
Integrated Provisioning of Compute
and Network Resources in

Software-Defined Cloud Data
Centers

Jungmin Son

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

January 2018

School of Computing and Information Systems
THE UNIVERSITY OF MELBOURNE

Copyright c© 2018 Jungmin Son

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author
except as permitted by law.

Integrated Provisioning of Compute and Network Resources in
Software-Defined Cloud Data Centers

Jungmin Son
Principal Supervisor: Professor Rajkumar Buyya

Abstract

Software-Defined Networking (SDN) has opened up new opportunities in network-

ing technology with its decoupled concept of the control plane from the packet forward-

ing hardware, which enabled the network to be programmable and configurable dynam-

ically through the centralized controller. Cloud computing has been empowered with

the adoption of SDN for infrastructure management in a data center where dynamic con-

trollability is indispensable in order to provide elastic services. The integrated provision-

ing of compute and network resources enabled by SDN is essential in clouds to enforce

reasonable Service Level Agreements (SLAs) stating the Quality of Service (QoS) while

saving energy consumption and resource wastage.

This thesis presents the joint compute and network resource provisioning in SDN-

enabled cloud data center for QoS fulfillment and energy efficiency. It focuses on the

techniques for allocating virtual machines and networks on physical hosts and switches

considering SLA, QoS, and energy efficiency aspects. The thesis advances the state-of-

the-art with the following key contributions:

1. A taxonomy and survey of the current research on SDN-enabled cloud comput-

ing, including the state-of-the-art joint resource provisioning methods and system

architectures.

2. A modeling and simulation environment for SDN-enabled cloud data centers ab-

stracting functionalities and behaviors of virtual and physical resources.

3. A novel dynamic overbooking algorithm for energy efficiency and SLA enforce-

ment with the migration of virtual machines and network flows.

4. A QoS-aware computing and networking resource allocation algorithm based on

the application priority to fulfill different QoS requirements.

5. A prototype system of the integrated control platform for joint management of

cloud and network resources simultaneously based on OpenStack and OpenDay-

light.

iii

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Jungmin Son, January 2018

v

Preface

This thesis research has been carried out in the Cloud Computing and Distributed Sys-

tems (CLOUDS) Laboratory, School of Computing and Information Systems, The Uni-

versity of Melbourne. The main contributions of this thesis are discussed in Chapters 2 -

6 which are based on the following publications:

• Jungmin Son and Rajkumar Buyya, “A Taxonomy of Software-Defined Network-

ing (SDN)-Enabled Cloud Computing,“ ACM Computing Surveys, vol.51, no.3, arti-

cle 59, 2018.

• Jungmin Son, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Xiaohui Ji, Young Yoon,

and Rajkumar Buyya, “CloudSimSDN: Modeling and Simulation of Software-De-

fined Cloud Data Centers,“ Proceedings of the 15th IEEE/ACM International Sympo-

sium on Cluster, Cloud and Grid Computing (CCGrid 2015), Shenzhen, China, May

4-7, 2015.

• Jungmin Son, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and Rajkumar Buyya,

“SLA-aware and Energy-Efficient Dynamic Overbooking in SDN-based Cloud Data

Centers,“ IEEE Transactions on Sustainable Computing (T-SUSC), vol.2, no.2, pp.76-89,

April-June 1 2017.

• Jungmin Son and Rajkumar Buyya, “Priority-aware VM Allocation and Network

Bandwidth Provisioning in SDN-Clouds,“ IEEE Transactions on Sustainable Comput-

ing (T-SUSC), 2018 (accepted, in press).

• Jungmin Son and Rajkumar Buyya, “SDCon: Integrated Control Platform for Soft-

ware-Defined Clouds,“ IEEE Transactions on Parallel and Distributed Systems (TPDS),

2018 (accepted, in press).

vii

viii

Acknowledgements

PhD is a tough, long, but rewarding journey that a person can experience once in a life-
time. I am truly happy that I have overcome all the adversities and finally approached
near to the end of this journey. It would not have happened without endless help from
people around me. First and foremost, I would like to thank my supervisor, Professor
Rajkumar Buyya, who has offered me the opportunity to undertake a PhD, and provided
with insightful guidance, continuous support, and invaluable advice throughout my PhD
journey.

I would like to appreciate the members of my PhD advisory committee, Prof. Rui
Zhang, Prof. Ramamohanarao Kotagiri, Prof. Umesh Bellur, and Prof. Young Yoon, for
their constructive comments on my work. My deepest gratitude goes to Dr. Rodrigo
Neves Calheiros, Dr. Amir Vahid Dastjerdi, and Dr. Adel Nadjaran Toosi for the endless
assistance on developing my research skills, the valuable comments on my papers, and
the collaboration on the research projects in the beginning of my PhD journey.

I would also like to thank all the past and current members of the CLOUDS Labora-
tory, at the University of Melbourne. In particular, I thank Dr. Sukhpal Singh Gill, Dr.
Marcos Assunção, Dr. Maria Rodriguez, Dr. Chenhao Qu, Dr. Deepak Poola, Dr. Atefeh
Khosravi, Dr. Nikolay Grozev, Dr. Sareh Fotuhi, Dr. Yaser Mansouri, Safiollah Heidari,
Xunyun Liu, Caesar Wu, Minxian Xu, Sara Kardani Moghaddam, Muhammad Hilman,
Redowan Mahmud, Muhammed Tawfiqul Islam, TianZhang He, Artur Pilimon, Arash
Shaghaghi, Diana Barreto, and Bowen Zhou, for their friendship and support during my
PhD.

I acknowledge Australian Federal Government, the University of Melbourne, and
Australian Research Council (ARC) for granting scholarships to pursue my PhD study.

I also express my sincerest appreciation to Fr. William Uren, Sean Burke, Dr. Guglielmo
Gottoli, and the community of Newman College for giving me an opportunity to stay in
such supportive, intellectual, and spiritual environment.

I would like to give heartfelt thanks to my friends in Australia and back in Korea:
Taewoong Moon, Donghwan Lee, Sori Kang, Sunghwan Yoon, Miji Choi, Johnny Jiang,
Andrew Wang, Charis Kho, Herianto Lim, Younghoon Kim, Namhun Song, Junyoub An,
and Jack Fang to name a few, who made my PhD life filled with joy and happiness.

Finally, I am heartily thankful to my mother, brothers, sisters in law, and nephew and
nieces for their support and encouragement at all times.

Jungmin Son
Melbourne, Australia
January 2018

ix

Contents

1 Introduction 1
1.1 Background . 4

1.1.1 Cloud Computing . 4
1.1.2 Data Center Network (DCN) . 5
1.1.3 Software-Defined Networking (SDN) 6
1.1.4 SDN-enabled Cloud Computing . 7

1.2 Research Problems and Objectives . 8
1.3 Evaluation Methodology . 9
1.4 Thesis Contributions . 10
1.5 Thesis Organization . 12

2 Taxonomy and Literature Review 15
2.1 Introduction . 15
2.2 Terms and Definitions . 16
2.3 SDN-clouds Architectures . 18
2.4 Taxonomy of SDN usage in Cloud Computing 20

2.4.1 Objective . 20
2.4.2 Method Scope . 23
2.4.3 Target Architecture . 23
2.4.4 Application Model . 24
2.4.5 Resource Configuration . 25
2.4.6 Evaluation Method . 26

2.5 Current Research on SDN usage in Cloud computing 27
2.5.1 Energy Efficiency . 28
2.5.2 Performance . 33
2.5.3 Virtualization . 41
2.5.4 Security . 44
2.5.5 Summary and Comparison . 45

2.6 Evaluation Methods and Technologies . 47
2.6.1 Simulation Platforms and Emulators 47
2.6.2 Empirical Platforms . 49

2.7 Summary . 49

3 Modeling and Simulation Environment for Software-Defined Clouds 51
3.1 Introduction . 51
3.2 Related Work . 52

xi

3.3 Software-Defined Cloud Data Center Simulation: Goals and Requirements 55
3.4 Framework Design . 56

3.4.1 CloudSim core logic . 56
3.4.2 Abstracting physical and virtual topology 57
3.4.3 Network modules . 58
3.4.4 Calculating packet transmission time 59
3.4.5 Abstracting user requests . 60

3.5 Validation . 61
3.5.1 Mininet setup . 61
3.5.2 Testbed configuration . 62
3.5.3 Validation results . 64

3.6 Use Case Evaluation . 64
3.6.1 Joint host-network energy efficient resource allocation 64
3.6.2 Traffic prioritization . 67

3.7 Summary . 70

4 SLA-aware and Energy-Efficient Dynamic Resource Overbooking 71
4.1 Introduction . 71
4.2 Background . 73
4.3 Related Work . 74
4.4 Problem Formulation . 76

4.4.1 Power Models . 76
4.4.2 Problem Formulation . 78

4.5 Resource Allocation Framework . 79
4.6 Resource Overbooking Algorithm . 81

4.6.1 Connectivity-aware Initial VM Placement Algorithms 82
4.6.2 VM Migration Algorithms with Dynamic Overbooking 85
4.6.3 Baseline Algorithms . 90

4.7 Performance Evaluation . 91
4.7.1 Testbed configuration . 92
4.7.2 Workload . 93
4.7.3 Initial placement . 94
4.7.4 Migration policy . 99
4.7.5 Analysis of energy consumption . 103
4.7.6 Dynamic overbooking ratio . 105

4.8 Summary . 106

5 Priority-aware Joint VM and Network Resource Provisioning 107
5.1 Introduction . 107
5.2 Related Work . 109
5.3 System Architecture . 112
5.4 Priority-aware Resource Provisioning Methods 114

5.4.1 Priority-Aware VM Allocation (PAVA) 114
5.4.2 Bandwidth Allocation for Priority Applications (BWA) 115
5.4.3 Baseline algorithms . 117

5.5 Performance Evaluation . 119
5.5.1 Experiment configuration and scenarios 120

xii

5.5.2 Analysis of Response Time . 122
5.5.3 Analysis of QoS violation rate . 125
5.5.4 Analysis of energy consumption . 127
5.5.5 Analysis of algorithm complexity 128

5.6 Summary . 129

6 Prototype System of Integrated Control Platform 131
6.1 Introduction . 131
6.2 Related Work . 133
6.3 SDCon: Software-Defined Clouds Controller 135
6.4 System Implementation . 137

6.4.1 Cloud Manager . 139
6.4.2 Cloud Monitor . 139
6.4.3 Network Manager . 140
6.4.4 Network Monitor . 141
6.4.5 Topology Discovery . 141
6.4.6 Joint Resource Provisioner . 141
6.4.7 Power Consumption Estimator . 142
6.4.8 Status Visualizer . 143
6.4.9 Data Flow and Sequence Diagram 144

6.5 Joint Resource Provisioning in Heterogeneous Clouds 144
6.5.1 Topology-aware VM Placement Algorithm for Heterogeneous Cloud

Infrastructure (TOPO-Het) . 147
6.5.2 Baseline algorithms . 150

6.6 System Validation . 150
6.6.1 Testbed Configuration . 151
6.6.2 Bandwidth Allocation with QoS Settings 152

6.7 Performance Evaluation . 154
6.7.1 Application Settings and Workloads 155
6.7.2 Analysis of VM Allocation Decision 156
6.7.3 Analysis of Response Time . 157
6.7.4 Analysis of Power Consumption . 161

6.8 Summary . 161

7 Conclusions and Future Directions 163
7.1 Conclusions and Discussion . 163
7.2 Future Directions . 166

7.2.1 Energy-efficient Cloud Computing 166
7.2.2 Supporting Big Data Applications 167
7.2.3 Scalability of SDN . 168
7.2.4 Network Virtualization and NFV . 168
7.2.5 Enhancing Security and Reliability in Clouds and SDN 169
7.2.6 Realization of Software-Defined Clouds and Edge Computing . . . 170

7.3 Software Availability . 171

xiii

List of Figures

1.1 A conceptual architecture and resource provisioning process in a cloud
data center. 2

1.2 Data center network topologies. 5
1.3 Comparison of SDN and traditional networking. 6
1.4 The thesis organization . 12

2.1 SDN-enabled cloud computing architecture. 18
2.2 Taxonomy of SDN usage in cloud computing. 21
2.3 Sub-categories used for our literature review. 27

3.1 CloudSimSDN architecture. 54
3.2 CloudSimSDN Class Diagram. 57
3.3 User request modeling. 60
3.4 Physical topology configuration for the validation test. 63
3.5 Comparison of CloudSimSDN with Mininet for average transmission time

for each scenario. 65
3.6 Physical topology for traffic prioritization use case evaluation. 67
3.7 Effect of traffic prioritization. 69

4.1 Resource Allocation Architecture. 79
4.2 Example of consolidation with overbooking 81
4.3 Network topology used in simulation . 92
4.4 Wikipedia workload for different projects collected for 1st of Sep 2014. . . 94
4.5 CPU utilization of VMs with Wikipedia workload 95
4.6 Energy consumption and SLA violation results of initial placement with-

out consideration of connectivity. 96
4.7 Energy consumption and SLA violation results of different initial place-

ment algorithms. 98
4.8 Energy consumption and SLA violation results of different migration strate-

gies implemented on ConnCons (connected VMs in the same host) initial
placement algorithm. 100

4.9 Energy consumption and SLA violation results of dynamic and static over-
booking algorithms . 101

4.10 Energy saving origination . 103
4.11 Energy consumption observation over time 104
4.12 CPU utilization and Resource Allocation Ratio of a sample VM. 106

5.1 Architectural design of priority-aware VM and flow management system. 112

xv

5.2 8-pod fat-tree topology setup for experiments. 121
5.3 Performance matrices of the critical application in Scenario 1 (synthetic

workload). 123
5.4 Performance matrices of the critical application in Scenario 2 (Wikipedia

workload). 123
5.5 Average response time of normal (lower-priority) applications. 125
5.6 QoS violation rate of critical application workloads. 126
5.7 Detailed power consumption of hosts and switches in a data center. 127

6.1 Design principle and control flows. 135
6.2 System architecture of SDCon and underlying software components. . . . 137
6.3 Data flow diagram of SDCon components. 143
6.4 Sequence diagram to deploy VMs and flows with SDCon. 145
6.5 Testbed configuration. 151
6.6 Bandwidth measurement of multiple flows sharing the same network re-

source. 153
6.7 Used and available CPU cores of compute nodes after VM placement in

different algorithm. 156
6.8 Network traffic after Wikipedia application deployment visualized with

Status Visualizer. 158
6.9 Average and CDF of response time measured with Wikipedia workload

from App 1. 159
6.10 Average and CDF of response time measured with Wikipedia workload

from App 2. 160
6.11 Overall power usage of the test bed estimated from CPU and network uti-

lization. 162

7.1 Future directions. 166

xvi

List of Tables

2.1 Summary of current research on SDN usage for energy efficiency in cloud
computing. 29

2.2 Summary of current research for performance improvement in cloud com-
puting with SDN. 35

2.3 Summary of current research for virtualization in cloud computing with
the usage of SDN. 41

2.4 Summary of current research for security in cloud computing with the us-
age of SDN. 44

2.5 Characteristics of SDN usage in cloud computing. 46

3.1 Link configuration for the validation experiments. 62
3.2 Various scenarios for validation. 63
3.3 VM configurations used for joint host-network energy efficient resource

allocation use case. 65
3.4 Energy consumption and the maximum number of simultaneously uti-

lized hosts for different VM placement policies. 66
3.5 VM configurations for traffic prioritization use case. 67
3.6 Characteristics of requests used for traffic prioritization evaluation. Re-

quests are based on the model proposed by Ersoz et al. [33]. 68

5.1 Summary of related works. 109

6.1 Hardware specification of controller and compute nodes. 152
6.2 VM types for Wikipedia application deployment. 156
6.3 Network flow settings for VM traffic. 157

xvii

Chapter 1

Introduction

THE emergence of cloud computing has led to evolutionary changes in the way of

provisioning computing resources on demand by offering vitualized resources on

a pay-as-you-go basis. Previously, application providers built their own data center with

a vast amount of investment to run and deliver their application services. This needed a

huge up-front cost for hardware procurement and infrastructure installation which were

not scalable or flexible to increasing demand of the application. In the era of cloud com-

puting, with the expansion of utility computing model [17], application providers only

need to select a cloud service which fits their applications, or even automated brokering

systems can dynamically select a suitable resource for applications on behalf of the ap-

plication provider. They can lease computing resources from cloud providers by clicking

a few mouse buttons within minutes and deploy their applications without any upfront

payment. Cloud computing has brought a scalable and elastic computing along with the

subscription-oriented service model.

In networking, the introduction of Software-Defined Networking (SDN) has brought

many opportunities to both networking and computing community. Decoupling of the

network control logic from data forwarding plane is a key innovation in SDN which

contributes to the introduction of network programmability. With the global view of the

entire network, the centralized controller can manage the entire network through the cus-

tomized control logic programmed for an individual use case. SDN can slice the network

bandwidth into multiple layers and provide different Quality of Service (QoS) on each

slice for different applications. Network Function Virtualization (NFV) became more fea-

sible with the introduction of SDN, where the virtualized network function can move

around dynamically around the network with SDN’s dynamic network reconfiguration

1

2 Introduction

VM VM VM VM VMVM

Physical resources

Virtual resources

Tenants
applications

VM VM VMVM VM
Virtual network Virtual network

Virtual network

Web
applications

Streaming
applications

Big data
applications

Scientific
applications

VM VM
Virtual network

Admission Control

Compute Manager

SDN Controller

Compute Monitor

Network Monitor

Joint Resource
Provisioning

VM and Virtual
Network Request

Control flow

VM

VM

Cloud tenants and
End-users

Figure 1.1: A conceptual architecture and resource provisioning process in a cloud data
center.

ability.

To provide elastic service to their customers (i.e., tenants), cloud providers exploit

virtualization technologies for computing, storage, and networking resources in a data

center. The virtualized resources are shared and leased to cloud tenants, which are pro-

visioned from the physical resources in the data center. As the scale of a cloud grows,

it often runs tens of thousands of compute servers connected via thousands of switches.

With its high complexity of resource management, a cloud provider requires more ef-

ficient and sophisticated resource provisioning schemes for both compute and network

resources. However, in traditional networks, each network switch has its own control

logic which individually decides its behavior based on the information obtained from

its neighbors. The traditional network approach raises network manageability and per-

formance issues in a cloud data center due to its massive scale on which computing

and network resources should be dynamically provisioned to adapt to the fluctuating

requests from various tenants. In this regard, SDN triggered new innovations in a cloud

data center. Adoption of SDN in cloud computing can address the networking problems

raised from the aforementioned characteristic of clouds, which will be detailed later in

Section 1.1.

A conceptual architecture of a cloud data center is depicted in Figure 1.1. Cloud ten-

3

ants can rent virtualized resources, i.e., virtual machines (VMs) connected via virtual

networks, from providers where the tenants can deploy various types of applications

including web, streaming, big data, or scientific applications. The virtual resources are

provisioned over the physical resources consisting of compute hosts (physical machines)

and network switches. Once VM and virtual network requests are submitted to the data

center, admission is determined by the provider to fulfill the application request. Physical

compute and network resources are jointly provisioned to provide virtual machines and

networks through Compute Manager and SDN Controller, which are in charge of man-

aging to compute nodes and networking switches respectively. Additionally, resource

monitors update the current utilization and status of compute and network resources

periodically which provide essential information for resource provisioning.

Efficient resource provisioning of both compute and network resources are necessary

to guarantee the Service Level Agreement (SLA) for customers and to ensure a different

level of reliability and QoS requirements. For instance, QoS-critical applications such

as medical software for cyber surgery, IoT applications for real-time disaster manage-

ment, or deadline constrained scientific applications, need more strict policies in cloud re-

source management, while non-critical applications may have a loose requirement. With

the mixed applications sharing the data center with different QoS requirements, cloud

providers should provision the resources efficiently to satisfy various QoS requirements

of different applications, while minimizing the operating cost, such as electricity usage.

Providing such QoS in clouds while minimizing operational cost is challenging, be-

cause resources in a data center are shared by various tenants and applications which

are often over-booked to save the resource usage. As an example, resources are over-

subscribed in many data center designs to reduce the cost of the data center [4]. With

oversubscribed resources, however, performance degradation may occur possibly fol-

lowed by SLA violation which results in occurring penalty and reducing profit for cloud

providers. Thus, efficient resource provisioning must be employed in cloud data centers

to provide QoS fulfillment and SLA guarantee, while reducing energy consumption and

operational cost.

This thesis tackles joint resource provisioning problem for both computing and network-

ing resources in cloud data centers using SDN technology. SDN is exploited for dynamic

4 Introduction

network configuration, bandwidth allocation, and network monitoring in conjunction

with computing resource management techniques. We propose a taxonomy and compre-

hensive survey in the area and a modeling and simulation of SDN-enabled cloud data

centers. We also present joint computing and networking resource management algo-

rithms for energy efficiency and QoS satisfaction, and a working prototype of integrated

control system to manage both resources in a data center.

The rest of this chapter details the background of SDN-enabled cloud computing and

discusses research problems, evaluation methodology, contributions, and organization of

the thesis.

1.1 Background

This section describes the fundamentals of cloud computing, Data Center Network (DCN),

Software-Defined Networking (SDN), and SDN-enabled cloud computing.

1.1.1 Cloud Computing

Cloud computing has been studied and implemented for many years and can be con-

sidered as three services: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and

Infrastructure-as-a-Service (IaaS) [81]. SaaS is to provide complete software to cloud cus-

tomers, which includes cloud-based email services, social network services, scheduler

services, and basically any programs running in the cloud. PaaS resides on the underly-

ing layer where application developers can use the platform services provided by clouds.

The software in SaaS may or may not use the platforms provided by PaaS provider. IaaS

is the most fundamental which provides virtual machine servers and the related infras-

tructure to cloud customers. The infrastructure can be used for any purpose by the cus-

tomers, e.g., for deploying their own platforms or developing a software running on the

virtual machines. SaaS and PaaS can be implemented upon the usage of IaaS.

In this thesis, we tackle problems and issues in managing cloud infrastructure on

IaaS level, considering both computing and networking resource provisioning. In order

to provide cloud services, the provider should build and maintain one or more large-

scale cloud data centers where tens of thousands of physical hosts are connected through

1.1 Background 5

(a) 2N-tree

(b) Fat-tree [4]

(c) BCube [45]

(d) DCell [46]

Figure 1.2: Data center network topologies.

thousands of network switches. With the high complexity of network connections in

large scale, the provider has to consider the data center network with a different perspec-

tive from the traditional network.

1.1.2 Data Center Network (DCN)

Host servers in a cloud data center are interconnected through network links and switches,

composing of DCN. Typical DCN architecture is made up of three-tier topology, which

consists of edge, aggregate and core switches on each layer. Host servers within a rack

are connected to one or more edge switches, i.e., Top-of-Rack (ToR) switches, and edge

switches are connected to upper tier aggregate switches. Each of the aggregate switches

connects to multiple core switches of the top tier.

Since DCN has a complex structure with the massive number of hosts and network-

ing equipment, performance and scalability issues arise. The high scale brought inflexible

and insufficient network bandwidth which makes researchers find an alternative topol-

ogy to the canonical 2N-tree. Al-Fares et al. [4] suggested fat-tree topology that shares a

similar approach to Clos network [24] to provide redundant network connection and en-

6 Introduction

Traditional	Networking Software‐Defined	Networking

SDN	
Controller Control	

Protocol

Control
Plane

Forwarding	
Plane

Traditional	Switch SDN	Switch

Figure 1.3: Comparison of SDN and traditional networking.

sure higher availability. In fat-tree, there are multiple links between switches that make

a redundant and high-available network. Guo et al. presented DCell [46] to address

scalability and performance issues of the traditional three-tier topology. BCube [45] was

also proposed by the same authors where hosts were serving as both end hosts and relay

nodes that transfer network data to another host. BCube was designed for shipping-

container based modular data centers. The aforementioned topologies are shown in Fig-

ure 1.2. More recently, a hypercube based DCN topology called ExCCC was introduced

in [131]. ExCCC substituted each node in Extended Hypercube network with a cycle and

employed link removal for scalability and energy efficiency.

1.1.3 Software-Defined Networking (SDN)

SDN is a new paradigm in networking that manages the entire network at the conceptu-

ally centralized programmable software controller. With the central view, the controller

can manage network flows more efficiently and dynamically. SDN provides fine-grained

network configuration dynamically adaptable to the network condition. Figure 1.3 shows

the conceptual difference between a traditional network and SDN. In the traditional net-

work, the control plane is placed on top of the forwarding plane in each network device.

The discrete decision is made by each switch based on the information gathered from the

neighbor devices in a distributed matter. Although the network information is shared

among devices, the decision is made solely by each device which can increase the com-

plexity and behavioral unpredictability of the entire networks.

1.1 Background 7

On the other hand, SDN centralizes the control plane into a software controller which

can observe the entire network. With centrally gathered information, the controller can

make more straightforward decisions and deploy it onto forwarding devices efficiently

and dynamically. The control logic can be easily programmable in the controller and send

control packets to the switches with SDN protocols. Thus, networking behavior becomes

highly customizable depending on different purposes and goals.

As the adhesion between control logic and forwarding hardware has been broken up

in SDN, it opened up more opportunities to universities and research institutes in devel-

oping new networking protocols, traffic management, virtualization, and software tech-

nologies. It led to the introduction of OpenFlow which is collective results of a number

of universities and becomes a de-facto standard protocol for SDN controllers [78]. Many

controllers have been introduced and actively developed based on OpenFlow, including

NOX [44], Floodlight [100], RYU [87], and OpenDaylight [92].

SDN has also opened up innovative opportunities on the way of developing the con-

trol logic of networks. In traditional networks, the network control logic is solely devel-

oped by large switch vendors, such as Cisco or Juniper, as it is tightly coupled with the

networking hardware. Although individual developers and users could customize con-

figurations and settings of the hardware, it was still limited to the control logic equipped

with the hardware subordinate to the vendor. With the introduction of SDN and its de-

coupled concept of the controlling software from the forwarding hardware, anyone can

easily develop and test a new control logic by creating an SDN controller software. As the

forwarding hardware is separated and fully controlled by the controller software in SDN,

any control logic can be designed and implemented as long as it follows SDN standard,

such as OpenFlow. Thus, SDN has fostered innovations in the development of various

network control logic that would have been much limited in traditional networks.

1.1.4 SDN-enabled Cloud Computing

SDN features can bring enormous benefits to cloud computing, such as adapting to dy-

namically changing workload, programmable control plane, network security enhance-

ment, network virtualization, global view of DCN, integration of hypervisor and cloud

computing manager.

8 Introduction

The nature of cloud computing that supports multi-tenants in complex networking

has formed SDN with the desire of scalability and cost-efficiency [36]. As SDN can man-

age network forwarding plane with centralized control plane, network elements become

programmable and controllable dynamically. With the ability of SDN controllers moni-

toring the entire network, various research projects have been conducted [8,20,60,132] in-

cluding bandwidth allocation per flow, traffic consolidation, and dynamic configuration,

in order to improve QoS and energy efficiency. The dynamics of cloud computing re-

quire quick response to manage traffic demands in real-time. In industry, Google started

deploying SDN in its cloud data centers and their private wide-area network (WAN)

between data centers as described in their papers [53, 54, 118].

1.2 Research Problems and Objectives

This thesis aims at addressing research questions on provisioning cloud resources ex-

ploiting SDN technology in a multi-tenant cloud data center. More specifically, it can be

stipulated as:

How to efficiently provision computing and networking resources simultaneously in a data

center with SDN technology in terms of:

• QoS satisfaction – resources should be provisioned fulfilling various QoS require-

ments from multiple tenants and applications in a cloud data center.

• SLA enforcement – cloud providers should allocate enough resources for tenants

as per agreement in SLA.

• Energy efficiency – energy consumption should be maintained as low as possible

in resource provisioning.

• Request dynamicity – resources should be provisioned dynamically to accept more

requests from tenants.

To tackle the research questions formulated above, the following objectives have been

identified:

1.3 Evaluation Methodology 9

• Review the state-of-the-art in the area of SDN-enabled cloud computing to gain

systematic understanding and identify the gap in the area.

• Model SDN-enabled cloud data center components and their interactions for re-

source provisioning method implementation and performance evaluation.

• Propose a novel joint computing and networking resource provisioning method

aware of QoS, SLA, operational cost, workload dynamicity, and energy efficiency.

• Propose a joint resource allocation algorithm for heterogeneous resource configu-

ration in a data center.

• Implement and evaluate the proposed algorithms in realistic environment to com-

pare with the result from the state-of-the-art.

• Design and implement an integrated control platform to jointly manage both com-

puting and networking resources.

1.3 Evaluation Methodology

The proposed approaches in this thesis have been evaluated with two methodologies:

discrete-event simulation and empirical system. Simulation is a common method for evalu-

ating a large-scale and complex system, such as cloud data centers, that is impractical to

test in a real system due to the cost and management issues. In this thesis, we developed

an extended version of CloudSim [18] to model SDN features, including dynamic net-

work reconfiguration, bandwidth allocation, and network monitoring, in a cloud data

center. The simulation framework supports reproducible experiments for large-scale

cloud infrastructure with different preset configurations in short time. For a realistic test

in simulation, we exploited real traces such as Wikipedia [117], and 3-tier web application

models [33].

We also implemented the proposed method in a small-scale empirical system for val-

idation and evaluation. It is important to show the feasibility and effectiveness of a pro-

posed method in the real-word scenario. The system prototype was designed and im-

plemented using OpenStack cloud management platform [93] and OpenDaylight SDN

10 Introduction

controller [92] which is detailed in Chapter 6. Performance evaluation in the empirical

system was conducted with Iperf [51] and WikiBench [117] tools.

1.4 Thesis Contributions

The main contributions of this thesis can be divided into 4 categories: literature review

and classification of this area, modeling SDN-enabled cloud data centers in a simulation

framework, novel algorithms for joint resource provisioning, and implementation of an

integrated control framework for managing both computing and networking resources.

The key contributions of the thesis are:

1. A taxonomy and literature review of SDN usage in the context of cloud computing

infrastructure management.

2. Formalized model and simulation framework for SDN-enabled cloud computing:

• A model of SDN architecture to separate a control plane from a forwarding

plane, supporting dynamic forwarding rule update, per-flow bandwidth al-

location, user-defined network control logic, and network performance moni-

toring.

• A performance model of SDN-enabled network switches capable of measuring

bandwidth utilization and energy consumption.

• A formal definition of requirements and objectives of SDN-enabled cloud com-

puting architecture.

• An event-driven interaction model between computing hosts and networking

switches in an SDN-enabled data center.

• An abstracted workload consisting of a series of computing and networking

user requests.

• A CloudSim based discrete-event simulation framework supporting aforemen-

tioned features.

• Experimental validation and evaluation of the proposed simulation frame-

work by comparing the simulation results with the observed performances

1.4 Thesis Contributions 11

from practical systems.

3. Novel joint computing and networking resource allocation algorithms for SDN-

enabled cloud data centers:

• Formulated joint resource allocation problem aware of energy efficiency and

SLA fulfillment.

• Energy and SLA aware resource overbooking algorithms that jointly migrate

and consolidate VMs and network traffics.

• A priority-aware VM allocation algorithm (PAVA) that provision cloud re-

sources differentiated by an application priority.

• A network bandwidth allocation method (BWA) to allocate the requested band-

width for a priority application.

• Power model implementation in a simulation framework to estimate the en-

ergy consumption in a data center.

• Topology-aware collective VM placement algorithm in a heterogeneous cloud

data center (TOPO-Het).

• Performance evaluation on empirical testbed and simulation framework in

comparison with the state-of-the-art baselines with real-world traces.

4. Software implementation of an integrated control framework for joint resource man-

agement of cloud and SDN:

• An architecture and system design of a software framework to simultaneously

manage both cloud and network resources in a data center.

• An implementation of the integrated control platform in Python based on

OpenStack cloud control platform and OpenDaylight SDN controller.

• An implementation of various algorithms for joint computing and networking

resource allocation upon the integrated control platform.

• A deployment of the control platform on a testbed with a customized fat-

tree topology consisting of 8 OpenStack compute nodes connected through

10 OpenVSwitch switches.

12 Introduction

Chapter	2
Taxonomy	and	Literature	

Review

Chapter	3
System	Modelling	and	

Simulation

Chapter	6
System	Prototype	
Implementation

Chapter	1
Background,	Motivation,	and	

Contributions

Chapter	7
Conclusions	and
Future	Directions

Chapter	4
Energy-aware	Dynamic	
Overbooking	Algorithm

Chapter	5
Priority-aware	Resource	
Provisioning	Algorithm

Algorithms

Figure 1.4: The thesis organization

• Experimental validation and evaluation of the deployed platform with a real-

istic benchmark tool (WikiBench [117]) using Wikipedia traces.

1.5 Thesis Organization

The structure of the thesis chapters is shown in Figure 1.4, which are derived from sev-

eral publications published during the PhD candidature. The remainder of the thesis is

organized as follows:

• Chapter 2 presents a taxonomy and literature review of SDN usage in cloud com-

puting. This chapter is derived from:

1.5 Thesis Organization 13

– Jungmin Son and Rajkumar Buyya, “A Taxonomy of Software-Defined Net-

working (SDN)-Enabled Cloud Computing,“ ACM Computing Surveys, vol.51,

no.3, article 59, 2018.

• Chapter 3 presents a modeling and simulation environment of SDN-enabled cloud

data centers. This chapter is derived from:

– Jungmin Son, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Xiaohui Ji, Young

Yoon, and Rajkumar Buyya, “CloudSimSDN: Modeling and Simulation of Software-

Defined Cloud Data Centers,“ Proceedings of the 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid 2015), Shenzhen, China,

May 4-7, 2015.

• Chapter 4 proposes a novel dynamic overbooking algorithm for energy efficiency

and SLA fulfillment based on correlation analysis. This chapter is derived from:

– Jungmin Son, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and Rajkumar

Buyya, “SLA-aware and Energy-Efficient Dynamic Overbooking in SDN-based

Cloud Data Centers,“ IEEE Transactions on Sustainable Computing (T-SUSC),

vol.2, no.2, pp.76-89, April-June 1 2017.

• Chapter 5 proposes a priority-aware computing and networking resource provi-

sioning algorithm in SDN-clouds. This chapter is derived from:

– Jungmin Son and Rajkumar Buyya, “Priority-aware VM Allocation and Net-

work Bandwidth Provisioning in SDN-Clouds,“ IEEE Transactions on Sustain-

able Computing (T-SUSC), 2018 (accepted, in press).

• Chapter 6 describes a prototype system of the integrated control platform for joint

cloud and SDN management based on OpenStack and OpenDaylight. This chapter

is derived from:

– Jungmin Son and Rajkumar Buyya, “SDCon: Integrated Control Platform for

Software-Defined Clouds,“ IEEE Transactions on Parallel and Distributed Systems

(TPDS), 2018 (accepted, in press).

14 Introduction

• Chapter 7 summarizes the thesis with a discussion on future directions. It is par-

tially derived from:

– Jungmin Son and Rajkumar Buyya, “A Taxonomy of Software-Defined Net-

working (SDN)-Enabled Cloud Computing,“ ACM Computing Surveys, vol.51,

no.3, article 59, 2018.

Chapter 2

Taxonomy and Literature Review

This chapter proposes a taxonomy to depict different aspects of SDN-enabled cloud computing and

explain each element in details. The detailed survey of studies utilizing SDN for cloud computing is

presented with focus on data center power optimization, traffic engineering, network virtualization,

and security. We also present various simulation and empirical evaluation methods that have been

developed for SDN-enabled clouds. Finally, we analyze the gap in current research and propose future

directions.

2.1 Introduction

TO overcome the shortcomings of traditional networks, cloud data centers started

adopting software-defined networking (SDN) concept in their DCN. SDN provides

a centralized control logic with a global view of the entire network at the central controller

and dynamically change the behavior of the network. It can also adjust the network flow

dynamically by the controller which is well fitted for the dynamic nature of the cloud

service. Giant cloud providers such as Google already adopted SDN concept in their

data center to increase the scalability and manageability [118].

Although many surveys and taxonomies have been presented in cloud computing

and SDN contexts, each of them has been addressed a specific problem in the area. For

example, Toosi et al. [113] presented a survey focusing on inter-connected cloud comput-

ing. The paper includes inter-operability scenarios with multiple data centers and de-

tailed explanation of various approaches to operate and use inter-connected cloud data

centers. The article described networking challenges for inter-clouds in a sub-section, but

This chapter is derived from: Jungmin Son and Rajkumar Buyya, “A Taxonomy of Software-Defined
Networking (SDN)-Enabled Cloud Computing,“ ACM Computing Surveys, vol.51, no.3, article 59, 2018.

15

16 Taxonomy and Literature Review

the primary focus was on the wider issues for integrating multiple cloud data centers as

a cloud broker’s perspective. Mastelic et al. [74] also presented a survey in energy effi-

ciency for cloud computing. A systematic category of the energy consumption in cloud

computing has been suggested in the context of hardware and software infrastructure in

clouds. The authors also included a networking aspect emphasizing on DCN, inter-data

center network, and end-user network. A comprehensive survey has been presented in

various aspects of energy efficiency including networks, however the paper is in lack of

SDN context. Jararweh et al. [56] provided details of Software-defined clouds focusing

on systems, security, storage, and networking, but with more focus on the system archi-

tecture rather than the individual research works in SDN-clouds.

In this chapter, both SDN and cloud computing are considered as the survey topic.

Among the enormous studies conducted in both distributed computing and networking

disciplines for cloud computing and SDN respectively, we select the state-of-the-art con-

sidering both aspects simultaneously. We emphasize on SDN utilization and challenges

in the context of cloud computing.

This chapter is organized as follows: in Section 2.2 we clarify terms and definitions to

be used in this chapter and throughout the thesis. Section 2.3 provides different architec-

tures of SDN-enabled cloud computing proposed in the literature, followed by Section 2.4

that describes a taxonomy of the usage of SDN in cloud computing in various aspects. In

Section 2.5, comprehensive surveys have been undertaken to find the achievement and

the challenges in SDN usage in clouds in the context of energy efficiency, performance,

virtualization, and security enhancement. The following section presents a survey of

simulation and empirical methods developed for evaluation of SDN-enabled cloud com-

puting (Section 2.6), and summarizes the chapter in Section 2.7

2.2 Terms and Definitions

By emergence of adopting SDN in cloud computing context, several terms have been

presented in order to capture the architectural characteristic of the new system. In this

section, we propose the organized terms for different purposes based on the collective

survey, presenting in the order of scope from narrow to wide terms.

2.2 Terms and Definitions 17

SDN-enabled Cloud Data Center (SDN-DC) is to provide SDN features within a cloud

data center. On the basis of the traditional DCN architecture, SDN-DC replaces tradi-

tional networking equipment with SDN-enabled devices. In SDN-DC, every networking

component in a data center is capable of performing SDN functions which can bring all

the aforementioned benefits to a cloud data center. This architecture focuses within a

data center and excludes the inter-networking part outside of a data center.

SDN-enabled Cloud Computing (SDN-clouds or SDN-enabled clouds) refers to not only

SDN-DC, but also inter-cloud networking that expends the SDN usage across multiple

data centers and wide-area network (WAN). Thus, SDN benefits can be applied to inter-

networking domains, such as a data center to data center network or an end-user to data

center transport network. In this chapter, we focus on SDN-clouds to build our taxonomy

and analyze the state-of-the-art.

A broader term Software-Defined Cloud Computing (SDC or Software-Defined Clouds) has

been proposed by Buyya et al. [16] and Jararweh et al. [56] where not only networking

but also all infrastructure components in cloud computing are considered to be software-

defined. The approach is to build fully automated cloud data center optimizing con-

figurations autonomously and dynamically. Buyya et al. [16] extended the concept of

virtualization from a virtualized server (VM) to all other elements in cloud data centers.

The core technologies to enable SDC include server virtualization, SDN, network virtual-

ization, and virtual middleboxes. With the recently evolved technologies, the reconfigu-

ration and adaptation of physical resources in SDC has become more feasible and simple

to be implemented in practice. The proposed architecture was implemented and evalu-

ated in the simulation environment. Jararweh et al. [56] also studied a system focusing

on various aspects of SDC including networking, storage, virtualization, data centers,

and security. The authors also built an experimental setup for SDC with the inspected

elements in the survey to show the effectiveness of the proposed software defined cloud

architecture.

SDC is more conceptual as it is proposed for research purposes and has not yet been

explored extensively. Therefore, in the survey, we focus on SDN-clouds to depict the

state-of-the-art and SDN usage in cloud computing.

18 Taxonomy and Literature Review

Cloud	Resources

SDN Controller	(e.g.	OpenDaylight)

Cloud	Manager	(e.g.	OpenStack)

SDN
Controller
…	

Network	
Monitoring

Topology	
Discovery

Network	
Configuration

Virtual	Network	
Management

North‐bound APIs

East‐
West
APIs

South‐bound APIs
(e.g. OpenFlow)

Resource
Management

APIs

Host

VM

Hypervisor

VM

VM VM

SDN‐Switch
Forwarding	Table

Flow Flow

Flow Flow

Resource	
Provisioning

Admission	
Control

Cloud	
Monitoring

Energy‐efficient	
Resource	Control

Figure 2.1: SDN-enabled cloud computing architecture.

2.3 SDN-clouds Architectures

Figure 2.1 shows the abstract architecture of common SDN-enabled cloud computing

systems derived from literature [9, 17, 129].

Cloud Manager is managing the tenants and resources of the entire clouds. It controls

the incoming requests from tenants such as a VM creation and provisions cloud resources

to provide the cloud service. Energy-efficient resource management and monitoring of

resources are also performed by Cloud Manager. OpenStack [93] is an open-source ex-

ample of a Cloud Manager widely used to build private clouds.

Network-related functions are controlled by SDN Controller which is connected to

the Cloud Manager through north-bound APIs. SDN features, such as network topol-

ogy discovery, network monitoring, virtual network management, and dynamic network

configurations, are enabled through SDN Controller. Multiple SDN Controllers can be

functional to increase scalability by inter-communicating via East-West-bound APIs.

Cloud Resources consist of compute and networking resources. Compute resources

2.3 SDN-clouds Architectures 19

(hosts) are provisioned by the Cloud Manager to run VMs on a hypervisor, whereas

networking resources (switches) are managed by SDN Controller through updating for-

warding tables in switches via South-bound APIs (e.g., OpenFlow). Note that the SDN

Controller also manages networking functions in hosts, for example virtual switches, for

network virtualization and VM traffic management.

Meridian is a SDN platform for cloud network services proposed by IBM [9]. In typ-

ical cloud network services, users are required to set up switches, subnets, and ACLs to

be used by cloud application. Meridian adopts service-level network model with con-

nectivity and policy abstractions and integrates the high-level application provisioning

closely to the cloud network through SDN’s programmable network concept.

PDSDN is a policy exchange scheme between SDN controller and the cloud man-

ager to simplify the interaction of cloud tenants and the controller [31]. The proposed

scheme sends network policies to the controller and processes them with the information

of tenants’ requirements and priorities. The prototype is implemented on Floodlight and

validated on OpenStack.

More recently, Mayoral et al. [76] presented cloud architectures with a single SDN

controller and multiple controllers. The system orchestrates networking services in a

data center with the capability of SDN. In order to find the differences in one or multiple

controllers in a data center, the authors evaluated the proposed architecture on Open-

Stack and OpenDaylight [92] with the integration of SDN.

The same authors also proposed an end-to-end orchestration architecture of cloud

and networks resources which manages both resources in distributed cloud data cen-

ters [75]. Virtual infrastructures in clouds are dynamically allocated and managed through

the manager. The authors modeled the VM allocation problem as a graph mapping with

the parameter of switches, hosts, and network links. The paper also includes heuristic al-

gorithm to find minimum number of hosts with enough capacity and selects the shortest

path between hosts. The orchestration architecture is validated on empirical testbed with

OpenStack [93] and OpenVSwitch, whereas the algorithm is evaluated in simulation.

Fichera et al. [38] presented an experimental test-bed setup for SDN orchestration

across edge, cloud, and IoT domains in 5G service. The platform consists of separate

orchestrator(s) for cloud, IoT, and SDN. SDN orchestrator manages not only IoT and

20 Taxonomy and Literature Review

cloud networks, but also the transport network between them. On top of individual

orchestrators, Service orchestrator oversees service provisioning for applications based

on the users requirements. The proposed system is implemented in a test bed consisting

of Mininet for edge-network, OpenStack cloud, and ONOS controller.

Control Orchestration Protocol (COP) was proposed by researchers from multiple in-

stitutions to allow managing heterogeneous SDN control planes and clouds [77]. While

OpenFlow specifies control messages between SDN controller and switches at south-

bound of the controller, COP is in charge of orchestrating among SDN controllers in dif-

ferent networks as well as cloud controllers working at north-bound of controllers. COP

aims at unified transport API for orchestrating different transport network in inter-cloud

environment. The protocol provides an abstraction for resource provisioning, topology

discovery, and path computation. It is validated through two proof of concept experi-

ments for network resource provisioning and recovery.

2.4 Taxonomy of SDN usage in Cloud Computing

Several methods are proposed for utilizing SDN in cloud computing in different research

areas. We carried out a detailed study of research in SDN-enabled cloud computing and

propose a taxonomy (shown in Figure 2.2) to capture various elements of SDN usage.

The taxonomy is explored in the context of objective, method scope, target architecture,

application model, resource configuration, and evaluation method.

2.4.1 Objective

Cloud providers deploy SDN in their data centers for different purposes, and researchers

consider various objectives in their studies. We categorize the objectives into four types,

which are used as main categories to classify the surveyed works in Section 2.5.

Energy efficiency is one of the most commonly studied objectives for SDN-enabled

cloud computing. As cloud data centers consume enormous amount of electricity glob-

ally, energy saving methods for data centers have received more attention over the last

decade. Energy consumption of a data center mainly relies on host servers, network-

ing devices, and cooling system [106], and is proportional to utilization level [94]. If all

2.4 Taxonomy of SDN usage in Cloud Computing 21

Taxonomy	of	SDN-Clouds

Web	
Application

Map-reduce

Streaming

Homogeneous Simulation

Systems
(Empirical)HeterogeneousPerformance

Energy	
Efficiency

Virtualization

Security

Inter-DCN

Intra-DCN

Joint	Network	
and	Host

Network-only

Objective Method	Scope Target
Architecture

Application	
Model

Resource	
Configuration

Evaluation
Method

Batch	
Processing

Figure 2.2: Taxonomy of SDN usage in cloud computing.

servers in one server room are not utilized, the servers and the cooling system of the

room can be switched off to consume less power. With SDN, network elasticity is possi-

ble in addition to the computing elasticity. Network traffic can be consolidated into the

smaller number of switches with SDN for the duration of low network utilization, which

can provide possibilities to turn off unused switches. Not only the network itself but also

the joint optimization of network and host is possible for further energy savings.

Performance can be improved by providing fine-grained control over the entire net-

work in SDN. As SDN observe the entire network in the centralized controller, it can

easily improve network performance in case of traffic congestion by altering the path of

the flows. For instance, SDN can be used as one of the techniques to reduce the VM

deployment time in a large-scale data center to boot up a large number of VMs. VM

deployment time can be decreased by reducing the amount of data transferred, the bot-

tlenecks at the VM image repository, the CPU load at the target physical machine, or the

boot-up time of the VM [105]. The dynamic bandwidth allocation feature between the

image repository and physical machines can reduce the image transfer time.

Performance includes not only network throughput and latency, but also availabil-

ity and QoS. The data center network must be available throughout the whole operating

hours, and SDN can help to increase availability. In case of a hardware malfunction

on a network path, SDN controller can easily notice and modify the following flows to

use an alternate path through the programmable switches with appropriate DCN topol-

22 Taxonomy and Literature Review

ogy configuration. QoS includes providing guaranteed bandwidth to a specific user that

was almost impossible in the traditional network as network medium must be shared

by multiple users in cloud data centers. SDN, however, can manipulate the network

path to provide a dedicated bandwidth to a certain type of users. To improve the QoS,

a congested link can be detected, and its traffic can be distributed by changing the path

of the network flows. Network performance can be quantified with the measurements

such as throughput, latency, and error rate. Other works considered workload accep-

tance rate and network blocking probability to measure the performance of the resource

management scheme [42]. Optimal joint orchestration of cloud and network resources

can increase VM acceptance ratio which leads to increasing the number of VMs hosting

in a cloud data center with the limited resource, and thus maximizing the benefit cloud

provider.

Virtualization can be further realized for DCN by adopting SDN in clouds. Cloud com-

puting is implemented based on a variety of virtualization technologies which can make

it possible to run virtual machines (VMs) in clouds [16]. Hypervisors running on physical

hosts can virtualize the host resources such as CPU, memory, and storage. SDN is capable

of virtualizing network resources. Network resources such as switches and physical links

can be virtualized and leased to multiple tenants of a cloud data center. Network embed-

ding problem, for example, is to map the network flows by different tenants into physical

resources by virtualizing the infrastructure [39]. Network Function Virtualization (NFV)

is another example of SDN usage for virtualization. NFV conventionally provided by

middleboxes equipped with dedicated hardware, such as firewall, load balancer, and in-

trusion detectors. The hardware middleboxes are expensive to purchase and difficult to

manage and scale. Several researchers attempted to substitute the hardware middleboxes

with a series of SDN switches with specific controller program [101, 108, 120].

Security is an important objective in networks which have not yet extensively studied

in integrating SDN with cloud data centers. There are two research directions in the us-

age of SDN in clouds: 1) securing networks by utilization of SDN and 2) protecting core

components of SDN from attacks. On one hand, SDN technology is widely adopted in

cloud data centers to protect and prevent a Distributed Denial of Service (DDoS) attack

where the overwhelming network traffic is generated to disable online services. By uti-

2.4 Taxonomy of SDN usage in Cloud Computing 23

lizing SDN features such as traffic analysis, centralized control, and dynamic update of

network rules, it is easier to detect and react to DDoS attacks [129]. On the other hand,

SDN controller must be protected in high level of security as its central operation can

manage the entire data center network. It is also necessary to secure the management

packets communicating between the controller and its switches.

2.4.2 Method Scope

Here, we propose a taxonomy based on the scope of methodology. As we are discussing

SDN-clouds, all methods in our taxonomy are fundamentally targeting the networking

functionality in cloud computing. While some researchers consider only networking in

their studies, others consider both hosts and networking at the same time.

The scope of network-only approaches solely lies within the networking function in

cloud computing without consideration of hosts or VMs. These approaches try to collect

the network data and alter the forwarding rules in clouds using SDN to solve the research

problem. For example, most approaches targeting network performance improvement

naturally consider only networking resources in clouds [5, 32, 52, 54].

Joint approaches take not only networking but also hosts and VMs into account si-

multaneously to orchestrate both resources. Optimizing hosts and networks resources

to reduce power consumption of cloud data centers is an example of joint approaches.

Before introducing SDN, traditional approaches dominantly consider only hosts for data

centers’ power optimization [11], whereas joint optimization has been enabled by SDN

and recently appealed to many researchers [27, 135]. A joint resource allocation method

proposed by Souza et al. [30] also tries to deliver better network performance for VMs

hosted in SDN-clouds.

2.4.3 Target Architecture

As SDN can bring flexibility and controllability to the network with its programmable

controller, it applies to various network architectures in cloud data centers.

In many research studies, SDN is applied to the connection between hosts within a

data center (intra-DCN). SDN-enabled switches replace traditional switches connecting

24 Taxonomy and Literature Review

from one host to another. Networking in a data center can be optimized based on the

current utilization of network traffic, with the bandwidth usage of incoming and outgo-

ing packets.

We can also find studies focusing on inter-DCN architecture which can optimize net-

work connections between geographically distributed data centers [54, 79, 96]. Cloud

providers operating multiple data centers can benefit from SDN by developing their own

SDN controller to manage the WAN between the data centers.

Others proposed orchestration methods considering both inter and intra-DCN archi-

tectures [15, 38, 70] to interconnect and manage multiple cloud and/or edge data center

networks. The upper layer controller oversees individual SDN controllers within geo-

graphically distributed data centers as well as in transport network interconnecting data

centers. With the orchestration of inter and intra-DCN management, SDN can provide

end-to-end QoS for applications and a virtual network environment for VMs hosting in

different data centers.

2.4.4 Application Model

Researchers can consider a specific application model to benefit from SDN on their stud-

ies, or a common generic approach which does not consider any specific application

model. For instance, improving network performance between cloud data centers with

SDN is rarely related to the specific application running on the clouds [54]. In contrast,

consolidating VMs and their network traffics using correlation analysis of the utilization

can be highly relevant to the application running on the VMs [132,135]. Thus, it is worth

to consider various application models before exploring the research works.

Web application model consists of multiple tiers such as load balancers, application

servers, and databases which communicate with the upper and lower tier servers. As

the end-users of the web application expect a spontaneous response from the internet,

response time and latency are crucial in this model. With the popularity of web appli-

cations hosted in clouds, many researchers consider web application model for energy

efficiency research [125, 135].

With map-reduce model, a big task is split into smaller tasks and processed on multi-

ple machines simultaneously. In this model, a large amount of network bandwidth and

2.4 Taxonomy of SDN usage in Cloud Computing 25

computing power are necessary to process the workload where the underlying network

support is crucial. For instance, network burst between mappers and reducers can be a

bottleneck as the mappers send the processed data to the reducers at the same time if the

tasks are equally distributed and processed at a similar speed. With a proper control logic

in SDN, the burst traffic can be distributed dynamically which can eventually decrease

the effect of the bottleneck [25].

Streaming model is for the application that generates data continuously that leads to

transfer large flows of data across networks. Streaming applications include not only

audio and video streaming application, but also the applications for recently introduced

Internet of Things appliances both of which need a seamless network connection for real-

time transmission. With the emergence of Internet of Things (IoT) where every device

with sensors can generate and transfer its data to clouds for analysis and data mining,

the support for streaming applications is acquiring more attentions. As streaming ap-

plications generate an enormous amount of data continuously, an enhanced methodol-

ogy is necessary for seamless network transmission and real-time processing in clouds.

Researchers have studied both multimedia streaming applications [96] and IoT stream

data [126] for SDN-clouds.

In batch processing, jobs are processed in order. It may need to transfer data between

jobs in which network transmission is necessary with a constant and reliable connection.

In most batch processing tasks such as scientific computation, providing constant band-

width is more crucial than the latency or the response time. Thus, the network controller

should provide a different approach. For example, Seetharam et al. [107] presented the

SDN-enabled network management system for multiple clouds in the university campus

for scientific workloads.

2.4.5 Resource Configuration

Resource configuration refers to the heterogeneity of hardware resources composing of

a cloud data center. Resource configuration should be considered in designing a new

method for SDN-clouds, because the result of the method may differ depending on the

configuration. For example, a VM consolidation method for energy efficiency designed

for homogeneous configuration may not be effective on heterogeneous environment, if

26 Taxonomy and Literature Review

the algorithm did not consider the power models of various host specifications.

In homogeneous configuration, all the hardware in the data center is assumed as hav-

ing the same specifications. Physical machines and switches in an edge rack share the

same hardware specification across the entire data center, and all the racks have the iden-

tical number of hosts and switches. Homogeneous configuration is useful for research

in energy efficiency in order to simplify energy modeling of hardware, because various

hardware specifications make the modeling more complicated.

Heterogeneous configuration sets up with different types of hardware. Homogeneous

configuration is impractical in a real world, as most data centers would upgrade their

systems periodically and purchase newer machines to expand the capacity which re-

sults in having the heterogeneous configuration in the end. Homogeneous configura-

tion is useful though in a research study with a limited testing environment which can

alleviate the complexity of the evaluation process, thus many researchers studied with

homogeneous hardware configuration for their preliminary experiments. Research on

network performance for inter-DCN generally considers heterogeneous configuration as

the inter-networking system is involved with various networking operators who use dif-

ferent networking devices. Some works also include heterogeneous configuration for the

energy efficiency research in order to model the power consumption of various switch

devices [48].

2.4.6 Evaluation Method

Evaluating cloud data centers is challenging with its high complexity made up by a

tremendous number of hosts and switches, and their connections. In order to test the

new approaches with limited research resources, researchers use two main methods for

evaluation.

Simulation is the most affordable method to test a new approach with acceptable ac-

curacy. Cloud data centers can be set up in simulators with the arbitrary configuration

without much cost. It is also easy to implement the proposed approach in simulation

and to evaluate the result quickly. However, the result of the simulation can be inac-

curate when the configuration becomes far different from the validated environment, as

the simulated results are statistically calculated from certain settings. Several simulation

2.5 Current Research on SDN usage in Cloud computing 27

Network-only

Joint Network and Host

Energy
Efficiency

Performance

Security

Virtualization

Intra-DCN

Inter-DCN

Objective

Method	Scope

Target Architecture

Figure 2.3: Sub-categories used for our literature review.

tools have been implemented including Mininet [68] , and more details will be explained

in Section 2.6. Evaluation with the network simulator integrated with an empirical SDN

controller is also considered as a simulation method although the developed SDN con-

troller can be adapted to the real system directly, since the evaluation still relies on the

simulation tool.

Empirical evaluation can outcome more practical results compared to the simulation

as the test is undergoing on the real system. Although the result is more accurate, evaluat-

ing in large scale is impractical on the real systems, because the cost can be too expensive

and the management of the cloud data center elements can be significantly complex. In

several studies including ElasticTree [48], CARPO [125], and CometCloud [96] the em-

pirical approach has been used for evaluation.

2.5 Current Research on SDN usage in Cloud computing

In this section, we present relevant studies conducted in SDN-enabled cloud computing

following the taxonomy proposed in Section 2.4. We categorize the state-of-the-art pri-

marily based on the main objective of the paper using the taxonomy described in the

previous section. A research work typically aims to address more than one objective at

the same time with a different priority. We adopt the main objective of the study for the

28 Taxonomy and Literature Review

classification in this section. Figure 2.3 presents sub-categories used for further classifi-

cation of the surveyed studies in this section. The detailed literature in each category is

presented below.

2.5.1 Energy Efficiency

Energy efficiency is one of the utmost research topics in SDN-enabled cloud computing.

Based on our observation, SDN is exploited in two ways to improve energy efficiency of

cloud data centers: network optimization and joint host-network optimization. Table 2.1

presents a summary of reviewed studies for energy efficiency.

Network optimization amends network elements of DCN including switches and net-

work adapters in hosts. Link rate adaptation is a similar approach to Dynamic Voltage

and Frequency Scaling (DVFS) that lowers the link rate of a network device in case of

under-utilization [1]. Dynamic topology alteration changes the network topology dy-

namically depending on the network traffic load [48]. Network flows in under-utilized

links are consolidated into the smaller number of links resulting in the alteration of the

network topology. Correlation-aware optimization considers the correlation of network

flows for traffic consolidation [125]. Both dynamic topology alteration and correlation-

aware optimization are feasible with the introduction of SDN in cloud data centers.

Joint host-network optimization considers both host and network simultaneously to

reduce the energy consumption for VM and network placement, consolidation, and over-

booking. VM placement optimizes the initial placement of VMs in order to minimize the

total power consumption of the entire data center. Similarly, VM migration and con-

solidation consider migration of VMs after the initial placement which can consolidate

VMs into a smaller number of hosts. These techniques often use a host overbooking

method that places more VMs into a host than its capacity to maximize resource utiliza-

tion. Instead of optimizing separately, the combined techniques are applied in order to

consolidate both network and hosts at the same time.

2.5 Current Research on SDN usage in Cloud computing 29

Table 2.1: Summary of current research on SDN usage for energy efficiency in cloud
computing.

Project Description Author Organization
ElaticTree Traffic consolidation Heller et al.

[48]
Stanford University,
USA

CARPO Correlation analysis, traffic
consolidation

Wang et al.
[125]

The Ohio State Univer-
sity, USA

DISCO Distributed traffic flow con-
solidation

Zheng et al.
[134]

The Ohio State Univer-
sity, USA

FCTcon Dynamic control of flow com-
pletion time in DCN

Zheng and
Wang [133]

The Ohio State Univer-
sity, USA

GETB Energy-aware traffic engi-
neering

Assuncao
et al. [29]

University of Lyon,
France

VMPlanner VM Grouping, VM consolida-
tion

Fang et al.
[35]

Beijing Jiaotong Univer-
sity, China

VM-
Routing

VM placement problem to
a routing problem, shortest
path

Jin et al.
[60]

Florida International
University, USA

PowerNetS Correlation analysis, VM
placement, migration

Zheng et al.
[132, 135]

The Ohio State Univer-
sity, USA

S-CORE VM management considering
host-network

Cziva et al.
[27]

University of Glasgow,
UK

QRVE Energy efficient VM place-
ment and routing

Habibi et
al. [47]

Amirkabir University of
Technology, Iran

ODM-BD Big data workload slicing in
edge-cloud environment

Aujla et al.
[6]

Tharpar University, In-
dia

A Network Optimization

Several studies have been conducted in optimizing DCN to reduce the energy consump-

tion of data centers.

ElasticTree [48] is presented that dynamically changes DCN topology and adjusts

links and switches for power saving. It is designed for the fat-tree topology to consolidate

traffic flows into a minimum number of links to utilize as few switches as possible. After

consolidating the data flows into the smaller number of links, the unused switches can be

switched off to save more energy. The authors evaluated the proposed method for trade-

offs between performance, robustness and energy savings using real traces collected from

production data centers. An empirical prototype was implemented with latency monitor

and feeding various traffic patterns for evaluation.

In CARPO [125], correlation between traffic flows is considered in addition to the traf-

fic flow consolidation. If the traffic flows are less correlated to each other, those flows can

30 Taxonomy and Literature Review

be placed on the same network to maximize the overall utilization. By placing less corre-

lated traffic flows together, each link can hold more flows in the limited capacity which

leads to turn more switches off. Wikipedia traces were observed for correlation analysis,

and the authors found that different data traffic does not hit the peak at the same time,

and the off-peak utilization is less than the peak. Thus, off-peak utilization is used for

the consolidation to maximize the energy saving while still minimizes the performance

degradation. CARPO also includes link rate adaptation [1] that changes the speed of each

port based on the link utilization. The proposed method is implemented on the empiri-

cal prototype in small scale and on a simulation environment for performance evaluation

with Wikipedia workload. The results show that the proposed correlation-aware trafic

consolidation method can outperform with web application workload compared to Elas-

ticTree.

Zheng et al. [134] proposed a distributed traffic management framework with the

same correlation analysis method. The framework is capable of analyzing the correlation

between flows and consolidating the flows based on the scalability, energy savings, and

performance. The new approach focused more on the scalability of the correlation-aware

flow consolidation and tried to reduce the size of calculation for analyzing the correlation

and the decision making. The authors proposed flow or switch based traffic consolidation

algorithms that optimize each flow/switch with a limited visibility on the flow or switch,

instead of taking the entire DCN flows into account. As the new approach omits the less-

related flows in their analysis and consolidation, it can be applicable to a larger scale

DCN. The system is empirically implemented and tested on OpenFlow based switch

with 2-pod fat-tree topology, as well as evaluated the performance on a simulation setup

with Wikipedia web application workload.

The same authors studied a dynamic strategy to control flow completion time [133].

This study focused on the flow transmission time while achieving energy efficiency. The

effort on balancing between energy saving through traffic consolidation and the perfor-

mance guarantee of the network transmission time brought a new framework to control

flows with different requirements and adjust bandwidth demands accordingly. It was

evaluated on the real hardware system and the simulation.

Recently, Assuncao et al. [29] proposed energy aware traffic engineering methods

2.5 Current Research on SDN usage in Cloud computing 31

based on SDN services. The authors designed SDN services to manage switches and con-

trol network traffic. The idea is to switch off idle switches after redirecting network traffic

into an alternate path that is enough for serving the combined network traffic. A proof-

of-concept platform is implemented in a small scale real system, while the large scale

evaluation was performed in simulation. The authors showed the proposed architecture

could reduce energy consumption by consolidating network traffic into the smaller num-

ber of links while maintaining QoS of the network. Traffic consolidation however may

incur QoS degradation in case of a network burst when the amount of packets exceeds

the capacity of the link. The authors suggested a continuous and frequent monitoring

of the network in SDN controller, e.g., checking the network burst every second, and

showed that the system can turn the link on once it detected an over-utilized link.

All the aforementioned studies consider intra-DCN architecture focusing on the en-

ergy consumption within a data center in their network-only optimization.

B Joint Host-Network Optimization

More recently, researchers proposed joint host-network optimization methods consider-

ing both host and network resources simultaneously. SDN can be utilized for VM re-

source provisioning and optimization. Medina and Garcia explained various migration

techniques of VMs in cloud data center [80]. The authors used three categories for clas-

sifying migration methods: process migration, memory migration, and suspend/resume

migration. Kapil et al. [62] also presented a detailed survey on the issues on live VM

migration. The authors used downtime, migration time, and transferred data size to

measure the performance of the live migration techniques and categorized them into

post-copy approaches and pre-copy approaches.

VMPlanner [35] also optimizes VM placement and network routing with three ap-

proximation algorithms. The joint VM placement and routing problem are formulated

with three NP-complete problems: traffic-aware VM grouping, distance-aware VM-group

to server-rack mapping, and power-aware inter-VM traffic flow routing. The authors for-

mulated the problem and proved that minimization of energy consumption considering

both VM placement and network routing is a NP-complete problem. The proposed solu-

tion is to integrate approximation algorithms to solve these three problems. The solution

32 Taxonomy and Literature Review

includes VM grouping that consolidates VMs with high mutual traffic, VM group place-

ment that assigns the VM to the rack of VM group, and traffic flow consolidation to

minimize the inter-rack traffic.

Jin et al. [60] addressed joint host-network optimization problem with an integer lin-

ear algorithm. The problem is first formulated as an integer linear problem, then con-

verted VM placement problem to a routing problem to combine both problems. To solve

the problem, the depth-first search (DFS) is used to determine the best host for VM place-

ment. The proposed algorithm is implemented on the OpenFlow-based prototype with

fat-tree topology and evaluated with a number of workloads in prototype as well as a

simulation environment.

More recently, PowerNetS was proposed that optimize both VM and network traffic

using correlation [132, 135]. Inspired from CARPO [125], the authors extended the net-

work optimization to joint host-network optimization. Correlation of VMs are leveraged

for VM consolidation in addition to CARPO’s traffic consolidation. The detailed power

model is also included to estimate power consumption by a switch chassis, each port on

the switch, idle power of a server, and maximum power of the server. Using Wikipedia

and Yahoo traces, correlation coefficients between traffic flows were measured and pre-

sented. The authors then designed PowerNetS framework based on the observed corre-

lation and implemented both prototype and simulation. The system was evaluated with

the same workload traces from the correlation analysis, and the results were compared

with non-correlation based VM placement, optimal solution, and CARPO results.

Cziva et al. [27] presented a SDN-based VM management platform for live VM migra-

tion based on the network-wide communication cost. A prototype was implemented on

a real system in a cloud data center testbed. The hierarchical system architecture is pre-

sented to support OpenFlow switches and Libvirt hypervisors, and Ryu SDN controller

is used for host and network topology discovery, L2 switching management, gathering

statistics, and calculating link weights. They also proposed VM orchestration algorithms

that perform VM migration to reduce VM-to-VM communication cost. The algorithm

is recurring periodically and hierarchically to reduce the network traffic cost. It is firstly

applied to the core switch layer (the most expensive communication cost), and then grad-

ually applied to the lower layers. The evaluation showed that overall cost was converged

2.5 Current Research on SDN usage in Cloud computing 33

to the minimum after several rounds of migrations.

Habibi et al. [47] proposed a VM placement and network routing approach for energy

efficiency and QoS. The system consists of monitoring and flow detection, QoS-aware

routing, network topology storage, and VM placement. The algorithm exploits dynamic

flow routing to maintain network QoS and VM placement and migration methods to con-

solidate VMs for energy efficiency. The authors explained inevitable trade-off between

energy efficiency and QoS, and proposed a combined approach to address both prob-

lems. They measured network throughput, energy consumption, and utilization of the

data center on a simulation environment implemented on Mininet tool.

Aujla et al. [6] proposed workload slicing decision-making scheme for data-intensive

applications in multi-edge cloud environment exploiting SDN technology. They con-

sider energy consumption, communication cost, SLA, bandwidth, and revenues in their

system model for the optimal decision of data migrations between the central and edge

clouds. The SDN-based controller decides flow paths between data centers and edge

nodes as well as migration of data among multiple data centers. The proposed scheme is

evaluated on simulation with Google workload traces.

2.5.2 Performance

Several approaches have been proposed to empower the network performance of cloud

computing utilizing SDN technologies. We categorize them into intra-DCN and inter-

DCN approaches based on the target architecture in the study. Intra-DCN approaches are

to improve the performance within a data center including network throughput, latency,

and availability on the network transmission. Inter-DCN approaches are mainly for im-

proving the QoS for wide area network (WAN) between tenants and cloud data centers.

Many studies [32, 54, 107, 120, 127] rely on the dynamic per-flow routing feature of SDN

which can change the route of a network traffic dynamically based on the network condi-

tion, e.g., finding an alternate route in case of a network burst to meet QoS requirements.

Although these approaches can improve the performance of network within/between

data centers, it may introduce a new challenge incurred from the performance of SDN

controllers and switches. Because the centralized SDN controller utilizes a large amount

of computing and memory resources to manage all the switches in a network, it is diffi-

34 Taxonomy and Literature Review

cult to scale out for a growing network size. We have reviewed several studies focusing

on improving network performance in the following subsections. Table 2.2 summarizes

reviewed works for performance in this subsection in which the detail is presented below.

A Intra-DCN Performance Improvement

Wang et al. [120] at Princeton University proposed an OpenFlow-based load balancing

technique substituting the expensive dedicated load-balancer (LB) server in a data center.

A front-end LB is normally used in a data center to redirect client requests to one of appli-

cation server replica for even distribution of workloads across multiple servers. Instead

of using an expensive LB server, the authors proposed OpenFlow switches to perform

the same load balancing in a data center, by altering the network route for each incoming

traffic to be distributed across the servers. The challenge incurred in this approach is how

to deal with the excessive size of traffic rules installed in a switch for each flow for dif-

ferent servers. The authors presented an algorithm that finds wildcard rules for the same

group of flows directing to the same server, so that it can achieve a target distribution

of the traffic with scalability. The proposed method was implemented and evaluated on

NOX OpenFlow controller.

Ishimori et al. [52] proposed QoSFlow, a QoS management system that controls multi-

ple packet schedulers within a Linux kernel to provide a flexible QoS controllability over

the integrated SDN network. The traffic schedulers in Linux kernels, such as HTB and

SFQ, can become a part of OpenFlow network in QoSFlow, which allows SDN controller

to manage the QoS using the Linux traffic schedulers. QoSFlow was designed to be an

extension to the standard OpenFlow switches to schedule data flows passing through the

switch. The proposal was implemented and tested in commodity switches and showed

that various Linux schedulers worked on OpenFlow switches. Although the maximum

bandwidth has been reduced after applying QoSFlow because of the control overhead

of the OpenFlow packets, the approach can provide an easy framework to implement

QoS-aware SDN network in a data center with the classic Linux traffic schedulers.

Wendong et al. [126] proposed another approach to improve network QoS by com-

bining SDN with Autonomic Networking technology which can be applied in a DCN.

The proposed approach applies QoS requirements to SDN automatically by configur-

2.5 Current Research on SDN usage in Cloud computing 35

Table 2.2: Summary of current research for performance improvement in cloud comput-
ing with SDN.

Project Description Author Organization
OF-SLB Server load balancing Wang et al.

[120]
Princeton University,
USA

QoSFlow QoS management system for
traffic engineering

Ishimori et
al. [52]

Federal University of
Para, Brazil

AQSDN Autonomic QoS management
system

Wendong et
al. [126]

Beijing University of
Posts and Telecom.,
China

SDN-Orch SDN-based orchestration for
host-network resources

Martini et
al. [72]

CNIT and Sant’Anna
School, Italy

C-N-Orch Cloud and network orchestra-
tion in a data center

Gharbaoui
et al. [42]

Sant’Anna School and
University of Pisa, Italy

Orch-Opti SDN-based virtual resource
orchestration system for opti-
cal DCN

Spadaro et
al. [110]

UPC, Spain

OpenQoS QoS-aware network traffic
controller

Egilmez et
al. [32]

Koc University, Turkey

B4 SDN-WAN for geographically
distributed data centers

Jain et al.
[54]

Google Inc.

CNG Enhanced networking of dis-
tributed VMs

Mechtri et
al. [79]

Telecom SudParis,
France

ADON Network management system
for scientific workload

Seetharam
et al. [107]

University of Missouri,
USA

CometCloud SDN-enabled cloud federa-
tion for smart buildings

Petri et al.
[96]

Rutgers University,
USA

SD-IC Inter-connection for federated
SDN-clouds

Risdianto et
al. [104]

GIST, Korea

Orch-IC Network resource orchestra-
tion for inter-clouds

Kim et al.
[64]

ETRI, Korea

VIAS SDN overlay bypass for inter-
cloud VPN

Jeong and
Figueiredo
[58]

University of Florida,
USA

CL-Orch Cross-layer network orches-
tration signaling framework

Cerroni et
al. [21]

University of Bologna
and Sant’Anna School,
Italy

SVC SDN-based vehicular cloud
for software updates distribu-
tion

Azizian et
al. [7]

Univeristy of Sher-
brooke, Canada

BDT Optimization model for bulk
data transfers

Wu et al.
[127]

The University of Hong
Kong, Hong Kong

SDN-TE Fault-tolerant cloud resource
management

Amarasinghe
et al. [5]

University of Ottawa,
Canada

ing the controller. The autonomic QoS control module is designed to configure queue

management methods, packet schedulers, and their parameters on an OpenFlow-based

36 Taxonomy and Literature Review

controller, and the flows are managed by finding a matching packet header and chang-

ing the forwarding rule accordingly. Also, the authors introduced Packet Context, an

information set of the packet characteristics, which is carried in the IP header to mark

the packet. Using this mark, packets are prioritized in a queue of each switch port to

provide a different QoS based on the Packet Context. The proposal requires customizing

IP packet headers which makes it difficult to implement in a general-purpose network,

however can be realized for intra-DCN traffics with a higher degree of customization

possibility.

Researchers also studied to improve VM acceptance rate and network blocking rate

of a cloud data center by provisioning both computing and networking resources jointly

with SDN technology. Martini et al. [72] presented a management system for both com-

puting and networking resources in virtualized cloud data centers. The system integrates

SDN with VM-host management to orchestrate both resources and improve the service

acceptance rate and the data center’s utilization level while maintaining the quality of

user experience. The system consists of resource selection and composition, coordinated

configuration and provisioning, and monitoring and registration functions. The authors

proposed a network traffic estimation combining instantaneous and historical values to

predict the network load. Also, the system uses a server-driven or a network-driven re-

source allocation algorithm that attempts to find a server or a network first for a VM

request. Both simulation and empirical setups are used for evaluating the proposed sys-

tem and algorithms.

SDN-based orchestration system for cloud data centers is proposed by Gharbaoui

et al. [42]. to control both computing and network resources. The system architecture

includes Orchestration Layer on top of SDN controller and VM manager that perform re-

source selection, provisioning, and monitoring. The authors also propose joint resource

selection algorithm for both computing and networking resources. The algorithm se-

lects a physical machine to allocate a VM first and estimates network traffic of the edge

switch. If the estimated traffic is overloaded, another physical machine is tried until the

available physical machine is found. The proposed system and algorithm are evaluated

extensively on simulation environment by measuring VM request rejection ratio and link

utilization overloading ratio.

2.5 Current Research on SDN usage in Cloud computing 37

Spadaro et al. [110] presented SDN-based VM and virtual network orchestration sys-

tem for optical DCN. The orchestrator module is integrated in OpenStack and manages

OpenDaylight SDN controller via north-bound API of the controller. An optimization al-

gorithm for provisioning virtual data centers (i.e., VMs and virtual networks) is also pro-

posed to increase the request acceptance ratio by jointly mapping VMs and virtual links.

The authors consider joint optimization of cloud and network resources for intra-DCN

domain and evaluate the performance by measuring acceptance demands and blocking

probability.

B Inter-DCN Traffic Engineering

OpenQoS is an OpenFlow-compatible SDN controller designed to support the end-to-

end QoS for multimedia traffic between end-users and streaming servers [32]. The net-

work flows for the multimedia traffic are dynamically re-routed to meet the QoS require-

ment. The incoming traffic flows are grouped into two categories: multimedia flows and

the other data flows, where multimedia flows have specific QoS requirements. The mul-

timedia streaming flows are placed on a dedicated route differentiated from the other

flows which are transferred through the typical shortest path. The proposal exploits

SDN’s flow separation and dynamic routing features which differ from the traditional

QoS approaches utilizing a resource reservation or priority routing approach. In Open-

QoS, multiple flows are bounded to a group by filtering packet header fields. However,

due to the processing cost for packet filtering in switches, it should be wisely defined

and aggregated. The system was implemented and tested on a small-scale test bed. The

fundamental idea of OpenQoS can be extended to the intra-DCN and inter-DCN traffic

prioritization in clouds.

B4 is a private WAN connecting geographically distributed data centers implemented

by Google [54]. Google adopted SDN concepts in B4 to separate the control plane from

the data forwarding plane to enable the network to be programmable. B4 is designed to

fulfill the unique characteristics of Google’s inter-DCN traffic, such as its massive band-

width requirements, elastic traffic demand, and full control of the edge servers and net-

work. SDN principles and OpenFlow are implemented to support standard routing pro-

tocols and traffic engineering. It can leverage competing demands at traffic congestion,

38 Taxonomy and Literature Review

leverage the network capacity using multipath forwarding, and reallocate bandwidth

dynamically when the link failure or application demand changed. In their evaluation,

the network utilization of many links reached to about 100% with all links running on

average at 70% of utilization. Compared to the traditional network where the average

utilization is typically 30-40% due to overprovisioning, B4 resulted in 2 to 3 times effi-

ciency improvements with the same fault tolerance.

Mechtri et al. [79] studied SDN for inter-cloud networking. The authors presented

general purpose SDN controller for inter-cloud networking gateway that can be con-

figured and managed by authorized customers. It enables multiple VMs in geographi-

cally distributed data centers to interconnect through the SDN-enabled gateway and cus-

tomize the network for allocation and configuration based on the network requirement

of the VMs. The cloud broker in the middle is introduced in order to manage the VMs in

distributed data centers and the network infrastructure connecting the VMs. It controls

switches in each data center involving the interconnection to enable the network config-

uration to fulfill the requirement. The proposed algorithm is evaluated in simulation.

ADON is a SDN-based network management system for hybrid campus cloud archi-

tecture to run data intensive science application without network bottleneck [107]. As

these science applications running in the private cloud of the university sometimes need

an excessive resource from public clouds, some workloads should be delivered to the

external public cloud. In such case, network bottlenecks can happen while competing

for remote resources by multiple applications. The authors deployed SDN controller to

prioritize the requests based on the QoS requirements and observed the characteristics of

each scientific application. Using per-flow routing and bandwidth allocation feature of

OpenFlow, application flows are assigned to a different route with prioritized bandwidth

by the application type. The testbed is implemented in practice in two campus locations

in addition to Mininet emulation study.

Petri et al. [96] proposed SDN integration for inter-cloud federations to compute

smart building sensor data. The authors focused on data-intensive application in need of

significant data processing in real-time. The proposed architecture utilized SDN concept

over the federated clouds which connects multiple clouds to provide resource elasticity

and network programmability. The proposed architecture was applied to smart building

2.5 Current Research on SDN usage in Cloud computing 39

scenario aimed at improving processing times and costs for the building power usage

optimization. The prototype has been empirically implemented and deployed on three

sites in the UK and the US, and validated with workloads obtained from real sensors.

The evaluation showed that in-transit processing using SDN capability reduced overall

task execution time for time-constraint workloads.

Risdianto et al. [104] discussed the SDN usage to interconnect federated cloud data

centers. The approach combined the usage of both L2 tunnel-based overlay virtual net-

working and L3 BGP-leveraged routing exchange for connecting multiple data centers.

With the usage of SDN, the proposed system can flexibly configure the selected sites and

their forwarding path for better redundancy and load balancing. Leveraging the two

techniques enabled the flexible selection between L2 and L3 for interconnection of data

centers. ONOS SDN controller [91] is used to deploy L3 routing exchange, and Open-

Daylight [92] is for L2 management in the implemented prototype.

Kim et al. [64] presented SDN orchestration architecture for integrating SDN-enabled

clouds and transport networks. The paper investigates coordination methodology for

inter-DCN transmission utilizing SDN functionality to manage both cloud and inter-

cloud networks. Intra-DCN and inter-DCN are managed under separate control do-

mains, named Cloud SDN (C-SDN) and Transport SDN (T-SDN) respectively. On top of

them, Virtual Network Coordinator and Transport Network Coordinator oversee orches-

trating transport network between data centers, such as creating global virtual network

for VMs in different data centers. The proposed system is implemented on their testbed

using OpenDaylight, ONOS, and OpenStack.

Jeong and Figueiredo [58] proposed SDN-enabled inter-cloud virtual private net-

working technique to increase the flexibility of the overlay flows and alleviate the net-

work overhead caused by the tunneling protocols. SDN is integrated into the overlay

controllers that creates the virtualized network for inter-DCN and selectively bypass the

tunneling packets. The approach is applied to containers running on VMs where the

virtual private network is configured among multiple VMs located in different providers

and data centers. The prototype is implemented on Ryu controller that controls the Open-

VSwitches running on the VMs and evaluated the throughput among the containers run-

ning within and across cloud providers.

40 Taxonomy and Literature Review

Cerroni et al. [21] proposed signaling framework architecture following SDN princi-

ple for multi-domain data transport network orchestration to provide different QoS re-

quirements of applications. The application-driven configuration of network resources is

handled by Application-Oriented Module (AO-M) which implements network resource

description parser, SIP proxy server, and network module that controls underlying net-

work service plane (i.e., SDN controller layer). The framework is implemented and vali-

dated on empirical testbed in multiple locations with various commercial equipment.

More recently, Azizian et al. [7] proposed using SDN and cloud computing to dis-

tribute software updates of vehicles. SDN controller controls both the inter-DCN flows

of multiple data centers and the base station networking device where the update infor-

mation is sent through from the cloud data center to the vehicle.

Bulk data transfers across geographically distributed cloud data centers have been

studied by Wu et al. [127]. Bulk volumes of data are transferred between data centers

for VM migrations, replication of large contents, and aggregation of MapReduce frames.

In this work, the bulk transfer problem has been formulated to an optimal chunk rout-

ing problem to maximize the aggregated utility gain before the deadlines [127]. Three

dynamic algorithms are proposed that exploit bandwidth allocation, route adjustment,

and low complexity heuristics amended from the first algorithm. Time-constrained bulk

transmissions are considered in the problem formulation. The proposed system changes

the flow table in a core switch connected to a gateway in data centers to alter the band-

width reservation or routing schedules. The authors evaluated the proposed algorithms

on 10 emulated data centers on a real system and measured the job acceptance rate, the

total number of accepted jobs on different urgency, and the scheduling delay.

For the purpose of network availability, Amarasinghe et al. [5] proposed a fault-

tolerant resource management scheme for clouds using SDN. The authors presented reac-

tive traffic engineering techniques for network failure restoration using network monitor-

ing and dynamic routing features of SDN. The system identifies unexpected link failure

and recovers the network by reconfiguring the forwarding switches. The prototype was

implemented on POX controller and evaluated on Mininet emulation environment.

2.5 Current Research on SDN usage in Cloud computing 41

Table 2.3: Summary of current research for virtualization in cloud computing with the
usage of SDN.

Project Description Author Organization
FairCloud Trade-offs sharing networks

in cloud computing
Popa et al.
[98]

UC Berkeley, USA

QVIA-SDN Virtual infrastructure alloca-
tion in SDN-clouds

Souza et al.
[30]

Santa Catarina State
University, Brazil

Opti-VNF Optimal VNF allocation in a
SDN-cloud

Leivadeas
et al. [69]

Carleton University,
Canada

Dyn-NFV Dynamic NFV deployment
with SDN

Callegati et
al. [19]

University of Bologna,
Italy

E2E-SO End-to-end NFV orchestra-
tion for edge and cloud data
centers

Bonafiglia
et al. [15]

Politecnico di Torino,
Italy

2.5.3 Virtualization

SDN plays a key role for network virtualization and network function virtualization in

cloud computing. Network virtualization is to segment the physical network resources

in cloud data centers into smaller segmentation and lease it to cloud tenants like leasing

VM in clouds enabled by host virtualization. NFV utilizes a generic computing resource,

such as VM, for providing specific network functions that require high computing power.

Instead of purchasing expensive dedicated hardware for CPU-intensive network func-

tions such as firewall, NAT, or load balancing, NFV can provide a cheaper alternative

that utilizes a generic hardware with virtualization technology.

While SDN intends a clear separation of network control plane from the forward-

ing plane to enable the programmability of networks, NFV shifts the paradigm of the

network function deployment through advanced virtualization technologies [19]. In the

concept of NFV, network functions are provisioned in virtualized resources instead of

being tightly coupled in the dedicated hardware, which enable to provision and migrate

network functions across the infrastructure elastically and dynamically. Although NFV

can be realized without the aid of SDN, the integration of SDN with NFV can acceler-

ate the NFV deployment process by offering a scalable and flexible underlying network

architecture [89].

A summary of reviewed works for virtualization objective is presented in Table 2.3,

and the detail of each work is explained below.

42 Taxonomy and Literature Review

FairCloud was proposed to virtualize the network in cloud data centers similar to us-

ing VM for computing power virtualization [98]. The authors referred the challenges

of sharing the network in cloud computing into three aspects: minimum bandwidth

guarantee, achieving higher utilization, and network proportionality. Network propor-

tionality was described as the fair share of the network resources among cloud tenants

where every tenant has a same proportion of the network. According to the authors, the

fundamental trade-offs are necessary between three aspects. For example, if we aim to

guarantee minimum bandwidth, the network proportionality cannot be achieved, and

vice versa. A similar trade-off is necessary between network proportionality and high

utilization. For network proportionality, network bandwidth should be evenly shared

by cloud customers if they use the same type of VMs and network plans even if their

actual bandwidth usages are different. Thus, strict network proportionality lowers the

overall bandwidth utilization of the data center if the disparity of network usage exists

between customers. In consideration of these trade-offs, three network sharing policies

are proposed and evaluated in simulation.

Souza et al. [30] studied a QoS-aware virtual infrastructure (VMs and their network

connections) allocation problem on SDN-clouds as a mixed-integer program. The au-

thors formulate the online virtual infrastructure allocation in SDN-enabled cloud data

centers. In order to solve the mixed integer problem, the authors used a relaxed linear

program, rounding techniques, and heuristic approaches. They introduced a new VM se-

lection method that considers not only a geographical location of the available zone, but

also the end-to-end latency requirement of the VMs. The formula also includes the con-

straints of server and links capacity, forwarding table size, and latency. The evaluation

was performed under simulation environment by measuring five metrics: revenue-cost

ratio, data center fragmentation, a runtime for allocation, acceptance ratio, and mean

latency of the allocated virtual infrastructure.

In NFV where networking middleboxes (e.g., NAT, firewalls, intrusion detection) are

turned into software-based virtual nodes, virtualized network functions (VNFs) are de-

coupled from dedicated hardware and can be run on any generic machines similar to

running VMs on a physical machine. The survey by Mijumbi et al. [82] focused on Net-

work Function Virtualization studies and its relationship with SDN. NFV architectures

2.5 Current Research on SDN usage in Cloud computing 43

and business models were provided in addition to the detailed explanation of relation-

ship with cloud computing and SDN. The main survey covered standardization effort

on NFV and the major collaborative projects in both industry and academia. Esposito et

al. [34] presented a survey on slice embedding problem on network virtualization. The

authors defined slice embedding problem as a subproblem of resource allocation that

comprised of three steps: resource discovery, virtual network mapping, and allocation.

For each step, the surveyed literature was characterized by constraint type, type of dy-

namics, and resource allocation method.

As VNFs can be placed at any hardware, VNF allocation problem has received in-

creasing attention with the emergence of NFV technology. Recently, Leivadeas et al. [69]

presented an optimal VNF allocation method for a SDN-enabled cloud. The authors con-

sidered single or multiple services provided to a single or multiple tenant in the model.

NFV orchestrator controls both the SDN controller and the cloud controller to select the

optimized place to allocate the VNFs. The formulated problem includes both servers and

switches in a cloud to minimize the operational cost of the cloud provider. The optimal

solution is presented by mixed integer programming, and four heuristics are proposed.

The proposed algorithms are evaluated on simulation to measure the operational cost of

the cloud provider, the number of utilized nodes and links, and the utilization. The paper

showed the optimal solution of VNF allocation problem and proposed simple and basic

heuristics. More delicate heuristics can be studied and proposed to complement their

study for further cost saving or energy efficiency.

Callegati et al. [19] presented a proof-of-concept demonstration of dynamic NFV de-

ployment in cloud environment. The system is capable of dynamic SDN control inte-

grated with cloud management for telecommunication operators and service providers

implementing NFVs enabling orchestration of intra-DCN and inter-DCN. The authors

consider single or multiple VMs hosting various VNFs that dynamically adapt to the

network condition. The proof-of-concept is implemented on Ericsson Cloud Lab envi-

ronment running Ericson Cloud Manager on top of OpenStack.

Bonafiglia et al. [15] also presented open-source framework that manages NFV de-

ployment on edge and cloud data centers along with inter-domain networks that connect

data centers. This work considers both intra and inter-DCN architecture as well as orches-

44 Taxonomy and Literature Review

Table 2.4: Summary of current research for security in cloud computing with the usage
of SDN.

Project Description Author Organization
GBSF Game based attack analysis

and countermeasure selection
Chowdhary
et al. [22]

Arizona State Univer-
sity, USA

Brew Security framework to check
flow rule conflicts in SDN

Pisharody
et al. [97]

Arizona State Univer-
sity, USA

tration of cloud and network resources in a data center. For edge and cloud data centers,

OpenStack is used to control the resources, whereas OpenDaylight or ONOS controller

manages inter-DC SDN networks. On top of these heterogeneous domain controllers,

Overarching Orchestrator (OO) oversees all domains to provide end-to-end service or-

chestration. OO interacts with edge/cloud and network domains through OpenStack

and SDN Domain Orchestrator respectively, that handles a specific domain to commu-

nicate with the underlying infrastructure controller. The system also supports network

function deployment in any domains i.e., either cloud or SDN domains. The system is

validated with OpenStack, ONOS and Mininet setup by experimenting NAT function

deployment on either cloud or SDN network.

2.5.4 Security

Many studies have been proposed for enhancing security utilizing SDN features to detect

and prevent DDoS attacks [129], and some researchers also explained the security vulner-

ability of SDN controller itself. However, it is difficult to find much literature specifically

targeting the cloud computing environment. Although the general approaches using

SDN for security can be applied to the cloud computing, we will exclude those gen-

eral approaches in this survey as our intention is solely on cloud computing. Table 2.4

presents the list of surveyed studies for security.

Yan et al. [129] presented a comprehensive survey on how to prevent DDoS attack

using SDN features. The capabilities of SDN can make DDoS detection and reaction

easier while the SDN platform itself is vulnerable to security attack noted in its central-

ized architecture. The authors discussed on both sides; the detailed characteristic of the

DDoS attack in cloud computing and defense mechanism using SDN, and DDoS attacks

2.5 Current Research on SDN usage in Cloud computing 45

launching on SDN and the prevention approaches.

A security framework in SDN-cloud environment was proposed by Chowdhary et

al. [22] to prevent DDoS attacks using dynamic game theory. The framework is based

on reward and punishment in the usage of network bandwidth so that the attackers’

bandwidth will be downgraded dynamically for a certain period. The framework imple-

mented on top of ODL SDN controller that functions through the north-bound API of the

controller, and evaluated with Mininet.

Recently, Pisharody et al. [97] from the same institution proposed a security policy

analysis framework to check the vulnerability of flow rules in SDN-based cloud envi-

ronments. They describe possible conflicts among flow rules in SDNs forwarding table

that can cause information leakage. The framework detects flow rule conflicts in multi-

ple SDN controllers. The detection mechanism is extended from the firewall rule conflict

detection methods in traditional networks. The system is implemented on OpenDaylight

SDN controller and tested in empirical systems.

2.5.5 Summary and Comparison

All studies covered in the survey are summarized and compared in Table 2.5 based on our

taxonomy in Figure 2.2. Researchers are actively studying for energy efficiency and per-

formance optimization using SDN in clouds. Scope is varied depending on the proposed

method, some focusing on network-only method, while others considering joint comput-

ing and networking resource optimization. For studies on energy efficiency, all surveyed

papers consider intra-DCN architecture in their model which focuses on power saving

within a data center. This reflects the energy trend in recent years that enormous amount

of electricity is consumed by data centers which has been increasing rapidly [84]. On the

other hand, for performance improvement, many studies consider inter-DCN architec-

ture exploiting SDN on WAN to enhance the QoS and network bandwidth. Although

some studies consider the network performance within a data center, there are more

opportunities to exploit SDN technology in WAN environment where limited network

resources have to be provisioned for cloud tenants. Using SDN’s dynamic configuration

and network optimization, cloud tenants can acquire more availability and reliability in

intra-DCN resulting in better QoS.

46 Taxonomy and Literature Review

Table 2.5: Characteristics of SDN usage in cloud computing.

Project Objective Scope
Arch App Rsrc Eval

intra inter web str bat hom het sim emp
ElaticTree [48] Energy Network X X X
CARPO [125] Energy Network X X X X
DISCO [134] Energy Network X X X X X
FCTcon [133] Energy Network X X X X
GETB [29] Energy Network X X X X
VMPlanner [35] Energy Joint X X X
VM-Routing [60] Energy Joint X X X X
PowerNetS [132] Energy Joint X X X X
S-CORE [27] Energy Joint X X X
QRVE [47] Energy Joint X X X
ODM-BD [6] Energy Joint X X X
OF-SLB [120] Performance Network X X X
QoSFlow [52] Performance Network X X X X
AQSDN [126] Performance Network X X X X
SDN-Orch [72] Performance Joint X X X X
C-N-Orch [42] Performance Joint X X X
Orch-Opti [110] Performance Joint X X X
OpenQoS [32] Performance Network X X X X
B4 [54] Performance Network X X X
CNG [79] Performance Joint X X X
ADON [107] Performance Network X X X X
CometCloud [96] Performance Network X X X X
SD-IC [104] Performance Network X X X X
Orch-IC [64] Performance Network X X X
VIAS [58] Performance Joint X X X X
CL-Orch [21] Performance Network X X X
SVC [7] Performance Joint X X X X
BDT [127] Performance Network X X X
SDN-TE [5] Performance Network X X X
FairCloud [98] Virtualization Network X X X X
QVIA-SDN [30] Virtualization Joint X X X
Opti-VNF [69] Virtualization Joint X X X
Dyn-NFV [19] Virtualization Joint X X X X
E2E-SO [15] Virtualization Joint X X X X
GBSF [22] Security Network X X X
Brew [97] Security Network X X X

Arch: Target architecture - intra (Intra-DCN) or inter (Inter-DCN); App: Application model - web (web appli-
cation), str (streaming), or bat (batch processing); Rsrc: Resource configuration - hom (homogeneous) or het
(heterogeneous); Eval: Evaluation method - sim (simulation) or emp (empirical).

For application model, many studies have no target application explicitly considered

in the proposal which has no tick symbol in the table. These studies propose generic

approaches so that any applications running on the cloud can be beneficial from the

proposed method. For energy efficiency, a number of studies consider web application

model reflecting the popularity of web applications hosting on clouds. Also, it is acces-

sible to acquire web application workloads because many datasets are publicly available

2.6 Evaluation Methods and Technologies 47

online, including Wikipedia1 and Yahoo!2 traces. On resource configuration, most stud-

ies for energy efficiency consider homogeneous resources to simplify the research prob-

lem because consideration of heterogeneous resource type leads to adding extra param-

eters to the problem formula. There are a number of studies using both simulation and

empirical method for evaluation, while most studies choose either one of them. Details

of available evaluation methods are explained in the following section.

2.6 Evaluation Methods and Technologies

For accelerating innovation and development of SDN-enabled cloud computing, tools

and toolkits are required to build a testbed for testing OpenFlow and SDN systems in a

cloud data center. The testbed also has the capability to measure the energy consumption

to evaluate proposed algorithms. In this section, simulation tools and empirical methods

are explained.

2.6.1 Simulation Platforms and Emulators

Simulation platform provides a reproducible and controlled environment for evaluation

with ease of configuration and alteration. For cloud computing, many simulation tools

have been introduced to evaluate new approaches to managing and controlling the cloud

data center and various scenarios. CloudSim [18] is a popular cloud simulator imple-

mented in Java, providing discrete event-based simulation environment capable of simu-

lating cloud data centers, hosts, VMs, and brokers. Various scenarios can be implemented

in CloudSim, including VM placement policy, VM migration policy, brokering policy, and

other data center management policy. It also supports workload simulation executing in

the VMs. With its easy-to-use discrete event-based architecture, additional elements can

be added to send and receive simulation events, as well as extending the existing entities

to provide extra functionality. However, CloudSim does not support network event in

details.

In order to fulfill the lack of network simulation capability of CloudSim, Network-

1www.wikibench.eu
2webscope.sandbox.yahoo.com/catalog.php?datatype=s

www.wikibench.eu
webscope.sandbox.yahoo.com/catalog.php?datatype=s

48 Taxonomy and Literature Review

CloudSim [41] is introduced to simulate applications with network communication tasks.

Additional network elements are added in NetworkCloudSim, including network switches

and links that receive network events and calculate estimated network transmission time.

Although NetworkCloudSim includes extensive network functionality to simulate data

center network and message-passing applications in a data center, the support of SDN is

not considered in the design and implementation.

GreenCloud [65] is a NS-2 [85] based simulation framework that captures the en-

ergy aspect of cloud data centres including computing and communication elements.

With the integration of NS-2 which can capture the network pattern accurately on the

packet level, GreenCloud can also provide accurate network results. The simulation en-

tities include hosts and switches with power consumption models such as DVFS. Work-

load models are also predefined and provided in the framework for three types of jobs,

e.g., compute-intensive, data-intensive, and balanced. Although GreenCloud provides

a comprehensive simulation environment to evaluate network aspects in clouds, evalu-

ating SDN-based applications on GreenCloud is not straightforward because NS-2 and

accordingly GreenCloud have not specifically considered SDN features in their design.

For SDN emulation, Mininet [68] is a popular emulation tool to enable testing SDN

controllers. Mininet uses virtualization techniques provided by Linux kernel which is

capable of emulating hundreds of nodes with arbitrary network topologies. As it uses a

real kernel of Linux, it can produce more accurate results including delays and congestion

generated at operating system level. Any OpenFlow controller can be tested in Mininet

with a capability of executing Linux programs virtually in the emulated host in Mininet.

NS-3 [103] is another discrete-event network simulator that provides a simulation for

various network protocols on wired and wireless networks. Although Mininet and NS-

3 are reliable network emulation and simulation tools, they are not suitable for testing

cloud-specific features such as workload schedulers or VM placement policies.

Teixeira et al. [112] proposed a combination framework of Mininet with POX [99], a

Python controller for OpenFlow, in order to support simulation of SDN feature in cloud

computing environments. Mininet is used to emulate network topologies and data traf-

fic in a data center running OpenFlow controller in POX. With the usage of Mininet and

POX, it provides practical results and ready-to-use software in real SDN environment.

2.7 Summary 49

The simulation tool, however, is lacking support for cloud-specific features such as defin-

ing heterogeneous VM types or executing various application workloads at the simulated

host.

2.6.2 Empirical Platforms

OpenStackEmu [14] is a testbed framework combining network emulation with Open-

Stack [93] and SDN. The authors combined SDN controller of OpenStack with another

network emulator to enable emulating a large-scale network connected to the OpenStack

infrastructure. It also included a data center traffic generator in the framework. Differ-

ent VM migration, load balancing, and routing strategies can be evaluated on real VMs

connected through the emulated network topology.

OpenDaylight (ODL) [92] and ONOS [91] are open source SDN controllers that sup-

port the SDN integration for OpenStack via plug-ins. Neutron, the networking module

in OpenStack suite, can be configured to use an alternative SDN controller instead of

Neutron’s own functions. For instance, ODL implements a specific feature called NetVirt

(Network Virtualization) for OpenStack integration. By enabling the NetVirt feature in

ODL and configuring Neutron to use ODL as a default SDN controller, an OpenStack-

enabled private cloud can be used as a testbed for evaluating SDN features in cloud

computing.

2.7 Summary

This chapter presented a taxonomy of SDN-enabled cloud computing and the survey of

the state-of-the-art in building SDN-based cloud computing environments. We catego-

rized necessary aspects of existing works in how to make SDN-enabled cloud computing

focusing on networking aspects with SDN technology. The elements include architec-

ture in the usage of SDN, the objective of the research, the application model, hardware

configuration and evaluation method to test the proposed approaches. Each element

in the taxonomy was explained in detail, and the corresponding papers were presented

accordingly. We also described various research projects conducted for energy efficient

cloud data centers. There are three main approaches to reduce the energy consumption

50 Taxonomy and Literature Review

in data centers: host optimization, network optimization, and joint optimization. Re-

cently many works are focusing on joint optimization that considers host and network

simultaneously to decrease power usage and save operational cost. Afterward, network

QoS management methods based on SDN were explained, following various research

tools for simulation and energy modeling. Some tools focus on the network with SDN

controller while others focus on hosts in the data center.

Chapter 3

Modeling and Simulation
Environment for Software-Defined

Clouds

To accelerate the innovation pace of SDN-clouds, accessible and easy-to-learn testbeds are required

which estimate and measure the performance of network and host capacity provisioning approaches

simultaneously within a data center. This is a challenging task and is often costly if accomplished

in a physical environment. Thus, a lightweight and scalable simulation environment is necessary

to evaluate the network allocation capacity policies while avoiding such a complicated and expensive

facility. This chapter introduces CloudSimSDN, a simulation framework for SDN-enabled cloud

environments based on CloudSim. We present the overall architecture and features of the framework

and provide several use cases. Moreover, we empirically validate the accuracy and effectiveness of

CloudSimSDN through a number of simulations of a cloud-based three-tier web application.

3.1 Introduction

TOOLS and toolkits are necessary to foster innovation and development that pro-

vide a testbed for experimenting with OpenFlow and Software-Defined Network-

ing systems within a cloud data center. To this end, Mininet [68] is developed to em-

ulate the network topology of OpenFlow switches. Thus, it enables testing different

SDN-based traffic management policies in controller. Nevertheless, Mininet concentrates

solely on network resources and does not provide any environment to test other cloud

This chapter is derived from: Jungmin Son, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Xiaohui Ji,
Young Yoon, and Rajkumar Buyya, “CloudSimSDN: Modeling and Simulation of Software-Defined Cloud
Data Centers,“ Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid 2015), Shenzhen, China, May 4-7, 2015.

51

52 Modeling and Simulation Environment for Software-Defined Clouds

resource management techniques such as VM placement along with network resources

consolidation. To address this shortcoming, we introduce CloudSimSDN that enables the

simulation of policies for the joint allocation of compute and network resources.

CloudSimSDN is a new simulation tool built on top of CloudSim [18] that has been

briefly discussed in the context of Software-Defined Clouds [16] where resources are dy-

namically managed and configured in a data center via a centralized controller. In this

chapter, we discuss the essence of CloudSimSDN and present a detailed description of

its design and implementation. The framework is designed and built in such a way that

is capable of evaluating resource management policies applicable to SDN-enabled cloud

data centers. It simulates cloud data center, physical machines, switches, network links,

and virtual topologies to measure both performance metrics to guarantee QoS and energy

consumption to assure environment conservation and cost-reduction.

The CloudSimSDN accuracy is validated and its effectiveness is tested through a

number of experiments. The experiments do not intend to provide a novel algorithm

for traffic prioritization or host-network resource management but to prove the effective-

ness of the simulator in a number of use case scenarios.

The remainder of the chapter is organized as follows. In Section 3.2, we describe

the related works and highlight the uniqueness of our simulator. In Section 3.3, we em-

phasize the requirements of the simulation, then Section 3.4 provides the description of

overall framework design and its components in detail. The validation process of the

simulator is explained in Section 3.5, followed by an evaluation with use case scenarios

for three-tier applications in Section 3.6. Finally, Section 3.7 summarizes the chapter.

3.2 Related Work

Recently, many cloud environment simulation tools were proposed to enable reproducible

and controlled evaluation of new algorithms for management of cloud resources and ap-

plications. CloudSim [18] is a discrete event-based cloud simulator implemented in Java,

enabling the simulation of data centers with a number of hosts. VMs can be placed in a

host in accordance to VM placement policy. After creating VMs, workloads can be sub-

mitted and executed in VMs. Additional elements can be implemented and added to the

3.2 Related Work 53

simulator to operate with other entities by receiving and sending events. CloudSim does

not support network evaluation in details.

NetworkCloudSim [41] simulates applications with communication tasks in CloudSim.

In this work, network elements such as switches and links are implemented and added

in CloudSim and used to estimate network transmission time. However, they focused

on modeling and simulating message-passing applications in a data center that does not

include SDN and its dynamically configurable features. We emphasize support of SDN

features such as dynamic network configuration and adjustable bandwidth allocation.

The iCanCloud simulator [88] is a solution aiming at the simulation of large scale

cloud experiments. It focuses on enabling a cost-performance analysis of applications

executing on the cloud. Network simulation is enabled by the INET framework, which

enables the simulation of network infrastructures including devices (such as routes and

switches) and protocols (such as TCP and UDP) [88]. It does not support the modeling

and simulation of SDN controllers and related features.

GreenCloud [65] is a cloud simulator focusing on energy-efficiency research. It ex-

tends the NS2 simulator [85], and is able also estimate not only power consumption of

computing resources but also from network resources. As for the previous cases, it can-

not model and simulate features of SDN.

SPECI [111] is a simulator that focuses on modeling and simulating the data center

middleware and failures in the underlying infrastructure. It focuses on analyzing the

performance of the middleware under different network conditions. It does not support

modeling of cloud applications or SDN features.

RC2Sim [23] is a tool for experimentation and functionality tests of cloud manage-

ment software via simulation and emulation in a single host. Network is simulated via a

module that calculates expected data transfer times given a user-supplied cloud network

topology. Unlike the previous simulators, RC2Sim targets analysis of control commands

to the cloud infrastructure (such as request for VM creation) rather than analysis of the

performance of cloud applications using different policies and cloud environments.

Mininet [68] is a widely used SDN emulation tool to test SDN controllers. It em-

ulates hundreds of nodes with different network topologies in a Linux machine using

virtualization techniques provided by the Linux operating system, which presents more

54 Modeling and Simulation Environment for Software-Defined Clouds

CloudSimSDN

User code and scenario User Interface

Virtual Topology

Configuration

Workload Files

Physical Topology

Configuration

User RequirementsCloud Scenario
Simulation

Specification

User or Data center

broker
Scheduling Policy

Virtual Machine Virtual ChannelVirtual Topology

Processing

Execution
VM Services

Transmission

Execution

VM

Management

Network

Management

Network ProvisioningVM ProvisioningResource Provisioning

CPU

Allocation

Memory

Allocation

Storage

Allocation

Bandwidth

Allocation

Channel

Allocation
Resource Allocation

Host Switch LinkData CenterCloud Resources

CloudSim Discrete Event Simulation Core

Processing TransmissionRequestWorkload

VM Placement policy Network policy

Graphical User

Interface
...

Figure 3.1: CloudSimSDN architecture.

accurate results reflecting delays and congestion at the OS level. An external OpenFlow

controller can be attached and tested in Mininet. Similarly, Linux programs can be exe-

cuted in a virtual node. However, Mininet, similar to NS-3[86], is not capable of testing

cloud-specific features such as VM placement policies, workload schedulers, etc.

Teixeira et al. [112] introduced a framework to test SDN cloud-data center controllers

using Mininet and POX, a Python controller for OpenFlow SDN standard [99]. They

used Mininet to manage network topologies and data traffics and POX to implement the

controller of the framework. Thus, it can provide practical results and provide software

that is ready-to-use in a real SDN environment. However, it does not allow simulation

of cloud-specific features such as different configuration of VM types and application

execution.

3.3 Software-Defined Cloud Data Center Simulation: Goals and Requirements 55

3.3 Software-Defined Cloud Data Center Simulation: Goals and
Requirements

Simulation is a valuable tool for initial research of new policies and techniques in dis-

tributed systems, as it enables reproducible experimentation in a controlled environment,

which is hard to achieve in real cloud infrastructures. Simulation enables quick evalua-

tion of strategies in different scenarios, which can be applied as an initial filter against

approaches that underperform compared to existing approaches. As noted earlier, simu-

lation tools exist to enable evaluation of policies for cloud infrastructures, although with-

out support for SDN and all its benefits. Tools exist also that can simulate the effect

of SDN controllers on response time of network packets, but without supporting cloud

features.

As cloud infrastructures can benefit considerably from SDN and its capabilities, a

tool that enables design and test of controller policies and its effect in cloud infrastruc-

tures is desirable, and this is the objective of the tool proposed in this chapter. Thus, to

achieve our goals of reproducible and controlled experimentation of Software-Defined

Cloud data centers, we identified the following requirements:

• Capacity to represent core data center computing elements;

• Capacity to simulate flows and different policies that can be implemented per flow

in the infrastructure;

• Support for flexible description of virtual networks that can be deployed on top of

the simulated physical network;

• Flexible model of applications, enabling representation of both data transfer and

computational needs of the application; and

• Support for reuse of network descriptions (network topologies and data flows),

possible via some standard file output format.

The above requirements drove the design and development of our framework, which

we detail in the next section.

56 Modeling and Simulation Environment for Software-Defined Clouds

3.4 Framework Design

Our SDN simulator, CloudSimSDN, is built on top of the CloudSim toolkit [18]. It lever-

ages CloudSim’s capabilities of modeling computational elements of data centers and

CloudSim’s simulation engine. To enable modeling and simulation of SDN, we added a

number of components to simulate network traffic and SDN controller behaviors.

Figure 3.1 shows the architecture of CloudSimSDN. Users of our framework supply

user code and scenarios. Physical and virtual topology configurations can be supplied

either as JSON files or as program codes (which are written in Java).

Besides infrastructure description, end-users’ requests description, which compose

the input workload for the simulation, are supplied in CSV files. Each workload should

specify the submission time along with a list of job processing size and traffic data size.

In addition to workload and topology configurations, scheduling policies should be pro-

vided, such as VM placement algorithm and network policies. Brokers can be pro-

grammed to simulate the behavior of end-users or data centers. Regarding these policies,

a user can either utilize built-in policies or can develop their own (by extending abstract

classes). The aforementioned user input feed to topmost elements of the architecture,

namely Virtual Topology and Workload.

VM Services are in charge of managing VMs and network, by calculating application

execution and packet transmission time between VMs. The next layer, Resource Provi-

sioning, is composed of two modules. VM Provisioning is a core module to provision

VMs within data center according to VM placement policy specified by simulator users.

Network provisioning is performed according to the network policies in use in the simu-

lation. The next layer, Resource Allocation, contains modules that allocate resources speci-

fied in the bottommost layer of the architecture, Cloud Resources.

Figure 3.2 contains a simplified class diagram for the main classes of our approach.

These classes are discussed in the rest of this section.

3.4.1 CloudSim core logic

The original CloudSim core logic is used to simulate the basic compute elements that

compose the cloud infrastructure. On CloudSim, physical hosts can be defined with spe-

3.4 Framework Design 57

SimEntity Datacenter

Node

SDNHost Switch

CoreSwitch AggregationSwitch EdgeSwitch

ChannelLink

NetworkOperatingSystemPhysicalTopology

Vm

existing CloudSim classes added CloudSimSDN classes

Host

Figure 3.2: CloudSimSDN Class Diagram.

cific configurations and VMs are placed on the host that meets resource requirements

such as CPU power, memory, and storage size. CloudSim simulates a range of elements

of the cloud architecture, including data center, physical host, VM, VM scheduler, work-

load scheduler, etc. Although network bandwidth is one parameter of the configuration

for physical machines and VMs, bandwidth in CloudSim is used only as a constraint

for VM scheduler, and thus the proposed extension is necessary for modeling of SDN

features for networking provisioning.

3.4.2 Abstracting physical and virtual topology

The physical topology includes hosts, switches, and links. VMs are placed in physical

hosts, and network packets are transferred between hosts via switches. Hosts are speci-

fied with their computational power, memory, and storage size. Links connect a host to

a switch or connect switches with specified bandwidth.

Similarly, virtual topology includes VMs and virtual links. VMs are described with

the required computational power, memory, and storage size. Virtual links connect VMs

with optional bandwidth amount. If the bandwidth is not specified in a virtual link, then

the simulator assumes that communication between them occurs without bandwidth

reservation. Case users specify virtual links between two points, bandwidth reservation

between the points need to be enforced. Because the path connecting such two points

could be chosen among different paths of the physical topology, the problem of map-

58 Modeling and Simulation Environment for Software-Defined Clouds

ping the virtual topology on the physical one needs to be solved with some objective in

mind (such as minimizing the average path length or minimizing the number of network

devices involved in the solution). This problem is known as Virtual Network Embedding

(VNE) problem. There are various researches conducted to solve the VNE problem [39],

which can be implemented and tested in our simulator.

3.4.3 Network modules

To simulate packet transfer between VMs, we developed a Switch class performing SDN-

enabled switch function managed by a controller. Forwarding rules are installed by the

controller’s Network Operating System, and can be dynamically changed depending on the

network traffic. The virtual links connecting switches and/or VMs are represented with

a Channel class that defines the physical path capacity of such channels. The class holds

a list of physical network elements, such as switches and hosts, along with physical links

between those elements.

Once a network packet is generated from a VM and sent to the underlying host, it is

forwarded to the destination host using a channel through forwarding routes. By default,

a channel is shared by all packets if they are sent from the same source VM to the same

destination VM. Since different virtual channels could share the same physical link, each

physical link also maintains the list of channels passing through the link itself. If a new

channel is created and added to the link, the link updates the shared bandwidth of all

channels which passes through the link.

By using the Network Operating System, it is also able to create a dedicated channel

for a specific traffic flow. As SDN allows the controller to differentiate network flows

depending on the type of traffic, our framework also can create a channel for a specific

flow with dedicated bandwidth allocation. In this case, an extra channel is created in

addition to the default channel, and the packets with specific flow id are forwarded using

the new channel.

Network Operating System class represents the central controller managing the overall

network behavior of the simulation. It monitors all the network’s channels and packets,

and decides how to reconfigure each network element. User-defined network policies

can be developed by extending this class. It also calculates the estimated arrival time

3.4 Framework Design 59

for each packet based on the allocated bandwidth for each channel and the number of

packets sharing the same channel. If there is more than one channel sharing a link, each

channel size is also included in the bandwidth calculation.

Functions and behaviors supported by SDN are implemented in the Network Operat-

ing System class. For example, if dynamic bandwidth allocation is necessary to be simu-

lated, policies specifying how to allocate bandwidth to each flow are implemented in this

class.

3.4.4 Calculating packet transmission time

Simulation of network requires that the transmission time for data transferred between

hosts is calculated. Calculation is straightforward if the data is transmitted for one hop

that is not shared with other hosts. However, it is more complicated to estimate travel

time when the packet needs to be transferred to the host via multiple hops where some

are shared by other hosts. In fact, data is fragmented into several packets involved in

multiple fragmentation process on each network layer depending on protocols. The frag-

mentation processes are complicated and varied on different protocols.

Therefore we simplify the transmission process model and the estimation of transmis-

sion time. We introduce the class Channel, an end-to-end edge from sender to receiver

consisting of multiple links. It is a path for data packets that are going through a series

of queues of ports in different switches. The class Link is a physical medium between

ports of switches or hosts. The class Transmission refers the transferring data between

two hosts which travels through the channel.

In each link, bandwidth is first allocated to the priority channel if SDN is configured

to allocate a specific amount of bandwidth to the channel. Afterwards, the remaining

bandwidth is equally shared by the channels passing through the link. Thus, allocated

bandwidth BWc,l for a channel c in the link l is defined as BWc,l =
BWl
Nl

, where the link (l)

has available bandwidth (BWl) shared by the number of channels (Nl).

As a channel is composed of multiple links, the transmission speed of the channel ba-

sically depends on the least bandwidth among the links. Even if some links have higher

bandwidth, there would be a bottleneck when packets pass through a link with lower

bandwidth. Thus, for the time period ∆t, when no channel has been added or removed,

60 Modeling and Simulation Environment for Software-Defined Clouds

Activity

Request

1

1

1

1

1

-payload

1

1

*

Processing Transmission

PackageCloudlet

Figure 3.3: User request modeling.

the amount of data Dc transferred from sender to receiver on a channel c can be calculated

with Equation 3.1:

Dc = ∆t×Min(BWc,l) (3.1)

When a new channel is added, Network Operating System informs all links where

the new channel passes through, and existing channels are updated with a new lower

bandwidth value. Channels and links are also updated when a data transmission is fin-

ished and the allocated channel is deleted. In this case, the remaining channels will have

more bandwidth as there is one less channel using the link. Updated bandwidth values

are used to calculate the size of data transferred for the next time period.

3.4.5 Abstracting user requests

In practice, a job associated with network transport can be abstracted as a combination of

computation processing interleaved with packet transfers. For example, in a web service

model, when a request is received at the front-end server, e.g. web server, the front-end

server computes the request and creates another request to the mid-tier server, e.g. appli-

cation server. In the same way, when the mid-tier server receives a request, it processes

the request, and sends another request to the back-end server, e.g. database server.

3.5 Validation 61

In order to model a request containing both workloads and network transmissions,

three classes are implemented: Request, Processing and Transmission (see Figure 3.3), where

Processing and Transmission classes are implemented upon Activity interface. Request has a

list of multiple number of Activity objects, which are implemented as either Processing or

Transmission. Processing contains a computation workload (Cloudlet), and Transmission

has a network transmission requirement (Package). Several Processing and Transmission

objects can compose a Request which should appear in order. If Transmission is appeared

after Processing in the Request, the Request is sent to the next VM that is supposed to

execute the following Processing. For easy use, list of requests can be input in a CSV

format in which has multiple pairs of Processing and Transmission.

In order to estimate network transfer time for each packet, we introduce a Queue in

nodes for each flow. For example, if a flow is set up between two hosts, the queue should

be set up in the sender’s host as well as in all switches that packets go through.

3.5 Validation

Validation of CloudSimSDN is a focal point when it comes to the applicability of the sim-

ulation. In order to validate CloudSimSDN, we have conducted a series of experiments

that compare CloudSimSDN and Mininet with the same workload. As noted earlier,

Mininet is a network emulator for the creation of virtual network using the Linux kernel

and measurement of data transmission time sent via OS protocol stack. Since it uses the

actual Linux kernel for the network emulation, Mininet generates more realistic results,

and is widely used to measure SDN-based traffic management policies in controller. Our

goal is to first build scenarios with different data sizes and different shortest paths be-

tween hosts (including different network elements). Next, for each scenario we analyze

how close is the data transfer time between hosts in CloudSimSDN and Mininet which

can demonstrate the accuracy of the CloudSimSDN.

3.5.1 Mininet setup

Environment for Mininet experiments is set up in Python using Mininet Python API.

Network topology in Mininet is created by adding and configuring hosts, switches, and

62 Modeling and Simulation Environment for Software-Defined Clouds

links, and then each host is scheduled to start data transmission at the same time with

other hosts simultaneously. To achieve it, we developed: 1) monitoring agents to measure

data transmission time between hosts; 2) Sender agents that generate dummy data with

specified size and send it to the receiver agent. Before data transmission begins, the

program waits until the given time to make sure all senders start transmission at the

same time. When the receiver agent on the other side finishes receiving all data, it sends

back an acknowledgement. Once done, the monitoring agent calculates the transmission

time. Time clocks of the emulated hosts within Mininet are synchronized as they share

the same system clock.

3.5.2 Testbed configuration

We created a tree topology of depth 2 with four hosts (see Figure 3.4). The root is a

core switch which has two edge switches as child nodes. The leaves are four physical

machines connected to the edge switches. Although a tree topology can be effortlessly

configured, it can support a number of scenarios, e.g. data sending from VM1 to VM2

passes through only an edge switch, while data from VM2 to VM3 passes through the en-

tire network. In addition, we created one VM in each physical machine in CloudSimSDN

because Mininet does not allow VM simulation. Hence, each VM represents a physical

machine in Mininet. The configured link speed between core and edge switches, and

between edge switches and hosts, are shown in Table 3.1.

In each scenario in Table 3.2, each host is configured to send data with different sizes

to the other hosts at the same time, which makes links be shared among multiple con-

nections. As shown in Table 3.2, scenarios differ in the path that the data travels. All

transmissions are set up to start at the same time, hence if the data size is not the same,

Table 3.1: Link configuration for the validation experiments.

Link Bandwidth

Core↔ Edge switches
10 Mbps

(1.25 MBytes/sec)

Edge switches↔ Hosts
10 Mbps

(1.25 MBytes/sec)

3.5 Validation 63

Core Switch

Edge Switch Edge Switch

Physical machine Physical machine

Controller

VM1 VM2

Physical machine Physical machine

VM3 VM4

Figure 3.4: Physical topology configuration for the validation test.

Table 3.2: Various scenarios for validation.

Scenario Sender Receiver Data size

Scenario 1

VM1 VM4 10 MBytes

VM2 VM4 10 MBytes

VM3 VM4 10 MBytes

Scenario 2

VM1 VM4
Varied in uniform distribution

(a = 10 MBytes, b = 20 MBytes)
VM2 VM4

VM3 VM4

Scenario 3

VM1 VM2 10 MBytes

VM2 VM3 10 MBytes

VM3 VM1 10 MBytes

Scenario 4

VM1 VM2
Varied in uniform distribution

(a = 10 MBytes, b = 20 MBytes)
VM2 VM3

VM3 VM1

some transmissions finish earlier than other transmissions, and then the links, which are

shared by terminated transmission, will have more bandwidth for the rest of connections.

64 Modeling and Simulation Environment for Software-Defined Clouds

3.5.3 Validation results

Figure 3.5 shows the measured transmission time in CloudSimSDN and Mininet for the

four scenarios described in Table 3.2. In Scenario 1 for the fixed data size, the difference

between CloudSimSDN and Mininet is at most 2.5%. When we have variable data size

and the same path in Scenario 2, for the majority of cases (for each of which data size is

randomly generated based on the distribution described in Table 3.2) the differences is

below 4.6%. In Scenario 3, where the path includes more network elements, the differ-

ence slightly increased compared to Scenario 1. For the case of Scenario 4, with the same

path as Scenario 3 and variable data size, there is only a narrow increase in the differ-

ence. This is because factors that affect the network performance, such as TCP window

size, OS layer delay, fragmentation latency, etc., are abstracted away from the simulation

model. However, this slight loss of accuracy comes with extra advantage of enabling

larger-scale evaluation (as our framework does not limit the number of simulated hosts)

and also representation of the whole software stack (including the application running

on the cloud platform) in the evaluation scenario, as we demonstrate in the next section.

3.6 Use Case Evaluation

We focus on two use cases (built in the context of multi-tier web applications) to demon-

strate the simulator capabilities and to highlight the advantages of adopting SDN in data

centers. The use cases are joint host-network energy efficient resource allocation and

traffic prioritization to improve QoS of priority users. Note that such evaluation can only

be done with CloudSimSDN (not Mininet) as our simulator supports both compute and

network simulations.

3.6.1 Joint host-network energy efficient resource allocation

The first use case evaluates the energy savings in SDN-enabled cloud data center via VM

consolidation. If resources are consolidated, unused hosts and switches can be switched

off by the controller, which maximizes energy efficiency. As turning off and on a host

or a switch takes booting time, CloudSimSDN is capable of configuring the minimum

3.6 Use Case Evaluation 65

0

0.5

1

1.5

2

2.5

3

VM1→VM4 VM2→VM4 VM3→VM4

T
ra

n
sm

is
si

o
n

 T
im

e

(s
ec

o
n

d
s)

CloudSimSDN Mininet

(a) Scenario 1

0

1

2

3

4

5

C
as

e1

C
as

e2

C
as

e3

C
as

e4

C
as

e5

C
as

e6

C
as

e7

C
as

e8

C
as

e9

C
as

e1
0

C
as

e1
1

C
as

e1
2

C
as

e1
3

C
as

e1
4

C
as

e1
5

T
ra

n
sm

is
si

o
n

 T
im

e

(s
ec

o
n

d
s)

VM1→VM4 VM1→VM4
VM2→VM4 VM2→VM4
VM3→VM4 VM3→VM4

CloudSimSDN Mininet

(b) Scenario 2

0

0.2

0.4

0.6

0.8

1

VM1→VM2 VM2→VM3 VM3→VM1

T
ra

n
sm

is
si

o
n

 T
im

e

 (
se

co
n

d
s)

CloudSimSDN Mininet

(c) Scenario 3

0

0.5

1

1.5

2

C
as

e1

C
as

e2

C
as

e3

C
as

e4

C
as

e5

C
as

e6

C
as

e7

C
as

e8

C
as

e9

C
as

e1
0

C
as

e1
1

C
as

e1
2

C
as

e1
3

C
as

e1
4

C
as

e1
5

T
ra

n
sm

is
si

o
n

 T
im

e

(s
ec

o
n

d
s)

VM1→VM2 VM1→VM2
VM2→VM3 VM2→VM3
VM3→VM1 VM3→VM1

CloudSimSDN Mininet

(d) Scenario 4

Figure 3.5: Comparison of CloudSimSDN with Mininet for average transmission time for
each scenario.

Table 3.3: VM configurations used for joint host-network energy efficient resource alloca-
tion use case.

VM Type Cores MIPS Bandwidth

Web Server 2 2000 100 Mbps

App Server 8 1500 100 Mbps

DB Server 8 2400 100 Mbps

Proxy 8 2000 500 Mbps

Firewall 8 3000 500 Mbps

duration of idle time to consider it as powered off. In this experiment, we tested different

VM placement policies and estimated the energy consumption of hosts and switches. For

the test, a data center with 100 hosts and 11 switches is created in CloudSimSDN. Each

host is configured with 16 processing cores, and each of them has a capacity of 4000 MIPS

(Million Instructions Per Second). The link bandwidths of host-network connections are

set to 1 Gbps.

66 Modeling and Simulation Environment for Software-Defined Clouds

Table 3.4: Energy consumption and the maximum number of simultaneously utilized
hosts for different VM placement policies.

Algorithm
Energy consumption (Wh) Max Nodes

Hosts Switches Total Hosts Switches

Worst Fit (A) 2,396,380 112,492 2,508,871 100 11

Best Fit (B) 1,848,038 92,493 1,940,532 30 4

Energy saving

(A-B)

548,341

(23%)

19,999

(18%)

568,340

(23%)
- -

500 VM creation requests are generated based on randomly selected VM types spec-

ified in Table 3.3, and each request has different start time and lifetime following expo-

nential distribution and Pareto distribution respectively [83]. The network workload is

also created for the execution time of VMs to ensure switches are working throughout the

VM lifetime. We assumed that VMs are fully utilized and continuously generate network

traffic.

We evaluated two commonly used heuristics for VM placement: Best Fit and Worst

Fit. The Best Fit policy selects a host whose resources are the most utilized but still avail-

able to accommodate allocation requests. In this approach, VMs tend to be consolidated

to a smaller number of hosts, and network traffic between hosts can be reduced as more

VMs are placed within a host. In contrast, the Worst Fit algorithm selects the freest host

which has the maximum available resources, in which VMs can maximize their compu-

tational power. To find the most or the least utilized host, we used a normalized unit

to combine CPU requirements (total MIPS) and bandwidth constraints, since the two di-

mensional requirements should be considered at the same time. Power consumption for

hosts and switches are modeled based on the works by Pelley at al. [95] and Wang et

al. [125], respectively.

We compared the result of the two algorithms in terms of two metrics: energy con-

sumption of hosts and switches, and the maximum number of simultaneously utilized

nodes. As shown in Table 3.4, the result depicts that overall 23% of energy consumption

of the data center can be saved when the Best Fit is applied for VM placement. Although

this result is mainly attributed to the hosts that saved 23% of their power consumption

in Best Fit, consolidation of network traffic and deactivation of idle switches also saved

3.6 Use Case Evaluation 67

Host

1

Host

8

Host

91

Host

100

Host

2

...

. . .

.

Host

3

Edge10

Core

Edge1

Controller

Figure 3.6: Physical topology for traffic prioritization use case evaluation.

Table 3.5: VM configurations for traffic prioritization use case.

VM Type Cores MIPS

Web Server 2 2000

App Server 2 1500

DB Server 8 2400

18% of energy usage from switches.

3.6.2 Traffic prioritization

In traditional cloud data center networks, prioritizing network traffic based on the user

type was difficult due to complexity and overhead of configuring network elements in

such a dynamic environment. However, it is viable in SDN-enabled cloud data center

to allocate bandwidth to premium users. This is because the controller is fully aware of

network topology and traffic and is capable of controlling queues in SDN switches and

dynamically assigning flows to network paths. In this use case, we demonstrate how

CloudSimSDN effectively models this capability of SDN.

In simulation, we modeled a data center with depth 3 tree topology and 100 hosts

(see Figure 3.6). That is, one core switch connected to 10 edge switches, and each edge

switch connected to 10 hosts. Each host is configured with 16 processing cores and 8000

MIPS processing capacity. Physical links are configured with 1Gbps (125 MBytes/sec)

bandwidth and 0.5 msec latency.

68 Modeling and Simulation Environment for Software-Defined Clouds

Table 3.6: Characteristics of requests used for traffic prioritization evaluation. Requests
are based on the model proposed by Ersoz et al. [33].

Distribution Parameters

Request inter-arrival
times

Log-normal Dist. µ=1.5627, σ=1.5458

Packet sizes Log-normal Dist. µ=5.6129, σ=0.1343 (Ch1)

µ=4.6455, σ=0.8013 (Ch2)

µ=3.6839, σ=0.8261 (Ch3)

µ=7.0104, σ=0.8481 (Ch4)

Workload sizes Pareto Dist. location=12.3486, shape=0.9713

There are 50 different customers using the cloud infrastructure in total, 10 users among

them are premium users. Each user has an application running on three VMs: Web

Server, App Server, and DB Server. Configuration of each VM is shown in Table 3.5. As

this experiment aims at evaluating application processing and network performance, the

sizes of RAM and storage are not considered as constraints. In the simulation environ-

ment, the controller can create separate virtual channels for different data flows. The idea

is to allow priority traffic to consume more bandwidth than normal traffic. Thus, virtual

channels between VMs are dynamically segmented into two different channels: priority

channel and standard channel. By default, without traffic prioritization a standard chan-

nel is used to transfer data between VMs regardless user priority where the bandwidth

is evenly shared among all packets in the same channel. In contrast, by enabling traf-

fic prioritization feature, a specific amount of bandwidth is exclusively and dynamically

allocated for the priority channel, and thus such a bandwidth becomes unavailable for

other channels.

For each user, different workloads are generated synthetically based on a typical web

service model [33]. Table 3.6 shows the characteristics of synthetic data used for the eval-

uation. Each request consists of five application processing and four data transmissions

in between. At first, processing is done in the Web Server, and then the request is passed

to App Server via network transmission. Similarly, App Server has processing and re-

quests data to DB Server. DB Server processes data and return to App Server. Finally,

Web Server receives processed data from App Server and responds to the end-user.

When traffic prioritization is enabled, for each priority channel we exclusively pro-

3.6 Use Case Evaluation 69

0

1

2

3

4

5
A

v
er

a
g

e
R

es
p

o
n

se
 T

im
e

(s
ec

o
n

d
s)

w/o prioritization w/ prioritization

(a) Average response time for premium users.

1.636

1.929

1.325

2.009

0

0.5

1

1.5

2

2.5

Premium

Users

Normal

Users

A
v

er
a

g
e

R
e
sp

o
n

se
 T

im
e

(s
ec

o
n

d
s)

w/o prioritization w/ prioritization

(b) Average response time for different user
types.

Figure 3.7: Effect of traffic prioritization.

vide minimum of 333 Mbps bandwidth. If the bandwidth demand from priority chan-

nels exceeds the link capacity, it is equally shared among the priority channels, and no

bandwidth is allocated to the standard channels. To make the experiment simple, traf-

fic prioritization is simplified in the simulation without considering sophisticated traffic

shaping methods. We measured the response time for each request from submission at

the Web Server until return to the end-user.

Figure 3.7a shows detailed performance improvement for each premium user when

traffic prioritization is enabled. While response times for Premium User 5 to 10 have

remained almost same, Premium User 1 to 4 experienced improvement in application

performance. The reason is when the Premium User 1 to 4 are entered, the system ex-

perienced higher load and therefore assigning the exclusive bandwidth to the flow of

priority requests decreased the response time. This dynamic allocation of bandwidth

per-flow is an important feature of SDN to control the QoS in data centers.

In addition, as shown in Figure 3.7b, average application response time for premium

users decreased from 1.636 to 1.325 seconds when traffic prioritization is enabled, in

which performance is improved by 19.0% on average. On the other hand, overall re-

sponse time for normal users is slightly increased from 1.929 to 2.009 seconds.

Via this use case, we show how cloud providers can use SDN flow management ca-

pability to offer services with various QoS levels. As demonstrated, there is a certain

amount of bandwidth reserved for the priority channel that allows priority requests to

be served in much shorter time. However, still policies need to be developed to dynami-

70 Modeling and Simulation Environment for Software-Defined Clouds

cally derive this certain amount of bandwidth based on the changes in the workload, the

user QoS requirements (maximum response time), and the priorities of users.

3.7 Summary

Given that the infrastructures where SDN operates are large-scale, methods that enable

evaluation of SDN configurations before the controller configurations are crucial, and it

can be achieved via simulation. To this purpose, we introduced the design and imple-

mentation of a simulation framework for Software-Defined Cloud infrastructures in this

chapter. The SDN controller is programmable in the simulator, as well as VM manage-

ment policies and workload scheduling algorithms can be tested in the same framework.

We described our framework design and its components in detail. Validation exper-

iments showed that our simulator is comparable to Mininet in terms of accuracy, and

provides the extra features of supporting the arbitrary number of simulated hosts and

the simulation of the whole cloud software stack up to the application layer. We also

discussed two use cases demonstrating the potential of joint host and network energy-

efficient resource allocation and three-tier application, to prioritize data traffic depending

on the user type. The open source code of CloudSimSDN is online and free to download1.

1Source code available at: github.com/cloudslab/cloudsimsdn

github.com/cloudslab/cloudsimsdn

Chapter 4

SLA-aware and Energy-Efficient
Dynamic Resource Overbooking

Resource overbooking is one way to reduce the usage of active hosts and networks by placing more

requests to the same amount of resources. In this chapter, we propose dynamic overbooking strategy

which jointly leverages virtualization capabilities and SDN for VM and traffic consolidation. With

the dynamically changing workload, the proposed strategy allocates more precise amount of resources

to VMs and traffics. This strategy can increase overbooking in a host and network while still provid-

ing enough resources to minimize SLA violations. Our approach calculates resource allocation ratio

based on the historical monitoring data from the online analysis of the host and network utilization

without any pre-knowledge of workloads. We implemented it in simulation environment in large scale

to demonstrate the effectiveness in the context of Wikipedia workloads. Our approach saves energy

consumption in the data center while reducing SLA violations.

4.1 Introduction

OVER-provisioning of resources (hosts, links and switches) is one of the major

causes of power inefficiency in data centers. As they are provisioned for peak

demand, the resources are under-utilized for the most time. For example, the average

utilization of servers reported to be between 10-30% for large data centers [10,132], which

results in a situation where considerable capacity of data center is idle. Therefore, VM

placement, consolidation, and migration techniques have been effectively applied to im-

prove the server power efficiency [37] for the servers which are not energy proportional.

This chapter is derived from: Jungmin Son, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and Rajkumar
Buyya, “SLA-aware and Energy-Efficient Dynamic Overbooking in SDN-based Cloud Data Centers,“ IEEE
Transactions on Sustainable Computing (T-SUSC), vol.2, no.2, pp.76-89, April-June 1 2017.

71

72 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

Similarly, provisioning of network capacity for peak demand leads to energy waste,

which can be reduced through the effective use of Software-Defined Networking (SDN).

With SDN, now cloud data centers are capable of managing their network stack through

software and consider network as one of the key elements in their consolidation tech-

niques. SDN enables the isolation of network’s control and forward planes. This way,

routing and other control-related issues are set via a software controller, enabling the

forward plane to quickly react and adapt to changes in demand and application re-

quirements [90]. The software controller lies between applications and the infrastruc-

ture, and performs tasks that, before SDNs, were performed at individual hardware level

(switches, routers). With the emergence of SDN, each individual traffic flow between

VMs can be controlled and thus network traffics can be consolidated to less number of

links by an overbooking strategy.

While overbooking strategies can save energy, they also increase the chance of SLA

violation when either host or network is overloaded. If the consolidated VMs or traffics

reach the peak utilization at the same time, insufficient amount of resources would be

allocated which will delay the workload processing. The main objective of our approach

is to ensure both SLA satisfaction and energy saving without compromising one for the

other. We aim to reduce SLA violation rate while increasing energy savings.

In this chapter, we propose dynamic overbooking algorithm for joint host and net-

work resource optimization that, in comparison to previous works, has three novelties.

Firstly, our approach employs a dynamic overbooking strategy that dynamically adapts

to the workload instead of using a fixed percentile. Secondly, it is designed to work

without the prior knowledge of the workload. Lastly, we consider initial placement and

consolidation strategies together to find the most effective combination for energy saving

and SLA satisfaction.

The chapter is organized as follows. We explain the detailed background of SDN

and its usage in the context of cloud computing in Section 4.2, and the state-of-the-art

approaches for energy savings in cloud data centers in Section 4.3. Section 4.4 formulates

the power model and the energy optimization problem. Section 4.5 depicts the overall

framework and its three components: Resource Utilization Monitor, Initial Placement

Policy, and Migration Policy. In Section 4.6, we explain the strategies for SLA-aware and

4.2 Background 73

energy efficient dynamic overbooking. Section 4.7 presents experiment environment and

evaluation results. Finally, Section 4.8 summarizes the chapter.

4.2 Background

The current computer networks have reached a point where they are cumbersome to

manage and not scaling to requirements of cloud data centres. Utilizing Software De-

fined Networking (SDN) in cloud data centres is a new way of addressing the shortcom-

ings of current network technologies. In traditional network, distributed routers are core

controllers for network management. While the routers can cooperate with each other

by communicating network information, the decision is made by a single router with its

discrete control logic without consideration of the entire network.

In contrast, SDN has a centralized controller capable of seeing the global view of

the entire network. Therefore, traffic consolidation can be performed by the centralized

control logic in consideration of energy consumption and SLA satisfaction comprehen-

sively for the entire data center network. Information collected from the entire network

is considered for traffic consolidation, and the overall impact on the whole data center is

estimated in the control logic. This was not feasible in traditional network as the control

logic in the distributed router has limited information and considers only local impact of

the control decision.

The centralized control logic in SDN also allows to have both VM and network traffic

at the same time for data center optimization. Instead of consolidating VM and network

separately, both can be jointly taken into account. Before SDN, network was not consid-

ered in VM consolidation process since network cannot be centrally controlled with the

global view of the entire data center.

SDN also brings dynamic configuration of the network by separating the control

plane from the forward plane. In SDN, the software controller manages overall network

through the control plane in each network device, while the forward plane is in charge

of forwarding data packets according to forwarding rules set up by the control plane. As

the control plane can be dynamically configured by the central controller, network can

be quickly adjusted to the current network condition. For example, dynamic bandwidth

74 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

allocation for a specific flow is enabled with SDN which can help improve QoS of the

network intensive applications.

In short, SDN offers more opportunities for traffic consolidation and energy-saving in

data center networks. SDN-enabled cloud data center can make QoS enforcement more

convenient in data center networks with responding to the rapidly changing network

traffic [16]. Joint optimization of hosts and networks is feasible in SDN-enabled data

center.

4.3 Related Work

There are several works that have explored energy-efficient cloud resource management

with conventional networking [13]. In tihs chapter, we are only focusing at those works

in the context of the use of SDN-based virtualized clouds.

ElasticTree [48] is an OpenFlow based network power manager which dynamically

change the data center data traffic and adjust network elements for power saving. Elastic-

Tree consolidates network flows to a minimum number of links, and the unused switches

are turned off to save more energy consumption. Authors also considered robustness

of the network that can handle traffic surges. Although ElasticTree addressed network

power savings, VM placement optimization was not considered.

Abts et al. [1] argued that DCN can be energy proportional to the amount of data traf-

fic as like CPU of a computer that consumes less power when it is in low utilization. They

proposed link rate adaptation that changes dynamic range depending on the predicted

traffic load. They showed that energy proportional networking is feasible by dynami-

cally changing individual link rate. However, they did not address the approach that

consolidates traffic and turning off links.

CARPO [125] is a similar approach to ElasticTree and saves data center network

power consumption. For traffic consolidation, CARPO adapted correlation analysis be-

tween traffic flows so that if the traffic flows are less correlated, those flows can be con-

solidated into the same network link and more energy savings can be achieved. Addi-

tionally, CARPO considered link rate adaptation that alters the link speed of each port

depending on the traffic amount. When the traffic is decreasing, link speed slows down

4.3 Related Work 75

to save more energy.

Recently, researchers started to consider both DCN and host optimization simultane-

ously. Jiang et al. [59] investigated VM placement and network routing problem jointly

to minimize traffic cost in data center. VM placement and routing problem are formu-

lated and solved using on-line algorithm in dynamically changing traffic loads. The

proposed algorithm leveraged Markov approximation to find near optimal solution in

feasible time.

Jin et al. [60] also considered both host and network factors jointly to optimize en-

ergy consumption. They formulated the joint host-network problem as an integer linear

program, and then converted the VM placement problem to a routing problem to effec-

tively combine host and network optimization. Finally the best host for placing VM is

determined by depth-first search. Prototype is implemented on OpenFlow based system

with fat-tree topology and evaluated with massive test cases via both simulation and real

implementation.

VMPlanner [35] is presented by Fang et al. that optimizes VM placement and network

routing. They addressed the problem with three algorithms: traffic-aware VM group-

ing, distance-aware VM-group to server-rack mapping, and power-aware inter-VM traf-

fic flow routing [35]. VMPlanner groups VMs with higher mutual traffic and assigns each

VM group to the same rack. Then, traffic flow is aggregated to minimize the inter-rack

traffic so that the unused switches can be powered off.

PowerNetS [132] is presented by Zheng et al. and finds the optimal VM placement

considering both host and network resources using correlation between VMs. Also, de-

tailed power model is introduced which includes power consumptions of chassis, switch,

each port as well as the idle and maximum power consumption of a server. PowerNetS

measures correlation coefficients between traffic flows and applies them for VM place-

ment and traffic consolidation.

Unlike these techniques, our proposed work uses dynamic overbooking ratio which

dynamically changes based on the workload in real-time. This ensures that, with the

changes in workload, data center status, and user requirement, our approach can both

save energy and maintain SLA satisfaction.

76 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

4.4 Problem Formulation

The energy efficient host-network resource allocation problem can be formulated as a

multi-commodity problem [48]. The objective of the problem is to minimize the power

consumption of hosts, switches and links in a data center.

4.4.1 Power Models

The following notations are used for the problem formulation.

• si : The ith switch in the data center;

• li : The ith link in the data center;

• hi : The ith host in the data center;

• vmj,i : The jth virtual machine on host i;

• C(hi) : The capacity of host i;

• C(li) : The capacity of link i;

• rd(vmj,i) : The resource demand of the vmj,i;

• f j,i : The flow j on link i;

• d(f j,i) : The data rate of flow j on link i;

• |VM| : The total number of VMs in the data center;

• |H| : The total number of hosts in the data center;

• |L| : The total number of links in the data center;

• σi : The number of VMs placed on host i;

• ni : The number of flows assigned to link i;

• CC(X, Y) The Correlation Coefficient between two variables X, Y;

• P(hi) : Power consumption of host i;

4.4 Problem Formulation 77

• P(si) : Power consumption of switch i;

• Pidle : Idle power consumption of host;

• Ppeak : Peak power consumption of host;

• ui : CPU utilization percentage of host i;

• Pstatic : Power consumption of switch without traffic;

• Pport : Power consumption of each port on switch;

• qi : The number of active ports on switch i;

Power consumption of host i is modelled based on the host CPU utilization percent-

age [95]:

P(hi) =


Pidle + (Ppeak − Pidle) · ui if σi > 0,

0 if σi = 0.
(4.1)

Idle power consumption is constant factor consumed by hosts no matter how much

workload it received. It can be reduced only if the host is turned off. Meanwhile a host

consumes more energy when it processes more workload which leads to higher CPU uti-

lization. In this research we adopted linear power model described in [95]. As hosts are

homogeneous, power consumption of a host will be same to another if the CPU utiliza-

tion is same.

Power consumption of switch i is calculated based on the active ports [125]:

P(si) =


Pstatic + Pport · qi if si is on,

0 if si is off.
(4.2)

Similar to host’s energy consumption, a switch also has static part in its power usage

regardless of its network traffic. On top of the static consumption, it consumes more

energy when more ports are active with a traffic passing through the switch. We use

linear model addressed in [125], where energy consumption of a switch is proportional

to the number of active ports in the switch.

78 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

4.4.2 Problem Formulation

The problem is to optimize the host and network energy consumption jointly in each time

period as described below. |VM| VMs are placed in |H| hosts for the time period where

|L| links are connected.

minimize
|H|

∑
i=1

P(hi) +
|S|

∑
i=1

P(si)

and minimize SLA violation

subject to:

|H|

∑
i=1

σi = |VM| (4.3)

∀hi ∈ H,
σi

∑
j=1

rd(vmj,i) ≤ C(hi) (4.4)

∀li ∈ L,
ni

∑
j=1

d(f j,i) ≤ C(li) (4.5)

∀i,
|VM|

∑
j=1

θi,j = 1, where θi,j =


1 if vmj,i is placed in hi

0 otherwise
(4.6)

The objectives are to minimize total energy consumption (energy consumed by hosts

and switches) in a data center, and at the same time to minimize the SLA violations. As

the two distictive objectives have different measurements, we measure them separately

to minimize both objectives at the same time. In this work, SLA violation is quantified to

the percentage of the requests exceeding the expected response time. We measured the

response time of each request with a baseline algorithm without overbooking, and used

it as the expected response time to count the number of requests violating SLA.

The constraints are that resources given to VMs in a host cannot exceed the capacity

of the host, and the total data flow rate in a link cannot exceed the capacity of the link,

and each VM is placed only once in a host.

4.5 Resource Allocation Framework 79

Controller with dynamic overbooking capability

Monitored
Data

Resource Utilization Monitor

Migration and ConsolidationInitial Placement

Turing off idle hosts
and switches

Cloud Resources (Hosts and Switches)

VM1

Initial Placement List

… VMnVM2
Flow1

Correlation Analysis

VM and Flow Requests

VM1VM2 VMn

Overbooking Calculation

VM‐Host mapping
Flow‐Link mapping

Overbooking Calculation

Host & Link Selection

VM1

Migration List

… VMmVM2
Flow1

①

②

③ ④

⑤

Flow1

Figure 4.1: Resource Allocation Architecture.

4.5 Resource Allocation Framework

The architecture aims to minimize SLA violation and maximize energy saving at the same

time without pre-knowledge of the workload. Our proposed architecture is illustrated in

Figure 4.1, which benefits from overbooking through SLA-aware VM and flow consoli-

dation. Overbooking Controller is in charge of controlling the initial placement and consol-

idation process. One of the main components is initial placement policy which decides

where to place a VM when it is admitted to the data center and creates the initial place-

ment list. Another top-most component is the migration policy that decides a destination

host for a VM when the current host is overloaded. It refers a migration list created based

on the monitored data and decides which host to migrate to.

For both components, proper overbooking ratio is identified using link information

and correlation analysis between VMs’ resource utilization. Then a host is discovered

which can provide the identified overbooked capacity. Correlation analysis uses moni-

toring data collected from hosts, VMs and network traffic. This data is also used to build

80 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

a migration list which consists of highly utilized VMs in the overloaded hosts to be mi-

grated to another host decided by the Migration policy. The consolidation policy uses

current link traffic and host utilization for VM and flow placement and consolidation.

Resource Utilization Monitor: This component is in charge of monitoring the utiliza-

tion levels of resources. Each physical resource can monitor its utilization by itself, such

as CPU utilization of each host or bandwidth utilization of the link between switches.

The utilization metrics monitored by each physical resource are collected at this compo-

nent to provide relevant history data to the migration policy. It also collects utilization

data of VMs and virtual links to decide the most suitable host for the VM.

Initial Placement: When VM and virtual link creation requests arrived at the cloud data

center, Initial Placement decides where to create the new VM. At this stage no history or

workload information is provided to the data center. Instead, only initial VMs and their

connection configurations are available to decide where to place the VM. If VMs are cre-

ated by the same user at the same time, for example, those VMs have a higher probability

to generate traffic between each other. Using this information in addition to the VM con-

figuration, this component decides a host that has sufficient host and network resource

to serve the request.

Migration and Consolidation: In case of overloading, some VMs in the overloaded host

must be migrated to another host in order to minimize SLA violation. Otherwise, VMs

in the overloaded host can provide poor performance in computation or network which

results in severe customer dissatisfaction. Migration and Consolidation component se-

lects VMs to be migrated in overloaded hosts and decides where to migrate by analyzing

historical utilization data of hosts, links and VMs. At first, migration list composing of

VMs to be migrated is created based on the monitoring data collected from VMs, hosts

and switches. Once the migration list is ready, it analyzes correlation level to other VMs

and hosts using historical utilization data. This data is used to pick a migrating host in

consideration of overbooking capacity and energy savings.

4.6 Resource Overbooking Algorithm 81

Idle

Host1

Idle

Host2

Idle

Host3

Idle

Host4

Idle

Host1

Idle

Host2 Host3 Host4

Hosts
turned

offVM1
VM2

VM4VM3 VM1
VM2

VM4

VM3

No overbooking After overbooking /
consolidation

Actual utilization
(energy consumption) Allocated capacity Requested capacity

Switches
turned off

Figure 4.2: Example of consolidation with overbooking

4.6 Resource Overbooking Algorithm

In cloud data center, consolidation of VMs and network traffics into a smaller set of

physical resources leads to saving power consumption by turning off unused hosts and

switches when the physical devices are homogeneous. Although large-scale data cen-

ters may consist of heterogeneous devices with different batches of servers and switches,

within a single rack, devices are mostly homogeneous. Therefore, we focus on homoge-

neous configuration to simplify the problem and develop our strategies. A VM is placed

to a host by allocating the requested amount of resources, such as CPU cores, memory,

disk, and network bandwidth. As in most cases resources are over-provisioned, allocat-

ing less resource than requested can help consolidate more VMs and traffics. For clear

description, a simple example of overbooking and consolidation in concept is illustrated

in Figure 4.2.

Before overbooking and consolidation, VM1-4 are placed in four hosts separately and

connected through four switches. If all the four VMs have data traffic, all the switches

should be active and consume electrical power along with the four hosts. For VM3 and

VM4, we can see that the actual utilization is far lower than the allocated capacity. After

overbooking, less amount of resource is allocated to VM3 and VM4 which now can be

82 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

consolidated to Host1 and Host2. After migration of VM3 and VM4 to Host1 and Host2

respectively, the hosts without VMs can be turned off, and the connected switches also

can be switched off.

We tackled the resource allocation problem described in Section 4.4 through two

stages: (1) initial placement stage, and (2) migration and consolidation stage. Initial

placement is to find a suitable host for a VM when the VM is created in the cloud data

center, whereas VM migration is occurred when the VM needs to be migrated to another

host due to a host being either overloaded or underutilized. Note that a different algo-

rithm can be selected for each stage, thus multiple combinations of the two stages are

available in the proposed system. The following subsections explain different algorithms

for each stage.

For the initial placement the following conditions hold:

• We have no prior knowledge regarding the workload, host utilization, VM utiliza-

tion, and data rates of flows.

• Although we have no information regarding correlation coefficient between two

VMs, it is likely that for the case of web application, workload of connected VMs is

correlated.

• If the initial placement strategy places connected VMs on the same host, there is less

opportunity for overbooking leading to smaller overbooking ratio. However, this

still allows for more saving for network communication cost. Overbooking ratio

determines the percentage of original requested resources by users (either in terms

of VM or bandwidth).

4.6.1 Connectivity-aware Initial VM Placement Algorithms

Initial VM placement algorithms consider connectivity between VMs as explained below.

ConnCons: connected VMs to be consolidated in one host.

At the beginning of the placement, the algorithm (pseudo code is shown in Algorithm 1)

groups VMs based on their connectivity. Then, it sorts the groups based on their resource

4.6 Resource Overbooking Algorithm 83

Algorithm 1 ConnCons initial placement

1: Data: IRAR: User-defined initial resource allocation ratio constant.
2: Data: VM: List of VMs to be placed.
3: Data: F: List of network flows between VMs.
4: Data: H: List of hosts where VMs will be placed.
5: VMG ← list of VM groups in VM based on connections in F;
6: sort VMG in descending order of the sum of bandwidth requirements in each group;
7: for each VM group vmg in VMG do
8: for each vm in vmg do
9: Hconn ← List of hosts where other VMs in vmg are placed;

10: if Hconn is empty or length(vmg) = 1 then
11: Place vm in the most-full host in H;
12: else
13: sort Hconn in ascending order of free resources;
14: done← false;
15: for each h in Hconn do
16: Ch ← free resource in host h;
17: rd← adjusted resource demand of vm calculated with IRAR;
18: if rd < Ch then
19: Place vm in h;
20: Ch ← Ch − rd;
21: done← true;
22: end if
23: end for
24: if done=false then
25: Place vm in the host in H with average shortest distance from vmg;
26: end if
27: end if
28: end for
29: end for

requirements (sum of VM’s resource demands) in decreasing order. Once the list is ready,

it picks a VM (vmk,i) from the top of the list. If it is not connected to other VMs or if the

connected VMs have not been placed yet, we place it using most-full bin-packing algo-

rithm. Otherwise, it consolidates the VM to the same server (hi) where the connected

VMs are placed if the following constraint can be met:

σi

∑
j=1

(rd(vmj,i)) + IRAR× rd(vmk,i) < C(hi) (4.7)

where Initial Resource Allocation Ratio (IRAR) indicates the proportion of the actually

allocating resource to the requested resource at initial stage. Note that Resource Allo-

84 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

cation Ratio (RAR) can be regarded as the reverse of overbooking ratio, e.g. 70% RAR

means that the host will allocate 70% of the requested resource to the VM. Thus, with

lower RAR value hosts allocate less resource to a VM resulting in placing more VMs in

a host and higher chance of SLA violation. IRAR is a predefined constant in the system

configuration and can be changed manually.

This method is basically derived from CARPO [125] system that correlated VMs are

consolidated into the same or nearby host. In addition to the principle of CARPO, we pro-

pose dynamic overbooking strategy that changes overbooking ratio dynamically adapt-

ing to the workload.

If there exist multiple connected VMs that have already been placed on different

hosts, the most-full host will be selected. Otherwise, it searches for a host with the short-

est distances from the connected VM hosts. If multiple VMs have already been placed

on different hosts, a host with average shortest distance will be selected. Next, if there

are multiple choices (hosts with the same distance and network path with same number

of hops), the algorithm uses the most-full first bin-packing algorithm for both hosts and

candidate links. In addition, the selected candidates have to meet constraints in Equation

(4.7) and constraint in Equation (4.8) for each selected Links of li:

ni

∑
j=1

(d(f j,i)) + IRAR× d(fk,i) < C(li) (4.8)

If the constraint cannot be met, the algorithm selects the next host candidate until all the

VMs are placed. Note that for this algorithm the IRAR are likely to be set to a higher

value as utilizations of VMs in a server are likely to be correlated.

ConnDist: connected VMs to be distributed into different hosts.

At the beginning of the placement, the algorithm (pseudo code is shown in Algorithm 2)

sorts the VMs based on their resource requirements in decreasing order. Once the list is

ready, it picks a VM (vmk,i) from the top of the list. Then, if it is not connected to other

VMs or if the connected VMs have not been placed yet, it will be placed using most-

full bin-packing algorithm. Otherwise, it ignores servers where the connected VMs are

placed, and searches for a server with the average shortest distances from the hosts of

4.6 Resource Overbooking Algorithm 85

Algorithm 2 ConnDist initial placement

1: Data: VM: List of VMs to be placed.
2: Data: H: List of hosts where VMs will be placed.
3: sort VM in descending order of the resource requirements;
4: for each vm in VM do
5: VMconn ← List of connected VMs of vm;
6: Hconn ← List of hosts where other VMs in VMconn are placed;
7: if Hconn is empty then
8: Place vm in the most-full host in H;
9: else

10: Hnoconn ← H − Hconn;
11: Place vm in the most-full host in Hnoconn with the same constraint in Algo-

rithm 1;
12: end if
13: end for

connected VMs. Next, if there are multiple choices, the algorithm uses the most-full bin-

packing algorithm for both host and link candidates which meets constraint in Equations

(4.7) and (4.8).

If the constraint cannot be met the algorithm selects the next host candidate until all

the VMs are placed. Note that for this algorithm the IRAR is likely to be set to lower

values as we consolidate connected VMs to different servers. Therefore, utilization of

VMs placed on a same server is less likely to be correlated.

4.6.2 VM Migration Algorithms with Dynamic Overbooking

Based on the collected information, this algorithm:

• selects overloaded hosts with the utilization over the threshold (e.g., 0.7) and moves

the most utilized VM to the migration list,

• selects the underutilized host with the utilization under the threshold (e.g., 0.1) and

move their VMs to the migration list,

• selects the overloaded links with the average bandwidth usage over the threshold

(e.g., 70% of the link capacity) and move the VMs in the link with highest data rates

into the migration list.

It is worth mentioning that the migration of flows happens at the final stage. The reason

86 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

is that over-utilized VM migration can resolve the link congestion.

After that, the algorithm sorts the VMs in the migration list based on their resource

requirements in descending order. Then, it picks a VM (vmk,i) from the top of the list. For

the selected VM, VM migration algorithm selects a candidate host in which the VM can

be placed. In the host selection, dynamic overbooking algorithm is applied as a constraint

to make sure the VM and its network link fulfil enough capacity to process the workload,

and at the same time limit to minimal amount for consolidation. For the host capacity,

Equations (4.9) and (4.10) is applied.

σi

∑
j=1

(rd(vmj,i)) + DRARh × rd(vmk,i) < C(hi) (4.9)

DRARh = MinDRAR +
MaxDRAR −MinDRAR

MaxDRAR
×

1
σi

σi

∑
j=1

CC(vmj,i, vmk,i)
(4.10)

In addition to host capacity constraint, network constraint is also applied as constraint

to select the target host and link: Equations (4.11) and (4.12).

ni

∑
j=1

(d(f j,i)) + DRARl × d(fk,i) < C(li) (4.11)

DRARl = MinDRAR +
MaxDRAR −MinDRAR

MaxDRAR
×

1
ni

ni

∑
j=1

CC(d(f j,i), d(fk,i))
(4.12)

As you can see from Equations 4.10 and 4.12, in this algorithm we dynamically calculate

the Dynamic Resource Allocation Ratio (DRAR) based on the correlation of VMs in the

host. As explained in the previous section, Resource Allocation Ratio (RAR) is a term

that defines the percentage of actually allocated resource compared to the requested re-

source. It can be regarded as a reserve of overbooking ratio. DRAR is applied not only

4.6 Resource Overbooking Algorithm 87

as constraints of the VM admission, but also actual resource allocation for the migrating

VM. This will allow us to save more energy by resource overbooking and honoring more

SLA by dynamically changing overbooking ratio.

DRAR is applied as constraints to decide the admission of the migration and to al-

locate resources to VMs. For example, for 100% DRAR, the host allocates 100% of the

requested resource to the VM. If DRAR decreased to 70% in another host, it gives only

70% of the requested resource thus the host can consolidate more VMs.

To determine DRAR, we use correlation coefficient derived from historical utiliza-

tion data, VM’s average utilization of the previous time frame, and preliminarily defined

variables to decide the portion of each parameter. Correlation between VMs is calcu-

lated with Pearson Correlation Coefficient, which ranges between -1 and 1. Lower the

coefficient, lower the correlation. If the coefficient is closer to 1, it indicates the VMs are

more correlated. As it ranges from -1 to 1, we use Equation (4.13) to normalize the range

between 0 and 1.

CC(X, Y) = (
Cov(X, Y)√

Var(X)Var(Y)
+ 1)/2 (4.13)

Additionally, minimum and maximum Dynamic Resource Allocation Ratio (MinDRAR

and MaxDRAR) are defined to limit the range of the DRAR. MinDRAR is differentiated

with the average utilization of the VM for the previous time window. Thus, DRAR is

affected by not only the correlation, but also the actual utilization of the VM. In order to

decide the share of each parameter, α and β are defined in Equation (4.14).

MinDRAR = α×U(vmk,i) + β (4.14)

where α specifies the portion of the utilization of the VM and β specifies the guaranteed

proportion of the requested resource to be allocated to the VM. α and β are defined in the

experiment configuration along with the IRAR. On the other hand, MaxOR is configured

to 1.0 in the implementation to make it possible to assign 100% of the requested resources.

Algorithm 3 shows overall migration procedure for each VM to a candidate host with

the constraints using DRAR calculation. The complexity of the alogorithm is O(|VMh|)

which can run for at most the number of hosts in the data center if all hosts are over-

88 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

Algorithm 3 VM migration with dynamic overbooking

1: Data: α: User-defined constant for historical utilization fraction in MinOR.
2: Data: β: User-defined constant for minimum Resource Allocation Ratio.
3: Data: tstart, tend: Start and end time of the previous time window.
4: Data: vmmig: A VM to be migrated.
5: Data: h: A candidate host.
6: function MIGRATE(vmmig, h)
7: VMh ← all VMs in the host h;
8: umig ← utilization matrix of vmmig in (tstart, tend);
9: Scorr ← 0;

10: for each vmi in VMh do
11: ui ← utilization matrix of vmi in (tstart, tend);
12: Scorr ← Scorr + CC(umig, ui);
13: end for
14: DRARh ← calculate with Equation (4.10) ;
15: Ch ← free resource in host h;
16: rd← requested resource of VM vmmig;
17: rdDRAR ← DRARh × rd;
18: migrated← false;
19: if rdDRAR < Ch then
20: DRARl ← calculate with Equation (4.12) ;
21: Cl ← free resource of the link of host h;
22: d← requested resource of the flow of vmmig;
23: dDRAR ← DRARl × d;
24: if dDRAR < Cl then
25: Migrate vmmig to h;
26: Ch ← Ch − rdDRAR;
27: Cl ← Cl − dDRAR;
28: migrated← true;
29: end if
30: end if
31: return migrated
32: end function

loaded. Thus, the overall complexity of the migration process is O(|VM| · |H|) for entire

data center which is reasonable for online decision.

With the base of dynamic overbooking constraints explained above, three consolida-

tion algorithms are proposed with different host selection methods: most correlated, least

correlated, and most underutilized host to be chosen. Consolidating a VM to the most

correlated host can make a higher chance to reduce network traffic since the VMs in the

host have more correlation on network traffic to the migrating VM. However, it will in-

crease the chance of overloading of the host, as the correlated VMs will have higher pos-

4.6 Resource Overbooking Algorithm 89

sibility to reach the peak at the same time. For this reason, we also propose an approach

that consolidates to the least correlated host. If the workload has less network traffic

but more computational processing, migration to the least correlated host will reduce the

chance of the host overloading. For comparison, migration to the most underutilized

host without consideration of correlation is also tested. Note that the dynamic overbook-

ing constraint is applied to every algorithm but with different host selection preferences.

These three algorithms are explained below.

MostCorr: VM to be migrated to the host holding the linked VMs.

If the VM to be migrated is not connected to other VMs or if the connected VMs in the list

have not been placed yet, it will be placed using most-full bin-packing algorithm. Oth-

erwise, it consolidates the VM to the same server where the connected VMs are placed

and if the aforementioned constraints can be met. If not, it searches for a host with the

shortest distances from the connected VMs’ hosts. If there are multiple choices, it uses

bin-packing (most-full first) both for candidate links and hosts to choose the destination

if the aforementioned constraints can be met. Details are described in Algorithm 4.

LeastCorr: VM to be migrated to the least correlated host.

The algorithm is similar to the previous consolidation strategy, but selects the host with

the lowest average correlation coefficient between the migrating VM and the VMs in the

host. It calculates correlation coefficient for each host with at least one VM and sorts the

list in ascending order. Then, the least correlated host is selected with the DRAR con-

straints (3) applied. If no host is found among non-empty hosts, it selects the first one

from empty hosts. With this algorithm, the connected VMs are likely to be placed into a

separate host which will incur more network communication, whereas the chance of host

overloading will be reduced.

UnderUtilized: VM to be migrated to the underutilized host.

In this algorithm the migrating VM is placed to the least utilized host. Firstly underuti-

lized hosts list is prepared among non-empty hosts, and the first VM in the migration

list with the highest utilization is placed to the first host in the list which is the most

90 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

Algorithm 4 MostCorr migration algorithm with dynamic overbooking

1: Data: VM: Selected migration VM list.
2: Data: H: List of hosts.
3: sort VM in descending order of requested CPU resources;
4: for each vm in VM do
5: VMconn ← List of connected VMs of vm;
6: Hconn ← List of hosts where other VMs in VMconn are placed;
7: if Hconn is empty then
8: Migrate vm to the most-full host in H with the constraints in Algorithm 3;
9: else

10: sort Hconn in ascending order of free resources;
11: migrated← false;
12: for each h in Hconn do
13: migrated← MIGRATE(vm, h);
14: if migrated=true then
15: break
16: end if
17: end for
18: if migrated=false then
19: Migrate vm to the most-full host in H with the constraints in Algorithm 3;
20: end if
21: end if
22: end for

underutilized. Same as the previous algorithms, it also dynamically calculates DRAR

based on the number of VMs in the host. DRAR calculated from correlation is applied as

constraints to check whether the host can accept the migration or not. In short, the most

utilized VM in the migration list is to be placed in the least utilized host.

4.6.3 Baseline Algorithms

We compare our approach with the baseline algorithms explained below.

NoOver: No overbooking without any migration.

The algorithm is a non-overbooking that allocates 100% of the requested resource to all

VMs and network. It uses Most Full First bin-packing algorithm for VM placement,

which allocates the VM to the most full host that has enough resource to serve the VM.

When selecting a host, it does not consider any connectivity or correlation between VMs.

Therefore, VMs can be allocated in any host regardless of their connectivity, e.g. the con-

4.7 Performance Evaluation 91

nected VMs can be randomly placed in the same host or in different hosts depending on

the available resource of each host at the moment. Migration is not implemented in this

algorithm as a host will not exceed its capacity. This is used as a baseline at evaluation to

calculate SLA violation rate and energy saving percentage.

ConnNone: Connectivity agnostic overbooking.

For initial placement, this algorithm overbooks resources without consideration of the

connectivity between VMs. This algorithm allocates less amount of resources to VMs

and uses the Most Full First algorithm for VM allocation regardless of VM links. For ex-

ample, ConnNone 70% is to allocate only 70% of the requested resource to the VM and

place it to the most full host which can serve the 70% of the requested resource. Similarly,

ConnNone 100% is to allocate 100% of the requested resource which is in fact same as

NoOver algorithm.

StaticMigration: VM to be migrated to the most correlated host without dynamic over-

booking.

Similar to MostCorr, this algorithm also selects the correlated host first for a migrating

VM with the same constraints described in Section 4.6 except for DRAR. Instead of us-

ing dynamically calculated DRAR, this algorithm uses a static overbooking ratio for the

constraints of the host selection and the resource allocation. As a result, the new host

will allocate the same amount of the resource to the migrating VM. This algorithm is

implemented in order to refer to PowerNetS [132].

4.7 Performance Evaluation

The proposed algorithms are evaluated in simulation environment. We implemented

the proposed methods in addition to other algorithms including non-overbooking and

PowerNetS [132], and measured a response time of the workload and total energy con-

sumption in the data center. SLA violation is checked through the response time of the

workload. We measured the response time of each workload with a baseline algorithm

without overbooking, and use them to compare with the response time of the proposed

92 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

algorithms. If the response time of a workload with a proposed algorithm is longer than

the baseline one, the workload is as a SLA violation. Energy consumption is also com-

pared with the no overbooking baseline algorithm.

4.7.1 Testbed configuration

In order to evaluate our approach, we implement the algorithms in CloudSimSDN pro-

posed in Chapter 3. CloudSimSDN is a CloudSim [18] based simulation tool which sup-

ports various SDN features such as dynamic network configuration and programmable

controller. We add monitoring components to the simulator to gather utilization infor-

mation of VMs, hosts, and network traffics to be used at dynamic overbooking methods

described in section 4.6.

The cloud data center simulated for our experiment consists of 128 hosts, each with 8

CPU cores, connected with Fat-Tree topology [4].

Figure 4.3: Network topology used in simulation

Figure 4.3 shows 8-pod Fat-Tree topology which we adopt in the experiment. Each

pod consists of 16 hosts, 4 edge switches and 4 aggregation switches. On top of all

pods, 16 core switches enables communication between pods by connecting aggregation

switches in each pod. Other resource requirements such as memory and storage are not

considered in the experiments to eliminate the complexity affecting the results.

Unless noted, initial placement overbooking algorithms (ConnNone, ConnCons, and

ConnDist) have Initial Resource Allocation Ratio (IRAR) value set to 70% in all experi-

4.7 Performance Evaluation 93

ments. For dynamic overbooking migration algorithms, we set α value being 12% and

β value being 40% (Equation (4.14)). Thus, Dynamic Resource Allocation Ratio (DRAR)

is guaranteed to be at least 40% and dynamically changing up to 100% which is affected

by the previous utilization average for 12% and correlation analysis for the rest 48%.

MAXOR is set 100% to make sure VMs can receive the full resource when necessary.

For experiments with migration policy, the monitoring interval is set to 3 minutes

to collect the utilization of VMs, hosts, flows, and links. Dynamic time window to run

migration policy is configured to 30 minutes, thus migration is attempted every 30 min-

utes with the utilization matrix of 10 monitored points. These parameters are selected in

consideration of the workload and the migration costs, but can be changed arbitarily for

different workloads.

4.7.2 Workload

In a typical data center traffic varies hourly, daily, weekly, and monthly. Traffic charac-

terization of a data center would allow us to discover patterns of changes that can be

exploited for more efficient resource provisioning. To achieve our objectives for this ac-

tivity, we have focused on Wikipedia data center analysis. We decided to investigate a

Wikipedia workload by looking into Page view statistics for Wikimedia projects which are

freely and publicly available. For each day and for all of Wikipedia’s projects, the traces

consist of hourly dumps of page view counts. To gain insight of the traffic for each project

for the whole day (Sep 1, 2014 chosen for this case) we need to analyze traces which con-

sist of 24 compressed files each containing 160 million lines (around 8 GB in size). We

have utilized Map-Reduce to calculate number request per hour for each project more

effectively and faster.

As Figure 4.4 shows, we can observe that workload varies per hour and that not all

workload are reaching their peaks at the same time. We can assume that each project is

hosted by a set of virtual machines; there exist VMs that their utilizations are not corre-

lated. This observation can help us to propose more efficient resource provisioning cloud

data center by placing non-correlated VMs in one host and thus accomplishing effective

overbooking. Please note that we choose the Wikipedia workload because it reflects the

real data-center workload as well as the obvious correlation between languages in the

94 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

U
se
r R

eq
ue
st
s (
m
ill
io
ns
)

Time (hour)

zh fr de

es ru

Figure 4.4: Wikipedia workload for different projects collected for 1st of Sep 2014.

trace. It is also freely available online with a large scale (159 million requests in total for

24 hours for 5 languages).

When the workload is supplied to the configured test bed, we can see the utilization

of each VM follows the actual workload as depicted in Figure 4.5.

4.7.3 Initial placement

In this experiment set, we compare the initial placement algorithms without implement-

ing any migration policy. We compare the algorithms in terms of SLA violation rates,

energy consumption in hosts and network devices, and the energy savings.

Investigating the impact of static overbooking on energy efficiency and SLA viola-

tion

The aim of these experiments is showing the essence of designing dynamic overbooking

algorithms that in comparison to static overbooking strategies reduce not only energy

consumption but also SLA violations. First, we have conducted experiments to show

how much energy we can save when we use static overbooking. Figure 4.6 shows SLA vi-

4.7 Performance Evaluation 95

0 5 10 15 20

0
20

40
60

80
10

0

Time (hour)

C
P

U
 U

til
iz

at
io

n
(%

)
VM

de

es

fr

ru

zh

Figure 4.5: CPU utilization of VMs with Wikipedia workload

olation percentage and energy consumption of ConnNone which does static overbooking

for initial placement. In ConnNone, resources are allocated to VMs with the fixed IRAR

without any consideration of connection between VMs. As shown in Figure 4.6a, overall

energy consumption linearly decreases as IRAR decreases. Allocating less resource lets

hosts to accept more VMs, which leads to less number of active hosts. Network energy

consumption also decreases with higher IRAR value, because fewer hosts are communi-

cating through less number of switches. Figure 4.6b shows the energy saving percentage

of the static overbooking methods compared to the one without overbooking. For an ex-

treme case when only 50% of the requested resources are allocated to VMs and networks,

it can save 30.29% of the energy consumption in total. With 70% IRAR, the energy saving

percentage reduced to 16.88% as less VMs can be placed in a single host with the higher

IRAR.

However, as Figure 4.6c shows, SLA violation increases significantly with lower IRAR

(note that the lower the IRAR means that less resources were allocated to VM and vice

versa). This is because the strategy has no consideration of either correlation or migra-

tion. As less resources are given to each VM, hosts and network are more frequently

96 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

156.87 170.02 185.90 196.59 216.16 224.89

27.48
29.18

33.91
35.42

37.60 39.56

0

50

100

150

200

250

300

50% 60% 70% 80% 90% 100%

E
n

er
gy

 C
on

su
m

p
ti

on
 (

kW
h)

Initial Resource Allocation Ratio (IRAR)

Host energy consumed Switch energy consumed

(a) Energy consumption.

30.29%

24.68%

16.88%

12.27%

4.05%

0%

5%

10%

15%

20%

25%

30%

35%

50% 60% 70% 80% 90%

E
ne

rg
y

S
av

in
g

Initial Resource Allocation Ratio (IRAR)

Energy Saving Percentage

Host Switch Total

(b) Energy saving compared to baseline algorithm (NoOver).

46.26%

36.63%

26.35%

17.12%

4.66%

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

50% 60% 70% 80% 90%

SL
A

 V
io

la
tio

n
R

at
e

Initial Resource Allocation Ratio (IRAR)

SLA violation %

(c) SLA violation percentage.

Figure 4.6: Energy consumption and SLA violation results of initial placement without
consideration of connectivity.

overloaded, which leads to slower response of the workload and SLA violation. While

the static overbooking with lower IRAR can save more energy, it also increase the SLA

4.7 Performance Evaluation 97

violation rate. Therefore, we need an algorithm that considers the trade-off between en-

ergy saving and SLA violation while dynamically adjusts overbooking ratio.

Investigating the performance of different initial placement algorithms using static

overbooking

The aim is to compare the effects of placing connected VMs into a same host (Con-

nCons) with placing them in a different host (ConnDist). We expect that the connected

VMs (especially for the 3 tier web applications) would have correlated workload, hence

if they are placed in the same host, there is less chance for overbooking. However, if

they are placed in the same host, network traffic and energy consumption would reduce

since most network traffic between the connected VMs could be served within the host

through memory instead of external network devices.

As shown in Figure 4.7a, energy consumption of the switches is significantly reduced

under both ConnDist (connected VMs are placed in close distances but not to the same

host) and ConnCons (connected VMs to the same host) compared to ConnNone which

does overbooking but placing connected VMs to random hosts. Especially, in ConnCons

only 4.43kWh electricity was consumed in switches which is almost one fourth of the

switch energy consumption in ConnDist algorithm. It shows that network energy con-

sumption is further reduced when connected VMs are placed in the same host.

Figure 4.7c shows SLA violation percentage of the ConnNone, ConnDist, and Con-

nCons algorithms with IRAR setting at 70%. SLA violation percentages in ConnDist

and ConnCons are still as high as ConnNone algorithm reaching at around 25% with

70% IRAR. Although ConnCons was expected to have less chance for overbooking that

should result in more SLA violations, the experiment result shows that ConnDist results

in a slightly more SLA violations than ConnCons algorithm. This is due to the character-

istics of the workload that has less potential to the chance of overbooking.

Figure 4.6b shows the energy saving percentage compared to the one without over-

booking. As we discussed above, with ConnDist algorithm we can save over 50% of

switches power usage, and with ConnCons the saving percentage reaches at almost 90%

compared to non-overbooking method. Overall power saving is also increased in both

ConnDist and ConnCons algorithms.

98 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

185.90 188.14 184.99
224.89

33.91 17.09
4.43

39.56

0

50

100

150

200

250

300

ConnNone ConnDist ConnCons NoOver

E
ne

rg
y

C
on

su
m

pt
io

n
(k

W
h)

Initial Placement Algorithm

Host energy consumed Switch energy consumed

(a) Energy consumption.

16.88%
22.40%

28.37%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ConnNone ConnDist ConnCons

E
ne

rg
y

Sa
vi

n
g

Initial Placement Algorithm

Energy Saving Percentage

Host Switch Total

(b) Energy saving compared to baseline algorithm (NoOver).

26.35% 27.01% 27.40%

0%

5%

10%

15%

20%

25%

30%

ConnNone ConnDist ConnCons

SL
A

 V
io

la
tio

n
R

at
e

Initial Placement Algorithm

SLA violation %

(c) SLA violation percentage.

Figure 4.7: Energy consumption and SLA violation results of different initial placement
algorithms.

4.7 Performance Evaluation 99

4.7.4 Migration policy

Migration policy plays important role when a host or network encounters overloading.

Since overloading happens due to the lack of resources, migration of VMs from an over-

loaded host to a free host can resolve the overloading issue that might cause significant

SLA violation. Several migration policies have been experimented with dynamic over-

booking ratio.

Investigating the impact of migration strategies

At first, we tested different migration strategies in the combination of ConnCons initial

placement method. In this experiment we aim to find the effectiveness of the different

migration strategies under the same initial placement. Figure 4.8a and 4.8b respectively

show the total energy consumption and the percentage of energy saving of different mi-

gration algorithms. With any migration algorithm, energy consumption of hosts and

switches increases compared to the one without migration. While ConnCons without mi-

gration can save 28.37% of power consumption, three algorithms with migration policies

(ConnCons+LeasCorr, ConnCons+UnderUtilized, and ConnCons+MostCorr) can save

between 7% and 8% of the total energy (Figure 4.8b). In detail, three migration algorithms

use almost same amount of energy at both hosts and switches, and they still consume less

power than the algorithm with no overbooking at all (Figure 4.8a).

However, as shown in Figure 4.8c, SLA violation decreases significantly when mi-

gration policies are implemented. While 27.40% of workloads violated SLA under Con-

nCons with no migration policy, just about 5% of workloads violated SLA when any

migration algorithms was combined. In detail LeaseCorr migration algorithm results

in the least SLA violation rate at 4.96%, and UnderUtilized policy results in 5.60% SLA

violation rate, which is far less than the one without migration policy.

The results show the effectiveness of the dynamic overbooking strategy. As the mi-

grating VM has been allocated to the host with dynamic overbooking ratio depending

on the VMs in the host, it prevents highly correlated VMs to be consolidated into the

same host. All three dynamic overbooking migration algorithms (MostCorr, LeastCorr,

and UnderUtilized) show the similar results which significantly reduce SLA violation

rate although they use various host selection methods to prioritize the candidate hosts.

100 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

184.99
214.80 214.49 213.34 224.89

4.43
29.52 29.44 28.21

39.56

0

50

100

150

200

250

300

ConnCons
(No

Migration)

ConnCons
+LeastCorr

ConnCons
+Under
Utilized

ConnCons
+MostCorr

NoOverE
ne

rg
y

C
on

su
m

pt
io

n
 (

kW
h)

Algorithm Combination

Host energy consumed Switch energy consumed

(a) Energy consumption.

28.37%

7.61% 7.76% 8.66%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ConnCons
(No Migration)

ConnCons
+LeastCorr

ConnCons
+Under
Utilized

ConnCons
+MostCorr

E
ne

rg
y

S
av

in
g

Algorithm Combination

Energy Saving Percentage

Host Switch Total

(b) Energy saving compared to baseline algorithm (NoOver).

27.40%

4.96% 5.60% 5.15%

0%

5%

10%

15%

20%

25%

30%

ConnCons
(No Migration)

ConnCons
+LeastCorr

ConnCons
+Under
Utilized

ConnCons
+MostCorr

SL
A

 V
io

la
tio

n
R

at
e

Algorithm Combination

SLA violation %

(c) SLA violation percentage.

Figure 4.8: Energy consumption and SLA violation results of different migration strate-
gies implemented on ConnCons (connected VMs in the same host) initial placement al-
gorithm.

As we expected, dynamic overbooking can reduce the chance that all VMs in the host hit

the peak at the same time, thus VMs acquire enough resources to process their workloads.

4.7 Performance Evaluation 101

184.99 201.44 213.34 224.89

4.43 24.75
28.21

39.56

0

50

100

150

200

250

300

ConnCons (No
Migration)

ConnCons
+StaticMigration

ConnCons
+MostCorr

NoOver

E
ne

rg
y

C
on

su
m

p
ti

on
 (

kW
h

)

Algorithm Combination

Host energy consumed Switch energy consumed

(a) Energy consumption.

28.37%

14.47%
8.66%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ConnCons (No
Migration)

ConnCons
+StaticMigration

ConnCons
+MostCorr

E
ne

rg
y

Sa
vi

ng

Algorithm Combination

Energy Saving Percentage

Host Switch Total

(b) Energy saving compared to baseline algorithm (NoOver).

27.40%

13.46%

5.15%

0%

5%

10%

15%

20%

25%

30%

ConnCons (No
Migration)

ConnCons
+StaticMigration

ConnCons
+MostCorr

SL
A

 V
io

la
tio

n
R

at
e

Algorithm Combination

SLA violation %

(c) SLA violation percentage.

Figure 4.9: Energy consumption and SLA violation results of dynamic and static over-
booking algorithms

Investigating the impact of dynamic overbooking ratio

Next, we investigated the impact of dynamic overbooking by comparing with a static

102 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

overbooking strategy under the same overbooking condition. The aim is to compare

the effectiveness of our approach with a static overbooking algorithm similar to Pow-

erNetS [132] which also implements overbooking with the consideration of correlation.

Direct comparison to PowerNetS is not feasible because our approach is online algorithm

without any prior knowledge of the workload, while PowerNetS acquired correlation of

workloads in advance. Therefore, we use the results of ConnCons+StaticMigration com-

bination which is the most analogous to PowerNetS. Both of them initially place con-

nected VMs into closer hosts and migrate overloaded VMs to the nearest host where the

connected VMs are placed. Note that ConnCons+StaticMigration algorithm is different

from PowerNetS in the aspect that StaticMigration algorithm does not consider correla-

tion threshold constraint which PowerNetS did implement. Thus ConnCons+StaticMigration

algorithm would result in higher SLA violation rate than PowerNetS. We compare Con-

nCons+StaticMigration with ConnCons+MostCorr algorithm.

Figure 4.9 presents the difference of static overbooking and dynamic overbooking

algorithms. As shown in Figure 4.9a and 4.9b, the static overbooking approach (Con-

nCons+StaticMigration) consumed slightly less energy than the dynamic method (Con-

nCons+MostCorr). In detail, 56.55 kWh is consumed across the whole data center for

both hosts and network in the static overbooking method while 60.39 kWh is consumed

in the dynamic overbooking which is 6.79% more than the static method. With the static

algorithm, the overbooking ratio of the migrating VM is not changed in the new host

when the in overloaded host is migrated to another host. Thus, regarding the entire data

center more VMs can be placed in a host compared to dynamic overbooking which would

allocate more resource for the migrating VM if correlated VM is in the migrating host.

The effectiveness of the dynamic overbooking can be clearly seen in SLA violation

percentage presented in Figure 4.9c. SLA violation rate of the static overbooking algo-

rithm (13.46%) is far higher than the dynamic algorithm (5.15%). Although our dynamic

overbooking method consumed 6.79% more power, it dramatically reduced SLA viola-

tion rate by 61.74%.

4.7 Performance Evaluation 103

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ConnNone
(IRAR 70%)

ConnNone
(IRAR 80%)

ConnNone
(IRAR 90%)

ConnCons
+MostCorr

ConnCons
+LeastCorr

ConnCons
+Under
Utilized

ConnDist
+MostCorr

ConnDist
+LeastCorr

ConnDist
+Under
Utilized

E
ne

rg
y

S
av

in
g

P
ro

po
rt

io
n

Algorithm Combination

Energy saving by hosts Energy saving by switches

Figure 4.10: Energy saving origination

4.7.5 Analysis of energy consumption

In this subsection, we investigate further details of the power consumption in different

algorithm combinations. At first, we analyzed the origin of the energy savings where it

comes from by showing the proportion of the saved energy in hosts and switches. Fig-

ure 4.10 shows the ratio of energy saving by hosts and switches. We tested ConnNone

initial placement without migration in various IRAR values (70%, 80%, and 90%) as well

as the algorithms evaluated in the previous subsection. For each algorithm, energy con-

sumption at hosts and switches is measured to calculate the saved energy compared to

NoOver algorithm. For ConnNone algorithm, about 80% to 90% of the energy saving re-

sults from hosts while less than 20% from switches regardless of IRAR value. However,

when ConnCons initial placement (correlated VMs placed in closer hosts) is applied,

energy saving ratio at switches increases significantly reaching at a half of the energy

saving regardless of migration policy. This is because the consolidation of VMs can re-

duce significant amount of network traffic which leads to reducing the number of active

switches. Interestingly, for ConnDist algorithm energy saving ratio of switches is lower

than ConnCons but higher than ConnNone. As VMs in the same host are less likely peak

at the same time in ConnDist algorithm, one host can hold more number of VMs than

ConnCons algorithm which also affect the dynamic overbooking ratio adjusted by the

correlation. In ConnDist initial placement, VMs in the same host would be less corre-

lated which makes more VMs to be placed in one host at the migration stage, as DRAR

(Dynamic Resource Allocation Ratio) increases with lower correlation coefficient.

104 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

0 5 10 15 20 25

7
8

9
10

11
12

Time (Hour)

P
ow

er
 u

sa
ge

 (
kW

)

NoOver
ConnNone (IRAR 70%)
ConnCons+MostCorr
ConnDist+LeastCorr

(a) Overall energy consumption.

0 5 10 15 20 25

7
8

9
10

11
12

Time (Hour)

P
ow

er
 u

sa
ge

 (
kW

)

NoOver
ConnNone (IRAR 70%)
ConnCons+MostCorr
ConnDist+LeastCorr

(b) Energy consumed by hosts.

0 5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time (Hour)

P
ow

er
 u

sa
ge

 (
kW

)

NoOver
ConnNone (IRAR 70%)
ConnCons+MostCorr
ConnDist+LeastCorr

(c) Energy consumed by switches.

Figure 4.11: Energy consumption observation over time

4.7 Performance Evaluation 105

4.7.6 Dynamic overbooking ratio

In order to investigate the impact of dynamic overbooking in energy consumption, we

explored the power consumption of the whole data center (Figure 4.11a), energy con-

sumption by hosts (Figure 4.11b), and by switches (Figure 4.11c) over the time. Com-

pared to the baseline (NoOver), static overbooking method (ConnNone) uses constantly

less amount of energy. Correlation-aware algorithms such as ConnCons+MostCorr and

ConnDist+LeastCorr have less energy consumption in the beginning, but it converges to

the baseline once time passes especially after the whole data center is highly loaded. For

the network energy consumption, almost no energy is used with ConnCons algorithm

at the beginning when most linked VMs are placed within the same host. However, as

hosts get overloaded over the time, more switches are utilized which leads to consuming

more energy. This result shows that how our algorithm reduces energy consumption and

converges over time.

In this experiment, we investigated how overbooking ratio changes dynamically in

correspondence with the workload. We randomly chose one sample VM from the previ-

ous experiments, and measured its CPU workload and Resource Allocation Ratio (RAR)

in different algorithms. Figure 4.12 presents the CPU utilization level and the Resource

Allocation Ratio of the VM changing over time. The first figure (4.12a) shows the CPU

utilization of the VM without overbooking in correspondence with its workload. It

is obvious that the VM consumes more CPU resource when there is more load. Fig-

ures 4.12b, 4.12c, and 4.12d show the Resource Allocation Ratio of the VM in different

overbooking algorithms. For the static overbooking method without migration (ConnNone),

the VM acquires only 70% of requested resource all the time constantly as the RAR sets

to 70% without dynamic overbooking strategy. However, with our proposed dynamic

overbooking algorithms (ConnCons+MostCorr and ConnDist+LeastCorr), RAR contin-

uously changes over time following the actual workload. As we set up Initial Resource

Allocation Ratio (IRAR) to 70%, the RAR starts at 0.7 in both algorithm, and dynamically

fluctuates over time following the actual CPU utilization shown in Figure 4.12a. The re-

sult shows that the overbooking ratio reflects the real workload, so that the VM acquires

more resources when necessary.

106 SLA-aware and Energy-Efficient Dynamic Resource Overbooking

0 5 10 15 20 25

0
10

20
30

40
50

60
70

Time (Hour)

U
til

iz
at

io
n

(%
)

(a) CPU Utilization of the VM.

0 5 10 15 20 25

0.
4

0.
6

0.
8

1.
0

Time (Hour)

O
ve

rb
oo

ki
ng

 R
at

io

(b) ConnNone (RAR 70%).

0 5 10 15 20 25

0.
4

0.
6

0.
8

1.
0

Time (Hour)

O
ve

rb
oo

ki
ng

 R
at

io

(c) ConnCons+MostCorr.

0 5 10 15 20 25

0.
4

0.
6

0.
8

1.
0

Time (Hour)

O
ve

rb
oo

ki
ng

 R
at

io

(d) ConnDist+LeastCorr.

Figure 4.12: CPU utilization and Resource Allocation Ratio of a sample VM.

4.8 Summary

In this chapter, we presented dynamic overbooking strategies that allocate host and net-

work resources dynamically adapting based on the utilization. The variety of workloads

affects the dynamic overbooking ratio in real-time through correlation analysis of the

VMs and network utilization. By leveraging the dynamic overbooking method, tightly

suitable amount of resources can be allocated to VMs which will maximize energy cost

savings by reducing the waste of over-provisioned resource, and at the same time min-

imize SLA violation by allocating enough resource for the actual workload. With the

extensive experiments, we demonstrated that our approach can effectively save energy

consumption of the cloud data center while reducing SLA violation rates compared to

the baseline.

Chapter 5

Priority-aware Joint VM and Network
Resource Provisioning

In this chapter, we propose priority-aware resource placement algorithms considering both host and

network resources. Our priority-aware VM allocation (PAVA) algorithm places VMs of the priority

application to closely connected hosts to reduce the chance of network congestion caused by other

tenants. The required bandwidth of a critical application is also guaranteed by bandwidth allocation

with a configuration of priority queues on each networking device in a data center network managed

by SDN controller. Our experiment results show that the combination of proposed approaches can

allocate sufficient resources for high priority applications to meet the application’s QoS requirement

in a multi-tenant cloud data center.

5.1 Introduction

THE emergence of Software-Defined Networking (SDN) enables a fulfillment of

network QoS satisfaction by the introduction of dynamic network reconfiguration

based on the network traffic. SDN has brought many opportunities in networking with

centralized manageability and programmable control logic. In SDN, a controller oversees

the entire network by gathering all information of every network device and manages

the network traffics dynamically with the customized control logic. SDN integration in a

cloud data center has shown to be effective to improve the energy efficiency [48,124,133],

the network performance [71, 96, 119], the network availability [5], and the security [22].

It also enables network slicing and dynamic bandwidth allocation which can be exploited

This chapter is derived from: Jungmin Son and Rajkumar Buyya, “Priority-aware VM Allocation and
Network Bandwidth Provisioning in SDN-Clouds,“ IEEE Transactions on Sustainable Computing (T-SUSC),
2018 (accepted, in press).

107

108 Priority-aware Joint VM and Network Resource Provisioning

for QoS satisfaction [3, 43].

In this work, we propose a novel VM and network allocation approach (PAVA+BWA)

in the combination of a Priority-Aware VM Allocation (PAVA) algorithm considering net-

work connection between VMs on the application level with a network Bandwidth Al-

location (BWA) algorithm to differentiate the higher-priority flows over normal network

traffics. These algorithms are to allocate enough resources for QoS-critical applications

in cloud environments where the computing and networking resources are shared with

other tenants. We distinguish such applications to give the higher priority over the other

tenants for resource provisioning and network transmission.

We model an application based on its priority to differentiate in VM capacity and

network bandwidth. Our approach can allocate sufficient computing and networking

resources for a critical application with high priority even in a busy data center. We em-

ploy a network bandwidth allocation strategy enabled by SDN for the critical application

traffic so that the application can complete network transmission on time regardless of

the network condition. With our approach, QoS-critical applications can be served in-

time on clouds, while other applications can still share the resources for the rest of time.

It considers host and networking resources jointly to prevent the network delay which

can cause QoS failure. The applications’ QoS requirements are assumed to be provided

to the cloud management at the time of the request. Using the metrics of QoS require-

ments including computing capacity and network bandwidth, the proposed algorithm

determines where to place VMs and flows. The algorithm considers both computing and

networking requirements jointly to select the host to place the VM and the links between

hosts. After selecting the network links, we use dynamic bandwidth allocation to meet

the networking requirement.

The key contributions of this chapter are:

• a priority-aware VM placement algorithm that places VMs of a critical application

into proximity hosts with enough resources;

• a bandwidth allocation method for higher-priority flows to guarantee the minimum

bandwidth in overloaded data center networks;

• a system that provisions both compute and network resources jointly to offer qual-

5.2 Related Work 109

Table 5.1: Summary of related works.

Work VM alloca-
tion unit

VM place-
ment
method

VM type Traffic management Parameters Energy
efficiency

MAPLE [119,
121, 122]

Connected
VMs

Network-
aware

Homogeneous Dynamic routing Estimated effective
bandwidth

x

EQVMP
[123]

Connected
VMs

Hop reduc-
tion

Homogeneous Dynamic routing VM traffic X

S-CORE [27] Not Appli-
cable (NA)

Migration
only

Homogeneous VM migration to close
hosts

VM traffic x

QVR [71] NA NA NA Dynamic routing &
Bandwidth allocation

Delay, jitter, packet
loss

x

FCTcon [133] NA NA NA Bandwidth allocation Flow completion
time

X

DISCO [134] NA NA NA Flow consolidation Traffic correlation,
delay

X

PAVA+BWA Application
level

Priority-
aware

Heterogeneous Bandwidth allocation Priority, VM capac-
ity, bandwidth re-
quirement

X

ity of service to critical applications in SDN-enabled cloud data centers;

• a performance evaluation of our proposed algorithm that is compared with related

approaches and depicted its effectiveness through detailed simulation experiments

using both synthetic and real (Wikipedia) workloads.

This chapter is organized as follows. We discuss the state-of-the-art approaches in

Section 5.2. The overall system architecture is explained in Section 5.3 followed by a

detailed explanation of the proposed algorithm along with baselines. Section 5.5 presents

experiment configuration and evaluation results. Finally, Section 5.6 summarizes the

chapter.

5.2 Related Work

Many approaches have been proposed to network-aware VM placement and SDN-based

network flow scheduling. Wang et al. proposed MAPLE [121, 122], a network-aware

VM placement system that exploits an estimated bandwidth usage of a VM. In MAPLE,

110 Priority-aware Joint VM and Network Resource Provisioning

authors calculated estimated bandwidth based on empirical traces collected from the

servers. The algorithm uses First Fit Decreasing approach in order to determine a host

to place the VM. MAPLE focuses on per-VM network requirement and assumes that all

VMs have a homogeneous processing requirement.

MAPLE project is extended to MAPLE-Scheduler, a flow scheduling system that dy-

namically reschedule the network flows based on QoS requirement of each VM [119].

The authors implemented dynamic network flow scheduler to relocate flows based on

the estimated bandwidth usage. At the beginning, the system finds a default route us-

ing equal-cost multi-path (ECMP) protocol [49] which is a widely adopted protocol for

multi-path routing that distributes network traffics evenly over multiple paths. Then,

the system detects potential flows that can violate the QoS and reschedules them to an

alternate path where the QoS can be satisfied.

EQVMP is another VM placement approach that is aware of energy efficiency and

QoS [123]. EQVMP partitions VMs into groups based on traffic matrix to reduce the

inter-group traffic and balance the load in each group. VM groups are placed onto hosts

using bin packing algorithm to reduce the number of hosts and minimize the energy

consumption. After the placement, EQVMP performs load balancing which detects over-

utilized network link and relocates flows in the link. The authors assume that the capacity

requirement of VMs are homogeneous and considers only network requirement.

S-CORE has been proposed for SDN-based VM management that exploits a VM mi-

gration technique to minimize the network-wide communication cost for cloud data cen-

ters [27]. The system monitors VM traffic flows periodically and migrates VMs with

large network traffics into close hosts to reduce the network cost. The prototype is imple-

mented both on a KVM-based test-bed and in a simulation and evaluated with synthetic

workloads. Although the system considers network traffics of VMs to minimize the to-

tal network cost through the network monitoring capability of SDN, it is incapable of

dynamic traffic management in the congested network.

Lin et al. proposed QoS-aware virtualization and routing method (QVR) that isolates

and prioritizes tenants based on QoS requirements and allocates network flows dynam-

ically [71]. The system supports fine-grained network virtualization based on tenants

and the network requirement. The flows are allocated dynamically onto physical links

5.2 Related Work 111

considering the minimum arrival rate and maximum utilization. The system also uses

adaptive feedback traffic engineering to ensure the end-to-end QoS. The proposed ap-

proach is applied to a wide area network and compared with other routing protocols in a

simulation. Their approach is applicable to different network topology but more focused

on wide area network.

FCTcon has been proposed to improve energy efficiency in data center networks by

dynamically managing the flow completion time [133]. The proposed method consoli-

dates network flows into a smaller set to save energy usage in a data center. In order

to prevent performance degradation, the system calculates an expected flow completion

time and dynamically adapts the flow bandwidth to meet the required completion time

for delay-sensitive flows. In their system, the controller receives feedback of flow com-

pletion time from a monitor constantly monitoring the data center network and updates

bandwidth allocation and flow paths to consolidate flows while preventing delay of sen-

sitive flows.

DISCO is also proposed by the same authors to increase the scalability of traffic flow

consolidation technique for energy efficient data center networks [134]. In this work,

the authors addressed the trade-offs between scalability, network performance, and en-

ergy efficiency in a large-scale data center network. Network traffics within a data center

can be consolidated into a smaller number of network links and switches to save power

consumption by turning off unused switches. However, the high complexity of the con-

solidation algorithm in SDN’s centralized model can result in a scalability issue for a data

center. The authors proposed a distributed traffic management system to support a scal-

able traffic consolidation technique. The proposed system also considers network delay

as a constraint to improve the network performance. Nevertheless, only network traffic

is taken into account in this work without consideration of computing resources.

Table 5.1 summarizes related works and compares with our approach (PAVA+BWA).

Unlike the aforementioned studies, our approach prioritizes critical applications over

the other applications considering application-level resource requirements. Instead of

considering individual VMs and flows, a set of multiple VMs consisting of the same ap-

plication (e.g., web and database servers for a web application, or mappers and reducers

for a MapReduce application) are taken into the consideration for resource provisioning.

112 Priority-aware Joint VM and Network Resource Provisioning

Application	1:	Critical Network ManagerVM/Flow Placement

Application Requests

Physical	Resources

Priority‐aware	VM	and	Flow	Controller

Dynamic	bandwidth	
allocation

Flow	scheduling

OpenFlow
Switches

Hosts

Network	
policy

VM	
placement

Priority	analysis

Host	and	link	
selection

VM1 VM2 VM3
Flow1

Application	3 :	Normal

Flow2

VM1 VM2 VM3
Flow1

Application	2:	Normal

VM4

Flow2

VM5
Flow4

Flow3

VM1 VM2 VM3
Flow1

VM4

Flow2
Flow3

SDN
Controller

.

.

.

Figure 5.1: Architectural design of priority-aware VM and flow management system.

In our model, VMs can be heterogeneous, i.e., each VM can have different computing

and networking requirements which are managed by our VM allocation and network

bandwidth allocation system. Parameters considered in the proposed method includes

priority, VM processing capacity, and flow bandwidth requirements. We also consider

the energy efficiency of a data center which may be affected by the implementation of the

algorithm.

5.3 System Architecture

Figure 5.1 shows overall architecture of our system along with flows of interaction be-

tween different components. In brief, application requests are submitted to the system

with a priority information (critical or normal). Each application request consists of an ar-

bitrary number of VMs and flows with detailed specifications. Priority of an application

is then analyzed for VM and flow placement to provide sufficient resources for a critical

application as well as to prioritize network traffic over normal applications. Based on the

analyzed information, the host and link selection algorithm determines where to place

VMs and flows. Flow information is also sent to the network manager to communicate

5.3 System Architecture 113

with the SDN controller for dynamic bandwidth allocation and flow scheduling. The

detail of each component is explained below.

At first, application requests are created by cloud tenants to serve their applications

and include VM types and flow information. A VM type consists of the number of pro-

cessing cores, each core’s processing capacity, the amount of memory, and the storage

size. In this research, we focus on computing power and ignore memory and storage size

in order to reduce the problem complexity. An application request also includes flow

specification consisting of a source and destination VM and the required bandwidth. VM

and flow specifications are modeled based on commercialized cloud providers such as

Amazon AWS and Microsoft Azure who provide predefined VM types and customizable

virtual networks. We add an extra entity, application priority, to this model to differenti-

ate applications. Note that either critical or normal application request can be submitted

at arbitrary time, and the system provisions the resources available at the time of the ap-

plication submission. If a critical application is submitted after a normal one, the system

allocates residual resources to the critical one with a different provisioning method.

Given the VM and flow requests, the system analyzes QoS requirements and prior-

itizes the VMs and flows accordingly. Prioritization can be performed in various ways,

such as determined based on the VM capacity, network requirements, or specified by

the tenants. Although our system model is capable of any prioritization method, in this

chapter we assume that the application priority is specified by user in binary value (crit-

ical or normal) and supplied to the system along with the application request. This is to

simplify the prioritization process and focus on the resource prioritization method.

After the analysis of an application priority, the system selects a host and links to place

the requested application by running the VM placement algorithm, which is proposed

in this chapter that jointly considers computing and networking requirements. Once

the selection is done, the result is passed to the network manager for network resource

configuration and to the physical resources for actual allocation of the VM and flow.

Network manager ensures to allocate minimum bandwidth for a critical application

even in network congestion. It is in charge of SDN controller that dynamically allocates

bandwidth for each flow. By default, the bandwidth of a link is equally shared among the

flows passing the link, but a higher-priority flow can acquire more bandwidth through

114 Priority-aware Joint VM and Network Resource Provisioning

implementing a priority queue on switches such as queuing disciplines (qdisc) and Hier-

archy Token Bucket (HTB) implemented in Linux’s traffic control (tc) suite. In order to

control flows and their network bandwidths, the network manager communicates with

SDN controller to provision the networking resources dynamically. SDN controller man-

ages all switches in the data center through OpenFlow protocol.

5.4 Priority-aware Resource Provisioning Methods

In this section, we explain the strategy for computing and networking resource allocation

in aware of application’s priority. We model the priority of application discretely. Each

application provides its priority as a critical (higher-priority) or normal (lower-priority)

application. It can be manually set up by tenants who submit the application request

to a cloud provider or automatically configured by cloud provider based on the appli-

cation information. We assume that there is a reasonable mixture of critical and normal

application requests in a data center so that not all the applications running in a data

center are set to be critical applications. If all of them have the same priority, they will

be served equally. Resources are allocated without any special consideration for normal

applications, whereas critical applications are ensured to get sufficient computing power

and prior network transmission over the normal applications.

5.4.1 Priority-Aware VM Allocation (PAVA)

For VM allocation, we propose Priority-Aware VM Allocation (PAVA) algorithm (shown

in Algorithm 5) which allocates a closely connected host for a critical application with the

information of network topology. In this method, we consider the priority of application

as well as the network connectivity of physical hosts in a data center. Before allocating

VMs, the system gathers the network topology of the data center. All hosts in a data

center are grouped by their connectivity. For example, hosts in the same rack connected

to the same edge switch will be grouped together. VMs are also grouped based on the

application.

After grouping hosts, PAVA algorithm is running to find a suitable VM-host mapping

to place a VM for a critical application. PAVA tries to place a set of VMs for the critical

5.4 Priority-aware Resource Provisioning Methods 115

application onto the host group which has more computing and networking resources. If

the group of VMs cannot be fit in a single host group, VMs will be placed across multiple

host groups with the closest proximity (e.g., under a different edge switch in the same

pod). In this way, VMs in the same application will be closely placed to maintain the

minimal number of hops for network transmission. For example, a network traffic be-

tween VMs placed within the same host is transferred through the host memory without

incurring any traffic to networking devices. Similarly, if the VMs are hosted under the

same edge network or in the same pod, a cost for network transmission between those

VMs can be reduced with a lower probability of interference by the other applications.

PAVA guarantees VMs for the critical application to be placed on not only the host with

the sufficient capacity but also within the same or closer hosts in network topology to

reduce the communication cost. We use First Fit Decreasing (Algorithm 7) for normal

applications.

5.4.2 Bandwidth Allocation for Priority Applications (BWA)

As cloud data center’s network infrastructure is shared by various tenants, providing

constant network bandwidth is crucial for application’s QoS to avoid performance degra-

dation in traffic congestion caused by other tenants. We propose bandwidth allocation

(BWA) approach to allocate the required bandwidth for a critical application. This ap-

proach utilizes per-flow traffic management feature for virtualized network [67, 109].

SDN controller can manage switches to allocate requested bandwidth by configuring

priority queues in switches to ensure privileged traffic transmitting over the other lower-

priority traffics.

After VM placement process is completed, the bandwidth requirement and the vir-

tual network information of a critical application are sent to the SDN controller. SDN

controller then establishes priority queues (e.g., Linux qdisc and HTB) for the critical ap-

plication flows on every switch along the link. Network traffic generated from VMs of

the critical application will use the priority queue so that the required bandwidth can be

obtained for the critical applications. This method is only applied to critical applications

in order to prioritize network transmission over the normal traffic in the shared nature of

data center networking. It ensures that the critical application can get enough bandwidth

116 Priority-aware Joint VM and Network Resource Provisioning

Algorithm 5 Priority-Aware VM Allocation (PAVA)

1: Data: vm: VM to be placed.
2: Data: rd: Resource demand of vm;
3: Data: app: Application information of vm.
4: Data: H: List of all hosts in data center.
5: Hgroup ← Group H based on edge connection;
6: QH ← Empty non-duplicated queue for candidate hosts;
7: placed← false;
8: if app is a priority application then
9: Happ ← list of hosts allocated for other VMs in app;

10: if Happ is not empty then
11: QH.enqueue(Happ);
12: for each ha in Happ do
13: Hedge ← A host group in Hgroup where ha is included ;
14: QH.enqueue(Hedge);
15: end for
16: for each ha in Happ do
17: Hpod ← Hosts in the same pod with ha;
18: QH.enqueue(Hpod);
19: end for
20: end if
21: sort Hgroup with available capacity, high to low;
22: QH.enqueue(Hgroup);
23: while QH is not empty and placed = false do
24: hq = QH.dequeue()
25: Ch ← free resource in host hq;
26: if rd < Chq then
27: Place vm in hq;
28: Ch ← Ch − rd;
29: placed← true;
30: end if
31: end while
32: end if
33: if placed = false then
34: Use FFD algorithm to place vm;
35: end if

even in a congested network caused by the other application. Algorithm 6 explains the

detailed procedure of BWA method. For all flows, the algorithm sets the default path

using ECMP, which distributes network traffic based on the address of the source and

destination hosts. For higher-priority flows, the algorithm sets up an extra flow rule in

each switch along the path. The priority queue set for the higher-priority flow can guar-

antee the minimum bandwidth required by the application. For lower-priority flows, the

5.4 Priority-aware Resource Provisioning Methods 117

Algorithm 6 Bandwidth Allocation for critical applications (BWA)

1: Data: F: List of network flows.
2: Data: topo: Network topology of the data center.
3: for each flow f in F do
4: hsrc ← the address of the source host of f ;
5: hdst ← the address of the destination host of f ;
6: S f ← list of switches between hsrc and hdst in topo;
7: for each switch s in S f do
8: if f is a priority flow then
9: s.setPriorityQueue(hsrc, hdst, f .vlanId, f .bandwidth);

10: end if
11: end for
12: end for

algorithm only sets a default path using ECMP without a further configuration.

5.4.3 Baseline algorithms

The proposed approaches are compared with three baseline algorithms: exclusive re-

source allocation, random allocation, and state-of-the-art heuristic.

Exclusive Resource Allocation (ERA) is to allocate dedicated hosts and networks ex-

clusively for a critical application, thus resources are not shared with any other tenants.

The application can fully utilize the capacity of the dedicated resources to process its

workloads, as the required computing and networking resources can be obtained with-

out any interference from other applications. However, all the benefits of cloud comput-

ing will be lost including elasticity and dynamicity in this method. It is impractical in

reality because exclusively allocated resources will result in an extravagant cost for cloud

providers which will be passed on to the customers. In this chapter, we use this algorithm

only for measuring the expected response time of a critical application to calculate QoS

violation rate. Details of how to calculate QoS violation rate is explained in Section 5.5.3.

Random allocation (Random) is to place a VM on a random host capable of provid-

ing enough resources for the VM. In this method, a host is randomly selected with no

intelligence but solely based on the resource capacity.

The state-of-the-art heuristic baseline algorithm is to place VMs in First Fit Decreasing

(FFD) order determined by the amount of required bandwidth, which is combined with

a Dynamic Flow (DF) scheduling method for network traffic management. FFD and

118 Priority-aware Joint VM and Network Resource Provisioning

DF are derived from MAPLE project [119, 121, 122], where the applications are equally

considered for VM allocation and flow scheduling based on their bandwidth requirement

regardless of applications’ priority. Details of baselines are explained below.

First Fit Decreasing (FFD)

FFD searches a host to place the VM in the first fit decreasing order based on the band-

width. It consolidates more VMs into a host with enough resources and does not dis-

tribute them across the data center. Thus, VMs are placed into a smaller set of hosts,

whereas other empty hosts can put into an idle mode which can increase the energy ef-

ficiency of the entire data center. This baseline is derived from MAPLE [121, 122], but

instead of Effective Bandwidth, we use the VM’s requested bandwidth to determine the

resource sufficiency of a host for a VM. In our system, we do not need to calculate a sepa-

rate Effective Bandwidth because the required bandwidth is predefined in the application

specification.

In addition to the power saving at hosts, FFD can also reduce the energy consumption

of switches. When more VMs are placed on the same host, the possibility of in-memory

transmission between VMs in the same host is increased which emits the network trans-

mission over the switches. Although the algorithm does not consider the network con-

dition in itself, it can affect the amount network traffic to some extent from the nature of

the algorithm. The pseudo-code of the algorithm is presented in Algorithm 7.

Dynamic Flow Scheduling (DF)

On multi-path network topology, dynamic flow scheduling is a common approach to

find an alternate path for a flow in case of network congestion or link error suggested in

multiple studies [119, 123]. This method detects a congested link and relocates the flows

in the congested link into an alternate path with more capacity. However, based on our

observation, this approach is less effective for short-distance flows in Fat-tree topology

due to Fat-tree’s architectural advance which can achieve a network over-subscription

ratio of up to 1:1 [4]. For an edge switch in Fat-tree, the number of downlinks to the

connected hosts are same as the number of up-links to the aggregation switches, and the

5.5 Performance Evaluation 119

Algorithm 7 First-fit decreasing for bandwidth requirement (FFD)

1: Data: VM: List of VMs to be placed.
2: Data: H: List of hosts where VMs will be placed.
3: for each vm in VM do
4: sort H with available resource, low to high;
5: for each h in H do
6: Ch ← free resource in host h;
7: rd← resource demand of vm;
8: if rd ¡ Ch then
9: Place vm in h;

10: Ch ← Ch − rd;
11: placed← true;
12: break;
13: end if
14: end for
15: end for

traffic flows are equally distributed based on the address of the source and the destination

host. Thus, the network traffic is already balanced among the links between edge and

aggregation switches in the same pod. The algorithm is still effective for inter-pod traffics

because the number of links between aggregation and core switches is less than the ones

between aggregation and edge switches. When the link to a core switch is congested, DF

algorithm can relocate the flows into an alternate link to the other core switch with less

traffic.

The pseudo-code of DF scheduling algorithm is described in Algorithm 8 which is

derived from MAPLE-Scheduler [119]. DF is used as a baseline to compare with our

bandwidth allocation approach. The algorithm is applied periodically to find the least

busy path for higher-priority traffics, while normal traffics still use the default path de-

termined by ECMP based on the source address.

5.5 Performance Evaluation

The proposed algorithms are evaluated in a simulation environment. Two use-case sce-

narios are prepared to show the effectiveness of PAVA and BWA: a straightforward network-

intensive application and more practical 3-tier application. We measure the response time

of workloads to check the impact of the algorithms on both critical and normal applica-

120 Priority-aware Joint VM and Network Resource Provisioning

Algorithm 8 Dynamic Flow scheduling algorithm (DF)

1: Data: f : A network flow to be scheduled.
2: Data: hsrc: the address of the source host of f .
3: Data: hdst: the address of the destination host of f .
4: Data: topo: Network topology of the data center.
5: s← next hop from hsrc for flow f in topo
6: while s is not hdst do
7: L← available links on s for flow f .
8: lNext ← hsrc mod L.size() (default path);
9: if f is a priority flow then

10: for each link l in L do
11: if l.utilization() < lNext.utilization() then
12: lNext ← l;
13: end if
14: end for
15: end if
16: s.updateNextHop(f , lNext);
17: s← lNext
18: end while

tion’s performance. Energy consumption of the data center and the number of active

hosts and their up-time are also measured to consider the cost of cloud providers.

5.5.1 Experiment configuration and scenarios

For evaluation, we implemented the proposed method and baselines on CloudSimSDN

simulation environment which is described in Chapter 3. CloudSimSDN is an extension

of CloudSim [18] simulation tool that supports SDN features for cloud data center net-

works. In CloudSimSDN, we generated an 8-pod fat-tree topology data center network

with 128 hosts connected through 32 edge, 32 aggregation, and 16 core switches. Thus,

each pod has 4 aggregation and 4 edge switches, and each edge switch is connected to 4

hosts. Figure 5.2 shows the topology of the configured cloud data center for the experi-

ment. All physical links between switches and hosts are set to 125 MBytes/sec.

In the aforementioned simulation environment, we evaluate our approach in two sce-

narios.

5.5 Performance Evaluation 121

Pod 8Pod 1

Core

Aggregation

Edge

Host

Figure 5.2: 8-pod fat-tree topology setup for experiments.

A Scenario 1: synthetic workload

The first scenario is to place a critical application in an overloaded data center environ-

ment. To make the data center overloaded, 15 lower-priority applications, consisting of

16 VMs in each application, are firstly placed in the data center that constantly gener-

ates network traffics. After these VMs are placed, a higher-priority application consisting

of the same number of VMs is submitted to the data center. Once all VMs are placed

using the proposed PAVA algorithm, synthetically generated workloads are submitted

to the critical application, which has both computing and networking loads. The BWA

method is applied to transfer the networking part of the critical application workloads.

This scenario is to test the effectiveness of PAVA and, especially, BWA in a condition that

the higher-priority application is significantly interfered by other applications. Please

note that the workloads are synthetically generated which keeps sending network traf-

fics to each other within the same application, in order to evaluate the effectiveness of the

network traffic management schemes.

B Scenario 2: Wikipedia workload

The second scenario reflects a more practical situation where applications are placed on a

large-scale public cloud that a massive number of VM creation and deletion requests are

submitted every minute. Frequent VM creation and deletion result in a fragmented data

center. Network traffics generated by the scattered VMs can increase the overall load of

the data center network, which makes the network traffic management more critical in

122 Priority-aware Joint VM and Network Resource Provisioning

applications’ performance.

We create 10 different application requests modeled from three-tier web applications.

Each application consists of 2 database, 24 application, and 8 web servers communicat-

ing to one another. One out of the 10 applications is set to be critical, while the rest to

be normal. The size of VMs are varied based on the tier, e.g., database tier servers are

defined having 2 times more processing capacity than application tier servers. Virtual

networks are also defined between all VMs in the same application so that any VMs can

transfer data to any other VMs in the same application. Required bandwidth for the criti-

cal application is set to the half of physical link bandwidth, while the normal application

is set to be a fourth of the physical bandwidth to differentiate the priority.

We also generate workloads for the second scenario from three-tier application model [33]

based on Wikipedia traces available from Page view statistics for Wikimedia projects. Ev-

ery application receives approximately between 80,000 and 140,000 web requests gener-

ated from traces in a different language, each of which consists of processing jobs in VM

servers and network transmissions.

For both scenarios, we measure the response time of both critical and normal appli-

cations, the QoS violation rate of the critical application, and the power consumption of

the data center.

5.5.2 Analysis of Response Time

At first, we evaluate the performance of the proposed algorithm by measuring the aver-

age response time of the critical application, and VM processing and network transmis-

sion time in detail with each algorithm. Note that QoS violation is not considered for

calculating the averages in this subsection.

Figure 5.3 shows the results in Scenario 1 where the data center network is constantly

overloaded by other applications. The average response time (Figure 5.3a) is significantly

reduced by 38.4% in PAVA+BWA (both PAVA and BWA algorithms applied) compared to

the Random algorithm, mainly resulting from 52.1% reduction in network transmission

time (Figure 5.3b). VM processing time remains same regardless of algorithm combina-

tion which shows that VMs acquire enough processing resources.

For FFD, the average response time is 10.2% increased compared to Random method

5.5 Performance Evaluation 123

15.79
17.40

14.86 15.05

9.73

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Random FFD FFD+DF PAVA PAVA+BWA

(a) Average response time of the critical applica-
tion.

4.16

11.62

4.17

13.24

4.18

10.68

4.20

10.84

4.18
5.56

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

VM Processing Network Transmission

Pr
oc

es
si

ng
 T

im
e

(s
ec

)

Random FFD FFD+DF PAVA PAVA+BWA

(b) VM processing and network transmission time of the crit-
ical application.

Figure 5.3: Performance matrices of the critical application in Scenario 1 (synthetic work-
load).

6.39

6.52

6.40

6.18 6.16

5.9

6.0

6.1

6.2

6.3

6.4

6.5

6.6

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Random FFD FFD+DF PAVA PAVA+BWA

(a) Average response time of the critical applica-
tion.

5.59

0.80

5.58

0.95

5.58

0.82

5.59

0.60

5.59

0.57

0.0

1.0

2.0

3.0

4.0

5.0

6.0

VM Processing Network Transmission

Pr
oc

es
si

ng
 T

im
e

(s
ec

)

Random FFD FFD+DF PAVA PAVA+BWA

(b) VM processing and network transmission time of the crit-
ical application.

Figure 5.4: Performance matrices of the critical application in Scenario 2 (Wikipedia
workload).

due to the increased network transmission time. Since FFD consolidates more VMs into

a smaller number of hosts without consideration of their connectivity, network trans-

missions within the critical application are significantly interfered by other applications

placed on the same host. Similarly, applying PAVA without network bandwidth alloca-

tion cannot improve overall performance substantially due to the consolidation of VMs

into shared hosts, although the average response time is still shorter than the one from

FFD.

With the implementation of DF in addition to FFD, the average network transmission

time is reduced to 10.68 seconds from 13.24 of FFD. Although dynamic flow scheduling

124 Priority-aware Joint VM and Network Resource Provisioning

can find a less crowded path, it is ineffective in this scenario where all the alternate paths

are busy. On the other hand, BWA provides the best result in network transmission time

reduced to almost half of all the other methods. This shows that our bandwidth allocation

method can significantly improve the critical application’s network performance in the

overloaded network environment.

Figure 5.4 depicts the results from Scenario 2 where more complex applications and

workloads are submitted to a large-scale cloud data center. In this scenario, the average

response time is reduced by 3.3% in PAVA, and BWA is not shown as effective as the

previous scenario. Unlike Scenario 1, the network is not frequently overloaded in the

data center, which limits the effectiveness of BWA. On the other hand, PAVA becomes

more effective on account of the proximity of VMs. As the VMs of the same applica-

tion have been placed closely with PAVA, the network transmission time between them

is reduced by 25% from 0.80 seconds in Random to 0.60 seconds in PAVA. The critical

application’s network workloads pass through only low-level switches (edge and/or ag-

gregation switches) as the VMs are placed under the same edge network or the same pod,

and thus not interfered by other traffics.

Similar to the previous scenario, FFD increases the average response time due to the

VM consolidation to shared hosts. Implementation of DF also reduces the network trans-

mission time, which makes the average response time of FFD+DF become similar to the

Random method. VM processing times are almost same no matter which algorithm is

being used. In short, the proposed algorithm (PAVA+BWA) improves the response time

of the critical application by 34.5% for Scenario 1 and 3.8% for Scenario 2 compared to

the state-of-the-art baseline (FFD+DF).

Additionally, we measure the average response time of normal (lower-priority) ap-

plications to see the effect of our algorithm on the other normal applications. Figure 5.5

shows the measured response time of normal applications in both scenarios. Compared

to the Random algorithm, PAVA and PAVA+BWA actually result in improving the per-

formance of lower-priority applications by reducing the average response time by 13.8%

and 4.9% respectively in Scenario 1 and 2. The baseline algorithm FFD+DF also reduces

the response time of lower-priority applications. In short, our algorithm maintains or

even improves the performance of lower-priority applications, while improving the per-

5.5 Performance Evaluation 125

6093.29 5843.70

4574.47
5249.69 5249.75

0

1000

2000

3000

4000

5000

6000

7000

App 1-15
A

ve
ra

ge
 R

es
po

ns
e

T
im

e
(s

ec
)

Random FFD FFD+DF PAVA PAVA+BWA

(a) Scenario 1 (synthetic workload).

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

App 1-9 (avg) App 1 App 2 App 3 App 4 App 5 App 6 App 7 App 8 App 9

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Random FFD FFD+DF PAVA PAVA+BWA

(b) Scenario 2 (Wikipedia workload).

Figure 5.5: Average response time of normal (lower-priority) applications.

formance of a critical application.

5.5.3 Analysis of QoS violation rate

QoS violation rate is calculated by comparing the response time from ERA algorithm with

the one from other algorithms. We assume that the expected response time can be fully

achieved in ERA because it allocates dedicated servers with enough resource for every

VMs required in the application. We compare the response time of each workload and

count the QoS violated workload if the response time exceeds the one from ERA. Equa-

tion 5.1 shows the calculation of QoS violation rate (rv) from workloads set (W), where

tX and tERA denote the response time of a workload (wv) measured from the designated

algorithm and ERA respectively. It counts the number of workloads whose response time

from the designated algorithm is exceeding the response time from ERA and divides by

the total number of workloads.

126 Priority-aware Joint VM and Network Resource Provisioning

53.13%

65.63%

43.75%

34.38%

0.00%
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Q
oS

 V
io

la
tio

n
R

at
e

Random FFD FFD+DF PAVA PAVA+BWA

(a) Scenario 1 (synthetic workload).

2.60%

3.70%

2.22%

1.34% 1.26%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

Q
oS

 V
io

la
tio

n
R

at
e

Random FFD FFD+DF PAVA PAVA+BWA

(b) Scenario 2 (Wikipedia workload).

Figure 5.6: QoS violation rate of critical application workloads.

rv =
|{wv ∈W|tX(wv) > tERA(wv)}|

|W| (5.1)

Average QoS violation rate of the critical application is shown in Figure 5.6. In Sce-

nario 1, PAVA results in 34.38% QoS violation whereas PAVA+BWA has no violation at

all (see Figure 5.6a). As we discussed in the previous subsection, BWA is more effective

in overloaded networks where other tenants generate heavy traffic loads. The baseline

(FFD+DF) also reduce the QoS violation rate from Random’s 53.13% to 43.75% but not as

significant as BWA.

Similar results can be found in Scenario 2 (see Figure 5.6b) where PAVA and PAVA+BWA

show the lowest QoS violation rate reaching 1.34% and 1.26% respectively. Interestingly,

overall violation rate is much lower, ranging between 1.26% and 3.70% in Scenario 2 com-

pared to between 0% and 65.36% of Scenario 1. This is due to the significant degradation

of the network performance in Scenario 1 where network overload by other applications

interferes the application. Although the QoS violation rate in Scenario 2 is not as high as

in Scenario 1, the impact of our algorithm is still significant to improve the violation rate

by 51.5% reducing from 2.60% to 1.26%. It is a crucial improvement for critical applica-

tions that should guarantee the QoS requirement. Although BWA is not as beneficial as

Scenario 1, it can still reduce the violation rate by 0.08%p compared to PAVA alone.

Compared to the state-of-the-art baseline, our proposed algorithm combination, PAVA+BWA,

can reduce QoS violation rate from 43.75% to 0% for heavy network traffic scenario and

from 2.22% to 1.26% (reduction by 43.2%) for large-scale complex application scenario.

5.5 Performance Evaluation 127

0.80 0.77 0.77 0.77 0.77

17.34 15.82
12.69

14.79 14.79

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0

Random FFD FFD+DF PAVA PAVA+BWA

E
ne

rg
y

C
on

su
m

pt
io

n
(k

W
h)

Host energy consumed Switch energy consumed

(a) Scenario 1 (synthetic workload).

111.28 100.13 100.12 102.60 102.60

26.96
28.61 29.39 25.97 25.98

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

Random FFD FFD+DF PAVA PAVA+BWA

E
ne

rg
y

C
on

su
m

pt
io

n
(k

W
h)

Host energy consumed Switch energy consumed

(b) Scenario 2 (Wikipedia workload).

Figure 5.7: Detailed power consumption of hosts and switches in a data center.

5.5.4 Analysis of energy consumption

Energy consumption is evaluated to find the influence of the proposed algorithm to the

operational cost of a cloud data center. We measured the utilization of hosts and switches

over time and used power model of hosts [95] and switches [125] respectively to calculate

the overall power consumption, using the same model and method exploited in Chap-

ter 4. Unused hosts and switches are assumed to be in an idle mode to save energy, and

the power consumption of active hosts and switches is calculated based on the utilization

of a host and the active ports of a switch.

Figure 5.7 shows the measured energy consumption of the entire data center and

the detailed power consumption in hosts and switches for both scenarios. In Scenario

1 (see Figure 5.7a) both PAVA and PAVA+BWA save 14.2% of a total data center energy

usage compared to the Random algorithm, whereas FFD and FFD+DF save 8.6% and

25.9% of power cost respectively. The difference mainly comes from switches, because

workloads in Scenario 1 consist of marginally huge network traffics combined with a

small computation load on VMs.

In Scenario 2, PAVA and PAVA+BWA consume the least amount of energy among

all algorithms. For host energy consumption, all the four algorithm combinations (FFD,

FFD+DF, PAVA, and PAVA+BWA) consume less energy compared to Random, since both

PAVA and FFD consolidate VMs into the smaller number of hosts and turn off many un-

used hosts. For switches, however, FFD (28.61 kWh) and FFD+DF (29.39 kWh) consume

more amount of energy compared to Random (26.96 kWh), while the consumption in

PAVA (25.97 kWh) and PAVA+BWA (25.98 kWh) is lower than the Random. As those

128 Priority-aware Joint VM and Network Resource Provisioning

VMs in the same application group are closely placed with PAVA mostly within the same

edge network or within the same pod, the network traffics are consequently consolidated

passing through fewer switches. Thus, the energy consumption is lowered resulting from

the decreased number of active switches.

Nevertheless, the results show that the proposed algorithm at least will not increase

the power consumption of the data center. In fact, it can help to reduce the operational

cost by consolidating VMs into a smaller number of hosts while providing the required

QoS for a critical application. In Wikipedia workload, the energy consumption is even

reduced compared to the state-of-the-art baseline.

5.5.5 Analysis of algorithm complexity

We analyze the time complexity of the proposed algorithm. Firstly, the greedy bin-

packing FFD algorithm (Algorithm 7) takes O(|H| log |H|) time to place one VM in a

data center with |H| number of available hosts. In order to place |VM| number of VMs,

the algorithm takes O(|VM| · |H| log |H|) which is feasible for online dynamic VM place-

ment.

PAVA is based on FFD algorithm with an extra computation for critical applications.

For each VM in critical applications, PAVA needs an additional sorting time, O(|H| log |H|),

to find a closely connected host from the previously placed VMs. Thus, given VMs in crit-

ical applications (VMc ∈ VM), the overall complexity of PAVA including the additional

computation for critical VMs along with the basic FFD is:

O(|VMc| · |H| log |H|) + O(|VM| · |H| log |H|)

= O(|VM| · |H| log |H|)

which is same as the time complexity of FFD algorithm.

The time complexity of BWA algorithm is O(|S| · |Fc|) where |Fc| number of flows

for critical applications are placed in a data center network consisting of |S| number

of switches. This is also a small addition compared to dynamic scheduling algorithm

where flows are periodically re-routed by running routing algorithms to find the best

route. However, the overhead of BWA may occur at the time of packet forwarding in

5.6 Summary 129

switches because of extra forwarding rules and queues configured for critical applica-

tions. Although we could not simulate this overhead in our evaluation environment, the

extra overhead is negligible when the proportion of higher-priority flows is significantly

smaller than the data center. The number of switches installing the extra queues will be

minimized especially with PAVA where the priority VMs are placed in close hosts, thus

network traffics are transmitted through the minimal number of network hops.

5.6 Summary

In this chapter, we presented a priority-based VM allocation and network traffic man-

agement scheme with bandwidth allocation and dynamic flow pathing mechanism. The

algorithms are evaluated in a simulation environment with a large-scale fat-tree topol-

ogy and multiple applications with a different priority. The results show that the pro-

posed priority-aware VM allocation method actually places the critical application into

the closer hosts so that it reduced both the energy consumption and the average response

time for the critical application. The bandwidth allocation method is specifically effective

in the overloaded network scenario where the higher-priority traffic is interfered by other

applications. Our algorithm is outperformed the state-of-the-art approaches.

Chapter 6

Prototype System of Integrated
Control Platform

This chapter proposes SDCon, a practical platform developed on OpenStack and OpenDaylight to

provide integrated manageability for computing and networking resources in cloud infrastructure.

The platform can perform VM placement and migration, network flow scheduling and bandwidth al-

location, real-time monitoring of computing and networking resources, and measuring power usage

of the infrastructure. We also propose a network topology aware VM placement algorithm for hetero-

geneous resource configuration (TOPO-Het) that consolidates connected VMs into closely connected

compute nodes to reduce the overall network traffic. The proposed algorithm is evaluated on SDCon

and compared with the results from the state-of-the-art baseline. Results of the empirical evaluation

with Wikipedia application show that the proposed algorithm can effectively improve the response

time while reducing the total network traffic. It also shows the effectiveness of SDCon managing both

resources efficiently.

6.1 Introduction

MANY management platforms have been introduced and developed for cloud

computing and SDN, such as OpenStack, VMWare, and Xen Cloud Platform

for clouds and OpenDaylight, Floodlight, NOX, ONOS, and Ryu for SDN. Although

these individual platforms are matured in cloud computing and SDN individually, no

software platform exists in practice for integration of clouds and SDN to jointly control

both networking and computing devices for clouds. For example, OpenStack adopts

This chapter is derived from: Jungmin Son and Rajkumar Buyya, “SDCon: Integrated Control Platform
for Software-Defined Clouds,“ IEEE Transactions on Parallel and Distributed Systems (TPDS), 2018 (accepted,
in press).

131

132 Prototype System of Integrated Control Platform

OpenVSwitch, a software virtual switch compatible with SDN, in its own networking

module to provide network virtualization of VMs, but OpenVSwitch is created only in

compute nodes to establish virtual tunnels with other nodes. OpenStack does not pro-

vide any feature to control the network fabric of the cloud. Similarly, OpenDaylight can

manage the virtual network of OpenStack clouds using its NetVirt feature, but it con-

trols virtual switches on compute nodes separately from network switches that connect

compute nodes. OpenDaylight and other SDN controllers do not support integrational

controllability of both compute nodes and network switches.

In this chapter, we propose an integrated control platform, named SDCon (Software-

Defined Clouds Controller), which can jointly manage both computing and networking

resources in the real world for Software-Defined Clouds (SDC). SDCon is implemented

on top of the popular cloud and SDN controller software: OpenStack and OpenDay-

light. It is designed to support various controllers with the implementation of driver

modules, but for simplicity of development, we adopted OpenStack and OpenDaylight

as underlying software. To the best of our knowledge, this is the first attempt to integrate

cloud’s computing fabric and SDN’s network fabric controllability into a combined SDC

controller. In addition, we propose a topology-aware resource allocation algorithm in

heterogeneous configuration.

The key contributions of this chapter are:

• the design of a practical SDC controller that integrates the controllability of network

switches with the management of cloud resources;

• the implementation of the integrated SDC control system on a testbed with 8 com-

pute nodes connected through 2-pod modified fat-tree network topology;

• a joint resource provisioning algorithm for heterogeneous resource configuration

based on network topology;

• an evaluation of the joint resource provisioning algorithm on the testbed configured

with the proposed SDC control platform.

This chapter is organized as follows: Section 6.2 provides relevant literature studied

and developed for SDN integration platform for cloud computing. In Section 6.3, we de-

pict the design concept of the proposed platform and the control flows between modules

6.2 Related Work 133

and external components, followed by the detailed explanation of the implementation

method and the functionalities of each component of SDCon in Section 6.4. The hetero-

geneity and network topology aware VM placement algorithm is proposed in Section 6.5

in addition to baseline algorithms. Section 6.6 provides the validation result of SDCon,

and Section 6.7 shows the evaluation result of SDCon and the proposed algorithm by

comparing with baselines. Finally, the chapter is summarized in Section 6.8.

6.2 Related Work

Increasing number of studies have investigated joint provisioning of networking and

computing resource in clouds [27, 59, 60, 132, 135], in which experiments have been con-

ducted either in simulation environment [60], or on their in-house customized empirical

system [27, 59, 132, 135].

We explained SDN-enabled cloud computing simulator, CloudSimSDN, to enable

large-scale experiment of SDN functionality in cloud computing in Chapter 3. CloudSim-

SDN can simulate various use-case scenarios in cloud data centers with the support of

SDN approaches, such as dynamic bandwidth allocation, dynamic path routing, and cen-

tral view and control of the network. Although simulation tools are useful to evaluate

the impact of new approaches in a large-scale data center, there are still gaps between the

simulation and real implementation.

Mininet [68] has gained a great popularity for SDN emulation to experiment practical

OpenFlow controllers. Any SDN controllers supporting OpenFlow protocol can be used

with Mininet, where a customized network topology with multiple hosts can be created

and used for several evaluations, such as measuring bandwidth utilization with the iperf

tool. Although Mininet opened up great opportunities in SDN studies, a lack of sup-

porting multi-interface emulation limited its usage in cloud computing studies. Because

researchers need to experiment with virtual machines in hosts, it is impractical to use

Mininet to test common cloud scenarios such as VM migration or consolidation in a data

center.

In their recent paper, Cziva et al. proposed S-SCORE, a VM management and orches-

tration system for live VM migration to reduce the network cost in a data center [27].

134 Prototype System of Integrated Control Platform

This platform is extended from Ryu SDN controller and includes VM management func-

tion by controlling hypervisors (Libvirt) in compute nodes. The authors implemented

the system on the canonical tree topology test bed with eight hosts and showed the ef-

fectiveness of their migration algorithm to reduce the overall VM-to-VM network cost

by moving VMs into closer hosts. The proposed system is suitable for studies focusing

on networking resources, but is lack of optimizing computing resources such as CPU

utilization of compute nodes.

Adami et al. also proposed an SDN orchestrator for cloud data centers based on POX

as an SDN controller and Xen Cloud Platform as a VM management platform [2, 72, 73].

This system provides a web portal for end users to submit VM requests which are han-

dled by resource selection and composition engine in the core of the system. The engine

utilizes virtual machine and OpenFlow rule handlers to configure VMs in hypervisors

and flow tables in switches respectively. Similar to S-SCORE, this system focuses more

on networking aspects of clouds without a comprehensive consideration of computing

resources such as VM and hosts utilization and virtual networks for VMs.

OpenStackEmu is proposed to integrate OpenStack with a large-scale network em-

ulator named CORE (Common Open Research Emulator) [14]. The proposed system

combines OpenStack platform with a network emulator to perform evaluations consid-

ering both cloud and networking. All network switches are emulated in one physical

machine with the capability of Linux software bridges and OpenVSwitch. A real SDN

controller manages the emulated switches on which transfer network frames from phys-

ical compute nodes. OpenStackEmu is a useful approach to build an SDN-integrated

cloud testbed infrastructure with limited budget and resources, but the system does not

provide an integrated control platform for both OpenStack and SDN. In our approach,

we propose a joint control platform which can even run on OpenStackEmu infrastructure

to control its networking and computing resources.

Related work in the context of algorithms for joint resource provisioning will be dis-

cussed later in Section 6.5.

6.3 SDCon: Software-Defined Clouds Controller 135

Physical
ResourcesSDCon

Compute	1

Compute	N

Switch	1

Switch	M

Monitored	data

VM	creation	/	
migration

Monitored	data

Joint	Resource	
Provisioner

Topology
Discovery

Status	
Visualizer

Tenants

System
Administrator

Real‐time	
Resource	
Monitor

Resource
request

…

…

SDN	
Controller

Cloud	
Management	
Platform

Figure 6.1: Design principle and control flows.

6.3 SDCon: Software-Defined Clouds Controller

SDCon is designed to provide integrated controllability for both clouds and networks

and implemented with popular software widely used in practice. We explain the design

principle and implementation details of SDCon in this section.

The conceptual design and the control flows between components are shown in Fig-

ure 6.1. As described in the previous section, cloud management platforms and SDN

controller software have been developed and widely adopted for years. Therefore, in

this study, we designed our platform on top of those mature software platform. Cloud

Management Platform, e.g., OpenStack, manages computing resources including CPU,

memory, and storage which are provided by multiple underlying compute nodes. Moni-

tored data, such as CPU utilization of VMs and the compute node, is sent back to Cloud

Management Platform from each compute node, so that the information can be used for

resource provisioning and optimization. Similarly, networking resources are controlled

by SDN Controller, e.g., OpenDaylight. Switches are connected and managed by the

SDN Controller, and the network utilization monitored in each switch is gathered by

the controller. Both Cloud Management Platform and SDN Controller are deployed and

properly configured with existing software solutions.

Based on the separate platform for cloud management and SDN control, SDCon is

136 Prototype System of Integrated Control Platform

designed to manage and monitor both of them jointly. When tenants request resources,

Joint Resource Provisioner in SDCon accepts the request and controls both Cloud Man-

agement Platform and SDN Controller simultaneously to provide the required amount

of resources. In the traditional cloud platform, tenants can specify only computing re-

sources in detail, such as the number of CPU cores, the amount of memory and storage.

With SDCon, networking requirements can be also specified in the resource request, such

as requested bandwidth between VMs. In addition to allocating resource for tenants,

Joint Resource Provisioner is also possible to optimize both computing and networking

resources based on the optimization policy provided by the system administrator. For ex-

ample, it can migrate low-utilized VMs and flows into the smaller number of hardware

and power off the unused resources to increase power efficiency. System administrators

can also set a customized default path policy for the network, especially effective for

multi-path network topology.

Resource provisioning and optimization at Joint Resource Provisioner is performed

based on the network topology and real-time monitored data acquired from Cloud Man-

agement Platform and SDN Controller. Topology Discovery receives the network topol-

ogy and its capacity from SDN Controller and the hardware specs of compute nodes from

Cloud Management Platform. Real-time Resource Monitor also gathers the monitored

data from both cloud and SDN controller. Contrary to Topology Discovery, Resource

Monitor keeps pulling measurements from compute nodes and switches periodically to

update real-time resource utilization, including CPU utilization of VMs and compute

nodes, and bandwidth utilization of network links. Both topology and monitored data

provide all information necessary for resource provisioning and optimization.

In addition to the resource provisioning, SDCon supports a visualization of comput-

ing and networking resources through Status Visualizer components. Based on the topol-

ogy information and monitored measurements, the visualizer displays current utilization

of network links and compute nodes in real-time. System administrators can check the

status of all resources on a graphical interface. In the following subsection, we explain

the implementation of this system in detail.

6.4 System Implementation 137

OpenFlow switchCompute	node OpenFlow switchCompute	node

OpenStack Controller

Compute
Node

Hypervisor	
(LibVirt)

VM

(OpenVSwitch)

OpenFlow
Switch

Neutron	
Server

Nova	API/	
Conductor

Nova	
Compute

Neutron
OVS	Agent

OpenVSwitch

VM
VM

FlowFlow
Flow

OpenDayLight

OpenFlow
/ OVSDB

OpenFlow
Plugin

Oslo	messages

Monitor
(Ceilometer) L2	Switch	

SDCon: Software-Defined Cloud Controller

OpenDayLight APIOpenStack	API

Cloud	Monitor Network	Monitor

Cloud	Manager Network	Manager

Topology	Discovery

Joint	Resource	
Provisioner

sFlow Engine

Collector

sFlow

Rest	API

Visualization

Physical
resources

Individual	
controllers

SDC	
controller

QoS
Queues

Forwarding	
Table

sFlow
Agent

sFlow‐RTStat	Collector	
(Gnocchi)

Figure 6.2: System architecture of SDCon and underlying software components.

6.4 System Implementation

We implemented the proposed system by utilizing OpenStack cloud management plat-

form and OpenDaylight SDN controller to control computing and networking resources

respectively. Figure 6.2 shows the implemented architecture of SDCon platform. The

system is implemented with Python, on top of OpenStack Python SDK1, Gnocchi Python

API2, OpenDaylight OpenFlow plugin3 and OVSDB plugin4, and sFlow-RT REST API5.

1http://developer.openstack.org/sdks/python/openstacksdk/users/index.html
2http://gnocchi.xyz/gnocchiclient/api.html
3http://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:End_to_End_

Flows
4http://docs.opendaylight.org/en/stable-carbon/user-guide/ovsdb-user-guide.

html
5http://www.sflow-rt.com/reference.php

http://developer.openstack.org/sdks/python/openstacksdk/users/index.html
http://gnocchi.xyz/gnocchiclient/api.html
http://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:End_to_End_Flows
http://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:End_to_End_Flows
http://docs.opendaylight.org/en/stable-carbon/user-guide/ovsdb-user-guide.html
http://docs.opendaylight.org/en/stable-carbon/user-guide/ovsdb-user-guide.html
http://www.sflow-rt.com/reference.php

138 Prototype System of Integrated Control Platform

OpenStack platform is exploited to manage to compute nodes. Multiple compute

nodes are running OpenStack Nova-compute component to provide a bridge between

its hypervisor and the OpenStack controller. VM creation, migration, or deletion is man-

aged by Nova-API and Nova-Conductor components in the controller through messages

passed to Nova-compute component in each compute node. Aside from Nova compo-

nents, Neutron is in charge of managing virtual networks for VMs. Neutron-OVS-Agent

running in each compute node is creating and deleting virtual tunnels between com-

pute nodes by modifying OpenVSwitch, instructed by Neutron-Server in the controller.

OpenStack Telemetry services are running on the controller to monitor compute nodes

and VMs. OpenStack Ceilometer gathers computing resource measurements, such as

CPU utilization and RAM usage, of both VMs and compute nodes. The monitored mea-

surements are stored with Gnocchi component, which can be retrieved by Rest API.

For networking resources, OpenDaylight controls OpenFlow switches that connects

compute nodes. Each switch has OpenFlow forwarding tables managed by OpenDay-

light L2-Switch and OpenFlow-Plugin modules which can install or modify forwarding

rules for specific flows. OpenDaylight also manages QoS queues in a switch to enable dy-

namic bandwidth allocation. Due to the OpenFlow’s limited support for queues, queue

management is provided through OpenDaylight’s OpenVSwitch plug-in which can cre-

ate and delete Hierarchical Token Bucket (HTB) queues in switches. For network moni-

toring, our platform employed the sFlow protocol which can provide real-time measure-

ments of the network by capturing sampled packets. sFlow agents are set up in switches

and send sampled data to the sFlow engine running in the controller which gathers the

data and provide the measurements through Rest API.

On top of these services, SDCon is implemented to jointly manage both computing

and networking resources. This platform aims to integrate an SDN controller with a

cloud manager to perform:

• allocating resources for VMs and flows with the information of an application de-

ploying on these VMs and flows;

• monitoring both hosts and networking devices for their utilization, availability, and

capacity with the knowledge of network topology;

6.4 System Implementation 139

• dynamic re-provisioning of both computing and networking resources based on

the real-time monitored matrices;

• visualizing the monitored measurements and the operational status of SDC.

The following subsections provide the detailed explanation of each component in

SDCon, data flows between components and sequence diagram of VM allocation with

SDCon.

6.4.1 Cloud Manager

Cloud Manager is in charge of controlling OpenStack Controller through OpenStack

SDK. It can create or migrate a VM on a specific compute node by specifying the node to

host the VM. Current allocation status of compute nodes is also retrieved through Open-

Stack so that SDCon can identify the number of used and available cores and memory

in each node. This information is passed to Topology Discovery in order to keep the

up-to-date resource allocation information in the topology database. It provides all other

functions related to VMs and compute nodes, such as getting the IP address of a VM, VM

types (Flavor), VM images, and virtual networks for VMs. Note that the virtual network

configured in a compute node is managed by OpenStack Neutron through OpenVSwitch

installed on compute nodes, whereas switches are controlled by OpenDaylight. Thus, the

IP address of a VM is retrieved by Cloud Manager, not by Network Manager.

6.4.2 Cloud Monitor

Cloud Monitor is to retrieve a real-time measurement of computing resources monitored

at compute nodes and VMs. We use OpenStack Ceilometer and Gnocchi components to

measure and collect the monitored data. Ceilometer installed on each compute node mea-

sures CPU and memory utilization of all VMs and the host itself, and sends to Gnocchi

component that collects and aggregates the data from every compute node. Our Cloud

Monitor uses Gnocchi Python API to retrieve the collected data, such as CPU utilization

of both VMs and compute nodes. This information can be leveraged in many studies

based on the real-time resource utilization. It is also utilized by Power Consumption

Estimator to calculate the estimated power consumption of compute nodes.

140 Prototype System of Integrated Control Platform

6.4.3 Network Manager

In SDCon, OpenDaylight SDN Controller is managed by Network Manager module to

push OpenFlow rule tables, default path setting for multi-path load balancing, and QoS

configurations. In SDN, we can add a specific flow rule based on source and destina-

tion IP/MAC addresses, TCP/UDP port numbers, protocol types, and other criteria sup-

ported by OpenFlow standard. SDCon uses this feature to install or remove a flow rule

onto switches through OpenDaylight OpenFlow plugin. This feature can be used for

dynamic flow control or flow consolidation to change the path of a flow dynamically to

alter the path for performance improvement or power efficiency. We also implement a

default path routing module supporting the load-balancing routing in fat-tree topology

as suggested in the original paper [4]. Because the default L2 switch module in OpenDay-

light only supports STP for multi-path topology, we cannot utilize the benefit of multiple

paths with the default module. Thus, we need to implement our own routing module to

set the default path between compute nodes based on the source address of the host. Our

default path module installs flow rules on each switch to forward the packet to different

ports based on the source host if there are multiple paths. With the default path mod-

ule, packets are forwarded to the pre-configured path based on the source host without

flooding them to the entire network or dumping all traffic to the SDN controller.

SDCon’s Network Manager is also capable of configuring QoS queues on each switch

to provide bandwidth allocation for a specific flow. For a priority flow which needs a

higher priority over other traffics, we can allocate a specific bandwidth by configuring

QoS queues on an output port in a switch. For example, OpenVSwitch supports traffic

shaping functionality, similar to the tc tool in Linux, which can control the network band-

width for different QoS level using HTB (Hierarchy Token Bucket). We implement this

QoS management feature in Network Manager. For VM-to-VM bandwidth allocation,

Network Manager installs QoS queues on each port in every switch along the path pass-

ing the traffic. Network Manager at first aggregates all the requests for different source

and destination VMs, because the flows have to be mapped to output ports simultane-

ously if the flows share the same link. Once the number of flows to be configured at

each port in each switch is calculated, Network Manager sends QoS and queue creation

request to OpenDaylight OVSDB plugin which controls OpenVSwitch entries on each

6.4 System Implementation 141

switch. Then, we push OpenFlow rules for the specific flow in need of the bandwidth al-

location, so that packets for the specific flow can be enqueued at the created QoS queue.

We show the effectiveness of our bandwidth allocation method in the evaluation section.

6.4.4 Network Monitor

Similar to Cloud Monitor, Network Monitor pulls a real-time network status from switches

and compute nodes. We leverage sFlow protocol that sends sampled packets from sFlow

agents in switches to the collector in the controller. For data collection and aggrega-

tion, sFlow-RT is installed in the controller node aside from the SDN controller. SDCon

Network Monitor utilizes REST APIs provided by sFlow-RT to retrieve aggregated mea-

surements of bandwidth usage and traffic flows on each link. Although OpenDaylight

provides statistics of every port on OpenFlow switches, sFlow provides more detailed

information such as the source and destination address of the flow and encapsulated

packets for tunneling protocols.

6.4.5 Topology Discovery

Network topology information is retrieved from OpenDaylight through Network Man-

ager. With the support of host tracker in OpenDaylight, SDCon can acknowledge host

and switch devices on the network along with ports and links. Topology Discovery mod-

ule generates a graph structure internally to store the topology information. In addition

to the network topology, it also retrieves the hardware configuration of compute nodes

through Cloud Manager. With the retrieved information about computing resources, e.g.,

the number of CPU cores, size of RAM, etc., Topology Discovery module can provide the

detailed information to other modules. Unlike Cloud and Network Monitor modules

which needs a periodic update for real-time data, Topology Discovery is created at the

start of the platform and updated only when there is an update on the topology.

6.4.6 Joint Resource Provisioner

The main control logic of SDCon resides in Joint Resource Provisioner module. When

VM requests are submitted by cloud tenants, Joint Resource Provisioner module decides

142 Prototype System of Integrated Control Platform

which compute nodes to place the VM and which network path to transfer the VM flows.

With the retrieved information of the topology information through Topology Discovery

and real-time utilization via Cloud and Network Monitor, the decision is made with the

provisioning algorithm provided by the system administrator. A customized VM allo-

cation and migration policy can be provided for VM provisioning, as well as a network

flow scheduling algorithm for network provisioning if the default path set by Network

Manager is not sufficient.

Once the decision is made at the control logic, Joint Resource Provisioner exploits

Cloud Manager to create VMs on the selected hosts and Network Manager to push new

flow entries. For bandwidth allocation, QoS rules and queues can be created in switches

by modifying OpenVSwitch through Network Manager. When a migration policy is

specified, it can also schedule the migration process by sending migration command to

OpenStack through Cloud Manager.

6.4.7 Power Consumption Estimator

For energy-related experiments, we additionally implement Power Consumption Esti-

mator that calculates the power consumption of the data center from the utilization of

compute nodes and switch links using an energy model. Although the best practice to

measure the power consumption is to use a commercialized monitoring device, we add

this feature to provide a simple alternative approximation method at no additional cost.

Accumulated utilization data from both monitors is input to the energy model, and the

estimated power consumption is calculated and output based on the energy model pro-

vided to SDCon. By default, we implement the model derived from Pelly et al. [95] for

compute nodes and from Wang et al. [125] for switches. Please note that the estimator

is an alternative of commercialized PDUs due to the limited budget and resources. Al-

though hardware PDU equipment can measure and manage the power consumption of

hosts and switches more accurately, it is not feasible to procure such equipment at this

time.

6.4 System Implementation 143

SDCon

Physical Resources

Cloud Management Platform APIs

Application
Deployment

VM / Flow requests

Joint
Resource

Provisioner

VM
creation /
migration

Topology
Information

Monitored
Measurements

Network
topology

Power Usage

Network
MonitorCloud MonitorCloud Manager

Power
Consumption

Estimator

Status
Visualizer

Network
Manager

Forwarding
table /
QoS

queues

Compute node
information

Network
Bandwidth

usage

System
Administrator

Web GUI

CPU
utilization

Calculated
Power

SDN Controller APIs

Control command
Monitoring data
Topology data

Figure 6.3: Data flow diagram of SDCon components.

6.4.8 Status Visualizer

Visualization module is implemented to intuitively visualize the current state of the data

center. This module retrieves the topology information to draw the physical infrastruc-

ture with network links, and then draws the real-time monitored flows and compute

utilization with different colors. We use D3 JavaScript library6 to visualize the data onto

web interface. By refreshing the page every second, the Visualizer continuously updates

the monitored measurements in real time.

6https://d3js.org/

https://d3js.org/

144 Prototype System of Integrated Control Platform

6.4.9 Data Flow and Sequence Diagram

sFigure 6.3 depicts the detailed data flow between components in SDCon. Once applica-

tion deployment request is submitted to Joint Resource Provisioner, it calls Cloud Man-

ager and Network Manager to request VM creation and flow placement for computing

and networking resources respectively. In order to decide where and how to provision

the resources, it retrieves the topology information prepared by Topology Discovery, as

well as the monitoring data gathered from Cloud Monitor and Network Monitor. In addi-

tion, Power Consumption Estimator calculates the power usage based on the monitored

measurements and topology information. All the information is visualized with Status

Visualizer through a web application.

To provide an in-depth understanding on the working process of SDCon, we also

depict sequence diagram of deploying VMs and flows with SDcon (see Figure 6.4). The

diagram shows the process to get VM and host information from OpenStack API and

network topology information from OpenDaylight. For VM deployment, it first runs the

VM placement algorithm to select the compute node and create a VM in the selected

compute node through CloudManager and OpenStack. For network deployment, we

provide the procedure of updating a flow path based on the real-time bandwidth usage

of each link, as an example of SDCon usage. IP address of source and destination VMs are

retrieved from Cloud Manager and passed to Network Manager to start the dynamic flow

scheduling for the specified pair of IP addresses. Network Manager periodically selects

a series of switches along the path with the lowest bandwidth utilization by obtaining

monitored data. Then, new forwarding rules with the updated path are pushed into the

switches of the selected path.

6.5 Joint Resource Provisioning in Heterogeneous Clouds

In this section, we propose a joint computing and networking optimization algorithm for

heterogeneous resource configuration. Many approaches have been proposed for joint

optimization in clouds, but most of them consider a homogeneous configuration where

the hardware of physical hosts and switches are identical across the data center [27, 135].

This is an effective assumption in large-scale public cloud considering the identical hard-

6.5
JointR

esource
Provisioning

in
H

eterogeneous
C

louds
145

JointResourceProvisioner CloudManager NetworkManagerTopologyDiscovery ResourceMonitorTenant

submitVmFlowRequest()
getExistingVms()

getTopology()

ext:OpenDaylightAPIext:OpenStackAPI

getNetworkTopoInfo()

compute.find_server()

requests.get()

compute.find_hypervisor()

getVmPlacementMap()

getNodeCPUUtilization()

getLinkBandwidth()

compute.find_image()

compute.find_flavor()

network.find_network()

compute.create_server()

requests.put()

findLowUtilizationPath()

getComputeNodeInfo()

getLinkBandwidth()

createVm()

startDynamicFlowScheduling()

compute.find_server()
getVmIpAddress()

deployVm()

deployNetwork()

loop

Figure 6.4: Sequence diagram to deploy VMs and flows with SDCon.

146 Prototype System of Integrated Control Platform

ware within the same rack which is procured at the same time. However, as the data

center grows and needs to upgrade or purchase new hardware, the configuration can

become different from old machines. Also, it is often impractical to purchase many ma-

chines at the same time in a small scale private cloud, which can lead to having different

hardware configuration even in the same rack.

Resource optimization in heterogeneous configuration needs a different approach

from the one for homogeneous resources because of the varied per-unit performance

and power consumption. For example, power optimization of a homogeneous cloud by

consolidation considers only the number of hosts, whereas in heterogeneous it needs to

consider the power consumption level of each host. When VMs can be consolidated into

the smaller number of physical hosts, the unused hosts can be powered off to save en-

ergy consumption of the data center. In a homogeneous model, reducing the number of

turned-on hosts leads to the reduction of energy consumption of the entire data center.

However, in heterogeneous configuration, we have to consider the different capacity and

power consumption level of each physical machine. If VMs are consolidated into the

less power-efficient host which consumes more power than the total of multiple energy-

efficient hosts, consolidation can actually increase the power consumption of the data

center. Thus, the power consumption level of different host types must be taken into an

account for power optimization in heterogeneous clouds.

Many studies considering resource heterogeneity in clouds have focused on the level

of brokers for various providers or for geographically distributed data centers. For ex-

ample, VM placement algorithm across different providers was studied to reduce the

leasing cost of virtual machines while providing the same level of throughput from the

hosted application [115]. Recently, a renewable-aware load balancing algorithm across

geologically distributed data centers was proposed to increase the sustainability of data

centers [114]. This algorithm selects a data center operated by more renewable power

sources (e.g., data center sourced by a solar power plant in a clear day) to reduce the

carbon footprint and places more VMs on those data centers. Also, some researchers

studied the resource optimization within a data center considering heterogeneity to re-

duce the energy consumption of the data center [12]. The on-line deterministic algorithm

consolidates VMs dynamically into the smaller number of compute nodes and switches

6.5 Joint Resource Provisioning in Heterogeneous Clouds 147

off the idle nodes to save electricity. Although the heterogeneity in the cloud environ-

ment has been addressed in these studies, they are either considering only high-level

entities (e.g., different data centers or providers) or only computing resources within a

data center, and none has studied the joint optimization considering both computing

and networking resources in heterogeneous infrastructure in a data center.

Also, a VM management method considering network topology was proposed by

Cziva et al. [27] that migrates a VM with a high level of network usage onto the destina-

tion host to reduce the network cost for VMs and the traffic over the data center. For a

VM, the algorithm calculates a current communication cost for each VM-to-VM flow and

estimates a new communication cost if the VM is migrated onto the other end of the flow.

When it finds a new location for the VM which can reduce the total communication cost,

the VM is migrated to the other host. However, the approach does not consider the ca-

pacity of compute nodes, thus it may not migrate a large VM if the available computing

resource of the selected host is not enough for the VM. Also, this algorithm limits migra-

tion target candidates by considering only the compute node that hosts the other VM of

the flow. If no connected VM is placed in a host, it is not considered as a migration target,

which in practice can be a proper destination if all the candidates in the first place cannot

host the VM because of the resource limitation. Our algorithm deals with this limitation

by considering the group of hosts, instead of an individual host, as a candidate of VM

placement.

6.5.1 Topology-aware VM Placement Algorithm for Heterogeneous Cloud In-
frastructure (TOPO-Het)

VM placement in heterogeneous resources can be considered as a variable-sized bin pack-

ing problem, which is an NP-hard problem to find the optimal solution [61]. In this chap-

ter, we present a heuristic algorithm in order to reduce the problem complexity suitable

for on-line VM placement. Our algorithm aims at network-aware VM allocation for het-

erogeneous cloud infrastructure for improved network performance of VMs.

For compute nodes with different computing capacity (e.g., number of cores and size

of memory), there is higher possibility that the compute node with larger capacity hosts

more numbers of VMs than the one with smaller capacity. Assuming that all compute

148 Prototype System of Integrated Control Platform

nodes have the same network capacity, those VMs in the larger compute node will uti-

lize less bandwidth when the VMs use the network simultaneously, because the network

bandwidth is shared by more numbers of VMs in the larger node. On the other hand,

VMs placed in the same node can communicate to each other via in-memory transfer

rather than through network interface, which can provide far more bandwidth. Thus,

we need to consider the connectivity of VMs for placing VMs into the smaller number

of compute nodes. If the connected VMs are placed into the same node, it can not only

provide more bandwidth for VMs but also reduce the amount of traffic in network in-

frastructure. However, if VMs with no inter-VM traffics are placed in the same node,

it consumes more networking resources and reduces per-VM bandwidth because more

VMs share the same interface in the node.

Algorithm 9 is proposed to address the contradiction of VM placement in the same

or closer compute nodes. The algorithm considers the connectivity between VMs and

finds the nearest compute node if the other VM is already placed, or the group of closely-

connected hosts which can collectively provide the requested resources for VMs. In the

beginning, VMs are grouped based on the network connectivity. If a VM needs to com-

municate with another VM, they are put into the same group. VMs in each group are

sorted in the order of required resource from high to low to make sure a large VM is

placed before smaller ones.

The algorithm first finds if any VMs are already deployed in the infrastructure. If

there are VMs already placed, it tries to place new VMs to nearby compute nodes close

to the placed VMs, e.g., the same node, the connected nodes under the same edge switch,

or the nodes within the same pod. It also finds the candidate host group, sorted by

the available bandwidth calculated from the number of VMs running in the entire host

group, with the information of network topology. If there are more VMs running in the

host group, it is more likely congested even if the total computing capacity of the group is

higher. Note that the heterogeneity of resources is considered in this step where the VMs

are assigned to the less congested host group regarding the difference in the capacity of

each host group.

Once the algorithm found all the candidate host groups for the VM group, a VM in

the group is tried to place in a host within the higher priority host group. Note that the

6.5 Joint Resource Provisioning in Heterogeneous Clouds 149

Algorithm 9 TOPO-Het: Topology-aware collective VM placement algorithm in hetero-
geneous cloud data center.

1: Data: VM: List of VMs to be placed.
2: Data: F: List of network flows between VMs.
3: Data: H: List of all hosts in data center.
4: Data: topo: Network topology of data center.
5: VMG← Group VM based on the connection in F.
6: for each VM group vmg in VMG do
7: sort(vmg, key=vm.size, order=desc)
8: HG← empty list for available host groups;
9: VMconn ← topo.getConnectedVMs(vmg);

10: if VMconn is not empty then
11: Hhost ← topo.findHostRunningVMs(VMconn);
12: Hedge ← topo.getHostGroupSameEdge(Hhost);
13: Hpod ← topo.getHostGroupSamePod(Hhost);
14: HG.append(Hhost, Hedge, Hpod);
15: end if
16: HGhost ← topo.findAvailableHost(vmg);
17: sort(HGhost, key=hg.capacity, order=desc);
18: HGedge ← topo.findAvailableHostGroupEdge(vmg);
19: sort(HGedge, key=hg.capacity, order=desc);
20: HGpod ← topo.findAvailableHostGroupPod(vmg);
21: sort(HGpod, key=hg.capacity, order=desc);
22: HG.appendAll(HGhost, HGedge, HGpod);
23: for each vm in vmg do
24: for each host group hg in HG do
25: sort(hg, key=h.freeResource, order=asc);
26: isPlaced← place(vm, hg);
27: if isPlaced then
28: break;
29: end if
30: end for
31: if not isPlaced then
32: place(vm, H);
33: end if
34: end for
35: end for

host list within a group is sorted by the number of free CPU cores before placing VM, in

order to consolidate VMs into a smaller number of hosts. If the host is not fit for the VM,

the next candidate host is tried until the available one is found. If all the candidate host

groups are failed, the algorithm places the VM onto any available host in the data center

regardless of the network topology.

150 Prototype System of Integrated Control Platform

6.5.2 Baseline algorithms

Our heterogeneity-aware resource allocation algorithm is evaluated in comparison with

First-Fit Decreasing (FFD) algorithm in conjunction with Bandwidth Allocation (BWA)

and Dynamic Flow Scheduling (DF) network management schemes. FFD is a well-known

heuristic algorithm for a bin-packing problem which allocates the largest VM to the most

full compute node capable of the VM adopted in many studies [11, 121]. VMs are sorted

in descending order of the size of the required resource, and compute nodes are sorted in

ascending order of available resources. Since it chooses the most full node first, the algo-

rithm consolidates VMs into a smaller number of compute nodes which can benefit the

power consumption and network traffic consolidation. Our algorithm (TOPO-Het) also

adopts the core idea of FFD in order to consolidate VMs in addition to the consideration

of network topology and resource heterogeneity.

Further, we implement two network management methods, BWA and DF, in combi-

nation with FFD to show the effectiveness of SDCon. In BWA (Bandwidth Allocation),

SDCon allocates the requested network bandwidth for traffic flows between VMs us-

ing the aforementioned method in Section 6.6.2. SDCon renders flow settings provided

with VM request and creates QoS queues along switches forwarding the VM traffic. DF

(Dynamic Flow Scheduling), on the other hand, updates the network path of the VM-

to-VM flow periodically by monitoring real-time traffic, which can be seen in many ap-

proaches [32, 119, 134]. It first finds the shortest path between VMs and retrieves mon-

itored traffic of the candidate path. After collecting bandwidth usage statistics of every

link on each path, SDCon selects the less congested path and updates forwarding tables

on switches along the selected path through SDN controller.

We combine the network management methods with FFD VM allocation algorithm.

In the following sections, we refer BWA and DF as a combination of FFD VM allocation

method with the referred network management scheme.

6.6 System Validation

In this section, we describe a testbed setup and the experiment for validating the system

by testing bandwidth allocation functionality of SDCon. Additional validations, such

6.6 System Validation 151

Pod 2Pod 1

Compute	1 Compute	2 Compute	3 Compute	4

Core	1

Compute	5 Compute	6 Compute	8

Core	2

Management
Network

Controller

Compute	7

Edge	1 Edge	2

Aggregate	1 Aggregate	2

Edge	3

Aggregate	3 Aggregate	4

Edge	4

Figure 6.5: Testbed configuration.

as VM placement, dynamic flow scheduling, and power usage estimation, are also un-

dertaken in conjunction with the performance evaluation of the topology-aware resource

provisioning algorithm and network management schemes which we will discuss in Sec-

tion 6.7.

6.6.1 Testbed Configuration

In order to evaluate the proposed system and algorithm on the empirical environment,

we deployed SDCon on our testbed equipped with 8 compute nodes and 10 OpenFlow

switches. Figure 6.5 shows the architectural configuration of our testbed. The network

topology is built as a modified 2-pod fat-tree architecture which has less number of pods

from the original propose [4]. With the cost and physical limitation, we built two pods

connected with two core switches instead of four. This modified topology still pro-

vides multiple paths between two hosts with the full support of 1:1 over-subscription

ratio within the same pod as proposed in the original fat-tree topology. Core, aggre-

gate, and edge switches are implemented with 10 Raspberry-Pi hardware with external

USB Ethernet connectors on which cables are connected to the other Raspberry-Pi or

compute nodes. A similar approach was proposed by researchers from Glasgow Univer-

sity [116] that Raspberry-Pi was used for compute nodes in clouds. In our testbed, we

152 Prototype System of Integrated Control Platform

Table 6.1: Hardware specification of controller and compute nodes.

Nodes CPU model
Cores

(VCPUs) RAM Quantity

Controller,
Compute 1,2

Intel(R) E5-2620 @
2.00GHz

12 (24) 64GB 3

Compute 3-6 Intel(R) X3460 @
2.80GHz

4 (8) 16GB 4

Compute 7,8 Intel(R) i7-2600 @
3.40GHz

4 (8) 8GB 2

use Raspberry-Pi to build switches, not compute nodes, as we have enough servers for

compute nodes whereas we cannot procure OpenFlow switches.

In each Raspberry-Pi switch, OpenVSwitch is running as a forwarding plane on a

Linux-based operating system. A virtual OpenVSwitch bridge is created in each Rasp-

berry Pi to include all Ethernet interfaces as ports and connected to OpenDaylight SDN

controller running on the controller node. Note that we configured a separate man-

agement network for controlling and API communications between switches, compute

nodes, and the controller.

Each compute nodes are running OpenStack Nova-Compute component to provide

computing resources to VMs as well as OpenStack Neutron-OVS Agent for virtual net-

work configuration for the hosted VMs. OpenStack components in compute nodes are

connected to the OpenStack server running in the controller node through a separate

management network. Due to our limited device availability, three different types of

computers are used for the controller and compute nodes. Table 6.1 shows the different

hardware configuration of each computer.

6.6.2 Bandwidth Allocation with QoS Settings

As described in Section 6.4, we implement network bandwidth allocation by applying

OpenVSwitch’s QoS and Queue configuration. This experiment is to see the effective-

ness of the implemented bandwidth management method in SDCon. We use iperf3 tool

to measure the bandwidth of a flow between VMs sharing the same network path. In

order to make the network bandwidth to be shared by different flows, we run iperf3 si-

multaneously on two or three different VMs. Also, various combinations of TCP and

6.6 System Validation 153

43.3

73.6

44.9

14.9

0

20

40

60

80

NoQoS QoS

NoQoS NoQoS

B
an

di
dt

h
(M

bi
ts

/s
ec

)

Flow1
(TCP)
Flow2
(TCP)

(a) Measurerd bandwidth of two TCP flows.

28.4

56.1

30.5

17.2

0

20

40

60

80

NoQoS QoS

NoQoS NoQoS

B
an

di
dt

h
(M

bi
ts

/s
ec

)

Flow1
(UDP)
Flow2
(UDP)

(b) Measurerd bandwidth of two UDP flows.

46.8

8.5 8.3

0

20

40

60

80

B
an

di
dt

h
(M

bi
ts

/s
ec

)

Flow 1
(UDP)
QoS

Flow 2
(UDP)
NoQoS

Flow 3
(UDP)
NoQoS

(c) Measurerd bandwidth of three UDP
flows.

28.1

70.6

25.5

61.1

5.5

65.0

0

20

40

60

80

NoQoS QoS NoQoS

NoQoS NoQoS QoS

B
an

di
dt

h
(M

bi
ts

/s
ec

)

Flow1
(TCP)
Flow2
(UDP)

(d) Measurerd bandwidth of TCP and UDP flows.

Figure 6.6: Bandwidth measurement of multiple flows sharing the same network re-
source.

UDP protocols are used to compare the impact of our bandwidth allocation mechanism.

Note that the maximum bandwidth of our testbed is measured at approximately 95 Mbps

(bits/s), due to the Ethernet port limitation of our Raspberry-Pi switches. We set up QoS

configuration with HTB policy and specified the minimum bandwidth of 70 Mbps for

QoS flows and 10 Mbps for other flows.

Figure 6.6 shows the measured bandwidth of different flows sharing the same net-

work path. When iperf3 was used in TCP mode (Figure 6.6a), the bandwidth is equally

shared by two flows without QoS configuration. After applying QoS configuration for

Flow 1, the bandwidth for Flow 1 is increased to 73.6 Mbps, whereas Flow 2 can acquire

only 14.9 Mbps. Figure 6.6b shows the measured bandwidth for two UDP flows. In

UDP mode, we run iperf3 at a constant rate of 70 Mbps which causes a heavy congestion

154 Prototype System of Integrated Control Platform

when two or more flows are shared the same path. Because of the heavy congestion, the

shared bandwidth between two flows, in this case, decreased to about 30 Mbps for each

flow without QoS setting. However, similar to the TCP/TCP result, Flow 1’s bandwidth

is increased to 56.1 Mbps after applying QoS, which is slightly less than the minimum

bandwidth specified in the QoS setting. This is due to the characteristic of UDP which

does not provide any flow and congestion control mechanism. For three UDP flows shar-

ing the same path (Figure 6.6c), Flow 1 with QoS configuration acquires 46.8 Mbps while

the other two flows acquire less than 8.5 Mbps.

The last case is to measure the bandwidth with a mixed flow of TCP and UDP proto-

col. When QoS was not configured, the UDP flow could obtain 61.1 Mbps while the TCP

flow acquired 28.1 Mbps, because TCP’s flow control mechanism adjusting the transmis-

sion rate to avoid network congestion. However, after applying QoS to the TCP flow

(Flow 1), its bandwidth is drastically increased to 70.6 Mbps, although Flow 2 is con-

stantly sending UDP packets at 70 Mbps. This shows that QoS queues in switches for-

warded packets of Flow 1 at 70 Mbps as specified in the configuration, whereas Flow

2’s packets are mostly dropped resulting in 5.5 Mbps bandwidth measurement at the

receiver. A similar result is observed when we applied QoS configuration for the UDP

flow. The UDP flow (Flow 2) with QoS setting can obtain 65 Mbps while the bandwidth

for Flow 1 is measured at 25.5 Mbps.

The results show that our QoS configuration mechanism for bandwidth allocation is

effective for both TCP and UDP flows in the situation of multiple flows simultaneously

sharing the same network path. Configuring QoS and queue settings on OpenVSwitch

in addition to the flow rules added for a specific flow can make the priority flow exploit

more bandwidth than non-priority flows in the congested network.

6.7 Performance Evaluation

We evaluate the proposed system and the algorithm with a real-world application and

workload: Wikipedia application. Wikipedia publishes its web application, named Me-

diaWiki, and all database dump files online7 so that anyone can replicate Wikipedia ap-

7https://dumps.wikimedia.org/

https://dumps.wikimedia.org/

6.7 Performance Evaluation 155

plication in their own environment with various configuration. Testing with Wikipedia

application has been more straightforward with the introduction of WikiBench [117], a

software to deploy Wikipedia database dumps and send web requests to MediaWiki

servers based on the historical traffic trace. These experiments are also conducted on

the same testbed described in the previous section, comparing our proposed algorithm

with baseline algorithms (discussed in Section 6.5.2).

6.7.1 Application Settings and Workloads

For empirical evaluations, we deploy Wikipedia application consisting of multiple VMs

across our testbed using SDCon to measure the response time. Three-layer web applica-

tion architecture is exploited to configure the Wikipedia: client, web, and database server.

Client VM is acting as a client which sends requests parsed from the trace to web servers,

in which provides web response with the local file or the data retrieved from the database

server. Client VMs run WikiBench program to read trace files and measure the response

time of the request. Web server VMs is configured with Apache2 server to host Medi-

aWiki application written in PHP language. Database VM runs MySQL which retrieves

Wikipedia database rebuilt by the dump.

We set two applications with a different number of VMs to check the impact of the

proposed algorithm on the scale of the application. Application 1 is deployed with 4

client VMs, 4 web server VMs, and 1 database VM, whereas Application 2 consists of

two clients, two web servers, and one database VM. Although they are separate appli-

cations without any network traffic, we conduct the experiment on both applications si-

multaneous to see the impact of different applications on the network resources of a data

center. Each VM is configured with a predefined VM Type shown in Table 6.2. In order

to evaluate the case when some VMs of the application are already deployed, we placed

the database VM of App 2 in Compute 5 node before starting the experiment. Also, VM

images are prepared with proper software settings to deploy the application quickly and

easily.

In addition to VM configurations, network flow settings are defined for VM traffics

(Table 6.3). We set 30 Mbps for traffics from web server VM to client VM, and 70 Mbps

from the database to web server VM. Since the maximum bandwidth available for each

156 Prototype System of Integrated Control Platform

0

8

16

24

1 2 3 4 5 6 7 8

V
C

PU
s C

ap
ac

ity

Compute Node #

RAM Full
FFD (App1)
FFD (App2)
Initial

(a) Number of VCPUs after placing VMs
with FFD algorithm.

0

8

16

24

1 2 3 4 5 6 7 8

V
C

PU
s C

ap
ac

ity

Compute Node #

RAM Full
TOPO-Het (App1)
TOPO-Het (App2)
Initial

(b) Number of VCPUs after placing VMs
with TOPO-Het algorithm.

Figure 6.7: Used and available CPU cores of compute nodes after VM placement in dif-
ferent algorithm.

physical link in our testbed is 100 Mbps, a web server still can use the entire bandwidth

when it needs to send data to both database and client.

6.7.2 Analysis of VM Allocation Decision

We submit the VM configurations and flow definitions for two applications to SDCon and

runs the VM allocation algorithms. Figure 6.7 shows CPU capacity of compute nodes in

the testbed before and after allocating VMs with different algorithms. Before deploying

two Wikipedia applications, Compute node 1, 6, and 7 were empty, while the other nodes

host some VMs. FFD algorithm allocates VMs for App 2 to Compute 3 and 4 nodes,

and VMs for App 1 across the data center filling up empty slots. Because FFD does

not consider network topology, for both App 1 and App 2, VMs are scattered across the

whole data center. VMs for App 1 are placed almost every compute node, whereas VMs

for App 2 are consolidated in Compute 3, 4, and 5 which are still in different network

Table 6.2: VM types for Wikipedia application deployment.

VM Type
CPU
cores

RAM Disk Software
of VMs

App 1 App 2

Client 1 2GB 20GB WikiBench 4 2

Web server 4 7GB 80GB MediaWiki 4 2

Database 8 15.5GB 160GB MySQL 1 1

6.7 Performance Evaluation 157

pods. Note that Compute 7 and 8 cannot host anymore VMs because of RAM limitation,

even though there are free CPUs.

In comparison, TOPO-Het considers network topology, and the VMs for the same

application are consolidated within the same pod or edge hosts. For App 2, new VMs

are placed in Compute 5 and 8, which are under the same network pod with the already

placed VM (in Compute 5). Similarly, VMs for App 1 are all placed either in Compute 1

or 2, which are connected to the same edge switch. Also, Compute 7 remains empty after

VM allocation so that the data center can save more power consumption if Compute 7 is

turned into idle mode or powered off. In short, the proposed algorithm allocates VMs to

nearby compute nodes aware of network topology while still provides VM consolidation

to the minimum number of compute nodes.

The network traffic visualized by SDCon shows the effectiveness of TOPO-Het in

network resources (Figure 6.8). When VMs are placed with FFD that is lack of the infor-

mation of network topology, the network traffics for both applications flood across all the

network links in the testbed. In contrast, VMs placed with TOPO-Het are consolidated

under the same pod or edge switches which reduce overall network traffic significantly.

6.7.3 Analysis of Response Time

Figure 6.9 and Figure 6.10 show the average response time of Wikipedia applications

measured with WikiBench program from App 1 and App2 respectively. Web requests are

sent for 30 minutes with 10% of the original trace from Wikipedia. Each client injects the

workload individually from a local file to avoid the latency between client VMs. For clear

comparison, we further separate the result based on the type of request. DB access is the

request that needs a database access to retrieve the requested contents, whereas static file

is to transfer files from the web server without access to the database.

Table 6.3: Network flow settings for VM traffic.

Source VM Destination VM Requested Bandwidth

Database Web server 70 Mbits/s

Web server Client 30 Mbits/s

158 Prototype System of Integrated Control Platform

(a) Network traffic from Wikipedia application VMs placed with FFD algorithm.

(b) Network traffic from Wikipedia application VMs placed with TOPO-Het algorithm.

Figure 6.8: Network traffic after Wikipedia application deployment visualized with Sta-
tus Visualizer.

6.7 Performance Evaluation 159

434.6

58.0

153.8

346.9

41.2
102.8

225.7

29.1
59.3

156.4

14.5
45.4

0

100

200

300

400

500

DB access Static files Overall

A
vg

. R
es

po
ns

e
Ti

m
e

(m
s) FFD BWA DF TOPO-Het

(a) Average response time per request of App 1.

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500
Response Time (ms)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

TOPO−Het

DF

BWA

FFD

(b) CDF graph of requests’ response time of App
1.

Figure 6.9: Average and CDF of response time measured with Wikipedia workload from
App 1.

For the result from App 1 (see Figure 6.9), the overall response time is measured at

45.4 ms with the TOPO-Het algorithm which is about one-third of the response time

from FFD algorithm (153.8 ms). Because TOPO-Het places the connected VMs in a short

distance to each other, the network latency is significantly lowered transferring within

an edge or pod network. On the other hand, FFD distributes VMs across the entire

data center which leads to increase the response time. The result also shows that ap-

plying network management mechanism in addition to the FFD allocation can improve

the performance. The average response time is reduced to 102.8 ms by applying BWA

method, and further to 59.3 ms with DF algorithm. Even for the VMs spread out across

the data center by FFD algorithm, network traffic engineering schemes supported by SD-

Con can improve the performance of the application. We can also see the response times

for DB access requests are longer than the static files because they obviously need to ac-

cess database server involving more network transmission between the web server and

database VMs and file operation in the database. Nonetheless, the response time for DB

access and static file requests follow the same tendency as the overall result: TOPO-Het

resulting in the best performance whereas FFD without a network management scheme

being the worst. CDF graph of response time from all requests (Figure 6.9b) also shows

that TOPO-Het outperforms compared to baselines.

A similar result can be observed in Figure 6.9a measured from App 2 which was run-

ning simultaneously with App 1. Compared to App 1, the overall average response times

160 Prototype System of Integrated Control Platform

632.8

65.8

233.3

612.0

64.7

226.4

623.0

77.3

236.6

394.1

55.0

155.5

0

100

200

300

400

500

600

700

DB access Static files Overall

A
vg

. R
es

po
ns

e
Ti

m
e

(m
s) FFD BWA DF TOPO-Het

(a) Average response time per request of App 2.

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500
Response Time (ms)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

TOPO−Het

DF

BWA

FFD

(b) CDF graph of requests’ response time of App
2.

Figure 6.10: Average and CDF of response time measured with Wikipedia workload from
App 2.

are increased to between 155.5 ms and 236.6 ms mainly because of the poor performance

of database VM. In our heterogeneous testbed, the disk I/O performance of Compute 5

node hosting the database VM for App 2 is lower than Compute 1 and 2 nodes, because

of the hardware specification. Due to the poor performance, longer response time is ob-

served especially for DB access requests. Another reason is that VMs for App 2 are more

scattered across the data center into smaller compute nodes as observed in Figure 6.7

leading to increasing the network latency.

We can still observe that TOPO-Het outperforms other baselines although the av-

erage response time is increased compared to App 1. However, network management

schemes are less effective for App 2 not improving the response time significantly. In

fact, DF method degrades the overall performance slightly compared to the original FFD,

increasing the response time from 233.3 ms to 236.6 ms. The reason was that the smaller

scale with less number of VMs and workloads did not generate as much network traffic

as App 1, which results in the network bandwidth not a significant bottleneck for the

overall performance. Rather than bandwidth which could be improved by SDCon’s net-

work management schemes, the poor performance of App 2 is mainly due to the network

latency caused by switches. As shown in Figure 6.10a, the time difference for static file

requests are not as large as the difference for DB access requests between FFD and TOPO-

Het. This implies the network traffic between the database and web servers is improved

by TOPO-Het which allocates web servers into the compute node under the same edge

6.8 Summary 161

as the database VM.

In summary, results show that SDCon can perform VM placement with the intended

algorithm, either FFD or TOPO-Het, as well as configure network settings dynamically

through SDN controller based on the selected traffic engineering scheme. TOPO-Het can

improve the application performance by allocating VMs to nearby compute nodes aware

of network topology, although the level of improvement is differentiated based on the

application configuration, the workload and the current status of the infrastructure.

6.7.4 Analysis of Power Consumption

We also measured the power consumption of the data center using SDCon. Figure 6.11

depicts the power usage per time unit measured every minute. Note that the measure-

ment is estimated by calculating from energy models with the CPU utilization level for

compute nodes and the number of connected ports for switches. Although TOPO-Het

could leave one compute node empty, the estimated power consumption is not signifi-

cantly different between two algorithms. Because we did not implement the method to

power off idle compute nodes and the aggregated CPU utilization level remains similar

in both algorithms, the power consumption was not significantly differentiated between

algorithms. In summary, the power consumption of data center with TOPO-Het remains

at least as the same level as the baseline.

Nevertheless, the result of power consumption measurement shows the potential ap-

plication of SDCon for energy-related research such as energy-efficient joint resource pro-

visioning. With the full integrity of SDN with cloud management, measuring power

usage, and real-time resource monitoring, empirical studies on SDN-enabled clouds are

feasible with SDCon platform.

6.8 Summary

In this chapter, we introduced SDCon8, an integrated control platform for SDN and

clouds to enable orchestrated resource management for both resources. SDCon is capa-

ble of placing VM requests and configuring network forwarding rules and QoS queues

8Source code available at: github.com/cloudslab/sdcon

github.com/cloudslab/sdcon

162 Prototype System of Integrated Control Platform

0

500

1000

1500

2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Po
w

er
 (W

at
t)

Time (min)

TOPO-Het FFD

Figure 6.11: Overall power usage of the test bed estimated from CPU and network uti-
lization.

with the knowledge of networking and computing information of the data center. It also

implements real-time monitoring for computing and networking resources which can

be further exploited for dynamic resource provisioning. The power monitoring module

can calculate the estimated power consumption based on the resource utilization using a

power model.

We also proposed a VM placement algorithm for jointly considering both computing

and networking resources in heterogeneous infrastructure. The algorithm consolidates

VMs for the same application with network traffics into closely connected compute nodes

in order to decrease the network traffic as well as to improve the network performance.

The algorithm is evaluated on our testbed controlled by SDCon platform and compared

with the measurement from different baselines. The result shows that the proposed algo-

rithm outperforms the compared state-of-the-art baselines. The effectiveness of SDCon’s

controllability for networking resources is also shown through the validation and evalu-

ation experiments, including bandwidth allocation with QoS configuration and dynamic

flow scheduling.

Chapter 7

Conclusions and Future Directions

This chapter concludes the presented research work in this thesis and highlights the key contribu-

tions. It also discusses open challenges and future directions in SDN-enabled cloud computing, which

we could not have investigated in the thesis.

7.1 Conclusions and Discussion

THE introduction of SDN has brought up many opportunities when it is applied in

cloud computing environment. SDN enabled dynamic adaptation and reconfigu-

ration with its discretion of control plane from the forwarding device controlled by the

centralized controller. The SDN controller manages the network flows dynamically and

individually with the global view of the entire network. Its dynamic controllability has

led to significant benefits in cloud data centers where in essence the requirements and

the utilization change dynamically on demand. The openness of programmable and cus-

tomizable network control logic in SDN has also fostered the innovation on cloud DCN

management schemes which can be easily developed and evaluated in open-source plat-

forms.

With the adoption of SDN in clouds, integrated resource provisioning of compute and

network resources has become feasible and effective to manage both resources simultane-

ously and dynamically. However, the massive scale of compute and network resources in

a cloud data center makes joint resource provisioning a complex and challenging prob-

lem. This thesis investigated the joint resource provisioning methodologies to allocate

This chapter is partially derived from: Jungmin Son and Rajkumar Buyya, “A Taxonomy of Software-
Defined Networking (SDN)-Enabled Cloud Computing,“ ACM Computing Surveys, vol.51, no.3, article 59,
2018.

163

164 Conclusions and Future Directions

sufficient resources for application performance and SLA while considering the energy

efficiency of a cloud data center. In detail, the background of core technologies enabling

SDN-enabled cloud data centers, and the detailed objectives in accordance with the re-

search problem has been delineated in Chapter 1.

Chapter 2 presented a taxonomy and comprehensive literature survey in the area of

SDN-enabled cloud computing for energy efficiency, performance, virtualization, and

security. It also depicted the state-of-the-art SDN-cloud architectures, simulation tools,

and empirical platforms for performance evaluation. The analysis of current research has

assisted in finding gaps and identifying open research challenges that have clarified the

direction of this thesis. Chapter 2 also defined the terms and definitions in SDN-enabled

cloud computing in order to clarify the ambiguous terms proposed in different works.

In Chapter 3, we modeled SDN components in a cloud data center to abstract the func-

tionality and behavior of SDN controller and switches. Based on the model, a discrete-

event simulation framework has been proposed and implemented in the extension of

CloudSim, with the extra capability of managing SDN switches with a programmable

network control logic of the abstracted controller. Physical hosts and switches were mod-

eled in conjunction with virtual resources which can be provisioned in the abstracted

physical resources. User requests were also abstracted for the convenience of running re-

producible experiments. To measure the network bandwidth for comparison, Iperf tool

was exploited in various network configurations on Mininet environment. The frame-

work was validated through a series of experiments and compared with the result from

a practical system.

Upon the developed simulation framework, we proposed two novel heuristics for

joint compute and network resource provisioning in Chapter 4 and Chapter 5. A dy-

namic overbooking algorithm was proposed in Chapter 4 based on the correlation of

computing and networking resource utilization. The algorithm analyzes the connectivity

of VMs for initial VM placement, then consolidates or distributes VMs based on the se-

lected placement method with overbooking. After initial placement, the utilization level

of processing cores and network bandwidth is periodically monitored to calculate the

correlation coefficient between VMs. A highly utilized VM in an overloaded and over-

booked host is migrated to the either more correlated or less correlated host. A VM is

7.1 Conclusions and Discussion 165

migrated to more correlated host in order to reduce the inter-VM network traffic, which

is effective for network-intensive applications. On the other hand, a migration to less

correlated host is effective for CPU-intensive workloads because running less correlated

VMs in the same host can avoid reaching the peak CPU utilization at the same time in an

overbooked host. The performance evaluation conducted with real-world traces showed

that the effectiveness of the proposed algorithm varies depending on the characteristic of

the workload.

Chapter 5 considered the priority of applications on resource allocation and provi-

sion more resources to the higher priority application to fulfill its QoS requirement. The

priority-aware VM allocation (PAVA) algorithm selects compute nodes with more capac-

ity and closer proximity for the priority application and utilizes the low capacity nodes

for low priority applications. With PAVA, VMs for a priority application were consoli-

dated in closely connected hosts which led to improving the response time and reducing

energy. Our network bandwidth allocation method (BWA) showed that the provisioned

network bandwidth is increased for a priority application as the network resource was

dedicated to the usage of the priority application even in the network congestion.

Chapter 6 implemented an empirical control platform, named SDCon, for integrated

resource provisioning of both cloud and network resources in the SDN-enabled data cen-

ter based on OpenStack and OpenDaylight. We presented the design concept and control

flows of the platform. The implemented components and their functionalities were de-

tailed in accordance with the underlying OpenStack and OpenDaylight platforms. The

proposed control framework is capable of provisioning VMs on OpenStack compute

nodes and network flows with OpenVSwitch switches controlled by OpenDaylight. It

also supports resource monitoring for both compute and network devices, which are ex-

ploited for power usage estimation. The visualization component provides a web-based

GUI for data center administrators to be able to oversee the current status of the physical

and virtual resources.

In addition, Chapter 6 proposed a topology-aware VM placement algorithm in a het-

erogeneous cloud data center. The algorithm considers the data center network topol-

ogy consisting of heterogeneous compute nodes with different hardware spec. With the

knowledge of the network connectivity, VMs are collectively placed in a host group with

166 Conclusions and Future Directions

Network Virtualization
and Network Function

Virtualization

Energy-efficient Cloud
Computing

Scalability of SDN

Supporting Big Data
Applications

Enhancing Security in
Clouds and SDN

Realization of
Software-Defined
Clouds and Edge

Computing

Software-
Defined
Clouds

Figure 7.1: Future directions.

sufficient capacity that can be provisioned for the selected VMs. The algorithm consol-

idates the set of VMs with network traffic in a closely connected compute nodes. We

implemented the algorithm on SDCon platform to conduct benchmark experiment with

WikiBench, a realistic benchmarking tool using Wikipedia traces. The result showed that

the proposed algorithm reduced the network traffic across the data center and conse-

quently improved the network performance and response time, compared with the state-

of-the-art baseline. The experiment also showed the effectiveness of SDCon, which was

able to allocate a specific network bandwidth for selected VMs, reroute per-flow path dy-

namically, and estimate power consumption from compute nodes and network switches.

7.2 Future Directions

Although the investigated methodologies in this thesis contributes to the advancement

of SDN-enabled cloud computing and joint resource provisioning, there are still several

aspects that need to be explored comprehensively. Figure 7.1 presents the overview of

future directions we discuss in this section.

7.2.1 Energy-efficient Cloud Computing

Cloud data centers consume an enormous amount of electricity that has been increasing

rapidly. The annual amount of energy consumption of U.S. data centers was estimated

at 91 billion kilowatt-hours in 2013 which is enough to power all households in NYC for

7.2 Future Directions 167

two years. It is even expected to be increased to approximately 140 billion kilowatt-hours

in 2020 which will cost US$13 billion annually [84]. Thus, improving energy-efficiency

in cloud computing has become an utmost research problem in academia and industries.

Although many researchers have already contributed to reducing the energy consump-

tion in cloud computing, most of them try to optimize computing resources or network

resources separately.

Joint optimization of computing and networking resources for reducing power con-

sumption is one of the less explored aspects. Joint optimization considering both com-

puting and network resources simultaneously is rare due to the lack of supportive tech-

nology which can control both at the same time. With the recent evolution of SDN, joint

optimization is feasible in technology and can be investigated further to save more en-

ergy and provide better QoS. Service Level Agreement (SLA) must also be fulfilled in the

power optimization to guarantee profit maximization for cloud providers.

7.2.2 Supporting Big Data Applications

Cloud computing becomes a fundamental infrastructure for Big Data applications with

its massive resource requirements for computation jobs and network transmission. Uti-

lizing SDN-enabled cloud infrastructure can bring vital benefits to Big Data applications

to reduce network bottlenecks during the application processing. For example, aggre-

gation of the mapped data from mappers to the reducer can cause a network burst in

a short time when the mapping processes are completed at the similar time. SDN can

be exploited for network-aware scheduling of Big Data workloads in Map-reduce plat-

form such as Hadoop. Network bandwidth is considered using SDN for Hadoop job

scheduling to guarantee data locality and optimize task assignment among available

workers [102]. In addition to the computation processing time of the workload, network

limitation between workers can also be considered when scheduling and distributing

jobs.

Researchers also investigate SDN usage for large data transfers in distributed file ac-

cess system and for content delivery cache network. SDN can be exploited to collect

network information and find the optimal path between the closest data source and the

consumer in distributed file system [66]. For a content delivery network, distributed

168 Conclusions and Future Directions

cache nodes can be considered as network switches in SDN paradigm which are con-

trolled by cache network controller that optimizes data transfers between cache nodes

by updating the popularity statistics of contents measured at each cache node [26]. As

few researchers have been studied how to utilize SDN in cloud data centers for Big Data

applications, more studies are necessary in this regard.

7.2.3 Scalability of SDN

Scalability of SDN controller is a critical concern for SDN deployment due to its cen-

tralized logic of the architecture and the separation of the control plane from forwarding

plane. As the controller gathers all network information and manages every switch in the

entire network, it is challenging to make the controller scalable and prevent the single-

point of failure at the controller. In clouds, this pitfall can be a significant issue due to the

size and complexity of DCN, and the expected SLA for the provider. The SDN controller

for the cloud DCN can easily become a single-point of failure as controllers in DCN can

be overloaded due to the tremendous number of switches. The problem can be tackled

by distributing controllers or proactively installing the flow rules on switches [130].

A single controller design is simple and easy for maintenance with a global network

view, but it is considered less scalable compare to other topological architecture of SDN

controllers [63]. SDN controllers can be distributed with a flat or hierarchical architecture

via the west-east bound APIs. The west-east bound APIs can be utilized to communicate

between the controllers so that the controllers can be scaled by exchanging network in-

formation and policies through the APIs. Empowering the performance of controller ma-

chines is also exploited to increase SDN scalability which leads the controllers to handle

more packet flows and reduce overhead. Multi-core parallel processing and routing opti-

mization are proposed to improve I/O performance and reduce memory overhead [63].

7.2.4 Network Virtualization and NFV

There are also gaps in realizing network virtualization in clouds which can be more feasi-

ble with the integration of SDN. Although the traditional networking technologies such

as VLAN and VPN have been widely adopted in industry, integrating SDN with the tra-

7.2 Future Directions 169

ditional approaches can bring even better performance and more flexibility to clouds. As

DCN has a complex topology with a large number of devices connected through various

switches, network virtualization in traditional DCN was difficult to achieve due to the

complexity of network configuration and the lack of adaptability. With SDN, flows be-

tween VMs can be fine-controlled more flexibly and dynamically adapting to the chang-

ing traffic. Switches can be dynamically configured in real-time based on the decision

of the controller which can oversee the entire network. Thus, network virtualization for

network SLA guarantee is possibly investigated and introduced in practice with more

extensive research in SDN-enabled cloud data centers.

Recently, NFV has acquired significant attention in both cloud computing and net-

working research communities. By virtualizing network functions which used to be

provided by expensive and tightly coupled hardware, providers can reduce the cost of

purchasing and upgrading the hardware as the network functions can run on generic

hardware like running VM on generic hosts. In networking aspects, how to virtualize

those network functions is one of the utmost research topics whereas resource allocation

and provisioning for NFV have been studied in cloud computing aspects. Both aspects

should be further explored in order to enhance and implement NFV.

7.2.5 Enhancing Security and Reliability in Clouds and SDN

For public cloud providers, security of the data center and their data is a crucial factor of

the business that must be fulfilled. While security in cloud data centers has been explored

extensively with diverse approaches, security of SDN usage, in particular, still requires

being investigated to provide insurance for providers applying SDN in their data centers.

Current security issues include encrypting SDN control packets between a switch and the

controller, protecting the SDN controller from an abnormal access, as well as protecting

packets passing in the virtualized network. Also, researchers put more effort on inves-

tigating the vulnerability of SDN itself from DDoS attack [55] and the security issue of

the stateful SDN data planes [28]. As a massive number of different tenants share same

network medium in the cloud, it is crucial to ensure the virtualized network to be se-

cure and isolated from other tenants. In the unexpected event of resource failures, cloud

system must be able to overcome the failure by providing fault-tolerant algorithms to en-

170 Conclusions and Future Directions

hance the reliability of clouds [57]. For SDN, it is also critical to assure the reliability and

availability of SDN controllers and switches to maintain the proper operation of network

system under unexpected threats and failures [128]. Therefore, it is important to investi-

gate these aspects of improving security and reliability of clouds and SDN to build fully

automated and fault-tolerant Software-Defined Clouds.

7.2.6 Realization of Software-Defined Clouds and Edge Computing

Although the fundamental architecture of autonomous Software-Defined Clouds (SDC)

is proposed in several works [16,56], the implementation of SDC is still in the early stage

due to the lack of virtualization technologies for cloud resources and the integration of

these techniques in clouds. Leasing computing and storage resources have been already

implemented in commercial cloud platforms thanks to the recent enhancement in vir-

tualization technologies, but further investigation in network slicing and dynamic man-

agement is needed to support fully automated SDC. In order to support network slicing

resource management, SDN is a core technology that can bring autonomic network func-

tion and application deployment in clouds.

Furthermore, SDN can be functioned as a key networking technology for edge com-

puting where the current cloud computing concept is extended to the edge of the net-

work. In edge computing, time-critical and recurring workloads can be processed at the

edge nodes close to end-users without transferring to the central cloud infrastructures so

that the application responsiveness and the networking efficiency can be improved [40].

It is heavily driven by emerging IoT applications where the low-profile devices equipped

with sensors collectively generate a massive amount of data continuously. With the emer-

gence of edge computing, the large volume of data can be processed at the edge of the

network without transmission to the central cloud infrastructure. The optimal decision

has to be made in edge-cloud environment whether migrating data to edge nodes or

hosting in the central cloud [6]. Recently researchers also have started exploring virtual-

ized network function (VNF) placement for edge computing to enable auto-scaling and

placing the VNFs across the edges and the clouds. SDN can be utilized for WAN opti-

mization to manage the traffic between the edge and cloud on top of network slicing and

VNF placement [50].

7.3 Software Availability 171

7.3 Software Availability

CloudSimSDN presented in Chapter 3 and SDCon presented in Chapter 6 are open-

sourced and freely available to download on CLOUDS-lab GitHub website:

• CloudSimSDN: github.com/cloudslab/cloudsimsdn

• SDCon: github.com/cloudslab/sdcon

github.com/cloudslab/cloudsimsdn
github.com/cloudslab/sdcon

Bibliography

[1] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy proportional

datacenter networks,” in Proceedings of the 37th Annual International Symposium on

Computer Architecture. New York, NY, USA: ACM, 2010, pp. 338–347. [Online].

Available: http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/1815961.1816004

[2] D. Adami, B. Martini, A. Sgambelluri, L. Donatini, M. Gharbaoui, P. Castoldi,

and S. Giordano, “An sdn orchestrator for cloud data center: System

design and experimental evaluation,” Transactions on Emerging Telecommunications

Technologies, vol. 28, no. 11, p. e3172, 2017. [Online]. Available: http:

//dx.doi.org/10.1002/ett.3172

[3] A. V. Akella and K. Xiong, “Quality of Service (QoS)-guaranteed network resource

allocation via software defined networking (SDN),” in Proceedings of the 2014

IEEE 12th International Conference on Dependable, Autonomic and Secure Computing.

Washington, DC, USA: IEEE Computer Society, 2014, pp. 7–13. [Online]. Available:

http://dx.doi.org/10.1109/DASC.2014.11

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center

network architecture,” in Proceedings of the ACM SIGCOMM 2008 Conference on

Data Communication. New York, NY, USA: ACM, 2008, pp. 63–74. [Online].

Available: http://doi.acm.org/10.1145/1402958.1402967

[5] H. Amarasinghe, A. Jarray, and A. Karmouch, “Fault-tolerant IaaS management

for networked cloud infrastructure with SDN,” in Proceedings of the 2017 IEEE In-

ternational Conference on Communications, May 2017, pp. 1–7.

173

http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/1815961.1816004
http://dx.doi.org/10.1002/ett.3172
http://dx.doi.org/10.1002/ett.3172
http://dx.doi.org/10.1109/DASC.2014.11
http://doi.acm.org/10.1145/1402958.1402967

174 BIBLIOGRAPHY

[6] G. S. Aujla, N. Kumar, A. Y. Zomaya, and R. Rajan, “Optimal decision making for

big data processing at edge-cloud environment: An sdn perspective,” IEEE Trans-

actions on Industrial Informatics, vol. 14, no. 2, pp. 778–789, Feb 2018.

[7] M. Azizian, S. Cherkaoui, and A. S. Hafd, “Vehicle software updates distribution

with SDN and cloud computing,” IEEE Communications Magazine, vol. 55, no. 8, pp.

74–79, 2017.

[8] S. Azodolmolky, P. Wieder, and R. Yahyapour, “Cloud computing networking:

challenges and opportunities for innovations,” IEEE Communications Magazine,

vol. 51, no. 7, pp. 54–62, July 2013.

[9] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang, “Meridian: an

SDN platform for cloud network services,” IEEE Communications Magazine, vol. 51,

no. 2, pp. 120–127, February 2013.

[10] L. A. Barroso and U. Hölzle, “The datacenter as a computer: An introduction to

the design of warehouse-scale machines,” Synthesis lectures on computer architecture,

vol. 4, no. 1, pp. 1–108, 2009.

[11] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing,” Future

Generation Computer Systems, vol. 28, no. 5, pp. 755–768, May 2012. [Online].

Available: http://dx.doi.org/10.1016/j.future.2011.04.017

[12] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and

adaptive heuristics for energy and performance efficient dynamic consolidation

of virtual machines in cloud data centers,” Concurrency and Computation: Practice

and Experience, vol. 24, no. 13, pp. 1397–1420, 2012. [Online]. Available:

http://dx.doi.org/10.1002/cpe.1867

[13] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya et al., “A taxonomy and survey of

energy-efficient data centers and cloud computing systems,” Advances in Comput-

ers, vol. 82, no. 2, pp. 47–111, 2011.

[14] C. H. Benet, R. Nasim, K. A. Noghani, and A. Kassler, “OpenStackEmu - a cloud

testbed combining network emulation with OpenStack and SDN,” in Proceedings

http://dx.doi.org/10.1016/j.future.2011.04.017
http://dx.doi.org/10.1002/cpe.1867

BIBLIOGRAPHY 175

of the 2017 14th IEEE Annual Consumer Communications Networking Conference, Jan

2017, pp. 566–568.

[15] R. Bonafiglia, G. Castellano, I. Cerrato, and F. Risso, “End-to-end service orchestra-

tion across sdn and cloud computing domains,” in 2017 IEEE Conference on Network

Softwarization (NetSoft), July 2017, pp. 1–6.

[16] R. Buyya, R. N. Calheiros, J. Son, A. V. Dastjerdi, and Y. Yoon, “Software-defined

cloud computing: Architectural elements and open challenges,” in Proceedings of

the 3rd International Conference on Advances in Computing, Communications and Infor-

matics, IEEE. IEEE Press, 2014.

[17] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as

the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.

[18] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “CloudSim:

a toolkit for modeling and simulation of cloud computing environments and evalu-

ation of resource provisioning algorithms,” Software: Practice and Experience, vol. 41,

no. 1, pp. 23–50, 2011.

[19] F. Callegati, W. Cerroni, C. Contoli, R. Cardone, M. Nocentini, and A. Manzalini,

“Sdn for dynamic nfv deployment,” IEEE Communications Magazine, vol. 54, no. 10,

pp. 89–95, October 2016.

[20] M. Casado, N. Foster, and A. Guha, “Abstractions for software-defined networks,”

Communications of the ACM, vol. 57, no. 10, pp. 86–95, Sep. 2014. [Online].

Available: http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/2661061.2661063

[21] W. Cerroni, M. Gharbaoui, B. Martini, A. Campi, P. Castoldi, and F. Callegati,

“Cross-layer resource orchestration for cloud service delivery: A seamless

sdn approach,” Computer Networks, vol. 87, no. Supplement C, pp. 16 – 32,

2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1389128615001644

[22] A. Chowdhary, S. Pisharody, A. Alshamrani, and D. Huang, “Dynamic game

based security framework in SDN-enabled cloud networking environments,”

http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/2661061.2661063
http://www.sciencedirect.com/science/article/pii/S1389128615001644
http://www.sciencedirect.com/science/article/pii/S1389128615001644

176 BIBLIOGRAPHY

in Proceedings of the ACM International Workshop on Security in Software Defined

Networks & Network Function Virtualization. New York, NY, USA: ACM, 2017, pp.

53–58. [Online]. Available: http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/

3040992.3040998

[23] D. Citron and A. Zlotnick, “Testing large-scale cloud management,” IBM Journal of

Research and Development, vol. 55, no. 6, Nov. 2011.

[24] C. Clos, “A study of non-blocking switching networks,” The Bell System Technical

Journal, vol. 32, no. 2, pp. 406–424, March 1953.

[25] L. Cui, F. R. Yu, and Q. Yan, “When big data meets software-defined networking:

SDN for big data and big data for SDN,” IEEE Network, vol. 30, no. 1, pp. 58–65,

January 2016.

[26] Y. Cui, J. Song, M. Li, Q. Ren, Y. Zhang, and X. Cai, “Sdn-based big data caching in

isp networks,” IEEE Transactions on Big Data, 2017.

[27] R. Cziva, S. Jouët, D. Stapleton, F. P. Tso, and D. P. Pezaros, “SDN-based virtual

machine management for cloud data centers,” IEEE Transactions on Network and

Service Management, vol. 13, no. 2, pp. 212–225, June 2016.

[28] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A survey on the

security of stateful sdn data planes,” IEEE Communications Surveys Tutorials, vol. 19,

no. 3, pp. 1701–1725, thirdquarter 2017.

[29] M. D. de Assunção, R. Carpa, L. Lefévre, and O. Glýck, “On designing SDN ser-

vices for energy-aware traffic engineering,” in Proceedings of the 11th International

Conference on Testbeds and Research Infrastructures for the Development of Networks and

Communities, 1 2017.

[30] F. R. de Souza, C. C. Miers, A. Fiorese, and G. P. Koslovski, “QoS-aware

virtual infrastructures allocation on sdn-based clouds,” in Proceedings of the

17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

Piscataway, NJ, USA: IEEE Press, 2017, pp. 120–129. [Online]. Available:

https://doi-org.ezp.lib.unimelb.edu.au/10.1109/CCGRID.2017.57

http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/3040992.3040998
http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/3040992.3040998
https://doi-org.ezp.lib.unimelb.edu.au/10.1109/CCGRID.2017.57

BIBLIOGRAPHY 177

[31] X. Du, Z. Lv, J. Wu, C. Wu, and S. Chen, “PDSDN: A policy-driven SDN controller

improving scheme for multi-tenant cloud datacenter environments,” in Proceedings

of the 2016 IEEE International Conference on Services Computing (SCC), June 2016, pp.

387–394.

[32] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS: An OpenFlow

controller design for multimedia delivery with end-to-end quality of service over

software-defined networks,” in Proceedings of the 2012 Asia-Pacific Signal Information

Processing Association Annual Summit and Conference, Dec 2012, pp. 1–8.

[33] D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing network traffic in a cluster-

based, multi-tier data center,” in Proceedings of the 27th International Conference on

Distributed Computing Systems. IEEE, 2007, pp. 59–59.

[34] F. Esposito, I. Matta, and V. Ishakian, “Slice embedding solutions for distributed

service architectures,” ACM Computing Surveys, vol. 46, no. 1, pp. 6:1–6:29, Jul.

2013. [Online]. Available: http://doi.acm.org/10.1145/2522968.2522974

[35] W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, “Vmplanner: Optimizing

virtual machine placement and traffic flow routing to reduce network power

costs in cloud data centers,” Computer Networks, vol. 57, no. 1, pp. 179 –

196, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1389128612003301

[36] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” Queue,

vol. 11, no. 12, pp. 20:20–20:40, Dec. 2013. [Online]. Available: http:

//doi.acm.org/10.1145/2559899.2560327

[37] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya, “Network-aware vir-

tual machine placement and migration in cloud data centers,” Emerging Research in

Cloud Distributed Computing Systems, vol. 42, 2015.

[38] S. Fichera, M. Gharbaoui, P. Castoldi, B. Martini, and A. Manzalini, “On exper-

imenting 5g: Testbed set-up for sdn orchestration across network cloud and iot

domains,” in 2017 IEEE Conference on Network Softwarization (NetSoft), July 2017,

pp. 1–6.

http://doi.acm.org/10.1145/2522968.2522974
http://www.sciencedirect.com/science/article/pii/S1389128612003301
http://www.sciencedirect.com/science/article/pii/S1389128612003301
http://doi.acm.org/10.1145/2559899.2560327
http://doi.acm.org/10.1145/2559899.2560327

178 BIBLIOGRAPHY

[39] A. Fischer, F. B. Botero, M. Till Beck, H. de Meer, and X. Hesselbach, “Virtual net-

work embedding: A survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 4,

pp. 1888–1906, Fourth 2013.

[40] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,

M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and

challenges,” SIGCOMM Computer Communication Review, vol. 45, no. 5, pp.

37–42, Sep. 2015. [Online]. Available: http://doi.acm.org.ezp.lib.unimelb.edu.au/

10.1145/2831347.2831354

[41] S. K. Garg and R. Buyya, “NetworkCloudSim: Modelling parallel applications in

cloud simulations,” in Proceedings of the 2011 Fourth IEEE International Conference

on Utility and Cloud Computing. Washington, DC, USA: IEEE Computer Society,

2011, pp. 105–113. [Online]. Available: http://dx.doi.org/10.1109/UCC.2011.24

[42] M. Gharbaoui, B. Martini, D. Adami, S. Giordano, and P. Castoldi, “Cloud and

network orchestration in sdn data centers: Design principles and performance

evaluation,” Computer Networks, vol. 108, no. Supplement C, pp. 279 – 295,

2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1389128616302821

[43] K. Govindarajan, K. C. Meng, H. Ong, W. M. Tat, S. Sivanand, and L. S. Leong, “Re-

alizing the quality of service (QoS) in software-defined networking (SDN) based

cloud infrastructure,” in Proceedings of the 2nd International Conference on Informa-

tion and Communication Technology (ICoICT), May 2014, pp. 505–510.

[44] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker,

“NOX: Towards an operating system for networks,” ACM SIGCOMM Computer

Communication Review, vol. 38, no. 3, pp. 105–110, July 2008. [Online]. Available:

http://doi.acm.org/10.1145/1384609.1384625

[45] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu,

“BCube: A high performance, server-centric network architecture for modular

data centers,” in Proceedings of the ACM SIGCOMM 2009 Conference on Data

http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/2831347.2831354
http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/2831347.2831354
http://dx.doi.org/10.1109/UCC.2011.24
http://www.sciencedirect.com/science/article/pii/S1389128616302821
http://www.sciencedirect.com/science/article/pii/S1389128616302821
http://doi.acm.org/10.1145/1384609.1384625

BIBLIOGRAPHY 179

Communication. New York, NY, USA: ACM, 2009, pp. 63–74. [Online]. Available:

http://doi.acm.org/10.1145/1592568.1592577

[46] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A scalable and

fault-tolerant network structure for data centers,” in Proceedings of the ACM

SIGCOMM 2008 Conference on Data Communication. New York, NY, USA: ACM,

2008, pp. 75–86. [Online]. Available: http://doi.acm.org/10.1145/1402958.1402968

[47] P. Habibi, M. Mokhtari, and M. Sabaei, “QRVE: QoS-aware routing and energy-

efficient vm placement for software-defined datacenter networks,” in Proceedings of

the 8th International Symposium on Telecommunications, Sept 2016, pp. 533–539.

[48] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and

N. McKeown, “ElasticTree: Saving energy in data center networks,” in Proceedings

of the 7th USENIX Conference on Networked Systems Design and Implementation.

Berkeley, CA, USA: USENIX Association, 2010, pp. 17–17. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1855711.1855728

[49] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” Internet Requests

for Comments, RFC Editor, RFC 2992, November 2000. [Online]. Available:

https://tools.ietf.org/html/rfc2992

[50] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing-

a key technology towards 5g,” ETSI White Paper, vol. 11, no. 11, pp. 1–16, 2015.

[51] iPerf, “iPerf: The ultimate speed test tool for tcp, udp and sctp,” 2017. [Online].

Available: https://iperf.fr//

[52] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelem, “Control of multiple packet

schedulers for improving QoS on OpenFlow/SDN networking,” in Proceedings of

the 2013 Second European Workshop on Software Defined Networks, Oct 2013, pp. 81–86.

[53] R. Jain and S. Paul, “Network virtualization and software defined networking for

cloud computing: a survey,” IEEE Communications Magazine, vol. 51, no. 11, pp.

24–31, November 2013.

http://doi.acm.org/10.1145/1592568.1592577
http://doi.acm.org/10.1145/1402958.1402968
http://dl.acm.org/citation.cfm?id=1855711.1855728
https://tools.ietf.org/html/rfc2992
https://iperf.fr//

180 BIBLIOGRAPHY

[54] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,

J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4:

Experience with a globally-deployed software defined wan,” in Proceedings of the

ACM SIGCOMM 2013 Conference on SIGCOMM. New York, NY, USA: ACM,

2013, pp. 3–14. [Online]. Available: http://doi.acm.org/10.1145/2486001.2486019

[55] S. Jantila and K. Chaipah, “A security analysis of a hybrid mechanism to defend

ddos attacks in sdn,” Procedia Computer Science, vol. 86, no. Supplement C, pp. 437

– 440, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1877050916304082

[56] Y. Jararweh, M. Al-Ayyoub, A. Darabseh, E. Benkhelifa, M. Vouk, and

A. Rindos, “Software defined cloud: Survey, system and evaluation,” Future

Generation Computer Systems, vol. 58, pp. 56 – 74, 2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X15003283

[57] B. Javadi, J. Abawajy, and R. Buyya, “Failure-aware resource provisioning for

hybrid cloud infrastructure,” Journal of Parallel and Distributed Computing, vol. 72,

no. 10, pp. 1318 – 1331, 2012. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0743731512001517

[58] K. Jeong and R. Figueiredo, “Self-configuring software-defined overlay bypass

for seamless inter- and intra-cloud virtual networking,” in Proceedings of the

25th ACM International Symposium on High-Performance Parallel and Distributed

Computing. New York, NY, USA: ACM, 2016, pp. 153–164. [Online]. Available:

http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/2907294.2907318

[59] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm placement and rout-

ing for data center traffic engineering,” in Proceedings of the 2012 IEEE INFOCOM,

March 2012, pp. 2876–2880.

[60] H. Jin, T. Cheocherngngarn, D. Levy, A. Smith, D. Pan, J. Liu, and N. Pissinou,

“Joint host-network optimization for energy-efficient data center networking,” in

Proceedings of the 2013 IEEE 27th International Symposium on Parallel Distributed Pro-

cessing, May 2013, pp. 623–634.

http://doi.acm.org/10.1145/2486001.2486019
http://www.sciencedirect.com/science/article/pii/S1877050916304082
http://www.sciencedirect.com/science/article/pii/S1877050916304082
http://www.sciencedirect.com/science/article/pii/S0167739X15003283
http://www.sciencedirect.com/science/article/pii/S0743731512001517
http://www.sciencedirect.com/science/article/pii/S0743731512001517
http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/2907294.2907318

BIBLIOGRAPHY 181

[61] J. Kang and S. Park, “Algorithms for the variable sized bin packing problem,”

European Journal of Operational Research, vol. 147, no. 2, pp. 365 – 372,

2003. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0377221702002473

[62] D. Kapil, E. S. Pilli, and R. C. Joshi, “Live virtual machine migration techniques:

Survey and research challenges,” in Proceedings of the 3rd IEEE International Advance

Computing Conference, Feb 2013, pp. 963–969.

[63] M. Karakus and A. Durresi, “A survey: Control plane scalability issues and

approaches in software-defined networking (SDN),” Computer Networks, vol. 112,

pp. 279 – 293, 2017. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S138912861630411X

[64] Y. Kim, S. Kang, C. Cho, and S. Pahk, “Sdn-based orchestration for interworking

cloud and transport networks,” in 2016 International Conference on Information and

Communication Technology Convergence (ICTC), Oct 2016, pp. 303–307.

[65] D. Kliazovich, P. Bouvry, and S. U. Khan, “Greencloud: a packet-level

simulator of energy-aware cloud computing data centers,” The Journal of

Supercomputing, vol. 62, no. 3, pp. 1263–1283, Dec 2012. [Online]. Available:

https://doi.org/10.1007/s11227-010-0504-1

[66] S. Koulouzis, A. S. Belloum, M. T. Bubak, Z. Zhao, M. Živković, and C. T.

de Laat, “Sdn-aware federation of distributed data,” Future Generation Computer

Systems, vol. 56, no. Supplement C, pp. 64 – 76, 2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X1500312X

[67] V. T. Lam, S. Radhakrishnan, R. Pan, A. Vahdat, and G. Varghese, “Netshare

and stochastic netshare: Predictable bandwidth allocation for data centers,”

SIGCOMM Comput. Commun. Rev., vol. 42, no. 3, pp. 5–11, Jun. 2012. [Online].

Available: http://doi.acm.org/10.1145/2317307.2317309

[68] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping

for software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop

on Hot Topics in Networks. ACM, 2010, p. 19.

http://www.sciencedirect.com/science/article/pii/S0377221702002473
http://www.sciencedirect.com/science/article/pii/S0377221702002473
http://www.sciencedirect.com/science/article/pii/S138912861630411X
http://www.sciencedirect.com/science/article/pii/S138912861630411X
https://doi.org/10.1007/s11227-010-0504-1
http://www.sciencedirect.com/science/article/pii/S0167739X1500312X
http://doi.acm.org/10.1145/2317307.2317309

182 BIBLIOGRAPHY

[69] A. Leivadeas, M. Falkner, I. Lambadaris, and G. Kesidis, “Optimal virtualized

network function allocation for an SDN enabled cloud,” Computer Standards

& Interfaces, vol. 54, no. P4, pp. 266–278, Nov. 2017. [Online]. Available:

https://doi.org/10.1016/j.csi.2017.01.001

[70] M. Licciardello, M. Fiorani, M. Furdek, P. Monti, C. Raffaelli, and L. Wosinska, “Per-

formance evaluation of abstraction models for orchestration of distributed data

center networks,” in 2017 19th International Conference on Transparent Optical Net-

works (ICTON), July 2017, pp. 1–4.

[71] S.-C. Lin, P. Wang, and M. Luo, “Jointly optimized QoS-aware virtualization

and routing in software defined networks,” Computer Networks, vol. 96, pp. 69 –

78, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S138912861500256X

[72] B. Martini, D. Adami, M. Gharbaoui, P. Castoldi, L. Donatini, and S. Giordano,

“Design and evaluation of SDN-based orchestration system for cloud data centers,”

in Proceedings of the 2016 IEEE International Conference on Communications, May 2016,

pp. 1–6.

[73] B. Martini, D. Adami, A. Sgambelluri, M. Gharbaoui, L. Donatini, S. Giordano, and

P. Castoldi, “An sdn orchestrator for resources chaining in cloud data centers,” in

2014 European Conference on Networks and Communications (EuCNC), June 2014, pp.

1–5.

[74] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and A. V.

Vasilakos, “Cloud computing: Survey on energy efficiency,” ACM Computing

Surveys, vol. 47, no. 2, pp. 33:1–33:36, Dec. 2014. [Online]. Available:

http://doi.acm.org/10.1145/2656204

[75] A. Mayoral, R. Munoz, R. Vilalta, R. Casellas, R. Martı́nez, and V. López,

“Need for a transport api in 5g for global orchestration of cloud and

networks through a virtualized infrastructure manager and planner,” J. Opt.

Commun. Netw., vol. 9, no. 1, pp. A55–A62, Jan 2017. [Online]. Available:

http://jocn.osa.org/abstract.cfm?URI=jocn-9-1-A55

https://doi.org/10.1016/j.csi.2017.01.001
http://www.sciencedirect.com/science/article/pii/S138912861500256X
http://www.sciencedirect.com/science/article/pii/S138912861500256X
http://doi.acm.org/10.1145/2656204
http://jocn.osa.org/abstract.cfm?URI=jocn-9-1-A55

BIBLIOGRAPHY 183

[76] A. Mayoral, R. Vilalta, R. Munoz, R. Casellas, and R. Martı́nez, “SDN orchestration

architectures and their integration with cloud computing applications,” Optical

Switching and Networking, vol. 26, pp. 2 – 13, 2017. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1573427716000047

[77] A. Mayoral, R. Vilalta, R. Munoz, R. Casellas, R. Martı́nez, M. S. Moreolo, J. M.

Fabrega, A. Aguado, S. Yan, D. Simeonidou, J. M. Gran, V. López, P. Kaczmarek,

R. Szwedowski, T. Szyrkowiec, A. Autenrieth, N. Yoshikane, T. Tsuritani,

I. Morita, M. Shiraiwa, N. Wada, M. Nishihara, T. Tanaka, T. Takahara, J. C.

Rasmussen, Y. Yoshida, and K. ichi Kitayama, “Control orchestration protocol:

Unified transport api for distributed cloud and network orchestration,” J. Opt.

Commun. Netw., vol. 9, no. 2, pp. A216–A222, Feb 2017. [Online]. Available:

http://jocn.osa.org/abstract.cfm?URI=jocn-9-2-A216

[78] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,”

ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[79] M. Mechtri, I. Houidi, W. Louati, and D. Zeghlache, “SDN for inter cloud network-

ing,” in Proceedings of the 2013 IEEE SDN for Future Networks and Services, Nov 2013,

pp. 1–7.

[80] V. Medina and J. M. Garcı́a, “A survey of migration mechanisms of virtual

machines,” ACM Computing Surveys, vol. 46, no. 3, pp. 30:1–30:33, Jan. 2014.

[Online]. Available: http://doi.acm.org/10.1145/2492705

[81] P. M. Mell and T. Grance, “SP 800-145. the NIST definition of cloud computing,”

National Institute of Standards & Technology, Gaithersburg, MD, United States,

Tech. Rep., 2011.

[82] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba, “Net-

work function virtualization: State-of-the-art and research challenges,” IEEE Com-

munications Surveys Tutorials, vol. 18, no. 1, pp. 236–262, Firstquarter 2016.

http://www.sciencedirect.com/science/article/pii/S1573427716000047
http://jocn.osa.org/abstract.cfm?URI=jocn-9-2-A216
http://doi.acm.org/10.1145/2492705

184 BIBLIOGRAPHY

[83] K. Mills, J. Filliben, and C. Dabrowski, “Comparing vm-placement algorithms for

on-demand clouds,” in Proceedings of the 2011 IEEE Third International Conference on

Cloud Computing Technology and Science, Nov 2011, pp. 91–98.

[84] Natural Resources Defense Council, “America’s data centers consuming and

wasting growing amounts of energy,” 2014. [Online]. Available: http://www.

nrdc.org/energy/data-center-efficiency-assessment.asp

[85] ns2, “The network simulator ns-2,” http://www.isi.edu/nsnam/ns/, 1995–2011.

[86] ns3, “The network simulator ns-3,” http://www.nsnam.org/, 2011–2015.

[87] NTT Corporation, “RYU the network operating system (NOS),” 2017. [Online].

Available: https://osrg.github.io/ryu/

[88] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Carretero, and

I. M. Llorente, “iCanCloud: A flexible and scalable cloud infrastructure simulator,”

Journal of Grid Computing, vol. 10, no. 1, pp. 185–209, Mar. 2012.

[89] ONF Solution Brief, “OpenFlow-enabled SDN and network functions virtu-

alization,” Open Network Foundation, 2014. [Online]. Available: https://www.

opennetworking.org/wp-content/uploads/2013/05/sb-sdn-nvf-solution.pdf

[90] Open Network Foundation, “Software-defined networking: The new norm

for networks,” https://www.opennetworking.org/images/stories/downloads/

sdn-resources/white-papers/wp-sdn-newnorm.pdf, 2012.

[91] Open Networking Lab, “Introducing ONOS - a SDN network operating system for

service providers,” 2014. [Online]. Available: http://onosproject.org/wp-content/

uploads/2014/11/Whitepaper-ONOS-final.pdf

[92] OpenDaylight, “OpenDaylight: Open source SDN platform,” 2017. [Online].

Available: https://www.opendaylight.org/

[93] OpenStack Foundation, “Open source software for creating private and public

clouds.” 2017. [Online]. Available: https://www.openstack.org/

http://www.nrdc.org/energy/data-center-efficiency-assessment.asp
http://www.nrdc.org/energy/data-center-efficiency-assessment.asp
http://www.isi.edu/nsnam/ns/
http://www.nsnam.org/
https://osrg.github.io/ryu/
https://www.opennetworking.org/wp-content/uploads/2013/05/sb-sdn-nvf-solution.pdf
https://www.opennetworking.org/wp-content/uploads/2013/05/sb-sdn-nvf-solution.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
https://www.opendaylight.org/
https://www.openstack.org/

BIBLIOGRAPHY 185

[94] E. Pakbaznia and M. Pedram, “Minimizing data center cooling and server power

costs,” in Proceedings of the 2009 ACM/IEEE International Symposium on Low Power

Electronics and Design. New York, NY, USA: ACM, 2009, pp. 145–150. [Online].

Available: http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/1594233.1594268

[95] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder, “Understanding and ab-

stracting total data center power,” in Workshop on Energy-Efficient Design (WEED),

2009.

[96] I. Petri, M. Zou, A. R. Zamani, J. Diaz-Montes, O. Rana, and M. Parashar, “Integrat-

ing software defined networks within a cloud federation,” in Proceedings of the 15th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 2015,

pp. 179–188.

[97] S. Pisharody, J. Natarajan, A. Chowdhary, A. Alshalan, and D. Huang, “Brew: A se-

curity policy analysis framework for distributed sdn-based cloud environments,”

IEEE Transactions on Dependable and Secure Computing, 2017.

[98] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, and I. Stoica,

“FairCloud: Sharing the network in cloud computing,” in Proceedings of the ACM

SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communication. New York, NY, USA: ACM, 2012, pp. 187–198.

[Online]. Available: http://doi.acm.org/10.1145/2342356.2342396

[99] POX, “Pox,” 2013. [Online]. Available: http://www.noxrepo.org/

[100] Project Floodlight, “Floodlight openflow controller,” 2017. [Online]. Available:

http://www.projectfloodlight.org/floodlight/

[101] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-fying mid-

dlebox policy enforcement using SDN,” in Proceedings of the ACM SIGCOMM 2013

Conference on SIGCOMM. New York, NY, USA: ACM, 2013, pp. 27–38.

[102] P. Qin, B. Dai, B. Huang, and G. Xu, “Bandwidth-aware scheduling with sdn in

hadoop: A new trend for big data,” IEEE Systems Journal, vol. 11, no. 4, pp. 2337–

2344, Dec 2017.

http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/1594233.1594268
http://doi.acm.org/10.1145/2342356.2342396
http://www.noxrepo.org/
http://www.projectfloodlight.org/floodlight/

186 BIBLIOGRAPHY

[103] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Modeling and

Tools for Network Simulation, K. Wehrle, M. Güneş, and J. Gross, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010, pp. 15–34. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-12331-3 2

[104] A. C. Risdianto, J.-S. Shin, and J. W. Kim, “Deployment and evaluation of

software-defined inter-connections for multi-domain federated SDN-cloud,” in

Proceedings of the 11th International Conference on Future Internet Technologies.

New York, NY, USA: ACM, 2016, pp. 118–121. [Online]. Available: http:

//doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/2935663.2935683

[105] D. Samant and U. Bellur, “Handling boot storms in virtualized data cen-

ters—a survey,” ACM Computing Surveys, vol. 49, no. 1, pp. 16:1–16:36, Jun.

2016. [Online]. Available: http://doi.acm.org/10.1145/2932709

[106] D. J. Schumacher and W. C. Beckman, “Data center cooling system,” April 2002, US

Patent 6,374,627.

[107] S. Seetharam, P. Calyam, and T. Beyene, “ADON: Application-driven overlay

network-as-a-service for data-intensive science,” in Proceedings of the 2014 IEEE 3rd

International Conference on Cloud Networking, Oct 2014, pp. 313–319.

[108] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar,

“Making middleboxes someone else’s problem: Network processing as a

cloud service,” in Proceedings of the ACM SIGCOMM 2012 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communication.

New York, NY, USA: ACM, 2012, pp. 13–24. [Online]. Available: http:

//doi.acm.org/10.1145/2342356.2342359

[109] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the data center

network,” in Proceedings of the 8th USENIX Conference on Networked Systems Design

and Implementation. Berkeley, CA, USA: USENIX Association, 2011, pp. 309–322.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1972457.1972489

http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/2935663.2935683
http://doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/2935663.2935683
http://doi.acm.org/10.1145/2932709
http://doi.acm.org/10.1145/2342356.2342359
http://doi.acm.org/10.1145/2342356.2342359
http://dl.acm.org/citation.cfm?id=1972457.1972489

BIBLIOGRAPHY 187

[110] S. Spadaro, A. Pagès, F. Agraz, R. Montero, and J. Perelló, “Resource orchestration

in sdn-based future optical data centres,” in 2016 International Conference on Optical

Network Design and Modeling (ONDM), May 2016, pp. 1–6.

[111] I. Sriram, “SPECI, a simulation tool exploring cloud-scale data centres,” in Proceed-

ings of the First International Conference on Cloud Computing Technology and Science

(CloudCom), ser. Lecture Notes in Computer Science. Springer, 2009, vol. 5931, pp.

381–392.

[112] J. Teixeira, G. Antichi, D. Adami, A. Del Chiaro, S. Giordano, and A. Santos, “Data-

center in a box: Test your SDN cloud-datacenter controller at home,” in Proceedings

of the 2013 Second European Workshop on Software Defined Networks, Oct 2013, pp.

99–104.

[113] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected cloud computing

environments: Challenges, taxonomy, and survey,” ACM Computing Surveys,

vol. 47, no. 1, pp. 7:1–7:47, May 2014. [Online]. Available: http://doi.acm.org/10.

1145/2593512

[114] A. N. Toosi, C. Qu, M. D. de Assunção, and R. Buyya, “Renewable-aware

geographical load balancing of web applications for sustainable data centers,”

Journal of Network and Computer Applications, vol. 83, no. Supplement C, pp. 155

– 168, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1084804517300590

[115] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente, “Cloud

brokering mechanisms for optimized placement of virtual machines across

multiple providers,” Future Generation Computer Systems, vol. 28, no. 2, pp. 358

– 367, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0167739X11001373

[116] F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros, “The glasgow raspberry

pi cloud: A scale model for cloud computing infrastructures,” in 2013 IEEE 33rd

International Conference on Distributed Computing Systems Workshops, July 2013, pp.

108–112.

http://doi.acm.org/10.1145/2593512
http://doi.acm.org/10.1145/2593512
http://www.sciencedirect.com/science/article/pii/S1084804517300590
http://www.sciencedirect.com/science/article/pii/S1084804517300590
http://www.sciencedirect.com/science/article/pii/S0167739X11001373
http://www.sciencedirect.com/science/article/pii/S0167739X11001373

188 BIBLIOGRAPHY

[117] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis for decen-

tralized hosting,” Elsevier Computer Networks, vol. 53, no. 11, pp. 1830–1845, July

2009.

[118] A. Vahdat, D. Clark, and J. Rexford, “A purpose-built global network: Google’s

move to SDN,” Queue, vol. 13, no. 8, pp. 100:100–100:125, Oct. 2015. [Online].

Available: http://doi.acm.org/10.1145/2838344.2856460

[119] R. Wang, S. Mangiante, A. Davy, L. Shi, and B. Jennings, “QoS-aware multipathing

in datacenters using effective bandwidth estimation and SDN,” in Proceedings of the

12th International Conference on Network and Service Management (CNSM), Oct 2016,

pp. 342–347.

[120] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server load balancing

gone wild,” in Proceedings of the 11th USENIX Conference on Hot Topics in

Management of Internet, Cloud, and Enterprise Networks and Services. Berkeley,

CA, USA: USENIX Association, 2011, pp. 12–12. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1972422.1972438

[121] R. Wang, R. Esteves, L. Shi, J. A. Wickboldt, B. Jennings, and L. Z. Granville,

“Network-aware placement of virtual machine ensembles using effective band-

width estimation,” in Proceedings of the 10th International Conference on Network and

Service Management (CNSM) and Workshop, Nov 2014, pp. 100–108.

[122] R. Wang, J. A. Wickboldt, R. P. Esteves, L. Shi, B. Jennings, and L. Z. Granville,

“Using empirical estimates of effective bandwidth in network-aware placement of

virtual machines in datacenters,” IEEE Transactions on Network and Service Manage-

ment, vol. 13, no. 2, pp. 267–280, June 2016.

[123] S.-H. Wang, P. P. W. Huang, C. H. P. Wen, and L. C. Wang, “EQVMP: Energy-

efficient and qos-aware virtual machine placement for software defined data-

center networks,” in The International Conference on Information Networking 2014

(ICOIN2014), Feb 2014, pp. 220–225.

http://doi.acm.org/10.1145/2838344.2856460
http://dl.acm.org/citation.cfm?id=1972422.1972438
http://dl.acm.org/citation.cfm?id=1972422.1972438

BIBLIOGRAPHY 189

[124] X. Wang, X. Wang, K. Zheng, Y. Yao, and Q. Cao, “Correlation-aware traffic con-

solidation for power optimization of data center networks,” IEEE Transactions on

Parallel and Distributed Systems, vol. 27, no. 4, pp. 992–1006, April 2016.

[125] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “CARPO: Correlation-aware power

optimization in data center networks,” in Proceedings of the 2012 IEEE INFOCOM,

March 2012, pp. 1125–1133.

[126] W. Wendong, Q. Qinglei, G. Xiangyang, H. Yannan, and Q. Xirong, “Auto-

nomic QoS management mechanism in software defined network,” Communica-

tions, China, vol. 11, no. 7, pp. 13–23, July 2014.

[127] Y. Wu, Z. Zhang, C. Wu, C. Guo, Z. Li, and F. C. M. Lau, “Orchestrating bulk data

transfers across geo-distributed datacenters,” IEEE Transactions on Cloud Comput-

ing, vol. 5, no. 1, pp. 112–125, Jan 2017.

[128] A. Xie, X. Wang, W. Wang, and S. Lu, “Designing a disaster-resilient network with

software defined networking,” in Proceedings of the IEEE 22nd International Sympo-

sium of Quality of Service (IWQoS), May 2014, pp. 135–140.

[129] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (SDN) and dis-

tributed denial of service (ddos) attacks in cloud computing environments: A sur-

vey, some research issues, and challenges,” IEEE Communications Surveys Tutorials,

vol. 18, no. 1, pp. 602–622, Firstquarter 2016.

[130] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of software-defined

networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 136–141, February

2013.

[131] Z. Zhang, Y. Deng, G. Min, J. Xie, and S. Huang, “ExCCC-DCN: A highly scal-

able, cost-effective and energy-efficient data center structure,” IEEE Transactions on

Parallel and Distributed Systems, vol. 28, no. 4, pp. 1046–1060, April 2017.

[132] K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power optimization of data cen-

ter network and servers with correlation analysis,” in Proceedings of the 2014 IEEE

INFOCOM, April 2014, pp. 2598–2606.

190 BIBLIOGRAPHY

[133] K. Zheng and X. Wang, “Dynamic control of flow completion time for power ef-

ficiency of data center networks,” in Proceedings of the 2017 IEEE 37th International

Conference on Distributed Computing Systems, June 2017, pp. 340–350.

[134] K. Zheng, X. Wang, and J. Liu, “DISCO: Distributed traffic flow consolidation for

power efficient data center network,” in Proceedings of the 16th International IFIP

TC6 Networking Conference, Networking. IFIP Open Digital Library, 2017. [Online].

Available: http://dl.ifip.org/db/conf/networking/networking2017/1570334940.

pdf

[135] K. Zheng, W. Zheng, L. Li, and X. Wang, “PowerNetS: Coordinating data center

network with servers and cooling for power optimization,” IEEE Transactions on

Network and Service Management, vol. 14, no. 3, pp. 661–675, Sept 2017.

http://dl.ifip.org/db/conf/networking/networking2017/1570334940.pdf
http://dl.ifip.org/db/conf/networking/networking2017/1570334940.pdf

	1 Introduction
	1.1 Background
	1.1.1 Cloud Computing
	1.1.2 Data Center Network (DCN)
	1.1.3 Software-Defined Networking (SDN)
	1.1.4 SDN-enabled Cloud Computing

	1.2 Research Problems and Objectives
	1.3 Evaluation Methodology
	1.4 Thesis Contributions
	1.5 Thesis Organization

	2 Taxonomy and Literature Review
	2.1 Introduction
	2.2 Terms and Definitions
	2.3 SDN-clouds Architectures
	2.4 Taxonomy of SDN usage in Cloud Computing
	2.4.1 Objective
	2.4.2 Method Scope
	2.4.3 Target Architecture
	2.4.4 Application Model
	2.4.5 Resource Configuration
	2.4.6 Evaluation Method

	2.5 Current Research on SDN usage in Cloud computing
	2.5.1 Energy Efficiency
	2.5.2 Performance
	2.5.3 Virtualization
	2.5.4 Security
	2.5.5 Summary and Comparison

	2.6 Evaluation Methods and Technologies
	2.6.1 Simulation Platforms and Emulators
	2.6.2 Empirical Platforms

	2.7 Summary

	3 Modeling and Simulation Environment for Software-Defined Clouds
	3.1 Introduction
	3.2 Related Work
	3.3 Software-Defined Cloud Data Center Simulation: Goals and Requirements
	3.4 Framework Design
	3.4.1 CloudSim core logic
	3.4.2 Abstracting physical and virtual topology
	3.4.3 Network modules
	3.4.4 Calculating packet transmission time
	3.4.5 Abstracting user requests

	3.5 Validation
	3.5.1 Mininet setup
	3.5.2 Testbed configuration
	3.5.3 Validation results

	3.6 Use Case Evaluation
	3.6.1 Joint host-network energy efficient resource allocation
	3.6.2 Traffic prioritization

	3.7 Summary

	4 SLA-aware and Energy-Efficient Dynamic Resource Overbooking
	4.1 Introduction
	4.2 Background
	4.3 Related Work
	4.4 Problem Formulation
	4.4.1 Power Models
	4.4.2 Problem Formulation

	4.5 Resource Allocation Framework
	4.6 Resource Overbooking Algorithm
	4.6.1 Connectivity-aware Initial VM Placement Algorithms
	4.6.2 VM Migration Algorithms with Dynamic Overbooking
	4.6.3 Baseline Algorithms

	4.7 Performance Evaluation
	4.7.1 Testbed configuration
	4.7.2 Workload
	4.7.3 Initial placement
	4.7.4 Migration policy
	4.7.5 Analysis of energy consumption
	4.7.6 Dynamic overbooking ratio

	4.8 Summary

	5 Priority-aware Joint VM and Network Resource Provisioning
	5.1 Introduction
	5.2 Related Work
	5.3 System Architecture
	5.4 Priority-aware Resource Provisioning Methods
	5.4.1 Priority-Aware VM Allocation (PAVA)
	5.4.2 Bandwidth Allocation for Priority Applications (BWA)
	5.4.3 Baseline algorithms

	5.5 Performance Evaluation
	5.5.1 Experiment configuration and scenarios
	5.5.2 Analysis of Response Time
	5.5.3 Analysis of QoS violation rate
	5.5.4 Analysis of energy consumption
	5.5.5 Analysis of algorithm complexity

	5.6 Summary

	6 Prototype System of Integrated Control Platform
	6.1 Introduction
	6.2 Related Work
	6.3 SDCon: Software-Defined Clouds Controller
	6.4 System Implementation
	6.4.1 Cloud Manager
	6.4.2 Cloud Monitor
	6.4.3 Network Manager
	6.4.4 Network Monitor
	6.4.5 Topology Discovery
	6.4.6 Joint Resource Provisioner
	6.4.7 Power Consumption Estimator
	6.4.8 Status Visualizer
	6.4.9 Data Flow and Sequence Diagram

	6.5 Joint Resource Provisioning in Heterogeneous Clouds
	6.5.1 Topology-aware VM Placement Algorithm for Heterogeneous Cloud Infrastructure (TOPO-Het)
	6.5.2 Baseline algorithms

	6.6 System Validation
	6.6.1 Testbed Configuration
	6.6.2 Bandwidth Allocation with QoS Settings

	6.7 Performance Evaluation
	6.7.1 Application Settings and Workloads
	6.7.2 Analysis of VM Allocation Decision
	6.7.3 Analysis of Response Time
	6.7.4 Analysis of Power Consumption

	6.8 Summary

	7 Conclusions and Future Directions
	7.1 Conclusions and Discussion
	7.2 Future Directions
	7.2.1 Energy-efficient Cloud Computing
	7.2.2 Supporting Big Data Applications
	7.2.3 Scalability of SDN
	7.2.4 Network Virtualization and NFV
	7.2.5 Enhancing Security and Reliability in Clouds and SDN
	7.2.6 Realization of Software-Defined Clouds and Edge Computing

	7.3 Software Availability

