfer functions. It identifies patterns in the time series corresponding to inputs

and output. The FFT decomposes a signal time series into components of different frequencies.

The dominant frequencies will correspond to the repeating patterns (LORIDO-BOTRAN et al.,

2014). The result is presented as follows:

T Fresptime|CPU =
−1397s + 2.379e04

s2 + 21.31s + 12.6
, (4.1)
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T Fresptime|mem =
−2.062e04s3 − 1594s2 − 7016s + 80.82

s4 + 6.645s3 + 2.589s2 + 2.385s + 0.5684
, (4.2)

T Fresptime|disk =
−4.112e06s3 − 3.035e05s2 − 1.114e06s + 2.088e05
s4 + 3.141e04s3 + 3384s2 + 1.009e04s + 185.2

. (4.3)

The transfer functions formalizations acan be directly used by researchers’ practical use, such as,

testing, comparisons, and validation purposes.

To assess the ability of MPC to adjust the resources (CPU, disk, memory) as needed

to meet a response time acceptable in the user perspective, we carry out some experiments by

means simulation in MPC Matlab Toolbox 6.

To evaluate the performance of MPC model, we propose three experimental scenarios:

in the first scenario we change the reference trajectory in steps from 300ms to 1s. The objective is

to verify if the MPC is able to adapt throughout the simulation, i.e., if it can correct its trajectory

through the adjustment of the inputs (MISO); (ii) in the second scenario we consider a stressing

test, i.e., to vary the reference trajectory to a point where the system can no longer reflect it. In

view of this, we can define a scope for which the MPC given the inputs (MISO) works correctly;

In the MISO scenarios, a higher weight is assigned to the CPU as discussed in Section 3.3.1, the

weights and other parameters for each scenario are presented in Table 8.

To quantify the performance of the transfer functions and the MPC, three error

measures was used: future error, Mean Squared Error (MSE) and MAPE. To define how the

transfer functions offer a good match to input/output data, the MSE is calculated. Further, the

MPC performance is computed via MAPE based on future errors. The MSE is calculated as

follows, where n is the size of data vector:

MSE =
1
n

n

∑
i=1

(ŷi− yi)
2, (4.4)

The future error represents the difference between the reference value w(k) and the

response time estimated value ŷ for k = 1...N, where N is the prediction horizon at each instant t,

as ilustrated in Figure 3 and computed in Equation 4.5:

e f ut(k) = w− ŷ(k), (4.5)
6 https://www.mathworks.com/products/mpc.html
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Table 8 – MPC: experimental design parametrization.
Parameter Value
Simulation Time 300 seconds
Prediction Horizon 1200 seconds
Control Horizon 3
Time Sampling 0.1

Scenario 01
Number of Inputs 3 (CPU, Memory, Disk)
Number of Outputs 1 (Response Time)
Setpoint range [300, 500, 1000]
Input Weights CPU: 0.3 ; Memory: 0.1; Disk: 0.1

Scenario 02
Number of Inputs 3 (CPU, Memory, Disk)
Number of Outputs 1 (Response Time)
Setpoint range [300, 500, 1000, 1850]
Input Weights CPU: 0.3 ; Memory: 0.1; Disk: 0.1

Since the future error is known, the MAPE is computed as follows:

MAPE =
1
N

N

∑
k=1

(
|e f ut(k)|

w
), (4.6)

4.6 Concluding Remarks

Computational resources metrics, such as CPU, memory, and disk, becomes essential

for providers and clients because they are often associated with elasticity (COUTINHO, 2014).

In the monitoring experiments, these metrics were observed for two relevant applications: a

scientific application for pulmonary diseases diagnoses and a Web application that simulates an

auction site. Such applications were deployed in a private and a public cloud.

The experiments were designed and conducted in order to answer the Research

Question #1 and Research Question #2: “Do different VM instances and geographic locations

affect the resources usage patterns sufficient to justify specific models for each of them?” “How

do different user profiles impact resource utilization behavior?”
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5 RESULTS AND DISCUSSION

This chapter presents the results of the applications monitoring experiments described

in Sections 4.1 and 4.2. In addition, the results from the three phases of the proposed methodology

are presented, and the statistical models are achieved. Also, the results of the fit tests are presented

in order to verify if the simulated data are consistent with the observed data for both users profiles.

The Web application models were implemented as an extension of the CloudSim

simulator and the results are discussed in Section 5.2. In addiction, these models are used as

input in MPC in order to estimate the resource utilization values to maintain the application

response time within an acceptable QoS, the simulation results are presented in Section 5.3.

5.1 RUBiS Profiling

5.1.1 Statistical Analysis

Table 9 presents the descriptive statistics related to the sum of the number of instruc-

tions consumed by Apache and MySQL services, CPU, memory and disk utilization for both

user behavior, and response time for Biding profile. Regarding the number of instructions and

memory, the negative value of skewness is reinforced because the median is greater than the

average. This characteristic is clearly observed in the histograms of the number of instructions

consumed by Apache and MySQL services (Figures 9a and 10a) through the long left tail relative

the right tail. The negative skewness was primordial in the choice of distributions used to fit the

number of instructions.

Table 9 also shows high kurtosis values for CPU, disk and response time. This

characteristic is seen in Figures 9a and 10a through a well pronounced peak, near the median.

These metrics have many time intervals equal or close to zero. Therefore, the non-zero values

promote a large scale difference contributing to the presence of peaks.

The change from browsing to bidding profile implies in a memory consumption

increment. However, the disk consumption is much lower compared to memory consumption

because, in general, e-commerce applications are in memory, i.e., the information is transferred

from disk to memory (cache) to avoid slow Web response times.

Figures 9b and 10b show the number of instructions executed by the CPU concerning

the Apache and MySQL services for each of the 100 user sessions performed during the
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Table 9 – Observed metrics statistics: number of instructions, CPU, memory, and disk utilization,
and response time.

Statistic Type Browsing Bidding
Instructions CPU

(%)
RAM
(%)

Disk
(TPS)

Instructions CPU
(%)

RAM
(%)

Disk
(TPS)

Resp.
Time
(ms)

minimum location 4.00e+08 0 18.92 0 4.26e+08 0 58.17 0 0.74
1st Quartile location 4.69e+08 0 19.97 0 4.72e+08 0 58.76 0 0.85
median location 4.87e+08 0 20.02 0 4.87e+08 0 58.84 0 0.87
mean location 4.75e+08 0.59 20.01 0.11 4.79e+08 0.55 58.82 0.08 1.00
3rd Quartile location 4.89e+08 0.50 20.08 0 4.89e+08 0.50 58.92 0 0.90
maximum location 4.92e+08 82.50 20.13 26 4.91e+08 79.90 59.01 8 9.42
std. deviation dispersion 2.02e+07 4.99 0.11 1 1.38e+07 4.80 0.16 0.43 0.68
skewness shape -1.67 12.28 -3.10 18.05 -1.52 13.00 -2.05 8.28 8.80
kurtosis shape 2.25 156.89 17.21 418.48 2.07 175.84 5.06 107.78 91.97
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Figure 9 – Statistical analysis of number of instructions. (a) Histogram of Browsing profile

(median of 100 rounds); (b) Number of instruction per user session for Apache and
MySQL

experiment. In both profiles, MySQL requires more processing than Apache. Furthermore, none

of these services are bottlenecks for the application in this experimental setting.

Figure 11a depicts the scatterplot of the percentage of CPU utilization over a user

session, where we found a higher CPU consumption at the beginning of the session. This

consumption decays rapidly to zero or close to zero and so continues until the end of the session.

The concentration of data in a single well-pronounced peak near the median with fast decay

reinforced the high kurtosis presented in Table 4.

Due to the large difference in scale between the percentages of CPU utilization

reflected in Figure 11a, the values of the axes are limited in order to observe the CPU utilization
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Bidding Profile: instructions observed (100)
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Figure 10 – Statistical analysis of instructions number. (a) Histogram of Bidding profile (median

of 100 rounds); (b) Number of instruction per user session for Apache and MySQL

behavior when it is equal or close to zero, as shown in Figure 11b. The same pattern of behavior

is identified in the bidding profile.

Figure 11b shows that instructions arrive at the processor in bursts followed by

periods of inactivity, because of think times of users, for both profiles. However, the number

of instructions in each cycle and the frequency with which they occur varies over time, so

there is no pattern about where the peaks and troughs of cycles will happen, indicating a

stationary time series. Thus, the data are subjected to a statistical hypothesis test of stationarity,

where the Augmented Dickey-Fuller (ADF) (SAID; DICKEY, 1984) and Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) (KWIATKOWSKI et al., 1992) tests are computed. In these tests, the

significance level is fixed at α = 0.05. Both tests showed that the data are stationary: for ADF,

p− value = 0.01 and, for KPSS, p− value = 0.1.

Through exploratory analysis conducted in this section, it is possible to select the

candidate distributions for the number of instructions metric considering both user profiles, in

agreement with the characteristics of the sample.

5.1.2 Parameters Estimation

Table 10 shows the values of the estimated parameters for the selected distributions

in combination with the different estimation methods for the number of instructions considering

both user profiles. The GL distribution has four estimated parameters, because the sample is the
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Figure 11 – Exploratory analysis of the observed CPU utilization for a browsing user session.
(a) Browsing profile: scatterplot of CPU utilization (b) Browsing profile: limited
axis with interval between 600 and 650 s

Table 10 – Distributions and parameters for number of instructions.

Distribution Estimation
Method

Estimated Parameters

Browsing Bidding
GL MLE α̂3 =−9.509e−01, α̂4 = 8.055e−01 α̂3 =−9.414e−01, α̂4 = 9.814e−01

HF α̂3 =−9.635e−01, α̂4 = 3.264e−02 α̂3 =−4.442e−01, α̂4 = 4.790e−01
QM α̂3 =−9.744e−01, α̂4 = 1.347e−02 α̂3 =−9.539e−01, α̂4 = 2.102e−02
MPS α̂3 =−9.504e−01, α̂4 = 9.834e−01 α̂3 =−9.483e−01, α̂4 = 9.777e−01

GEV MLE ξ̂ =−3.015e+00, σ̂ = 4.230e+07 ξ̂ = 7.116e−01, σ̂ = 6.077e+07
PWM ξ̂ =−1.324e+00, σ̂ = 1.839e+07 ξ̂ =−8.767e−01, σ̂ = 1.523e+07

same for all estimation methods. The median values for the browsing profile (µ̂ = 4.873e+08)

and for the bidding profile (µ̂ = 4.877e+08), as well as inter-quartile range for the browsing

profile (σ̂ = 1.919e+07) and for the bidding profile (σ̂ = 1.735e+07) remain constant for all

the combinations.

In contrast, the shape parameters (α3) and (α4) of the GL distribution have their

values influenced by the estimation method. Similarly, the value of the location parameter for the

browsing profile (µ̂ = 4.783e+08) and for the bidding profile (µ̂ = 4.820e+08) of the GEV

distribution remains constant, while the scale parameters (σ ) and shape (ξ ) are influenced by the

estimation method. Therefore, if the selected fitting distributions have shape parameters, it is

important to verify the existence of outliers in the sample in order to choose the appropriated

estimation method. Figure 12 shows how sensitive the MLE and PWM estimation methods are

to the presence of outliers.
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Table 11 – MLE parameters estimation of response time and CPU, memory and disk utilization
metrics.

Metric User Profile Distribution Estimated Parameters
CPU Utilization Browsing GWD ξ̂ = 5.386, µ̂ = 0.976, σ̂ = 0.014

Bidding GEV ξ̂ =−0.259, µ̂ = 0.576, σ̂ = 0.004
Memory Utilization Browsing GEV ξ̂ =−0.221, µ̂ = 0.049, σ̂ = 8.526e−06

Bidding Error(3P) ξ̂ = 2.062, µ̂ = 7.669, σ̂ = 3.0985e−04
Disk Utilization Browsing GEV ξ̂ =−0.369, µ̂ = 0.977, σ̂ = 0.003

Bidding Error(3P) ξ̂ = 2.042, µ̂ = 0.967, σ̂ = 0.003
Response Time Bidding GEV ξ̂ =−0.290, µ̂ = 1086.7, σ̂ = 10.898

Table 11 contains the parameters estimated through the MLE method, for the distri-

butions that represent the CPU, memory and disk utilization, and response time metrics and offer

the best fit for the data, according to the KS test. The GEV distribution best fits CPU (Bidding),

memory (Browsing), disk (Browsing), and response time (Bidding) enhancing the results found

in Moreno et al. (MORENO et al., 2013) that uses GEV to model the consumption of CPU and

memory from the data provided by the Google Cloud TraceLog (REISS et al., 2011). The other

scenarios are covered by the Generalized Weibull Distributions (GWD) and Error (3P). All these

distributions have a shape parameter that allows a better fitting.

5.1.3 Goodness of Fit

Figure 12 shows the Q-Q graphs for the following pairs distribution/estimation

method: GL/MLE and GEV/PWM. For each graph, the reference line is plotted. It can be noticed

that the pair GEV/PWM quantiles (Figure 12b), in terms of the observed data quantiles, have

greater proximity to the reference line. Thus, this pair is a strong candidate to represent the

observed number of instructions behavior. It is interesting to compare the pairs GEV/PWM and

GL/MLE (Figure 12a). So, it can be observed how sensitive the mle estimation method is to the

presence of outliers. Therefore, if the data set has significant presence of outliers, the mle is not

the best option.

Table 12 presents the values of D and p− value test statistics for the number of

instructions observed to the distributions of probability specified in Section 4.3.2. Considering

the browsing profile, there are only 3 cases where the null hypothesis cannot be rejected because

the p− value > 0.05: GL/MLE, GL/MPS and GEV/PWM. Considering the profile bidding,

there are 2 cases where the null hypothesis cannot be rejected: GL/mle and GL/MPS. Other

important information that can be inferred from this table is that the results are sensitive to the

applied estimation method. The GL distribution with HF and QM estimation methods presents
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Figure 12 – Quantile-Quantile plots. (a) GL with mle method; (b) GEV with PWM method

performance near or below to the symmetric and positive asymmetric distributions.

The estimation methods PWM and MPS perform better than the MLE method for

both GEV and GL distributions, for both profiles. This can be justified by the fact that the MLE

method is equivalent to maximizing the geometric mean. Therefore, it is highly sensitive to

outliers. Figure 12a shows the presence of outliers in the data. Furthermore, the MLE method

provides good results for a small sample size, while the PWM and MPS are more robust methods.

The GEV distribution with parameters estimated using the PWM method presents

the best fit to browsing profile. In contrast, the GL distribution with parameters estimated using

the MPS method presents the best fit for the bidding profile.

In accordance with the presented results, the models are defined representing the

number of instructions executed during a user session for both user profiles. These models

aim to characterize user session based on the number of instructions instead of session runtime.

Thus, the session runtime will vary according to the characteristics of the CPU. On the other

hand, if the model characterized the session runtime, this value would be constant regardless the

processor. Also, establishing a relationship between session runtime for different processors in a

heterogeneous environment is a complex task, since several factors impact the runtime such as a

number of cores, clock frequency, and architecture.

The GoF tests defined the distribution/parameters pairs more apt to represent the

observed metrics. These pairs are used to compose the model that represents the resources

demand of the Web application according to user profiles. Table 13 shows the p− value(max),
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Table 12 – Kolmogorov-Smirnov test: number of instructions.

Distribution/Estimation Method
Browsing Bidding

D p-value D p-value
GL/MLE 0.130 0.368 0.120 0.431
GL/HF 0.210 0.016 0.240 0.009
GL/QM 0.230 0.012 0.240 0.006
GL/mps 0.120 0.465 0.120 0.433

GEV/mle 0.200 0.030 0.450 2.2e-16
GEV/PWM 0.100 0.675 0.160 0.146

Table 13 – Kolmogorov-Smirnov test: response time and cpu, memory and disk utilization.

Metric
Browsing Bidding

p-value
(max)

p-value
(min)

error
(%)

p-value
(max)

p-value
(min)

error
(%)

CPU utilization 0.901 0.007 6 0.982 0.008 1
Memory utilization 0.998 0.065 0 0.992 0.018 2
Disk utilization 0.994 0.032 1 0.994 0.044 1
Response Time - - - 0.983 0.036 1

p− value(min) and error(%) calculated based on 500 replications of KS test. An error is

computed when sampled simulated data does not belong to the same sample data observed, i.e.,

p− value < 0.05. No resource has an error greater than 6%, indicating that the models can

correctly represent the collected data.

Therefore, the Browsing model is represented by the GEV distribution with ξ̂ =

−1.324e+00, µ̂ = 4.873e+08, σ̂ = 1.839e+07 parameters, representing the total number of

instructions that will compose the user session, and distribution GWD with ξ̂ = 5.386, µ̂ =

−0.976, σ̂ = 0.014 parameters, representing how the total of instructions will be distributed

throughout the session based on CPU utilization.

The Bidding model, on the other hand, is modeled by the GL distribution with µ̂ =

4.877e+08, σ̂ = 1.735e+07, α̂3 =−9.483e−01, α̂4 = 9.777e−01 parameters, representing the

total number of instructions, and the distribution GEV with ξ̂ =−0.259, µ̂ = 0.576, σ̂ = 0.004

parameters, representing the CPU utilization. The models that represents the disk and memory

demands of the two profiles and the response time experienced by the Bidding profile are

presented in Table 11.

Due to trace or model unavailability, unrealistic assumptions are made in the literature

about the workload (LI, 2010), such as a set of requisitions with fixed inter-arrival times, simple

Poisson models to represent instruction arrivals and exponentially distributed session time.

However, in this work, we achieved different results from assumptions commonly made, such as
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Bidding: observed number of instructions
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Figure 13 – Comparison of histogram of observed number of instructions and probability density

function of simulated number of instructions (a) Browsing profile; (b) Bidding
profile.

stationarity in the data observed, the distribution representing the arrival of instructions in the

processor is GWD, and the distributions that represent the total number of instructions, which is

a metric correlated with session time, are GEV and GL.

5.2 Simulation and Validation

The graphical validation is shown in Figure 13, while the WMW test results are

reported in Table 14. Figure 13 shows a comparison of the histogram of observed data against

probability density function of the simulated data to the number of instructions metric, consider-

ing both user profiles. The simulated data are consistent with the observed data for both profiles.

However, visually, the Browsing profile provides a better approximation to the observed data.

This result is reinforced by Table 14, where the Browsing profile has an error three times smaller

than the Bidding profile.

Table 14 shows the maximum and minimum p− values obtained through the WMW

test applied to a set of 100 samples of observed data and 100 samples of simulated data. For the

total of 10,000 comparisons, the error was also calculated. The error is computed when sampled

simulated data does not belong to the same sample data observed, i.e., p− value < 0.05. The

error for all metrics is less than 10%. Among the mathematical transformations applied to the

CPU utilization metric, the inverse transformation offers the best results, reducing the Wilcox
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Table 14 – WMW test

Metric
Browsing Bidding

p-value
(max)

p-value
(min)

error
(%)

p-value
(max)

p-value
(min)

error
(%)

Number of instructions 0.999 0.033 3.000 0.995 0.012 9.000
CPU utilization 0.996 0.026 6.000 0.998 0.033 8.000
Memory utilization 0.992 0.046 4.000 0.999 0.016 1.000
Disk utilization 0.998 0.034 1.000 0.999 0.029 8.000
Response time - - - 0.998 0.024 4.000

error rate of 34% to 6%, considering the Browsing profile.

Then, we can conclude the implementation of web application modeling in the

CloudSim simulator is capable of producing data to represent both user profiles accurately. Thus,

it can be used by researchers to build performance models and to produce trace logs based

on realistic scenarios and extrapolating the results with controlled modification of parameters

such as a number of users, software stack, and physical and virtual machine configuration.

Furthermore, this implementation contributes to the development of performance models to

support emerging cloud computing research domains, such as resource allocation in Mobile

Cloud Computing (MCC) in which the trade-off between time and energy is a management

challenge (GHASEMI-FALAVARJANI et al., 2015).

5.3 Prediction and Control

Table 15 shows through MSE error how the transfer functions offer a good fit to

input/output data. Figure 14 illustrates the response time behavior throughout the simulation and

shows that, for the range between [300ms - 1000ms], the MPC can adjust itself to the output

meet the reference trajectory and at no time exceeds the established threshold, meeting the

expectations of the user. Therefore, the controller model proposed in this work was effective

for the Web application in the designed scenario with error MAPE = 4.36442(%). PADALA et

al. 2009 propose a combination of an online model estimator and a MIMO resource controller.

The model estimator captures the complex relationship between application performance and

resource allocations, while the MIMO controller allocates the right amount of multiple virtual-

ized resources to achieve application Service Level Objective (SLO). They use RUBiS in the

experimental evaluation and achieve a MAPE = 4.2(%).

Figure 15 shows the behavior of the response time for a setpoint range varying

from 300 to 1850 milliseconds. We note that at 1800 ms, the controller can not make the input
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Table 15 – Estimated MSE error for transfer functions.
TF (resptime | cpu) TF (resptime | mem) TF (resptime | disk)

MSE 120.7 118.5 118.6

Figure 14 – MISO Model (scenario 01): response time behavior with setpoint range [300ms-
1000ms]

adjustments to promote a response time near the setpoint. Therefore, the controller modeling is

effective up to the setpoint value of 1800 milliseconds. As can be observed in this scenario, a

higher error was achieved (MAPE = 6.27517(%)).

Figure 15 – MISO Model (scenario 02): response time behavior with setpoint range [300ms-
1850ms]
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5.4 LisaMini Profiling

5.4.1 Monitoring

The sampling interval was set to 1 second for all monitored resources. The observed

metrics figures represents the median of 5 executions of the same experiment. The median was

selected by reason of to be a more robust statistic that average, i.e, less susceptible to outliers. A

larger number of executions were collected. Nonetheless, additional patterns were not identified

to a higher number of executions 5. The average statistics (µ) and variance (σ2) were used to

assist the resource usage patterns comparison in the experiments. Regarding the metrics, the

change in the number of patients only impacts in time execution. No additional pattern was

found.

The swap memory consumption remained zero during application execution in all

experiments. Thus, its behavior is not shown.

5.4.1.1 Experiment #1: Different instances

Figure 16 presents the resource usage behavior for each selected instance. Experi-

ments were carried out considering the Azure’s A0 instance. However, an error promoted by the

lack of memory abruptly interrupts the images processing. For this reason, the A0 results were

not shown and considered in performance modeling.

Also in Figure 16, two distinct range in CPU and memory utilization percentage

can be observed. The A2 instance (µ = 27.643,σ2 = 23.635) presented the CPU utilization

percentage less than A1 instance (µ = 53.633,σ2 = 36.750). Despite of the values in distinct

range, CPU utilization presents the same trend behavior in both instances (vide Figure 16a).

Once more, memory utilization for A2 instance (µ = 43.656,σ2 = 4.349) is lower than the

A1 instance (µ = 71.953,σ2 = 18.642) and the same behavior pattern was found, according

to Figure 16c. The difference in the value range is also evident in the disk read rate (Figure

16d), while A2 instance did not perform disk reads, A1 instance had the average read rate of

µ = 492.475 with great variance σ2 = 692526.799 represented by peak from the 37 seconds.

Otherwise, the CPU I/O wait (Figure 16b) and disk write rate (Figure 16e) showed

similar behavior patters for the instances. In addition, we observed that the instances showed the

similar experiment execution time.

None of instances had the CPU utilization percentage reaching 100%. Further, the
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Figure 16 – Impact of LisaMini execution in different instances. (a) CPU Utilization; (b) CPU
I/O Wait; (c) Memory Utilization; (d) Disk Read Rate; (e) Disk Write Rate

time that CPU spent waiting for the completion of an I/O operation had not exceeded 7 %.

Consequently, there was no indication of performance problems associated with CPU for those

instances. However, the A1 instance presented a significant memory consumption.

5.4.1.2 Experiment #2: Different locations

Figure 17 shows the resource utilization behavior of A2 instance for each local-

ization. The memory utilization percentage has two distinct ranges of values. The USA

(µ = 43.656,σ2 = 4.349) presented a much lower memory consumption presented by Asia

(µ = 58.30,σ2 = 3.470) and Europe (µ = 58.30,σ2 = 3.470). Although the experiment in-

volved three different locations, we found only two value ranges. This is because the Asia

showed the same pattern of Europe. The other metrics showed the same location behavior

pattern.
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Figure 17 – Impact of LisaMini execution on A2 instance considering different geographic
locations. (a) CPU Utilization; (b) CPU I/O Wait; (c) Memory Utilization; (d) Disk
Read Rate
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Figure 18 – Impact of LisaMini execution on A1 instance considering different geographic
locations. (a) CPU Utilization; (b) CPU I/O Wait; (c) Memory Utilization; (d) Disk
Read Rate

Figure 18 shows the resource utilization behavior of A1 instance for each localization.

The CPU utilization percentage shows a pattern similar in the USA, Asia and Europe. The other

metrics have different value ranges for the different locations. However, again the USA presents

distinct behavior while Asia and Europe have similar behavior.

In the USA, the CPU utilization (µ = 0.507,σ2 = 1.199) has a percentage of

waiting for I/O operations much lower and with less variation compared with Asia (µ =

15.126,σ2 = 135.493) and Europe (µ = 7.476,σ2 = 64.763). This result is also reflected

in the disk write rate, where we have USA (µ = 492.475,σ2 = 692526.799), Europe (µ =

7471.7,σ2 = 81402321.732) and Asia (µ = 7717.907,σ2 = 50042849.65). The memory con-

sumption percentage presented three different ranges: USA (µ = 71.953,σ2 = 18.642), Asia

(µ = 56.566,σ2 = 44.190) and Europe (µ = 63.080,σ2 = 38.722).
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5.4.2 Performance Modeling

To determine the best candidate to fit the distribution date, we evaluate the fit

presented by the 21 continuous distributions and create a subgroup with those with the most

promising results. For each selected distribution, we generated 100 random samples and calculate

the KS test. From the results, we set the p−value maximum, p−value minimum and rate of the

null hypothesis (H0) rejection. The H0 consists of the assumption that the observed data follow

the specified distribution. H0 is rejected when the p− value is less than significance level. In

this work, we fix the significance level at α = 0.05.

We elected the distribution with the lowest rejection rate, according to Tables 18 and

19. When more than one distribution offer the same rejection rate, we observed the Q-Q plots to

support the decision. The entire set of distributions obtained from this procedure is presented

in Table 16 and Table 17 for experiments 1 and 2, respectively. These tables show the types of

transformation performed on the data, the distributions and their parameters that will compose

the models.

Previous studies indicate the GEV as a distribution that offers good fit to represent

resource utilization, which reinforces the results found in this work. Also, the Weibull distribution

with three parameters offers the best fit to different metrics of A1 instance. The frequency with

which the distributions as Weibull (3P) and GEV provide the best fit for the selected metrics

are justified through the third parameter. Such distributions besides representing location and

dispersal measures, can also represent shape, which provides greater precision in the fitting.

There is no distribution in common between the A1 and A2 instances for the same

metric. This discrepancy directly reflects the difference of behavior between these instances.

The Disk Read Rate of A2 instance is null as is seen in Figure 16 and the Disk Write Rate metric

shows the same behavior pattern for both instances.

5.4.3 Godness of Fit

Table 18 shows the higher rejection rates for CPU utilization (4% and 9%) for the

Experiment 1. It presents rejection of 1% for the percentage of memory utilization. Regarding to

the other metrics, the null hypothesis cannot be rejected for either of the 100 tests. This indicates

that the models are consistent with the presented data. Table 19 shows that all rejection rates are

under 6% for A1 and A2 instances.
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Table 16 – Experiment 1 - Distribution parameters of different instances

Metric Transformation Distribution Estimated Parameters
A1 A2 A1 A2 A1 A2

United States (East Cost)
CPU
utilization

inverse inverse Weibull
(3P)

Weibull µ̂ = 6.165,
σ̂ = 0.017,
ξ̂ = 0.001

σ̂ = 0.037, ξ̂ =
80.894

CPU I/O
Wait

inverse inverse Weibull
(3P)

GEV µ̂ = 0.702,
σ̂ = 0.132,
ξ̂ = 4.055

µ̂ = 0.929,
σ̂ = 0.019,
ξ̂ =−0.331

Memory
utilization

log10 inverse GEV Logistic µ̂ = 1.861,
σ̂ = 0.003,
ξ̂ =−0.310

µ̂ = 0.022, σ̂ =
8.336e−05

Disk Read
Rate

inverse - Weibull
(3P)

- µ̂ = 0.362,
σ̂ = 0.201,
ξ̂ = 3.040

-

Disk Write
Rate

log10 log10 GEV GEV µ̂ = 0.388,
σ̂ = 0.119,
ξ̂ =−0.205

µ̂ = 0.388,
σ̂ = 0.119,
ξ̂ =−0.205

Table 17 – Experiment 2 - Distribution parameters of different instances in different locations

Metric Transformation Distribution Estimated Parameters
Asia EU Asia EU Asia EU

A2 instance
Memory
utilization

- inverse - GEV - µ̂ = 7.326e− 05,
σ̂ = 0.017,
ξ̂ =−0.224

A1 instance
CPU I/O
Wait

inverse sqrt Normal Gamma µ̂ = 15.126,
σ̂ = 135.49

σ̂ = 0.016,
ξ̂ = 137.380

Disk Read
Rate

sqrt log2 Weibull
(3P)

Normal µ̂ = 36.267,
σ̂ = 25.576,
ξ̂ = 3.307

µ̂ = 5.643,
σ̂ = 0.891

Table 18 – Kolmogorov-Smirnov test: Experiment 1

Metric A1 A2
p-value
maximum

p-value
minimum

Ho Reject
(%)

p-value
maximum

p-value
minimum

Ho Reject
(%)

United States (East Cost)
CPU
utilization

1 0.014 4 0.929 0.004 9

CPU I/O
Wait

0.133 0.09 0 0.99 0.07 0

Memory
utilization

0.994 0.081 0 0.956 0.008 1

Disk Read
Rate

0.966 0.065 0 - - -

Disk Write
Rate

1 0.106 0 1 0.106 0
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Table 19 – Kolmogorov-Smirnov test: Experiment 2

Metric Asia EU
p-value
maximum

p-value
minimum

Ho Reject
(%)

p-value
maximum

p-value
minimum

Ho Reject
(%)

A2 instance
Memory
utilization

- - - 1 0.008 4

A1 instance
CPU I/O
Wait

0.962 0.016 1 0.993 0.02 2

Disk Read
Rate

0.966 0.065 0 0.964 0.019 5

5.4.4 Discussion of Results

Experiment 1 (see Figure 16) aims at verifying the influence of different instances

types in the pattern of resources utilization. The smaller resource capacity is presented by the A1

instance, which the increase of utilization percentage of its resources in relation to A2 instance.

Through this experiment, we identified a difference in the behavior pattern of the disk read rate

between instances. This disparity is due to A2 instance has twice the memory of A1 instance.

Hence, the A2 instance can carry all medical images to be processed in memory. Consequently,

there is no disk reads. In other hand, the A1 instance does not have enough memory to load all

the images. Then, the operating system transfers as many files to the cache in order to avoid

swap memory usage. The remaining files are accessed from disk, which explains the peaks of

disk write rate presented by A1 instance at the end of medical image processing.

Both instances show similar behavior regarding to the disk write rate. This similarity

is due to a log creation which contains information about the lung segmentation processing for

different patients. This log is composed for a header (patient name, exam date, exam serial

number), that justified the initial peak of the writing rate, and statistics (Pulmonary density

Average, Percent normal regions, medium and hyper aerated) for the left lung, right and both,

which promotes other peaks. The size and information presented by the log is the same regardless

of location and type of instance. Therefore, all experiments present the same disk write rate

pattern.

The CPU I/O wait metric is directly impacted by the disk access. That is why the

disk write rate and CPU I/O wait show similar behavior. The difference in amplitude of CPU

I/O wait peaks between instances is justified by the fact that disk access is slower than memory

access. Since A1 performs disk read, it presents higher amplitudes then A2. Finally, we conclude

that A1 and A2 instances have different patterns of CPU utilization, memory utilization, CPU
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I/O wait, and disk read which justify specific models for each instance. In addition, the LisaMini

is a memory oriented application, which prevents the use of A0 instances.

Experiment 2 (see Figures 17 and 18) verifies the influence of different locations

in the resource utilization patterns. Asia and Europe have a similar behavior, even in different

range of values. In contrast, the USA shows a very different behavior compared with the other

locations. This difference is attributed to data centers heterogeneity and the resources affected in

this experiment were memory, disk read and CPU I/O wait, justifying specific models according

to location.

In the A1 instance presents a discrepancy in the disk reads behavior pattern, which

impacts on CPU I/O wait behavior. Unlike CPU and memory, the disk is not dedicated to a

particular instance. It is shared between instances of a data center. Therefore, the performance

is influenced by the shared resource availability. Since the experiments were performed in 3

different time zones, the number of users can vary greatly depending on the time and location,

influencing the availability of resources and, consequently in their performances. Furthermore,

Azure use more than one type of disc.

5.5 Concluding Remarks

In the experiments that aim at verifying if the user profile impacts on the performance

models, it was observed that the change from browsing to bidding profile implies in a memory

consumption increment. However, the disk consumption is much lower compared to memory

consumption because, in general, e-commerce applications are in-memory, i.e., the information

is transferred from disk to memory (cache) to avoid slow Web response times.

In the experiments that aim at verifying if the instances types impacts on the perfor-

mance models, it was observed that only log10 and inverse appears between best fits. Also, the

General Extreme Value (GEV) distribution best fits CPU I/O wait (A2 instance), Memory and

Disk Write Rate (A1 instance). The other resources are covered by the Weibull and Logistic

distributions.

In the experiments that aim at verifying if the geographic location impacts on the

performance models, it was observed that Asia and Europe have a similar behavior, even in

different range of values. In contrast, the USA shows a very different behavior compared with

the other locations. This difference is attributed to data centers heterogeneity and the resources

affected in this experiment were memory, disk read and CPU I/O wait, justifying specific models
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according to location. Since the experiments were performed in 3 different time zones, the

number of users can vary greatly depending on the time and location, influencing the availability

of resources and, consequently in their performances.

From the validation of model simulation experiments, we can conclude the imple-

mentation of web application modeling in the CloudSim simulator is capable of producing data

to accurately represent both user profiles. For the total of 10,000 comparisons, the error was

also calculated. The error is computed when sampled simulated data does not belong to the

same sample data observed, i.e., p− value < 0.05. The error for all metrics is less than 10%.

Among the mathematical transformations applied to the CPU utilization metric, the inverse

transformation offers the best results, reducing the Wilcox error rate of 34% to 6%, considering

the Browsing profile.
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6 CONCLUSION

Clouds are facing complex workloads composed of a wide variety of applications,

where the behavior is defined by users with different profiles and QoS requirements. Such

workloads, along with insufficient trace logs available for analysis of resource utilization are the

main causes for the lack of methodologies and models that characterize the applications hosted in

the cloud. In order to fill this gap, in this thesis, a web application model that fits the behavioral

patterns of different user profiles is proposed. This model supports analysis and simulation of

CPU utilization in cloud environments.

Here, a well-defined methodology is adopted to support implementation and valida-

tion of simulation models as presented in this work. The proposed model was implemented as

an extension of the CloudSim simulator, and the validation was conducted through graphic and

statistical hypothesis methods, which showed that the Web application modeling in CloudSim

generates data that fit the different user profiles accurately. This implementation allowed a case

study that supports CPU utilization forecasting associated with DVFS management in order to

improve energy savings. This is critical to cloud providers that need to quickly grant resources

to meet the application demand in an energy efficient manner. Such a model can also be utilized

to improve other research domains, e.g., such as resource optimization and failure-analysis.

Based on our model and experiments, we can highlight the following:

• Different results from assumptions commonly made (LI, 2010) were achieved, such as

(i) stationarity instead of fixed arrival times to represent instructions arrival in processor

(Section 5.1.1), (ii) Generalized Pareto distribution instead of simple Poisson models

to represent instruction arrivals, and (iii) Generalized Extreme Value and Generalized

Lambda distributions instead of Exponential distribution to represent session time (Section

5.1.2);

• MPC showed to be an accurate technique with respect to Web application modeling and

control parameterization proposed in this work . It can provide a straightforward support

to SLA-aware resource provisioning policies (Section 5.3).

6.1 Research Questions Analysis

The research questions presented in section 1.3 are discussed as follows:

Research Question 1: How do different user profiles impact on resource utilization
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behavior?

Monitoring experiments were designed to this end (see Subsection 4.1.4) and results

are shown in the Subsection 5.1.1. The type of user profile (i.e., user behavior model) imposed

a strong influence on the CPU utilization so that different statistical distributions were found

to represent the total number of instructions. Therefore, user behavior must be considered in

workload modeling to reflect realistic conditions.

The GEV distribution with parameters estimated using the PWM method presents

the best fit to browsing profile. In contrast, the GL distribution with parameters estimated using

the mps method presents the best fit for the bidding profile. There is no distribution in common

between the user profiles for the same metric. This discrepancy directly reflects the difference in

behavior between these instances.

Research Question 2: Do different VM instances and geographic locations affect

the resources usage patterns sufficient to justify specific models for each of them?

Monitoring experiment was designed to this end (see Subsection 4.2.3.1) and results

are shown in the Subsection 5.4.1. Through this experiment, we conclude that A1 and A2

instances have different patterns of CPU utilization, memory utilization, CPU I/O wait, and disk

read which justify specific models for each instance.

From Table 16, we note the General Extreme Value (GEV) distribution best fits CPU

I/O wait (A2 instance), Memory and Disk Write Rate (A1 instance). The other resources are

covered by the Weibull and Logistic distributions. There is no distribution in common between

the A1 and A2 instances for the same metric. This discrepancy directly reflects the difference in

behavior between these instances.

Monitoring experiment was designed to accomplish this goal (see Subsection 4.2.3.1)

and results are shown in the Subsection 5.4.1. Through this experiment, we conclude that the

geographical location impacts on the resource utilization patterns. Asia and Europe have a

similar behavior, even in the different range of values. In contrast, USA shows a very different

behavior compared to the other locations. This difference is due to data centers heterogeneity

and the resources affected in this experiment were the memory, disk read and CPU I/O wait.

Then, we need specific models according to the geographical location.

The A1 instance presents a discrepancy in the disk reads behavior pattern, which

impacts on CPU I/O wait for behavior. Unlike CPU and memory, the disk is not dedicated to

a particular instance. Instead, it is shared between instances of a data center. Therefore, the
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workload performance (response time, throughput) can change according to the shared resource

availability. Since the experiments were performed in 3 different time zones, the number of users

can vary greatly depending on the time and location, influencing the availability of resources

and, consequently their performance.

Research Question 3: How to develop predictive models of resources to guide the

cloud elasticity so that the workload variation has the minimum impact on performance and

availability?

In this thesis, a model predictive control capable of capturing the complex relation-

ship between the resource utilization profile of the application and its user performance metric

(response time and execution time) was used to support QoS-aware resource allocation policies.

The monitoring of computational resources, such as CPU, memory, and disk, be-

comes essential for both providers and clients because such metrics are often associated to

elasticity (COUTINHO, 2014). Therefore, the relationship between CPU, memory and disk

utilization with the application response time are used as MPC’s input. The MPC takes the

corrective action, which means adjusting the inputs to keep the predicted output (response time,

execution time) close to the reference trajectory.

To this end, the predicted output is compared to the reference trajectory and the

difference between them, called future errors, is applied as feedback to the optimizer to minimize

them. The controller is periodically updated with real-time measures, allowing the model to

adapt to workload conditions. To define the best current control action, MPC reduces the errors

over time by adjustment of the input variables (see Section 2.3.4). Thus, the adjusted input could

be used in a straightforward manner to support resource allocation policies.

Research Question 4: How to develop models that are able to predict application

performance considering multiple parameters such as processor, memory, network and disk

usage?

Monitoring experiments were designed and implemented (see Sections 4.1 and 4.2)

in order to capture the performance behavior (CPU, memory, disk) of two different applications in

private and public cloud: RUBiS and LisaMini. Since the behavior was recorded, a well-defined

methodology, described in the Section 3.1, was followed to obtain the performance models in the

form of statistical distributions, where patterns fluctuate based on realistic parameters in order to

represent dynamic environments (see Subsections 5.1.2 and 5.4.2).

Such performance models fulfill the input role in the MPC that uses the state space
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model, described in Section 2.3.4.1, to compute the predicted behavior over some horizon. The

state space models are a linear technique capable of representing the dynamics of a nth order

system as a first differential equation represented by a N size vector. Thereby, the dependence

of the predictions on future control choices is linear, and this facilitates optimization as well as

off-line analysis of expected closed-loop behavior.

6.2 Publications

The list of publications published so far from work in this thesis includes journal

and conference papers as follows:

• MAGALHÃES, D. M. V.; CALHEIROS, R. N.; BUYYA, R.; GOMES, D. G. “Workload

modeling for resource usage analysis and simulation in cloud computing”. Computers &

Electrical Engineering, v. 47, p. 69–81, 2015. ISSN 0045-7906;

• SILVA JUNIOR, L. S. ; MAGALHÃES, D. M. V.; Gomes, Danielo G. “Modelagem e

Simulação de Offloading para Computação Móvel em Nuvem”. In: 7o. SBCUP - Simpósio

Brasileiro de Computação Ubíqua e Pervasiva (CSBC 2015 - SBCUP), 2015, Recife-PE.

p. 91-100 (in Portuguese);

• MAGALHÃES, D. M. V. ; SOARES, J. M. ; Gomes, Danielo G. “Alocação dinâmica de

máquinas virtuais para economia de energia”. Novas Edições Acadêmicas - NEA, 2014.

132 p, ISBN: 978-3-639-61919-5 (in Portuguese).

6.3 Future Work

Following up the work developed during this Ph.D. thesis, here is a list of potential

perspectives to be improved:

1. The cloud environments hosts multiple purposes applications, from running batch jobs

to web applications, which have heterogeneous and competing QoS requirements (CAL-

HEIROS et al., 2011). Vondra and Sedivy (VONDRA; SEDIVY, 2013) indicate an efficient

way to maximize the resource utilization of cloud computing infrastructure through the mix

of interactive and non-interactive workloads. Address a realistic and efficient scenario is

desired to adopt a heterogeneous mix composed of a non-interactive (scientific application)

and an interactive (web application) workloads;

2. Resource Allocation Policies: since this work achieves the performance models for two
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different applications. In addition, a model predictive control was used to establish the

relation between computational resource metrics and user performance metrics, to capture

the workload variation and guide resource allocation ensuring the cloud environment

elasticity. A straightforward extension of our work is the development of a resource

allocation policy to meet the demand of cloud applications while maintaining the user

experience desired;

3. Transfer function: in the literature different methods are used to generate the transfer

function, such as ARMA(X), Kalma filter, Smoothing splines. According to Lorido

(LORIDO-BOTRAN et al., 2014), Fuzzy models have been used to establish the relation-

ship between the input and output variables. It is relevant to compare the performance of

the FFT method used in this work with different techniques;

4. Correlation between resources: Lorido (LORIDO-BOTRAN et al., 2014) shows that

most of the methods of prediction focus on more than one workload metric. However,

they ignore the correlation between them. It is relevant to investigate the correlation

between the resource utilization metrics to provide more understandable results for resource

management.
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GLOSSARY

A

Accuracy: the degree to which the estimated/simulated/predicted value conforms to the mea-

sured value.

B

Benchmark: To compare different systems, they must be evaluated under equivalent condi-

tions, and, in particular, with the same workload. Therefore, a set of workloads are ported to

different systems and used as the basis for comparison. Such standardized workloads are called

benchmarks.

P

Pattern: a particular way in which a set of properties or characteristics (resource usage: CPU,

memory, disk utilization) show themselves regularly repeted over time for a specific scenario.

Process: sequence of interdependent and linked procedures which, at every stage, consume

one or more resources (time, computational resources) to convert inputs (logs) into outputs

(performance patterns). These outputs then serve as inputs for the next stage until a known goal

or end result is reached (model).

R

Resource Management: IaaS resource management is the complex task of providing the right

amount of resources to achieve the required Service Level Agreement (SLA), while keeping the

overall cost low.

W

Workload: Amount of work or number of work units assigned to a particular resource over a

given period. In this thesis, consider a workload that is composed of jobs or user requests that

use computational resources, such as, CPU, disk, memomy.

Workload Modeling: Workload modeling is the attempt to create a simple and general model,

which can then be used to generate synthetic workloads for reliable performance evaluations

of computer systems. Workload modeling always starts with measured and recorded data

about the workload-related events that happened in a certain system. But, it is not limited

to just observing and recording, the essence of modeling is abstraction (generalization and
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simplification). Considering a log with data about tens of thousands of jobs may contain

hundreds of thousands of numbers. It is ludicrous to claim that the exact values of all these

numbers are important. What is important are the underlying patterns. It is these patterns that

are represented by model, typically in the form of statistical distributions.


