
  

QoS-based Scheduling of Workflows on Global Grids 

 
 
 
 
 
 

by 
 

Jia Yu 

B.E (Beijing Union University) and M.E (Monash University)   

 

 

Submitted in total fulfilment of 

the requirements for the degree of 

 

Doctor of Philosophy 

 
 
 
 
 
 

 
 
 
 
 

Department of Computer Science and Software Engineering 

The University of Melbourne, Australia 

 
Oct 2007 



  ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 iii 
 

QoS-based Scheduling of Workflows on Global Grids 
Jia Yu 

Supervisors: Assoc. Prof. Rajkumar Buyya, Prof. Rao Kotagiri 

 

Abstract 

    Grid computing has emerged as a global cyber-infrastructure for the 

next-generation of e-Science applications by integrating large-scale, distributed 

and heterogeneous resources. Scientific communities are utilizing Grids to share, 

manage and process large data sets. In order to support complex scientific experi-

ments, distributed resources such as computational devices, data, applications, and 

scientific instruments need to be orchestrated while managing the application 

workflow operations within Grid environments. This thesis investigates properties 

of Grid workflow management systems, presents a workflow engine and algo-

rithms for mapping scientific workflow applications to Grid resources based on 

specified QoS (Quality of Service) constraints.  

To address the field of Grid computing of workflow application scheduling, 

the thesis has made the following contributions:  

• proposed a taxonomy of workflow management systems for Grid comput-

ing. 

• developed a workflow engine which leverages tuple spaces to provide 
event-based execution management. 

 

• developed deadline and budget distribution strategies based on the work-
load and dependency of tasks. 

 

• developed algorithms for scheduling workflows with QoS constraints using 
genetic algorithms.  

 

• leveraged multi-objective evolutionary algorithms (MOEAs) for workflow 
execution planning to generate a set of trade-off alternative scheduling so-
lutions.  

 
 
 



  iv 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 v 
 

 
 
This is to certify that 

(i) the thesis comprises only my original work, 

(ii) due acknowledgement has been made in the text to all other material used, 

(iii) the thesis is less than 100,000 words in length, exclusive of table, maps, 

bibliographies, appendices and footnotes. 

 

 

 

 

Signature 

 

Date 

 

 

 

 

 

 

 

 

 

 

 

 

 



  vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 vii 
 

Acknowledgments 

 

I would like to thank my advisors, Associate Professor Rajkumar Buyya and Pro-

fessor Raomamohanarao Kotagiri for guiding me to complete my PhD thesis 

successfully. I am grateful to them for motivating and inspiring me to go deeply 

into the field of Grid computing and workflows and supporting me throughout the 

life cycle of PhD studies.  

 I want to thank present and past members of GRIDs Lab who have provided 

me with help during my PhD study time. Thanks to Chee Shin Yeo, Hussein Gib-

bins, Anthony Sulistio, Srikumar Venugopal, Tianchi Ma, Sushant Goel, Krishna 

Nadiminti, Kyong Hoon Kim, Suraj Pandey for proof-reading my research papers 

and giving advices on my research. Thanks to Marcos Assunção, Marco A. S. 

Netto, Rajiv Ranjan, Al-Mukaddim Khan Pathan, and Md Mustafizur Rahman for 

their great company in playing squash which made my PhD study period more en-

joyable. Thanks to Xingchen Chu and Luyao Wu for sharing their skills on 

building the workflow engine.   

Thanks to Michael Kirley for the discussion of multi-objective algorithms and 

Robert Stewart for providing scripts for statistical analysis. Thanks to James Dob-

son for discussion and providing data for executing neuro-science workflow 

applications. 

I want to offer my special thanks to Chen Khong Tham (National University, 

Singapore), Wolfram Schiffmann (FernUniversitaet in Hagen, Germany), Ivona 

Brandic (University of Vienna, Austria), Soonwook Hwang (National Institute of 

Informatics, Japan), Ewa Deelman (University of Southern California, USA), 

Chris Mattmann (NASA Jet Propulsion Laboratory, USA), Henan Zhao (Univer-

sity of Manchester, UK), Bertram Ludaescher (University of California, Davis), 

Thomas Fahringer (University of Innsbruck, Austria), Gregor von Laszewski (Ar-

gonne National Laboratory, USA), Ken Kennedy, Anirban Mandal, and Chuck 

Koelbel (Rice University, USA), Pramod Kumar Konugurthi (Indian Space Re-



  viii 
 

search Organisation, India) for providing information of their projects and com-

ments on my research work. 

I would like to thank all sponsors of research projects undertaken at the Grid 

Computing and Distributed Systems (GRIDS) Lab especially the Australian Re-

search Council as their funding for the GRIDS Lab has enabled me to carry out the 

research report in this thesis. 

I would like thank my parents and sister for their unreserved support and un-

derstanding during my research studies. 

I would like to thank all other staff members in the Department and the Uni-

versity especially Julien Reid, Binh Phan, Pinoo Bharucha and technical staff for 

their enthusiastic support.   

 

Jia Yu 

Melbourne, Australia 

Oct 15, 2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ix 
 

 

Table of Contents 
 
 
Chapter 1 Introduction ................................................................................. 1 

1.1 Grid Workflow Management Systems................................................................ 1 
1.2 QoS Workflow Scheduling ................................................................................. 2 
1.3 Contributions....................................................................................................... 5 
1.4 Thesis Organization ............................................................................................ 6 

 
Chapter 2 A Taxnomy of Workflow Management Systems ....................... 9 

2.1 Grid Workflow Management Systems................................................................ 9 
2.2 Taxonomy ......................................................................................................... 11 

2.2.1 Workflow Design ....................................................................................... 11 
2.2.2 Information Retrieval ................................................................................. 18 
2.2.3 Workflow Scheduling ................................................................................ 20 
2.2.4 Fault Tolerance........................................................................................... 28 
2.2.5 Intermediate Data Movement..................................................................... 29 

2.3 Survey ............................................................................................................... 31 
2.4 Summary ........................................................................................................... 49 

 
Chapter 3 Workflow Enactment Engine .................................................... 51 

3.1 Workflow Engine .............................................................................................. 51 
3.1.1 Entities ....................................................................................................... 52 
3.1.2 Workflow Execution Management ............................................................ 53 
3.1.3 Communication Approach ......................................................................... 54 
3.1.4 State Transition .......................................................................................... 56 
3.1.5 Interaction .................................................................................................. 57 

3.2 Service Discovery ............................................................................................. 59 
3.3 Workflow Language.......................................................................................... 61 

3.3.1 Tasks .......................................................................................................... 62 
3.3.2 Data Dependencies..................................................................................... 64 
3.3.3 Parameterization......................................................................................... 64 
3.3.4 I/O Models ................................................................................................. 66 

3.4 Fault Handling................................................................................................... 67 
3.4 Implementation ................................................................................................. 67 

3.4.1 Design Diagram ......................................................................................... 68 
3.4.2 Event Messages.......................................................................................... 69 

3.5 A Case Study in fMRI Data Analysis ............................................................... 70 
3.5.1 Population-based Atlas Workflow ............................................................. 70 
3.5.2 Experiment ................................................................................................. 72 

3.6 Related Work .................................................................................................... 76 
3.7 Summary ........................................................................................................... 77 

 



  x 
 

 
 
Chapter 4 Cost-aware Workflow Scheduling............................................ 79 

4.1 Utility Grids ...................................................................................................... 79 
4.2 Problem Overview ............................................................................................ 81 

4.2.1 Problem Description .................................................................................. 81 
4.2.2 Performance Estimation............................................................................. 82 

4.3 Cost-based Workflow Scheduling Heuristics ................................................... 82 
4.3.1 Deadline Constrained Scheduling.............................................................. 83 
4.3.2 Budget Constrained Scheduling................................................................. 89 
4.3.3 Ranking Strategy for Parallel Tasks .......................................................... 92 

4.4 Workflow Applications..................................................................................... 93 
4.5 Other Heuristics ................................................................................................ 94 

4.5.1 Greedy-Time and Greedy-Cost.................................................................. 94 
4.5.2 Backtracking .............................................................................................. 95 

4.6 Performance Evaluation.................................................................................... 95 
4.6.1 Experimental Setup.................................................................................... 95 
4.6.2 Results........................................................................................................ 97 

4.7 Related Work .................................................................................................. 104 
4.8 Summary......................................................................................................... 105 

 
Chapter 5 Workflow Scheduling using Genetic Algorithms.................. 107 

5.1 Genetic Algorithms......................................................................................... 107 
5.2 Individual Representation ............................................................................... 108 
5.3 Initial Solutions............................................................................................... 110 
5.4 Evolutionary Operations ................................................................................. 112 

5.4.1 Crossover ................................................................................................. 112 
5.4.2 Mutation................................................................................................... 113 

5.5 Fitness Function.............................................................................................. 115 
5.6 Selection Scheme............................................................................................ 117 
5.7 Time Slot Assignment .................................................................................... 118 
5.8 Experiments .................................................................................................... 119 

5.8.1 Deadline Constrained Scheduling............................................................ 120 
5.8.2 Budget Constrained Scheduling............................................................... 122 
5.8.3 Effect of the number of generations ........................................................ 124 
5.8.4 Effect of the size of population................................................................ 125 
5.8.5 Impact of Selection Scheme .................................................................... 127 

5.9 Related Work .................................................................................................. 129 
5.10 Summary....................................................................................................... 130 

 
Chapter 6 Multi-objective Planning for Workflow Execution................. 133 

6.1 Multi-objective Workflow Planning............................................................... 133 
6.2 Multi-objective Optimization ......................................................................... 135 

6.2.1 Definitions ............................................................................................... 135 
6.2.2 MOP Algorithms...................................................................................... 136 



 

 xi 
 

6.3 Fitness Functions............................................................................................. 139 
6.4 Experiments..................................................................................................... 140 

6.4.1 Comparison of different algorithms ......................................................... 141 
6.4.2 Effect of altering the archive size of SPEA2 ........................................... 149 
6.4.3 Effect of changing mutation possibility ................................................... 150 
6.4.4 Effect of changing crossover type............................................................ 151 

6.5 Related Work .................................................................................................. 152 
6.6 Summary ......................................................................................................... 153 

 
Chapter 7 Conclusions and Future Directions ....................................... 154 

7.1 Summary ......................................................................................................... 154 
7.2 Conclusion ...................................................................................................... 155 
7.3 Future Directions............................................................................................. 158 

7.3.1 Dynamic Negotiation Models .................................................................. 158 
7.3.2 Supporting multiple pricing models......................................................... 158 
7.3.3 Supporting multiple scheduling objectives and selection functions ........ 159 
7.3.5 Benchmarking QoS-based workflow scheduling algorithms................... 160 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  xii 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 xiii 
 

List of Figures 
 
Figure 1.1: A high-level view of a Grid workflow execution environment............. 3 
Figure 2.1: Workflow management system. .......................................................... 10 
Figure 2.2: Elements of a Grid workflow management system............................. 11 
Figure 2.3: Workflow design taxonomy. ............................................................... 11 
Figure 2.4: Workflow structure taxonomy............................................................. 12 
Figure 2.5: Promoter identification workflow. ...................................................... 13 
Figure 2.6: Workflow model taxonomy................................................................. 13 
Figure 2.7: Workflow composition system taxonomy........................................... 15 
Figure 2.8: Workflow QoS constraints taxonomy. ................................................ 17 
Figure 2.9: QoS constraints assignment taxonomy................................................ 18 
Figure 2.10: Information retrieval taxonomy......................................................... 19 
Figure 2.11: Workflow scheduling taxonomy. ...................................................... 20 
Figure 2.12: Scheduling architecture taxonomy. ................................................... 21 
Figure 2.13: Decision making taxonomy. .............................................................. 22 
Figure 2.14: Planning scheme taxonomy. .............................................................. 24 
Figure 2.15: Scheduling strategy taxonomy. ......................................................... 25 
Figure 2.16: Performance estimation taxonomy. ................................................... 27 
Figure 2.17: Fault tolerance taxonomy. ................................................................. 28 
Figure 2.18: Intermediate data movement. ............................................................ 30 
Figure 3.1: Architecture of WFEE. ........................................................................ 53 
Figure 3.2: Execution management. ...................................................................... 54 
Figure 3.3: Event-driven mechanism. .................................................................... 55 
Figure 3.4: State transition of WCO. ..................................................................... 57 
Figure 3.5: State transition of TM.......................................................................... 57 
Figure 3.6: Interaction sequence diagram the WCO, TMs and ESS...................... 58 
Figure 3.7: Service discovery using GMD............................................................. 59 
Figure 3.8: Grid application service schema.......................................................... 60 
Figure 3.9: Structure of workflow language. ......................................................... 61 
Figure 3.10: Schema of task definition. ................................................................. 63 
Figure 3.11: Flow diagram of task A, B, C and D. ................................................ 64 
Figure 3.12: Single parameter and range parameter. ............................................. 65 
Figure 3.13: Illustration of workflow parameters. ................................................. 65 
Figure 3.14: Input/output models........................................................................... 67 
Figure 3.15: Class diagram of WFEE. ................................................................... 68 
Figure 3.16: Population-based atlas workflow. ..................................................... 70 
Figure 3.17: Total execution times of processing 25, 50 and 100 subjects over 
various Grid sites. .................................................................................................. 74 
Figure 3.18: Execution progress for processing 50 subjects.................................. 74 
Figure 3.19: Execution tasks for processing 50 subjects. ...................................... 75 
Figure 4.1: Workflow task partition....................................................................... 83 
Figure 4.2: Deadline distribution. .......................................................................... 86 
Figure 4.3: Small portion of workflow applications. ............................................. 94 
Figure 4.4: Simulation environment. ..................................................................... 95 



  xiv 
 

Figure 4.5: Execution time for scheduling balanced- and unbalanced-structure 
applications. ............................................................................................................98 
Figure 4.6: Execution cost for scheduling balanced- and unbalanced-structure. 
applications. ............................................................................................................99 
Figure 4.7: Normalized scheduling overhead for deadline constrained scheduling.
................................................................................................................................99 
Figure 4.8: Execution cost for scheduling balanced- and unbalanced-structure 
applications. ..........................................................................................................100 
Figure 4.9: Execution time for scheduling balanced- and unbalanced-structure 
applications. ..........................................................................................................100 
Figure 4.10: Normalized scheduling overhead for budget constrained scheduling.
..............................................................................................................................101 
Figure 4.11: Comparison of execution costs among five different ranking 
strategies for scheduling deadline constrained workflow.....................................102 
Figure 4.12: Scheduling overhead of five deadline constrained ranking strategies.
..............................................................................................................................102 
Figure 4.13: Comparison of execution costs among five different ranking 
strategies for scheduling deadline constrained workflow.....................................103 
Figure 4.14: Scheduling overhead of five budget constrained ranking strategies.
..............................................................................................................................104 
Figure 5.1: Workflow representation in the search space.....................................109 
Figure 5.2: Illustration of updating genetic operation strings...............................111 
Figure 5.3: Illustration of crossover operation......................................................113 
Figure 5.4: Illustration of reordering mutation. ....................................................114 
Figure 5.5: Illustration of replacing mutation operation.......................................115 
Figure 5.6: Time slot assignment..........................................................................118 
Figure 5.7: Normalized execution time and cost for scheduling balanced-structure 
application.............................................................................................................121 
Figure 5.8: Normalized execution time and cost for scheduling 
unbalanced-structure application. .........................................................................121 
Figure 5.9: Normalized execution time and cost for scheduling balanced-structure 
application.............................................................................................................123 
Figure 5.10: Normalized execution time and cost for scheduling 
unbalanced-structure application. .........................................................................123 
Figure 5.11: Evolution of execution time and cost during 100 generations for 
deadline constrained scheduling application. .......................................................125 
Figure 5.12: Evolution of execution time and cost during 100 generations for 
budget constrained scheduling..............................................................................125 
Figure 5.13: Normalized execution time and cost for sizes of the population ranged 
from 5 to 80 at medium deadline. .........................................................................126 
Figure 5.14: Scheduling overhead for the sizes of the population ranged from 5 to 
80. .........................................................................................................................126 
Figure 5.15: Comparison of execution cost and time among four selection scheme 
for deadline constrained scheduling on balanced-structure workflows................127 



 

 xv 
 

Figure 5.16: Comparison of execution cost and time among four selection scheme 
for deadline constrained problem on unbalanced-structure workflows. .............. 127 
Figure 5.17. Comparison of execution cost and time among four selection scheme 
for budget constrained problem on balanced-structure workflows...................... 128 
Figure 5.18: Comparison of execution cost and time among four selection scheme 
for budget constrained problem on unbalanced-structure workflows.................. 128 
Figure 6.1: Workflow Management System. ....................................................... 134 
Figure 6.2: Five non-dominated solutions and four dominated solutions for the 
optimization problem of objectives f1(x) and f2(x). .............................................. 136 
Figure 6.3: Generic outline of NSGAII and SPEA2 algorithm. .......................... 138 
Figure 6.4: Overview of PAES algorithm............................................................ 138 
Figure 6.5: Obtained non-dominated solutions with five approaches for the 
balanced-structure application on different constraint levels............................... 143 
Figure 6.6: Obtained non-dominated solutions with five approaches for the 
unbalanced-structure application on different constraint levels........................... 144 

Figure 6.7: Box plot of −
HI  indicator values for the balanced-structure application 

on different constraint levels................................................................................ 147 

Figure 6.8: Box plot of −
HI indicator values for the unbalanced-structure 

application on different constraint levels. ............................................................ 148 
Figure 6.9: Evolution of execution time and cost during 100 generations for 
unbalanced-structure application on the medium constraint................................ 149 
Figure 6.10: Obtained non-dominated solutions of the archive size ranged between 
5, 10, 15, 20, 30 and 50 for the unbalanced-structure application  on the medium 
constraint. ............................................................................................................. 150 
Figure 6.11: Performances of SPEA2 with different mutation rates for the 
unbalanced-structure application on the medium constraint................................ 150 
Figure 6.12: Performances of SPEA2 with different mutation rates for the 
balanced-structure application on the medium constraint.................................... 151 
Figure 6.13: Performances of SPEA2 with different crossover types for the 
balanced-structure application on the medium constraint.................................... 152 

 

 
 
 
 
 
 



  xvi 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 xvii 
 

List of Tables 
 
Table 2.1: Summary of Grid workflow management projects.................................... 31 
Table 2.2: Workflow design taxonomy mapping........................................................ 32 
Table 2.3: Workflow scheduling taxonomy mapping................................................. 33 
Table 2.4: Information retrieval, fault-tolerance and data movement. ....................... 34 
Table 3.1: Format of events. ....................................................................................... 69 
Table 3.2: Applications configuration of Grid sites.................................................... 72 
Table 3.3: Resource attributes..................................................................................... 72 
Table 3.4: Detailed execution times of the tasks for processing 100 subjects. ........... 75 
Table 4.1: Community Grids vs. Utility Grids............................................................ 80 
Table 4.2: Service speed and corresponding price for executing a task. .................... 96 
Table 4.3: Transmission bandwidth and corresponding price. ................................... 96 
Table 5.1: Default parameters. .................................................................................. 120 
Table 6.1: Default parameters. .................................................................................. 140 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  xviii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 1 
 

Chapter 1  

 
Introduction 
 
This chapter introduces the context of the research presented in this thesis. It firstly 

provides a high-level overview of workflow management systems. Then, it briefly 

presents the inspiration of QoS-based workflow scheduling and the primary contribu-

tions. This chapter ends with a discussion on the organization for the rest of this 

thesis. 

1.1 Grid Workflow Management Systems 

Grids [65] have emerged as global cyber-infrastructure for the next-generation of 

e-Science applications by integrating large-scale, distributed and heterogeneous re-

sources. More recently, Grid computing has progressed towards a service-oriented 

paradigm, which defines a new way of service provisioning based on utility comput-

ing models [166]. Within utility Grids, each resource is represented as a service to 

which consumers can negotiate their usage and quality of service.  

Scientific communities, such as high-energy physics, gravitational-wave physics, 

geophysics, astronomy and bioinformatics, are utilizing Grids to share, manage and 

process large data sets [162]. In order to support complex scientific experiments, dis-

tributed resources such as computational devices, data, applications, and scientific 

instruments need to be orchestrated while managing the application operations within 

Grid environments [115]. A workflow expresses an automation of procedures wherein 

files and data are passed between procedures applications according to a defined set of 

rules, to achieve an overall goal [44]. A workflow management system defines, man-



  2 
 

ages and executes workflows on computing resources. The use of the workflow para-

digm for application composition on Grids offers several advantages [153] such as:  

• Ability to build dynamic applications and orchestrate the use of distributed 

resources. 

• Utilization of resources that are located in a suitable domain to increase 

throughput or reduce execution costs.  

• Execution spanning multiple administrative domains to obtain specific proc-

essing capabilities.  

• Integration of multiple teams involved in managing different parts of the ex-

periment workflow – thus promoting inter-organizational collaborations. 

 

Realizing workflow management for Grid computing requires a number of chal-

lenges to be overcome. They include workflow application modeling, workflow 

scheduling, resource discovery, information services, data management, and fault 

management. However, from the user’s perspective, two important barriers that need 

to be overcome are: (1) the complexity of developing and deploying workflow appli-

cations; and (2) their scheduling on heterogeneous and distributed resources to 

enhance the utility of resources and meet user QoS (Quality of Service) demands. 

This thesis presents a software framework for composing and managing scientific 

workflow applications, and scheduling algorithms based on users’ requirements. 

 

1.2 QoS Workflow Scheduling 

Workflow scheduling is one of the key issues in the management of workflow execu-

tion. Scheduling is a process that maps and manages execution of inter-dependent 

tasks on distributed resources. It introduces allocating suitable resources to workflow 

tasks so that the execution can be completed to satisfy objective functions specified by 

users. Proper scheduling can have significant impact on the performance of the system. 

In general, the problem of mapping tasks on distributed resources belongs to a class of 

problems known as NP-hard problems [62]. For such problems, no known algorithms 



 

 3 
 

are able to generate the optimal solution within polynomial time. Even though the 

workflow scheduling problem can be solved by using exhaustive search, the time 

taken for generating the solution is very high. Scheduling decisions must be made in 

the shortest time possible in Grid environments, because there are many users com-

peting for resources, so time slots desired by one user could be taken by another user 

at any moment.   

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: A high-level view of a Grid workflow execution environment. 

 

A number of best-effort scheduling heuristics [21][109][181] such as Min-Min and 

HEFT (Heterogeneous Earliest Finish Time) have been developed and applied to 

schedule Grid workflows. These best-effort scheduling algorithms attempt to com-

plete execution within the shortest time possible. They neither have any provision for 

users to specify their QoS requirements nor any specific support to meet them. How-

ever, many workflow applications in both scientific and business domains require 

some certain assurance of QoS (see Figure 1.1). For example, a workflow application 

for maxillo-facial surgery planning [79] needs results to be delivered before a certain 

time. For these applications, the workflow scheduling applied should be able to ana-

QoS Constraints

Application
Workflow

Workflow
Engine

Surgery
Planning

Business
Process

Scientific
Experiment

R2

R5

R1
R6

Rn

R3
R4

 



  4 
 

lyze users’ QoS requirements and map workflow tasks onto suitable resources such 

that the workflow execution can be completed to satisfy their requirements.  

Several new challenges are presented while scheduling workflows with QoS con-

straints for Grid computing. A Grid environment consists of large number of resources 

owned by different organizations or providers with varying functionalities and able to 

guarantee differing QoS levels. Unlike best-effort scheduling algorithms, which only 

consider one factor (e.g. execution time), multiple criteria must be considered to opti-

mize the execution performance of QoS constrained workflows. In addition to 

execution time, monetary execution cost is also an important factor that determines 

quality of scheduling algorithms, because service providers may charge differently for 

different levels of QoS [26]. Therefore, a scheduler cannot always assign tasks onto 

services with the highest QoS levels. Instead, it may use cheaper services with lower 

QoS that is sufficient enough to meet the requirements of the users.  

Also, completing the execution within a required QoS not only depends on the 

global scheduling decision of the workflow scheduler, but also depends on the local 

resource allocation model of each execution site. If the execution of every single task 

in the workflow cannot be completed as expected by the scheduler, it is impossible to 

guarantee QoS levels for the entire workflow. Therefore, schedulers should be able to 

interact with service providers to ensure resource availability and QoS levels. It is re-

quired that the scheduler can determine QoS requirements for each task and negotiate 

with service providers to establish a Service Level Agreement (SLA) [106], which is a 

contract specifying the minimum expectations and obligations between service pro-

viders and consumers.  

This thesis, therefore, is focused on developing and evaluating a number of work-

flow scheduling algorithms based on QoS constraints such as deadline and budget 

while taking into account the costs and capabilities of Grid services. It also presents a 

workflow execution framework to facilitate deployment of scheduling strategies and 

interaction with Grid resources.  

 



 

 5 
 

1.3 Contributions 

This thesis makes several contributions towards enhancing the understanding of work-

flow management in Grid environments and advancing the area of QoS-aware 

workflow scheduling as specified below:  

 

1. This thesis provides comprehensive taxonomies of various aspects of work-

flow design, information retrieval, workflow scheduling, fault tolerance and 

data movement. The taxonomies not only provide a basis for differentiating 

various Grid workflow systems but also identify strengths and weaknesses of 

the state-of-art in Grid workflows and offer directions for future work. 

 

2. This thesis presents the design and development of a workflow enactment en-

gine for composing and deploying workflows onto Grid resources. The engine 

utilizes functions offered by the Gridbus resource broker to support interac-

tion with different Grid middleware such as globus, Condor [158] and Sun 

Grid Engine [157]. It provides a decentralized architecture to facilitate de-

ployment of multiple scheduling strategies for workflow tasks. It uses an 

event-driven mechanism to trigger workflow task execution in order to sup-

port complex workflow structures. The tuple space paradigm has been 

leveraged to simplify implementation of the workflow engine. Parameteriza-

tion is also supported at both workflow language level and execution level in 

order to support large scientific experiments. The capabilities of the engine 

have been demonstrated using real-world applications by creating a neurosci-

ence application and executing it on global Grid resources.  

 

3. This thesis presents heuristics to optimize execution performance while 

meeting users’ specified time or monetary cost constraints. These heuristics 

provide strategies to distribute the overall deadline and budget of the entire 

workflow over single workflow tasks based on their workload and dependen-



  6 
 

cies. The sub-deadline and sub-budget assigned to each task are important for 

negotiating and monitoring SLAs between the workflow engine and service 

providers for task execution.  

 

4. This thesis develops Genetic Algorithm (GA) - inspired techniques for sched-

uling workflows with QoS constraints. The goal is either to minimize 

execution time while meeting the user’s budget constraint or to minimize 

execution cost while meeting the user’s deadline constraint. The algorithm 

has been evaluated by comparing with non-GA algorithms for various con-

straint levels and workflow structures. 

 

5. This thesis presents a multi-objective planning approach for workflow execu-

tion. It introduces Multi-Objective Evolutionary Algorithms (MOEAs) for 

generating a set of trade-off scheduling solutions according to users’ QoS re-

quirements. The goal is to simultaneously minimize two conflicting objectives 

- execution time and execution price while meeting users’ maximum time 

constraint (deadline) and cost constraint (budget). Simulation studies have 

been conducted using the GridSim Toolkit [155] to demonstrate the ability of 

MOEAs in optimally scheduling workflows derived from neuroscience appli-

cations and astronomy applications.   

1.4 Thesis Organization 

The rest of this thesis is organized as follows: Chapter 2 presents an overview of Grid 

workflow management systems and proposes a taxonomy that characterizes and clas-

sifies approaches of scientific workflow systems in the context of Grid computing. 

This thesis then presents the design of the workflow enactment engine in Chapter 3. 

The engine supports parameterization and decentralized scheduling architecture. 

Chapter 4 presents the formalization of scheduling problems for utility Grids, applica-

tion models and evaluation simulation environments. It also introduces overall 

deadline and budget distribution strategies for deadline and budget constrained heuris-



 

 7 
 

tics. Genetic algorithms-based scheduling algorithms for solving the QoS constrained 

problems are presented in Chapter 5. Chapter 6 introduces and evaluates 

multi-objective evolutionary algorithms (MOEAs) for workflow execution planning. 

Finally, this thesis concludes and presents future work in Chapter 7. 

  The core chapters are derived from various research papers published during the 

course of the PhD. candidature as detailed below: 

 

 Chaper 2 is derived from: 
• Jia Yu and Rajkumar Buyya, A Taxonomy of Workflow Management Systems 

for Grid Computing, Journal of Grid Computing, Springer Press, New York, 
USA. September 2005. 

 

• Jia Yu and Rajkumar Buyya, A Taxonomy of Scientific Workflow Systems for 
Grid Computing, Special Issue on Scientific Workflows, SIGMOD Record, 
34(3):44-49, ACM Press, New York, USA, September 2005. 

 
 Chapter 3 is derived from:  

• Jia Yu and Rajkumar Buyya, A Novel Architecture for Realizing Grid 
Workflow using Tuple Spaces, Proceedings of the 5

th
 IEEE/ACM International 

Workshop on Grid Computing (Grid 2004, IEEE CS Press, Los Alamitos, CA 
USA), November 8, 2004, Pittsburgh, USA.   

 
• Jia Yu, Srikumar Venugopal, Rajkumar Buyya, A Market-Oriented Grid 

Directory Service for Publication and Discovery of Grid Service Providers and 
their Services. Journal of Supercomputers, Kluwer Academic Publishers, USA, 
January 2006. 

 
 Chapter 4 is derived from: 

• Jia Yu, Rajkumar Buyya and Chen Khong Tham, Cost-based Scheduling of 
Workflow Applications on Utility Grids, Proceedings of the 1

st
 IEEE 

International Conference on e-Science and Grid Computing (eScience2005, 
IEEE CS Press, Los Alamitos, CA, USA), December 5-8, 2005, Melbourne, 
Australia. 

 
• Jia Yu, Rajkumar Buyya and Ramamohanarao Kotagiri, Workflow Scheduling 

Algorithms for Grid Computing, Fatos Xhafa and Ajith Abraham (ed.),  

Meta-heuristics for Scheduling, Springer, 2008. (in press) 
 
 Chapter 5 is derived from:  

• Jia Yu and Rajkumar Buyya, A Constrained Scheduling of Workflow 



  8 
 

Applications on Utility Grids using Genetic Algorithms, Workshop on 

Workflows in Support of Large-Scale Science, HPDC 2006, June 19-23, 2006, 
Paris, France. 

 
• Jia Yu and Rajkumar Buyya, Scheduling Scientific Workflow Applications 

with Deadline and Budget Constraints using Genetic Algorithms, Scientific 

Programming Journal, 14(3-4):217-230, IOS Press, Amsterdam, The 
Netherlands, December 2006. 

 
 Chapter 6 is derived from: 

• Jia Yu, Michael Kirley and Rajkumar Buyya, Multi-objective Planning for 
Workflow Execution on Utility Grids, Proceedings of the 8th IEEE/ACM 

International Conference on Grid Computing (Grid 2007, IEEE CS Press, Los 
Alamitos, CA USA), Austin, USA, September 19-21, 2007.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 9 
 

Chapter 2  

 
A Taxonomy of Workflow  
Management Systems  
 
This chapter provides a general model and taxonomy of Grid workflow systems. The 

taxonomy covers the topics such as workflow design, information retrieval, workflow 

scheduling, fault tolerance and data movement. This chapter also classifies mecha-

nisms developed and applied in several representative Grid workflow systems 

according to the taxonomy.   

 

2.1 Grid Workflow Management Systems 

 Figure 2.1 shows the architecture and functionalities supported by various compo-

nents of the Grid workflow system based on the workflow reference model [44] 

proposed by Workflow Management Coalition (WfMC) [184] in 1995. At the highest 

level, functions of Grid workflow management systems could be characterized into 

build-time functions and run-time functions. The build-time functions are concerned 

with defining, and modeling workflow tasks and their dependencies; while the 

run-time functions are concerned with managing workflow executions and interac-

tions with Grid resources for processing workflow applications. Users interact with 

workflow modeling tools to generate a workflow specification, which is submitted to 

a run-time service called the workflow enactment service for execution. Major func-

tions provided by the workflow enactment service are scheduling, fault management 

and data movement. Workflow scheduling discovers resources and allocates tasks on 



  10 
 

suitable resources to meet users’ requirements, while data movement manages data 

transfer between selected resources and fault management provides mechanisms for 

failure handling during execution. In addition, the enactment engine provides feed-

back to a monitor so that users can view the workflow process status through a Grid 

workflow monitor.  

 

 

Figure 2.1: Workflow management system. 

 

The workflow enactment service may be built on the top of low level Grid mid-

dleware (e.g. Globus toolkit [69], UNICORE [169] and Alchemi [107]), through 

which the workflow management system invokes services provided by Grid resources. 

At both the build-time and run-time stages, the information about resources and ap-

plications may need to be retrieved using Grid information services. 

  In the recent past, several Grid workflow systems have been proposed and devel-

oped for defining, managing and executing scientific workflows. In order to enhance 

our understanding of the field, a taxonomy is proposed to primarily (a) capture archi-

Grid Workflow Modeling 
& Definition Tools 

Grid Workflow  
Specification 

Grid Workflow Enactment Engine 

Grid Resources 

Resource Info Service 
(e.g. MDS) 

Application Info Ser-
vice (e.g. VDS) 

Build Time 

Run Time 

Grid Users 

Workflow Design 
 & Definition  

Workflow Execution  
& Control 

Interaction with Grid 
resources 

Grid Information Services 

…… 

Interaction with Infor-
mation services 

Workflow Scheduling  

Fault Manage-
ment  

Data Move-
ment 

Grid Middleware 

Workflow  
Monitor 

feedback 



 

 11 
 

tectural styles and (b) identify design and engineering similarities and differences 

between them. The taxonomy provides an in-depth understanding of building and 

executing workflows on Grids. It compares different approaches and also helps users 

to decide on minimum subset of features required for their systems. 

 

2.2 Taxonomy 

The taxonomy characterizes and classifies approaches of workflow management in 

the context of Grid computing. As shown in Figure 2.2, it consists of five elements of 

a Grid workflow management system: (a) workflow design, (b) information retrieval, 

(c) workflow scheduling, (d) fault tolerance and (e) data movement. In this section, 

we look at each element and its taxonomy in detail.   

 

 

 

 

Figure 2.2: Elements of a Grid workflow management system. 

 

2.2.1 Workflow Design 

As shown in Figure 2.3, workflow design includes four key factors, namely (a) work-

flow structure, (b) workflow model/specification, (c) workflow composition system, 

and (d) workflow QoS (Quality of Service) constraints.  

 
 

 
 
 
 
 

Figure 2.3: Workflow design taxonomy. 

Workflow Design Information 
Retrieval 

Workflow 
Scheduling 

Fault  
Tolerance 

Data 
Movement 

Grid Workflow Management System 

 Workflow 
Structure 

Workflow 
Composition System 

 Workflow 
Model/Specification 

Workflow 
QoS Constraints 

Workflow Design 



  12 
 

2.2.1.1 Workflow Structure 

A workflow is composed by connecting multiple tasks according to their dependen-

cies. The workflow structure, also referred as workflow pattern [2][3][6], indicates the 

temporal relationship between these tasks. Figure 2.4 shows the workflow structure 

taxonomy. In general, a workflow can be represented as a Directed Acyclic Graph 

(DAG) [140] or a non-DAG. 

 
 
 
 
 
 
 
 
 

Figure 2.4: Workflow structure taxonomy. 

    

In DAG-based workflow, workflow structure can be classified as sequence, par-

allelism, and choice.  Sequence is defined as an ordered series of tasks, with a task 

starting after previous one has been completed. Parallelism represents tasks which are 

performed concurrently, rather than serially. In choice control pattern, a task is se-

lected to execute at run-time when its associated conditions are true.  

In addition to all patterns contained in a DAG-based workflow, a non-DAG work-

flow also includes the iteration structure in which sections of workflow tasks in an 

iteration block are allowed to be repeated. Iteration is also known as loop or cycle. 

The iteration structure is quite frequently used in scientific applications, where one or 

more tasks need to be executed repeatedly [114]. For example, in a promoter identifi-

cation workflow [105] as shown in Figure 2-5, step 5 to step 8 are executed iteratively 

to create and refine a promoter model.  

These four types of workflow structure, namely sequence, parallelism, choice and 

iteration, can be used to construct many complex workflows. Moreover, 

sub-workflows can also use these types of workflow structure as building blocks to 

form a large-scale workflow. 

 

DAG Non-DAG 

Workflow Structure 

Sequence  Choice Iteration  Parallelism Sequence   Choice Parallelism 



 

 13 
 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2.5: Promoter identification workflow. 

 

2.2.1.2 Workflow Model/Specification 

Workflow Model (also called workflow specification) defines a workflow including 

its task definition and structure definition. As shown in Figure 2.6, there are two types 

of workflow models, namely abstract and concrete. They are also referred to as ab-

stract workflows and concrete workflows [50][52]. In some literature (e.g. [104]), 

concrete models are referred to as executable workflows.  

 
 
 
 
 
 
 

Figure 2.6: Workflow model taxonomy. 

 

In an abstract model, a workflow is described in an abstract form in which the 

workflow is specified without referring to specific Grid resources for task execution.  

An abstract model provides a flexible way for users to define workflows without be-

ing concerned about low-level implementation details. Tasks in an abstract model are 

portable and can be mapped onto any suitable Grid services at run-time by using suit-

able discovery and mapping mechanisms. Using abstract models also eases the 

Workflow Model/Specification 

Concrete Abstract 

MicroArray 
analysis 

Clusfavor 
analysis 

GenBank 
sequence 
retrieval 

NCBI BLAST 
search 

Transfac 
search 

 

Promoter 

Identification 

Promoter Model 
generator 

NCBI BLAST 
search 

new candidate target genes 

Step 1 Step 2 Step 3 Step 4 

Step 5 Step 6 Step 7 Step 8 



  14 
 

sharing of workflow descriptions between Grid users [52]; in particular it benefits the 

participants of Virtual Organizations (VOs) [66]. 

In contrast, a concrete model binds workflow tasks to specific resources. In some 

cases, a concrete model may include tasks acting as data movement to transfer data in 

and out of the computation and data publication to publish newly derived data into 

VO [52]. In other situations, tasks in a concrete model may also include necessary ap-

plication movement to transfer computational code to a data site for large scale data 

analysis.   

Given the dynamic nature of the Grid environment, it is more suitable for users to 

define workflow applications in abstract models. A full or partial concrete model can 

be generated just before or during workflow execution according to the current status 

of resources. Additionally, in some systems [192], every task in a workflow is concre-

tized only at the time of task execution. However, concrete models may be used by 

some end users who want to control the execution sequence [95].  

2.2.1.3 Workflow Composition System 

Workflow composition systems are designed for enabling users to assemble compo-

nents into workflows.  They need to provide a high level view for the construction of 

Grid workflow applications and hide the complexity of underlying Grid systems. Fig-

ure 2.7 shows the taxonomy for the workflow composition systems. User-directed 

composition systems allow users to edit workflows directly, whereas automatic com-

position systems generate workflows for users automatically.  In general, users can 

use workflow languages for language-based modeling and the tools for graph-based 

modeling to compose workflows. 

Within language-based modeling, users may express workflow using a markup 

language such as Extensible Markup Language (XML) [176] (e.g. GridAnt [95], 

WSFL [99], XLANG [164], BPEL4WS [15], W3C XML-Pipeline language [179], 

and Gridbus Workflow [192]) or other formats (e.g. Condor DAGman [158]). Lan-

guage-based modeling may be convenient for skilled users, but they require users to 

memorize a lot of language-specific syntax. In addition, it is impossible for users to 



 

 15 
 

express a complex and large workflow by scripting workflow components manually. 

However, workflow languages are more appropriate for sharing and manipulation, 

whereas the graphical representations are intuitive but they require to be converted 

into other forms for manipulation. So in most Grid systems, workflow languages are 

designed to bridge the gap between the graphical clients and the Grid workflow exe-

cution engine [76]. XML-based languages are used widely for workflow specification 

as it facilitates information description in a nested structure. Moreover, many tools are 

provided to validate XML syntax and verify XML documents against XML schema 

[178] or DTD (Document Type Definition) [176]. Furthermore, many XML parsing 

tools (e.g. JDOM [87] and dom4j [54] ) are widely available.  

 

 

Figure 2.7: Workflow composition system taxonomy. 

 
 Graph-based modeling allows graphical definition of an arbitrary workflow 

through a few basic graph elements. It allows users to work with a graphical repre-

sentation of the workflow. Users can compose and review a workflow by just clicking 

and dropping the components of interest.  It avoids low-level details and hence en-

ables users to focus on higher levels of abstraction at application level [78]. The major 

modeling approaches are Petri Nets [129], UML (Unified Modeling Language) [124] 

and user-defined component. Graph-based modeling is preferred by users as opposed 

to language-based modeling. 

Petri Nets are a special class of directed graphs that can model sequential, parallel, 

loops and conditional execution of tasks [76][80]. They have been used in many 

Markup 

User-directed 

Graph-based Modeling 

Automatic 

Others 

Language-based Modeling 

Petri Net  UML User-defined Component 

Workflow Composition System 



  16 
 

workflow management systems such as Grid-Flow [76], FlowManager [98], and 

XRL/Flower [175]. UML activity diagrams [125] have also been extended and ap-

plied as a workflow specification language [18][56][131]. Compared with UML 

activity diagrams, Petri Nets have formal semantics and have been used widely for 

constructing several workflows [1][57]. A vast number of algorithms and tools for 

Petri Nets analysis have been developed along the years [111]. However, Eshuis et al. 

[57] argue that Petri Nets may be unable to model workflow activities accurately 

without extending its semantics and this drawback has been addressed in UML activ-

ity diagrams. Rather than following the standard syntax and semantics of Petri Nets 

and UML, many workflow editors for Grid workflow tools create their own graphical 

representation of workflow components. For example, Triana [161] allows users to 

predefine software components and reuse them to design DAG-based workflows. Ke-

pler [14] provides graphical environment and a framework that supports the design 

and reuse of grid workflows. These tools are more convenient for users to manipulate 

their workflow applications, as they provide a more user-friendly programming envi-

ronment. They have also been integrated into underlying local applications, Grid 

middleware and monitoring systems. For example, P-GRADE [89][103] interoperates 

with a wide range of parallel applications in addition to Condor and Globus based 

Grid middleware. It also allows users to access and modify program code of a work-

flow task through a graphical editor. However, lack of standards hinders the 

collaboration between these projects. Many works are thus replicated such as different 

user interfaces developed by different projects for the same functionality. Moreover, 

workflow structures supported by most of them are limited to only sequence and par-

allelism.  

Graph-based modeling is very intuitive and can be handled easily even by a 

non-expert user. However, the layout of workflow components on a display screen 

can become very huge and difficult to manage [126]. One of the solutions to over-

come this limitation is to use hierarchical graph definition [80]. Another solution is to 

have a system which composes workflows automatically. Pegasus [52] is one such 

automatic composition system for Grid computing; it has to be adapted to particular 



 

 17 
 

applications, because the composition is based on application-dependent metadata. It 

receives a metadata description of desired data products and initial input values from 

users. The tasks are then composed automatically to form a workflow by querying a 

virtual data catalog [67] that contains information for data derivation of application 

components. Compared with user-directed systems, automatic composition systems 

are ideal for large scale workflows which are very time consuming to compose manu-

ally. However, the automatic composition of application components is challenging 

because it is difficult to capture the functionality of components and data types used 

by the components [33] [126].   

2.2.1.4 Workflow QoS Constraints 

In a Grid environment, there are a large number of similar or equivalent resources pro-

vided by different parties. Grid users can select suitable resources and use them for 

their workflow applications. These resources may provide the same functionality, but 

optimize different QoS measures. In addition, different users or applications may have 

different expectations and requirements. Therefore, it is not sufficient for a workflow 

management system to only consider functional characteristics of the workflow. QoS 

requirements such as time limit (deadline) and expenditure limit (budget) for work-

flow execution also need to be managed by workflow management systems. Users 

must be able to specify their QoS expectations of the workflow at the design level. 

Then, the actions conducted by workflow systems using run-time must be chosen ac-

cording to the initial QoS requirements. 

 

 

 

 

 

 

Figure 2.8: Workflow QoS constraints taxonomy. 

 

 Figure 2.8 shows the taxonomy of Grid workflow QoS constraints based on a 

QoS model for Web services based workflow provided by Cardoso et al. [34] and QoS 

of Web services [110][128]. It includes five dimensions: time, cost, fidelity, reliability 

Reliability Security Fidelity Cost Time 

Workflow QoS Constraints 



  18 
 

and security. Time is a basic measure of performance. For workflow systems, it refers 

to the total time required for completing the execution of a workflow. Cost represents 

the cost associated with the execution of workflows including the cost for managing 

workflow systems and usage charge of Grid resources for processing workflow tasks. 

Fidelity refers to the measurement related to the quality of the output of workflow 

execution. Reliability is related to the number of failures for execution of workflows. 

Security refers to confidentiality of the execution of workflow tasks and trustworthi-

ness of resources.  

 As indicated in Figure 2.9, there are two different ways to assign QoS constraints 

in a workflow model. One way is to allow users to assign QoS constraints at task-level. 

The overall QoS can be assessed by computing all individual tasks. For example, a 

user assigns desired execution time for every task in a workflow. The deadline for the 

entire workflow execution can be calculated by a workflow reduction algorithm (e.g. 

SWR(w) algorithm [32]). Another way is to assign QoS constraints at workflow-level, 

allowing users to define the overall workflow QoS requirements. However, QoS con-

straints for each task may be required by schedulers for resource allocation at run-time. 

For the time dimension, users are likely to specify a deadline for the entire workflow 

execution rather than for every single task. In order to fulfill the deadline for the entire 

workflow, the scheduler needs to decide how fast each task has to be processed using 

a deadline assignment approach (e.g. Ultimate Deadline, Effective Deadline, Equal 

Slack, and Equal Flexibility strategies in [90]).  

 

 

 

 

 
 

     Figure 2.9: QoS constraints assignment taxonomy. 

 

2.2.2 Information Retrieval  

A Grid workflow management system does not execute the tasks itself, but it merely 

coordinates the execution of the tasks by the Grid resources. To map tasks onto suit-

Workflow-level Task-level 

QoS Constraints Assignment 



 

 19 
 

able resources, information about the resources has to be retrieved from appropriate 

sources [189]. As indicated in Figure 2.10, there are three dimensions of information 

retrieval: static information, historical information and dynamic information.  

 Static information refers to information that does not vary with time. It may in-

clude infrastructure-related (e.g. the number of processors), configuration-related 

(e.g. operating system, libraries), QoS-related (e.g. flat usage charge), access-related 

(e.g. service operations), and user-related information (e.g. authentication ID). Gener-

ally, static information is utilized by Grid workflow management systems to pre-select 

resources during the initiation of the workflow execution.  

 

Figure 2.10: Information retrieval taxonomy. 

 
 As Grid resources are not dedicated to the owners of the workflow management 

systems, the Grid workflow management system also needs to identify dynamic in-

formation such as resource accessibility, system workload, and network performance 

during execution time. Unlike static information, dynamic information reflects the 

status of the Grid resources, such as load average of a cluster, available disk space, 

CPU usage, and active processes. It also includes task execution information and 

market related information such as dynamic resource price.  

 Historical information is obtained from previous events that have occurred such 

as performance history and execution history of Grid resources and application com-

ponents. Generally, workflow management systems can analyze historical information 

to predict the future behaviors of resources and application components on a given set 

Dynamic 
Information 

Information Retrieval 

Infrastructure 
related 

Historical 
Information 

Configuration 
related 

QoS 
related 

Access 
related 

User 
related 

Resource 
related Execution 

related 

Market 
related 

Static 
Information 



  20 
 

of resources. Historical information can also be used to improve the reliability of fu-

ture workflow execution. For example, the user can correct the logic of a failed 

workflow according to the log of the workflow system. 

Several information services are available for accessing static and dynamic infor-

mation about Grid resources. For example, Monitoring and Discovery System (MDS) 

[139] provides static hardware information such as CPU type, memory size and soft-

ware information such as operating system information, and some dynamic 

information such as CPU load snapshot. Network Weather Service (NWS) [183] pro-

vides additional dynamic information about availability of CPU, memory, and 

bandwidth. An object oriented model for publication and retrieval of electronic re-

sources is given in [40]. 

 

2.2.3 Workflow Scheduling 

Casavant et al. [36] categorized task scheduling in distributed computing systems into 

‘local’ task scheduling and ‘global’ task scheduling. Local scheduling involves han-

dling the assignment of tasks to time-slices of a single resource whereas global 

scheduling involves deciding where to execute a task.  According to this definition, 

workflow scheduling is a kind of global task scheduling as it focuses on mapping and 

managing the execution of inter-dependent tasks on shared resources that are not di-

rectly under its control.  

 

 
 
 
 
 
 
 

Figure 2.11: Workflow scheduling taxonomy. 

The workflow scheduler needs to coordinate with diverse local management sys-

tems as Grid resources are heterogeneous in terms of local configuration and policies. 

Taking into account users’ QoS constraints is also important in the scheduling process 

so as to satisfy user requirements.  In this section, we discuss workflow scheduling 

Planning 
Scheme 

Strategies Decision 
Making 

Performance  
Estimation  

Workflow Scheduling  

Architecture 



 

 21 
 

taxonomy from the view of (a) scheduling architecture, (b) decision making, (c) plan-

ning scheme, (d) scheduling strategy, and (e) performance estimation as shown in 

Figure 2.11.  

2.2.3.1 Scheduling Architecture 

The architecture of the scheduling infrastructure is very important for scalability, 

autonomy, quality and performance of the system [77]. Three major categories of 

workflow scheduling architecture as shown in Figure 2.12 are centralized, hierarchical 

and decentralized scheduling schemes.   

 

 

 

 

 

Figure 2.12: Scheduling architecture taxonomy. 

 
 In a centralized workflow enactment environment, one central workflow sched-

uler makes scheduling decisions for all tasks in the workflow. The scheduler has the 

information about the entire workflow and collects information of all available proc-

essing resources.  It is believed that the centralized scheme can produce efficient 

schedules because it has all necessary information [77]. However, it is not scalable 

with respect to the number of tasks, the classes and number of Grid resources. It is 

thus only suitable for a small scale workflow or a large scale workflow in which every 

task has the same objective (e.g. same class of resources).  

 Unlike centralized scheduling, both hierarchical and decentralized scheduling 

allow tasks to be scheduled by multiple schedulers.  Therefore, one scheduler only 

maintains the information related to a sub-workflow. Thus, compared to centralized 

scheduling, they are more scalable since they limit the number of tasks managed by 

one scheduler. However, the best decision made for a partial workflow may lead to 

sub-optimal performance for the overall workflow execution.  Moreover, conflict 

problems are more severe [112].  One example of conflict is that tasks from different 

sub-workflows scheduled by different schedulers may compete for the same resource.  

Scheduling Architecture 

Decentralized Hierarchical Centralized 



  22 
 

  For hierarchical scheduling, there is a central manager and multiple lower-level 

sub-workflow schedulers. This central manager is responsible for controlling the 

workflow execution and assigning the sub-workflows to the low-level schedulers.  

For example, in GridFlow project [31], there is one workflow manager and multiple 

lower-level schedulers. The workflow manager schedules sub-workflows onto corre-

sponding lower-level schedulers. Each lower-level scheduler is responsible for 

scheduling tasks in a sub-workflow onto resources owned by one organization. The 

major advantage of using the hierarchical architecture is that the different scheduling 

policies can be deployed in the central manager and lower-level schedulers [77]. How-

ever, the failure of the central manager will result in entire system failure. 

 In contrast, there are multiple schedulers without a central controller in decen-

tralized scheduling. Every scheduler can communicate with each other and schedule a 

sub-workflow to another scheduler with lower load. Compared to hierarchical sched-

uling, decentralized scheduling is more scalable but faces more challenges to generate 

optimal solutions for overall workflow performance and minimize conflict problems.   

2.2.3.2 Decision Making 

There is no single best solution for mapping workflows onto resources for all work-

flow applications, since the applications can have very different characteristics. It 

depends to some degree on the application models to be scheduled. In general, deci-

sions about mapping tasks in a workflow onto resources can be based on the 

information of the current task or of the entire workflow and can be of two types, 

namely local decision and global decision [50] as shown in Figure 2.13. Scheduling 

decisions made with reference to just the task or sub-workflow at hand are called local 

decisions whereas scheduling decisions made with reference to the whole workflow 

are called global decisions.  

 

 
 
 

 
Figure 2.13: Decision making taxonomy. 

Decision Making 

Global Local 



 

 23 
 

 Local decision based scheduling only takes one task or sub-workflow into ac-

count, so it may produce the best schedule for the current task or sub-workflow but 

could also reduce the entire workflow performance. An example given by Deelman et 

al. [50] assumes that there is a data-intensive application where the overall run-time is 

driven by data transfer costs. Consider a situation where the output of a task is very 

large. If the selection of a resource for a task is based only on a local decision without 

consideration of data transfer between other resources, when selection of a resource 

for child tasks need to be made, the initial selection may be found to be a poor choice 

if latency between the nodes is very high. This would lead to higher data transfer costs 

for this child task and hence the entire workflow. 

 Scheduling workflow tasks using global decision improves the performance of 

the entire workflow. There are some algorithms for scheduling task graphs in parallel 

systems that could be applied to Grid workflow scheduling. Li et al. [100] developed 

the Forward-Looking Analysis Method (FLAM). It analyses dependencies of the en-

tire graph to resolve the conflicts of parallel tasks which compete for the same 

resource. It is believed that global decision based scheduling can provide a better 

overall result. However, it may take much more time in scheduling decision making. 

Thus, the overhead produced by global scheduling could reduce the overall benefit 

and may even exceed the benefits it will produce [50]. Therefore, the choice of deci-

sion making for workflow scheduling should not be made without considering balance 

between the overall execution time and scheduling time. However, for some applica-

tions such as a data analysis application where the outputs of tasks in the workflow are 

always smaller than the inputs, using local decision based scheduling is sufficient.   

2.3.3.3 Planning Scheme 

A planning scheme is a method for translating abstract workflows to concrete work-

flows. As shown in Figure 2.14, schemes for the schedule planning of workflow 

applications can be categorized into either static scheme or dynamic scheme. In a 

static scheme, concrete models have to be generated before the execution according to 

current information about the execution environment and the dynamically changing 



  24 
 

state of the resources is not taken into account. In contrast, a dynamic scheme uses 

both dynamic information and static information about resources to make scheduling 

decisions at run-time. 

 

Figure 2.14: Planning scheme taxonomy. 

 
Static schemes, also known as full-ahead planning, include user-directed and 

simulation-based scheduling. In user-directed scheduling, users emulate the schedul-

ing process and make resource mapping decisions according to their knowledge, 

preference and/or performance criteria. For example, users prefer to map tasks to re-

sources on which they have not experienced failures. In simulation-based scheduling, 

the ‘best’ schedule is achieved by simulating task execution on a given set of re-

sources before a workflow starts execution. The simulation can be processed based on 

static information or the result of performance estimation. For example, in GridFlow 

[31], the ‘best’ resource selected for scheduling a task is based on the predictive task 

execution time that the resource provides.  

 Dynamic schemes include prediction-based and just in-time scheduling. Predic-

tion-based dynamic scheduling uses dynamic information in conjunction with some 

results based on prediction. It is similar to simulation-based static scheduling, in 

which the scheduler is required to predict the performance of task execution on re-

sources and generate a near optimal schedule for the task before it starts execution. 

However, it changes the initial schedule dynamically during the execution. For exam-

ple, GrADS [39] generates preliminary mapping by using prediction results, but it 

migrates a task execution to another resource when its initial contract is broken or a 

better resource is found for execution. Sakellariou et al. [140] developed a low-cost 

rescheduling policy for the mapping of workflows on Grids. It considers rescheduling 

Static Dynamic 

User-direct Simulation-based   Prediction-based  Just in-time 

Planning Scheme  



 

 25 
 

workflow tasks at a few carefully selected points during execution in a dynamically 

changing Grid environment, since the initial schedule built using inaccurate predic-

tions can affect performance significantly.  

Rather than making a schedule ahead, just in-time scheduling [52] only makes 

scheduling decision at the time of task execution. Planning ahead in Grid environ-

ments may produce a poor schedule, since it is a dynamic environment where 

utilization and availability of resources varies over time and a better resource can join 

at any time. Moreover, it is not easy to accurately predict the execution time of all ap-

plication components on Grid resources. However, as the technology of advance 

reservation [155] for various resources improves, it is believed that the role of static 

and prediction-based planning will increase [50].  

2.3.3.4 Scheduling Strategy 

In general, scheduling workflow applications in a distributed system is an 

NP-complete problem [62]. Therefore, many heuristics have been developed to obtain 

near-optimal solutions to match users’ QoS constraints. As shown in Figure 2.15 we 

categorize strategies of major scheduling approaches into performance-driven, mar-

ket-driven and trust-driven.  

 

 
  

 

 

 

Figure 2.15: Scheduling strategy taxonomy. 

 

Performance-driven strategies try to find a mapping of workflow tasks onto re-

sources that achieves optimal execution performance such as minimize overall 

execution time. Most of Grid workflow scheduling systems falls in this category. 

GrADS [39] optimizes DAG-based workflows using Min-Min, Max-Min and Suf-

frage heuristics, hoping to obtain minimum completion times. Prodan et al. [132] use 

Scheduling Strategy 

Trust-driven Market-driven Performance-driven 



  26 
 

classical genetic algorithms with cycle elimination techniques to minimize non-DAG 

based workflow execution on Grids.  

 Market-driven strategies employ market models to manage resource allocation for 

processing workflow tasks. They apply computational economy principle and estab-

lish an open electronic marketplace between workflow management systems and 

participating resource providers. Workflow schedulers act as consumers buying ser-

vices from the resource providers and pay some notion of electronic currency for 

executing tasks in the workflow. The tasks in the workflow are dynamically scheduled 

at run-time depending on resource cost, quality and availability, to achieve the desired 

level of quality for deadline and budget. Unlike the performance-driven strategy, 

market-driven schedulers may choose a resource with later deadline if its usage price 

is cheaper. Market-driven strategies have been applied to several Grid systems such as 

Nimrod-G [9] and Gridbus data resource broker [173]. One example of the mar-

ket-driven workflow scheduling proposed by Geppert et al. [72] utilizes market 

mechanisms during the task assignment. In the system, bids are collected from eligible 

resource providers for each task. The optimal bid is selected by computing the amount 

of time and cost saved or overdrawn up to the point. If the execution time has been 

minimized at the expense of an overdrawn cost, a bid with lower price will be chosen 

as the optimal bid. Consequently, scheduler assigns the task to the resource whose 

provider offers the optimal bid. A recent work on cost-based scheduling of workflow 

tasks on Grids is reported in [22]. 

 Recently, trust-driven scheduling approaches (e.g. CCOF project in [196] and 

GridSec project in [150][151]) in distributed systems are emerging. Trust-driven 

schedulers select resources based on their trust levels. For example, within GridSec, 

the scheduler accesses the trust level of Grid sites. It maps tasks onto resources whose 

trust level is higher than users’ demand. Trust model of resources is based on attrib-

utes such as security policy, accumulated reputation, self-defense capability, attack 

history, and site vulnerability. By using trust-driven approaches, workflow manage-

ment systems can reduce the chance of selecting malicious hosts, and non-reputable 



 

 27 
 

resources [196]. Therefore, overall accuracy and reliability of workflow execution 

will be increased.  

2.3.3.5 Performance Estimation  

In order to produce a good schedule, estimating the performance of tasks on resources 

is crucial, especially for constructing a preliminary workflow schedule. By using per-

formance estimation techniques, it is possible for workflow schedulers to predict how 

tasks in a workflow or sub-workflow will behave on distributed heterogeneous re-

sources and thus make decisions on how and where to run them. As indicated in 

Figure 2.16, there are several performance estimation approaches: simulation, ana-

lytical modeling, historical data, on-line learning, and hybrid.  

 
 
 
 
 
 
 

Figure 2.16: Performance estimation taxonomy. 

 
 Simulation approaches [53][199] provide resource simulation environments to 

emulate the execution of tasks in the workflow prior to its actual execution. In ana-

lytical modeling [39][46][123], a scheduler predicts the performance of tasks in 

workflow on a given set of resources based on an analytic metric. For example, in 

GrADS [39], two types of performance models are developed, namely memory hier-

archy performance model and computational model. By using these models, one can 

predict memory requirements and the execution time of an application component for 

a resource according to the associated problem size. The historical data approach 

[86][114][148] relies on historical data to predict the task’s execution performance. 

The historical data related to a particular user’s application performance or experience 

can also be used in predicting the share of available of resources for that user while 

making scheduling decisions based on QoS constraints. The on-line learning approach 

predicts task execution performance from on-line experience without prior knowledge 

of the environment’s dynamics.  For example, Buyya et al. [27][28] and Galstyan et 

Performance Estimation 

Historical  
Data Hybrid 

Analytical  
Modeling 

On-line 
Learning Simulation 



  28 
 

al. [71] map a job onto a ‘best’ Grid resource by learning the completion time of most 

recent jobs submitted to resources. As historical and on-line learning approaches use 

experimental data, they can be broadly termed as empirical modeling approaches for 

performance estimation. 

 In certain conditions, these approaches could be used together in a hybrid ap-

proach for generating performance evaluation of workflow tasks. For instance, 

Bacigalupo et al. [17] use both layered queuing modeling and historical performance 

data to predict the performance of dynamic e-Commerce systems on heterogeneous 

servers. In addition, GrADS constructs computational models semi-automatically by 

emulating the execution of workflow components on small data sets. That is, it uses a 

combination of historical and analytical approaches for performance estimation. 

 

2.2.4 Fault Tolerance 

In a Grid environment, workflow execution failure can occur for various reasons: the 

variation in the execution environment configuration, non-availability of required ser-

vices or software components, overloaded resource conditions, system running out of 

memory, and faults in computational and network fabric components. Grid workflow 

management systems should be able to identify and handle failures and support reli-

able execution in the presence of concurrency and failures.  

 

 

Figure 2.17: Fault tolerance taxonomy. 

 

Checkpoint 
/Restart 

Retry Alternate 
Task 

User-defined  
Exception 
Handling 

Redundancy 

Workflow-level 

Fault Tolerance 

Alternate 
Resource 

Replication 

Task-level 

Rescue  
workflow 



 

 29 
 

As shown in Figure 2.17, Hwang et al. [82] divided workflow failure handling 

techniques into two different levels, namely task-level and workflow-level. Task-level 

techniques mask the effects of the execution failure of tasks in the workflow, while 

workflow-level techniques manipulate the workflow structure such as execution flow 

to deal with erroneous conditions.  

Task-level techniques have been widely studied in parallel and distributed systems. 

They can be cataloged into retry, alternate resource, checkpoint/restart and replica-

tion. The retry technique [159] is the simplest failure recovery technique, as it simply 

tries to execute the same task on the same resource after failure. The alternate resource 

technique [159] submits the failed task to another resource. The checkpoint/restart 

technique [45] moves failed tasks transparently to other resources, so that the task can 

continue its execution from the point of failure. The replication technique [7][82] runs 

the same task simultaneously on different Grid resources to ensure task execution 

provided that at least one of the replicas does not fail.  

Workflow-level techniques include alternate task, redundancy, user-defined ex-

ception handling and rescue workflow. The first three approaches proposed by Hwang 

and Kesselman [82] assume there is more than one implementation for a certain com-

putation with different execution characteristics. The alternate task technique executes 

another implementation of a certain task if the previous one failed, while the redun-

dancy technique executes multiple alternative tasks simultaneously. The user-defined 

exception handling allows the users to specify a special treatment for a certain failure 

of a task in workflow. The rescue workflow technique developed in Condor DAGMan 

system [45] ignores the failed tasks and continues to execute the remainder of the 

workflow until no more forward progress can be made. Then, a rescue workflow de-

scription called rescue DAG, which indicates failed nodes with statistical information, 

is generated for later submission.  

 

2.2.5 Intermediate Data Movement 

For Grid workflow applications, the input files of tasks need to be staged to a remote 

site before processing the task. Similarly, output files may be required by their chil-



  30 
 

dren tasks which are processed on other resources. Therefore, the intermediate data 

has to be staged out to the corresponding Grid sites. Some systems require users to 

manage intermediate data transfer in the workflow specification, rather than providing 

automatic mechanisms to transfer intermediate data. As indicated in Figure 2.18, we 

categorize approaches of automatic intermediate data movement into centralized, me-

diated and peer-to-peer.  

 
 
 
 
 
 
 
 

Figure 2.18: Intermediate data movement. 

 
Basically a centralized approach transfers intermediate data between resources via 

a central point. For example, a central workflow execution engine can collect the 

execution results after task completion and transfer them to the processing entities of 

corresponding successors.  Centralized approaches are easy to implement and suit 

workflow applications in which large-scale data flow is not required.  

In a mediated approach, rather than using a central point, the locations of the in-

termediate data are managed by a distributed data management system. For example, 

in Pegasus system, the intermediate data generated at every step is registered in a rep-

lication catalog service [37], so that input files of every task can be obtained by 

querying the replication catalog service. Mediated approaches are more scalable and 

suitable for applications which need to keep intermediate data for later use.  

A peer-to-peer approach transfers data between processing resources. Since data is 

transmitted from the source resource to the destination resource directly without in-

volving any third-party service, peer-to-peer approaches save the transmission time 

and reduce the bottleneck problem caused by the centralized and mediated approaches. 

Thus, they are suitable for large-scale intermediate data transfer. However, there are 

more difficulties in deployment because they require every Grid node to be capable of 

       Intermediate Data 

User-directed Automatic  

Centralized   Mediated  Peer-to-Peer  



 

 31 
 

providing both data management and movement service. In contrast, centralized and 

meditated approaches are more suitable to be used in applications such as 

bio-applications, in which users need to monitor and browse intermediate results. In 

addition, they also need to record them for future verification purposes.  

 

2.3 Survey  

In this section, we present a detailed survey of existing Grid workflow systems in ad-

dition to mapping the proposed taxonomy. Table 2.1 shows the summary of selected 

Grid workflow management projects. A comparison of various Grid workflow sys-

tems and their categorization based on the taxonomy is shown in Table 2.2, Table 2.3, 

and Table 2.4.  

Table 2.1: Summary of Grid workflow management projects. 

Name Organization Grid Integration Applications 

DAGMan 
[158] 

University of Wiscon-
sin-Madison, USA. 
http://www.cs.wisc.edu/ 
condor/dagman/ 

Condor which can run 
on top of Globus Toolkit 
version 2 (GT2) 

Compute-intensive  

Pegasus 
[51] 

University of Southern 
California, USA. 
http://pegasus.isi.edu 

Condor and Globus. Targeted for 
data-intensive, but 
supports other types. 

Triana 
[161] 

Cardiff University, UK. 
http://www.trianacode.org/ 

GAT (JXTA, Web ser-
vices, Globus) 

Compute-intensive 

ICENI 
[116] 

London e-Science  
Centre, UK. 
http://www.lesc.ic.ac.uk/ 
iceni/ 

Jini, JXTA, Globus Compute-intensive 

Taverna 
[125] 

Collaboration between sev-
eral European Institutes and 
industries. 
http://taverna.sourceforge.n
et/ 

Web services, Soaplab, 
local processor, Bio-
Moby, etc. 
 

Service Grids 

GridAnt 
[95] 

Argonne National Labora-
tory, USA. 
http://www.cogkit.org/ 

GT2, GT3, GT4 Client controllable 
workflow applications 

GrADS 
[19] 

Collaboration between sev-
eral American Universities. 
http://www.hipersoft.rice.ed
u/grads/ 

Globus, Parallel Sys-
tems (e.g. MPI)  

Compute-intensive 
and communica-
tion-intensive 
applications with 
MPI components 



  32 
 

Name Organization Grid Integration Applications 

GridFlow 
[31] 

University of Warwick, UK. 
http://www.dcs.warwick.ac.
uk/research/hpsg/workflow/
workflow.html 

Parallel Systems (e.g. 
MPI and PVM) 

MPI and PVM based 
components 

Unicore 
[13]  

Collaboration between 
German research institu-
tions and industries 
http://www.unicore.org 

Unicore Computa-
tional-intensive and 
MPI components 

Gridbus 
workflow 
[192] 

The University of Mel-
bourne, Australia. 
http://www.gridbus.org 

GT2 Computational-and 
Data-intensive  

 
Askalon 
[59] 

 
University of Innsbruck 
http://dps.uibk.ac.at/askalon 

 
GT2, GT4, WSRF, 
Web services 

 
Performance- ori-
ented applications 

Karajan 
[96] 

Argonne National Labora-
tory 
http://www.cogkit.org 

GT2, GT3, GT4, Con-
dor, runtime exec, ssh, 
WebDAV 

Those required to 
access Grid middle-
ware  

Kepler 
[14] 

A cross-project collabora-
tion. 
http://kepler-project.org 

Globus, Storage Re-
source Broker(SRB), 
EcoGrid, Web services 

Scientific workflow 
applications 

 

Table 2.2: Workflow design taxonomy mapping. 

Project 

Name 
Structure Model 

Composition 

Systems 

QoS 

Constraints 

DAGMan DAG Abstract User-directed 

• Language-based 

User specified 
rank expression 
for desired re-
sources 

Pegasus DAG Abstract User-directed 

• Language-based  
Automatic 

N/A 

Triana  Non-DAG Abstract User-directed 

• Graph-based  

N/A 
 

ICENI Non-DAG Abstract User-directed 

• Language-based  

• Graph-based 

Metrics specified 
by users 

Taverna DAG 
 

Abstract/ 
Concrete 

User-directed  

• Language-based 

• Graph-based 

N/A 

GridAnt Non-DAG  Concrete User-directed 

• Language-based 

N/A 
 

GrADS DAG Abstract User-directed 

• Language-based 

Estimated applica-
tion execution 
time 

GridFlow DAG Abstract User-directed Application exe-



 

 33 
 

Project 

Name 
Structure Model 

Composition 

Systems 

QoS 

Constraints 

• Graph-based 
Language-based 

cution time 
 

Unicore 
  

Non-DAG Concrete User-directed 

• Graph-based 

N/A 
 

Askalon Non-DAG Abstract User-directed 

• Graph-based 

• Language-based 
 

Constrains and 
properties speci-
fied by users or 
pre-defined 

Karajan Non-DAG Abstract User-directed 

• Language-based 

• Graph-based 

N/A 

Kepler Non-DAG Abstract/ 
Concrete 

User-directed 

• Graph-based 

N/A 

 

 

Table 2.3: Workflow scheduling taxonomy mapping. 

Project 

Name 
Architecture 

Decision 

Making 

Planning 

Scheme 
Strategies 

Performance 

Estimation 

DAGMan Centralized Local Just in-time Performance- 
driven 

N/A 

Pegasus Centralized Local/ 
Global 

User-directed/ 
Just in-time 
 

Performance- 
driven 

Historical data, 
Analytical mod-
eling 

Triana  Decentralized Local Just in-time Performance- 
driven 

N/A 
 

ICENI Centralized Global Predic-
tion-based 

Performance/ 
Mar-
ket-driven 

Historical data 

Taverna Centralized Local Just in-time Performance- 
driven 

N/A 
 

GridAnt Centralized User- 
defined* 

User-directed 
 

User-defined* N/A 

GrADS Centralized Local/ 
Global 

Prediction- 
based 

Performance- 
driven  
 

Historical data 
(empirical) , 
Analytical mod-
eling 

GridFlow Hierarchical Local Simulation- 
based 

Perform-
ance-driven 

Analytical mod-
eling 

Unicore  
 

Centralized User- 
defined* 

User-directed User-defined* N/A 

Askalon Decentralized Global Just in-time/ 
Prediction- 
based 

Performance/ 
Market-driven 

Analytical mod-
eling, 
Historical data 

Karajan  Centralized User- User-defined* User-defined* N/A 



  34 
 

Project 

Name 
Architecture 

Decision 

Making 

Planning 

Scheme 
Strategies 

Performance 

Estimation 

defined* 
Kepler Centralized User- 

defined* 
User-defined* User-defined* N/A 

*user-defined - the architecture of the system has been explicitly designed for user 
extension.    
 

Table 2.4: Information retrieval, fault-tolerance and data movement. 

Project 

Name 
Information Retrieval Fault-tolerance 

Data  

Movement 

DAGMan Resource information is re-
trieved by Condor 
Matchmaker that manages 
resource and task info adver-
tisement and notification. 

Task Level 

• Migration 

• Retrying 
Workflow Level  

• Rescue  
workflow  

User-directed 

Pegasus Resource information re-
trieved through Globus MDS 
and RLS. Application com-
ponent information is 
retrieved from the GriPhyN 
Transformation Catalog. 

Based on DAGMan Mediated 

Triana Based on GAT protocol Based on GAT manger Peer-to-Peer 
ICENI Application component in-

formation is retrieved by the 
component metadata service 
and performance repository 
service. 

Based on middleware Mediated 

Taverna Service information is re-
trieved through DAML-S 
web service ontology, do-
main ontology information 
service, and UDDI.  

Task Level  

• Retry 

• Alternate Resource 

Centralized 

GridAnt Resource information is re-
trieved through Globus 
MDS. 

User-defined* User-directed 
 

GrADS Resource information is re-
trieved through Globus MDS 
and GrADS information ser-
vice (GIS). Dynamic 
information is retrieved by 
NWS. Autopilot is used for 
provide performance contract 
information. 

Task Level in resched-
uling work in GrADS, 
but not in workflows. 

Peer-to-Peer 

GridFlow Resource information is re- Task Level Peer-to-Peer 



 

 35 
 

Project 

Name 
Information Retrieval Fault-tolerance 

Data  

Movement 

trieved through Titan  • Alternate resource 

Unicore 
 

Unicore information service Based on Unicore mid-
dleware 

Mediated 

Askalon Static information 

• Infrastructure-related 

• Configuration-related 

• QoS-related 
Dynamic information 

• Resource-related 

• Execution-related 

Task Level 

• Retry 

• Alternate resource 
Workflow level 

• Rescue workflow 
 

Centralized 
User-directed 
 

Karajan User-defined* Task Level 

• Retry 

• Alternate resource 
Workflow Level 

• User-defined ex-
ception handling 

User-directed 

Kepler User-defined* Task Level 

• Alternative resource 
Workflow Level 

• User-defined ex-
ception handling 

• Workflow rescue 

Centralized 
Mediated 
Peer-to-Peer 

*user-defined - the architecture of the system has been explicitly designed for user 
extension.     

     

2.3.1 Condor DAGMan 

Condor [101][158][163] is a specialized Resource Management System (RMS) de-

veloped at the University of Wisconsin-Madison for compute-intensive jobs. Condor 

provides a High Throughput Computing (HTC) environment based on large collec-

tions of distributed computing resources ranging from desktop workstations to super 

computers. Condor-G, a component within Condor, utilizes Globus GRAM serving as 

a uniform interface to heterogeneous batch systems, thus enabling large scale compu-

tational Grids. Matchmaking within Condor, matches jobs and available resources 

according to their job and resource classified advertisement. When more than one re-

source satisfies the job requirement, the resource with higher value of rank expression, 

which expresses the desirability of a match, is preferred. 



  36 
 

The Directed Acyclic Graph Manager (DAGMan) [45][158] is a meta-scheduler 

for Condor jobs. While Condor aims to discover available machines for the execution 

of jobs, DAGMan handles the dependencies between the jobs.  DAGMan uses DAG 

as the data structure to represent job dependencies. Each job is a node in the graph and 

the edges identify their dependencies. Each node can have any number of “parent” or 

“children” nodes. Children cannot run until their parents have completed. Cycles, 

where two jobs are both descended from one another, are prohibited, because it would 

lead to deadlock. DAGMan does not support automatic intermediate data movement, 

so users have to specify data movement transfer through pre-processing and 

post-processing commands associated with processing job.  

The individual job execution is managed by Condor scheduler. Hence if a job 

fails due to the nature of the distributed system, such as loss of network connection, it 

will be recovered by Condor while DAGMan is unaware of such failures. However, 

DAGMan is responsible for reporting errors for the set of submitted jobs, and gener-

ates a rescue DAG. In the case of a job failure, the remainder of the DAG continues 

until no more progress can be made. A failed node can be retried a configurable num-

ber of times. The rescue DAG indicates the uncompleted portions of the DAG with 

detail of failures. Users can correct the errors of failed jobs and resubmit the rescue 

DAG.  

2.3.2 Pegasus in GriPhyN 

GriPhyN [75] aims to support large-scale data management in physics experiments 

such as high-energy physics, astronomy, and gravitational wave physics. Pegasus 

[50][51][52] (Planning for Execution in Grids) is a workflow manager in GriPhyN 

developed by the University of Southern California. 

Pegasus performs a mapping from an abstract workflow to the set of available 

Grid resources, and generates an executable workflow. An abstract workflow can be 

constructed by querying Chimera [67], a virtual data system, or provided by users in 

DAX (DAG XML description). An abstract workflow describes the computation in 

terms of logical files and logical application components and indicates their depend-



 

 37 
 

encies in the form of Directed Acyclic Graph (DAG). Before mapping, Pegasus re-

duces the abstract workflow by reusing a materialized dataset which is produced by 

other users within a VO. Reduction optimization assumes that it is more costly to 

produce a dataset than access the processing results. The reduction algorithm removes 

any antecedents of the redundant jobs that do not have any unmaterialized descen-

dents in order to reduce the complexity of the executable workflow.  

Pegasus consults various Grid information services to find the resources, software, 

and data that are used in the workflow. A Replica Location Service (RLS) [37] and 

Transformation Catalog (TC) [49] are used to locate the replicas of the required data, 

and to find the location of the logical application components respectively. Pegasus 

also queries Globus Monitoring and Discovery Service (MDS) [41] to find available 

resources and their characteristics.  

There are two methods used in Pegasus for resource selection, one is through ran-

dom allocation, the other is through a performance prediction approach. In the latter 

approach, Pegasus interacts with Prophesy [86][187], which serves as an infrastruc-

ture for performance analysis and modeling of parallel and distributed applications. 

Prophesy is used to predict the best site to execute an application component by using 

performance historical data. Prophesy gathers and stores the performance data of 

every application. The performance information can provide insight into the perform-

ance relationship between the application and hardware and between the application, 

compilers, and run-time systems. An analytical model is produced based on the per-

formance data and is used by the prediction engine to predict the performance of the 

application on different platforms. It is required that Pegasus send the request associ-

ated with information such as the component name, the semantic parameter names and 

their values, and the list of available resources. The ranking of the given resources is 

returned by Prophesy after the query is received.   

For ease of use, Pegasus is able to generate a workflow from a metadata descrip-

tion of the desired data product with the aid of artificial intelligence planning 

techniques. Although, the workflow execution of Pegasus is based on static planning 

and its executable workflow is transformed into Condor jobs for execution manage-



  38 
 

ment by Condor DAGMan, it has been recently extended to support just in-time 

scheduling [52] and pluggable task scheduling strategies. 

2.3.3 Triana  

Triana [160][161] is a visual workflow-oriented data analysis environment developed 

at Cardiff University. In 2002, Triana was extended to implement a consumer Grid 

[160] by using a peer-to-peer approach.  Recently, Triana has been redesigned and 

integrated with Grids via GridLab GAT (Grid Application Toolkit) interface [12].  

GAT defines a high level API for core Grid service access through JXTA [88], Web 

services [177], and OGSA [68][168]. 

Triana provides a visual programming interface with functionality represented by 

units. Applications are written by dragging the required units onto the workplace and 

connecting them to construct a workflow. Apart from many implemented tool units, 

Triana also provides a custom user interface to allow users to build their own units. 

Several control units (e.g. loop) and logic units (e.g. if) are also provided for users to 

control the logic of workflow execution. Since control and logic units are imple-

mented as a standard Triana unit, it is easy to introduce new flow patterns. 

Interconnected units can also be grouped into a group unit, which has the same prop-

erties as normal unit.  

Triana clients such as Triana GUI can log into a Triana Controlling Service (TCS), 

remotely build and run a workflow and then visualize the result on their device (e.g. 

PC, PDA, etc). Each TCS interacts with the Triana engine and every engine provides a 

service and is capable of executing complete or partial task-graphs locally, or by dis-

tributing the code to other servers based on the specified distribution policy for the 

supplied task-graph. The distribution policy is based on the concept of group units and 

two distribution policies have been implemented, namely parallel and peer-to-peer. 

Both policies distribute every unit in the group to separated hosts, however while the 

peer-to-peer mechanism relies on intermediate data being passed between hosts, there 

is no such host-based communication with the parallel policy. Since a distributed 



 

 39 
 

task-graph is not fixed to a specific set of resources, it can be dynamically allocated to 

available services in the most effective way. 

2.3.4 Workflow Management in ICENI 

The ICENI (Imperial College e-Science Network Infrastructure) [116][117] developed 

at London e-Science Centre provides component-based Grid middleware. Within 

ICENI, users construct an abstract workflow, which is a collection of components, and 

then submit this to ICENI environment for execution.  

Each ICENI component is described in terms of meaning, control flow and im-

plementation. The workflow components are primarily composed based on a spatial 

view, in which all units are represented concurrently, with details of how they relate 

and interact with each other. Then a temporal view is derived from the spatial view by 

the system. In the temporal view, workflow information is attached to each compo-

nent that consists of a graph in which the directed arcs contain the partnership 

according to the temporal dependence. Within ICENI, the workflow model is similar 

to that of the YAWL (Yet Another Workflow Language) [4], although simplified in 

certain respects. The workflow language includes all basic workflow structure such as 

sequence, parallelism, choice and iteration. 

The scheduling service [116][117] within ICENI is responsible for concretizing 

the abstract workflow. The scheduling task includes matching component meaning 

with component implementation and mapping these qualified components onto a 

suitable subset of the available resources. Several scheduling algorithms used to de-

termine resource mapping have been implemented. They include random, best of n 

random, simulated annealing and game theory. Most schedulers implemented within 

ICENI aim to provide approximate optimal solutions to map the abstract workflow to 

a combination of component implementations and resources in terms of execution 

time and cost. The schedulers take into account all components in applications rather 

than standalone components. The scheduling framework also allows third-party 

scheduling algorithms to be plugged in.  



  40 
 

ICENI has developed a performance repository system [114] which is able to 

monitor running applications and obtain and store performance data for the compo-

nents within the applications. This data is stored within a repository with meta-data 

about the resource the component was executed on, the implementation of the com-

ponent used, and the number of other components concurrently running on the same 

resource. This data can be used by schedulers for future runs of applications to esti-

mate the execution times of each component within the workflow.  

Two scheduling schemes [116] are considered within ICENI, namely lazy sched-

uling and advanced reservation. The metadata of the component implementation 

indicates which scheme the component can benefit from. Non-reservation component 

is scheduled to a resource just before it is required, while reservation component has 

been allocated to a resource and has made a reservation in advance. The schedulers 

can interrogate the performance repository to predict execution in order to produce 

accurate reservation. The reservation negotiation protocol is based on WS-Agreement 

[74]. 

2.3.5 Taverna in myGrid 

Taverna [125] is the workflow management system of the myGrid [154] project, which 

aims to exploit Grid technology to develop high-level middleware for supporting per-

sonalized in silico experiments in biology. Taverna is a collaboration among several 

European universities, institutes and industries. The purpose of Taverna is used to as-

sist scientists with the development and execution of bioinformatics workflows on the 

Grid. Taverna provides data models, enactor task extensions, and graphical user inter-

faces. FreeFluo [125] is also integrated into Taverna as a workflow enactment engine 

to transfer intermediate data and invoke services.  

In Taverna, data models can be represented in either a graphical format or in an 

XML based language called Simple Conceptual Unified Flow Language (SCUFL). 

The data model consists of inputs, outputs, processors, data flow and control flow. In 

addition to specifying execution order, the control flow can also be trigged by state 

transitions during the execution of parent processors. Compared to other workflow 



 

 41 
 

languages, such as the Business Process Execution Language for Web Services 

(BPEL4WS) [15] , SCUFL allows implicit iteration over incoming data sets based on 

a specified strategy. At the execution level, the workflow enactor also provides a mul-

tithreading mechanism to speed up the iteration process. Users are allowed to set the 

Thread property to specify how many concurrent instances will send parallel requests 

to the iteration processor. It is especially suitable for services that are capable of han-

dling significant simultaneous processing, for example, a service that is backed by a 

cluster. It also can reduce service waiting time since workflow engine can send the 

next input data at the same time as the service is working on the current input.  

Taverna also provides a user-friendly multi-window environment for users to ma-

nipulate workflows, validate and select available resources, and then execute and 

monitor these workflows. The enactment status panel [159] of Taverna shows the 

current progress of a workflow invocation. It also allows the users to browse the in-

termediate and final results. Through the enactment panel, users can handle storage of 

those results on local or remote data stores in a variety of formats.  

Fault tolerance [159] in the workflow management of myGrid is achieved by set-

ting configuration for each processor in the workflow, for example, the number of 

retries, time delay and alternate processors. It also allows users to specify the critical 

level for faults on each processor. If the processor is set as Critical, after all retries 

and alternates have failed, entire workflow execution will be terminated, otherwise, 

the workflow will continue but children nodes of the failed processor will never be 

invoked.  

myGrid follows service-oriented grid architecture and supports several different 

types of services within the workflow management system, including WSDL-based 

[185] single operation web services, soaplab bio-services [142] and local services 

such as programs coded as java classes. In addition, information services such as 

UDDI (the Universal Description, Discovery and Integration) [169] and ontology di-

rectory [186] are adopted for service discovery.  



  42 
 

2.3.6 GridAnt 

The GridAnt [95] is an extensible client-side workflow management system devel-

oped by Argonne National Laboratory. It has been designed for Grid end-users as a 

convenient tool to express and control the execution sequence without having any ex-

pertise in sophisticated workflow systems. GridAnt focuses on distributed process 

management rather than the aggregation of services which is the concern of most 

other Grid-enabled workflow frameworks.  

GridAnt consists of four major components, namely workflow engine, run-time 

environment, workflow vocabulary and workflow monitoring. The workflow engine is 

the central controller that handles task dependencies, failure recoveries, performance 

analysis, and process synchronization. GridAnt workflow engine extends Ant [16], an 

existing commodity tool for controlling build process in Java, by adding additional 

components to support workflow orchestration and composition. GridAnt also pro-

vides an environment for inter-task communication, so that individual GridAnt tasks 

can read and write intermediate data by using a globally accessible whiteboard-style 

communication model. Several important constructs such as constants, arithmetic ex-

pressions, global variables, array references, and literals are supported by the run-time 

environment. GridAnt extends Ant’s vocabulary in the Grid domain with the addition 

of the tags such as grid-copy, grid-authenticate and grid-query. These new tags are 

used by users to predefine the Grid tasks and construct complex workflows at compile 

time. It uses a control construct provided by Ant container for expressing parallel and 

sequential tasks.  Furthermore, users are allowed to monitor the progress of the exe-

cution by means of graphical visualization tool.    

In addition to mapping complex client-side workflows, GridAnt can be used for 

testing the functionality of different Grid services. It has been developed to support 

version 2 and version 3 of the Globus toolkit [69] by using the Java CoG kit [94]. It 

has been applied for Position-Resolved Diffraction [14], which is a new experimental 

technique for the study of nanoscale structures as part of the Argonne National Labo-

ratory’s advanced analytical electron microscope. 



 

 43 
 

2.3.7 Workflow Management in GrADS 

The Grid Application Development Software (GrADS) project [19] aims to provide 

programming tools and execution environments for ordinary scientific users to de-

velop, execute, and tune applications on the Grid. GrADS is a collaboration between 

several American Universities. GrADS supports application development either by 

assembling domain-specific components from a high-level toolkit or by creating a 

module by relatively low-level (e.g., MPI ) code [39].   

GrADS provides application-level scheduling to map workflow application tasks 

to a set of resources. New Grid scheduling and rescheduling methods [39] are intro-

duced in GrADS. These scheduling methods are guided by an objective function to 

minimize the overall job completion time (makespan) of the workflow application. 

The scheduler obtains resource information by using services such as MDS [139] and 

NWS [183] and locates necessary software on the scheduled node by querying 

GrADS Information Service (GIS). The workflow scheduler ranks each qualified re-

source for each application component. A rank value is calculated by using “a 

weighted sum of the expected execution time on the resource and the expected cost of 

data movement for the component.” After ranking, a performance matrix is con-

structed and used by the scheduling heuristics to obtain a mapping of components 

onto resources. Three heuristics have been applied in GrADS; those are Min-Min, 

Max-Min, and Sufferage heuristics [108].  

GrADS has built up an architecture-independent model of the workflow compo-

nent from individual component models. It employs analytical models that are 

constructed semi-automatically from empirical models (historical data/sample execu-

tion data), in order to estimate the performance of a workflow component on a single 

Grid node. It uses hardware performance counters to collect operation counts from 

several executions of the workflow components with different, small-size input prob-

lems, and then it performs a least-squares fit to the data to construct computational 

models.  In addition, GrADS reuses distance data on small inputs to predict the fac-

tion of cache hits and misses on the given data and cache configuration by its 

memory-hierarchy performance models.  



  44 
 

GrADS utilizes Autopilot [135] to monitor performance of the agreement be-

tween the application demands and resource capabilities. Once the contract is violated, 

the rescheduler [39] of the GrADS takes corrective actions. It has been implemented 

using two rescheduling approaches for MPI applications, the stop/restart approach and 

process swapping. In the former approach, an executing application component is 

suspended and migrated to a new resource if better resources are found for improving 

the execution performance [172]. As a migration event can involve large data transfers, 

expensive startup costs and significant application code modifications, process swap-

ping provides a lightweight, but less flexible, alternative approach. In process 

swapping more machines than will actually be used for the computation are launched 

for an MPI application component, and slower machines in the active set are swapped 

with faster machines in the inactive set periodically, according to the performance of 

machines. 

2.3.8 GridFlow  

GridFlow [31] is a Grid workflow management system developed at the University of 

Warwick. This work is built on the top of an Agent-based Resource Management 

System for Grid computing (ARMS) [30]. Rather than focusing on workflow specifi-

cation and the communication protocol, GridFlow is more concerned about 

service-level scheduling and workflow management.  

There are three layers of Grid resource management within the GridFlow system: 

the Grid resource, the local Grid and the global Grid. A Grid resource is simply just a 

particular Grid resource; local Grid consists of multiple Grid resources that belong to 

one organization; and a global Grid consists of all local Grids. Global Grid also pro-

vides a portal for compose the workflow.  

A workflow in GridFlow is represented as a flow of several different activities, 

each activity represented by a sub-workflow. Each sub-workflow is a flow of closely 

related tasks that is to be executed in a local Grid. A portal has been developed by 

GridFlow as graphical user interface for users to compose workflow elements.   



 

 45 
 

The workflow management within GridFlow is conducted by a hierarchical 

scheduling system including global Grid workflow manager and local Grid 

sub-workflow scheduling. Global Grid workflow manager receives requests from the 

GridFlow portal with the workflow description in the format of XML, and then simu-

lates workflow execution to find a near-optimal schedule. After the users accept the 

simulated result, GridFlow schedules the workflow onto different local Grids through 

ARMS. Within ARMS, each agent represents a local Grid at a global level of Grid 

resource management, and conducts local Grid sub-workflow scheduling. In contrast 

to the global Grid workflow management, the local Grid schedulers handle conflicts 

since scheduled sub-workflows may belong to different workflows.   

ARMS has integrated Titan [152], which utilizes performance data obtained from 

PACE [123], a toolset for resource performance and usage analysis, with iterative 

heuristic algorithms to minimize the makespan and idle time of a Grid resource. 

PACE can exact control flow, and use an analytical model approach based on queuing 

theory, to predict application performance on a given set of resources such as time, 

scalability and system resource usage. Titan also provides Grid resource information.  

2.3.9 Workflow Management in Unicore Plus 

Unicore plus [171] provides seamless and secure access to distributed resources of the 

German high performance computing centers. Unicore plus is a follow-on project of 

Unicore (Uniform Interface to Computing Resources) [13], started in 1997 to improve 

uniform interfaces to distributed High Performance Computing and data resources us-

ing the mechanisms of the World Wide Web. Unicore plus provides a programming 

environment for users to design and execute job flow.  

Within Unicore, one job or job group that can be executed on any Unicore site 

may contains other jobs and/or job groups. The original Unicore job model supports 

jobs that are constructed as a set of directed acyclic graphs with temporal dependen-

cies. Since Unicore version 4, advanced flow controls have been added, which include 

conditional execution (e.g. if-then-else), repeated execution (e.g. do-n), conditional 

repeated execution (e.g. do-repeat), and conditional suspend action (e.g. hold-job). In 



  46 
 

addition, three types of run-time conditions are implemented for supporting condi-

tional checking; these are based on the return code of a previous executed task, 

existence or properties of a file and whether a given time and date have passed.  

Unicore plus provides graphical tools that allow users to create a job flow and 

convert it into an Abstract Job Object (AJO) which is a serialized java object. The 

AJO is submitted from a user client to a Unicore server. The server translates the job 

specification into a number of batch jobs and dispatches them to the target resource. 

The server also makes sure that a successor is executed if its predecessors are finished 

and all necessary data is available at the executing site.  

Unicore allows users to specify jobs and different parts of job group onto multiple 

resources. The output of individual jobs may be needed by its successors. Therefore, a 

temporary Unicore space is created for each job group for transferring data sets. Uni-

core also allows users to explicitly specify the transfer function as a task through GUI; 

it is also able to perform the necessary data movement function without user interven-

tion.  

2.3.10 Askalon 

Askalon [60] is a Grid application development and computing environment devel-

oped by the University of Innsbruck, Austria. The main objective of Askalon is to 

simplify the development and optimization of mostly Grid workflow applications that 

can harness the power of Grid computing. 

 Askalon comes with two separate composition systems, AGWL (Abstract Grid 

Workflow Language) [58] and Teuta [59], that support the development of Grid 

workflow applications. AGWL is an XML-based language. It provides a rich set of 

constructs to express sequence, parallelism, choice, and iteration workflow structure. 

In addition, programmers can specify high-level constraints and properties defined 

over functional and non-functional parameters for tasks and their dependencies which 

can be useful for a runtime system to optimize the workflow execution. Teuta sup-

ports the graphical specification of Grid workflow applications based on the UML 

activity diagram which is a graphical interface to AGWL. 



 

 47 
 

Askalon provides a new hybrid approach for scheduling workflow applications on 

the Grid through dynamic monitoring and steering combined with a static optimiza-

tion. Static scheduling maps entire workflows onto the Grid using genetic algorithms 

based on user-defined QoS parameter. A dynamic scheduling algorithm takes into 

consideration the dynamic nature of the Grid resources such as machine crashes or 

external CPU and network load. Performance contracts are defined for every task and 

monitor whether tasks execute properly or whether they should be migrated. Askalon 

also develops a fault tolerant execution engine that supports reliable workflow execu-

tion in the presence of resource failures through checkpointing and migration 

techniques.  

  In Askalon, the performance of workflow components is estimated based on a 

training phase which measures the actual execution time of tasks for different loads 

and problem sizes on a variety of Grid sites.  The performance estimation of the 

workflow is conducted based on a combination of historical data obtained from a 

training phase and analytical modeling. 

2.3.11 Karajan 

Karajan [96][97], developed by Argonne National Laboratory, aims to provide an in-

tegrated approach of exposing workflow to the Grid community. It is an extensible 

workflow framework and can be easily utilized by third parties to provide workflow 

solutions for a variety of users.  It is derived from GridAnt and provides additional 

capabilities such as scalability, workflow structure and error handling.   

 Karajan is part of Java CoG Kit. Java CoG Kit is based on modular design and 

provides mechanisms for fast application development and easy integration of the va-

riety of Grid middleware. It provides a number of programming abstractions for job 

executions and file transfers. The concept of Grid providers is introduced to facilitate 

different middleware to be used as part of an instantiation of Grid abstractions. As a 

result, it is easy to integrate Karajan to any middleware. To date, it has been integrated 

into various versions of Globus, Condor, runtime exec, ssh, and some data transfer 

techniques such as WebDAV [38] and SCP. Karajan leverages lower-level program-



  48 
 

ming abstractions in Java CoG Kit to access the Grid, and at the same time it provides 

programming interfaces for higher level applications such as workflow schedulers and 

application portlets to develop users’ strategies. 

 In addition to sequence and parallelism, Karajan supports choices and loops of 

workflow structures. It also provides a user friendly XML-based workflow language. 

Elements used for the description of workflow tasks are user-definable. Thus, the user 

can define names and parameters along with annotations and descriptions for a new 

element. A number of standard operators including mathematical and boolean opera-

tors are defined for integration within execution control statements. It also provides 

advanced data structures such as list, range, and map (or hash tables) for repetitive 

tasks (e.g. parameter studies) as part of the workflow.    

 A number of fault handling methods are supported in Karajan. Error handling al-

lows users to integrate strategies for errors and exceptions into the workflow. 

Checkpointing enables users to store intermediate states of the workflow execution for 

later roll back when a problem occurs.  

2.3.12 Kepler 

Kepler [14][105] is one of the popular workflow systems with advanced features for 

composing scientific applications. It is derived from Ptolemy II system [102] and cur-

rently under development across a number of scientific data management projects. In 

addition to a user-friendly graphical user-interface and an extendable open source 

platform, Kepler also inherits the actor-oriented feature from Ptolemy II. It models a 

workflow system as a composition of independent components (actors) that commu-

nicate through well-defined interfaces. An actor is an encapsulation of parameterized 

operations performed on input to produce output data. An execution model of a work-

flow, which can be defined in a director object, imposes an execution order and 

communication mechanisms on the usable actors of the workflow. This modular de-

sign approach allows different execution models or machineries to be implemented 

and easily plugged into workflows without changing any of the components of work-

flows.   



 

 49 
 

 Kepler has been extended to support seamless access to remote resources and ser-

vices. A web service HARVESTER component can retrieve all service description 

files in a web page or service repository to create instantiations of web services actors 

in the user’s local actor library. Each web services actor can be instantiated for any 

particular operation specified in its service description. A number of fault-tolerant 

methods have been developed to make workflows with web services more reliable. 

Instead of associating a service operation with a fixed URL, a list of services is al-

lowed to provide the alternative invocation during service failure. It is also able to 

produce partial results even when the entire workflow fails. Advanced failure han-

dling can also be supported through extensions of exception-catching actors. In 

addition, Kepler has defined a set of Grid actors for access authentication, file copy, 

job execution, job monitoring, execution reporting, storage access, data discovery, and 

service discovery. 

2.4 Summary 

A taxonomy for Grid workflow management systems has been presented in this chap-

ter. The taxonomy focuses on topics including workflow design, workflow scheduling, 

fault management and data movement. Several workflow management systems for 

Grid computing have been surveyed and classified into different categories using the 

taxonomy. This chapter thus helps to understand key workflow management ap-

proaches and current state of Grid workflow systems.  

 Many Grid workflow-enabled systems have developed graph-based editing envi-

ronments. They allow users to compose a workflow by dragging and dropping 

components on a composition panel. A workflow abstract specification or concrete 

specification is then generated by these visual tools and passed to the workflow en-

actment engine. These processes are transparent to users to aid usability. In addition, a 

number of web-services based workflow languages have been developed and sup-

ported in the workflow systems.  

Several performance information services are utilized in the Grid workflow pro-

jects to predict performance prediction to optimize workflow execution. Some simple 



  50 
 

fault handling techniques such as retry and alternative resources have been developed 

and implemented in most systems.  

However, Quality of Service (QoS) issues have not been addressed very well in 

most Grid workflow management systems due to their focus on the use of system cen-

tric policies in resource allocation. When workflow management systems are used in 

commercial or production environments, supporting QoS at both specification and 

execution level becomes increasingly critical. At the specification level, workflow 

languages need to allow users to express their QoS requirements. At the execution 

level, the workflow system must be able to negotiate with resource providers and map 

the workflow onto Grid resources to meet users’ QoS requirements. Therefore, the 

requirement for QoS based workflow specification and execution is increasingly im-

portant, though it is currently ignored by most existing Grid workflow management 

systems.  

In the following chapters, a workflow execution engine and several QoS-based 

workflow scheduling algorithms are presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 51 
 

Chapter 3  
 

 
 
Workflow Enactment Engine 
 
With the advent of Grid technologies, scientists and engineers are building more and 

more complex applications to manage and process large data sets, and execute scien-

tific experiments on distributed Grid resources. Building complex workflows requires 

means for composing and executing distributed applications. Even though efforts have 

been made by several projects as described in Chapter 2, capabilities such as support 

for parameterization and run-time data-driven mechanism are required by many ap-

plication domains.  

 This chapter presents a novel workflow enactment engine. It first presents the ar-

chitecture of the system and its event-driven execution management mechanism. Then 

the details of service discovery, parameterization-enabled workflow language and 

fault handling are described. The chapter also briefly provides the implementation of 

the engine and it finishes with a case study in neuroscience applications. 

 

3.1 Workflow Engine  

Executing a Grid workflow is a complex endeavor. Workflow tasks are expected to be 

executed on heterogeneous resources which may be geographically distributed. Dif-

ferent resources may be involved in the execution of one workflow. For example, in a 

scientific experiment, one needs to acquire data from an instrument, and analyze it on 

resources owned by other organizations, in sequence or in parallel with other tasks. 



  52 
 

Therefore, discovery and selection of resources for executing workflow tasks could be 

quite complicated. In addition, a large number of tasks may be required to be executed 

and monitored in parallel and the location of intermediate data may be known only at 

run-time.  

Given the complexity of Grid workflow execution environments, a decentralized 

architecture is developed in the Workflow Enactment Engine (WFEE) to support 

various middleware access and resource allocation strategies. The details of the archi-

tecture are presented in the following subsections. 

3.1.1 Entities  

The primary components of WFEE and their relationship with other services in the 

Grid infrastructure are shown in Figure 3.1. Workflow applications, such as scientific 

application portals, submit task definitions along with their dependencies, expressed 

in a workflow language, as well as associated QoS requirements to WFEE. WFEE 

schedules tasks through Grid middleware on the Grid resources.  

The key components of WFEE are: workflow submission, workflow language 

parser, resource discovery, dispatcher, data movement and workflow executor.  

� Workflow submission accepts workflow enactment requests from planner level 

applications.  

� Workflow language parser converts workflow description from XML format into 

Java objects, Task, Parameter and DataConstraint (workflow dependency) which 

can be accessed by workflow scheduler.  

� Resource discovery is carried out by querying Grid information services such as 

Globus MDS [69], directory service and replica catalogs, to locate suitable re-

sources for the tasks.  

� Dispatcher is used to access middleware. Resources may be Grid-enabled by dif-

ferent middleware such as Globus [69] or Web services [15]. WFEE had been 

designed to support different middleware by creating dispatchers for each mid-

dleware to support interaction with resources.   

� Data movement system enables data transfer between Grid nodes by using HTTP 



 

 53 
 

and GridFTP [11] protocols.  

� Workflow executor is the central component in WFEE. It interacts with resource 

discovery to find suitable Grid resources at run time; it locates a task on resources 

by using the dispatcher component; it controls input data transfer between task 

execution nodes through data movement.  

 

 

Figure 3.1: Architecture of WFEE. 

 

3.1.2 Workflow Execution Management  

The workflow execution is managed using a decentralized architecture. Instead of a 

central scheduler for handling whole workflow execution, a task manager is created 

for handling the processing of a task or a group of tasks, including resource discovery 

and allocation, task dispatcher and failure processing. Different scheduling strategies 

 

Database 
Database 

Workflow Submission 

Workflow Language Parser 

Tasks Parameters Dependency 

Resource discovery 

Workflow Executor 

Dispatcher Data Movement 

GMD 

Replica 
Catalog 

Globus Web 
services 

HTTP GridFTP 

Data transfer 

Workflow Planner Application Composition 
…… 

Scientific Portal 

Workflow  
Enactment Engine 

Workflow language & QoS 

Info Service 

MDS 

Gridbus 
Broker 



  54 
 

can be deployed in different Task Managers (TMs) for resource selection, QoS nego-

tiation and data transmission optimization. The lifetimes of TMs, as well as the whole 

workflow execution, are controlled by a Workflow Coordinator (WCO).  

As shown in Figure 3.2, dedicated TMs are created by WCO for each task group. 

Each TM has its own monitor which is responsible for monitoring the health of the 

task execution on the remote node. Every TM maintains a resource group which is a 

set of resources that provides services required for the execution of an assigned task. 

TMs and WCO communicate through an Event Service Server (ESS). 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.2: Execution management. 

 

3.1.3 Communication Approach 

A communication approach is needed for task managers. On one hand, every task 

manager is an independent thread of execution and they can be run in parallel. On the 

other hand, the behavior of each task manager may depend on the processing status of 

other task managers according to the task dependencies. For example, a task manager 

should not execute the task on a remote node if the input generated by its parent tasks 

is not available for any reason.  

In addition, in a workflow, a task may have more than one input that comes from 

different tasks. Furthermore, the output of these tasks may also be required by other 

task managers as well. Hence the communication model between the task managers is 

 



 

 55 
 

not just one-to-one or one-to-many, but it could be many-to-many depending on task 

dependencies of the workflow.  

Given this motivation, an event-driven mechanism with subscription-notification 

model has been developed to control and manage execution activities. In the system, 

the behaviors of task managers and workflow coordinator are driven by events. A task 

manager is not required to handle communication with others and only generates 

events according to a task’s processing status. At the same time, the task managers 

take actions only depending on the events occurred without concern for details of 

other task managers. The benefit of this event-driven mechanism is that it provides 

loosely-coupled control; hence the design and development of the system is very 

flexible and additional components can be easily plugged in.  

.  

 

 
 

Figure 3.3: Event-driven mechanism. 

 

The event notification is based on subscription-notification model. WCO and 

TMs just subscribe to events of interest after activation, and then are informed imme-

diately when a subscribed event occurs. There are three basic types of events, status 

events, output events and control events. Status events are sent by the TMs to provide 

information on the status of task execution. Output events are sent by TMs to an-

nounce the task output is ready along with the location of its storage. Control events 



  56 
 

are used to send control messages, such as to pause and resume the execution, to task 

managers 

As illustrated in Figure 3.3, TMs inform each other and communicate with the 

WCO through the ESS. For example, TMs put their task execution status (e.g. exe-

cuting, done, failure) into the ESS, which notifies the WCO. If the output of a task is 

required by its child tasks, the task managers of the child tasks can subscribe to output 

events of the task. Once the task generates the required output, an output event is sent 

to the ESS, which notifies immediately, the child TMs that have subscripted to the 

output event. A user can control and monitor the workflow execution by subscribing 

to status events and sending control evens through a visual user interface.  

3.1.4 State Transition 

The state transition of WCO is illustrated in Figure 3.4. WCO registers with the ESS 

and start TMs of first level tasks, and then monitors activated TMs. Upon receiving 

execution status from a TM, WCO starts the TMs of its child tasks. If the WCO re-

ceives a status done event, it checks whether other TMs are still running. If so, WCO 

goes back to monitoring, otherwise it exits. If WCO receives a failed event from a TM, 

it proceeds to failure processing, and then ends.  

The state transition of TMs is illustrated in Figure 3.5. The TM registers events, 

such as output events, status events, generated by its parent tasks and waits for the 

events to occur; when an event occurs, the TM goes to the event processing state. If 

all input data is available, it starts a new thread to process execution for a job; other-

wise, the TM goes back to wait state. A job is a unit of work that a TM sends to a Grid 

node and one task may create more than one jobs. The job execution is started from 

resource matching, in which a suitable resource is selected from the resource group 

created by querying a directory service (see Section 3.3). If a suitable resource is 

available, the TM submits a job to the resource and then monitors the status of job 

execution on the remote resource. If the execution has failed, the TM goes back to re-

source matching and selects an alternative resource and then submits the job to it. If 

all parent tasks and execution jobs are completed, the TM ends. 



 

 57 
 

Figure 3.4: State transition of WCO. 

Figure 3.5: State transition of TM. 

3.1.5 Interaction 

The interactions between the WCO, TMs, ESS and remote resources are illustrated in 

Figure 3.6. First, the WCO needs to register to the ESS and subscribe to task status 

events. Then, the WCO activates task managers of first level tasks of which, in this 

 

in
p
u
ts
 a
re

 r
e
a
d
y

p
a
re
n
ts a

re
 d
o
n
e

 



  58 
 

example, there is only one TM1. After TM1 finishes the preprocessing for the task 

execution, it sends a message to ESS saying “I am executing the task”. ESS informs 

the WCO and WCO activates TMs of the child tasks of TM1, namely TM2 and TM3, 

in this example.  

 

Figure 3.6: Interaction sequence diagram the WCO, TMs and ESS. 

 

The inputs of the task managed by TM2 and TM3 rely on the output of the task of 

TM1, so TM2 and TM3 register to ESS and listen to its output events. Once TM1 

identifies a suitable resource, it submits task to that resource. As soon as TM1 knows 

the output of the task, it informs TM2 and TM3 through ESS, saying “my output of 



 

 59 
 

port No. x is ready and its location is xxxx”. If all input data for TM2 and TM3 are 

ready, TM2 and TM3 reports execution status to ESS, and then proceeds to initialize 

the execution of their tasks. After WCO receives the notification of the execution of 

the tasks in TM2 and TM3, WCO will activate their child task managers, so that they 

can prepare for task execution. This process will be continued until the end of work-

flow execution. 

 

3.2 Service Discovery  

In a Grid environment, many services having same functionality and user interaction, 

can be provided by different organizations. In addition, a service may be replicated 

and deployed in many locations. From the user’s point of view, it is better to use a 

service that offers a higher performance at a lower price. Therefore, a method is re-

quired to allow users to find replicated services easily.  

 

 
 

Figure 3.7: Service discovery using GMD. 

 
A directory service called Grid Market Directory (GMD) has been developed to 

support service publishing and discovery. GMD is an infrastructure that allows (a) the 

creation of one or more registries for service providers; (b) the service providers to 

register their resources/application services that they wish to provide; (c) users such as 

workflow engine to discover resources/services and their attributes (e.g., access price, 

location and usage constraints) that meet their QoS requirements.  



  60 
 

 

Figure 3.8: Grid application service schema. 

 
Figure 3.7 illustrates service publishing and discovery in a Grid environment 

through GMD. Service providers first register with the GMD and publish their static 

information such as location, service capability and access methods. A Grid user such 

as the workflow engine can query GMD to find a suitable service. After that, the user 

can also query and subscribe to the service provider directly to obtain more dynamic 

information such as service execution status. 

A provider can provide their specialist applications for others to access remotely. 

Figure 3.8 shows an application service schema. An application service provider may 

also provide hosted machine information such as the host name and host public key 

 



 

 61 
 

for remote secure access. Service providers also need to indicate middleware through 

which Grid users can access the service.  

Grid Application Model (GAM) is developed for application identification. GAM 

is a set of specifications and APIs for a Grid application. The GAM can be published 

by service providers within the GMD, and the users can search GMD for services 

conforming to a particular GAM. The applications with the same GAM name provide 

the same function and API. In the case of the workflow system, if users do not specify 

a particular service for a task in the workflow description, the scheduler uses the 

GAM name associated with the executable of the task to query the GMD. The GMD 

will return a list of services. These services are all able to execute the task.  

 

3.3 Workflow Language 

In order to allow users to describe tasks and their dependencies, a XML-based work-

flow language (xWFL) has been defined. The workflow language provides the means 

to build new applications by linking standalone applications.  

 
 

 

 

 

 

 

 

 

Figure 3.9: Structure of workflow language. 

 

Figure 3.9 shows the basic structure of the workflow language. It consists of two 

parts: task definitions defined in <tasks>, data dependencies defined in <links> and 

QoS constraints defined in <QoSconstraints>.   



  62 
 

3.3.1 Tasks 

The element <tasks> is a set of definitions of tasks that are to be executed. Figure 3.10 

shows the schema of task definition. A task can be a single task or a parameter sweep 

task. A parameter sweep task is able to process a set of parameters. The parameters 

are defined in <paras>. The detailed design of parameter tasks is introduced in Sec-

tion 3.4.3. The element <executable> is used to define the information about the 

application, input and output data of the task. The workflow language supports both 

abstract and concrete workflows. The user or higher workflow planner can either 

specify the location of a particular service providing a required application in <ser-

vice> or leave it to the engine to identify their providers dynamically at run-time. The 

middleware of the application is identified through a service information file by the 

GMD when dispatching tasks.  

In the example that follows, task A executes dock.exe program on host belle-

grid.com in the directory /services and the executable dock has two input I/O ports1: 

port 0 (a file) and port 1 (a parameter value. The representation of task A shown below 

has a single output port.  

 

<task name= “A”> 
<executable>  
<name>dock</name> 
<service> 
   <hostname=“bellegrid.com” /> 
 <accesspoint value=“/services/dock.exe” /> 
</service> 

    <input> 
  <port num=0 type=“file” url=http://www.gridbus.org/dock.in 

value=“dock.in”/> 
   <port num=1 type=“msg” value=1/> 

</input> 
<output> 

   <port num=2 type=“file” value=“dock.out”/> 
</output> 

</executable> 
</task> 

                                                 
1 Ports play a role of data links to or from a node in the workflow. The data on the link can be  stan-
dard data items or files. 



 

 63 
 

 

Figure 3.10: Schema of task definition. 

 



  64 
 

3.3.2 Data Dependencies 

A data link is used to specify the data flow between two tasks. The schema of the data 

link is defined in Figure 3.9. Figure 3.11 shows the example of a data flow description. 

The inputs of task B and task C rely on the output of task A. The output of task A 

needs to be transferred to the node on which tasks B and C are executed. Input could 

be a file, parameter value or data stream.  

 

 

 

 

 

 

 

 

 

Figure 3.11: Flow diagram of task A, B, C and D. 

 

 

 

 

 

 

 

3.3.3 Parameterization 

Supporting parameterization in the workflow language is very important for scientific 

applications. It enables scientists to perform experiments across a range of different 

parameters without being concerned about the detailed workflow description. A pa-

rameter defined in each task type is called a local parameter ; when it is defined for 

the entire workflow, it is called a global parameter. As shown in Figure 3.9, multiple 

<workflow> 
<tasks> 
<task name= “A”> 

   ….. 
</task> 
<task name= “B”> 

…... 
</task> 

<task name= “C”> 
…… 
</task> 
<task name= “D”> 
…… 
</task> 
</tasks> 
<links> 
<link>  
<from task=“A” port=2 />   
<to task=“B” port=0 /> 
</link> 
<link>  
<from task=“A” port=2 /> 
<to task=“C” port=0 /> 
</link> 
<link> 
<from task=“B” port=1 /> 
<to task=“D” port=0 /> 
</link> 
<link>  
<from task=“C” port=2 /> 
<to task=“D” port=1 /> 
</link> 
</links> 
</workflow> 

A

B C

D

file

other

 



 

 65 
 

parameters types such as single, range, file and enumeration are supported. An exam-

ple for a single parameter type and a range parameter type is given in Figure 3.12.   

 

<paras> 
 <para type= “single”> 
  <name>X</name> 
  <value type=integer>10</value> 
     </para> 
 <para type= “range”> 
  <name>Y</name> 
      <min>1</min>  
  <max>20</max> 
  <step>2</step> 
 </para> 
</paras> 

Figure 3.12: Single parameter and range parameter. 

 

y:min=1, max=20, 
step=2

z=1,8,20

Task A

Input=file_$y
Input=$time_step

Task B

Input=$z
Input=$time_step

...

Local 
Parameters

Local 
Parameters

Task 
Description

Task 
Description

Ja1: (1,10)

Ja2: (3,10)

Ja3: (5,10)

Ja10: (19,10)
..
.

Workflow Definition

time_step:10
Global 

Parameters

Jb1: (1,10)

Jb2: (3,10)

Jb3: (20,10)

 

Figure 3.13: Illustration of workflow parameters. 

 
Among these parameter types, range and enumeration types are used to define the 

range or a list of parameters which the task is required to be executed with. This type 

of task is called as a parameter-sweep task [8] and is structured as a set of multiple 

execution jobs, each of which is executed with a distinct set of parameters. Figure 

3.13 illustrates parameter sweep tasks. There are two parameter sweep tasks: task A 

and task B. Each task is required to input a global parameter (named time_step) and a 

local parameter. The local parameter of task A is a range type parameter (named y) 

while the local parameter of task B (named z) is an enumeration type. At execution 



  66 
 

time, the global parameter value is combined with each local parameter value and 

generates 10 sub-jobs (Ja1 – Ja10) for task A and 3 sub-jobs (Jb1 – Jb3) for task B.  

3.3.4 I/O Models 

As shown in Figure 3.11, a task receives output data from its parent as its input 

through a data link. However, for some tasks, more than one output could be gener-

ated by one output port. For example, such a task could be a data collecting task that 

continues to read information from a sensor device and generate corresponding output 

data or a parameter-sweep task that generates multiple data based on various sets of 

parameters. These outputs can be produced at different times. Some successor tasks 

may not require to be processed until all these output data are generated. It can proc-

ess the output once it is available. However, ancestor tasks can process the output data 

generated from a single parent differently, depending on their requirements. 

Three I/O models have been developed in the workflow system to provide 

data-handling capabilities. These models are: many-to-many, many-to-one and syn-

chronization. In Figure 3.13, there are two tasks: task A and task B. They are 

connected by a data link. There are multiple sub-jobs in A and each job produces an 

output. For the many-to-many model, task B starts to process data and generates an 

output once there is an input available on the data link. As shown in Figure 3.14a, four 

outputs generated by four sub-jobs of A are processed individually by four sub-jobs of 

B. For the many-to-one model, task B starts to process data once there is an input 

available, however, the result is calculated based on the result generated by earlier 

sub-jobs. As shown in Figure 3.14b, sub-job B1 processes the output generated by 

sub-job A1. Once the output of A2 is available, sub-job B2 is created and processes the 

output of A2 based on the output generated by B1. For the synchronization model, task 

B does not start processing until all the output is available on the data link. As shown 

in Figure 3.14c, there is only one sub-job in task B and it processes all outputs gener-

ated by sub-jobs of A at one time.  

 



 

 67 
 

 

 

Figure 3.14: Input/output models. 

 

3.4 Fault Handling 

Two fault handling mechanism are developed in the system, retry submission and 

critical task replication. 

The retry submission mechanism basically combines the fault handling methods 

of retry and alternative resource which are described in Chapter 2. It reschedules a 

failed job onto a current available resource, and also records the number of failed jobs 

for each resource. Once the failed job number exceeds a warning threshold, the 

scheduler decreases the number of jobs submitted to these resources. If the number of 

failed jobs exceeds a critical threshold, the scheduler terminates submission of jobs 

onto this resource.  

The critical task replication mechanism replicates a task execution on more than 

one resource. The result produced earliest is then used for the rest of the workflow. 

This mechanism is designed to execute a long running task when there are multiple 

spare resources. 

3.4 Implementation 

The WFEE has been implemented by leveraging the following key technologies: (1) 

IBM TSpaces [188] for supporting subscription-notification based event exchange; (2) 

Gridbus broker for deploying and managing job execution on various middleware; (3) 

a) Many-to-Many b) Many-to-One c) Synchronization 



  68 
 

XML parsing tools including JDOM [87]. The detailed class diagram and event server 

implementation are presented as follows: 

 

3.4.1 Design Diagram 

The class design diagram of the WFEE is shown in Figure 3.15. XMLParsingToModel 

parses XML formatted workflow description into Java objects which are instances of 

class of Task, Port, DataConstraint. These objects are passed on to WorkflowModel. 

WorkflowModelToDiGraph converts WorkflowModel into a directed graph repre-

sented by class DiGraph which encompasses many GraphNode objects. An instance 

of GraphNode contains a workflow task and the references of GraphNodes of its par-

ent and child tasks. WorkflowCoordinator creates and controls the instantiation of 

TaskManager according to the graph node dependencies. Job class represents a unit of 

work assigned to a Grid resource. Every job has a monitor implemented by JobMoni-

tor to monitor job execution status on the remote node. In order to extend WFEE to 

support multiple Grid middleware, we abstract class Resource and Dispatcher which 

provides interfaces that interact with Grid resources.  

Figure 3.15: Class diagram of WFEE. 

Thread

GT2Resrouce <<Abstract>>Dispatcher

JobMonitor

<<Abstract>>Resource

Job

WorkflowCoordinator

TaskManger

1..n1..n

1..n1..n
DiGraph

GraphNode

children : List

parents : List

1..n1..n

XMLParsingToModel WorkflowModelToDiGraph

TaskPortDataConstraint

WorkflowModel

1..n1..n1..n1..n1..n1..n

 
 



 

 69 
 

3.4.2 Event Messages 

We have utilized tuple spaces to exchange events. The tuple space model is originated 

at Yale with the Linda system [35]. A tuple is simply a vector of typed values (Fields). 

A tuple space is a collection of tuples that can be shared by multiple parties by using 

operations such as read, write and delete. In our work, we have leveraged IBM’s re-

cent implementation of tuple spaces called TSpaces [188] to be the event server. 

Table 3.1: Format of events. 

 
There are three types of event tuples whose format is shown in Table 3.1, task 

status event, output event and job status event. Task status event is sent by TMs and 

WCO use it to control TMs activation. The first field is the ID of the task, the second 

field is string “status” to indicate the type of tuple for the registration purposes, and 

the third field gives the value of status.  

Child TMs need output events sent by the parent TMs to be informed if their in-

puts are available. The events have three fields: the task ID is given in the first field, 

the second field is port numbers, and the third field is the location of output.  

One task can have multiple jobs. Job status events are sent by the job monitor. 

Every job status event provides a job ID and its task ID with status value. TMs make 

decisions according to the job events. For example, when a job has failed, the TM can 

reschedule it on another resource in the resource group. 

The tuple templates are used for subscribing to the corresponding event. For ex-

ample, task status events can be received by a tuple template with the second field as a 

String called “status”.  

 

Event name Field1 Field2 Field3 Tuple template for registration 

task status 
event 

task No. “status” value new Tuple(new Field(String), 
status, new Field(String)) 

output event task No. port No. value new Tuple(taskNo, portNo, new 
Field(String)) 

job status event job No.  task No. value new Tuple(new Field(String), 
taskNo, new Field(String)) 



  70 
 

3.5 A Case Study in fMRI Data Analysis  

Magnetic Resonance Imaging (MRI) [113] uses radio waves and a strong magnetic 

field to provide detailed images of internal organs and tissues. Functional MRI (fMRI) 

[81] is a procedure that uses MRI to measure the signal changes in an active part of 

the brain. fMRI is becoming a major diagnostic method for learning how a normal, or 

a diseased brain is working. fMRI images obtained by scanning the brains of subjects 

as they perform cognitive tasks. A typical study of fMRI data consist of multiple-stage 

processes that begin with pre-processing of raw data and conclude with a statistical 

analysis. Such analysis procedures often require upon hundreds or even thousands of 

images [198].  

 

3.5.1 Population-based Atlas Workflow 

 

softmean

slicerX

slicerY

slicerZ

convert

convert

convert

parallel 

processing

Sequential

processing

align_warp reslice

warp parameter sets

resliced images

atlas X slice

atlas Y slice

atlas Z slice

generate 2D atlas

atlas image

fMRI images of different subjects

 

Figure 3.16: Population-based atlas workflow. 

 



 

 71 
 

Population-based atlas [165] creation is one of the major fMRI research activities. 

These atlases combine anatomy imaging data from healthy and diseased populations. 

These describe how the brain varies with age, gender, and demographics. They can be 

used for identifying systematic effects on brain structure. For instance, they provide a 

comprehensive approach for studying a particular subgroup, with a specific disease, 

receiving different medications, or neuropsychiatric disorder. Population-based atlases 

contain anatomical models from many subjects. They store population templates and 

statistical maps to summarize features of the population. They also average individual 

images together so that common features of the subgroup are reinforced.  

Figure 3.16 shows a workflow that employs the Automated Image Registration 

(AIR) [182] and FSL [149] suite for creating population-based brain atlases from high 

resolution anatomical data. The stages of this workflow are follows: 

a) The inputs to the workflow are a set of brain images which are 3D brain 

scans of population with varying resolutions and a reference brain image. 

For each brain image, align_warp adjusts the position and shape of each 

image to match the reference brain. The output of each process is a warp 

parameter set defining the spatial transformation to be performed. 

b) For each warp parameter set, reslice creates a new version of the original 

brain image according to the configuration parameters defined in the warp 

parameter set. The output of each reslice procedure is a resliced image.  

c) softmean averages all the resliced images into one single atlas image. 

d) The averaged image is sliced using slicer to give a 2D atlas along a plane in 

three dimension (x, y and z), taken through the centre of the 3D image. The 

output is an atlas data set. 

e) Finally, each atlas data set is converted into a graphical atlas image using 

convert.  

 

 

 



  72 
 

3.5.2 Experiment 

Table 3.2: Applications configuration of Grid sites. 

Node / Details Applications Location 

Manjra.cs.mu.oz.au 
AIR 
FSL 

Convert 

University of Melbourne,  
Australia  

vgtest.vpac.org AIR VPAC, Australia  

Vgdev.vpac.org AIR VPAC, Australia 

Brecca-1.vpac.org AIR VPAC, Australia 

Brecca-2.vpac.org AIR VPAC, Australia 

karwendel.dps.uibk.ac.at FSL 
University of Innsbruck,  

Austria 

uuuu.maekawa.is.uec.ac.jp FSL 
University of Elec-

tro-Communications, 
Japan 

walkure.maekawa.is.uec.ac.jp FSL 
University of Elec-

tro-Communications, 
Japan 

* AIR package includes software for executing the task  

 

Table 3.3: Resource attributes. 

Node / Details CPU 

(type/#/GHz) 
Middleware 

manjra.cs.mu.oz.au 4/Intel Xeon/2.00GHz  SSH/GT2 

vgtest.vpac.org 1/Intel Xeon/3.20GHz SSH/GT4 

ngdev.vpac.org 1/Intel Xeon/3.20GHz SSH/GT4 

brecca-1.vpac.org Intel Xeon/4/2.80GHz SSH 

brecca-2.vpac.org 4/Intel Xeon/2.80GHz SSH 

karwendel.dps.uibk.ac.at 2/AMD Opteron 880/2.39 GHz SSH/SGE 

uuuu.maekawa.is.uec.ac.jp 1/Intel Xeon/2.80 GHz SSH/GT4 

walkure.maekawa.is.uec.ac.jp 1/Intel Xeon/2.80 GHz SSH/GT4 

 

 



 

 73 
 

The experiment was conducted using the testbed provided by the University of 

Melbourne (Australia), Victorian Partnership for Advanced Computing (VPAC) 

(Australia), University of Electro-Communications (Japan), and University of Inns-

bruck (Austria). The configuration of all resources is listed in Table 3.2 and Table 3.3. 

Table 3.2 shows the application software available on every resource. All application 

software cannot be installed on every resource, due to their varied capability and ad-

ministration policy. The AIR application required for executing procedure align_warp, 

reslice and softmean is installed on the sites of VPAC and the University of Mel-

bourne, while the FSL application required for executing procedure slicer is installed 

on other sites. The Convert application required to execute procedure convert is only 

available on the site of the University of Melbourne. Table 3.3 shows processor ca-

bability and supporting middleware of each resource.  

In the first experiment, the impact of the number of Grid sites is investigated for 

the various numbers of subjects. Figure 3.17 shows the total execution times using 1-5 

Grid sites for generating atlas of 25, 50 and 100 subjects. The size of image file asso-

ciated with each subject is around 16 to 22 MB. We can see that the total execution 

time increases as the number of subjects increases. Additionally, the larger the number 

of Grid sites, the faster execution time is achieved. For example, the total execution 

time of generating an atlas of 100 subjects using one Grid node is 95 minutes; how-

ever, it only takes 45 minutes using five Grid nodes. The speedup rate is over 50%. It 

shows the performance of conducting fMRI data analysis can be significantly im-

proved by using the Grid.  

Figure 3.18 shows the execution progress for processing 50 subjects. At the be-

ginning of the workflow execution, 50 align_warp jobs are generated for the first step, 

and each job processes one subject image. Once a job in the step one is completed, the 

task manager of the step two is notified by the output event of this job. It then gener-

ates a new reslice job of the step two. Therefore, the number of waiting jobs does not 

continuously reduce when align_warp jobs are completed. In Figure 3.18, we can ob-

serve that the number of waiting jobs remains around 50 until the 50 jobs of the step 

one are completed. All the results of the step two are processed once by the softmean 



  74 
 

task, and the completion of softmean generates three slicer jobs to produce 2D images 

along three dimensions. Therefore, there is only small number of waiting jobs after 

600 seconds.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Total execution times of processing 25, 50 and 100 subjects over various 
Grid sites. 

 

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000  1200

N
u
m

b
e
r 

o
f 

Jo
b
s

Time (Seconds)

waiting
submitted
executing

completed

 

Figure 3.18: Execution progress for processing 50 subjects. 

 

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  2  3  4  5

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
in

s)

Number of Grid Sites

25 subjects
50 subjects

100 subjects

 



 

 75 
 

 0

 2

 4

 6

 8

 10

 12

 14

 0  200  400  600  800  1000  1200

N
u

m
b

e
r 

o
f 

E
x

e
c
u

ti
o

n
 J

o
b

s

Time (Seconds)

alignWarp
reslice

softmean
slicer

convert

 

Figure 3.19: Execution tasks for processing 50 subjects. 

 

Figure 3.19 shows the number of jobs of each task running over the execution. 

Available jobs of the step one and step two can be executed in parallel. However, the 

jobs of the step one have a higher priority than those of the step two, when they are 

compete for resources. As we can obverse the most execution jobs during 0-580 sec-

onds are produced by alignWarp and only a few of the jobs of reslice were executed.  

Table 3.4: Detailed execution times of the tasks for processing 100 subjects. 

 

 

 

 

 

 

 

 

 

Table 3.4 shows the start and end time for each task in the workflow for 100 sub-

jects. The start time we measured is the time when the stage-in of input data to the 

Task 
Start Time 

(min) 

End Time 

(min) 

Duration 

(min) 

align_warp 0 22.82 22.82 

reslice 2.65 28.50 25.85 

softmean 28.92 43.08 14.17 

sliceX 43.1 44.1 1 

sliceY 43.1 44.13 1.03 

sliceZ  43.1 44.07 0.97 

convertX 44.4 44.72 0.32 

convertY 44.42 44.75 0.33 

convertZ 44.07 44.43 0.37 



  76 
 

remote resource is started and the end time is the completion time of a task. As we can 

see from Figure 3.16, there are multiple sub-tasks in task align_wrap and reslice. The 

task reslice process was started after align_wrap process, once an output produced by 

a sub-task of align_wrap was available. However, the task softmean is started to 

process after all sub-tasks of align_wrap have been comeleted, because it requires all 

results produced by the sub-task of align_wrap to generate a mean image. Theoreti-

cally, after task softmean finishes, its child tasks should be submitted immediately, 

however, there are some time intervals between the parent tasks’ end time and child 

tasks’ start time. That gap can be attributed to the overhead of running WFEE, in-

cluding time involved in processing event notifications, resource discovery and 

remote resource submission. However, compared to the running time of tasks, this gap 

is insignificant and less than 2%.  

 

3.6 Related Work 

The workflow engine presented in this chapter is an independent workflow execution 

system and takes advantage of various middleware services such as security, Grid re-

source access, file movement and replica management services provided by the 

Globus middleware [64][69], and multiple middleware dispatchers provided by the 

Gridbus Broker. 

Many efforts toward grid workflow management have been made. DAGMan [163] 

was developed to schedule jobs to the Condor system in an order represented by a 

DAG and to process them. With the integration of Chimera [67], Pegasus [52] maps 

and executes complex workflows based on full-ahead-planning. In Pegasus, a work-

flow can be generated from metadata description of the desired data product using 

AI-based planning technologies. The Taverna project [125] has developed a tool for 

the composition and enactment of bioinformatics workflow for the life science com-

munity. The tool provides a graphical user interface for the composition of workflows. 

Other workflow projects in the Grid context include UNICORE [136], ICENI [116], 

Karajan [97], Triana [161] and ASKLON [60].  



 

 77 
 

Compared with the work listed above, the workflow engine provides a decentral-

ized scheduling system by using tuple spaces model, which facilitates deployment of 

different scheduling strategies to each task. It also enables resources to be discovered 

and negotiated at run-time.  

A number of workflow languages have been developed. AGWL (Abstract Grid 

Workflow Language) [58] is an XML-based language which allows users to define a 

graph of activities that refer to computational tasks or user interactions without con-

cerning the complexity of underlying technologies. QoWL (QoS-aware Grid 

Workflow Language) [23] allows users to define their preferences regarding the exe-

cution location affinity for activities with specific security and legal constraints. Some 

languages such as WSBPEL [15] and GSFL [93] address workflows for web services. 

The workflow language proposed in this chapter is middleware independent and sup-

port both abstract and concrete models. It also supports parameterization [8], which is 

important to scientific applications.   

 

3.7 Summary  

In this chapter, a workflow enactment engine is introduced to facilitate composition 

and execution of workflows in a user-friendly manner. The engine supports different 

Grid middleware as well as run-time service discovery. It is capable of linking geo-

graphically distributed standalone applications and takes advantage of distributed 

computational resources to achieve high throughput. 

The event-driven and subscription-notification mechanisms developed using the 

tuple spaces model make the workflow execution loosely-coupled and flexible. Sup-

porting parameterization in the workflow language allows users to easily define a 

range and list of parameters for scientific experiments to generate a set of multiple 

parallel execution jobs. The engine has been successfully applied to an fMRI analysis 

application.  

The engine proposed in this chapter facilitates users to build workflows to solve 

their domain problems and provides a basic infrastructure to schedule workflows in 

Grid environments. The next chapter presents scheduling problems posed by intro-



  78 
 

ducing the service-oriented paradigm in Grid computing. A number of heuristics are 

then developed to optimize execution performance while meeting users’ QoS re-

quirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 79 
 

Chapter 4  

 
 
Cost-Aware Workflow  
Scheduling  

 

Grid technologies provide the basis for creating a service-oriented paradigm that en-

ables a new way of service provisioning based on utility computing models. For 

typical utility computing-based services, users are charged for consuming services 

based on their usage and QoS level required. Therefore, while scheduling workflows 

on utility Grids, service price must be considered while optimizing the execution per-

formance.   

In this chapter, the characteristics of utility Grids and the corresponding schedul-

ing problems are discussed followed by two scheduling heuristics based on two QoS 

constraints, deadline and budget. Two different workflow structures and experiment 

settings are also presented for the evaluation of the proposed scheduling heuristics.  

  

4.1 Utility Grids  

Utility computing [166] has emerged as a new service provisioning model [43] and is 

capable of supporting diverse computing services such as servers, storage, network 

and applications for e-Business and e-Science over a global network. For utility com-

puting-based services, users consume required services, and pay only for what they 

use. With economic incentive, utility computing encourages organizations to offer 

their specialized applications and other computing utilities as services so that other 



  80 
 

individuals/organizations can access these resources remotely. Therefore, it facilitates 

individuals/organizations to develop their own core activities without maintaining and 

developing fundamental compute infrastructure. In the recent past, providing utility 

computing services has been reinforced by service-oriented Grid computing, that cre-

ates an infrastructure for enabling users to consume services transparently over a 

secure, shared, scalable, sustainable and standard world-wide network environment.  

 

Table 4.1: Community Grids vs. Utility Grids. 

 

Table 4.1 shows different aspects between community Grids and utility Grids in 

terms of availability, Quality of Services (QoS) and pricing. In utility Grids, users can 

make a reservation with a service provider in advance to ensure service availability, 

and users can also negotiate service level agreements with service providers for the 

required QoS. Compared with utility Grids, service availability and QoS in commu-

nity Grids may not be guaranteed. However, community Grids provide free access 

based on mutual agreement driven by partnership (LHCGrid [84]) or free access (e.g., 

SETI@Home [156] ), whereas users need to pay for service access in utility Grids. In 

general, the service pricing is based on the QoS level, and current market supply and 

demand.  

Typically, service providers charge higher prices for higher QoS. Therefore users 

do not always need to complete workflows earlier than they require. They sometimes 

prefer to use cheaper services with a lower QoS that is sufficient to meet their re-

quirements. Given this motivation, cost based workflow scheduling is developed to 

Type of Grids 

Attributes 

Community 

Grids 
Utility Grids 

Availability Best effort Advanced reservation 

QoS Best effort Contract/Service Level  
Agreement (SLA) 

Pricing Not considered or 
free access 

Usage, QoS level, Market sup-
ply and demand 



 

 81 
 

schedule workflow tasks on utility Grids according to users’ QoS constraints such as 

deadline and budget.  

 

4.2 Problem Overview 

4.2.1 Problem Description 

A workflow application can be modeled as a Directed Acyclic Graph (DAG). Let 

Γ be the finite set of tasks )1( niTi ≤≤ . Let Λ  be the set of directed edges. Each 

edge is denoted by ),( ji TT , where iT  is called an immediate parent task of jT , and 

jT  the immediate child task of iT . A child task cannot be executed until all of its 

parent tasks have been completed. There is a transmission time and cost associated 

with each edge.  

In a workflow graph, a task which does not have any parent task is called an entry 

task, denoted as entryT  and a task which does not have any child task is called an exit 

task, denoted as exitT . In this thesis, we assume there is only one entryT  and exitT  in 

the workflow graph. If there are multiple entry tasks and exit tasks in a workflow, we 

can connect them to a zero-cost pseudo entry or exit task.  

The execution requirements for tasks in a workflow could be heterogeneous. A 

service may be able to execute some of workflow tasks. The set of services capable of 

executing task iT  is denoted as iS , and each task is only assigned for execution on 

one service. Services have varied processing capability delivered at different prices. 

The task runtime on each service and input data transfer time are assumed to be 

known. The estimation of task runtime is presented in Section 4.2.2. The data transfer 

time can be computed using bandwidth and latency information between the services. 

j

it  is the sum of the processing time and input data transmission time, and j

ic  is the 

sum of the service price and data transmission cost for processing iT  on service 

)1( i

j

i Sjs ≤≤ .  



  82 
 

Let B  be the cost constraint (budget) and D  be the time constraint (deadline) 

specified by a user for workflow execution. The budget constrained scheduling prob-

lem is to map every iT  onto a suitable service to minimize the execution time of the 

workflow and complete it with the total cost less than B . The deadline constrained 

scheduling problem is to map every iT  onto a suitable service to minimize the exe-

cution cost of the workflow and complete it before deadline D .  

4.2.2 Performance Estimation 

Performance estimation is the prediction of performance of task execution on services 

and is crucial for generating an efficient schedule for advance reservations. Different 

performance estimation approaches can be applied to different types of utility services. 

We classify existing utility services as either resource services, application services or 

information service. 

Resource services provide hardware resources such as computing processors, 

network resources, storage and memory, as a service for remote clients. To submit 

tasks to resource services, the scheduler needs to determine the number of resources 

and duration required to run tasks on the discovered services. The performance esti-

mation for resource services can be achieved by using existing performance 

estimation techniques (e.g. analytical modeling, empirical and historical data) to pre-

dict task execution time on every discovered resource service.  

Application services allow remote clients to use their specialized applications, 

while information services provide information for the users. Unlike resource services, 

an application service and information service are capable of providing estimated ser-

vice times based on the metadata of users’ service requests. As a result, the task 

execution time can be obtained by the providers. 

 

4.3 Cost-based Workflow Scheduling Heuristics 

Workflow scheduling focuses on mapping and managing the execution of in-

ter-dependent tasks on diverse utility services. In this Section, two heuristics are 



 

 83 
 

provided as a baseline for cost-based workflow scheduling problems. The heuristics 

follow the divide-and-conquer technique and the methodology is listed below: 

Step 1.  Discover available services and predict execution time for every task. 

Step 2.  Distribute users’ overall deadline or budget into every task. 

Step 3.  Query available time durations (time slots), generate an optimized sched-

ule plan and make advance reservations based on the local optimal solution 

of every task partition. 

4.3.1 Deadline Constrained Scheduling 

The proposed deadline constrained scheduling heuristic is called Greedy Cost-Time 

Distribution (GreedyCost-TD). In order to produce an efficient schedule, Greedy-

Cost-TD groups workflow tasks into task partitions and assigns sub-deadlines to each 

task based on their workload and dependencies. At runtime, a task is scheduled on a 

service, which is able to complete it within its assigned sub-deadline at the lowest 

cost.  

Workflow Task Partitioning  

T8 T9

T2 T3

T5 T6

T4

T7

T10

T14T1

Simple task Branch

Synchronization task

T8

T5 T6

T7

T13

T10

T14T1

a) Before partitioning b) After partitioning

T11

T12

T2 T3

T9 T13T12

T11

T4

V1

V2

V3

V4

V6

V5

V7

V8

V9

 

Figure 4.1: Workflow task partition. 

 

In workflow task partitioning, workflow tasks are first categorized as either syn-

chronization tasks or simple tasks. A synchronization task is defined as a task which 



  84 
 

has more than one parent or child task. In Figure 4.1, 1T , 10T  and 14T  are synchro-

nization tasks. Other tasks which have only one parent task and child task are simple 

tasks.  

In Figure 4.1, 92 TT −  and 1311 TT −  are simple tasks. Simple tasks are then clus-

tered into a branch. A branch is a set of interdependent simple tasks that are executed 

sequentially between two synchronization tasks. For example, the branches in Figure 

4.1b are },,{ 432 TTT , },{ 65 TT , }{ 7T , },{ 98 TT , }{ 11T  and },{ 1312 TT . 

After task partitioning, workflow tasks Γ  are then clustered into partitions. As 

shown in Figure 4.1b, a partition )1( kiVi ≤≤  is either a branch or a set of one syn-

chronization task, where k  is the total number of branches and synchronization tasks 

in the workflow. For a given workflow ),( ΛΓΩ , the corresponding task partition 

graph ),( ''' ΛΓΩ  is created as follows: 

}{
{





Λ∈∈∈=Λ

≤≤Ω=Γ

                  }),( and , , ),( 

         1   where,in  partition  a is   
'

'

wvVwVvwv

ki VV

jii

ii
 

where 'Γ  is a set of task partitions and 'Λ  is the set of directed edges of the form 

),( ji V V , and iV  is a parent task partition of  jV  and jV  is a child task partition of 

iV .  

Deadline Distribution  

After workflow task partitioning, the overall deadline is distributed over each iV  in 

'Ω . The deadline assigned to any iV  is called a sub-deadline of the overall dead-

line D . The deadline assignment strategy considers the following facts: 

 

P1. The cumulative expected execution time of any simple path between two synchro-

nization tasks must be the same. 

A simple path in 'Ω  is a sequence of task partitions such that there is a directed 

edge from every task partition (in the simple path) to its child, where none of the task 



 

 85 
 

partitions in the simple path is repeated. For example, { 1V , 3V , 9V } and { 1V , 6V , 5V , 

7V , 9V } are two simple paths between 1V  and 9V .  

A synchronization task cannot be executed until all tasks in its parent task parti-

tions are completed. Thus, instead of waiting for other simple paths to be completed, a 

path capable of being finished earlier can be executed on slower but cheaper services. 

For example, the deadline assigned to },{ 98 TT  is the same as }{ 7T in Figure 4.1. 

Similarly, deadlines assigned to },,{ 432 TTT , },{ 65 TT , and },{ { 7T  },{ 10T  }},{ 1312 TT are 

the same. 

 

P2. The cumulative expected execution time of any path from )( ientryi VTV ∈  to 

)( jexitj VTV ∈  is not greater than the overall deadline D . 

P2 assures that once every task partition is computed within its assigned deadline, 

the whole workflow execution can satisfy the user’s required deadline.  

 

P3. Any assigned sub-deadline must be greater than or equal to the minimum proc-

essing time of the corresponding task partition. 

If the assigned sub-deadline is less than the minimum processing time of a task 

partition, its expected execution time will exceed the capability that its execution ser-

vices can provide.  

 

P4. The overall deadline is divided over task partitions in proportion to their mini-

mum processing time. 

The execution times of tasks in workflows vary; some tasks may only need 20 

minutes to be completed, and some others may need at least one hour. Thus, the dead-

line distribution for a task partition should be based on its execution time. Since there 

are multiple possible processing times for every task, we use the minimum processing 

time to distribute the deadline.  

The deadline assignment strategy on the task partition graph is implemented by 

combining Breadth-First Search (BFS) and Depth-First Search (DFS) algorithms with 



  86 
 

critical path analysis to compute start times, proportion and deadlines of every task 

partition. After distributing overall deadline into task partitions, each task partition is 

assigned a deadline. There are three attributes associated with a task partition iV : 

deadline ( ][ iVdl ), ready time ( ][ iVrt ), and expected execution time ( ][ iVeet ). The 

ready time of iV  is the earliest time when its first task can be executed. It can be 

computed according to its parent partitions and defined by： 

                 
otherwise

VT

Vdl
Vrt

ientry

j
PVV

i

ij

∈







=
∈

   
,

,

][max

0
][                  (4.1) 

 

where iPV  is the set of parent task partitions of iV . The relation between three at-

tributes of a task partition iV  follows that: 

][][][ iii VrtVdlVeet −=                          (4.2) 

 

 

Figure 4.2: Deadline distribution. 

 

After deadline distribution over task partitions, a sub-deadline is assigned to each 

task. Figure 4.2 shows an example of spreading the overall deadline (350 time units) 

over partitions (V1 - V7). If the task is a synchronization task, its sub-deadline is equal 

to the deadline of its task partition. As shown in the example, the sub-deadline as-

signed to T4 is 217 time units. However, if a task is a simple task of a branch, its 

sub-deadline is assigned by dividing the deadline of its partition based on its process-

ing time. For example, there are two tasks in V3 and the sub-deadline of each task 



 

 87 
 

need to be computed based on the sub-deadline of V3 and the minimum processing 

time of each task. Let iP  be the set of parent tasks of iT . The assigned deadline of 

task iT  in partition V is defined by: 

][][][ VrtTeetTdl ii +=                           (4.3) 

where ][
min

min
][

1

1
Veet

t

t

Teet
l

k
SlVT

j

i
Sj

i

kk

i ×
∑

=

≤≤∈

≤≤
                   (4.4)  

otherwise

TT

Tdl
Trt

entryi

j
PT

i

ij

=







=
∈

   
,

,

][max

0
][                   (4.5) 

Greedy Cost-Time Distribution (TD)  

Once each task has its own sub-deadline, a local optimal schedule can be generated 

for each task. If each local schedule guarantees that their task execution can be com-

pleted within their sub-deadline, the whole workflow execution will be completed 

within the overall deadline. Similarly, the result of the cost minimization solution for 

each task leads to an optimized cost solution for the entire workflow. Therefore, an 

optimized workflow schedule can be constructed from all local optimal schedules. 

The schedule allocates every workflow task to a selected service such that they can 

meet its assigned sub-deadline at low execution cost. Let )( iTCost  be the sum of data 

transmission cost and service cost for processing iT . The objective for scheduling 

task iT  is: 

Minimize j

i
Sj

i cTCost
i≤≤

=
1
min)( ,              (4.6) 

subject to ][ i

j

i Teett ≤         

 

The details of GreedyCost-TD heuristic are presented in Algorithm 4.1. It first 

partitions workflow tasks and distributes overall deadline over each task partition and 

then divides the deadline of each partition into each single task. Unscheduled tasks are 

queued in the ready queue waiting to be scheduled. The order of tasks in the ready 



  88 
 

queue is sorted by a ranking strategy which is described in Section 4.3.3. The sched-

uler schedules tasks in the ready queue one by one. The entry task is the first task 

which is put into the ready task and scheduled. Once all parents of a task have been 

scheduled, the task becomes ready for scheduling and is put into the ready queue 

(Line 15). The ready time of each task is computed at the time it is scheduled (Line 9). 

After obtaining all available time slots (Line 9) based on the ready time and 

sub-deadline of current scheduling tasks, the task is scheduled on a service which can 

meet the scheduling objective. If no such service is available, the service which can 

complete the task at earliest time is selected to satisfy the overall time constraint (Line 

11-12).      

 

Algorithm 4.1: Greedy Cost-Time Distribution Heuristic  

Input:  A workflow graph Λ)Ω(Γ, , deadline D 

Output: A schedule for all workflow tasks 

1 Request processing time and price from available services 

for ΓT    ∈∀  

2 Convert Ω  into task partition graph ),( ''' ΛΓΩ  

3 Distribute deadline D over 
'

i   V Γ∈∀  and assign a sub-deadline 

to each task 

4 Put the entry task into ready task queue Q 

5 while there are ready tasks in Q do  

6    Sort all tasks in Q  

7    ← iT the first task from Q 

8    Compute ready time of iT   

9    Query available time slots during ready time 

   and  sub-deadline      

10 ← S a service which meets Equation 4-6 

11 if φ=S  then 

12    
j

iSS ←  such that 

iSj

j

itj
 1

minarg
≤≤

=  

13 end if 

14 Make advance reservations of iT  on S 

15 Put ready child tasks into Q whose parent tasks have been 

scheduled 

16 end while 



 

 89 
 

4.3.2 Budget Constrained Scheduling 

The proposed budget constrained scheduling heuristic is called Greedy Time-Cost 

Distribution (GreedyTime-CD). It distributes portions of the overall budget to each 

task in the workflow. At runtime, a task is scheduled on a service which is able to 

complete it with less cost than its assigned sub-budget at the earliest time.  

Budget Distribution  

The budget distribution process is to distribute the overall budget over tasks. In the 

budget distribution, both workload and dependencies between tasks are considered 

when assigning sub-budgets to tasks. There are two major steps: 

 

Step 1. Assigning portions of the overall budget to each task.  

In this step, an initial sub-budget is assigned to tasks based on their average exe-

cution and data transmission cost. In a workflow, tasks may require different types of 

services with various price rates, and their computational workload and required I/O 

data transmission may vary. Therefore, the portion of the overall budget each task ob-

tains should be based on the proportion of their expense requirements. Since there are 

multiple possible services and data links for executing a task, their average cost values 

are used for measuring their expense requirements. The expected budget for task iT  

is defined by:  

B
TavgCost

TavgCost
Teec

i
T

i
i

i

×
∑

=

Γ∈
][

][
][                  (4.7) 

     where 
i

Sj

j

i

i
S

c

TavgCost i

∑
≤≤

=
1

][   

Step 2. Adjusting initial sub-budget assigned to each task by considering their task 

dependencies.  

The sub-budget of a task assigned in the first step is only based on its average 

cost without considering its execution time. However, some tasks could be completed 

at earliest time using more expensive services based on their local budget, but its child 



  90 
 

tasks cannot start execution until other parent tasks have been completed. Therefore, it 

is necessary to consider task dependencies for assigning a sub-budget to a task. In the 

second step, the initial assigned sub-budgets of tasks are adjusted. It first computes the 

approximate execution time based on its initial expected execution budget and its unit 

time per cost so that the approximate start time and end time of each task partition can 

be calculated. The approximate execution time of task iT  is defined by: 

 

                         
][

][
][][

i

i
ii

TavgCost

TavgTime
TeecTaet ×=                (4.8)    

                   where 
i

Sj

j

i

i
S

t

TavgTime i

∑
≤≤

=
1

][  

Then it partitions workflow tasks and computes approximate start time and end time 

of each partition. If the end time of a task partition is earlier than the start time of its 

child partition, it is assumed that the initial sub-budget of this partition is higher than 

what it really requires and its sub-budget is reduced. The spare budget produced by 

reducing initial sub-budgets is calculated and is defined by:  

 

                     ∑
Γ∈

−=
iT

iTeecBtspareBudge ][                     (4.9) 

Finally, the spare budget is distributed to each task based on their assigned 

sub-budgets. The final expected budget assigned to each task is: 

 

                   
∑

Γ∈

×+=

iT

i

i
ii

Teec

Teec
tspareBudgeTeecTeec

][

][
][][           (4.10) 

Greedy Time-Cost Distribution (CD) 

After budget distribution, CD attempts to allocate the fastest service to each task 

among those services which are able to complete the task execution within its as-

signed budget. Let )( iTTime  be the completion time of iT . The objective for 

scheduling task iT  is: 



 

 91 
 

         Minimize j

i
Sj

i tTTime
i≤≤

=
1
min)( ,              (4.11) 

         subject to ][ i

j

i Teecc ≤           

 

 Algorithm 4.2: Greedy Time-Cost Distribution Heuristic  

Input:  A workflow graph )(Γ,ΛΩ , budget B 

Output: A schedule for all workflow tasks 

1 Request processing time and price from available services 

for ΓTi    ∈∀  

2 Distribute budget B over Γ∈∀    iT  

3 0=tplannedCos ; 0=tacturalCos  

4 Put the entry task into ready task queue Q 

5 while there are ready tasks in Q do  

6    Sort all tasks in Q  

7    ← S the first task from Q 

8    Compute start time of iT  and query available time slots 

9    ][][ ii TeectacturalCostplannedCosTeec +−=  

10 ←S a service which meets Equation 4-11 

11 if φ=S  then 

12    
j

iSS ←  such that 

iSj

j

icj
≤≤

=
1

minarg  

13 end if 

14 Make advance reservations with of iT on S 

15    
j

ictacturalCostacturalCos +=  

16    ][ iTeectplannedCostplannedCos +=  

17 Put ready child tasks into Q whose parent tasks have been 

scheduled 

18 end while 

 

The detail of Greedy Time-Cost Distribution is presented in Algorithm 4.2. It first 

distributes the overall budget to all tasks. After that, it starts to schedule first level 

tasks of the workflow. Once all parents of a task have been scheduled, the task is 

ready for scheduling and then the scheduler put it into a ready queue (Line 17). The 

order of tasks in the ready queue is sorted by a ranking strategy (see Section 4.3.3). 

The actual costs of allocated tasks and their planned costs are also computed succes-

sively at runtime (Line 15-16). If the aggregated actual cost is less than the aggregated 

planned cost, the scheduler adds the unspent aggregated budget to sub-budget of the 



  92 
 

current scheduling task (Line 9). A service is selected if it satisfies the scheduling ob-

jective; otherwise, a service with the least execution cost is selected in order to meet 

the overall cost constraint. 

4.3.3 Ranking Strategy for Parallel Tasks 

In a large scale workflow, many parallel tasks could compete for time slots on the 

same service. For example, in Figure 4.1, after T1 is scheduled, T2, T5, T7 and T8 be-

come ready tasks and are put into the ready task queue. The scheduling order of these 

tasks may impact on performance significantly.  

Eight strategies are developed and investigated for sorting ready tasks in the ready 

queue:  

• MaxMin-Time: Obtains the minimum execution time and data transmission 

time of executing each task on all their available services and sets higher 

scheduling priority to tasks which have longer minimum processing time.  

• MaxMin-Cost: Obtains the minimum execution cost and data transmission 

cost of executing each task on all their available services and sets higher 

scheduling priority to tasks which require more monetary expense.  

• MinMin-Time: Obtains minimum execution time and data transmission time 

of executing each task on all their available services and sets higher sched-

uling priority to tasks which have shorter minimum processing time.  

• MinMin-Cost: Obtains minimum execution cost and data transmission cost 

of executing each task on all their available services and sets higher sched-

uling priority to tasks which require less monetary expense.  

• Upward Ranking: Sorts tasks based on upward ranking [167]. The higher 

upward rank value, the higher scheduling priority. The upward rank of task 

Ti  is recursively defined by:  

))((max)(
)(

jij
TsuccT

ii TrankcTrank
ij

++=
∈

ϖ  

              0)( =exitTrank  



 

 93 
 

where iϖ  is the average execution time of executing task Ti on all its 

available services and ijc  is the average transmission time of transfering 

intermediate data from Ti to Tj.  

• First Come First Serve (FCFS): Sorts tasks based on their available time; 

the earlier available time, the higher scheduling priority.  

• MissingDeadlineFirst: Sets higher scheduling priority to tasks which have 

earlier sub-deadline.  

• MissingBudgetFirst: Sets higher scheduling priority to tasks which have 

fewer sub-budgets.  

4.4 Workflow Applications  

Given that different workflow applications may have a different impact on the per-

formance of the scheduling algorithms, a task graph generator is developed to 

automatically generate a workflow based on the specified workflow structure, and the 

range of task workload and the I/O data. Since the execution requirements for tasks in 

scientific workflows are heterogeneous, the service type attribute is used to represent 

different types of services. The range of service types in the workflow can be speci-

fied. The width and depth of the workflow can also be adjusted in order to generate 

workflow graphs of different sizes.  

According to many Grid workflow projects [21][109][181], workflow application 

structures can be categorized as either balanced structure or unbalanced structure. 

Examples of balanced structure include Neuro-Science application workflows [197] 

and EMAN refinement workflows [109], while the examples of unbalanced structure 

include protein annotation workflows [25] and Montage workflows [21]. Figure 4.3 

shows two workflow structures, a balanced-structure application and an unbal-

anced-structure application, used in our experiments. As shown in Figure 4.3(a), the 

balanced-structure application consists of several parallel pipelines, which require the 

same types of services but process different data sets. In Figure 4.3(b), the structure of 

the unbalanced-structure application is more complex. Unlike the balanced-structure 



  94 
 

application, many parallel tasks in the unbalanced structure require different types of 

services, and their workload and I/O data varies significantly.   

 

   

Figure 4.3: Small portion of workflow applications. 

 

4.5 Other Heuristics 

In order to evaluate the cost-based scheduling proposed in this chapter, two other heu-

ristics which are derived from existing work are implemented and compared with the 

TD and CD.  

4.5.1 Greedy-Time and Greedy-Cost 

Greedy-Time and Greedy-Cost are derived from the cost and deadline optimization 

algorithms in Nimrod-G [9], which is initially designed for scheduling independent 

tasks on Grids. Greedy-Time is used for solving time optimization problem with a 

budget. It sorts services by their processing times and assigns as many tasks as possi-

ble to the fastest services without exceeding the budget. Greedy-Cost is used for 

solving the cost optimization problem within the deadline. It sorts services by their 

processing prices and assigns as many tasks as possible to cheapest services without 

exceeding the deadline.  



 

 95 
 

4.5.2 Backtracking 

Backtracking denoted as BT is proposed by Menascé and Casalicchio [118]. It assigns 

ready tasks to least expensive computing resources. The heuristic repeats the proce-

dure until all tasks have been mapped. After each iterative step, the execution time of 

the current assignment is computed. If the execution time exceeds the deadline, it 

back-tracks to the previous step and removes the least expensive resource from its re-

source list and reassigns tasks with the reduced resource set. If the resource list is 

empty the heuristic keeps back-tracking to the previous step. It reduces the corre-

sponding resource list and then reassigns the tasks. The backtracking method is also 

extended to support optimizing cost while meeting budget constraints. Budget con-

strained backtracking assigns ready tasks to fastest computing resources.  

4.6 Performance Evaluation 

4.6.1 Experimental Setup  

GridSim [155] is used to simulate a Grid environment for experiments. Figure 4.4 

shows the simulation environment, in which simulated services are discovered by 

querying the GridSim Index Service (GIS). Every service is able to provide free slot 

query, and handle reservation request and reservation commitment.  

 

 

 

 

 

 

 

 

Figure 4.4: A Simulation scenario. 

 

15 types of services with various price rates are modeled to simulate a heteroge-

neous environment, each of which was supported by 10 service providers with various 

1. register (service type)

1. register (service type)

 



  96 
 

processing capability. The topology of the system is such that all services are con-

nected to one another, and the available network bandwidths between services are 

100Mbps, 200Mbps, 512Mbps and 1024Mbps.  

Table 4.2: Service speed and corresponding price for executing a task. 

 

 

 

 

 

Table 4.3: Transmission bandwidth and corresponding price. 

 

 

 

 

 

For the experiments, the cost that a user needs to pay for a workflow execution 

comprises of two parts: processing cost and data transmission cost. Table 4.2 shows 

an example of processing cost, while Table 4.3 shows an example of data transmission 

cost. It can be seen that the processing cost and transmission cost are inversely pro-

portional to the processing time and transmission time respectively.  

In order to evaluate algorithms on reasonable budget and deadline constraints we 

also implemented a time optimization algorithm, Heterogeneous-Earliest-Finish Time 

(HEFT) [167], and a cost optimization algorithm, Greedy Cost (GC). The HEFT algo-

rithm is a list scheduling algorithm which attempts to schedule DAG tasks at 

minimum execution time on a heterogeneous environment. The GC approach is to 

minimize workflow execution cost by assigning tasks to services of lowest cost. The 

deadline and budget used for the experiments are based on the results of these two al-

gorithms. Let  minC  and  maxC be the total monetary cost produced by GC and 

Service 
ID 

Processing Time 
(sec) 

Cost  
(G$/sec) 

1 1200 300 
2 600 600 
3 400 900 
4 300 1200 

 

Bandwidth 
(Mbps) 

Cost 
 (G$/sec) 

100 1 
200 2 
512 5.12 

1024 10.24 

 



 

 97 
 

HEFT respectively, and  maxT  and  minT be their corresponding total execution time. 

Deadline D is defined by: 

  )( minmaxmin TTkTD −+=                        (4.12) 

and budget B is defined by: 

                       )( minmaxmin CCkCB −+=                        (4.13) 

The value of k  varies between 0 and 10 to evaluate the algorithm performance from 

tight constraint to relaxed constraint. As k increases, the constraint is more relaxed. 

 

4.6.2 Results 

In this section, CD and TD are compared with Greedy-Time, Greedy-Cost and Back-

Tracking on the two workflow applications, balanced and unbalanced. In order to 

show the results more clearly, we normalize the execution time and cost. Let valueC  

and valueT be the execution time and the monetary cost generated by the algorithms in 

the experiments respectively. For the case of budget constrained problems, the execu-

tion cost is normalized by using BCvalue / , and the execution time by using minvalue TT / . 

The normalized values of the execution cost should be no greater than one, if the al-

gorithms meet their budget constraints. Therefore, it is easy to recognize whether the 

algorithms achieve the budget constraints. By using the normalized execution time 

value, it is also easy to recognize whether the algorithms produce an optimal solution 

when the budget is high.  In the same way, the normalized execution time and the 

execution cost is normalized for the deadline constraint case by using DTvalue /  and 

minvalue CC /  respectively.     

Cost optimization within a set deadline 

A comparison of the execution time and cost results of the three deadline constrained 

scheduling methods for the balanced-structure application and unbalanced-structure 

application is shown in Figure 4.5 and Figure 4.6 respectively. The ranking strategy 

used for TD is FCFS. From Figure 4.5, we can see that it is hard for Greedy-Cost to 



  98 
 

meet deadlines when they are tight, TD slightly exceeds deadline when 0=k , while 

BT can satisfy deadlines each time. For execution cost required by the three ap-

proaches shown in Figure 4.6, Greedy-Cost performs worst while TD performs best. 

Even though the processing time of the Greedy-Cost is longer than TD, its corre-

sponding processing cost is much higher. Compared with BT, TD saves almost 50% 

execution cost when deadlines are relatively low. However, the three approaches pro-

duce similar results when deadline is greatly relaxed. 

  

 

     

 Figure 4.5: Execution time for scheduling balanced- and unbalanced-structure ap-
plications. 

 
Figure 4.7 shows scheduling running time for three approaches. In order to show 

the results clearly, the scheduling time of BT and TD is normalized by the scheduling 

time of Greedy-Cost. We can observe that Greedy-Cost requires the least scheduling 

time, since the normalized values of BT and TD are bigger than 1. The scheduling 

time required by TD is slightly higher than Greedy-Cost but much lower than BT. As 

the deadline varies, BT requires more running time when deadlines are relatively tight. 

For example, scheduling times at 4 ,2 ,0=k  are much longer than at 10 ,8 ,6=k . This 

is because it needs to back-track for more iterations to adjust previous task assign-

ments in order to meet tight deadlines.  

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

1086420

E
x
e

c
u

ti
o

n
 T

im
e

/D
e

a
d

lin
e

User Deadline (k)

Balanced Structure (Execution Time)

GreedyCost
TD
BT

 

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1086420

E
x
e

c
u

ti
o

n
 T

im
e

/D
e

a
d

lin
e

User Deadline (k)

Unbalanced Structure (Execution Time)

GreedyCost
TD
BT

 

(b) unbalanced structure  
    

(a) balanced structure  



 

 99 
 

 

Figure 4.6: Execution cost for scheduling balanced- and unbalanced-structure. 
applications. 

  

 

 

 

 

 

 
 
 
 

  Figure 4.7: Normalized scheduling overhead for deadline constrained scheduling. 

 
 
Budget constrained heuristics 

A comparison of the execution cost and time results of three budget constrained 

scheduling methods for the balanced-structure application and unbalanced-structure 

application is shown in Figure 4.8 and Figure 4.9 respectively. Greedy-Time can only 

meet budgets when the budgets are very relaxed. It is also hard for CD to meet budg-

ets when the budgets are very tight (i.e. 10=k ). However, CD outperforms BT and 

(a) balanced structure  (b) unbalanced structure  
    

(a) balanced-structure  (b) unbalanced-structure  

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  2  4  6  8  10

N
o
rm

a
liz

e
d
 S

c
h
e
d
u
lin

g
 T

im
e

User Deadline (k)

Balanced-structure application (Scheduling Overhead)

TD vs. GreedyCost
BT vs. GreedyCost

 

 0

 10

 20

 30

 40

 50

 60

 0  2  4  6  8  10

N
o
rm

a
liz

e
d
 S

c
h
e
d
u
lin

g
 T

im
e

User Deadline (k)

Unbalanced-structure application (Scheduling Overhead)

TD vs. GreedyCost
BT vs. GreedyCost

 

 1

 2

 3

 4

 5

 6

 7

 8

1086420

E
x
e

c
u

ti
o

n
 T

im
e

/D
e

a
d

lin
e

User Deadline (k)

Balanced Structure (Execution Cost)

GreedyCost
TD
BT

 

 1

 2

 3

 4

 5

 6

 7

1086420

E
x
e
c
u
ti
o
n
 C

o
s
t/
C

h
e
a
p
e
s
t 
C

o
s
t

User Deadline (k)

Unbalanced Structure (Execution Cost)

GreedyCost
TD
BT

 



  100 
 

Greedy-Time as the budget increases. For scheduling the balanced-structure applica-

tion (see Figure 4.8a and Figure 4.9a), Greedy-Time and BT also incurs significantly 

longer execution times even though it uses higher budgets to complete executions. For 

scheduling the unbalanced-structure application (see Figure 4.8b and 4.9b), CD pro-

duces more than 50% faster schedule than that of BT by using similar budgets. 

However, CD performs worse than BT and Greedy-Time when the budget is very re-

laxed (i.e. 10=k ).  

 
 

Figure 4.8: Execution cost for scheduling balanced- and unbalanced-structure 
applications. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.9: Execution time for scheduling balanced- and unbalanced-structure 
applications. 

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

1086420

E
x
e

c
u

ti
o

n
 C

o
s
t/

B
u

d
g

e
t

User Budget (k)

Balanced Structure (Execution Cost)

GreedyTime
CD
BT

 

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

1086420

E
x
e

c
u

ti
o

n
 C

o
s
t/

B
u

d
g

e
t

User Budget (k)

Unbalanced Structure (Execution Cost)

GreedyTime
CD
BT

 

 1

 2

 3

 4

 5

 6

 7

 8

 9

1086420

E
x
e

c
u

ti
o

n
 T

im
e

/F
a

s
te

s
t 

T
im

e

User Budget (k)

Unbalanced Structure (Execution Time)

GreedyTime
CD
BT

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1086420

E
x
e
c
u
ti
o
n
 T

im
e
/F

a
s
te

s
t 
T

im
e

User Budget (k)

Balanced Structure (Execution Time)

GreedyTime
CD
BT

(a) balanced structure (b) unbalanced structure  

(a) balanced structure (b) unbalanced structure  



 

 101 
 

Figure 4.10 shows scheduling running time for three approaches, Greedy-Time, 

CD and BT. In order to show the results clearly, we normalize the scheduling time of 

BT and CD by using the scheduling time of Greedy-Time. We can observe that 

Greedy-Time requires the least scheduling time, since the normalized values of BT 

and CD are bigger than 1. The scheduling time required by CD is slightly higher than 

Greedy-Time but much lower than BT. Similar to the deadline constrained cases, the 

running time of BT decreases as the budget increases. 

 

  

Figure 4-10: Normalized scheduling overhead for budget constrained scheduling. 

 

Impact of Ranking Strategy 

FCFS is used as the ranking strategy for the experiments comparing CD and TD with 

other heuristics. In order to investigate the impact of different ranking strategies, ex-

periments comparing five different ranking strategies for each constrained problem 

are conducted. In these experiments, each ranking strategy is carried out to schedule 

30 random generated balanced-structure and unbalanced-structure workflow applica-

tions. The average values are used to report the results.  

Figure 4.11 shows the total execution costs of TD by employing different ranking 

strategies: MaxMinCost, MinMinCost, HEFT Ranking, FCFS and MissingDeadline-

First. Their cost optimization performances are measured by the Average Normalized 

Cost (ANC) which is the average value of execution cost for executing 30 different 

 0

 10

 20

 30

 40

 50

 60

 0  2  4  6  8  10

N
o
rm

a
liz

e
d
 S

c
h
e
d
u
lin

g
 T

im
e

User Budget (k)

Balanced-structure application (Scheduling Overhead)

CD vs. GreedyTime
BT vs. GreedyTime

 

(a) balanced structure (b) unbalanced structure  

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0  2  4  6  8  10

N
o
rm

a
liz

e
d
 S

c
h
e
d
u
lin

g
 T

im
e

User Budget (k)

Unbalanced-structure application (Scheduling Overhead)

CD vs. GreedyTime
BT vs. GreedyTime



  102 
 

randomly generated workflow graphs. The execution cost is normalized by the cheap-

est cost generated by Greedy Cost (GC).  

     

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11: Comparison of execution costs among five different ranking strategies for 
scheduling deadline constrained workflow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 4.12: Scheduling overhead of five deadline constrained ranking strategies. 

 

For the balanced-structure (see Figure 4.11a), five ranking strategies produce 
similar results. This is because parallel tasks in the balanced-structure application 
have the same ranking value. However, for the unbalanced-structure (see Figure 
4.11b), MinMinCost performs better than others while MissingDeadline incurs sig-
nificantly higher cost. This is because the Min-MinCost heuristic schedules tasks 
having minimum execution cost first so that it results in the higher percentage of tasks 
assigned to their best choice (which can complete the tasks with least cost) than oth-
ers.  

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 2  3  4  5  6  7  8

A
N

C

User Deadline (k)

Balanced-structure application (Execution Cost)

MaxMinCost
MinMinCost

HEFT Ranking
FCFS

MissingDeadlineFirst

 

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 2  3  4  5  6  7  8

A
N

C

User Deadline (k)

Unbalanced-structure application (Execution Cost)

MaxMinCost
MinMinCost

HEFT Ranking
FCFS

MissingDeadlineFirst

 

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 2  3  4  5  6  7  8

A
v
e
ra

g
e
 S

c
h
e
d
u
lin

g
 T

im
e
 (

S
e
c
.)

User Deadline (k)

Balanced-structure application (Scheduling Overhead)

MaxMinCost
MinMinCost

HEFT Ranking
FCFS

MissingDeadlineFirst

 

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2  3  4  5  6  7  8

A
v
e
ra

g
e
 S

c
h
e
d
u
lin

g
 T

im
e
 (

S
e
c
.)

User Deadline

Unbalanced-structure application (Scheduling Overhead)

MaxMinCost
MinMinCost

HEFT Ranking
FCFS

MissingDeadlineFirst

 

(a) balanced-structure application  (b) unbalanced-structure application  

(a) balanced-structure application  (b) unbalanced-structure application  



 

 103 
 

The scheduling running time is also investigated and showed in Figure 4.12. 

Among five strategies, HEFT Ranking produces highest complexity while FCFS and 

MissingDeadlineFirst produce lowest complexity. The scheduling running time of 

MinMinCost is slightly higher than that of MaxMinCost for balanced-structure appli-

cations, but they are similar for the unbalanced-structure. Therefore, FCFS and 

MissingDeadlineFirst are good enough for scheduling balanced-structure applications, 

since they incur similar execution cost but less scheduling running time. 

 
   

 
 
 
 
 
 
 
 
 
 
 

Figure 4.13: Comparison of execution costs among five different ranking strategies for 
scheduling deadline constrained workflow. 

 

Figure 4.13 shows the total execution time of CD employing different ranking 

strategies: MaxMinTime, MinMinTime, HEFT Ranking, FCFS and MissingBudget-

First. Their time optimization performances are measured by the Average Normalized 

Time (ANT) which is the average value of execution time for executing 30 different 

random generated workflow applications. The execution time is normalized by the 

fastest time generated by HEFT.  

For the balanced-structure (see Figure 4.13a), five ranking strategies produce 

similar results. However, for the unbalanced-structure application (see Figure 4.13b), 

HEFT Ranking produces faster schedules while MinMinTime performs slightly worse 

than MaxMinTime, FCFS and MissingBudgetFirst. However, as shown in Figure 4.14, 

it also takes longer for HEFT ranking to return the results.  

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 2  3  4  5  6  7  8

A
N

T

User Budget (k)

Balanced-structure application (Execution Time)

MaxMinTime
MinMinTime

HEFT Ranking
FCFS

MissingBudgetFirst

 

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2  3  4  5  6  7  8

A
N

T

User Budget

Unbalanced-structure application (Execution Time)

MaxMinTime
MinMinTime

HEFT Ranking
FCFS

MissingBudgetFirst

 

(a) balanced-structure application  (b) unbalanced-structure application  



  104 
 

 
     

 
 
 
 
 
 
 
 
 
 
 

Figure 4.14: Scheduling overhead of five budget constrained ranking strategies. 

 
 

4.7 Related Work 

Many heuristics have been investigated by several projects for scheduling workflows 

on Grids. The heuristics can be classified as either task level or workflow level. Task 

level heuristics make scheduling decisions based only on the information about a task 

or a set of independent tasks, while workflow level heuristics take into account the 

information of the entire workflow. Min-Min, Max-Min and Sufferage are three major 

task level heuristics employed for scheduling workflows on Grids. They have been 

used by Mandal et al [109] to schedule EMAN bio-imaging applications. Blythe et al 

[21] developed a workflow level scheduling algorithm based on Greedy Randomized 

Adaptive Search Procedure (GRASP) [61] and compared it with Min-Min in com-

pute- and data-intensive scenarios. Another two workflow level heuristics have been 

employed by the ASKALON project [132][181]. One is based on Genetic Algorithms 

and the other is a Heterogeneous-Earliest-Finish-Time (HEFT) algorithm [167]. 

Sakellariou and Zhao [140] developed a low-cost rescheduling policy. It intends to 

reduce the rescheduling overhead by conducting rescheduling only when the delay of 

a task impacts on the entire workflow execution. However, these works only attempt 

 3

 4

 5

 6

 7

 8

 2  3  4  5  6  7  8

A
v
e
ra

g
e
 S

c
h
e
d
u
lin

g
 T

im
e
 (

S
e
c
.)

User Budget (k)

Balanced-structure application (Scheduling Overhead)

MaxMinTime
MinMinTime

HEFT Ranking
FCFS

MissingBudgetFirst

 

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2  3  4  5  6  7  8

A
v
e
ra

g
e
 S

c
h
e
d
u
lin

g
 T

im
e
 (

S
e
c
.)

User Budget (k)

Unbalanced-structure application (Scheduling Overhead)

MaxMinTime
MinMinTime

HEFT Ranking
FCFS

MissingBudgetFirst

 

(b) unbalanced-structure application  (a) balanced-structure application  



 

 105 
 

to minimize workflow execution time and do not consider other factors such as 

monetary execution cost.  

Several strategies have been proposed to address scheduling problems based on 

users’ deadline and budget constraints. Nimrod-G [9] schedules independent tasks for 

parameter-sweep applications to meet users’ budget. A market-based workflow man-

agement system proposed by Geppert et al [72] locates an optimal bid based on the 

budget of the current task in the workflow. However, the proposed work in this chap-

ter schedule a workflow, which consists of a set of interdependent tasks, according to 

a specified budget and deadline of the entire workflow. More recently, iterative proc-

essing based heuristics such as backtracing [118], and LOSS and GAIN [141], have 

been proposed to solve constrained optimization problems. They iteratively amend the 

schedule optimized for one factor to satisfy the other factor in the way that it can gain 

maximum benefit or minimum loss. However, they need go through many iterations 

to modify and recomputed the current schedule to meet the constraint and thus result 

in large scheduling computation time. In contrast, the work proposed in this chapter 

makes a scheduling decision for each task once based on a planned sub-deadline.  

 

4.8 Summary 

Utility Grids enable users to consume utility services transparently over a secure, 

shared, scalable and standard world-wide network environment. Users are required to 

pay for access services based on their usage and the level of QoS provided. In such 

“pay-per-use” Grids, workflow execution cost must be considered during scheduling 

based on users’ QoS constraints.  

This chapter has presented characteristics of utility Grids and modeled its sched-

uling problem formally. Deadline and budget constrained scheduling heuristics have 

also been proposed. The deadline constrained scheduling is designed for time critical 

applications. It attempts to minimize the monetary cost while delivering the results to 

users before a specified deadline. The budget constrained scheduling is aimed to com-

plete workflow executions based on the budget available for users.   



  106 
 

The proposed heuristics distributes overall deadline and budget over each task 

and then optimizes the execution performance of each task based on their assigned 

subdeadline and subbudget. The heuristics have been evaluated against others includ-

ing Greedy-Time, Greedy-Cost, and back-tracking heuristics through simulation in 

terms of performance and scheduling time. The results show that the proposed ap-

proaches provide best performance in short running time.  

The heuristics developed in this chapter are also served as a basis for investigat-

ing constrained based evolutionary scheduling algorithms developed in following 

chapters.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 107 
 

Chapter 5  

 
 
 

Workflow Scheduling using 
Genetic Algorithms 
 
As mentioned in Chapter 4, multiple factors such as time, monetary cost, reliability 

and security need to be considered while making a scheduling decision on utility 

Grids. A simple heuristic cannot satisfy all cases. Especially as more factors are in-

volved, it may not be even feasible to develop a simple heuristic to solve such 

complex problems. Therefore, it is necessary to investigate metaheuristic approaches 

which are capable of being applied to complex domains for workflow scheduling 

problems.  

In this chapter, a genetic algorithm-based workflow scheduling approach is pre-

sented. First, the representation of scheduling solutions in the search space is 

discussed, and then a fitness function is proposed followed by the design of genetic 

operations. The performance of the genetic algorithm (GA) is observed by comparing 

against non-GA approaches.  

 

5.1 Genetic Algorithms  

Genetic algorithms (GAs) provide robust search techniques that allow a high-quality 

solution to be derived from a large search space in polynomial time, by applying the 

principle of evolution [73]. A genetic algorithm combines the exploitation of best so-

lutions from past searches with the exploration of new regions of the solution space. 

Any solution in the search space of the problem is represented by a set of parameters 



  108 
 

called an individual. A genetic algorithm maintains a population consisting of a set of 

individuals that evolves over generations. The quality of an individual in the popula-

tion is determined by a fitness function. A fitness function quantifies the optimality of 

an individual and the value of the fitness function for an individual indicates how 

good it is, compared to others in the current population. A typical genetic algorithm 

consists of the following steps: 

 

1.  Create an initial population consisting of randomly generated individuals. 

2. Generate new offspring by applying genetic operators (e.g. crossover and muta-

tion), one after the other. 

3. Evaluate the fitness value of each individual in the population and select individu-

als into next generation. 

4. Repeat steps 2 and 3 until the algorithm meets a termination condition such as 

when a certain number of generations are reached, or a satisfactory solution to the 

problem is found. 

 

Using genetic algorithms to solve the workflow scheduling problem requires the 

determination of the representation of individual in the population, the fitness function 

and genetic operations. The details of each of these requirements are presented in fol-

lowing sections.  

 

5.2 Individual Representation 

For the workflow scheduling problem, a feasible solution is required to meet the fol-

lowing constraints:  

• A task can be ready to start only after all its predecessors have completed.  

• Every task appears once and only once in the schedule.  

• Each task must be allocated to one available time slot of a service capable of 

executing the task. 



 

 109 
 

 

Figure 5.1: Workflow representation in the search space. 

 

Each individual in the search space represents a feasible solution to the problem 

and consists of a vector of task assignments. Each task assignment includes four ele-

ments: taskID, serviceID, startTime, and endTime. taskID and serviceID to identify 

the service to which each task is assigned. startTime and endTime indicate the time 

frames allocated on the service for the task execution. However, evolving time frames 

during the genetic operation may lead to a very complicated situation, because any 

change made to a task could require adjusting the values of startTime and endTime of 

its successive tasks. Therefore, the operation strings used for genetic manipulation are 

simplified by ignoring time frames. The operation strings encode only the mapping of 

tasks and services. After genetic manipulation, a time slot assignment algorithm is de-

ployed to transfer operation strings to a feasible schedule (see Section 5.7).  



  110 
 

The operation strings for the workflow scheduling problem are required to encode 

the service allocation for each task. In a workflow, the execution order of interde-

pendent tasks is controlled by their dependencies, e.g. a task is always executed after 

its immediate parent tasks. However, many independent tasks, e.g. T3 and T4 in the 

example workflow shown in Figure 5.1, may compete for the same time slot on a ser-

vice. Different execution priorities of independent tasks within a workflow may affect 

the performance of workflow execution significantly. Therefore, encoded operation 

strings are also required to show the order of task assignments on each service.  

Figure 5.1b shows two operation strings: task-assignment string and schedul-

ing-order string. The task-assignment string encodes the allocation for each task. For 

example, task T0 is assigned to service S1 and T5 is assigned to S3. The schedul-

ing-order string encodes the order to schedule tasks. For example, T1 is scheduled 

after T0, T2 is scheduled after T1 and so forth. The order in the scheduling-order string 

must satisfy task dependencies; that means a task should not be placed before its 

predecessors. However, the main reason for having the scheduling-order string is not 

only to code task dependencies but also the execution priorities for independent tasks 

which are assigned to the same service. For example, two independent tasks T0 and T2 

are assigned on S1, but T0 is executed first according to the scheduling-order string.  

 

5.3 Initial Solutions 

An initial solution is used for evolutionary algorithms as a starting point to search 

from. In general, initial solutions are randomly generated. Algorithm 5.1 is the algo-

rithm to generate a random solution, and its corresponding task-assignment and 

scheduling-order string. It schedules workflow tasks level-by-level in order to gener-

ate a scheduling-order string satisfying task dependencies. The scheduler starts from 

scheduling the entry task since it does not have any parent task. Other tasks become 

ready tasks to be scheduled once all its parent tasks have been scheduled. All ready 

tasks are managed by a ready task queue denoted as Q. The scheduler selects a ready 

task from Q to schedule at random. As shown in Line 1 of the algorithm, the entry 



 

 111 
 

task is the first task which is put in Q to schedule. A task t is selected from Q to be 

scheduled (Line 3). After t is scheduled, the scheduler put its child tasks into Q if their 

parent tasks have been scheduled (Line 6-7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Illustration of updating genetic operation strings. 

 

Algorithm 5.1: Random schedule generation  

Input:   A workflow graph )(Γ,ΛΩ  

Output: Task-assignment string and scheduling-order string 

1 Q ← get the entry task 

2 while Q is not empty do   

3   Randomly choose one task t out of Q  

4 Randomly select a service from those that are able to 

run t 

5 Update task-assignment string and scheduling-order 

string 

6 childT ← get all ready child tasks of t 

7   childTQQ ∪=  

8 end while 

 



  112 
 

Given the heterogeneous nature of execution environments required by workflow 

tasks, processing services are classified into groups. Each service group provides a 

certain type of service that satisfies the execution condition of a task in the workflow. 

In the example shown in Figure 5.2, different tasks in the workflow require different 

types of services and all services are grouped together to support service type named 

A, B, and C. For example, T0, T3 and T4 require services of type A, B and C respec-

tively. A task is selected from Q and scheduled on a service which is selected from its 

service group at random in which each member is capable to execute the task (Line 

3-4). After each task assignment, scheduled service allocation and task is appended to 

the task-assignment string and scheduling-order string (Line 5). Figure 5.2 illustrates 

the update of operation strings for assigning T6 to S8.  

In addition to random generated solutions, the results generated by heuristics such 

as Greedy Cost - Time Distribution (TD) and Greedy Time - Cost Distribution (CD) 

proposed in Chapter 4 can also be employed into the initial population. The genetic 

algorithm can take them as starting points to continue to search better solutions.  

 

5.4 Evolutionary Operations  

Evolutionary operators are used to generate new solutions based on solutions found so far. 

Crossover and mutation are two major operators.  

5.4.1 Crossover 

Crossovers are used to create new solutions by rearranging parts of the existing solu-

tions in the current population. The idea behind the crossover is that the fittest solution 

may result from the combination of two of the current fittest solutions. Two-point 

crossover is implemented for the task-assignment string and illustrated in Figure 5.3. 

It is implemented as follows:  

(1) Two parents are chosen at random in the current population.  

(2) Two random points are selected from the task-assignment strings to form a 

crossover window.  



 

 113 
 

(3) All tasks included in the crossover window are chosen as successive crossover 

points.  

(4) The service allocations of all tasks within the crossover window are ex-

changed.  

 

 

 

 

 

 

 

 

 

Figure 5.3: Illustration of crossover operation. 

  

After crossover, two new offspring are generated by combining task assignments 

taken from the two parents. As shown in Figure 5.3, offspring 1 inherits tasks assign-

ments of T0, T1, T2, and T7 from parent 1, while the task assignments of the rest tasks 

are taken from parent 2.  

5.4.2 Mutation 

In the genetic algorithm, mutations occasionally occur in order to allow a child to ob-

tain features that are not possessed by either of its parents. This process helps the 

algorithm to explore new and possibly better genetic material than previously consid-

ered. Two types of mutations are developed, namely reordering-mutation and 

replacing-mutation for the workflow scheduling problem. The mutation operators are 

applied to the chosen solutions with certain probabilities.   

A reordering-mutation aims to change the execution order of independent tasks 

that compete for a same time slot. It is implemented as follows:  

(1) A task in the execution-order string is randomly selected.  



  114 
 

(2) An alternative position for this task is randomly selected on its same service    

from all valid positions on the service.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Illustration of reordering mutation. 

 

A valid position for a task is a place where the task can be inserted such that its 

dependencies are satisfied. An example of a reordering-mutation is shown in Figure 

5.4. In the example, T2 is selected. The possible alternative positions for T2 can only 

be places where are after its parent task T0 and before its child task T5. Among these 

possible positions, the positions near a task which is not assigned on the same service 

as that of T2 may not affect the schedule. For example, if we swap the order of T2 and 

T3 on the original scheduling-order string in Figure 5.4c, the schedule remains same. 

This is because that they are allocated on different services and they will be assigned 

to earliest available time slot on their assigned service only. Therefore, valid positions 

for reordering-mutation are places where are next to tasks assigned on the same ser-

vice with the mutated task. As shown in Figure 5.4c, the valid positions for T2 are 



 

 115 
 

places before T7 and T1 and after T9. In the example, the task T2 is selected and reor-

dered to execute before T7, such that the execution order of tasks on S1 is changed, 

impacting the entire scheduling performance. As shown in Figure 5.3c, the perform-

ance of offspring is improved.  

 

 

Figure 5.5: Illustration of replacing mutation operation. 

 

A replacing-mutation aims to re-allocate an alternative service to a task in a solu-

tion. It is implemented as follows:  

(1) A task is randomly selected in the task-assignment string.  

(2) An alternative service which is capable of executing the task is randomly se-

lected to replace the current task allocation.  

An example of replacing mutation is shown in Figure 5.5. The mutation process 

randomly selects S2 in the service group of type A and re-allocates it to T2.  

 

5.5 Fitness Function 

A fitness function is used to measure the quality of the individuals in the population 

for a given optimization objective. As the goal of the scheduling is to minimize the 

performance based on two factors, time and monetary cost, the fitness function sepa-

rates evaluation into two parts: cost-fitness and time-fitness.  



  116 
 

For the budget constrained scheduling, the cost-fitness component encourages the 

formation of the solutions that satisfy the budget constraint. For the deadline con-

strained scheduling, it encourages the genetic algorithm to choose individuals with 

less cost. The cost fitness function of an individual I  is defined by: 

  

}1,0{    ,
)(

)(
)(

)1(cos ==
−

α
αα

maxCostB

Ic
IF t  (5.1) 

where )(Ic  is total cost of I  and maxCost is the most expensive solution of the 

current population, and B  is the budget of the workflow. α  is a binary variable, 

where α  is set 0 for deadline constrained scheduling and set 1 for budget con-

strained scheduling.    

For the budget constrained scheduling, the time-fitness component is designed to 

encourage the genetic algorithm to choose individuals with earliest completion time 

from the current population. For the deadline constrained scheduling, it encourages 

the formation of individuals that satisfy the deadline constraint. The time fitness func-

tion of an individual I  is defined by: 

 

}1,0{  ,
)(

)(
)(

)1(
==

−
β

ββ
maxTimeD

It
IFtime                (5.2) 

where )(It  is the completion time of I , maxTime is the largest completion time of 

the current population, and D  is the deadline of the workflow. β  is a binary vari-

able, where β  is set 0 for budget constrained scheduling and set 1 for deadline 

constrained scheduling.    

For the deadline constrained scheduling problem, the final fitness function com-

bines two parts and it is expressed as: 

      
otherwise    

 1)( if          
 

),(

),(
)(

>





=
IF

IF

IF
IF

time

cost

time
                 (5.3) 

For the budget constrained scheduling problem, the final fitness function com-

bines two parts and it is expressed as: 



 

 117 
 

      
otherwise    

 1)( if          
 

),(

),(
)(

>





=
IF

IF

IF
IF

cost

time

cost
                 (5.4) 

 

5.6 Selection Scheme 

After the fitness evaluation process, the new individuals are compared with the previ-

ous generation. The Selection process is then conducted to retain the fittest individuals 

in the population, as successive generations evolve. The following methods for se-

lecting the fittest individuals are selected for investigating the impact on the workflow 

scheduling problem.     

 

• Roulette Wheel Selection 

The roulette wheel selection assigns each individual to a slot of a roulette 

wheel and the slot size occupied by each individual is determined by its fitness. 

A fitter individual occupies larger slot so that it more likely to be selected. The 

size of the slot for individual I  is defined by: 

∑

=

=

n

i

I

iF

IF
p

1

'

'

)(

)(
                     (5.5) 

and  

∑

∑ −

=

=

=
n

i

n

i

iF

IFiF

IF

1

1'

)(

)()(

)(  (5.6) 

where n  is the number of all individuals. Since in the workflow scheduling 

case, an individual with a small value of fitness is fitter than the one with a 

large value of fitness, the slot size of an individual is reverse proportional to its 

fitness value.   

• Rank Selection 

The rank selection process first sorts all individuals from worst to best accord-

ing to their fitness and then assigns slots based on their rank. The slot size of 

an individual I  is defined by: 



  118 
 

 

∑
=

=
n

i

I

iR

IR
p

1

)(

)(
                       (5.7) 

where )(IR  is the rank value of I and n  is the total number of all indi-

viduals for selection.   

• Elitism-Roulette Wheel Selection 

The elitism-roulette wheel selection first copies the fittest individual into the 

next generation and then using the roulette wheel selection to construct the rest 

of the population.  

• Elitism-Rank Selection 

The elitism-rank selection first copies the fittest individual into the next gen-

eration and then using the rank selection to construct the rest of the population.  

 

5.7 Time Slot Assignment 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6: Time slot assignment. 

 
The operation strings representing offspring produced by crossover and mutation 

operators are not a real schedule, since we ignore the time frames during genetic ma-

 



 

 119 
 

nipulation. A time slot assignment process is developed to transfer task-assignment 

string and scheduling-order string to a feasible solution. As illustrated in Figure 5.6, it 

queries available time slots from services based on the information of resource alloca-

tions and task execution orders encoded in strings, and assign a time slot to each task 

to produce a schedule satisfying the conditions of a feasible solution defined in Sec-

tion 5.2.  

 

    

Algorithm 5.2 shows the pseudo-code of the time slot assignment. It assigns tasks 

in the order of scheduling-order string (Line 1, 6). The service allocation of tasks is 

obtained from task-assignment string (Line 3). Before assigning a task on the speci-

fied service, it firstly computes the ready time for the execution of the task on the 

service by considering the input data transmission time and the end time of parent 

tasks (Line 4). After that, it queries free slots on the service and assign the earliest free 

slot to the task (Line 5).    

            

5.8 Experiments 

In order to evaluate the proposed genetic algorithm, the algorithm is implemented and 

compared with the non-GA heuristics (i.e. TD and CD) proposed in Chapter 4 on the 

Algorithm 5.2: time slot assignment algorithm 

Input:   Scheduling-order string and task-assignment string 

Output:  A feasible schedule  

1  T ← get the first task from the scheduling-order string 

2 while any task in the scheduling-order string has not been 
assigned do 

3 S ← get the service allocation of T from the   

task-assignment string 

4       compute the ready time of T on S 

5        query and assign a free slot on S for T 

6       T ← get the next task from the scheduling-order string 

7 end while 



  120 
 

two workflow structures, balanced and unbalanced applications as described in Sec-

tion 4.4. 

Table 5.1: Default parameters. 

Parameter Value/type 

Population size 10 
Maximum generation 100 
Crossover probability 0.9 
Reordering mutation probability  0.5 
Replacing mutation probability 0.5 
Selection scheme elitism-rank selection 
Initial individuals randomly generated 

 

The genetic algorithm is investigated by starting with two different initial popula-

tions. One initial population consists of randomly generated solutions, while the other 

initial population consists of a solution produced by either CD or TD together with 

other randomly generated solutions. The solution produced by CD is used as one of 

individual in the initial population to solve the budget constrained optimization prob-

lem and the solution produced by TD is used for solving deadline constrained problem. 

In the result presentation, the results generated by GA with a completely random ini-

tial population is denoted by GA, while the results generated by GA which include an 

initial individual produced by the CD and TD heuristics are denoted as GA+CD and 

GA+TD respectively. The parameter settings used as the default configuration for the 

proposed genetic algorithm are listed in Table 5.1.  

5.8.1 Deadline Constrained Scheduling 

Figure 5.6 and Figure 5.7 compare the execution time and cost of using three sched-

uling approaches for scheduling the balanced-structure application and unbalanced 

structure application with various deadlines respectively. The set deadlines here are 

selected based on Equation 4.12. As the same as in Chapter 4, we use k to represent 

deadline levels in the result graphs. As k increases, the deadline is more relaxed. In 

addition, the normalized values are also used in result graphs. The execution time is 

normalized by the corresponding deadline. Therefore, if the normalized execution 

time is higher than 1, the deadline is not satisfied. The execution cost is normalized by 



 

 121 
 

the cheapest cost required to execute the workflow on the testbed. The cheapest cost 

can be computed by a cost optimization scheduling such as GreedyCost. As described 

in Section 4.6, GreedyCost is used to find minimum execution cost of scheduling the 

workflow without considering its execution time.  

 

 
 
 

 
 

 
 

 
 
 

 
 

Figure 5.7: Normalized execution time and cost for scheduling balanced-structure 
application. 

  

Figure 5.8: Normalized execution time and cost for scheduling unbal-
anced-structure application. 

  

We can see that it is hard for both GA and TD to successfully meet the low dead-

line individually. As shown in Figure 5.7a and 5.8a, the normalized execution times 

produced by TD and GA exceed 1 at tight deadline ( 0=k ), and GA performs worse 

than TD since its values is higher than TD, especially for balanced-structure applica-

 1

 2

 4

 7

 0  2  4  6  8  10

E
x
e

c
u

ti
o

n
 C

o
s
t/

C
h

e
a

p
e

s
t 

C
o

s
t

Deadline

Balanced-structure application (Execution Cost)

TD
GA

GA+TD

 

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0  2  4  6  8  10

E
x
e

c
u

ti
o

n
 T

im
e

/D
e

a
d

lin
e

Deadline

Unbalanced-structure application (Execution Time)

Deadline

TD
GA

GA+TD

 

 1

 2

 4

 8

 0  2  4  6  8  10

E
x
e

c
u

ti
o

n
 C

o
s
t/

C
h

e
a

p
e

s
t 

C
o

s
t

Deadline

Unbalanced-structure application (Execution Cost)

TD
GA

GA+TD

 

(a) execution time   
(b) execution cost  
    

(a) execution time   (b) execution cost  

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  2  4  6  8  10

E
x
e

c
u

ti
o

n
 T

im
e

/D
e

a
d

lin
e

Deadline

Balanced-structure application (Execution Time)

Deadline

TD
GA

GA+TD

 



  122 
 

tion. However, the results are improved when incorporating GA and TD together by 

putting the solution produced by TD into the initial population of GA. As shown in 

Figure 5.8a, value of GA+TD is much lower than that of GA and TD at the tight dead-

line.  

As deadline increases, both GA and TD can meet deadline (see Figure 5.7a and 

5.8a) and GA can outperforms TD. For example in Figure 5.7, execution time and cost 

generated by GA at 2=k  are lower than that of TD. However, as shown in Figure 

5.7b the performance of GA is reduced and TD can performance better, once the 

deadline becomes very large. We can observe this in Figure 5.7b when 8=k and 10. 

In general, GA+TD algorithm performs the best.  

 

5.8.2 Budget Constrained Scheduling  

A comparison of the execution time and cost resulted by the three scheduling methods 

for scheduling the balanced-structure application and unbalanced-structure application 

with various budgets is shown in Figure 5.9 and Figure 5.10, respectively. The set 

budgets here are selected based on Equation 4.13 described in Chapter 4. In the result 

graph we use k to represent budget levels. As k increase the budget is more relaxed. 

Similar to the deadline constraint experiments, the normalized values are also used in 

the result graphs. The execution cost is normalized by the corresponding budget (see 

Figure 5.9b and 5.10b). Therefore, if the normalized execution cost is higher than 1, 

the budget is not satisfied. The execution time is normalized by the fastest execution 

time which can be achieved on the testbed. The fastest execution time can be obtained 

by executing a time optimization scheduling algorithm such as HEFT. As described in 

Section 4.6, HEFT is used to find the minimum time that can be achieved on the test-

bed without considering its execution cost.  

We can see that both GA and CD cannot satisfy the low budget constraint ( 0=k ). 

CD is slightly over budget whereas GA performs the worst results (see Figure 5.9a 

and 5.10a). However, the results are improved if we combine GA and CD together by 

putting the solution produced by CD into the initial population of the GA. As budget 



 

 123 
 

increases, CD performs better for the balanced-structure application (see Figure 5.9b), 

whereas GA performs better than CD for the unbalanced-structure application (see 

Figure 5.10b). This shows that budget distribution used by CD is more accurate for 

balanced-structure. However, its budget constraint distribution problem for the unbal-

anced-structure application can be released when the budget is very high. As shown in 

Figure 5.10a, CD performs better than the GA for both applications after 8=k . 

Moreover, by combining the two approaches, GA+CD can improve the performance 

generated by CD. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9: Normalized execution time and cost for scheduling balanced-structure ap-
plication. 

 
 
 
 
 
 
 
 
 
 

 

Figure 5.10: Normalized execution time and cost for scheduling unbalanced-structure 
application. 

 

 

 1

 5

 10

 25

 0  2  4  6  8  10

E
x
e

c
u

ti
o

n
 T

im
e

/F
a

s
te

s
tT

im
e

Budget

Balanced-structure application (Execution Time)

CD
GA

GA+CD

 

 1

 2

 5

 10

 0  2  4  6  8  10

E
x
e

c
u

ti
o

n
 T

im
e

/F
a

s
te

s
t 

T
im

e

Budget

Unbalanced-structure application (Execution Time)

CD
GA

GA+CD

 

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  2  4  6  8  10

E
x
e

c
u

ti
o

n
 C

o
s
t/

B
u

d
g

e
t

Budget

Unbalanced-structure application (Execution Cost)

Budget

CD
GA

GA+CD

 

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  2  4  6  8  10

E
x
e

c
u

ti
o

n
 C

o
s
t/

B
u

d
g

e
t

Budget

Balanced-structure application (Execution Cost)

Budget

CD
GA

GA+CD

 

(b) execution cost  (a) execution time  

(a) execution time (b) execution cost  



  124 
 

5.8.3 Effect of the number of generations 

We also observe the performance of GA when the number of generation cycles is al-

tered. Figure 5.11 shows the evolution of the average normalized execution time 

(ANT) and average normalized execution cost (ANC) of the population during 100 

generations at tight deadline ( 0=k ), medium deadline ( 4=k ), and high deadline 

( 8=k ). For the tight deadline case, ANT of the population as shown in Figure 5.11a 

is reduced significantly in order to meet the tight deadline as the number of genera-

tions increases. Consequently, their corresponding execution cost as shown in Figure 

5.11b is increased; this is because individuals with more expensive schedules are se-

lected in order to decrease the execution time. However, GA is still not able to meet 

such tight deadline within 100 generations. For the medium and high deadline case, 

the deadlines are easily satisfied even in the initial population since the deadline is 

relatively relaxed. Therefore, the objective of GA is to reduce the execution cost. As 

shown in Figure 5.11b, ANC values of medium and relaxed deadline cases are de-

creased as the number of generation increases, at the meantime, their ANT values are 

increased but are kept under 1.  

Figure 5.12 shows the evolution of the average normalized execution time (ANT) 

and average normalized execution cost (ANC) of the population during 100 genera-

tions at tight budget ( 0=k ), medium budget ( 4=k ), and high budget ( 8=k ). If the 

budget constraints cannot be satisfied, GA first to reduce the execution cost to meet 

the budgets. As shown in Figure 5.12b, ANC values produced by GA at tight budget 

is significantly reduced as the number of generations increases. Consequently, the 

execution time as shown in Figure 5.12a is increased; this is because individuals 

which process slower are selected in order to decrease the execution cost. Similar to 

the tight deadline case, it is hard to GA to meet the tight budget within 100 genera-

tions. For the medium budget case, GA first is to reduce execution cost to meet the 

budget. As shown in Figure 5.12b, the ANC value is reduced from 1.5 to 1 during 

generation 0-9 and their corresponding ANT value is slightly increased as shown in 

Figure 5.12a. However, once it has found individuals which are able to complete the 

execution within the budgets, it starts to optimize the execution time for successive 



 

 125 
 

generations. For the relaxed budget case, most individuals in the initial population can 

meet the budget since the budget is very large. Then the objective of GA targets on 

minimizing the execution time. As shown in Figure 5.12a, its corresponding ANT 

values are decreased as the number of generation increases.  

 

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  10  20  30  40  50  60  70  80  90  100

A
N

T

Number of Generations

Deadline Constrained Scheduling (Time)

Deadline

k=0
k=4
k=8

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0  10  20  30  40  50  60  70  80  90  100
A

N
C

Number of Generations

Deadline Constrained Scheduling (Cost)

k=0
k=4
k=8

 
 

 

Figure 5.11: Evolution of execution time and cost during 100 generations for deadline 
constrained scheduling application. 

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60  70  80  90  100

A
N

T

Number of Generations

Budget Constrained Scheduling (Time)

k=0
k=4
k=8

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  10  20  30  40  50  60  70  80  90  100

A
N

C

Number of Generations

Budget Constrained Scheduling (Cost)

Budget

k=0
k=4
k=8

 
 

 

Figure 5.12: Evolution of execution time and cost during 100 generations for budget 
constrained scheduling. 

 

5.8.4 Effect of the size of population 

Figure 5.13 shows execution time and cost produced by GA for sizes of the population 

ranging from 5 to 80 at tight deadline ( 0=k ), medium deadline ( 4=k ), and high 

(a) execution time  (b) execution cost 

(a) execution time  (b) execution cost 



  126 
 

deadline ( 8=k ). For the tight deadline case, we observe from Figure 5.13a, with lar-

ger population size, GA could meet a tight deadline. As shown in Figure 5.13a, the 

completion time is much closer to the deadline as the size of population increases. For 

the medium and high deadline cases, as shown in Figure 5.13b, large population size 

gives GA more opportunity to find cheaper solutions while meeting the deadline. 

However, the scheduling overhead is increased as the size of population increases. 

Figure 5.14 shows, as the size of the population is increased from 5 to 80, the running 

time of GA increases from 77 seconds to 1600 seconds.  

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  10  20  30  40  50  60  70  80

E
x
e
c
u
ti
o
n
 T

im
e

Population Size

Balanced-Structure (Execution Time)

Deadline

deadline(k=0)
deadline(k=4)
deadline(k=8)

 1

 10

 0  10  20  30  40  50  60  70  80

E
x
e
c
u
ti
o
n
 C

o
s
t

Population Size

Balanced-Structure (Execution Cost)

deadline(k=0)
deadline(k=4)
deadline(k=8)

 
 
 

Figure 5.13: Normalized execution time and cost for sizes of the population ranged 
from 5 to 80 at medium deadline. 

 

Figure 5.14: Scheduling overhead for the sizes of the population ranged from 5 to 80. 

 

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  10  20  30  40  50  60  70  80

S
c
h
e
d
u
lin

g
 T

im
e
 (

S
e
c
.)

Population Size

Scheduling Overhead

deadline(k=0)
deadline(k=4)
deadline(k=8)

 

(a) execution time  (b) execution cost 



 

 127 
 

5.8.5 Impact of Selection Scheme 

The default selection scheme used for previous experiment is elitism rank selection. 

Experiments of comparison of different selection scheme are also conducted. In these 

experiments, each scheme is carried out to schedule 10 random generated balanced- 

and unbalanced-structure workflows.  

 

 2

 4

 6

 8

 10

 12

 14

 16

840

E
x
e
c
u
ti
o
n
 T

im
e
/F

a
s
te

s
t 
T

im
e

User Budget

Balanced Structure (Execution Time)

rank
elitismRank

rouletteWheel
elitismRouletteWheel

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

840

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

User Budget

Balanced Structure (Execution Cost)

rank
elitismRank

rouletteWheel
elitismRouletteWheel

 

 

Figure 5.15: Comparison of execution cost and time among four selection scheme for 
deadline constrained scheduling on balanced-structure workflows. 

 

 2

 4

 6

 8

 10

 12

 14

840

E
x
e
c
u
ti
o
n
 T

im
e
/F

a
s
te

s
t 
T

im
e

User Budget

Unbalanced Structure (Execution Time)

rank
elitismRank

rouletteWheel
elitismRouletteWheel

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

840

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

User Budget

Unbalanced Structure (Execution Cost)

rank
elitismRank

rouletteWheel
elitismRouletteWheel

 
 

Figure 5.16: Comparison of execution cost and time among four selection scheme for 
deadline constrained problem on unbalanced-structure workflows. 

 
Figure 5.15 and Figure 5.16 show the comparison results for scheduling bal-

anced-structure and unbalanced-structure workflows with various deadlines. We can 

observe that roulette wheel performance worst. At the tight deadline ( 0=k ), its exe-

(a) execution time  (b) execution cost 

(a) execution time  (b) execution cost 



  128 
 

cution time is significantly greater than the deadline (see Figure 5.15a and 5.16a). At 

the medium ( 4=k ) and relaxed deadline ( 8=k ), its execution cost is much higher 

than others. Comparing with rank selection and elitism rank selection, elitism rank 

selection is better. It can satisfy tight deadlines and achieve lower execution cost. In 

addition, it also performs slightly better than elitism roulette wheel.  

 

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

840

E
x
e
c
u
ti
o
n
 T

im
e
/D

e
a
d
lin

e

User Deadline

Balanced Structure (Execution Time)

rank
elitismRank

rouletteWheel
elitismRouletteWheel

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

840

E
x
e
c
u
ti
o
n
 C

o
s
t/
C

h
e
a
p
e
s
t 
C

o
s
t

User Deadline

Balanced Structure (Execution Cost)

rank
elitismRank

rouletteWheel
elitismRouletteWheel

 
 
 

Figure 5.17. Comparison of execution cost and time among four selection scheme for 
budget constrained problem on balanced-structure workflows. 

 

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

840

E
x
e
c
u
ti
o
n
 T

im
e
/D

e
a
d
lin

e

User Deadline

Unbalanced Structure (Execution Time)

rank
elitismRank

rouletteWheel
elitismRouletteWheel

 2

 2.5

 3

 3.5

 4

 4.5

 5

840

E
x
e
c
u
ti
o
n
 C

o
s
t/
C

h
e
a
p
e
s
t 
C

o
s
t

User Deadline

Unbalanced Structure (Execution Cost)

rank
elitismRank

rouletteWheel
elitismRouletteWheel

 
 
 

Figure 5.18: Comparison of execution cost and time among four selection scheme for 
budget constrained problem on unbalanced-structure workflows. 

 
 

(a) execution time  (b) execution cost 

(a) execution time  (b) execution cost 



 

 129 
 

Figure 5.17 and Figure 5.18 show the comparison results for scheduling bal-

anced-structure and unbalanced-structure workflows with various budgets. The results 

are similar to the deadline constrained scheduling, roulette wheel perform worst while 

elitism based approaches are better than the non-elitism approaches.  

 

5.9 Related Work 

The genetic algorithm approach has been used to solve scheduling problems in exist-

ing literatures. Yamada and Nakano [122][190] have proposed the use of genetic 

algorithms for job-shop scheduling problems. Binary and symbolic representations 

were developed in this work. The job shop scheduling problem is to schedule a set of 

jobs and each job is required to process on a set of machines in sequence. In contrast, 

a workflow is a set of tasks which are required to be executed on a set of resources. 

Some tasks need to be executed in sequence on same or different resources, while 

some tasks need to be executed in parallel. Therefore, problem representation devel-

oped for job-shop scheduling cannot be directly applied for workflow scheduling 

problem.  

The representation used in the proposed genetic algorithm is similar to the work 

proposed by Wang et al [180]. Zomaya et al [202] and Hou et al [85] have also ap-

plied genetic algorithms for scheduling DAG based task graphs on multiprocessor 

systems. Two dimensional strings are used to represent the scheduling problem. One 

dimension represents the number of processors while the other dimension shows the 

order of tasks on each processor. This two dimensional representation is also suitable 

for workflow scheduling. Compared with these two approaches, the advantage of the 

two dimensional strings is that it is intuitive for obtaining the order of tasks on a re-

source so that it can facilitate the re-ordering mutation operation, while its 

disadvantage is that it requires extra operations in the crossover in order to maintain 

the dependencies of the tasks.  

In addition, previous work in multiprocessor systems [85][202] assume that all 

resources are capable of executing all tasks. That is not true for Grid computing envi-



  130 
 

ronments. The execution environments required by different tasks in Grid workflow 

applications are highly heterogeneous, and different tasks may also require different 

application services. This feature of Grid workflow applications also distinguishes 

genetic operations such as crossover and mutation used in this work from the way 

they are used in multiprocessor systems.     

Prodan and Fahringer [132][133] have employed genetic algorithms to schedule 

WIEN2k workflow [20] on Grids. Spooner et al [153] have also employed genetic 

algorithms to schedule sub-workflows in a local Grid site. More recently, Singh et al 

[145] incorporate GA with Min-Min heuristics to optimize execution costs of 

provisioning resources for application execution. Compared with these works, the 

proposed work focuses on optimizing workflow execution based on deadline and 

budget constraints.  

 

5.10 Summary 

Genetic algorithms (GAs) provide robust search techniques that allow a high-quality 

solution to be derived from a large search space. This chapter applies genetic algo-

rithms to solve deadline or budget constrained scheduling problems. The fitness 

function has been developed to guide the GA to search solutions which meet the 

scheduling objective. Reservation… 

The proposed GA is evaluated by comparing it with non-evolutionary heuristics, 

on both balanced and unbalanced workflow structures. The results show that the ge-

netic algorithm performances better for unbalanced structures. This proves that the 

GA can play more important role for scheduling complex workflow structures, since it 

makes scheduling decisions based on the performance of the entire workflow. The re-

sults of the experiments also show that the scheduling performance can be 

significantly improved by incorporating the GA with the simple heuristics developed 

in previous chapter.  

The work in this chapter demonstrates that the GA is capable of optimizing a sin-

gle parameter of the performance of workflow execution while meeting a specified 

QoS constraint such as deadline and budget. The next chapter presents workflow exe-



 

 131 
 

cution planning approaches using genetic algorithms and local search to optimize 

multiple performance parameters, and generates a set of alternative optimized solu-

tions based on a range of QoS constraints.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  132 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 133 
 

Chapter 6  

 
 
 

Multi-objective Planning for 
Workflow Execution 
 
Cost-based workflow scheduling heuristics are proposed in previous chapters. They 

either optimize monetary cost while meeting users’ time constraint (deadline) or opti-

mize execution time while meeting users’ cost constraint (budget). However, they are 

only suitable for users who have strict deadline or budget requirements and expect to 

optimize only one of these execution factors. In many situations, users may need more 

information such as the range of QoS levels available and associated costs before 

making decisions. Furthermore, QoS levels and prices offered by service providers 

may be highly diverse and may not be directly correlated with the utility perceived by 

the users. For example, users may prefer some assignments which have slightly longer 

execution times but offer large savings in execution cost.  

This chapter focuses on a workflow planning method considering multi-objective 

trade-off within users’ requirements. In this chapter, trade-off between two conflicting 

objectives – execution time and price, while meeting users’ maximum deadline and 

budget requirements, are investigated.  

 

6.1 Multi-objective Workflow Planning 

Figure 6.1 shows the system architecture and interaction between the user and system 

components. The user first submits their workflow applications to the system with 

maximum QoS requirements. The system estimates workflow execution through the 



  134 
 

workflow execution planner and then returns the results to the user, showing possible 

execution schedules and their trade-off based on user’s requirements. The user 

chooses the most desirable schedule and provides confirmation. The system then starts 

to execute the workflow according to the specified execution schedule and reschedule 

some tasks once the initial states of services are changed.  

 

Workflow Execution 
Controler

Workflow 
Execution 
Planner

Workflow 
Executor

User

1. submit workflow 
specification

2. submit 3. return result

4. feedback

5. confirm

6. submit

Workflow Management 

System

Data Service 

Service

Service

Service

…...

query

negoriate(Service Level 
Agreement)

query

Utility Grids

 

Figure 6.1: Workflow Management System.  

 

Workflow execution planning is a pre-process before workflow execution. It aims 

to investigate users’ execution requirements and generate possible execution sched-

ules. The possible schedules should be optimized execution plans while satisfying 

users’ requirements. Here we formulate the execution optimization problem for dead-

line and budget constraints during the planning stage. As mentioned in Section 4.2.1, a 

workflow is modeled as a DAG graph and represented by ),( ΛΓΩ , where Γ  is  

the finite set of tasks )1( niTi ≤≤  and Λ  is the set of directed edges. We denote that 

)( iTtime  is the completion time of iT  and )( iTcost  is the total cost for processing 



 

 135 
 

iT . The execution optimization problem is to generate solution I , which maps every 

iT  onto a suitable service to achieve the multi-objective below: 

                   Minimize    )}({max)( i
T

TtimeITime
i Γ∈

=                 (6.1) 

                   Minimize    )(cos)( i
T

TtICost
i Γ∈
∑=    (6.2) 

                   subject to    BICost <)( ,   (6.3) 

DITime <)(    (6.4) 

where B is the cost constraint (budget) and D is the time constraint (deadline) required 

by users for workflow execution.   

 

6.2 Multi-objective Optimization 

We formalized the workflow planning problem as a multi-objective optimization 

problem [42] in which a group of conflicting objectives are simultaneously optimized. 

As given in Equation 6.1 and 6.2, there are two conflicting objectives: minimize exe-

cution time and minimize execution cost. In such problems, there is no single optimal 

solution but rather a set of potential solutions which are all optimal in some objec-

tives.  

6.2.1 Definitions 

Mathematically, we can define MOPs as : 

           Minimize   )}( ..., ),({)( 1 xfxfxf n=                   (6.5) 

where Xx   ∈  and X is a solution space. We say that the solution is said to dominate 

another if it is as good as the other solution and better in at least one objective. That is 

x
* dominates x, if and only if 

  )()( ], [1,...,       )( )( ], ..., [1,  **
xfxfnjxfxfni jjii <∈∃∧≤∈∀          (6.6) 

Figure 6.2 shows solutions for the minimization problem of two conflicting ob-

jectives, )(1 xf  and )(2 xf . The solution 3x  dominates 2y , because both objective 

values of 3x  are lower than those of 2y . However, 3x  does not dominate 4x , 



  136 
 

since )()( 4232 xfxf > . We say that 3x  and 4x  are non-dominated solutions. They 

are optimal in one objective but none of these two solutions is superior to the other 

with respect to the two objectives. 

The set of non-dominated solutions form a non-dominated set P, which meets 

following conditions:  

1. Any solution in P is non-dominated to any other solution in P with respect to 

all objectives.  

2. Any solution in P dominates at least one solution not belonging to P.  

For example, the set of solutions 41 xx −  is a non-dominated set for the given prob-

lem. The image of the non-dominated set is called non-dominated front.   

 

 

 

 

 

 

 

 

 

Figure 6.2: Five non-dominated solutions and four dominated solutions for the opti-
mization problem of objectives f1(x) and f2(x). 

 

6.2.2 MOP Algorithms 

Scheduling of interdependent tasks in distributed heterogeneous computing environ-

ments is a well-known NP-hard problem [170]. Many non-evolutionary based 

heuristics have been proposed to optimize execution time. However, with the increase 

in the number of parameters and objectives required to be considered, it becomes in-

feasible to develop a simple heuristic or use a classical method such as linear 

programming approach to handle the scheduling optimization problem. Evolutionary 

based algorithms have been widely applied to solve multi-objective optimization 

f1(x)

f2(x)

 x1

 y2

 y1

 y3

 y4

  x2

  x3

 x4
 x5

0 1 2 3

1

2

3

0.5

1.5

2.5

0.5 1.5 2.5

Non-dominated  front

 



 

 137 
 

problems in many application domains, such as control systems [63] and network 

routing [138], and are capable of simultaneously optimizing multiple objectives with-

out combining them into a single scalar objective function. 

In this chapter, we focus on applying three well-known algorithms to solve the 

workflow execution planning problem and compare the algorithms for different work-

flow structures and users constraint levels. The three algorithms are elitist 

Non-dominated Sorting Genetic Algorithm (NSGAII) [48], Strength Pareto Evolu-

tionary Algorithm (SPEA2) [201] and Pareto Archived Evolution Strategy (PAES) 

[91]. They are all evolutionary algorithms and generate better solutions over genera-

tions. However, NSGAII and SPEA2 are population based algorithms with different 

evaluation and selection scheme, while PAES is a local search based algorithm.  

The general high level overview [130] of NSGAII and SPEA2 algorithms is 

shown in Figure 6.3. Both NSGAII and SPEA2 are genetic algorithm based method 

and select individuals from a population for reproduction. Both crossover and muta-

tion genetic operators are performed to generate new offspring. However, these two 

algorithms are use different evaluation strategies and selection strategies.  

NSGAII evaluates solutions based on the values of each objective. It ranks all so-

lutions to form non-dominated fronts according to its values. It first selects 

non-dominated solutions in the current population as the first level non-dominated 

front, and selects non-dominated solutions in the rest of the population as next level 

non-dominated front, the procedures continues until the whole population is classified 

into non-dominated fronts. It then selects solutions into next generation for reproduc-

tion according to their level of non-dominated fronts. The solutions in the first level 

front have highest priority, and then those in the second level and so forth. Such selec-

tion process continues until it finds that the population size would be exceeded if all 

solutions were added to the next level front. Then, crowding sort is performed on the 

solutions at this level and finally solutions from the less crowded area are selected.  

 

 

 



  138 
 

 

 

 

 

    

 

 
Figure 6.3: Generic outline of NSGAII and SPEA2 algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Overview of PAES algorithm. 
 

On the other hand, SPEA2 uses the degree to which the solution dominates other 

members in the population and its density estimation to evaluate solutions. The den-

sity of a solution in a population is a function of the distance to the k-th nearest 

solution. Unlike NSGAII, SPEA2 does not select solutions based on their 

non-dominated levels at each generation. It creates an external archive to keep se-

lected individuals for the next generation and first copies non-dominated solutions in 

current population to the archive. If the size of the archive is exceeded, the solutions 

in overcrowded areas are removed from the archive; otherwise, it fills the archive with 

dominated solutions based on their Euclidean distance to its nearest neighbor solution.  

  NSGAII and SPEA2 algorithm 
 

  1. generate initial population 

  2. do  

  3.    perform crossover on individuals in current generation 

  4.    perform mutation on offspring 

  5.    evaluate solutions 

  6.    select individuals to be carried into next generation 

  7. while(termination condition is not satisfied) 

  PAES algorithm 
 

  1. generate current solution  

  2. create an archive 

  2. do  

  3.    mutate current solution and generate a candidate  

        solution 

  4.    evaluate candidate solution  

  5.    if candidate solution is not dominated by current 

            solution then  

  6.        compare candidate solution with archive members 

  7.        update archive  

  8.        select a new current solution  

  9.    end if 

10. while(termination condition is not satisfied) 



 

 139 
 

The overview of PAES is shown in Figure 6.4. PAES uses local search from one 

current solution to generate a new candidate and compare the current solution with the 

candidate solution. It continuous to search from the current solution if the candidate is 

dominated; otherwise it is compared with other archived solutions. In PAES, an ar-

chive is maintained to keep the best solutions found so far. Initially there is only one 

solution in the archive, as the number of generations increases, the archive is updated 

by adding good candidates and removing dominated archived members. In addition to 

comparing solutions by using dominance criteria, density estimation is also applied. In 

PAES, a d-dimensional hypercube is used to track the degree of crowding for each 

solution in the archive, where d is the number objectives in the problem. The solution 

placed in the less crowded hypercube is considered to be a better solution.  

 

6.3 Fitness Functions 

A fitness function is used to measure the quality of the solutions according to the 

given optimization objectives. We separate fitness functions by objective functions 

and penalty functions. Objective functions are designed to encourage the algorithms to 

choose solutions with minimum objective values. The objective functions for solution 

I  are defined as follows:    

   Cost objective function:  
B

Icost
Ifcost

)(
)( =                (6.7) 

              Time objective function: 
D

Itime
Iftime

)(
)( =                (6.8) 

    

Penalty functions are developed to handle constraints and are defined as follows:  

 

              Penalty function: )()()( IPIPIP deadlinebudget +=              (6.9) 

 

where budgetP  is the budget constraint penalty function defined by Equation 6.10 and 

deadlineP  is deadline constraint penalty function defined by Equation 6.11. 



  140 
 

 


 >

=
otherwise

BIcostifIf
IP

cost

budget
,0

)( ),(
)(                (6.10) 



 >

=
otherwise

DItime ifIf
IP

time

deadline
,0

)(),(
)(                (6.11) 

Since satisfying deadline and budget requirements is the primary goal of the schedul-

ing scheme. The overall penalty is added to the objective functions to form the 

measure functions:  

            Cost fitness function:  )()()( IPIfIF costcost +=        (6.12) 

            Time fitness function: )()()( IPIfIF timetime +=           (6.13) 

 

6.4 Experiments 

The parameter settings used as the default configuration for NSGAII, SPEA2 and 

PAES are listed in Table 6.1. In order to evaluate the proposed genetic algorithm, the 

three algorithms are implemented and compared on the two workflow structures, bal-

anced and unbalanced. The applications used for the experiments here are same as in 

Section 4.4. The experiment environment also follow setting descried in Section 4.6.   

Table 6.1: Default parameters. 

 

 

 

 

 

 

The behaviors of algorithms are also observed at three constraint levels, namely 

relaxed constraint, medium constraint, and tight constraint. The relaxed constraint 

level assumes that users require relatively large deadline and budget, while tight con-

straint level assumes that users require low deadline and budget. The relaxed/tight 

Parameter Value/Type 

Population size 10 
Initial population  randomly generated solutions 
Maximum generations (NSGAII, SPEA2) 100 
Crossover probability (NSGAII, SPEA2) 0.9 
Mutation probability 0.5 
Archive size (SPEA2, PAES) 10 
Depth (PAES) 10 

Maximum iterations (PAES)  1000 



 

 141 
 

deadlines and budgets of an application are determined by the maximum and mini-

mum time/cost for the workflow execution. The maximum execution time denoted as 

maxT  is the approximate least time required for executing the workflow application on 

the testbed to achieve the cheapest cost denoted as 
minC . The maximum cost denoted 

as 
maxC  is the approximate least cost required for executing the workflow to achieve 

the fastest completion time denoted as 
minT . The 

maxT  and 
minC  can be generated by 

an cost optimization algorithm such as GreedyCost (see Section 4.6), while 
minT  and 

maxC are generated by a time optimization algorithm such as HEFT (see Section 4.6). 

The deadline and budget are defined by Equation 6.14 and 6.15 respectively.  

                  Deadline )( minmaxmax TTkTD −×−=                  (6.14) 

  Budget  )( minmaxmax CCkCB −×−=                 (6.15) 

The value of k  is varied from 0.2 to 0.8 enable to generate relaxed, medium and tight dead-

lines and budgets. 

6.4.1 Comparison of different algorithms 

In the first experiment, we compare three algorithms, NSGAII, SPEA2 and PAES, 

using relaxed, medium and tight constraints for unbalanced-and balance-structure ap-

plications. NSGAII and SPEA2 were selected with two different initial populations. 

Two of the members in the initial population were comprised of the solutions pro-

duced by two deadline or budget constrained minimization heuristics, TD and CD, 

which are described in Chapter 4, together with other randomly generated solutions. 

We denote the results returned by NSGAII and SPEA2 with this type of initial popu-

lation as NSGAII* and SPEA2* respectively. The other initial population contains 

only randomly generated solutions and corresponding results returned by NSGAII and 

SPEA2 are denoted as NSGAII and SPEA2 respectively. 

In order to compare the performance of alternative workflow multi-objective 

scheduling algorithms, we need to examine the extent of minimization of the obtained 

non-dominated solutions produced by each algorithm for each objective and the 

spread of their solutions. Figure 6.5 and 6.6 show the non-dominated solutions ob-



  142 
 

tained at the end of simulation trial (average over 10 runs) for the balanced- and un-

balanced-structure applications. The performance appears to be dramatically different 

when the TD and CD heuristics have been used to initialize the population. Compared 

with SPEA2 and NSGAII, SPEA2* and NSGAII* guarantee the extreme solutions 

and have a better spread distribution of solutions within the constraints, whereas the 

solutions obtained by SPEA2 and NSGAII dominate a small subset of solutions pro-

duced by SPEA2* and NSGAII*. However, as the constraints are tightened, SPEA2* 

and NSGAII* significantly outperforms SPEA2 and NSGAII in terms of the minimi-

zation and distribution of solutions. As shown in Figure 6.6c, the solutions produced 

by SPEA2 and NSGAII cannot meet the deadline and budget constraints. This shows 

that the performance of population-based algorithms can be significantly affected 

when we initialize the population with solutions generated by TD and CD. 

In order to present a comprehensive comparison of the overall quality of these al-

ternative approaches, we have run each algorithm for two different workflow 

structures at relaxed, medium and tight constraint levels respectively. The experiment 

for each scenario was repeated 30 times. We have constructed a reference set R, by 

merging all of the archival non-dominated solutions found by each of the algorithms 

for a given workflow structure and constraint level across 30 runs. We then use the 

hypervolume difference indicator −
HI  to measure the differences between 

non-dominated fronts generated by the algorithms and the reference set R. −
HI  meas-

ures the portion of the objective space that is dominated by R [200]. The lower the 

value of −
HI , the better the algorithms perform. 

 

 

 



 

 143 
 

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.4  0.5  0.6  0.7  0.8  0.9  1

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

Execution Time/Deadline

Balanced-structure application(H)

NSGAII
NSGAII*
SPEA2

SPEA2*
PAES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Obtained non-dominated solutions with five approaches for the bal-
anced-structure application on different constraint levels. 

 

 

 (b) non-dominated solutions generated on medium constraint 

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4  0.5  0.6  0.7  0.8  0.9  1

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

Execution Time/Deadline

Balanced-structure application(M)

NSGAII
NSGAII*
SPEA2

SPEA2*
PAES

 

(a) non-dominated solutions generated on relaxed constraint 

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.75  0.8  0.85  0.9  0.95  1  1.05

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

Execution Time/Deadline

Balanced-structure application(L)

NSGAII
NSGAII*
SPEA2

SPEA2*
PAES

 

(c) non-dominated solutions generated on tight constraint 



  144 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Obtained non-dominated solutions with five approaches for the unbal-
anced-structure application on different constraint levels. 

(a) non-dominated solutions generated on relaxed constraint 

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

Execution Time/Deadline

Unbalanced-structure application(M)

NSGAII
NSGAII*
SPEA2

SPEA2*
PAES

 

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

Execution Time/Deadline

Unbalanced-structure application(H)

NSGAII
NSGAII*
SPEA2

SPEA2*
PAES

 

(b) non-dominated solutions generated on medium constraint 

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0.75  0.8  0.85  0.9  0.95  1

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

Execution Time/Deadline

Unbalanced-structure application(L)

NSGAII
NSGAII*
SPEA2

SPEA2*
PAES

 

(c) non-dominated solutions generated on tight constraint 



 

 145 
 

The box plots in Figure 6.7 and 6.8 show statistical significance difference be-

tween algorithms for balanced-structure and unbalanced-structure workflow 

respectively (p-value < 0.05). We can observe that NSGAII and SPEA2 perform 

similar on both applications, whereas PAES performs differently. For the bal-

anced-structure application, as shown in Figure 6.7 PAES performs worst at relaxed 

and medium constraint while it performs very similar to SPEA2 and NSGAII at tight 

constraint. However, it outperforms SPEA2 and NSGAII for the unbalanced-structure 

application as we can see from Figure 6.8. Therefore, it can be said that the local 

search-based algorithm is more efficient for the unbalanced-structure application 

whereas the population based algorithms is better for the balanced-structure applica-

tion. 

However, a population-based algorithm can be improved by employing solutions 

optimizing each objective separately as initial individuals. The statistical analysis in 

Figure 6.7 and 6.8 shows that SPEA2* is significantly better than SPEA2 and outper-

forms PAES. Even though the behaviors of SPEA2 and NSGAII are similar, 

NSGAII* does not perform as well as SPEA2*. It even performs worse than NSGAII 

on the unbalanced-structure application at relaxed constraint (see Figure 6.8a). 

The major difference between the SPEA2 algorithm and the NSGAII algorithm is 

their selection strategies. Different selection strategies mean that NSGAII and SPEA2 

perform differently. As described in Section 6.2.2, SPEA2 firstly selects 

non-dominated solutions in the current population, and then select other solutions 

which are in less overcrowded area. On the other hand, NSGAII not only selects the 

non-dominated solutions in the population, but also ranks the rest of the solutions into 

non-dominated levels and selects solutions belong to higher non-dominated levels. 

Such an elitist selection strategy could result in less diverse elements contained by in-

dividuals and thus leading to premature convergence, since it easily chooses the 

individuals which inherit the parts from employed initial individuals. However, as the 

tight degree of the constraint increase, the search space, which contains solutions sat-

isfying constraints decreases. Therefore, the difference between the SPEA2* and 

NSGAII* decreases as the constraints become tight. As shown in Figure 6.7c and 



  146 
 

Figure 6.8c, the difference between NSGAII* and SPEA2* is not significant. These 

results show that with incorporating TD and CD, SPEA2 can be significantly im-

proved and perform best in all the cases, while the performance of NSGAII gets worse 

for the unbalanced-structure workflow with relaxed and medium constraints. As 

shown in Figure 6.7 and 6.8, SPEA2* can perform better than NSGAII* for both 

workflow applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 147 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Box plot of −
HI  indicator values for the balanced-structure application on 

different constraint levels. 

NSGAII* SPEA2* NSGAII   PAES  SPEA2 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I
H

  −

     

Scheduling Algorithms  

NSGAII* SPEA2* NSGAII   PAES  SPEA2 

0.1

0.2

0.3

0.4

0.5

0.6

I
H

  −

     

Scheduling Algorithms  
(a) relaxed constraint 

(c) tight constraint 

NSGAII* SPEA2* NSGAII   PAES  SPEA2 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I
H

  −

     

Scheduling Algorithms  

(b) medium constraint 



  148 
 

 

 

 

 

Figure 6.8: Box plot of −
HI indicator values for the unbalanced-structure application on 

different constraint levels. 

NSGAII* SPEA2* NSGAII   PAES  SPEA2 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

I
H

  −

     

Scheduling Algorithms  

NSGAII* SPEA2* NSGAII   PAES  SPEA2 

0.15

0.2

0.25

0.3

0.35

0.4

0.45

I
H

  −

     

Scheduling Algorithms  

NSGAII* SPEA2* NSGAII   PAES  SPEA2 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

I
H

  −

     

Scheduling Algorithms  

(a) relaxed constraint 

(b) medium constraint 

(c) tight constraint 



 

 149 
 

Figure 6.9 shows the execution time and cost of solutions produced by SPEA2* 

and NSGAII* in the population at generation 1, 5, 10, 20, 50, 80 and 100 on medium 

constraint case for the unbalanced-structure application. In general, at generation 1, 

most solutions in the population cannot satisfy the budget constraints. By increasing 

the generations, they are capable to meet the constraints and minimize both execution 

time and cost. However, NSGAII* appears to evolve slower than SPEAII* after gen-

eration 20. 

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

Execution Time/Deadline

Unbalanced-structure application(M) Gen SPEA2*

gen(1)
gen(5)

gen(10)
gen(20)
gen(50)
gen(80)

gen(100)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

Execution Time/Deadline

Unbalanced-structure application(M) Gen NSGAII*

gen(1)
gen(5)

gen(10)
gen(20)
gen(50)
gen(80)

gen(100)

 

 

Figure 6.9: Evolution of execution time and cost during 100 generations for unbal-
anced-structure application on the medium constraint. 

 

6.4.2 Effect of altering the archive size of SPEA2 

We observe the performance of the SPEA2 when the archive size is varied between 5, 

10, 15, 20, 30 and 50 solutions. As observed from Figure 6.10, a large archive size can 

increase the performance of both minimizing execution time and cost, as well as 

spread distribution.  

(a) SPEA2* (b) NSGAII* 



  150 
 

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

Execution Time/Deadline

Unbalanced-structure application(M) Archive

archive(5)
archive(10)
archive(15)
archive(20)
archive(30)
archive(50)

 

Figure 6.10: Obtained non-dominated solutions of the archive size ranged between 5, 
10, 15, 20, 30 and 50 for the unbalanced-structure application  

on the medium constraint. 

 

6.4.3 Effect of changing mutation possibility  

 

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.25  0.3  0.35  0.4  0.45  0.5  0.55

E
x
e

c
u

ti
o

n
 C

o
s
t/

B
u

d
g

e
t

Execution Time/Deadline

Unbalanced-structure application(M) Mutation1 0.5

mutation2(0)
mutation2(0.01)

mutation2(0.1)
mutation2(0.3)
mutation2(0.5)
mutation2(0.8)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.25  0.3  0.35  0.4  0.45  0.5

E
x
e

c
u

ti
o

n
 C

o
s
t/

B
u

d
g

e
t

Execution Time/Deadline

Unbalanced-structure application(M) Mutation2 0.5

mutation1(0)
mutation1(0.01)

mutation1(0.1)
mutation1(0.3)
mutation1(0.5)
mutation1(0.8)

 

 

Figure 6.11: Performances of SPEA2 with different mutation rates for the unbal-
anced-structure application on the medium constraint. 

 

We also observe the performance of SPEA2 with different mutation probability. 

Figure 6.11 and 6.12 show the performance of different mutation probability for the 

unbalanced-structure application and balanced-structure applications respectively. 

Figure 6.11a and 6.12a show the performances of replacing-mutation (denoted as mu-

tation 2) probability ranged between 0, 0.01, 0.1, 0.3, 0.5 and 0.8 at fixed 

(a) different replacing mutation rates (b) different reordering mutation rates 



 

 151 
 

reordering-mutation (denoted as mutation 1) probability 0.5. Figure 6.11b and 6.12b 

show the performances of reordering-mutation probability ranged between 0, 0.01, 0.1, 

0.3, 0.5 and 0.8 at fixed replacing-mutation probability 0.5. As shown in the results, 

replacing-mutation has more impact on performance than reordering mutation in cur-

rent workflow applications. Results with highest replacing-mutation probability had 

best performance. This might due to the heterogeneous nature of utility Grids, choos-

ing services with different QoS levels for executing tasks in workflows have 

significant different impact on performance than the execution order of tasks.  

 

 

Figure 6.12: Performances of SPEA2 with different mutation rates for the bal-
anced-structure application on the medium constraint. 

 

6.4.4 Effect of changing crossover type 

We also compare the crossover operation (denoted as two-point crossover) proposed 

in Section 5.4.1 with another crossover type denoted as one-point crossover [180].  

One-point crossover divides the task-assignment string into top part and bottom part 

and swaps task assignments of bottom parts of parents are swapped. The results in 

Figure 6.13a show that the two-point crossover can achieve better performance for the 

unbalanced-structure application. As shown in Figure 6.13b, the results generated by 

two crossover types are similar for the balanced-structure application.  

(a) different replacing mutation rates (b) different reordering mutation rates 

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

E
x
e

c
u

ti
o

n
 C

o
s
t/

B
u

d
g

e
t

Execution Time/Deadline

Balanced-structure application(M) Mutation1 0.5

mutation2(0)
mutation2(0.01)
mutation2(0.1)
mutation2(0.3)
mutation2(0.5)
mutation2(0.8)

 

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

E
x
e

c
u

ti
o

n
 C

o
s
t/

B
u
d

g
e

t

Execution Time/Deadline

Balanced-structure application(M) Mutation2 0.5

mutation1(0)
mutation1(0.01)
mutation1(0.1)
mutation1(0.3)
mutation1(0.5)
mutation1(0.8)

 



  152 
 

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.28  0.3  0.32 0.34 0.36 0.38  0.4  0.42 0.44 0.46 0.48  0.5

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

Execution Time/Deadline

Unbalanced-structure application(M) Crossover type

one-point crossover
two-point crossover

 

 

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

E
x
e
c
u
ti
o
n
 C

o
s
t/
B

u
d
g
e
t

Execution Time/Deadline

Balanced-structure application(M) Crossover type

one-point crossover
two-point crossover

 

 

Figure 6.13: Performances of SPEA2 with different crossover types for the bal-
anced-structure application on the medium constraint. 

 

6.5 Related Work 

Many efforts have been made for mapping abstract workflows onto resources in a way 

that optimize the overall workflow execution. Pegasus [52] proposed a reduction al-

gorithm to refine the abstract workflow by using an existing materialized dataset. It 

also takes into account run-time storage space needed by the workflow during work-

flow planning [134]. Several clustering and partitioning methods [55][144] have also 

been developed to reduce the communication overhead of remote resources. Many list 

scheduling algorithms such as HEFT [181] and meta-heuristics such as GRASP [21] 

(a) unbalance-structure application 

(b) balance-structure application 



 

 153 
 

have been applied to search an optimal schedule in Grid environments. Several efforts 

[143][195] have also been made toward mapping multiple workflow applications onto 

heterogeneous computing environments.  

The work in this chapter is distinct from the related work because it simultane-

ously optimizes multiple objectives of workflow execution according to users QoS 

constraints and is capable of generating a set of alternative trade-off solutions for us-

ers’ further decisions.    

 

6.6 Summary 

Multiple scheduling objectives may need to be considered while scheduling work-

flows on utility Grids. This chapter proposes a workflow execution planning 

approaches, which optimize multiple objectives. The planner can generate a set of 

widespread alternative solutions if the optimization objectives are conflicted.   

Multi-objective Evolutionary Algorithms (MOEAs) are introduced in this chapter 

for solving the workflow execution planning problem. Corresponding fitness func-

tions, which incorporate minimization objectives and penalty functions for the 

constraints, are developed. This chapter focuses on investigating three benchmark 

MOEAs, NSGAII, SPEA2 and PAES. Statistical analysis of significance difference 

between algorithms for various workflow applications and QoS constraint levels is 

also presented.  

The statistical results show that different evolutionary operators and selection 

strategies employed by the algorithms have an impact on the quality of planned solu-

tions for different workflow structure and constraint levels. The study carried out in 

this chapter also proposes and proves an initiative of using low complexity heuristics 

which designed for optimizing a single objective to improve the performance of 

multi-objective evolutionary algorithms.  

 

 

 



  154 
 

Chapter 7  

Conclusions and  
Future Directions 
 
7.1 Summary 

Grids provide a global infrastructure for solving large-scale problems in science, en-

gineering and business. They enable the sharing, exchange, discovery, selection and 

aggregation of geographically distributed, heterogeneous resources, such as computers, 

data sources, visualization devices and scientific instruments. Workflows have been 

recognized as an important application for Grid systems. However, composing and 

deploying such workflows on dynamic and heterogeneous distributed Grid resources 

to meet users’ QoS requirements is a challenging task. To enhance the understanding 

of Grid workflows and their efficient scheduling on global Grids, this thesis made the 

following key contributions: 

• proposed a taxonomy of workflow management systems for Grid computing. 

• developed a workflow engine which leverages tuple spaces to provide 

event-based execution management. 

• developed deadline and budget distribution strategies based on the workload 

and dependency of tasks. 

• developed algorithms for scheduling workflows with QoS constraints using 

genetic algorithms.  

• leveraged multi-objective evolutionary algorithms (MOEAs) for workflow 

execution planning to generate a set of trade-off alternative scheduling solu-

tions.  



 

 155 
 

• evaluated three benchmark MOEAs based on various QoS constraint levels 

and workflow structures derived from applications including neuroscience and 

astronomy.  

7.2 Conclusion 

This thesis began by introducing a generic Grid workflow system model, and charac-

terizing several aspects of the system including workflow design, information retrieval, 

scheduling, fault tolerance and data movement. Taxonomies for each of these areas 

have been developed to provide a basis for comparison of Grid workflow systems. 

Several representative Grid systems have been selected for comparison according to 

the taxonomies. This study not only enhances the understanding of design and meth-

odologies adopted in current systems, but also provides a reference to identify areas 

that need further research.  

Based on the study of existing Grid workflow systems, a workflow enactment en-

gine has been presented in this thesis. The major distinction of the engine from related 

work is its execution model. It utilizes tuple spaces to provide an event-driven mecha-

nism for workflow execution entities. Each entity can subscribe to the events in which 

it is interested and produces events based on its execution status. The behaviors of the 

entities are also driven by the events occurred. Each entity is also able to represent us-

ers to select resources and negotiate with remote resources for task execution. The 

benefits of this design include the ease of deployment for various strategies of re-

source selection and allocation, and supporting complex control and data 

dependencies of tasks.  

Unlike most existing workflow languages which only target web services, the 

workflow language supported by the engine is independent of any particular middle-

ware. The engine can identify remote application middleware by consulting a service 

configure file or Grid Market Directory (GMD) at run-time. Parameterization and 

multiple data flow models which are required by many scientific experiments have 

also been supported in the engine. The engine has been applied to neuroscience appli-



  156 
 

cations which have workflows similar to those in the areas of astronomy, bioinfor-

matics and geographical information systems are similar [198].  

The engine facilitates users to compose and deploy their workflows in Grid envi-

ronments. However, the performance of workflow execution is determined by 

scheduling algorithms. Therefore, the majority of this thesis has concentrated on 

scheduling workflow applications. Most existing scheduling algorithms such as 

Min-Min and HEFT attempt to optimize execution time without considering other 

factors. In contrast, the scheduling algorithms proposed in this thesis schedule work-

flows according to users’ QoS constraints such as deadline and budget while taking 

into account the service price and capabilities of Grid resources.   

Deadline and budget constrained heuristics have been developed to optimize a 

single factor of execution performance while meeting users’ specified time and cost 

constraints. Deadline and budget distribution strategies have also been proposed to 

distribute an overall deadline and budget over single workflow tasks according to their 

workload and dependencies. The heuristics have been evaluated against greedy algo-

rithms and back-tracking approach in terms of performance and scheduling time. 

Results show the proposed heuristics can achieve 50% improvement. 

The heuristics used the divide-and-conquer technique to divide workflow scheud-

ling problem into single task scheduling problem in order to generate an optimized 

solution in a short computation time. However, the heuristics may not achieve a globle 

optimization solution for all types of workflows. Therefore, genetic algorithms (GAs) 

are also applied in the thesis to solve the QoS constrained scheduling problem. The 

advantage of the genetic algorithms is that it produces an optimized scheduling solu-

tion based on the performance of entire workflow, rather than the partial of the 

workflow as considered by the heuristics based approach. Compared with most exist-

ing GAs, the proposed approach targets heterogeneous and reservation based 

service-oriented environments for constrained optimization problems. Comparisons of 

the GA and the heuristics based on various workflow structures have also been pre-

sented. Results show the heuristics performs well for a simple workflow structure 

such as balanced-structure application, while the GA performs better for handling a 



 

 157 
 

complex workflow structure. Although the GA requires evolving many generations to 

generate a good quality solution, it can be used to refine the solution generated by the 

heuristics as the time as long as the time is available. The experiments results show 

that the GA can significantly improve the solutions returned by the heuristics.  

Finally, the thesis focused on optimizing multiple factors of the workflow execu-

tion. A multi-objective planning approach has been proposed to generate a set of 

widespread alternative solutions if the optimization objectives are conflicted. Provid-

ing these alternative solutions can offer more flexibility to users to estimate their 

preferences and choose a desired workflow schedule based on their QoS requirements.       

Multi-objective Evolutionary Algorithms (MOEAs) have been applied for the 

workflow execution planning problem. Our goal was to simultaneously minimize two 

conflicting objectives - execution time and execution price while meeting users’ 

maximum time constraint (deadline) and price constraint (budget). Corresponding fit-

ness functions, which incorporate minimization objectives and penalty functions for 

the constraints, have been developed. A comparison of two population-based MOEAs, 

NSGAII and SPEA2, and one local search-based MOEAs, PAES has also been con-

ducted. A statistical analysis of the result has been presented to show the quality of 

each algorithm for various workflow structures and constraint levels. The study 

showed that the local search-based approach overperform the population-based ap-

proaches for the unbalanced-structure application, while the population-based 

approaches perform better for the balanced-structure application. A method has also 

been proposed to incorporate single objective optimization heuristics and popula-

tion-based algorithms. Simulation results show that this method can significantly 

improve the performance of population-based algorithms and find a range of com-

promise solutions within a short computational time.  

The planning and scheduling algorithms proposed in this thesis have taken into 

account both costs and capabilities of Grid resources while meeting users’ QoS re-

quirements. The thesis demonstrated the potential for economy-based scheduling of 

workflow applications on Utility Grids, and made significant contributions towards 

advancement of the discipline.  



  158 
 

7.3 Future Directions 

This thesis improves the understanding of workflow management for Grid environ-

ments and contributes a number of deadline and budget constrained scheduling 

algorithms that take into account the costs and capabilities of distributed resources. 

Thus, it has laid a foundation for QoS-based workflow management, and scheduling. 

It has also led to several new future directions.  

7.3.1 Dynamic Negotiation Models  

This thesis has presented the scheduling problems on service-oriented Grid environ-

ments. The proposed scheduling algorithms can produce promising optimized 

scheduling solutions by using SLAs provided by service providers such as service 

price, expected scheduling time and available time slots. However, the options cur-

rently provided may not satisfy the QoS of the entire workflow. Therefore, the 

scheduler is required to be flexible to evaluate other available proposed SLAs and 

negotiate with service providers to establish new SLAs.  

It is important for the scheduler to monitor task execution based on the agreed 

contract including resource capability and service time with service providers. Once 

the contract has been violated, the scheduler needs to adjust the schedule for the re-

maining unexecuted tasks in order to meet the specified scheduling objectives. When 

the execution of one task is affected due to system failure, it produces a cascading ef-

fect on the rest of the workflow and therefore SLAs for successing tasks may have to 

be re-negotiated. The scheduler should be able to find an alternative service and re-

quest a SLA for the task execution with respect to its currently accepted set of SLAs 

and expected return of unscheduled tasks.  

7.3.2 Supporting multiple pricing models  

The pricing model used in this thesis is based on the commodity market model which 

specifies service price according to the amount of usage. However, many other pricing 

models have also been proposed for proposed electronic resource market, including 



 

 159 
 

bargaining model, contract-net model and auction model. The impact of these pricing 

models on workflow applications needs to be studied. 

7.3.3 Supporting multiple scheduling objectives and selection 
functions 

The scheduling algorithms proposed in this thesis focus on time and cost parameters. 

However, other parameters such as security levels and fidelity could also be required 

for many applications. For example, confidential applications must be executed on 

services with high security levels. In addition, the reliability of services needs to be 

considered during the execution planning stage. Services with high reliability may re-

sult in slightly higher cost but reduce the risk of execution failures.    

The workflow planning proposed in this thesis serves as an execution adviser for 

users by recommending a set of alternative solutions when multiple conflicting opti-

mization objectives are provided by users. But instead of multiple solutions, users 

may prefer a single solution based on their desired trade-off factors [146] of these ob-

jectives. This thus requires the development of filtering functions that offers a single 

solution based on users’ preferences. The resulting answer needs to be evaluated by 

comparing against the results produced by non-evolutionary based methods such as 

weightage multi-objectives methods and linear programming.  

7.3.4 Scheduling non-DAG workflows and multiple workflows 

The workflow model of this thesis focuses on deterministic Directed Acyclic Graphs 

(DAGs). The scheduling decision was based on the assumptions that the dependencies 

of workflow tasks are well-defined and the workflow does not contain any loop and 

conditional branch. These assumptions are applied for many scientific applications 

such as image rendering, fMRI data analysis and montage astronomy. However, sup-

porting loop and condition checking are required by many other applications such as 

medical, in which the execution of a partial of the workflow is based on the results 

generated at run-time.  

Scheduling multiple workflows is another interesting future research problem. In 

some cases, multiple workflows are expected to be executed from one organization. 



  160 
 

Considering only one workflow at a time could cause bad consequences from the 

perspective of the overall situation. Enhancing the proposed algorithms to support 

multiple workflows can improve the total performance of enterprise-level resource 

utilization.  

7.3.5 Benchmarking QoS-based workflow scheduling algo-
rithms 

The thesis has developed a number of algorithms for addressing challenges of QoS 

constrained workflow scheduling problems in the context of Grid computing. They 

have been evaluated and compared against some existing works based on balanced- 

and unbalanced structures, and various time and cost constraints. However, as QoS 

based workflow execution becomes increasingly critical for advancing the develop-

ments of Grids, it is necessary to set up a standard set of benchmarks for evaluating 

and comparing QoS-based workflow scheduling algorithms in terms of different 

workflow applications, Grid configurations and QoS parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 161 
 

REFERENCES 
 

[1] W.M.P. van der Aalst, K. M. van Hee, and G. J. Houben. Modelling and Analysing 
Workflow using a Petri-net based approach. Proceedings of the 2nd

 Workshop on Com-

puter-supported Cooperative Workshop, Zaragoza, Spain, June 20-24, 1994. 

[2] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Work-
flow Patterns. Technical Report, Eindhoven University of Technology, 2000. 

[3] W.M.P. van der Aalst, A.H.M ter Hofstede, B. Kiepuszewski, and A. P. Barros. Ad-
vanced Workflow Patterns. Proceedings of the 7

th
 International Conference on 

Cooperative Information Systems (CoopIS 2000), Lecture Notes in Computer Science 
(LNCS) 1901, Springer-Verlag, Heidelberg, Germany, 2000; 18-29. 

[4] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Lan-
guage. Technical Report, Queensland University of Technology, Brisbane, 2002.  

[5] W.M.P. van der Aalst and K.M. van Hee, Workflow Management: models, methods, 

and Systems. MIT Press, Cambridge, Mass., USA, 2002. 

[6] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski and A.P. Barros, Work-
flow Patterns. URL http://tmitwww.tm.tue.nl/research/patterns/ [December 2004]. 

[7] J. H. Abawajy. Fault-Tolerant Scheduling Policy for Grid Computing Systems. Pro-

ceedings of the 18
th
 International Parallel and Distributed Processing Symposium 

(IPDPS’04), Santa Fe, New Mexico, IEEE Computer Society (CS) Press, Los Alamitos, 
CA, USA, April 26-30, 2004; 238-244. 

[8] D. Abramson, J. Giddy, and L. Kotler. High Performance Parametric Modeling with 
Nimrod/G: Killer Application for the Global Grid? Proceedings of the 14th Interna-

tional Parallel and Distributed Processing Symposium (IPDPS 2000), Cancun, Mexico, 
IEEE CS Press, Los Alamitos, CA, USA, May 1-5, 2000. 

[9] D. Abramson, R. Buyya, and J. Giddy. A Computational Economy for Grid Computing 
and its Implementation in the Nimrod-G Resource Broker, Future Generation Com-

puter Systems (FGCS), 18(8): 1061-1074, Elsevier Science, The Netherlands, October 
2002. 

[10] M. Addis, J. Ferris, M. Greenwood, P. Li, D. Marvin, T. Oinn, and A, Wipat. Experi-
ences with e-Science Workflow Specification and Enactment in Bioinformatics, In UK 

e-Science All Hands Meeting 2003, IOP Publishing Ltd, Bristol, UK, 2003; 459-467.  

[11] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder, 
V. Nefedova, D. Quesnal, S. Tuecke. Data Management and Transfer in High 
Performance Computational Grid Environments, Parallel Computing Journal, 
28(5):749-771, May 2002. 

[12] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kielmann, A. 
Merzky, J. Nabrzyski, J. Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Tay-
lor. Enabling Applications on the Grid – A GridLab Overview. International Journal of 

High Performance Computing Applications (JHPCA), Special Issue on Grid Computing: 
Infrastructure and Applications, SAGE Publications Inc., London, UK, August 2003.  



  162 
 

[13] J. Almond and D. Snelling. Unicore: Secure and Uniform Access to Distributed Re-
sources via the World Wide Web. White Paper, October 1998,  
http://www.fz-juelich.de/zam/RD/coop/unicore/whitepaper.ps [December 2004]. 

[14] I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. Miller, C. Amoreira, Y. Potier, 
and B. Ludaescher. A Framework for the Design and Reuse of Grid Workflows, Pro-

ceedings of the International Workshop on Scientific Applications on Grid Computing 

(SAG'04), LNCS 3458, Springer, 2005. 

[15] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, J. Klein, F. Leymann, K. Liu, 
D. Roller, D. Smith, S. Thatte, I. Trickovic, S. Weerawarana. Business Process Execu-
tion Language for Web Services Version 1.1, 05 May 2003,  
http://www-128.ibm.com/developerworks/library/ws-bpel/ [Feb 2005] 

[16] The Apache Ant Project. http://ant.apache.org/ [December 2004]. 

[17] D. A. Bacigalupo, S. A. Jarvis, L. He, and G. R. Nudd. An Investigation into the appli-
cation of different performance techniques to e-Commerce applications. Proceedings of 

the IPDPS 2004 Workshop on Performance Modelling, Evaluation and Optimization of 

Parallel and Distributed Systems,  Santa Fe, New Mexico, IEEE CS Press, Los 
Alamitos, CA, USA, April 26-30, 2004.  

[18] R. Bastos, D. Dubugras, and A. Ruiz. Extending UML Activity Diagram for Workflow 
Modeling in Production Systems. Proceedings of the 35

th Annual Hawaii International 

Conference on System Sciences (HICSS’02), Big Island, Hawaii, IEEE CS Press, Los 
Alamitos, CA, USA, January 07 -10, 2002. 

[19] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. 
Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and R. Wolski. The 
GrADS Project: Software Support for High-Level Grid Application Development. In-

ternational Journal of High Performance Computing Applications (JHPCA), 
15(4):327-344, SAGE Publications Inc., London, UK, Winter 2001. 

[20] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented 
Plane Wave plus Local Orbitals Program for Calculating Crystal Properties, Institute of 
Physical and Theoretical Chemistry, Technical Report, Vienna University of Technol-
ogy 2001. 

[21] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy, Task 
Scheduling Strategies for Workflow-based Applications in Grids, Proceedings of the 5th

 

IEEE International Symposium on Cluster Computing and the Grid (CCGrid’05)，IEEE 

Computer Society, 2005.  

[22] I. Brandic, S. Benkner, G. Engelbrecht, and R. Schmidt, Towards Quality of Service 

Support for Grid Workflows, First European Grid Conference (EGC 2005), Amsterdam, 
The Netherlands, Feb 2005. 

[23] I. Brandic, S. Pllana, S. Benkner. An Approach for the High-level Specification of 
QoS-aware Grid Workflows Considering Location Affinity. Scientific Programming 

Journal, 14(3-4):231 - 250 IOS Press, The Netherlands, December 2006. 

[24] T. D. Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. 
Robertson, M. D. Theys, and B. Yao. A Taxonomy for Describing Matching and 
Scheduling Heuristics for Mixed-Machine Heterogeneous Computing Systems. Pro-



 

 163 
 

ceedings of the 17
th
 Symposium on Reliable Distributed Systems. West Lafayette, IN. 

IEEE CS Press, Los Alamitos, CA, October 1998: 330-335. 

[25] A. O’Brien, S. Newhouse, and J. Darlington, Mapping of Scientific Workflow within 
the e-Protein project to Distributed Resources, UK e-Science All Hands Meeting, Not-
tingham, UK, 2004. 

[26] R. Buyya, D, Abramson, and J. Giddy. Nimrod/G: An Architecture of a Resource 
Management and Scheduling System in a Global Computational Grid, Proceedings of 

the 4th International Conference on High Performance Computing in Asia-Pacific Re-

gion (HPC Asia 2000), May 2000, Beijing, China. IEEE Computer Society Press, USA; 
283-289. 

[27] R. Buyya, D. Abramson, and J. Giddy. A Case for Economy Grid Architecture for Ser-
vice-Oriented Grid Computing. Proceedings of the 10

th
 IEEE International 

Heterogeneous Computing Workshop (HCW 2001), San Francisco, California, USA , 
IEEE CS Press, Los Alamitos, CA, USA, April 2001.  

[28] R. Buyya, Economic-based Distributed Resource Management and Scheduling for Grid 
Computing, Ph.D. Thesis, Monash University, Melbourne, Australia, April 12, 2002.  

[29] R. Buyya and S. Venugopal. The Gridbus Toolkit for Service Oriented Grid and Utility 
Computing: An Overview and Status Report. Proceedings of the 1st

 IEEE International 

Workshop on Grid Economics and Business Models, GECON 2004, Seoul, Korea, IEEE 
CS Press, Los Alamitos, CA, USA, April 23, 2004; 19-36. 

[30] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson and G. R. Nudd. ARMS: An Agent-based 
Resource Management System for Grid Computing. Scientific Programming. Special 
Issue on Grid Computing, 10(2):135-148, IOS Press, Amsterdam, Netherlands, 2002. 

[31] J. Cao, S. A. Jarvis, S. Saini, G. R. Nudd. GridFlow: Workflow Management for Grid 
Computing. Proceedings of the 3rd International Symposium on Cluster Computing and 

the Grid (CCGrid), Tokyo, Japan, IEEE CS Press, Los Alamitos, May 12-15, 2003. 

[32] J. Cardoso. Stochastic Workflow Reduction Algorithm. Technical Report, LSDIS Lab, 
Department of Computer Science University of Georgia, 2002. 

[33] J. Cardoso, and A. Sheth. Semantic E-Workflow Composition. Journal of Intelligent 

Information Systems, 21(3):191-225, Kluwer Academic Publishers, Netherlands, 2003. 

[34] J. Cardoso, J. Miller, A. Sheth and J. Arnold. Modeling Quality of Service for Work-
flows and Web Service Processes. Web Semantics Journal: Science, Services and 

Agents on the World Wide Web, 1(3):281-308, Elsevier Inc, MA, USA, 2004. 

[35] N. Carriero and D. Gelernter, Linda in Context, Communications of the ACM, 
32:444-458, April 1989. 

[36] T. L. Casavant and J. G. Kuhl. A Taxonomy of Scheduling in General-purpose Distrib-
uted Computing Systems, IEEE Transactins on Software Engineering, 14(2):141-154, 
IEEE CS Press, Los Alamitos, Feb. 1988. 

[37] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Lamnitchi, C. Kesselman, 
P. Kunst, M. Ripeanu, B. Schwartzkopf, H. Stockinger, K. Stockinger, and B. Tierney. 
Giggle: A Framework for Constructing Scalable Replica Location Services. Proceed-



  164 
 

ings of the Supercomputing Conference (SC2002), Baltimore, USA: IEEE Computer 
Society, Washington, DC, USA, November 16-22, 2002. 

[38] G. Clemm, J.F. Reschke, E. Sedlar, J. Whitehead. Web Distributed Authoring and Ver-
sioning (WebDAV) Access Control Protocol, the Internet Society, May 2004. 

[39] K. Cooper, A. Dasgupta, Kennedy, C. Koelbel, A. Mandal, G. Marin, M. Mazina, J. 
Mellor-Crummey, F. Berman, H. Casanova, A. Chien, H. Dail, X. Liu, A. Olugbile, O. 
Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel, D. Reed, W. Deng, C. Mendes, Z. Shi, A. 
YarKhan, J. Dongarra. New Grid Scheduling and Rescheduling Methods in the GrADS 
Project. Proceedings of the NSF Next Generation Software Workshop, International 
Parallel and Distributed Processing Symposium, Santa Fe, IEEE CS Press, Los Alami-
tos, CA, USA, April 2004. 

[40] D. Crichton, J. S. Hughes and S. Kelly. A Science Data System Architecture for Infor-
mation Retrieval. In Clustering and Information Retrieval, Kluwer Academic 
Publishers, December 2003. 

[41] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services 
for Distributed Resource Sharing. Proceedings of the 10th IEEE International Sympo-

sium on High Performance Distributed Computing, San Francisco, USA: IEEE CS 
Press, Los Alamitos, CA, USA, 7-9 August 2001.  

[42] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms. Wiley and Sons, 
2001. 

[43] T. Eilam, K. Appleby, J. Breh, G. Breiter, H. Daur, S. A. Fakhouri, G. D. H. Hunt, T. 
Lu, S. D. Miller, L. B. Mummert, J. A. Pershing, and H. Wagner, Using a utility com-
puting framework to develop utility systems, IBM System Journal, 43:97-120, 2004. 

[44] D. Hollinsworth. The Workflow Reference Model, Workflow Management Coalition, 
TC00-1003, 1994. 

[45] DAGMan Application. http://www.cs.wisc.edu/condor/manual/v6.4/ 
2_11DAGmanApplicaitons.html [December 2004] 

[46] H. J. Dail. A Modular Framework for Adaptive Scheduling in Grid Application Devel-
opment Environments. Master’s Thesis, UCSD Technical Report CS2002-0698, 
University of California at San Diego, March 2002.  

[47] H. Dail, H. Casanova, and F. Berman. A Decoupled Scheduling Approach for the 
GrADS Program Development Environment. Journal of Parallel Distributed Comput-

ing, 63(5):505-524, Elsevier Inc., MA, USA, 2003. 

[48] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast Elitist Multi-Objective Ge-
netic Algorithm: NSGA-II, Parallel Problems Solving from Nature VI, pp. 849-858, 
2000. 

[49] E. Deelman, C. Kesselman, and G. Mehta. Transformation Catalog Design for GriPhyN. 
Technical Report GriPhN-2001-17, 2001. 

[50] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman. Workflow Management in GriPhyN. 
The Grid Resource Management, Kluwer, The Netherlands, 2003.  



 

 165 
 

[51] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi. Mapping Abstract 
Complex Workflows onto Grid Environments. Journal of Grid Computing, 1:25-39, 
Kluwer Academic Publishers, Netherlands, 2003.  

[52] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. H. Su, K. Vahi, M. 
Livny. Pegasus: Mapping Scientific Workflow onto the Grid. Proceedings of the Across 

Grids Conference 2004, Nicosia, Cyprus, 2004. 

[53] P. A. Dinda. Online Prediction of the Running Time of Tasks. Cluster Computing, 
5(3):225-236, Kluwer Academic Publishers, Netherlands, 2002. 

[54] dom4j. http://www.dom4j.org [December 2004] 

[55] R. Duan, R. Prodan, and T. Fahringer. Run-time Optimization for Grid Workflow Ap-
plications, Proceedings of the 7th 

IEEE/ACM International Conference on Grid 

Computing Barcelona, Spain, 2006. 

[56] M. Dumas and A. H.M. ter Hofstede. UML Activity Diagrams as a Workflow Specifi-
cation Language. In UML’2001 Conference, Toronto, Ontario, Canada, Lecture Notes 
in Computer Science (LNCS), Springer-Verlag, Heidelberg, Germany, October 1-5, 
2001. 

[57] R. Eshuis and R. Wieringa. Comparing Petri Net and Activity Diagram Variants for 
Workflow Modelling – A Quest for Reactive Petri Nets. Advances in Petri Nets: Petri 

Net Technology for Communication Based Systems; Lecture Notes in Computer Science 
(LNCS), 2472:321-351, Springer- Verlag, Heidelberg, Germany, 2003. 

[58] T. Fahringer, J. Qin and S. Hainzer. Specification of Grid Workflow Applications with 
AGWL: An Abstract Grid Workflow Language, Proceedings of IEEE International 

Symposium on Cluster Computing and the Grid 2005 (CCGrid 2005), Cardiff, UK, May 
9-12, 2005.  

[59] T. Fahringer, S. Pllana, and J. Testori. Teuta: Tool Support for Performance Modeling 
of Distributed and Parallel Applications, Proceedings of the International Conference 

on Computational Science, Tools for Program Development and Analysis in Computa-

tional Science, Krakow, Poland, Springer-Verlag, Heidelberg, Germany, June 2004.  

[60] T. Fahringer, R. Prodan, R.Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig, J. Qin, 
M. Siddiqui, H.-L. Truong, A. Villazon, M. Wieczorek. ASKALON: A Development 
and Grid Computing Environment for Scientific Workflows. Workflows for eScience, 

Scientific Workflows for Grids, I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields 
(ed.), Springer Verlag, ISBN: 978-1-84628-519-6, 2007.     

[61] T. A. Feo and M. G. C. Resende, Greedy Randomized Adaptive Search Procedures, 
Journal of Global Optimization, 6:109-133, 1995. 

[62] D. Fernández-Baca. Allocating Modules to Processors in a Distributed System. IEEE 

Transactions on Software Engineering, 15(11): 1427-1436, November 1989. 

[63] P. J. Fleming and R. C. Purshouse, Evolutiojnary Algorithms in Control Systems Engi-
neering: a Survey, Control Engineering Practice, 2002. 

[64] I. Foster and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, Interna-

tional Journal of Supercomputer Applications, 11:115-128, 1997.  

[65] I. Foster and C. Kesselman (editors). The Grid: Blueprint for a Future Computing In-



  166 
 

frastructure, Morgan Kaufmann Publishers, USA, 1999. 

[66] I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations. International Journal of Supercomputing Applications, 15 (3), 2001. 

[67] I. Foster, J. Vöckler, M. Wilde, Y. Zhao. Chimera: A Virtural Data System for Repre-
senting, Querying, and Automating Data Derivation. Proceedings of the 14

th
 

International Conference on Scientific and Statistical Database Management (SSDBM), 
Edinburgh, Scotland, UK: IEEE CS Press, Los Alamitos, CA, USA, July 24-26, 2002.  

[68] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.  The Physiology of the Grid, 
Technical Report, Globus Project, http://www.globus.org/research/papers/ 
ogsa.pdf [December 2004] 

[69] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems, In IFIP 

Internatiaonl Conference on Network and Parallel Computing, 2006. 

[70] D. Gelernter. Generative Communication in Linda, ACM Computing Surveys, 
7(1):80-112, 1985. 

[71] A. Galstyan, K. Czajkowski, and K. Lerman. Resource Allocation in the Grid Using 
Reinforcement Learning,  Proceedings of the 3

rd
 International Joint Conference on 

Autonomous Agents and Multiagent Systems (AAMAS’03), New York City, New York, 
USA, IEEE CS Press, Los Alamitos, CA, USA, July 19-23, 2004.  

[72] A. Geppert, M. Kradolfer, and D. Tombros. Market-based Workflow Management. In-

ternational Journal of Cooperative Information Systems, World Scientific Publishing 
Co., NJ, USA, 1998. 

[73] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Ad-
dison-Wesley, 1989. 

[74] Grid Resource Allocation Agreement Protocol. 
https://forge.gridforum.org/projects/graap-wg [December 2004]. 

[75] GriPhyN. http://www.griphyn.org [December 2004]. 

[76] Z. Guan, F. Hernandez, P. Bangalore, J. Gray, A. Skjellum, V. Velusamy, Y. Liu. 
Grid-Flow: A Grid-Enabled Scientific Workflow System with a Petri Net-based Inter-
face. Technical Report, http://www.cis.uab.edu/gray/Pubs/grid-flow.pdf [December 
2004]. 

[77] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of 
Job-Scheduling Strategies for Grid Computing. Proceedings of the 1

st
 IEEE/ACM In-

ternational Workshop on Grid Computing (Grid 2000), Berlin, Lecture Notes in 
Computer Science (LNCS), Springer-Verlag, Heidelberg, Germany, 2000; 191-202. 

[78] F. Hernández, P. Bangalore, J. Gray, and K. Reilly. A Graphical Modeling Environment 
for the Generation of Workflows for the Globus Toolkit. Proceedings of the Workshop 

on Component Models and Systems for Grid Applications, 18th Annual ACM Interna-
tional Conference on Supercomputing (ICS 2004), Saint-Malo, France, ACM Press, 
New York, NY, USA, June 2004. 

[79] T. Hierl, G. Wollny, G. Berti, J. Fingberg, J. G. Schmidt, T. Schulz. Grid-enabled medi-
cal simulation services (GEMSS) in oral & maxillofacial surgery. In Jahrestagung der 

Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC 2004), 



 

 167 
 

Munich, Germany, 2004.  

[80] A. Hoheisel. User Tools and Languages for Graph-based Grid Workflows. Proceedings 

of the Grid Workflow Workshop, GGF10, Berlin, Germany, March 9, 2004. 

[81] J. van Horn. Online Availability of fMRI Results Images, Journal of Cognitive Neuro-
science, 15(6):769-770, 2003.  

[82] S. Hwang and C. Kesselman. Grid Workflow: A Flexible Failure Handling Framework 
for the Grid. Proceedings of the 12

th
 IEEE International Symposium on High Perform-

ance Distributed Computing (HPDC’03), Seattle, Washington, USA, IEEE CS Press, 
Los Alamitos, CA, USA, June 22 - 24, 2003. 

[83] I. Horrocks. DAML+OIL: A Reason-able Web Ontology Language. Proceedings of the 
International Conference on Extending Database Technology (EDBT 2002), Lecture 
Notes in Computer Science (LNCS), 1091:11-28,  Springer-Verlag, Heidelberg, Ger-
many, March 24-28, 2002; 2-13. 

[84] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger, 
Data Management in an International Data Grid Project, Proceedings of the First 

IEEE/ACM International Workshopon Grid Computing, (Springer Verlag Press, 
Germany), India, 2000. 

[85] E. S. H. Hou, N. Ansari, and H. Ren. A Genetic Algorithm for Multiprocessor Schedul-
ing, IEEE Transactions on Parallel and Distributed Systems, 5:113-120, 1994. 

[86] S. Jang, X. Wu, V. Taylor, G. Mehta, K. Vahi, E. Deelman. Using Performance Predic-
tion to Allocate Grid Resources. Technical Report 2004-25, GriPhyN Project, USA. 

[87] JDOM. http://www.jdom.org [December 2004] 

[88] JXTA v2.0 Protocols Specification, Sun Microsystems Inc, June 22, 2001. 

[89] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton, G. Gombás. 
P-GRADE: a Grid Programming Environment. Journal of Grid Computing, 
1(2):171-197, Kluwer Academic Publisher, Netherlands, 2003. 

[90] B. Kao and H. Garcia-Molina. Deadline Assignment in a Distributed Soft Real-Time 
System. IEEE Transactions on Parallel and Distributed Systems, 8(12):1268-1274, 
IEEE CS Press, Los Alamitos, CA, USA 1997. 

[91] J. D. Knowles and D. W. Corne. The Pareto Archive Evolution Strategy: A New Base-
line Algorithm for Multi-Objective Optimization, Proceedings of the Congress on 

Evolutionary Computation, Washington, D.C. USA, 6-9 July 1999. 

[92] K. Krauter, R. Buyya, and M. Maheswaran. A Taxonomy and Survey of Grid Resource 
Management Systems for Distributed Computing. Software: Practice and Experience, 
32(2):135-164, John Wiley & Sons, Inc, NJ, USA, February 2002. 

[93] S. Krishnan, P. Wagstrom, and G. v. Laszewski. GSFL: A Workflow Framework for 
Grid Services, Argonne National Laboratory, Technical Report Preprint 
ANL/MCS-P980-0802, Aug 2002. 

[94] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Commodity Grid Kit, Con-

currency and Computation: Practice and Experience, 13(8-9): 643-662, John Wiley & 
Sons, Ltd, Chichester, UK, 2001. 



  168 
 

[95] G. von Laszewski, K. Amin, M. Hategan, N. J. Zaluzec, S. Hampton, and A. Rossi. 
GridAnt: A Client-Controllable Grid Workflow System. Proceedings of the 37th An-

nual Hawaii International Conference on System Sciences (HICSS'04), Big Island, 
Hawaii: IEEE CS Press, Los Alamitos, CA, USA, January 5-8, 2004. 

[96] G. von Laszewski. Java CoG Kit Workflow Concepts for Scientific Experiments. Tech-
nical Report, Argonne National Laboratory, Argonne, IL, USA, 2005. 

[97] G. von Laszewski, M. Hategan. Java CoG Kit Karajan/GridAnt Workflow Guide. 
Technical Report, Argonne National Laboratory, Argonne, IL, USA, 2005.  

[98] A. Lerina, C. Aniello, G. Pierpaolo, and V. M. Luisa. FlowManager: A Workflow 
Management System Based on Petri Nets. Proceedings of the 26

th
 Annual International 

Computer Software and Applications Conference, Oxford, England, IEEE CS Press, 
Los Alamitos, CA, USA, August 2002;1054-1059. 

[99] F. Leymann. Web Services Flow Language (WSFL 1.0), May 2001,  
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf [December 
2004] 

[100] D. C. Li and N. Ishii. Scheduling Task Graphs onto Heterogeneous Multiprocessors. 
Proceedings of the IEEE Region 10’s Ninth Annual International Conference, Theme: 
Frontiers of Computer Technology, IEEE CS Press, Los Alamitos, CA, USA, 1994. 

[101] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations. Pro-

ceedings of the 8th
 International Conference of Distributed Computing Systems (ICDCS), 

IEEE CS Press, Los Alamitos, CA, USA, June 1988; 104-111. 

[102] X. Liu, J. Liu, J. Eker, and E. A. Lee. Heterogeneous Modeling and Design of Control 
Systems, Software-Enabled Control: Information Technology for Dynamical Systems, 
Tariq Samad and Gary Balas ( eds. ), Wiley-IEEE Press, April 2003.  

[103] R. Lovas, G. Dózsa, P. Kacsuk, N. Podhorszki, D. Drótos. Workflow Support for Com-
plex Grid Applications: Integrated and Portal Solutions. Proceedings of the 2

nd
 

European Across Grids Conference, Nicosia, Cyprus, 2004. 

[104] B. Ludäscher, I. Altintas, and A. Gupta. Compiling Abstract Scientific Workflows into 
Web Service Workflows. Proceedings of the 15

th
 International Conference on Scientific 

and Statistical Database Management, Cambridge, Massachusetts, USA., IEEE CS 
Press, Los Alamitos, CA, USA., July 09-11, 2003;241-244. 

[105] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, 
and Y. Zhao. Scientific Workflow Management and the KEPLER System. Concurrency 

and Computation: Practice & Experience, Special Issue on Scientific Workflows, to 
appear, 2005. 

[106] H. Ludwig, A. Keller, A. Dan, R. P. King, R. Franck. Web Service Level Agreement 
(WSLA) Language Specification, IBM Corporation, January 2003.  

[107] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal. Peer-to-Peer Grid Computing and 
a .NET-based Alchemi Framework, High Performance Computing: Paradigm and In-

frastructure, Laurence Yang and Minyi Guo (editors), ISBN: 0-471-65471-X, Wiley 
Press, New Jersey, USA, June 2005. 



 

 169 
 

[108] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund. Dynamic Matching 
and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing Sys-
tems. Proceedings of the 8

th
 Heterogeneous Computing Workshop (HCW’99), Juan, 

Puerto Rico, IEEE Computer Society, Los Alamitos, April 12, 1999. 

[109] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, B. Liu, L. Johnsson, and J. Mel-
lor-Crummey, Scheduling Strategies for Mapping Application Workflows onto the Grid, 
In IEEE International Symposium on High Performance Distributed Computing (HPDC 
2005), Research Triangle Park, NC, USA, 2005.  

[110] A. Mani and A. Nagarajan. Understanding Quality of Service for Web Services. 
http://www-106.ibm.com/developerworks/library/ws-quality.html [December 2004] 

[111] D. C. Marinescu. A Grid Workflow Management Architecture. GGF White Paper, 
2002. 

[112] G. Mateescu. Quality of Service on the Grid via Metascheduling with Resource 
Co-scheduling and Co-reservation. International Journal of High Performance Com-

puting Applications, 17(3):209-218, SAGE Publications Inc, London, UK, August 
2003.  

[113] J. Mattson and M. Simon. The Pioneers of NMR and Magnetic Resonance in Medicine: 

The Story of MRI. Jericho & New York: Bar-Ilan University Press, 1996. 

[114] A. Mayer, S. McGough, N. Furmento, W. Lee, S. Newhouse, and J. Darlington. ICENI 
Dataflow and Workflow: Composition and Scheduling in Space and Time. Proceedings 

of the UK e-Science All Hands Meeting, Nottingham, UK, IOP Publishing Ltd, Bristol, 
UK, September 2003; 627-634. 

[115] A. Mayer, S. McGough, N. Furmento, W. Lee, M. Gulamali, S. Newhouse, and J. Dar-
lington. Workflow Expression: Comparison of Spatial and Temporal Approaches. 
Proceedings of the Workflow in Grid Systems Workshop, GGF-10, Berlin, March 9, 
2004. 

[116] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Workflow Enact-
ment in ICENI. Proceedings of the UK e-Science All Hands Meeting, Nottingham, UK, 
IOP Publishing Ltd, Bristol, UK, Sep. 2004; 894-900. 

[117] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Performance Archi-
tecture within ICENI. Proceedings of the UK e-Science All Hands Meeting, Nottingham, 
UK, IOP Publishing Ltd, Bristol, UK, Sep. 2004; 906-911. 

[118] D. A. Menasce and E. Casalicchio, A framework for resource allocation in grid com-
puting, Proceedings of the IEEE Computer Society's 12

th
 Annual International 

Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunica-

tions Systems (MASCOTS 2004), Volendam, Netherlands,October 5-7, 2004. 

[119] Message Passing Interface Forum, http://www.mpi-forum.org/ [Feb 2005] 

[120] R. A. Moreno. Job Scheduling and Resource Management Techniques in Dynamic Grid 
Environment. Proceedings of the 1st

 European Across Grids Conference, Spain, Lecture 
Notes in Computer Science (LNCS), Springer-Verlag, Heidelberg, Germany, February 
2003. 



  170 
 

[121] T. Murata, Temporal Uncertainty and Fuzzy-Timing High-Level Petri Nets. In Applica-

tion and Theory of Petri Nets, Lecture Notes in Computer Science (LNCS), 1091:11-28,  
Springer-Verlag, Heidelberg, Germany, 1996. 

[122] R. Nakano and T. Yamada, Conventional Genetic Algorithm for Job Shop Problems, 
Proceedings of the 4th

 International Conference on Genetic Algorithms, San Diego, CA, 
USA, 1991; 474-479. 

[123] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S.C. Perry, J.S. Harper, and D. V. Wil-
cox. PACE-A Toolset for the performance Prediction of Parallel and Distributed 
Systems. International Journal of High Performance Computing Applications (JHPCA), 
Special Issues on Performance Modelling- Part I, 14(3): 228-251, SAGE Publications 
Inc., London, UK, 2000. 

[124] Object Management Group. Unified Modeling Language (UML), http://www.uml.org/ 
[Feb 2005] 

[125] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver and 
K. Glover, M.R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and 
enactment of bioinformatics workflows. Bioinformatics, 20(17):3045-3054, Oxford 
University Press, London, UK, 2004. 

[126] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover, C. Goble, A. 
Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens, A. 
Wipat, and C. Wroe, Taverna: Lessons in creating a workflow environment for the life 
sciences, Concurrency and Computation Practice and Experience, 2005. 

[127] OMG. Unified Modeling Language Version 1.3., July 1999. 

[128] C. Patel, K. Supekar, and Y. Lee. A QoS Oriented Framework for Adaptive Manage-
ment of Web Service based Workflows. Lecture Notes in Computer Science, 
2736:826-835, Springer-Verlag, Heidelberg, Germany, 2003. 

[129] C. A. Petri. Kommunikation mit Automaten. PhD Thesis, Institut für instrumentelle 
Mathematik, Bonn, 1962. 

[130] S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler. PISA A Platform and Programming 
Language Independent Interface for Search Algorithms, Proceedings of the Conference 

on Evolutionary Multi-Criterion Optimization (EMO 2003), Faro, Protugal, 2003. 

[131] S. Pllana, T. Fahringer, J. Testori, S. Benkner, and I. Brandic, Towards an UML Based 
Graphical Representation of Grid Workflow Applications. In Proceedings of the 2

nd
 

European AcrossGrids Conference (AxGrids 2004), Nicosia, Cyprus, LNCS, 
Springer-Verlag, Heidelberg, Germany, January 28-30, 2004. 

[132] R. Prodan and T. Fahringer. Dynamic Scheduling of Scientific Workflow Applications 
on the Grid: A Case Study. Proceedings of the 20

th
 Annual ACM Symposium on Applied 

Computing (SAC 2005), New Mexico USA, ACM Press, New York, NY, USA, March 
2005. 

[133] R. Prodan and T. Fahringer. Grid Computing: Experiment Management, Tool Integra-

tion, and Scientific Workflows. Lecture Notes in Computer Science 4340, Springer- 
Verlag, 2007. 

[134] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi, K. Black-



 

 171 
 

burn, D. Meyers, and M. Samidi. Scheduling Data-intensive Workflows onto Stor-
age-Constrained Distributed Resources, Proceedings of the 7

th IEEE International 

Symposium on Cluster Computing and the Grid (CCGrid 2007), Rio de Janeiro, Brazil, 
2007. 

[135] R. L. Ribler, H. Simitci, and D. A. Reed. The Autopilot Performance-directed Adaptive 
Control System. Future Generation Computer Systems, 18(1): 175-187, Elsevier Inc, 
MA, USA, 2001. 

[136] M. Romberg, The UNICORE Architecture Seamless Access to Distributed Resources, 
Proceedings of the 8th

 IEEE International Symposium on High Performance Computing, 
Redondo Beach, CA, USA, 1999, pp. 287-293. 

[137] H. G. Rotithor, Taxonomy of Dynamic Task Scheduling Schemes in Distributed Com-
puting Systems, Proceedings of the IEEE Proceedings of Computers and Digital 

Techniques, 141(1):1-10, London, UK, January 1994.  

[138] A. Roy and S. K. Das, Optimizing QoS-based Multicast Routing in Wireless Networks: 
a Multi-Objective Genetic Algorithms Approach, Proceedings of the Second IFIP-TC6 

Networking Conference (Networking 2002), Pisa, Italy, 2002. 

[139] S. Fitzgerald, I. Foster, C. Kesselman, G. Von Laszewski, W. Smith and S. Tuecke. A 
Directory Service for Configuring High-Performance Distributed Computations. Pro-

ceedings of the 6
th
 IEEE Symposium on High-Performance Distributed Computing, 

Portland, OR, IEEE CS Press, Los Alamitos, August 1997; 365-375. 

[140] R. Sakellariou and H. Zhao. A Low-Cost Rescheduling Policy for Efficient Mapping of 
Workflows on Grid Systems. Scientific Programming, 12(4):253-262, IOS Press, Neth-
erlands, December 2004.  

[141] R. Sakellariou, H. Zhao, E. Tsiakkouri amd M. D. Dikaiakos. Scheduling Workflows 
with Budget Constraints. In S.Gorlatch, M.Danelutto (Eds.), Integrated Research in 

Grid Computing, CoreGrid series, Springer-Verlag 

[142] M. Senger, P. Rice, and T. Oinn. Soaplab-a Unified Sesame Door to Analysis Tools. 
Proceedings of the UK e-Science All Hands Meeting, September 2003; 509-513. 

[143] M. Siddiqui, A. Villazon, and T. Fahringer, Grid allocation and reservation - Grid ca-
pacity planning with negotiation-based advance reservation for optimized QoS. 
Proceedings of the ACM/IEEE SC2006 Conference on High Performance Networking 

and Computing, Tampa, FL, USA, 2006. 

[144] G. Singh, C. Kesselman, and E. Deelman. Optimizing Grid-Based Workflow Execution, 
Journal of Grid Computing, 3:201-219, December 2005. 

[145] G. Sinh, C. Kesselman, and E. Deelman. Application-Level Resource Provisioning on 
the Grid, Proceedings of the 2

nd
 IEEE International Conference on e-Science and Grid 

Computing, IEEE Computer Society, 2006. 

[146] G. Sinh, C. Kesselman, and E. Deelman. A Provisioning Model and its Comparison 
with Best-effort for Performance-cost Optimization in Grids, Proceeding of the 16

th
 In-

ternational Symposium on High Performance Distributed Computing, June 2007, 
Monterey, California, USA.  

[147] A. Slominski, D. Gannon, and G. Fox. Introduction to Workflows and Use of Work-



  172 
 

flows in Grids and Grid Portals. GGF 9, Chicago, USA, 7 Oct, 2004. 

[148] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times Using Historical 
Information. Proceedings of the IPPS/SPDP '98 Workshop on Job Scheduling Strate-

gies for Parallel Processing, IEEE CS Press, Los Alamitos, CA, USA, 1998. 

[149] S. Smith, P. Bannister, C. Beckmann, M. Brady, S. Clare, D. Flitney, P. Hansen, 
M. Jenkinson, D. Leibovici, B. Ripley, M Woolrich, and Y. Zhang. FSL: New tools for 
functional and structural brain image analysis. Proceedings of the 7

th International 

Conference on Functional Mapping of the Human Brain, June 10-14, 2001, Brighton, 
UK. 

[150] S. S. Song and K. Hwang. Security Binding for Trusted Job Outsourcing in Open 
Computational Grids. IEEE Transactions on Parallel and Distributed Systems (TPDS), 
submitted May 2004, revised Dec. 2004. 

[151] S. S. Song, Y. K. Kwok, and K. Hwang. Trusted Job Scheduling in Open computational 
Grids: Security-Driven heuristics and A Fast Genetic Algorithm. Proceedings of the 19

th
 

IEEE International Parallel & Distributed Processing Symposium (IPDPS-2005), 
Denver, CO, USA., IEEE Computer Society Press, Los Alamitos, CA, USA., April 4-8, 
2005. 

[152] D.P. Spooner, J. Cao, J. D. Turner, H. N. Lin Chio Keung, S. A. Jarvis, and G.R. Nudd. 
Localized Workload Management Using Performance Prediction and QoS Contracts. 
Proceedings of the 18

th
 Annual UK Performance Engineering Workshop, Glasgow, UK, 

2002; 69-80.   

[153] D.P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd.  Performance-aware Work-
flow Management for Grid Computing.  The Computer Journal, Oxford University 
Press, London, UK, 2004. 

[154] R. D. Stevens, A. J. Robinson, and C. A. Goble. myGrid:Personalized Bioinformatics on 
the Information Grid. Bioinformatics, 19(Suppl. 1):i302-i304, Oxford University Press, 
London, UK, 2003. 

[155] A. Sulistio and R. Buyya. A Grid Simulation Infrastructure Supporting Advance Reser-
vation, Proceedings of the 16

th
 International Conference on Parallel and Distributed 

Computing and Systems (PDCS 2004), MIT Cambridge, Boston, USA, ACTA Press, 
CA, USA, November 9-11, 2004. 

[156] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and D. Anderson, 
A new major SETI project based on Project Serendip data and 100,000 personal 
computers, Proceedings of the Fifth International Conference on Bioastronomy, 
Bologna, Italy, 1997. 

[157] Sun Grid Engine. http://www.sun.com/gridware . 

[158] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor - A Distributed Job 
Scheduler. Beowulf Cluster Computing with Linux, The MIT Press, MA, USA, 2002.  

[159] Taverna User Manual. http://taverna.sourceforge.net/manual/docs.word.html [Decem-
ber 2004]. 

[160] I. Taylor, R. Philp, M.Shields and O.Rana, and B. Schutz. The Consumer Grid. Global 

Grid Forum (2002). Toronto, Ontario, Canada, February 17-20, 2002. 



 

 173 
 

[161] I. Taylor, M. Shields, and I. Wang. Resource Management of Triana P2P Services. Grid 

Resource Management, Kluwer, Netherlands, June 2003. 

[162] I. Tayler, E. Deelman, D. Gannon, M. Shields (Editors). Workflows for E-science: Sci-

entific Workflows for Grids, Springer-Verlag London Ltd, London, UK, Dec 2006.  

[163] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. Grid Computing: Mak-

ing the Global Infrastructure a Reality, John Wiley & Sons, NJ, USA, 2003.  

[164] S. Thatte. XLANG-Web Services for Business Process Design, Technical Report, Mi-
crosoft Corporation, 2001. 

[165] P. Thompson, M. S. Mega, and A. W. Toga, Sub-Population Brain Atlases, Brain Map-

ping: The Methods (2nd Edition), A. W. Toga and J. C. Mazziotta, Eds., 2002.  

[166] G. Thickins, Utlity Computing: The Next New IT Model, Darwin Magazine, 2003. 

[167] H. Topcuouglu, S. Hariri, and M. Wu, Performance-Effective and Low-Complexity 
Task Scheduling for Heterogeneous Computing, IEEE Transaction on Parallel Distrib-

uted System, 13:260-274, 2002. 

[168] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. 
Sandholm, P. Vanderbilt, and D. Snelling. Open Grid Services Infrastructure (OGSI) 
Version 1.0. Global Grid Forum Draft Recommendation, June 27, 2003. 

[169] UDDI Technical White Paper, September 2000, http://www.uddi.org [December 2004]. 

[170] J. D. Ullman, NP-complete Scheduling Problems, Journal of Computer and System 

Sciences, 10:384-393, 1975. 

[171] J. Almond, D. Snelling, UNICORE: Uniform Access to Supercomputing as an Element 
of Electronic Commerce. Future Generation Computer Systems, 613:1-10, 1999. 

[172] S. Vadhiyar and J. Dongarra. A Performance Oriented Migration Framework for the 
Grid. Proceedings of the 3

rd IEEE Computing Clusters and the Grid (CCGrid 2003), 
Tokyo, Japan, IEEE CS Press, Los Alamitos, May 12-15, 2003.  

[173] S. Venugopal, R. Buyya, and L. Winton. A Grid Service Broker for Scheduling 
e-Science Applications on Global Data Grids, Concurrency and Computation: Practice 

and Experience, Volume 18, Issue 6, Pages: 685-699, Wiley Press, New York, USA, 
May 2006. 

[174] S. Venugopal, K. Nadiminti, H. Gibbins, and R. Buyya, Designing a Resource Broker 
for Heterogeneous Grids, Software: Practice and Experience, Wiley Press, New York, 
USA, 2007 (in press, accepted on July 12, 2007).. 

[175] H.M.W. Verbeek, A. Hirnschall, and  W.M.P. van der Aalst. XRL/Flower: Supporting 
Inter-Organizational Workflows Using XML/Petri-nets Technology. Proceedings of the 
CAISE 2002 Workshop on Web Services, e-Business, and the Semantic Web (WES): 

Foundations, Models, Architecture, Engineering and Applications, Toronto, Ontario, 
Canada, Lecture Notes in Computer Science (LNCS), Springer-Verlag, Heidelberg, 
Germany, May 27-28, 2002; 535-552. 

[176] W3C. Extensible Markup Language (XML) 1.0 (Third Edition), 
http://www.w3.org/TR/REC-xml/ [Feb 2005] 

[177] W3C. Web Services, 2002, http://www.w3.org/2002/ws/  [Feb 2005] 



  174 
 

[178] W3C. XML Schema, http://www.w3.org/XML/Schema [Feb 2005] 

[179] W3C. XML Pipeline Definition Language Version 1.0, http://www.w3.org/TR/2002/ 
NOTE-xml-pipeline-20020228/ [Feb 2005] 

[180] L. Wang, H. J. Siegel, V. R. Roychowdhury, A. A. Maciejewski, Task matching and 
scheduling in heterogeneous computing environments using a genetic-algorithm-based 
approach, Journal of Parallel Distributed Computing, 47: 8-22, 1997. 

[181] M. Wieczorek, R. Prodan, and T. Fahringer, Scheduling of Scientific Workflows in the 
ASKALON Grid Environmnet, ACM SIGMOD Record, 34:56-62, 2005.  

[182] R. P. Woods, S. R. Cherry, J. C. Mazziotta. Rapid automated algorithm for aligning and 
reslicing PET images. Journal of Computer Assisted Tomography, 16:620-633, 1992. 

[183] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A Distributed 
Resource Performance Forecasting Service for Metacomputing. Future Generation 

Computer Systems, 15(5-6):757-768, 1999. 

[184] Workflow Management Coalition. http://www.wfmc.org/ [December 2004] 

[185] World Wide Web Consortium. Web Services Description Language (WSDL) Version 
1.2, http://www.w3.org/TR/wsdl12 [December 2004] 

[186] C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A Suite of DAML+OIL 
Ontologies to Describe Bioinformatics Web Services and Data. International Journal of 

Cooperative Information Systems, 12(2):197-224, World Scientific Publishing Co., NJ, 
USA, 2003. 

[187] X. F. Wu, V. Taylor, and R. Stevens. Design and Implementation of Prophesy Auto-
matic Instrumentation and Data Entry System. Proceedings of the 13

th
 IASTED 

International Conference on Parallel and Distributed Computing and Systems 

(PDCS2001), Philadelphia, PA, USA, August 2001. 

[188] P. Wyckoff. TSpaces, IBM Systems Journal, 37, 1998.  

[189] R. Yahyapour, P. Wieder, A. Pugliese, D. Talia, and J. Hahm. Grid Scheduling Use 
Cases. White Paper, Global Grid Forum, 19 July, 2004.  

[190] T. Yamada and R. Nakano, Genetic Algorithms for Job-Shop Scheduling Problems, 
Modern Heuristic for Decision Support, London, UK, 1997. 

[191] L. Young, S. McGough, S. Newhouse, and J. Darlington. Scheduling Architecture and 
Algorithms within the ICENI Grid Middleware. Proceedings of the UK e-Science All 

Hands Meeting, IOP Publishing Ltd, Bristol, UK, Nottingham, UK, Sep. 2003; 5-12. 

[192] J. Yu and R. Buyya. A Novel Architecture for Realizing Grid Workflow using Tuple 
Spaces. Proceedings of the 5th

 IEEE/ACM International Workshop on Grid Computing 

(Grid 2004), Pittsburgh, USA, IEEE CS Press, Los Alamitos, CA, USA, Nov. 8, 2004. 

[193] J. Yu, S. Venugopal, and R. Buyya. A Market-Oriented Grid Directory Service for Pub-
lication and Discovery of Grid Service Providers and their Services, The Journal of 

Supercomputing, 36(1):17-31, ISSN: 0920-8542, Springer Science+Business Media, 
Berlin, Germany, April 2006. 

[194] J. Yu, R. Buyya, and C. K. Tham. QoS-based Scheduling of Workflow Applications on 
Service Grids. Proceedings of the 1

st
 IEEE International Conference on e-Science and 



 

 175 
 

Grid Computing (e-Science 2005, IEEE CS Press, Los Alamitos, CA, USA), Dec. 5-8, 
2005, Melbourne, Australia. 

[195] H. Zhao and R. Sakellariou. Scheduling Multiple DAGs onto Heterogeneous Systems, 
Proceedings of the 15

th
 Heterogeneous Computing Workshop (HCW 2006), Rhodes Is-

land, Greece, 2006. 

[196] S. Y. Zhao and V. Lo. Result Verification and Trust-based Scheduling in Open 
Peer-to-Peer Cycle Sharing Systems. Technical Report, University of Oregon, USA, 
2005.  

[197] Y. Zhao, M. Wilde, I. Foster, J. Voeckler, T. Jordan, E. Quigg, and J. Dobson. Grid 
Middleware Services for Virtual Data Discovery, Composition, and Integration, Pro-

ceedings of the 2
nd

 Workshop on Middleware for Grid Computing, Toronto, Ontario, 
Canada, 2004. 

[198] Y. Zhao, J. Dobson, I. Foster, L. Moreau, and M. Wilde, A Notation and System for 
Expressing and Executing Cleanly Typed Workflows on Messy Scientific Data, ACM 

SIGMOD Record, 34, September 2005. 

[199] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé. Simulation-based Perform-
ance Prediction for Large Parallel Machines. International Journal of Parallel 

Programming, Kluwer Academic Publishers, The Netherlands, 2005. 

[200] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative Case 
Study and the Strength Pareto Approach, IEEE Transactions on Evolutionary Computa-

tion, 3:257-271, 1999. 

[201] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolu-
tionary Algorithm, Technical Report, Swiss Federal Institute of Technology, 2001. 

[202] A. Y. Zomaya, C. Ward and B. Macey. Genetic Scheduling for Parallel Processor Sys-
tems: Comparative Studies and Performance Issues, IEEE Transactions on Parallel 

Distributed Systems, 10:795-812, 1999. 

 


