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Abstract

More than 3.26 billion Internet users are using Web and mobile applications every day

for retail services and businesses processing; information management and retrievals;

media and social interactions; gaming and entertainments, etc. With the rapid growth

in simultaneous users and data volume, such applications often rely on distributed

databases to handle large magnitudes of On-Line Transaction Processing (OLTP) re-

quests at the Internet scale. These databases employ user-defined partitioning schemes

during their initial application design phase to scale-out concurrent writing of user

data into a number of shared-nothing servers. However, processing Distributed Trans-

actions (DTs), that involve data tuples from multiple servers, can severely degrade the

performance of these databases. In addition, transactional patterns are often influ-

enced by the frequent data tuples in the database, resulting in significant changes in

the workload that none of the static partitioning schemes can handle in real-time. This

thesis addresses the abovementioned challenge through workload-aware incremental

data repartitioning. The primary goal is to minimally redistribute data tuples within

the system with a view to minimising the adverse impact of DT without adversely af-

fecting the data distribution load balance. Furthermore, to support both range and

consistent-hash based data partitions used in OLTP systems, a distributed yet scalable

data lookup process, inspired by the roaming protocol in mobile networks, is intro-

duced. Moreover, additional challenge lies on how to reduce the computational com-

plexities while processing large volume of transactional workload very quickly to make

real-time decisions. These complexities are addressed in three distinct ways - hide the

workload network complexities during analysis by using different level of abstractions;

find the appropriate size of observation window to decide how far to look back in the

past for workload analysis; and finally, incrementally (i.e., how frequently) trigger the

repartitioning process based on a threshold. Some well-defined Key Performance In-

dicator (KPI) metrics for database repartitioning are defined and rigorous sensitivity

analyses are performed on different types of transaction generation models and obser-

vation window sizes. In the first stage, graph-theoretic higher level abstractions such

as graphs, hypergraphs, and their compressed forms are used to deliver sub-optimal

repartitioning decisions using graph min-cut techniques. In order to deliver optimal de-



cisions, a greedy approach is further developed, which ranks the transactions in terms

of the measure of repartitioning objectivity and performs transaction-level optimisation

to maximise a particular KPI. Finally, transactional stream mining is used to construct

a representative sub-network of frequent transactions and perform transaction-level

adaptive repartitioning, which eventually reduces the computational complexity, while

concomitantly improving the performance due to filtering out a significant volume of

infrequent transactions, that have little bearing on the KPIs. Simulation-based experi-

mental evaluations demonstrate that the proposed workload-aware incremental repar-

titioning schemes outperform the existing static and dynamic repartitioning approaches

to be considered effective for production deployment.
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Chapter 1

Introduction

“Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;”

– Robert Frost, The Road Not Taken (1916)

With the widespread availability of home and mobile Internet services even to the re-

mote places on the earth, man–machine interactions have increased to a level never

seen before. Internet facilities are nowadays freely available at most shopping cen-

tres, coffee shops, restaurants, airports, train stations, and bus stops, offices and public

places as a guest, etc. At the same time, low-cost smartphones, tablets, notebooks, and

laptops that have computing capabilities and resources matching those of a desktop

machine are readily available and the number of mobile application users is increas-

ing rapidly. Ubiquitous access to the Web enables us to use real-time applications for

navigating information on the move, such as real-time timetables for public transporta-

tion; mobile banking transactions; accessing e-books, news, media, and audio/video

streaming services; gaming on-line with multi-players; sharing documents, photos, and

videos; and, finally, interacting nonstop within the on-line social networks. It has been

estimated that there will be 1.5 mobile devices per capita (11.1 billion devices globally)

by the end of 2020, transferring an estimated monthly rate of 30.6 exabytes of data

traffics [1]. The enormous growth of the World Wide Web within a very short time

creates the need to develop a new class of interactive, real-time, and mobile-friendly

Web applications for the end users.

Figure 1.1 presents a very high-level overview of a modern Web application fol-

lowing a request-reply cycle. There are three main components: 1) the application’s

1
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Figure 1.1: The overview of a modern Web application with request-reply flows

front-end, 2) the application’s back-end, and 3) data storage. The challenge of build-

ing a new class of applications for Web users comes with a set of requirements to be

guaranteed at the application and data service provider’s end. From the application

developer’s perspective, this new class of Web applications should be built around in-

stantaneous request-reply cycles using asynchronous communication media without

end-users noticing any delays due to back-end computing and data processing. From

a data management perspective, this aspiration is rather difficult to meet as the ap-

plication data needs to be stored in ways that guarantee consistency and durability,

concurrent access by the application code, and being available all the time for reli-

able retrievals. Finally, the overall infrastructure supporting modern Web applications

needs to be highly scalable in order to meet rapid user growth and service demands.

Legacy systems for on-line Web data management were primarily developed to support

sophisticated financial and high-end enterprise applications, and in this modern era,

they are not fully capable of serving this new class of Web traffic workloads.

Today, the largest proportion of real-time Web traffic is driven by On-line Trans-

action Processing (OLTP) applications comprising short-lived transactions,1 typically

accessing less than a hundred data tuples2 at any moment and requiring high respon-

siveness from the application. Examples of such workloads are typical Web interactions

and on-line applications; e-commerce, order processing, and financial transactions;

multimedia, gaming, and sharing; social networking, etc. OLTP workloads typically

require a database schema and an exposed entity-relationship data model. Naturally,

Relational Database Management Systems (RDBMS) are the first-class citizens for such

1 Transaction is a unit of work performed by a relational database management system.
2 A table row in a relational database is called a tuple in a table relationship and is the smallest unit of a

logical database.
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Web-oriented workloads and have dominated the Internet world over the past three

decades. With the rapid growth in data-oriented computing domain, real-time Internet

applications deployed in the Web need to scale-out in an unparalleled way to support

millions of simultaneously connected users. Nevertheless, without scaling out the data

management layer it’s not possible to scale-out the back-end application and front-end

presentation layers of any classic 3-tier Web application as shown in Figure 1.1.

Scaling out real-time Web applications often relies on shared-nothing (SN)3 dis-

tributed databases for workload adaptability achieved through horizontal data parti-

tioning. In this way the underlying database layer can increase parallel transaction

processing, balance workload and data distribution, and eventually the overall sys-

tem throughput. However, Distributed Transactions (DTs) that access data tuples from

multiple physical machines containing a portion of the required data need to lock the

accessing data tuples globally in order to perform consistent and durable transactional

executions. Unfortunately, the process of distributed transaction processing adversely

impacts the database scalability while executing distributed transactional commit and

concurrency control protocols to maintain the strong Atomicity, Consistency, Isolation,

and Durability (ACID) guarantees in an RDBMS. Therefore, minimising the impact and

proportion of DTs in the workloads is the primary challenge for interactive and real-

time Web applications serving concurrent application data requests from end-users.

1.1 Motivations and Research Questions

In a shared-nothing Distributed Database Management System (DDBMS) cluster,

individual database tables are either range- or hash-partitioned at the preliminary de-

sign step and logical data chunks are placed accordingly within each Database Server

(DS) node. However, such static partitioning decisions do not work well in the pres-

ence of dynamic OLTP workloads and often require significant administrative inter-

ventions to manually repartition the logical database. This process involves migrating

data tuples physically over the network to another DS node causing potential system

3 A shared-nothing (SN) architecture is a distributed computing architecture where each participating
node is independent and does not share computing and storage resources with any another.
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Figure 1.2: High-level overview of a repartitioning process within a shared-nothing DDBMS

downtimes and application inaccessibility for the end-users. Figure 1.2 shows a high-

level overview of a database repartitioning process. Further to this challenge, real-time

OLTP applications deployed in the Web often need to scale-up and scale-down elasti-

cally depending on the change in Web traffic, workload size, and data popularity. In

such situations, instantaneous database repartitioning and on-line live data migration

are necessary to guarantee acceptable system throughput and overall responsiveness.

Afterwards, as the crisis situation eliminates when the sudden rise of workload spikes

smooth down, the current database partitioning layout is deemed useless and requires

another repartitioning.

The database administrator needs to define an initial data partitioning strategy – se-

lecting a partitioning column for hashing, a list of column values for selection, or range

keys on the database tables. A centralised data lookup table needs to be maintained

for range-partitioning and periodical partition rebalancing. Alternatively, in hash parti-

tioning, rehashing of keys is required while adding an additional DS or removing any

faulty ones from the cluster. All these operations involve massive inter-server phys-

ical data migrations and in many cases potential downtimes. Fortunately, consistent

hashing [2] based data partitioning solves these problem by using a fixed number of

equal sized logical partitions and providing consistent hash keys for the individual data

tuples distributed within a circular key ring for scalable lookup operations. However,

implementing a database tier based on consistent hashing is not trivial and is better
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suited to a key-value type data model. Legacy RDBMSs, on the other hand, can adopt a

composite partitioning scheme that is either a combination of range-list or range-hash

based partitioning. Nevertheless, inappropriate database schema design and partition-

ing may create potential data hotspots within the cluster and imbalances in workload

access and data volume distributions. Eventually such situations lead to resource con-

tentions, performance degradations, disk failures, and downtimes.

To support rapid increase in data volume and elastic growth of the DDBMS cluster,

a scalable OLTP system should be able to scale-out and scale-in seamlessly by adding

or removing new DS nodes. This includes added challenge to the existing data par-

titioning layout for rebalancing existing partitions within physical cluster nodes. Ex-

isting tools used by large-scale OLTP service providers like Vitess [3] from YouTube or

JetPantsJetPants2015 from Tumblr support automatic partition management and load

balancing. However, without continually monitoring, detecting, and adapting work-

load dynamics it is administratively expansive, in terms of operational management,

to guarantee the elastic DDBMS scalability of modern OLTP applications. In the 2014

Beckman Report on Database Research [4] published by ACM, seven primary chal-

lenges are mentioned. They are 1) elasticity for data repartitioning and migrations, 2)

replication across geo-distributed data centres, 3) system administration and tuning,

4) multi-tenancy, 5) SLA and QoS for managed DDBMS services, 6) data sharing, and

7) data management between public and private computing domains. In a nutshell,

the primary research questions to be answered in this research are how to 1) repar-

tition the database independently of the number of physical servers; 2) incrementally

repartition to reduce the impacts of DTs which arise from workload characteristics,

3) perform on-the-fly data migration and minimise its cost, 4) perform scalable data

lookup in a distributed manner, and 5) maintain data distribution and workload exe-

cution load-balance on the physical server-level and logical database partition-level.

1.2 Significance

Since 2006, with the emergence of Cloud computing providing managed infras-

tructures, as well as structured and unstructured database services as a pay-as-you-go
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model, small-to-medium scale Web applications have started migrating from legacy

platforms to the Cloud. In recent years, this trend has gained such popularity that

large-scale OLTP application service providers also modularise their architecture to

move under a managed service operation. This includes existing managed database

platforms for high scalability rise from the development of Amazons DynamoDB [5],

Google’s BigTable [6], and Facebook’s Cassandra [7] since early 2007. Since then,

there has been a clear trend in abandoning relational data models and SQL in favour

of adopting simpler key-value data models and high scalability comprising ACID guar-

antees. Over the years, by trading-off between Consistency, Availability, and network

Partition tolerance following the CAP principle [8], a significant number of NoSQL sys-

tems have been evolved and adopted by many without understanding their proper use

cases. These NoSQL systems adopt a new paradigm of database guarantees named

BASE [9].4 The E in BASE, which stands for Eventual Consistency [10, 11], guarantees

that, in the face of inconsistency, the underlying system should work in the background

to catch up with the consistent states. The idea is that, in many cases, it is hard to dis-

tinguish the inconsistent state of a data tuple from the end-user perspective that is

bounded by different staleness criteria like time-, value-, or update-bounded staleness.

Without exploring the design space and use cases for OLTP systems in the Web, many

small- to medium-scale OLTP applications by adopting a NoSQL data management

layer as an inner-tier database back-end, greatly suffer from trading-off consistency for

network partition tolerance.

The architectural choices for different service tiers in an OLTP system vary, based

on the application requirements and business goals. If an application requires serving

highly consistent and durable data to the end-users every time they initiate service re-

quests, then high scalability will be hard to achieve and high availability will not be

visible due to low responsiveness. Otherwise, if an application can successfully satisfy

the end-users with an acceptable level of inconsistency, then both high scalability and

availability is achievable. In reality, the probability of network partitions in today’s

highly reliable data centres is quite rare although short-lived partitions are common in

wide-area networks. According to the CAP principle, DDBMSs should be both avail-

able and consistent when there are no network partitions. Still, due to high volume
4 BASE stands for Basically Available Soft-State Eventual Consistent



§1.3 Philosophical Approaches 7

user requests or sudden disk failure, the responsiveness of inner-tier RDBMS services

may lag behind. In such cases, timely responses of the submitted requests are clearly

preferable. Thereby reducing latency by using cached data and remaining available to

the end-users. The ultimate goal is to build a scalable OLTP application that remains

available and responsive to the end-users even at the cost of tolerable inconsistency

which can be deliberately engineered in the application logics.

From these recent understandings and revisiting the architectural design space, the

appropriate strategies for operating an RDBMS is now understood in the context of the

Cloud paradigm. Although the simplicity and manageability of relational data models

never lost their attractions in the wider community these years, it’s now better un-

derstood in the context of large-scale system development striving for high-scalability.

Since 2010, the NewSQL movement started architecting high scalable RDBMSs de-

ployed in shared-nothing clusters without sacrificing strong transactional and con-

sistency requirements. As a large number of medium- to large-scale enterprises and

general-purpose OLTP service providers need to process billions of transactional queries

simultaneously, the challenge to perform dynamic and transparent database reparti-

tioning becomes a top priority task to accomplish scalable workload-aware data man-

agement in the distributed RDBMS domain. The database community is still trying

to pull different things together to make the legacy shared-nothing RDBMS clusters

more adaptable for the elastic Cloud platforms, and search is not over yet. In a 2013

talk [12], database pioneer MIT Professor Michele Stonebraker admits ‘For OLTP, the

race for the best data storage designs has not yet been decided, but there is a clear

indication of classic models being plain wrong’.

1.3 Philosophical Approaches

In this dissertation, we aim to solve the above-mentioned workload-aware incre-

mental database repartitioning problem that exists in the OLTP domain. The challenge

of performing such repartitioning can be addressed from different standpoints. One

of the interesting approaches already adopted in many existing literature is to use

some mathematical abstractions to hide the underlying complexities in the transac-

tional workload and operate at a birds eye view level to find repartitioning solutions.
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In order to reduce the complex OLTP dynamics to a set of essential characteristics,

transactions can be simply represented by a network of nodes representing the transac-

tional data tuples from the database queries and adding links to connect them together

to represent individual transactions. This simple mathematical representation allows

us to use well-established graph theoretic approaches to sub-optimally group these

network nodes into a set of buckets so that most of the transactional operations can

retrieve all of its required data tuples from a single physical server in a database cluster.

This eventually converts many of the DTs in the workload to non-DTs (NDTs), which

in turn reduces the adverse impacts of DTs in the OLTP transaction processing layer.

However, once the network size tends to grow rapidly with the number of increasing

transactions in a system, this theoretically stronger approach can suffer immensely in

terms of optimal repartitioning decision making.

Another approach to deal with this challenge is to remove the abstraction layer and

directly operate at the transactional-level. However, finding the best possible way to

convert a DT to a NDT becomes even more challenging as there can be many possible

data migration plans to consider. A repartitioning scheme needs to go through all

of these plans exhaustively to find the best data movement plan so that some of the

transactional tuples can be redistributed within the physical servers. A well-known

way to do so is to use some greedy optimisation heuristics where the best solution at

individual stages are expected to lead to near-optimal global solution. We could use

this simple strategy for transactional repartitioning as well. By optimally finding the

best data redistribution plan for converting individual DTs to NDTs, it is possible to

reach close to global optima, which can significantly reduce the system wide impacts

of DTs. The primary challenge in this approach is that the local search space for optimal

decision can grow so large that globally finding even a near-optimal result may become

infeasible. As a remedy, any special heuristic might be applied to reduce the size of the

local search space in order to quickly obtain the repartitioning decisions.

An interesting way to handle the abovementioned computational complexity chal-

lenges would be to only work with a selective set of transactions that dominatingly

represent the entire OLTP workload. By exploiting the heavily lop-sided distribution of

the highly-frequent transactions that constitute the selective set, the size of the prob-

lem can be reduced significantly to a level where real-time repartitioning decision may
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be possible on-the-fly even for substantially large-scale distributed OLTP systems. With

the recent advancements in data mining research, we can utilise on-line data stream

mining techniques to find the frequently appeared data tuplesets in the transactional

workload. Later, these tuplesets can be used to identify the representative set of trans-

actions in the system that dominates the entire transactional processing. This impor-

tant data mining knowledge can be used both globally for all transactions or locally for

individual ones to find the best data redistribution plan to reduce the overall number

of DTs in the system gradually over time. Considering practical adaptability, the later

approach would have been more appropriate to handle the dynamic nature of the OLTP

workloads.

Overall, we can observe interesting conflicts among these three different approaches

from a philosophical standpoint. At one end, it is possible to find a sub-optimal repar-

titioning solution for reducing the adverse impacts of DTs by hiding transactional com-

plexities using an abstraction layer. On the other hand, the greedy approach can pro-

vide a near-optimal decision but the search space to find that solution can potentially

be too large to render it infeasible for any practical use. Finally, we have the transac-

tional mining approach which relies on generating an approximate solution but at the

same time provide the flexibility to run the repartitioning process dynamically and as

frequently as the system may require. In this thesis, we aim to study and investigate

all of these three approaches to understand their strengths, shortcomings, and implica-

tions from both theoretical constructions and experimental observations. Additionally,

to compare the adaptability and performance of these repartitioning schemes for prac-

tical use, we may also need to establish appropriate KPIs with proper definitions by

understanding their corresponding physical interpretations.

1.4 Research Challenges

The OLTP characteristics are changing the landscape for how distributed RDBMSs

are used to support traditional Web applications. Due to the rapid increase in OLTP

applications and services in the recent years to serve real-time transactional queries,

it is essential to partition the database over multiple physical servers. However, the
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real challenge resides in how we can effectively repartition this ever growing database

over time in accordance with the change in workload behaviours discussed earlier. Fur-

thermore, any scalable incremental database repartitioning scheme should be able to

provide a set of key performance indicators (KPIs) to primarily evaluate how it works

in terms of reducing DTs and their overall effect on the system along with how this

might affect the data distribution load-balance within the physical machines, and fi-

nally how much data needs to moved physically. An obvious challenge is to find the

right balance between reducing the adverse impacts of DTs and load-balance by per-

forming a reasonable amount of physical data migrations while not exhausting any

system resources. Overall, the computational complexities of such a scheme trading

off multiple KPIs should be done at a minimum to get an instant repartitioning deci-

sion for automated database administration during high surges of transactional load.

In the context of the abovementioned aim and object, the relevant key philosophical

challenges are identified and studied in this thesis. They are summarised below.

(i) Understanding of the physical interpretations of the consequences of applying

any incremental repartitioning scheme, namely a) the impact on the RDBMS

performance for processing significant numbers of DTs generated by the OLTP

workloads, b) the impact on the underlying storage systems arising from data

distribution imbalance, and c) the impacts of physical data migrations over the

network and its relationship with the impact on DT processing and server-level

load-balance.

(ii) Development of the KPIs that relate the physical consequences of incremental

repartitioning which are simple enough to manoeuvre by the system owners and

provide operational intelligence to rapidly deal with critical situations dynami-

cally.

(iii) Investigation of graph theoretic and greedy heuristic based incremental reparti-

tioning independent of the physical properties of an RDBMS deployment, which

will allow the development of scalable solutions and an understanding of their

worst-case scenarios for different workload characteristics.

Figure 1.3 presents the potential challenges in database systems research based on
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Figure 1.3: The potential challenges and targeted contributions in database systems research

the 2014 Beckman Report on Database Research [4]. In light of the above research

challenges, this thesis targets the specific areas in the light blue coloured rectangles.
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1.5 Aim and Objectives

The aim of this thesis is to contribute workload-aware incremental data reparti-

tioning techniques for shared-nothing distributed RDBMSs for supporting scalable and

elastic Web applications driving OLTP workloads. To fulfil this aim, this thesis thus

focuses on the following key objectives in developing novel incremental data reparti-

tioning models:

(i) To carry out detailed literature review in order to identify the shortcomings of ex-

isting data partitioning strategies for RDBMSs, the impacting factors that reduce

scalable transactional processing, and to provide a comprehensive and structured

understanding of the problem domain.

(ii) To develop repartitioning quality metrics to evaluate how well different incre-

mental repartitioning schemes perform to decrease the impacts of distributed

transactions rapidly while maintaining data distribution balance by performing

minimum physical data migrations.

(iii) To develop a simulation model for transactional workload generation indepen-

dent of database engines and transactional processing in order to evaluate differ-

ent incremental repartitioning schemes in a cohesive manner.

(iv) To develop a scalable and unified data lookup method to work with dynamic

repartitioning schemes supporting both range- and consistent-hash partitioned

RDBMSs.

(v) To develop demand-driven incremental repartitioning schemes with diverse work-

load characteristics targeting three primary optimisation goals: 1) minimising the

impacts of DTs, 2) maintaining server-level data distribution load-balance, and 3)

minimising inter-server physical data migrations.

(vi) To devise transaction classification and data stream mining techniques to analyse

the minimum number of transactions in a workload observation window in order

to make adaptive repartitioning decisions.

(vii) To validate and verify the performance and adaptability of different incremental

repartitioning schemes under different OLTP workloads.
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1.6 Thesis Contributions

Both qualitative and quantitative research methodologies are used to meet the

above intellectual challenges in this thesis. While qualitative measures are used in

understanding the physical properties of the problem domain and their associations

with the underlying systems, quantitative methods are applied to turn those rational

measures into practical solutions. The key contributions of the thesis are summarised

below.

(i) A scalable distributed data lookup technique supporting both range- and consistent-

hash partitioned databases

(ii) A novel transaction generation model which supports controlled transactional

recurrence within a given workload observation window for a fixed proportion of

unique transaction generations

(iii) A set of repartitioning KPIs with physical interpretations to measure the perfor-

mance and quality of incremental repartitioning of distributed OLTP databases

(iv) A novel transaction classification method which classifies DTs and moveable non-

distributed transactions (MNDTs) for graph theoretic incremental repartitioning

(v) A detailed analysis of different workload network representations using graph,

hypergraph, and their compressed forms in graph min-cut clustering based incre-

mental data repartitioning for static, hourly, and threshold defined scenarios

(vi) Two innovative cluster-to-partition mapping algorithms for graph clustering based

repartitioning that favours the current partition of the majority tuples in a clus-

ter. The many-to-one version minimises data migrations alone and the one-to-one

version reduces data migrations without affecting load-balance

(vii) A greedy heuristic approach to incremental repartitioning that can near-optimally

find repartitioning solutions that achieve the highest wighted net gain of reducing

the impacts of DTs and maintaining load-balance per physical data migration
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Figure 1.4: An overview of thesis organisation and contributions

(viii) A set of extended transaction classification methods based on transactional data

stream mining to identify the partial and full representative set of transactions in

the workload network

(ix) An association rule hypergraph clustering (ARHC) based scheme which utilises

the transactional data stream mining technique to find the transactional associa-

tivity and based on this measure perform atomic incremental repartitioning to

reduce the impacts of DTs

1.7 Thesis Organisation

The rest of chapters in the thesis are organised by fulfilling the research aim and

objectives, while providing details of the contributions mentioned above. Figure 1.4

presents a conceptual overview of the thesis organisation and core contributions in

each chapter. The rest of the thesis is organised as follows:
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(i) Chapter 2 presents a detailed literature review on distributed data management

for RDBMSs and existing approaches for data repartitioning along with their

shortcomings. This chapter is partially derived from:

- J. Kamal and M. Murshed, Distributed database management systems: Archi-

tectural design choices for the cloud.” Cloud Computing Challenges, Limitations,

and R&D Solutions, Computer Communications and Networks, Z. Mahmood, Ed.

Springer International Publishing, pp. 23-50, 2014.

(ii) Chapter 3 provides the background and preliminaries necessary for the workload-

aware incremental data repartitioning schemes to be presented in the following

chapters. The scalable distributed data lookup technique is presented which is

one of the essential components to support incremental repartitioning in both

range- and consistent-hash partitioned distributed RDBMSs. The construction of

the proposed transaction generation model is discussed in detail with confirma-

tory results. Three repartitioning KPIs are also presented with relating physical

interpretations. This chapter is partially derived from:

- J. Kamal, M. Murshed, and R. Buyya, “Workload-aware incremental reparti-

tioning of shared-nothing distributed databases for scalable OLTP applications.”

Future Generation Computer Systems, vol. 56, no. C, pp. 421-435, Mar. 2016.

- J. Kamal, M. Murshed, and R. Buyya, “Workload-aware incremental reparti-

tioning of shared-nothing distributed databases for scalable cloud applications.”

In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and

Cloud Computing, UCC ’14, London, UK, pp. 213-222, Dec. 2014.

(iii) Chapter 4 includes the detail of graph min-cut clustering based workload-aware

incremental repartitioning schemes where workload networks are represented

as graph, hypergraph, and their compressed forms. It also includes the novel

transaction classification technique and two unique cluster-to-partition mapping

mechanisms for maintaining load-balance and minimising physical data migra-

tions. A detailed analysis is carried out for both range- and consistent-hash par-

titioned setups comparing static and incremental repartitioning approaches. This

chapter is partially derived from:
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- J. Kamal, M. Murshed, and R. Buyya, “Workload-aware incremental reparti-

tioning of shared-nothing distributed databases for scalable OLTP applications.”

Future Generation Computer Systems, vol. 56, no. C, pp. 421-435, Mar. 2016.

- J. Kamal, M. Murshed, and R. Buyya, “Workload-aware incremental reparti-

tioning of shared-nothing distributed databases for scalable cloud applications.”

In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and

Cloud Computing, UCC ’14. London, UK, pp. 213-222, Dec. 2014.

(iv) Chapter 5 introduces the greedy heuristic based approach to incrementally repar-

tition the underlying database to find a near-optimal repartitioning decision. The

detail analysis unravels the relationships between the three KPIs of the impacts

of DT, load-balance, and data migrations.

(v) Chapter 6 extends the transaction classification technique described in Chapter 4

by exploiting transactional data stream mining to identify the frequently accessed

tuplesets and to construct a workload network containing the partial and full

set of representative transactions for graph theoretic incremental repartitioning.

This chapter further presents an atomic incremental repartitioning scheme using

association rule based hypergraph clustering (ARHC). Experimental results are

presented to show the effectiveness of the approximate repartitioning decisions

that can be adopted in practice. This chapter is partially derived from:

- J. Kamal, M. Murshed, and M. Gaber, “Progressive data stream mining and

transaction classification for workload-aware incremental database repartition-

ing.” In Proceedings of the 2014 IEEE/ACM International Symposium on Big Data

Computing, BDC ’14. London, UK, pp. 8-15, Dec. 2014.

- J. Kamal, M. Murshed, and M. Gaber, “Predicting hot-spots in distributed Cloud

databases using association rule mining.” In Proceedings of the 2014 IEEE/ACM

7th International Conference on Utility and Cloud Computing, UCC ’14. London,

UK, pp. 800-806, Dec. 2014.

(vi) Chapter 7 concludes the thesis by summarising the contributions and key findings

as well as providing future directions for research.



Chapter 2

Background and Literature Review

The previous chapter introduced the motivation, significance, and challenges of

the research goal to develop workload-aware incremental repartitioning techniques

for shared-nothing distributed OLTP databases to support scalable Web applications.

In this chapter, the preliminaries of distributed RDBMS and associated backgrounds of

modern Web applications are discussed in detail, as are accompanied by the relevant

advancements in academic research and in industry.

2.1 Introduction

The challenges of managing consistency and concurrency of a transactional Web

application often relies on the underlying architecture of its RDBMS. Meanwhile, to

achieve high resistance to faults and high scalability without compromising operational

performance, the RDBMS deployment often requires it to replicate and partition all or

some of the database tables with the overheads of managing distributed transactional

commits and concurrency control. The distribution of data within a cluster of physical

machines is often implemented by adopting a shared-disk (SD) or a shared-nothing

(SN) architecture. However, due to the dynamic nature of OLTP workloads, the under-

lying DDBMS needs to regulate the initial data replication and partitioning schemes

administratively (manually) or automatically over time. In this chapter, the elemen-

tal properties, architectures, components, and strategies to manage distributed OLTP

databases are discussed in light of the existing literature.

The rest of the chapter is organised as follows: Section 2.2 discusses the transac-

tional properties of a distributed OLTP system. The deployment and data management

architectures for shared-nothing OLTP DDBMSs are presented in detail at Section 2.3.

Section 2.4 describes the challenges for scaling out multi-tier OLTP applications in a

17
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Figure 2.1: The high-level overview of an OLTP system deployed in the Web with correspond-
ing control and data flows (from 1 to 7) following an MVC software architectural pattern

distributed environment, followed by the challenges of scaling out distributed OLTP

databases in Section 2.5. In Section 2.6, the necessary preliminaries for understand-

ing existing workload-aware data management approaches are presented. Section 2.7

presents a detailed discussion on the contributions and shortcomings of the existing

repartitioning schemes in the literature, followed by a conceptual framework covering

specific aspects implementation to compare with the existing work. Finally, Section 2.8

summarises and concludes the chapter.

2.2 On-line Transaction Processing Systems

OLTP is a class of interactive and real-time information management systems that

support transaction-oriented applications typically deployed in the Web for individ-

uals and enterprises. Transaction processing involves financial transactions and e-

commerce; telecommunication; booking and reservations; order processing, planning,
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scheduling, and accounting in manufacturing and process control; on-line and so-

cial interactions; on-line Q&A, reviews, and opinions; interactions in digital media

and broadcasting; music and entertainment; on-line massive multi-player gaming etc.

Therefore, a significant proportion of today’s Web traffic is driven by the OLTP systems.

Figure 2.1 presents a high-level overview of an OLTP application developed in con-

junction with a 3-tier MVC (Model-View-Controller) design pattern [13]. In this exam-

ple, end-users’ requests originate from client-side applications, such as Web browsers

and desktop or mobile applications, either through HTTP (Hypertext Transfer Proto-

col), which is a request-reply based protocol, or REST (Representational State Trans-

fer) [14] API (Application Programming Interface), an architectural style defining the

communication approach between different computer systems. The first-tier OLTP ser-

vices, which accept and handle these client requests, are stateless. Web Servers (WSs),

DNS (Domain Name System) and CDN (Content Delivery Network) applications typi-

cally belong to this tier. If it is a read-only request for static content, then clients are

served immediately using cached data; otherwise, update requests (i.e., insert, modify,

delete) are forwarded to the second-tier services. Application Servers (ASs) handle

these forwarded requests based on the application’s business logics, and process the

requests using in-memory data objects (if available), or fetch the required data from

the underlying inner-tier services, which physically hold the data.

In Figure 2.1, an MVC (Model View Controller) pattern based OLTP implementation

is considered for illustrative purposes. In an MVC application, user requests (flow 1)

(typically URLs) are mapped into controller actions, which then retrieve the requested

data (flow 2) using the appropriate model representation, and eventually render the

‘view’. If in-memory representation of the requested data is not available in the object

cache, then the model component initiates a transactional operation (flow 3) at the

inner-tier database services. Otherwise, in-memory update can take place and updated

information is later pushed into the database. Note that, ASs are typically stateful

and store state values (e.g., login information) as session objects into key-value stores.

Inner-tier databases are partitioned and replicated based on application functionality

and fault-tolerant requirements. Based on the partition placement and replica control

policies, requested data tuples are retrieved (if read-only) or updated accordingly using

transactional operations, and finally, the results are sent back (flow 4) to the model.
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The data is then encapsulated and fed (flow 5) into the view to render HTML pages,

and finally, sent back (flow 7) to the user to display through controller action (flow

6). Back-end tier services are later used for data warehousing, analytic, and on-line

mining purposes.

Based on the high level OLTP life-cycle shown in Figure 2.1, at the very first-tier,

users requests are mostly served with static contents like images, banners, and CSSs

(Cascading Style Sheets). Therefore, a weak-form of converging consistency is ac-

ceptable at this level, where the end-users may even be served with non-durable data

for an unwittingly short period of time. At the second-tier, if in-memory data object

representations are already available and have not yet expired, then users are served

with semi-durable data. The scaling application logic tier is difficult, hence developers

often rely on building soft-state services using high scalable session and in-memory ob-

ject caches in the key-value data stores [15]. However, the inner-tier OLTP databases

provide strong consistency guarantee and ensure data durability, therefore, they are

tagged as hard-state services. Scaling inner-tier services are also challenging, however,

not impossible. Based on application requirements and functionality, an OLTP database

can be partitioned appropriately to scale for serving millions of on-line clients.

2.2.1 Deployment Architecture

In recent years, with the widespread use of Cloud computing services for deploying

OLTP systems, interactive and responsive Web applications need to achieve both high

availability and scalability at the same time in order to serve simultaneous Web users.

As shown in Figure 2.2, each tier of an OLTP application requires special attention for

the required scalability, consistency, and responsiveness. A typical deployment consists

of a cluster of WSs at the presentation tier, ASs at the logic tier, and Database Servers

(DSs) at the persistent tier. The presentation tier needs to be highly responsive to the

end-users; hence, the WSs need to be scaled-up and scaled-down on-demand as the

number of requests increases or decreases.

The logic tier, on the other hand, serves soft-state services using session and in-

memory data objects unless they have expired. Therefore, the ASs need to be ac-

companied by scalable key-value data stores that can support periodic growth in user
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Figure 2.2: The layered architecture of an OLTP system with scalability, consistency, and re-
sponsiveness requirements

requests. Finally, the persistent tier tends to scale rather slowly compared to the for-

mer two tiers as it depends on the growth in new data arrivals. However, modern

OLTP applications generate and store increasing volumes of application data and user

interactions in the persistent stores to be analysed later in the analytics tier. Therefore,

the underlying RDBMS services need to be highly responsive and strongly consistent at

the same time, which is rather challenging to achieve in practice.

From the end-users’ perspective, OLTP applications require real-time responsive-

ness; therefore, the underlying transaction processing systems must operate within a

bounded response time. From an administrative perspective, OLTP workloads have five

distinct characteristics. They are 1) short-lived transactions, 2) transactions that are

highly concurrent, 3) transactions requiring very low latency from the DBMS, 4) trans-

actions that only retrieve a small amount of data tuples, and 5) repetitive transactions,

i.e., recurrence of the same transactions with different input tuples [16].

From the user interaction perspective, OLTP applications require normalised rela-

tional database schema supported by the RDBMS1. The deployment of such an OLTP
1 ‘OLTP system’, ‘OLTP database’, and ‘RDBMS’ are used interchangeably throughout the thesis unless
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database, however, depends on the following two deployment architectures:

(i) Shared-disk architecture: In an SD architecture, multiple DSs, each having pri-

vate memory, share a common array of storage disks like SAN (Storage Area

Network) or NAS (Network-attached Storage). Each DS, therefore, can indepen-

dently serve application data requests by acting on a single collection of data.

Therefore, workloads are evenly distributed within the cluster, and failover of

any server is much easier to handle, as no DS has the sole responsibility for any

portion of the database. Replication in an SD cluster is also easier to implement

and manage. However, massive inter-server messaging overheads for locking and

buffering limit the maximum number of servers an SD cluster can handle, thus

limiting any high scalability guarantee. Moreover, SAN or NAS data access la-

tency may affect end-user satisfaction and, overall, they are costly to maintain

and upgrade [17]. Examples of OLTP systems following an SD architecture are

Oracle RAC, Sybase ASE CE, IBM IMS and DB2 Mainframe.

(ii) Shared-nothing architecture: In an SN architecture, in contrast, each DS is

equipped with one or more private storage disks, each disk having the sole own-

ership of the partitioned data and, thus nothing is shared with other processors.

Individual Transaction Manager (TM), located in the higher-level ASs, performs

data lookup through either a centralised routing table or any distributed data

lookup mechanism for processing DTs. The TM collects all the required data to

process a transaction locally and this process of transferring transactional data to

the serving TMs is called Data Shipping [18]. High scalability is easier to achieve

as the number of DSs in the cluster are not limited by any factor except replica-

tion. As observed in [19], a partitioned database fails to maintain consistency

after replicating data over a certain factor. Examples of OLTP systems following

SN architecture are Oracle 11g/12c, IBM DB2, Sybase ASE, MySQL, Microsoft

SQL Server, H-Store, and VoltDB.

Figure 2.3 highlights the difference between SD and SN architectures with an ex-

ample of a single database with 3 tables: ‘Items’, ‘Customers’, and ‘Orders’. In an SD

otherwise indicated.
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Figure 2.3: Shared-disk and shared-nothing database deployment architectures

system, the database tables are shared by multiple DSs simultaneously while for an

SN system, they are partitioned within the cluster servers. Table 2.1 compares the

key factors affecting the performance of SD and SN implementations of a DDBMS. In

summary, despite having many challenges, SN architecture is better suited to achieve

high scalability for a rapidly expanding distributed RDBMS supporting OLTP workload

characteristics and requiring high concurrency control [20].

2.2.2 Transaction Processing and ACID Properties

In order to replace traditional paper-based information management and book-

keeping processes, the OLTP applications need to guarantee the reliability and control

over data in cases like infrastructure and network failure, eavesdropping and forging,

shared access of records, and concurrent update on a single record [21]. Therefore,

to manipulate the state of records, i.e., data tuples, one needs to execute transactions
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Table 2.1: A high-level comparison of the SD and SN database deployment architectures

Challenges SD Architecture SN Architecture

High availability automatic manual failover with planned or un-
planned downtime

High scalability limited due to inter-
node communications

theoretically infinite, but limited to
replication factor and data shipping

Data consistency high Depends on data distribution trans-
parency

Load-balance dynamic non-adaptable, requires repartition-
ing

Data shipping none high

Geo-distribution difficult easier

Bandwidth
requirement

moderate very Low

Database design easier difficult

Concurrency
control

difficult easier

Workload change adaptable requires manual intervention

Scale-up expansive inexpensive

Software stack complex easier to develop and deploy

Maintenance minimal effort partitioning, routing, and reparti-
tioning

which are a collection of read and write operations on the physical and abstract ap-

plication states [22]. Figure 2.4 presents a simple transaction processing architecture

following XA [23] and Distributed Relational Database Architecture (DRDA) [24] stan-

dards developed by the Open Group for Distributed Transaction Processing (DTP).

A typical transaction processing system as shown in Figure 2.4 consists of three

essential components: an Application Requester (AR), a Transaction Manager (TM) lo-

cated at individual AS, and a Resource Manager (RM) located at individual DS. Upon

receiving a data retrieval request (usually in SQL) from the application logic code, the

AR component in an AS invokes its residing TM through the TX interface to start a

new transaction. TM starts the transaction by locating and retrieving the required data

tuples in the AS, and then sends the corresponding read, write, update, and delete com-
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Figure 2.4: The transaction processing architecture of an OLTP system

mands to the RM using the XA interface. The XA interface between the TM and RMs also

implements the Two-Phase Commit (2PC) protocol to commit a successfully completed

transaction, or otherwise, abort and rollback. Finally, AR sends an end transaction

command to the TM for ending the process and returns the results.

2.2.2.1 Centralised Transaction Processing

A centralised transaction processing system consists of a single DS with its local RM

and local storage disks located at a single physical site. For processing transactional

operations in such RDBMS, the database needs to guarantee ACID properties defined

below, which are maintained by the TM:

(i) Atomicity guarantees that a transaction either executes completely and success-

fully commits, or otherwise aborts and does not leave any effects in the database.

(ii) Consistency guarantees that a transaction will leave the database in a consistent

state before it starts and after it ends.
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(iii) Isolation guarantees that to maintain the consistency guarantee, concurrent trans-

actions will be isolated from each other.

(iv) Durability guarantees that where there are failures or network partitions, the

effects of any committed transaction will not be lost.

2.2.2.2 Distributed Transaction Processing

In contrast to a standalone database system, database tables are partitioned and

replicated in a distributed RDBMS with multiple DSs, each having their local RMs and

storage disks. Such a system must act as a 1-Copy-Equivalence of a non-replicated

system providing ACID guarantees as below [25].

(i) 1-Copy-Atomicity guarantees that a transaction is either committed or aborted

at every replica where it performs the operations.

(ii) 1-Copy-Consistency guarantees that consistent states are maintained across all

replicas in such a way that the ‘integrity constraints’—primary or foreign key

constraints—are not violated.

(iii) 1-Copy-Isolation or 1-Copy-Serialisability (1SR) guarantees that concurrent ex-

ecutions of a set of transactions across the replicas are equivalent to a serial exe-

cution of that set.

(iv) 1-Copy-Durability guarantees that if a replica fails and later recovers, it re-

executes the locally committed transactions and also adopts the global changes

committed during the downtime.

2.2.3 Distributed Transaction and Consensus Problem

A DT executes a set of transactional operations across multiple DSs and completes

by a commit or abort request. The entire process is coordinated either by a single TM

(as shown in Figure 2.5) or distributed TMs across multiple ARs within the AS cluster.

The DT is considered committed or aborted based on the consensus [26] of all the par-

ticipating nodes. Therefore, in a distributed RDBMS, processing DTs require running a
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transaction commit protocol, i.e., a consensus protocol across the participating nodes

even with the presence of a number of faulty ones.

The consensus problem deals with a set of nodes in a typical distributed system to

agree on a specific value, decision, or an action, such that the entire system can act

as a single entity. A consensus protocol must ensure three fundamental properties—

agreement, validity, and termination—on the agreements or disagreements within a

synchronous environment. In a DDBMS consensus, protocols are used to solve two

fundamental problems: 1) distributed atomic commit, and 2) distributed concurrency

control. To ensure atomic commits of DTs, two particular consensus protocols are

widely used: 2PC, and Paxos Commit. On the other hand, to process DTs in parallel,

transactional serialisability is maintained by acquiring distributed locks shared locks for

read and exclusive locks for write operations [27].

2.2.3.1 Distributed Atomic Commit

To ensure data consistency and global correctness in a distributed environment,

a distributed atomic transaction needs to consider three failure modes: 1) network

partition or failure, 2) failure of any site or system, 3) Byzantine failures2 [28]. To

deal with these failure scenarios, synchronous and asynchronous distributed commit

protocols are proposed and used in building small-to-large scale distributed transaction

processing systems. The protocols are discussed below.

(i) Two-Phase Commit (2PC): When a DT attempts to access data from two or

more replicas, 1-copy atomicity must be guaranteed, which is implemented by

the 2PC [29] protocol. As shown in Figure 2.5(a), the 2PC protocol starts when

an RM enters into the prepared state by sending a Prepared message to the TM.

Upon receiving this Prepared message, the TM sends Prepare messages to all other

participating RMs. When these RMs receive this Prepare message, they can also

enter into the prepared state by sending a Prepared message reply back to the

TM. While receiving Prepared messages from all the RMs, the TM enters into the

committed state by sending Commit messages to all of the RMs.

2 In a distributed system byzantine failure relates to faults where a faulty node or component with arbi-
trary behaviour prevents others from making consensus among themselves.
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Figure 2.5: The message flow for distributed atomic commit protocols in failure-free cases: (a)
Two-Phase Commit (2PC), and (b) Paxos commit

An RM can also send Aborted message to the TM, therefore forcing it to send Abort

messages to the participating RMs for aborting the transactional result. During

a fault-free normal case, each RM learns the commit or abort decision after four

message delays and the 2PC protocol required to pass 3N − 1 messages for N

number of participating RMs. Considering failure cases, if a TM does not receive

a Prepared reply from a number of RMs, then it will abort the transaction. If a TM

fails, the 2PC protocol blocks until the TM recovers. Several non-blocking versions

of the 2PC protocol were also proposed (e.g., Three-Phase Commit (3PC) [30])

where a second TM is chosen after the first one is failed; however, none of the

algorithms clearly specify what a RM will do if it receives simultaneous messages

from a new TM and a recovered TM [31].

(ii) Paxos Commit: The general problem of consensus can be solved using the pop-

ular asynchronous Paxos [32] algorithm. This algorithm requires a collection

of processes called acceptors to cooperate and agree on choosing a single value

proposed by a preselected coordinator called leader. Considering a transactional

system with N RMs that can tolerate up to F faulty ones, there will be 2F + 1

acceptor RMs for accepting or rejecting the vote of agreeing on the value commit

or abort for a transactional execution. Therefore, the Paxos algorithm is used to



§2.2 On-line Transaction Processing Systems 29

implement a fault-tolerant and non-blocking distributed transaction commit pro-

tocol [31] by letting the TM be the leader that proposes a commit or abort decision

to be accepted by the majority of RMs. Reference [32] has proved that, despite

the failure of F acceptors (i.e., RMs), 2F +1 are required to achieve consensus in

a distributed system.

Paxos commit runs separate instances of the Paxos protocol at each RM with

the same TM to decide whether to Prepare or Abort during a transaction com-

mit request. When an RM decides to enter into the prepared state, it sends a

BeginCommit message to the TM. It then sends a Prepare message to all other

participating RMs. If the requesting RM decides to commit, then it sends a 2a

message with the value Prepared and a ballot number b to all other acceptor

RMs; otherwise, it sends a 2a message containing the value Aborted with ballot

number b. For each instance of the Paxos protocol, an acceptor RM replies with a

2b message containing either the value Prepared or Aborted to the TM along with

the corresponding ballot number b. When the TM receives at least F + 1 reply

messages from the acceptor RMs, it can then decide whether transaction needs

to be committed or aborted. Finally, the TM sends a Commit or Abort message

to the participating RMs. The message flows of the Paxos commit protocol are

shown in Figure 2.5(b). In total (N +1)(F +3)−2 message passings are required

to complete a Paxos commit.

Both 2PC and Paxos commit require an equal number of stable storage writes dur-

ing a normal failure free case. In comparison, the TM using 2PC requires to make a

commit or abort decision along with writing that decision in the stable storage. The 2PC

protocol blocks for an indefinite time if the TM fails; however, the use of Paxos commit

replaces the single TM in 2PC with a set of possible leaders and a leader can make an

abort decision on behalf of a failed RM thereby preventing itself from blocking.

2.2.3.2 Distributed Concurrency Control

To exploit multi-processor hardware and parallel computing models, transactional

executions are overlapped in an OLTP database. This requires concurrent executions
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of transactions by isolating each transaction from modifying intermediate states of

other uncommitted transactions. Transaction serialisability ensures reordering trans-

actional operations of each transaction without changing the ordering between read-

write and write-write operations on the same tuple by different transactions at the same

time [33]. Simple locking for read or write operations at the tuple level enforces this se-

rialisability. The Concurrency control [34] mechanism in a DBMS manages concurrent

executions of transactions in isolation. There are two families of concurrency control

protocols Pessimistic and Optimistic as discussed below:

(i) Pessimistic Concurrency Control: The Pessimistic approach is typically imple-

mented using locking. A shared-lock is acquired by a transaction to get read ac-

cess row-level locking in the database records and an exclusive-lock is acquired to

have write access. If a lock cannot be granted by the concurrency control manager

then the transaction is blocked in waiting state until conflicting locks are released.

A shared-lock is granted if there are no other exclusive-locks currently hold on a

record. On the other hand, an exclusive-lock can only be granted if there are no

other locks currently on hold. Therefore, read operations are permitted to execute

concurrently while write operations must execute serially.

Note that, read-only operations may also get blocked during a period of exclusive-

lock holds by another transaction. Alternatively, a write operation may be blocked

during a period of shared lock holds by another transaction. In order to ensure

strict serialisability, all acquired locks are typically released only after the trans-

action commit or abort. The above scheme is implemented through the 2-Phase

Locking (2PL) or the Strong Strict 2-Phase Locking (SS2PL) protocol.

Using 2PL, in phase-1, all required locks are requested and acquired step-by-step

from the beginning of a transaction towards its execution. In phase-2, all locks

are released in one step based upon a commit or abort decision. Furthermore,

deadlocks are created as consequence of concurrent transactions racing to acquire

locks. In such situations, the concurrency control manager should be able to

detect such deadlocks.

(ii) Optimistic Concurrency Control: An optimistic approach on the other hand,

allows concurrent transactions to proceed in parallel. A transaction can create
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its local workspace and copy the tuples there to perform all the necessary up-

date operations [35]. At the end of its execution, a validation phase takes place

and checks whether the read-sets of the considered transaction overlap with the

write-set of any transaction that has already successfully validated. If true, it

has to be aborted; otherwise, it is committed successfully, by writing its changes

persistently back to the database.

In case the of a DDBMS, 2PL or SS2PL can also be used to guarantee 1SR; however,

there is a heavy performance penalty due to high latency in communicating with the

participating nodes. To ensure 1SR, one of the conflicting transactions has to abort in

all replicas to release its locks, which then allow, the other transactions to proceed and

complete their operations. Therefore, in many cases locking creates unwanted delays

in the blocking state while the transactional operations could have been serialised.

Implementing distributed concurrency control through locking always creates race

conditions locally, which may then lead to global deadlocks. A distributed lock man-

ager is thus required to detect and resolve distributed deadlocks among the conflicting

replicas using a pessimistic approach. Alternatively, to achieve global serialisation or-

der instead of distributed locking, either a 2PC or 3PC protocol is used globally while

applying 2PL or SS2PL locally. However, achieving global serialisation order is costly

as it limits concurrent transaction processing and consequently reduces the overall sys-

tem performance. On the other hand, an optimistic approach attempts to perform

distributed or centralised conflict detection and to resolve it. However, global conflict

management and serialisation are delay intensive and they are difficult to achieve in a

distributed transaction processing environment.

2.3 Data Management Architectures

Two primary choices to ensure high availability and scalability for distributed OLTP

databases are 1) replication – storing the same set of data tuples into multiple DSs, and

2) partitioning – splitting individual or range of data tuples into different DSs based

on functional decomposition of the top-level application features or workload char-

acteristics. Table 2.2 lists the basic strengths and weaknesses of these architectures.
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Table 2.2: The strengths and weaknesses of different data distribution architectures

Data Replication Data Partitioning

Strengths

High availability High scalability

Workload localisation Workload distribution

Read scalability Write scalability

Weaknesses

Data consistency Multi-table JOIN operations

Update propagation Partition size and numbers

Write scalability Management complexity

2.3.1 Data Replication Architectures

Data replication is one of the most studied topics in database and distributed sys-

tems research over the last three decades. The data replication architectures typically

answer three important questions: 1) ‘What’ is to be replicated, 2) ‘How’ to replicate,

and 3) ‘When’ and ‘Where’ replication is done.

2.3.1.1 Replication Architectures for Distributed Computing

The existing data replication models from the distributed systems research are read-

ily applicable in building large-scale distributed OLTP systems. In recent years, the

following replication architectures have been used for building large-scale distributed

data stores and reliable distributed software:

(i) Transactional Replication: In this architecture, a database is replicated partially or

in full for distributed transaction processing. This is the most commonly practised

architecture and implemented by most of the popular RDBMS providers.

(ii) State Machine Replication: This architecture assumes the act of replication as a

distributed consensus problem and uses the Paxos algorithm to implement highly

reliable large-scale distributed services [36]. For the purpose of transactional

processing, deterministic finite automation is used to replicate DSs and transac-

tional log files as state machines. Additionally, it provides support for distributed
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synchronisation, naming services, leader election, notifications, message queue,

and group membership services. It is also known as the Database State Machine

(DBSM) approach [37]. Examples of such systems include Google’s Chubby [38]

lock service, Apache ZooKeeper [39], Consul [40] etc.

(iii) Virtual Synchrony: This architecture assumes in-memory data objects are repli-

cated by a set of processes executing on a set of DSs in a distributed cluster. It

does this by maintaining a process group where a process can join the group and

can access the current state of the replicated data provided with a checkpoint.

Participating processes in the group then send total order multicast3 messages if

the current state of a particular data is changed [15, 41]. Changes in the group

membership are also announced using multicast messaging. Examples include

Isis2 [42, 43].

As data replication is outside the scope of this thesis, only transactional replication

architecture is discussed further in detail.

2.3.1.2 Classification Based on Replication Structure

Depending on the processing and communication overheads incurred by update

propagations, data tuples are replicated in a cluster as follow.

(i) Full Replication: In this architecture, all tuples are replicated to all DSs in a clus-

ter. This is typically achieved through either 1) Master-Slave Replication, where

a master DS is responsible for processing all the incoming transactional requests

and updated results are asynchronously copied back to the slave DS(s), or 2)

Multi-Master Replication, where two master DSs are used to increase the transac-

tion processing capabilities and their states are synchronously or asynchronously

replicated.

(ii) Partial Replication: In this architecture, a subset of tuples are replicated to a

subset of DSs in a cluster. There are two variants of the partial replication – Pure

3 Total order multicast – if a correct process delivers message M before M’, then any other correct process
that delivers M’ has already delivered M.
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Figure 2.6: The data replication architectures – (a) full, pure partial, and hybrid replications,
and (b) master-slave and multi-master replications. The black-solid and red-dashed links rep-
resent synchronous and asynchronous communications, respectively.

Partial Replication, where each DS has copies of a subset of the tuples and no DS

contains a full copy of the entire database, and Hybrid Partial Replication, where

a subset of DSs contain a full copy of the entire database, while another subset of

DSs act as partial replicas, containing only a fraction of the database.

Figure 2.6(a) presents the full, pure partial, and hybrid replication architectures.

The master-slave asynchronous and multi-master synchronous or asynchronous repli-

cation architectures are shown in Figure 2.6(b). Note that slave DSs are commonly

replicated in an asynchronous manner. Despite the cost of replication and replica man-

agement, Full Replication is well practised in designing a DDBMS cluster. However, with

the rapid data growth in the modern OLTP environment, where relationships among

the tuples are not naturally disjoint, distributed concurrency control reduces system

performance and overall responsiveness [44].

On the other hand, by using pure partial replication, read operations are centralised
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Table 2.3: A comparison of replication architectures based on when and where to replicate

Propagation
Vs

Ownership Eager Replication Lazy Replication Remarks

Primary
Copy

1 Transaction,
1 Owner

N Transactions,
1 Owner

Potential
bottleneck

Update
Anywhere

1 Transaction,
N Owners

N Transactions,
N Owners

Hard to achieve
consistency

Synchronous
Converging consistency

Asynchronous
Diverging consistency

and write scalability can be achieved by distributing write operations into partial repli-

cas. However, the benefits of partial replication come with its own shortcomings. Re-

lational join operations between two database tables create DTs which limit the trans-

action processing capacity of OLTP systems. Furthermore, bottlenecks and hot-spots

may be created in the DSs that contain the full copy of the database in hybrid par-

tial replication. Lastly, workload patterns change dynamically in practice and regular

schema-level changes are required to publish new application features that will involve

massive inter-server physical data migrations between the DSs.

2.3.1.3 Classification Based on Update Processing

Data replication architectures are classified under two distinct aspects [44]: 1)

based on the update propagation overheads – ‘When’ the updates propagate to remote

replicas and 2) based on replica control strategies – ‘Where’ the update operations

take place. Table 2.3 compares different replication architectures based on the update

propagation and replica control strategies [44, 45]. The two classes of replication

architectures are as follow.

(i) Eager Replication: In this proactive approach, conflicts between concurrent trans-

actions are detected before they actually commit. To resolve such conflicts, up-

dates are synchronously propagated to the remote replicas. Therefore, data con-

sistency is preserved in spite of the cost of high communication overheads; how-
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ever, this eventually increases the transaction processing latency. This architec-

ture is also known as active replication.

(ii) Lazy Replication: It is a class of reactive approach that allows concurrent transac-

tions to execute in parallel by creating local copies of the required data tuples.

Each transaction makes changes in their individual local copies, therefore incon-

sistencies may appear between the remote replicas. Update propagations are

performed asynchronously after the local transaction commits, and it may need

to rollback, if conflicts cannot be resolved. This architecture is also known as

passive replication.

Furthermore, update operations are processed in a replicated OLTP database either

symmetrically or asymmetrically. The former requires a substantial consumption of

computing and I/O resources in the remote replicas. The latter, first performs locally

then only the changes are bundled together in a write-set, and then forwarded to the

remote replicas in a single message.

2.3.2 Data Partitioning Architectures

Replicating data to a factor increases read scalability of a distributed OLTP database

cluster. However, the ACID properties are hard to maintain once a certain replication

factor is achieved even if eager replication and synchronous update processing mech-

anisms are used [19]. On the other hand, write capacities ca be still scaled through

partial or pure partial replication, where only a subset of the DSs are holding a par-

ticular portion of the database. Therefore, partitioning (sometimes also described as

sharding) is a commonly practised technique to split the database tables into multi-

ple partitions or shards to localise write operations, and thus reduce the overheads of

concurrent update processing.

Data partitioning can be implemented independent of replication, either by repli-

cating the entire partitioned database at a separate geo-location (Figure 2.7(a)), or

using pure partial replication to perform replication and partitioning in the same lo-

cation, as shown in Figure 2.7(b). Pure partial replication has already been discussed

in Section 2.3.1.2. The vertical and horizontal data partitioning techniques will be

discussed here as follows:
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Figure 2.7: The data partitioning architectures – (a) vertical and horizontal partitioning, and
(b) pure partial replication and partitioning

(i) Vertical Partitioning: As shown in Figure 2.7(a) vertical partitioning works by

splitting the database table attributes (i.e., columns) and creating tables with

fewer attributes. The main idea is to map different functional areas of an OLTP

application into different partitions. Therefore, the achievement of scalability

specifically depends on the functional aspects of a particular OLTP implementa-

tion. Hence, it is necessary to pick up the right tables and column(s) to implement

the correct partition strategy. SQL JOIN operations in the RDBMS now needs to

be implemented and executed in the application logic tier. Therefore, despite the

simplicity of this strategy, the AS logics need a complex rewrite of relational op-

erations and the scalability of a particular application-level feature is limited by

the capacity of the DS hosting the partition.

(ii) Horizontal Partitioning: As shown in Figure 2.7(a) splits the data tuples (i.e.,
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rows or records) across different tables based on a partition key, range, or a

composition of these two. This strategy allows the database cluster to scale into

any number of partitions of different sizes. The partitioning is implemented ei-

ther hash-based, range-based, directory-based, or via a composite partitioning tech-

nique. Cross-table SQL JOIN operations are similarly discouraged to avoid cross-

partition queries, i.e., DTs. The performance of write operations mostly depends

on the appropriate choice of the partitioning key or range values. If partition-

ing is done properly, then the partition controller will be able to route the write

operations in the underlying database appropriately.

2.4 Scaling Multi-Tier OLTP Applications

Recalling the overview of multi-tier OLTP application shown in Figure 2.1, each tier

is responsible to perform specific functionalities and coordination between these tiers is

necessary to provide the expected services to the end-users. Therefore, it is not possible

to scale a single tier without providing necessary interfaces for other tiers to interact

with it. As well, transactional workloads are either compute-intensive (require more

processing capabilities and resources at the application logic tier), or data-intensive

(require more scalability in the database tier).

In practice, regardless of the deployment and workload characteristics, data distri-

bution logics for replication and partitioning should work in such a way that interde-

pendencies between multiple tiers should not lead to multiple workload execution in

either the database or ASs [46, 47]. Based on this analogy, there are two architectural

patterns for replicating multi-tier OLTP applications as follows:

(i) Vertical Pattern: A vertical pattern pairs an AS and DS to create a unit of repli-

cation. Such a unit is then replicated vertically to increase the scalability of the

entire OLTP system. The benefit of this approach is that the replication logic is

transparent to both ASs and DSs, hence they can work seamlessly. However, any

particular application functionality and corresponding database portion need to

be partitioned appropriately across the cluster to achieve the target scalability.



§2.5 Scaling Distributed OLTP Databases 39

The engineering costs and effort that are needed for such implementation are too

high, therefore, such a pattern is rarely implemented in practice.

(ii) Horizontal Pattern: In this pattern, each tier implements the replication logic in-

dependently and requires some replication awareness mechanism to run between

the tiers to make the necessary connections. In contrast to the previous pat-

tern, individual tier can be scaled independently without interfering with other

tiers. However, without any appropriate replication and partitioning abstractions,

inter-tier interactions are not scalable without knowing how the cooperating tier

is replicated or partitioned. Despite this lack of transparency, this type of pattern

is common in implementing large-scale OLTP systems in practice due to their ease

of deployment.

To support these two patterns, other architectural patterns are also considered such

as Replica Discovery and Replication Proxy, Session Maintenance, Multi-Tier Coordina-

tion, etc. Examples of real system implementations based on these patterns are found

in [47–50]. However, data distribution transparency control via multi-tier coordina-

tion is still an open research problem both in academia and industry. More recently,

large OLTP service providers have developed libraries and tools to partially support

such transparencies: JetPants [51], Gizzard [52], and Vitess [3] to name a few here.

2.5 Scaling Distributed OLTP Databases

With the increasingly widespread use of virtualisation and black-boxing at the in-

frastructure level services, real-time Web applications need to be designed as highly

available and scalable at the same time. In recent years one of the primary techniques

used to achieve these goal, is that of replacing legacy shared-nothing relational DDBMS

by NoSQL distributed data stores [53]. Thus, transactional ACID properties should be

sacrificed – primarily data consistency and durability for system availability, and net-

work partition tolerance. NoSQL systems are built around the famous CAP principle [8]

that was first described by Eric Brewer, and later proved as a theorem by Gilbert and

Lynch [54].
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According to CAP, in the face of network Partition, the system must choose be-

tween Availability and Consistency. This trade-off comes from the fact that, to ensure

high availability in failure cases (i.e., crash-recovery, network partitions, Byzantine fail-

ures, etc.) the application databases need to be replicated in such a way that ensures

eventual consistency [10]. On the other hand, data models should be simplified by elim-

inating table relationships (i.e., schema-free), thus there will no need to run multi-table

SQL operations. Instead, application developers need to write and embed the SQL join-

ing operations in the application logics. In short, by using legacy OLTP databases at

the modern production deployment, it is hard to achieve high responsiveness without

eliminating the need for a stronger form of consistency.

2.5.1 Why ACID Properties Are Hard to Scale

Based on the economy of scale, it is well known that maximising system utilisa-

tion by scaling out an interactive Web application using clusters of servers is far more

cost effective than scaling up infrastructures [55]. However, deploying and managing

a real-time transactional DDBMS with replication and data partitioning in a shared-

nothing cluster is not trivial. With the expansion of data volume, the impacts of DTs

rises to a level where managing distributed atomic commit and concurrency control

using 2PC and 2PL is impractical in fulfilling Service-Level Agreements (SLAs) for re-

sponsiveness and latency.

Processing large volumes of simultaneous DTs, therefore, significantly overloads

the entire transaction processing layer between the AS and DS clusters, which is even-

tually responsible for potential disk failures, system unavailability, and network parti-

tions. Furthermore, with a replicated distributed OLTP DBMS, to achieve system-wide

strong consistency (e.g., via synchronous update processing) requires trading-off sys-

tem responsiveness and transactional throughput. Finally, in a shared-nothing system

with failing components, ensuring durable transactional operations in order to meet

the strong consistency guarantee is far away from reality and practice.
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2.5.2 CAP Confusions

Over the past years, global trends in software development and large-scale Web

data management indicates that a large group of system designers has misapplied the

CAP principle to build a somewhat restrictive model of DDBMS. The narrower set of

definitions presented in the proof of CAP theorem [54] seems to be one of the primary

reasons. In their proof, Gilbert and Lynch considered atomic or linear consistency,

which is rather difficult to achieve in a DDBMS, that is both fault and partition tolerant.

Later, Brewer et al. [8] considers a relaxed definition of Consistency for the first-tier

services of a typical OLTP application.

In reality, the probability of partitions in today’s highly reliable data centres is rare

although short-lived partitions are common in wide-area networks. So, according to

the CAP theorem, DDBMSs should provide both Availability and Consistency when there

are no (network) Partitions. Additionally, due to workload increase or sudden failure

situations, the responsiveness of inner-tier database services can lag behind compared

to the requirements for the first-tier and second-tier services. In such a situation, a

Web scale OLTP system should be able to remain responsive and available to its clients

by serving cached information until the DS cluster catches up. The acceptability of a

high scalable OLTP system is to remain available and responsive to the end-users, even

at the cost of tolerable inconsistency that is intentionally engineered in the application

logic to hide the effects.

In his recent article [56], Eric revisited the CAP trade-offs, and described the un-

avoidable relationship between latency, availability and partition. He argued that a

partition is just a time-bound on communication. It means that failing to achieve con-

sistency in a time-bound, i.e., facing P leads to a choice between C and A. Thus, to

achieve strong ACID consistency, whether or not there is a network partition, a system

should both compensate responsiveness (by means of latency) and availability. On the

other hand, a system can achieve rapid responsiveness and high availability within the

same conditions while tolerating acceptable inconsistency.
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2.5.3 BASE and Eventual Consistency

The BASE (Basically Available, Soft state, Eventually consistent) [9] acronym cap-

tures the CAP reasoning. BASE properties state that, if a system is partitioned functionally—

by grouping data by functions and spreading functionality groups across multiple databases—

then one can break down the sequence of transactional operations individually, and

pipeline them asynchronously for update on each replicas, while responding to the

end-user without waiting for their completion.

As an example, consider a ‘user’ table in a database which is partitioned across

three different DSs by user’s ‘last name’ as a partition key in the following partitions

A–H, I–P, and Q–Z. Now, if one DS is suddenly unavailable due to failures or partitions,

then only 33.33% users will be affected, and the rest of system will still be operational.

But ensuring consistency in such systems is not trivial, and not readily available as are

the ACID properties in OLTP systems.

The ‘E’ in BASE which stands for Eventual Consistency [10] guarantees that, in the

face of inconsistency, the underlying system should work in the background to catch

up as discussed earlier. The assumption is that, for many cases, it is often hard to

distinguish these inconsistent states from the end-user perspectives, which are usually

bounded by different staleness criteria such as time bound, value bound, or update-

based staleness. Eric Brewer had also argued against locking and actually favoured

the use of cached data, but only for ‘Soft’ state service developments as shown in

Figure 2.1.

In [57], Ken Birman has effectively shown (using the Isis2 platform [42]) that it

is possible to develop scalable and consistent soft state services for the first-tier of

the OLTP system, if one is ready to give up the durability guarantee. He argues that

the ‘C’ from the CAP theorem actually relates to both ‘C’ and ‘D’ in ACID semantics.

Therefore, by sacrificing durability, one can scale-out the first-tier OLTP services, while

guaranteeing strong consistency and durability at the inner database tier. However,

this implication of inconsistency requires a higher-level of reconfigurability, and a self-

repair capability in a DDBMS, through extensive engineering efforts.
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Figure 2.8: The architectural design space for large-scale distributed system development

2.5.4 Revisiting the Architectural Design Space

To overcome the confusion arising from the CAP theorem, it is, necessary to revisit

the design space in the light of distributed replication and data partitioning techniques.

This will also clarify the relationship between the abovementioned challenges to the

ACID and BASE systems. In [58], Daniel Abadi was the first to clarify the relation-

ship between consistency and latency for such systems. A new acronym, PACELC, is

proposed [59], which states that – if there is a partition (P) how does a system trade-

off between availability (A) and consistency (C); else (E) when the system is running

as normal in the absence of partitions, how does it trade-off between latency (L) and

consistency (C)?

The PACELC formulation is presented in Figure 2.8 under several considerations

like replication factor, consistency level, system responsiveness, and partition-tolerance

level. We will gradually explain them with respect to the PACELC classification for the

design of a DDBMS. As explained in [60], there are four types of DDBMS one can design

depending on the application-level requirements. They are described as follows:

(i) A-L Systems – always giving up consistency in favour of availability during net-

work partition, otherwise, prefering latency during normal operating periods.

Examples: Apache Cassandra [61], Amazons DynamoDB [62], and Riak KV [63]

(in their default settings).
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(ii) A-C Systems – provide consistent reads and writes in the typical failure-free sce-

narios; however, in failure cases, consistency will be sacrificed (for a limited pe-

riod, until the failure recovers) in order to remain available. Examples: Mon-

goDB [64] and CouchDB [65].

(iii) C-L Systems – provide baseline consistency (as defined by the system, e.g., time-

line consistency) for latency during normal operations while, in the case of net-

work partitions, it either prioritises consistency over availability or less respon-

siveness which imposes high latency. Examples: Yahoo! PNUTS [66].

(iv) C-C Systems – do not give up consistency. In the case of network partitions,

these systems rather sacrifice responsiveness and latency. Examples: BigTable [6],

HBase [67], H-Store [68], and VoltDB [69], etc.

Note that, completely giving up availability is not possible, as it would create a

useless system. Availability actually spans over two dimensions relating to latency – 1)

resilience to failures, and 2) responsiveness in both failure and failure-free cases [70].

Similarly, completely inconsistent systems are also useless, therefore the level of con-

sistency needs to be varied from its weaker to stronger forms.

2.5.5 Distributed Data Management Aspects

Based on the abovementioned architectural design choices, four distinctive aspects

are identified concerning data management in a distributed OLTP database. These

fundamental aspects are necessary to understand the challenges to adopt workload-

awareness in large-scale DDBMS design and development. The relevant aspects are

described as follows.

(i) Consistency Aspect: Stronger consistency models which are tightly coupled with

a DBMS always ease the life-cycle of the application development. Depending

on the application’s requirements, giving up ACID properties in favour of BASE

is also inadequate in many situations. However, stronger consistency levels are

also viable to achieve by decoupling the application’s logic from the underlying

DBMS and implementing it along with the replica control scheme. Quorum-based
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read and write query executions are one of the possible choices in this regard.

Alternatively, consistency is attained in a much fine granularity [71] by ensuring

entity-level or object-level consistency within a single database. Furthermore,

entity-groups can be considered as a unit of consistency, and multiple groups

regarded as a single unit.

A-L systems are viewed as the BASE equivalent, which tend to provide different

variations of eventual consistency all the time. Similar adaption is also true while

the system design choices gradually shift towards C-L systems in cases of failure.

On the other hand, A-C and C-C systems by default tend to achieve stronger form

of consistency either in the case of failure or not. As discussed earlier, providing

ACID level consistency (i.e., serialisability) is challenging and costly to implement

in a DDBMS. Therefore, providing a soft-level of consistency guarantees, such as

snapshot isolation or even time-line consistency (as provided in Yahoo! PNUTS),

seems to be more adaptable in such scenarios.

(ii) Responsiveness Aspect: Responsiveness is perceived by the ‘delay’ between initi-

ating an application request and receiving the reply. It links two other aspects:

1) latency – the initial delay in starting to receive replies for a corresponding re-

quest, 2) throughput – the total time it takes for all the contents of a reply to be

received completely. All these factors are imposed by the Service Level Objectives

(SLO) while considering design choices.

The responsiveness of an application, AS defined by the ‘8 second rule’ [72], out-

lines three response scenarios: 1) if a user action is responded to by a system

within 100 ms, then this is considered to be instantaneous; 2) if the response is

within 1 s, then the user will observe a cause-and-effect relation between per-

forming the action and receiving the result and will, therefore, view the system

as slow; and 3) after 8 s without a response, the user loses interest and trust in

the system.

Based on this observation, A-L systems should be chosen where strict and rapid

responsiveness are the requirements. Both the A-C and C-L systems are better for

ensuring flexible responsiveness requirements in the face of failure and failure-

free cases, respectively. C-C systems pay the costs of keeping the system up-to-
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date and consistent and are therefore, less responsive when overloaded.

(iii) Partition-Tolerance Aspect: Partitions do not always arise from network or com-

munication outages. In many cases, during busy operational hours, DDBMS are

overloaded with workloads and may not be able to respond before the timeout

expiration period. The possibility of partition is dependent highly on whether

the system is deployed in a wide-area network across multiple data centres, or

in a local-area network within a single data centre [73]. In choosing deploy-

ment strategies for multiple data centres distributed over WAN, one can choose

between an A-L or a C-L system, due to their latency awareness during normal

operationAL periods. On the other hand, A-C and C-C systems will be more ap-

propriate to deploy within a single data centre.

(iv) Replication Aspect: The scalability of interactive OLTP systems primarily depends

on how they are replicated to guarantee high read and write throughput. Increas-

ing the number of replicas to a certain factor can scale read scalability up to

a level after which further replication can increase the cost of update processing

for write operations. Three types of replication strategies are typical in production

deployments: 1) updates sent to all replicas at the same time (synchronous), 2)

data updates sent to an agreed-upon location first (synchronous, asynchronous,

or hybrid), and 3) updates sent to an arbitrary location first (synchronous or

asynchronous).

Considering the above, the first option provides stronger consistency at the cost

of increased latency and communication overheads, an is primarily suitable for

C-C systems. The second option with synchronous update propagation also en-

sures consistency, but only in the case of a single data centre deployment. With

asynchronous propagation, the second option provides several options for dis-

tributing read and write operations. If a primary or master node is responsible

for providing read replies and accepting writes, then inconsistencies are avoided.

However, it might be the source of potential bottlenecks in the case of failures.

On the other hand, if reads are served from any node while a primary node is

responsible for accepting writes, then read results can contain inconsistencies.

Both A-L and C-L systems are well suited for the abovementioned approaches un-
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der the second option, as they are flexible and dynamic with latency-consistency

trade-offs. Apart from preferring any node to accept reads and writes, the third

option might be used as well, either in a synchronous or asynchronous fashion.

While synchronous setting can increase latency, potential inconsistencies can arise

using asynchronous setting. A-C and some of the C-L systems might be suit this

category.

In short, interactive and real-time OLTP applications deployed over shared-nothing

DDBMS aim for the following ‘performance’ goals: 1) availability or uptime – what per-

centage of time is the system up and properly accessible? 2) responsiveness – what are

the measures for latency and throughput? and 3) scalability – as the number of users

and workload quantities increase how can the target responsiveness be maintained

without increasing the cost per user.

2.5.6 Workload-Awareness in Distributed Databases

A DDBMS, like MySQL Cluster [74], Google’s Cloud SQL [75], Azure SQL [76],

MongoDB [64], Cassandra [61], VoltDB [69], and HBase [67] that typically provide

automatic replication, partitioning, load balancing, and scale-out features, only sup-

ports pre-configured partitioning rules. Under managed service deployment, these

DDBMSs usually split and merge the partitions based on the number of servers (e.g.,

MySQL Cluster), pre-defined data volume size (e.g., in HBase), pre-defined key (e.g.,

MongoDB), or even based on partitioned schema (e.g., Cloud SQL). However, none of

these multi-tenant managed DDBMS services are able to be adopted for dynamic work-

load patterns of different OLTP applications deployed by different tenants, nor can they

utilise per application resource utilisation statistics in order to achieve effective load

balancing. As OLTP workload characteristics are dynamic in nature, due to sudden

increase in workload volumes, the occurrence of data spikes, and transient hotspots.

Therefore, static data partitioning strategies failed to adopt these scenarios.

Most of the managed DDBMS services in the Cloud and standalone deployments

typically use a full or master-slave or multi-master replication strategy, as shown in Fig-

ure 2.7. Data replication techniques have attracted much attention over the last three
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decades of database and distributed systems research into ensuring fault-tolerance or

high availability guarantee. In contrast, due to the recent emergence of real-time

OLTP applications requiring high scalability, workload-aware dynamic data partitioning

schemes are receiving much attention in recent years. Dynamic partitioning solutions

are not typically available off-the-shelf, and they often require administrative interven-

tions. These systems usually suffer from issues such as sudden workload spikes in any

particular partition, hot-spotted partition or database table, partitioning storms, and

load balancing problems. These are some of the potential reasons for restricted system

behaviour, unresponsiveness, failures and bottlenecks. In a wide-area network setting,

this leads to replication nightmare and inconsistency problems on top of added latency.

The significance of workload-aware data repartitioning is easily understood from

the examples of Massively Multi-player On-line Games (MMOG) like World of War-

craft, EVE, Farmville, SimCity, and Second Life. High scalability in such environments

is really challenging to be engineered, and not trivial to achieve, in contrast to other

Web applications [77]. Games and virtual world users are geographically distributed

and can personalise the game environments as well as make simultaneous interactions

with other on-line users. Two kinds of partitioning strategies are typically observed:

1) decomposing the game or virtual world based on the application design and func-

tionality, 2) partitioning the system based on current workload patterns [78, 79]. It is

also reported that existing high scalable NoSQL data stores are incapable of handling

such transactional workloads, relational schemas, and geo-distribution challenges ef-

fectively [80]. In summary, to adopt OLTP workload behaviours, it is, therefore, nec-

essary to adopt workload-awareness in the database repartitioning logics.

In the thesis, the aim is to develop effective approaches to achieve application-

level scalability discussed above through automating underlying database repartition-

ing processes. For this purpose, the related literature will be explored and a concep-

tual framework will be eventually developed for performing workload-aware database

repartitioning. It is, therefore, necessary to develop prior backgrounds in order to un-

derstand existing repartitioning approaches properly, which will be discussed in the

following section.
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Table 2.4: A sample distributed OLTP database – physical and logical layouts

Servers Partitions

S1(10) P1(5) = {2, 4, 6, 8, 10}
P3(5) = {12, 14, 16, 18, 20}

S2(10) P2(5) = {1, 3, 5, 7, 9}
P4(5) = {11, 13, 15, 17, 19}

Table 2.5: A sample transactional workload for illustrative purpose

Id Tuples Class

τ1 {1, 4, 5, 6, 7, 8, 10} DT
τ2 {1, 4, 6, 9, 11} DT
τ3 {9, 15, 17} NDT
τ4 {9, 17} NDT
τ5 {5, 7, 18} DT
τ6 {15, 17} NDT
τ7 {2, 14, 16} NDT

2.6 Workload-Aware Data Management

To understand the contributions from existing literature related to workload-aware

data management in DDBMS, in this section, the basic concepts of workload network

modelling, partitioning, data lookups, and general KPIs are introduced for the reader.

Following this, the existing workload-aware approaches are classified and discussed

accordingly. A conceptual framework is presented covering different aspects coming

from the related challenges from both literature and practice. Finally, a list of exist-

ing database repartitioning schemes are compared against the proposed conceptual

framework in order to reveal the shortcomings and gaps in existing literature and im-

plementation.

2.6.1 Workload Networks

Transactional workloads contain a set of arbitrary number of DTs and NDTs, and

a single transaction contains a set of data tuples. Therefore, transactional workloads

can be naturally represented as a network4 consisting of nodes or vertices, and their
4 The terms network and graph are used interchangeably in the thesis. Hence, the combinations of {node,

link} and {vertex, edge} are also used in the same way. In most cases, the former is used to refer
the real systems, while the latter refers to their mathematical representations.



§2.6 Workload-Aware Data Management 50

Compressed Graph

8
v'3

1 7
v'2

6
18

v'1

11
5

v'6

9
v'4

4
10 v'5

1

1
9

6
4

115

1087

18

Graph

1 64 911

5 7

18
10

8

e1

e2

e5

Hypergraph Compressed Hypergraph

8
v'3

1 7
v'2

6
18

v'1

115 v'6

9
v'4

e'2

e'4

e'1

e'3

4
10 v'5

C2
C2

C2

C2

C1

C1

C1

C1

Figure 2.9: The sample transactional workload network represented as graph, hypergraph,
compressed graph, and compressed hypergraph. The dashed line in red represents a 2-way
min-cut of the corresponding workload network representation.

direct interactions as links or edges. Similarly, for a transaction, the set of tuples can be

represented as a set of vertices connected by the edges, representing their interactions.

For the purposes of illustration, as an example, Table 2.4 lists a sample transactional

database with 20 data tuples hash partitioned within four logical partitions P1, ...,P4

residing in two physical DSs denoted as S1 and S2. Table 2.5, on the other hand, lists a

sample transactional workload observed over time window W consisting of seven DTs

and NDTs denoted as τ1, ...,τ7.

Indeed, a workload network can be represented as both graph and hypergraph, as

shown in Figure 2.9, for the sample transactions from Table 2.5. In a graph represen-

tation, each edge links a pair of tuples as a pair of vertices for a particular transaction.

If this pair of tuples interacts in more than one transaction, then the weight of the

corresponding edge increases. On the other hand, in a hypergraph5 representation, a

hyperedge represents an individual transaction and overlays its set of tuples as the ver-
5 A hypergraph is a generalisation of a graph that allows any of its edges i.e., hyperedge to connect with

more than two vertices.
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tices. The weight of the hyperedge, therefore, represents the frequency of a particular

transaction in the workload. In both cases, the weight of a vertex represents the num-

ber of edges it has to other vertices, in other words, the number of times it has been

used by a set of transactions in the given workload. This also refers to the degree of

a node in the network. Alternatively, vertex weight can be denoted as the data volume

size of the corresponding tuple with respect to a transactional database, and this latter

denotation is adopted in the thesis.

Both graph and hypergraph representations can be further compressed by a fac-

tor to achieve a higher level of abstractions, thus hiding the underlying network level

complexities. Figure 2.9 also shows the compressed graph and compressed hypergraph

representations of the given sample workload. In both graph and hypergraph level

compressions, multiple vertices are collapsed to a single compressed vertex by applying

a mathematical operation based on the target compression level Cl = |V |/|V
′|, where

V and V ′ denote the set of all vertices in the workload and the set of target number

of compressed vertices, respectively. For instance, in the example shown in Figure 2.9,

V ′ is created by applying a simple modular hash function h(k) = (k mod Cl)+1 on the

individual tuple or vertex id k using Cl = 6, which provides the id of the destination

compressed vertex.

2.6.2 Clustering of Workload Networks

The existing literature, for workload-aware data management, transactional work-

loads are often observed over a time-sensitive observation window and collected for

clustering6 into smaller chunks containing tuples that typically appear together in the

transactions. A common strategy for such an operation is to use k-way balanced min-

cut clustering to produce k balanced clusters from an input workload network, and

redistribute them within the physical DSs of a DDBMS cluster. k-way clustering follows

two criteria: 1) minimum edge-cut guarantee, and 2) equal sized clusters, in terms of

the number of vertices as well as their weights. In Figure 2.9, the red dashed lines

represent 2-way min-cuts of the presented workload network representations.

6 In the thesis, the term clustering refers to the partitioning of a workload network, while the term
partitioning refers to the logical database partitioning only.
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Figure 2.10: The multi-level graph clustering using the METIS algorithm

In the minimum k-cut or k-way min-cut [81, 82] problem, the task is to find k clus-

ters by cutting a certain number of minimum-weight edges in a network. In other

words, the goal is to find k number of cuts of minimum size in the given network.

Min-cuts are particularly useful in divide-and-conquer type problem solving. Exist-

ing literature on workload-aware data management also utilises this well-studied ap-

proach to repartitioning an existing database based on the input workload network.

Usually the order of this min-cut algorithm is O(|V |2), and this can be further reduced

to O(|V |2log|V |) following Karger’s randmoised min-cut algorithm using edge contrac-

tions [83].

In order to use such min-cut algorithm in real systems, a multi-level graph clus-

tering algorithm like METIS [84, 85] is described in the literature (as shown in Fig-

ure 2.10). In this process, the input network is first reduced using compression (coars-

ening). The coarsening process is performed by a randomised maximal matching [86]

algorithm [87] with the complexity of O(|Eg|) for an input graph containing |Eg| edges.

Next, the smaller network is clustered, and refined back into the original network (un-

coarsening) using the Fiduccia-Mattheyses(FM) refinement algorithm [88]. The imple-

mentation of METIS for both graph and hypergraph clusterings – METIS and hMETIS,

respectively, is freely available in [89] and [90].
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2.6.3 Data Lookup Techniques in Distributed Databases

For a DDBMS, two kinds of data lookup techniques exist – 1) centralised, using a

lookup table, and 2) distributed. Large-scale distributed systems like HBase, MongoDB,

H-Store, VoltDB, etc. use a centralised data lookup mechanism via a lookup table stored

in a dedicated router node, which keeps the tuple-level location mapping of a primary

key to a set of partitions. Lookup tables might also be stored as a database index

(e.g. secondary index), and many in a existing repartitioning schemes use this idea to

embed tuple locations in indices for faster data lookup. Although centralised lookup

techniques are a known bottleneck to high availability and scalability for real-time

OLTP application request processing, most existing database repartitioning schemes as

reported in the literature as using it.

One of the oldest workload-aware frameworks, Schism, uses a dedicated centralised

data lookup router node to handle incoming transactional requests in order to find

the required tuples from the partitions. Later, Tatarowicz et al. [91] extended this

lookup process by introducing a power router with more computational resources, and

use compression techniques to optimise the record keeping for scaling up the lookup

process. One of the primary challenges in using a centralised lookup process is to keep

it updated following a repartitioning cycle, when a large number of data migrations

occur and the lookup table needs to be updated instantly for each of the migrated

tuples in order to provide consistent location information.

LuTe, another workload-aware repartitioning scheme, is proposed by [92], which

primarily focuses on consistent data lookup, rather than providing inconsistent lookup

results. It contains a semi-consistent lookup table which uses a temporary lookup table

to keep the correct results for failed lookups, and only updates the lookup table when

the data is migrated within the system’s idle time. However, the above approach also

lacks high scalability when thousands of lookup records need to be updated at once

during repartitioning.

SWORD [93], another workload-aware incremental repartitioning approach, utilises

its hypergraph compression technique, based on random hashing on tuples’ primary

key, as a means of handling new tuple insertion, as well as lookup existing records.

The size of the lookup table for the compressed vertex-to-partition mapping, therefore
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depends on the workload network compression level. Furthermore, to reduce the over-

heads of the lookup process, a fine-grained quorum is used to determine the required

number of replicas for processing a transaction, along with a minimum set-cover algo-

rithm to find the minimum number of partitions required to fulfil the quorum.

Distributed data lookups are primarily performed in DHT (Distributed Hash Ta-

ble) [94] style data stores like Amazon DynamoDB, Riak, etc., where the initial data

partitioning is created using consistent-hashing [2]. This is the most scalable data

lookup process for large-scale data management platforms that does not have any bot-

tlenecks. However, these data stores only support server-level entire data partition

redistributions (during a scale-up, scale-down, or fault-tolerant scenario). Therefore,

it is not possible to perform consistent lookups once individual data tuples are allowed

to roam within the partitions during a partition-level or even transaction-level reparti-

tioning process, as we will observe later in the thesis.

2.6.4 A Survey on the State-of-the-art Database Repartitioning Schemes

In this section, a detailed review of the existing DDBMS repartitioning schemes,

related to the objectives in the thesis, will be presented. We derived two classes of

database repartitioning strategies from the existing literature – 1) static schemes, which

primarily pay attention to automate database design, increase I/O parallelisms, and

scale transactional processing with the transient change in workload; and 2) dynamic

schemes, which primarily focus on adopting workload dynamics, automatic database

administration, and incremental repartitioning. A number of existing schemes will be

discussed below, based on this abovementioned high-level classification, in order to

identify their contributions and specific shortcomings.

2.6.4.1 Static Repartitioning Schemes

In this section several state-of-the-art static repartitioning schemes are discussed

under specific categories.
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2.6.4.1.1 Database Schema-aware Static Repartitioning

One of the oldest techniques for intelligent data placement in a shared-nothing OLTP

database is proposed in [95]. Several algorithms are presented to utilise the degree

of declustering in a transactional workload while deciding on the placement of parti-

tioned data in a cluster. Based on the database schema design, transactional tuples

are either fully or partially put together in a single or multiple DSs to increase inter-

server transaction processing parallelisms. To handle small tuple-level relations that

can not be equally partitioned, three specific strategies are evaluated – 1) random, 2)

round-robin, and 3) Bubba [95] – where tuples in a relationship are placed in decreas-

ing order of their access frequency. For a non-partitioned workload, two strategies are

proposed – 1) full declustered relationships are partitioned across all the DSs, and 2)

partially declustered relationships are partitioned over a subset of DSs. Finally, for

transactions that can be partitioned, the full declustering option is chosen to increase

transactional parallelism. However, the effects of fully or partially converting the DTs

into NDTs based only on the database schema relation, during the repartitioning cycle,

are not investigated. Therefore, it is not possible to determine any adverse effects on

server-level data distributions and overall database performance from the off-line data

migrations.

2.6.4.1.2 Database Design-aware Static Repartitioning

To automate a physical database design for a single node Microsoft SQL Server, Agrawal et

al. [96] have proposed including workload characteristics and partitioning schemes

during the design phase. A similar approach is taken to include database partitioning

design advisor for IBM DB2 OLTP databases [97] which, for a given workload, advises

physical database design attributes like indexing, views, table partitioning, and cluster-

ing of multiple dimensions. A similar approach is also presented by Nehme et al. [98],

where a partitioning advisor is proposed that advises table-level replication and parti-

tioning decisions based on workload patterns in order to optimise future queries. The

authors have proposed the Memo-Based Search Algorithm (MESA), a partitioning advi-

sor algorithm, which is deeply integrated with Microsoft SQL server’s distributed query

optimiser for constant workload evaluation. However, all of these proposed schemes

involve searching through a large number of physical design choices, and providing
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efficient static partitioning decisions for the initial database design. Therefore, the

proposed schemes are unable to adopt with dynamic workload changes, as it requires

altering the database design over and over again, which is not realistic in practice.

2.6.4.1.3 Graph Theoretic Static Repartitioning

Kallman et al. [99] design and implement an in-memory shared-nothing OLTP DDBMS

called H-Store. One of the primary assumptions from their analysis of popular OLTP

workloads reveals that most of the databases have a tree shaped schema, with a root

table on the top with n− 1 relationships with the other tables. Therefore, such a root

table can be easily range- or hash-partitioned on its primary key. This will distribute the

workloads evenly among the DSs in the cluster to reduce the number of DTs. However,

as shown in [100], the modern OLTP database can have all shapes of schemas such

as tree, star, or snowflake. Therefore, static data partitioning strategies no longer stay

valid for extended operational periods, as workload patterns change.

Schism [101] is the first of its class of workload-aware static repartitioning schemes

that uses graph-cut techniques to reduce the proportions of DTs in the current work-

load. The main idea of Schism is to represent a given workload sample as a graph,

where vertices represent the tuples and edges represent the transactions. Later, the

external graph min-cut library, metis [89], is used to create balanced clusters of tuples,

while minimising edge-cuts. Replication is also applied by exploding each vertex to a

star shaped configuration containing n+1 vertices, where n is the number of transac-

tions accessed by a tuple represented by that vertex. The use of replication simplifies

the overall network dynamics, as a DT can be served as a NDT with its replicas resid-

ing in the same DS. Clusters are then placed into separate DSs, and a predicate-based

classification tree is formed, which then direct future transactional requests to the ap-

propriate DS. Since then, Schism has been integrated into Relational Cloud [102], which

is a prototype implementation of a managed DDBMS service in the Cloud.

The primary shortcoming of Schism is that graph workload networks are unable

to fully represent transactional relationships, since they present a fine-grained repre-

sentation of the OLTP workload. Furthermore, by using replication and partitioning

together, the network complexities are somehow abstracted away from the external
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graph-cut library, which needs to create proper clusters to reduce the impacts of DTs

in the system effectively. Finally, this static approach neither adopts well to workload

changes, nor can it scale with the increased size of the input graph or properly handle

replication related data inconsistencies.

2.6.4.1.4 Skew-aware Static Repartitioning

A skew-aware automatic database partitioning approach, along with an automatic

database design tool called Horticulture, integrated with H-Store [68], is proposed

in [16]. The proposed work utilises Schism, and aims to mitigate the effects of a tem-

porally skewed workload by redistributing the data and workload distributions, which

eventually minimises the percentage of DTs in the system. Horticulture adopts an au-

tomatic database partitioning algorithm based on neighbourhood search, on a large

solution space of possible database designs considering four possible options – either

horizontally partition a table, replicate, create secondary indexes, or create routing for

the execution of stored procedures. The authors also provide an analytical cost model

for estimating the coordination cost Cc of processing a DT and skewness for a given

workload sample as below:

Cc(τdi
) =

(
|Sτdi
|

|T ||S|

)(
1+
|Td |
|T |

)
(2.1)

where |T | and |Td | are the number of transactions and DTs, respectively, and |Sτdi
| is the

maximum number of DSs a DT is spanned across. The skew factor Sk is calculated as

follows:

Sk =
∑

n
i=0 Ski

|Ti|
∑

n
i=0 |Ti|

(2.2)

where Ski
is calculated using the algorithm given in [16], and n is the number of obser-

vation intervals. Finally, given a database design Dd and a sample workload |W |, the

cost of choosing D is defined as follows:

c(Dd , |W |) = θCc +(1−θ)Sk (2.3)

where 0≤ θ≤ 1 is the exponential averaging coefficient to prioritise either the coordi-

nation cost of a given DT or the workload skew.
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The major drawback in this approach is that of using a specific snapshot of the

sample workload in order to calculate the coordination costs of the DTs and skew

factors, in order to choosing a particular database design to implement, as a temporary

solution for a period of time. Therefore, this approach is neither adaptable to workload

changes, nor is it scalable to implement a desire solution on-the-fly without performing

off-line data migrations.

Based on the research of [16, 101, 102], Jones et al. [103] developed Dtxn – a

fault-tolerant distributed system design tool, which is first in its class for designing

OLTP applications with a shared-nothing DDBMS, supporting live data migration for

workload-aware static data repartitioning. Turcu et al. [104] also utilise Schism and

Granola [105] frameworks to combine the benefits of both approaches. To increase

parallel transactional executions, Granola utilises timestamped coordination to seri-

alise NDTs without locking, on the assumption that the DBMS is well partitioned be-

forehand. Furthermore, it presents an automatic framework that uses the partitioning

layout produced by Schism, and then employs a machine learning based routing tech-

nique to support parallel executions of the NDTs. However, this strict assumption is

rarely observed in practice. Therefore, none of the abovementioned static schemes can

perform effective repartitioning without taking the database off-line. Moreover, with-

out incrementally running the repartitioning process, it is not possible to dynamically

adopt to the transient changes in OLTP workload.

2.6.4.2 Dynamic Repartitioning Schemes

In this section several state-of-the-art dynamic repartitioning schemes are discussed

under specific categories.

2.6.4.2.1 Dynamic Repartitioning for Elastic Transaction Processing

The most important characteristic of a dynamic workload-aware repartitioning scheme

is to ensure elastic transaction processing by continuously redistributing on-line data

tuples time to time without impacting the ongoing database operations. Workload-

aware data partitioning and placement, elastic transaction processing, and live data

migration techniques are extensively studied in [100]. Four primary design principles



§2.6 Workload-Aware Data Management 59

are mentioned in [100] for dynamic repartitioning scheme design – 1) a separate sys-

tem state from the application state, 2) data storage decoupled from ownership, 3)

limit common operations to a single site, 4) limit distributed synchronisation.

The authors have proposed partitioning the database based on transactional access

patterns, where a key grouping protocol, ElasTraS [106, 107], is implemented, which

dynamically co-locates data ownership within a partition that eventually reduces the

number of DTs in the workload. ElasTraS uses a dynamic partitioning protocol which

automatically splits and merges data partition, as well as replicating global tables. The

main idea is to use a key group abstraction model which allows an application to specify

which the data tuples on-the-fly that it wants for transactional access [106].

A live data migration technique, Albatross [108], is also proposed, which identifies

four primary associated costs – 1) service unavailability, 2) the number of failed re-

quests, 3) the impact on response time, and 4) data transfer overheads. At first, the

live migration procedure involves migrating the cache data for running transactions,

which reduces the impacts of transactional latency. Next, the states of migrating trans-

actions are copied from the source to the destination partition, where the associated

data items have been already migrated.

To migrate the entire logical partition between the DSs, a partition migration tech-

nique, Zypher [109], is proposed, which performs off-line partition migration by stop-

ping all transactional executions and freezing any structural changes in the schema.

Detailed evaluations of both synchronous and asynchronous data migrations are per-

formed by the authors in [110]. Elmore et al. have proposed Squal [110, 111], which

similarly provides efficient and fine-grained live reconfiguration of partitioned OLTP

DDBMS. In Squal, a distributed reconfiguration process starts by any designated DS

in the cluster which has been affected by load imbalance. A global lock is acquired

among the DSs participating the reconfiguration process, followed by either a reactive

or asynchronous migration.

Chen et al. [112, 113] have proposed Scheduling Online Database Repartitioning

(SOAP), which primarily aims to reduce the repartitioning time and cause fewer im-

pacts to the ongoing transactions. SOAP mixes repartitioning operations with normal

transactional executions with two distinct approaches – 1) by prioritising repartitioning
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transactions in the processing queue, and 2) by scheduling repartitioning transactions

at the system idle time. A feedback control loop is combined with the proposed frame-

work to determine the orders and frequencies of the repartitioning transactions for

optimising the scheduling decisions. The repartitioning decisions can come from the

automatic database design tool or directly from the database administrator.

Although the abovementioned dynamic repartitioning schemes can support elastic

transaction processing in a graceful manner, due to the complexities involved in identi-

fying the ownership of data tuples from individual DTs, they are not practical to use for

OLTP applications in real-time. OLTP workloads often need simultaneous repartition-

ing of the underlying database to reduce the adverse impacts of DTs within the system.

In most cases, it is, therefore, necessary to make proactive data placement decisions,

in order to avoid potential bottlenecks in scalable transaction processing.

2.6.4.2.2 Dynamic Repartitioning for Social Network Workloads

Pujol et al. [114, 115] utilise graph min-cut based clustering for partitioning On-line

Social Network (OSN) databases by combining both replication and partitioning mech-

anisms in a middleware called SPAR. Social network relationships between the end-

users are represented by graph, then graph min-cut clustering is used to create clusters

containing users who are neighbours of one other. Finally, the clusters are placed into

separate DSs to reduce the span of frequently occurred queries. However, dynamic

user level interactions in a social network are not considered in SPAR; therefore, it is

unable to reduce the impacts of DTs, deriving from end-users’ interactions in an OSN.

This limitation is captured in [116] by including both the OSN structure and user

interactions when constructing hypergraph networks for graph min-cut clustering. It

includes multi-way social interactions between the users, and creates a temporal activ-

ity hypergraph, where a hyperedge represents an activity transaction and the vertices

represent the tuples accessed by it. The proposed framework is evaluated under a Twit-

ter workload in a Cassandra [61] cluster, which shows good adaptability of the graph

min-cut based workload-aware data repartitioning for a social network workload.

Database repartitioning strategies for OSN workloads are also studied in [117],

where two primary aspects of workload-aware repartitioning are addressed – 1) how
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to reduce the latency of DTs for following a Zipfian [118] distribution in the workload,

and 2) high temporal locality of DTs. To address the first challenge, a Two-Tier Hashing

technique is used to identify the vertices with large degree distributions, and distribute

them within the DSs, in such a way that increases the parallelism for large fan-out

transactions, while preserving the vertices with smaller degrees locally. For addressing

the second challenge, a workload-aware repartitioning scheme is proposed which at-

tempts to keep the vertices that often interact with each other, in the same physical DS,

thus reducing the number of DTs.

The proposed partitioner in [117] distributes transactional edges connected with

a popular vertex within a fixed number of DSs to control the transactional fan-out.

Furthermore, the partitioner derives a special sub-graph from the workload network

that is most active, and only uses it for clustering purposes using METIS [89]. The

primary shortcoming in this scheme is that the fan-out calculation process does not

consider the server-level data distributions, nor does it control the amount of data to be

migrated over the network during each repartitioning cycle. Therefore, with the high

volume of OSN workload, it will be challenging to process the transactions concurrently

while, at the same time, keeping the frequently occurring tuplesets together when the

DSs become overloaded and are busy performing large volumes of data migrations.

2.6.4.2.3 Graph Theoretic Dynamic Repartitioning

Hyper-graph based OLTP database Partitioning Engine (HOPE), which is a hypergraph

based dynamic repartitioning scheme is presented in [119–121]. For a given workload,

it constructs a weighted hypergraph, and then iteratively performs network clustering

in order to produce feasible and near-optimal clustering decisions. Following each it-

eration, HOPE evaluates the clustering feasibility, takes administrative feedbacks, and

then either performs data repartitioning or a hypergraph refinement. HOPE’s unique

workload analysis involves constructing a minterm predicate7 predicate list with cor-

responding transactional access counts, which are then used to construct a weighted

workload network. Finally, hMETIS [90] graph min-cut library is used to cluster the

hypergraph and any other refinements incrementally. For feasibility analysis of the

7 A minterm predicate consists of the set of all predicates with conjunctions and negations that are used
to describe horizontal fragments of a relation in a DDBMS.
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output decisions, a combined value of data and workload skews, resulting for each of

the given clustering outcome, is calculated as follows:

Sk =
1
n

n

∑
i=1

θ

(
|DSi
|− 1

n

n

∑
i=1
|DSi
|

)2

+(1−θ)

(
|TSi
|− 1

n

n

∑
i=1
|TSi
|

)2
 (2.4)

where |DSi
| and |TSi

| are the size of the ith cluster (i.e., data volume size of the ith

destination server) and the number of transactions accessing it, respectively. 0≤ θ≤ 1

is the exponential averaging coefficient to prioritise between data and workload skews.

Shang et al. [122] investigate workload network behaviours in graph databases by

exploring the change in observation window sizes over time to find a better graph-cut

based dynamic repartitioning scheme. As graph algorithms do not typically access all

the vertices in a given workload network, the static graph repartitioning scheme is

unable to achieve a good workload balance within the DDBMS cluster. Nine popular

graph algorithms are categorised under three groups to examine using the proposed

framework. The primary observation from their study is that, by utilising the frequently

accessed tuplesets, it is possible to use the previous observation window as the basis

for creating a graph superset in the current window. The experimental results show

that mining the most frequently accessed tuplesets from the consecutive observation

windows is sufficient to build a high level representative graph network which is just

sufficient to produce high-quality data repartitioning decisions.

2.6.4.2.4 Incremental Dynamic Repartitioning

Elasca [123], yet another dynamic repartitioning scheme, utilises a workload-aware

optimiser that predicts efficient partition placement and migration plans. The opti-

miser minimises the computing resources required for elastically scaling-out the clus-

ter, and maintains server-level load-balance. Given the current system statistics, the

optimiser finds an appropriate assignment Ã for partitions to redistribute them among

the DDBMS cluster after a new DS is added or an existing DS is removed as below:

min
Ãi j

θ∑
∀ j

∑
∀i∀t

(
|Ãt+1

i j − Ãt
i j||P |

t
i

)
+(1−θ)∑

∀ j

∣∣∣∣∣
(

∑
∀i∀t

Ãt+1
i j lt

Pi

)
+ lt+1

Si
− l̂t+1

Si

∣∣∣∣∣ (2.5)
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where |P |ti and lt
Pi

are the size and the load generated by partition i and at time t respec-

tively, and lt+1
Si

and l̂t+1
Si

represent the projected average overhead and CPU load on a

single DS, respectively, at time t+1. The first part of the above equation minimises data

migrations whereas the second part represents the load per DS. 0 ≤ θ ≤ controls the

balance in optimising between data migrations and server-level load-balance. Elasca

is evaluated by implementing as a component within VoltDB [69], where it shows ef-

fectiveness in a parallel OLTP execution environment. However, Elasca treated the

workload as a black-box and did not dive deeper to exploit transaction-level optimi-

sations while migrating partitions within the cluster. Furthermore, it did not consider

minimising the number or impacts of DTs.

Kumar et al. [93, 124, 125] have proposed SWORD – a workload-aware incremental

data repartitioning framework. To the best of our knowledge, it is the first scheme

which performs exhaustive incremental data migrations, as the workload changes, in

order to reduce the number of DTs under a target threshold. The proposed algorithm

represents the transactional workload as a compressed hypergraph network, where

the vertex ids are hashed by their primary key to collapse as a compressed vertex,

and hyperedges linking those compressed vertices form compressed hyperedges. By

abstracting the workload network at a coarser level, and then utilising graph min-cut

to create balanced clusters, thereby further minimising edge cuts, this in turn reduces

the percentage of DTs in the system. After this one-time graph-cut based repartitioning,

selective compressed vertex pairs are swapped between the DSs to maintain the initial

gains achieved by the min-cut as well as server-level load-balance. At every iteration,

when the percentage of DT reaches a triggering threshold, a priority queue is formed

with the compressed hyperedges ordered by their maximum contributions in the cut,

which is defined as Ce. Pairs of candidate compressed vertices are preselected for

swapping between a pair of DSs based on the swapping gain. Let Sg be the swapping

gain within a DS pair (X ,Y ) defined as follows:

Ce =
w(E ′h)

∑i w(e′hi
)

(2.6)

where w(E ′h) is the weight of ith compressed hyperedge in the cut, and the weight value
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is represented by the sum of frequencies of the hyperedges reside in i.

SgX→Y
= w(E ′h)−

(
∑
i∈Y

w(e′
on
hiY

)−w(E ′h)

)
= 2w(E ′h)−∑

i∈Y
w(e′

on
hiY

)

(2.7)

where w(e′
on
hiY

) is the sum of weights of compressed hyperedges, incident on compressed

vertex e′hi
, in server Y . Swapping gains are calculated for each compressed hyperedge

from the queue, and exhaustive checks made as to whether swapping a particular pair

can achieve any gains in terms of reducing the percentage of DTs in the overall system.

Although the exhaustive incremental repartitioning algorithm in SWORD aims to incre-

mentally decrease the percentage of DTs in a system, it does not guarantee progress in

cases where no suitable pairs are found to achieve a swapping gain. Furthermore, the

solution only relies on the initial min-cut result, which changes over time as the work-

load changes, and at each iteration the algorithm has to exhaustively search through a

large solution space, which makes it difficult to apply in practice.

2.6.4.2.5 Dynamic Repartitioning for In-memory OLTP Databases

More recently, Taft et al. have developd E-Store [126], which provides a two-tier elas-

tic data partitioning support for cold and hot data tuples within an in-memory OLTP

DDBMS. E-Store uses a two-phase monitoring technique where, in phase-1, system

level metrics are monitored until they have reached a certain threshold, then phase-2

is initiated. In phase-2, tuple-level monitoring is started which reveals the top k fre-

quently accessed tuples as the hot data objects. Next, a two-tier bin packing [127]

algorithm is used to generate the optimal placement of tuples to the partitions. It

calculates partition-level loads, in terms of the access counts for hot and cold data, fol-

lowed by finding optimal placements for cold tuples in blocks to partitions, and small

clusters of hot tuples to targeted partitions. The assignment of tuples to partition is

performed via one of three distinct ways – 1) a greedy approach assigns hot tuples

to partitions incrementally which are less loaded; 2) a greedy extended approach first

applies the greedy scheme, and if the cluster is still imbalance, then cold blocks from

the imbalanced partitions are redistributed to the partitions with lower loads; and 3)
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a first fit approach mixes up hot and cold tuples together in a single partition which,

in some situations, leads to better resource utilisation. E-Store utilises Squal [110]

for live data migration purposes. Experimental results show that E-Store is capable

of handling transient hotspots, time varying skewness, sudden workload spikes, and

hockey stick effect [128], as well as perform database reconfiguration faster then other

NewSQL [129] systems. Serafini et al. have developed Accordion [130], a dynamic data

placement scheme for in-memory OLTP DDBMS, by considering the association be-

tween partitions which are transactionally accessed together more frequently. Based on

the estimation of server-level load statistics and associations on the maximum through-

put, Accordion finds partition placements which maintain server-level load-balance,

minimise inter-server data migration, and minimise the number of servers involved.

The partition placement problem is formulated as Mixed Integer Linear Programming

(MILP) problem and always find a solution if the problem size is feasible. However,

none of these abovementioned schemes make decisions based on actual repartitioning

KPIs that have proper physical interpretations, and directly relate to the key challenges

in reducing the impacts of DTs with minimum skew in data distributions.

2.6.4.2.6 Dynamic Repartitioning for Automatic Database Management

With the gaining popularity of shared-nothing OLTP DDBMS, large-scale OLTP ser-

vice providers have developed their own implementations of dynamic repartitioning li-

braries for automatic database management. Most of these toolkits use shared-nothing

MySQL DSs and are not workload-aware (i.e., not continuously analysing workload dy-

namics for repartitioning decisions). JetPants [51], which was originally developed by

Tumblr – a social networking platform, is an automatic tool to manage high availability,

partitioning management, load balancing, and repartitioning, and lookup. It primarily

supports range-partitioning for standalone MySQL system. Vitess [3, 131] provides sup-

port for automatic partitioning of shared-nothing MySQL DDBMS, and is currently used

to handle YouTube’s video streaming workload. Apart from providing features like high

scalability, automatic database connection pooling, automatic failovers and backups,

it also assists in on-line repartitioning and data migrations with minimum read-only

downtimes. Gizzard [52] is a similar middleware, originally developed by Twitter to

manage automatic data partitioning, elastic migrations, and partition-level replication
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through a declarative replication tree across a range of shared-nothing RDBMSs. It

uses a forwarding table to store key-partition mappings for data lookup, and provides

an eventual consistency guarantee for transactional operations. Finally, MySQL Fab-

ric [132] is a recent development by MySQL to support high availability and scalability

requirements for real-time OLTP applications in the Web. Apart from providing auto-

matic failure detection and transparent failover, it supports administratively defined

repartitioning and load balancing across multiple MySQL server groups for range- and

hash-based initial data partitioning.

2.7 A Workload-aware Incremental Repartitioning Framework

Based on the discussion above, a conceptual framework for workload-aware in-

cremental repartitioning is constructed which should cover the important aspects, de-

scribed below, drawing directly on the existing literature. Based on these aspects, the

repartitioning scheme should be developed and configured in such a way that it satis-

fies the actual purpose of the particular transaction processing system. Later, we will

show to what extent the repartitioning approaches, discussed above, can fulfil these

aspects, and this will help us to understand the gaps in existing research as well as a

way forward to address them. The different aspects of the conceptual framework are

presented as follows:

(i) Design Aspects:

– Transparent (TRS): The repartitioning process is entirely independent from the

underlying DDBMS and operates without interfering in the database opera-

tions, therefore entirely abstracting the repartitioning complexities.

– Shallowly-integrated (SIN): The repartitioning process can leverage the under-

lying DDBMS architecture for effective decision making by shallowly integrat-

ing the repartitioning framework to the database cluster.

– Deeply-integrated (DIN): The repartitioning framework is implemented as an

integral component of the DDBMS where transactional execution directly relies

on its operational capability.
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(ii) Granularity Aspects:

– Level of abstractions in repartitioning approaches (Implicit (IMP)/Explicit (EXP)):

The repartitioning framework can follow either an implicit workload clustering

based approach using graph min-cut techniques, or an explicit heuristic based

approach for finding approximate or near-optimal outcomes.

– Level of abstractions in workload representations: For graph min-cut based repar-

titioning, the workload networks can be constructed based on the level of

abstractions required to understand the tuple-level transactional interactions.

Networks can be represented as Graph (GR), Hypergraph (HR), Compressed

Graph (CGR), and Compressed Hypergraph (CHR). Compressed to simplified

abstractions provide coarse-to-fine–grain workload granularity.

– Level of abstractions in data migration approaches (Partition-level (PDM)/Tuple-

level (TDM): Depending on the construction and level of abstractions of the

repartitioning framework, the data migration process can take place at differ-

ent levels, where higher-level (cluster-to-server) abstractions can minimise the

physical data migration costs, and lower-level (partition-to-partition or cluster-

to-partition) abstractions achieve better data or workload distribution balance.

(iii) Performance and Optimisation Aspects:

– Impacts of distributed transactions (DT): The primary repartitioning objective

for an OLTP system is to reduce the number of DTs in the workload; however,

without physically interpreting how DTs are impacting the system in a rational

way, it is difficult to built a novel repartitioning framework which can incre-

mentally reduce the overall impacts of DTs over time.

– Load balance (Server-level (LBS)/Partition-level (LBP)): The framework should

be able to balance data tuple distribution, as well as workloads, access at both

server- and partition-level. Without balancing partition-level distribution, data

and partition migration techniques will not be able to play effective roles in

practical deployments.

– Data migrations (DM-ON/DM-OFF): A repartitioning framework must provide

effective means for supporting both on-line and off-line data migrations based
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on the actual requirements, while minimising the cost of transaction through-

put, latency, and network resource consumption.

(iv) Management Aspects:

– Data lookup (Centralised (CLU)/Distributed (DLU)): A centralised lookup mech-

anism is effective for small-scale transactional processing; however, large-scale

parallel executions of real-time application requests need a scalable and de-

centralised approach that provides consistent information and also reduces the

number of lookups required to find a tuple in a partitioned database.

– Incremental repartitioning cycle (Static (STC)/Incremental (INC)): The reparti-

tioning process needs to be incremental in order to handle dynamic workload

characteristics, sudden data spikes, and architectural changes in the underly-

ing DDBMS. Static repartitioning approaches are primarily suitable at the initial

stage of system development when the workload characteristics are not fully

known in advance. However, once the system has been up and running for an

extended period of time, it is necessary to adopt an incremental approach to

dynamically manage workload-related changes during daily operating periods.

– Incremental repartitioning schedule (Implicit (IMP)/Explicit (EXP)): The reparti-

tioning scheme must provide mechanisms to administratively (i.e. explicitly) or

automatically (i.e., implicitly) detect workload changes and measure the poten-

tial database metrics to trigger a repartitioning cycle. It also involves whether

to perform on-/off-line data migrations immediately or wait for system idle

times.

Table 2.6 compares twenty existing repartitioning schemes based on their strengths

and weaknesses, in light of the abovementioned conceptual model of workload-aware

incremental repartitioning. The abbreviations used in Table 2.6 are based on the

acronyms presented (inside the rounded brackets) while describing different aspects

of the proposed framework.
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Table 2.6: A comparison of existing repartitioning schemes for shared-nothing OLTP systems
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Schism [101, 102, 133] DIN 3 GR EXP STC EXP DM-OFF CLU DT+LBS

MESA [98] DIN 3 – – STC EXP – – –

Horticulture [16, 134] SIN 3 – EXP STC IMP DM-OFF CLU LBS

SPAR [115] SIN 3 HR EXP INC IMP DM-OFF CLU DT

HOPE [119–121] SIN 3 HR EXP STC IMP DM-OFF CLU DT+LBS

Dtxn [103] DIN 3 – EXP STC IMP on-line CLU DT

Elasca [123] SIN 3 – EXP STC EXP DM-OFF CLU DT+LBS

ElasTras [107] DIN 3 – EXP INC IMP on-line CLU DT+LBS

Wind [122] SIN 3 GR EXP STC EXP DM-OFF CLU DT

Lute [92] SIN 3 GR EXP STC EXP DM-OFF CLU DT

Squal [110, 111] TRS 3 – EXP INC IMP on-line CLU DT+LBS

SWORD [93] TRS 3 CHR EXP INC IMP DM-OFF CLU DT+LBS
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SOAP [112, 113] SIN 3 – EXP STC EXP DM-OFF CLU DT

H-Store [68, 135] TRS – – IMP INC IMP DM-OFF CLU LBP

E-Store [126] TRS 3 – IMP INC IMP DM-ON CLU DT+LBP+DM

Accordion [130] TRS 3 – IMP INC IMP on-line CLU DT+LBP

JetPants [51] TRS – – IMP INC IMP DM-OFF CLU LBP+DM

Vitess [3] TRS – – IMP INC IMP DM-OFF CLU LBP+DM

Gizzard [52] TRS – – IMP INC IMP DM-OFF CLU LBP+DM

MySQL Fabric [132] TRS – – IMP INC IMP DM-OFF CLU LBP
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2.8 Conclusions

Designing a scalable, interactive, and multi-tier Web application requires a high

level of understanding of the life-cycle management of a shared-nothing distributed

OLTP system, as well as the dynamics of workload characteristics. In this chapter,

the architecture, deployment, transactional processing, issues and challenges in a dis-

tributed computing environment for OLTP DDBMS are discussed in detail. Further-

more, two primary data management architectures – replication and partitioning and

architectures and issues related to multi-tier OLTP applications for achieving high scal-

ability in the Web are also discussed. This elaborate discussion highlights the signif-

icance and necessity of workload-aware incremental database repartitioning, in par-

ticular, within a shared-nothing DDBMS, for serving real-time and interactive Web ap-

plications. Finally, a number of existing repartitioning schemes from the literature

are presented, which leads in constructing a conceptual framework for the workload-

aware incremental repartitioning process. In the following chapters, we will develop

several incremental repartitioning schemes by covering different aspects of the aboved-

mentioned conceptual framework, and filling out the gaps remaining in the existing

literature, as highlighted in Table 2.6. In next chapter, we discuss and present the

architecture system of the proposed workload-aware incremental repartitioning frame-

work. This includes a novel transaction generation model capable of controlling trans-

actional repetitions and unique transaction generations. Finally, a set of repartitioning

KPIs is presented with their appropriate physical interpretations which are necessary

to observe the characteristics of a repartitioning process.



Chapter 3

System Architecture, Workload
Modelling, and Performance
Metrics

In the previous chapter, the background, architectures, and challenges of distributed

OLTP databases are discussed in detail, as well as data repartitioning techniques, along

with the existing approaches from the literatures to tackle many of the impending

challenges. Furthermore, a conceptual framework for a workload-aware incremental

repartitioning process is also presented focusing on the design, granularity, perfor-

mance, and management aspects. In this chapter, the proposed conceptual framework

is elaborated with details on implementing an end-to-end demand-driven incremental

repartitioning scheme, developing workload models for simulation based studies, and

defining key performance metrics (KPIs) for evaluation purposes.

3.1 Introduction

In the previous chapter, a conceptual framework for a workload-aware incremental

repartitioning scheme is outlined to overcome the shortcomings of existing approaches.

In this chapter, a novel incremental database repartitioning framework is introduced,

along with detailed problem formulation and two specific algorithmic strategies. The

introduction of the unique distributed data lookup scheme, based on the concept of

data roaming, enables the use of both range- and consistent-hash based initial data par-

titioning techniques. The simulation based evaluation process is discussed in depth

where a distributed OLTP database simulation toolkit, named OLTPDBSim is intro-

duced. OLTPDBSim uses the novel transaction generation model that is capable of

restricting a target number of unique transaction generation. Later, three KPIs are in-

troduced that measure 1) the impacts of DTs, 2) the server-level load-balance, and 3)

71



§3.2 System Architecture 72

the cost of inter-server data migrations. The capabilities of these metrics are discussed

in detail with appropriate physical interpretations to relate the measures to real-world

scenarios. Overall, the contributions in detailing the functional building blocks of the

proposed incremental repartitioning framework will enable the readers to comprehend

the claims of our proposed repartitioning schemes in the following chapters.

The rest of the chapter is organised as follows. Section 3.2 presents a high-level

system architecture of the proposed incremental repartitioning framework. Section 3.3

formally defines the repartitioning problem using mathematical notations and also dis-

cusses the evaluation process in a simulated environment. Section 3.4 details the char-

acteristics of two particular OLTP workloads—TPC-C and Twitter, and presents a novel

transaction generation model for simulation purposes as well. Section 3.5 discusses

three unique KPIs in great detail in order to evaluate the quality of the proposed incre-

mental repartitioning framework. Finally, Section 3.6 summarises the chapter.

3.2 System Architecture

An overview of the proposed workload-aware incremental framework, shallowly-

integrated with a shared-nothing distributed OLTP system, is presented in Figure 3.1.

Following the high-level overview of an OLTP system shown in Figure 2.1, four primary

components are defined in a workload-aware repartitioning approach that work along

side one another during the entire process, as outlined in Section 3.2.1.

3.2.1 Workload Processing in the Application Server

Incoming client requests for application data are distributed at the AS level. Modern

applications use an elastic load-balancer to dynamically distribute end-users’ requests

based on AS-level resource consumptions, application-level latency criteria, and geo-

graphical locations. The Workload Balancer component in each AS further balances

the transactional workload to handle simultaneous TCP connections asynchronously

with the client [136]. Load-balance operations are further extended to store and dis-

tribute cache data objects (e.g., using memcached [137], Redis [138], etc.) and to set

appropriate cookie information at the client-end.
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Figure 3.1: A high-level architecture of the shared-nothing distributed OLTP systems with
workload-aware incremental repartitioning

To handle the underlying database partitioning schemes, partition-aware applica-

tion logics are implemented using off-the-shelf libraries like Oracle EclipseLink [139]

or Apache OpenJPA [140]. These libraries provide support for accessing range- and

hash-partitioned data in an RDBMS, and APIs for the developers to utilise partitioning

information. Finally, TM in each AS schedules, coordinates, and executes the transac-

tional operations i.e., managing DTs issued by the application codes. Apparently, the

transactional workload processing in the AS layer is entirely isolated from the incre-
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mental repartitioning process, and neither has any undue impact on the other.

3.2.2 Workload Analysis and Repartitioning Decision

Streams of transactional logs are either continuously pulled by the Workload Anal-

yser Node or periodically pushed by the AS. Transactions are then pre-processed for

analysis either in a time- or workload-sensitive window. The Analyser Node can also

cache the most frequently appeared tuple locations in a workload-specific catalogue

file, which is kept updated on inter-partition data migrations. Upon triggering the in-

cremental repartitioning scheme, the Analyser Node starts processing the transactional

logs to generate an appropriate repartitioning decision.

3.2.3 Live Data Migration

Based on the output repartitioning decision, corresponding data migration plans

are issued, which are then executed by the Data Tuple Migrator component. To execute

the data migration plan without interrupting the ongoing transactional operations and

providing an inconsistent data lookup result, the migration operations are carried out

on-the-fly to migrate tuples between the logical data partitions within and across the

DSs. At first, the migrating tuple is replicated to the target partition, and then the local

data lookup tables residing in the source and destination partitions are updated in a

single step to prevent any data inconsistency.

3.2.4 Distributed Data Lookup

As discussed in Chapter 2, any centralised data lookup mechanism is always a bot-

tleneck achieving high availability as well as scalability requirements. In this thesis, we

propose a sophisticated distributed data lookup that distributes the data tuple lookup

tasks at the individual database partition level. Thus, data migration operations are

totally transparent to DT processing and coordination. We adopt the concept of roam-

ing [141] used in mobile telecommunication networks, where the location of a roaming

mobile subscriber is kept updated to two different Home Location Registers (HLRs) in

local and foreign networks. When a subscriber moves from one operator’s network to



§3.2 System Architecture 75

a foreign operator’s network, then the mobile user is authenticated and authorised to

use telecommunication services under this new network. If the foreign operator has

an active roaming agreement with the local operator, then the subscriber is allowed to

access the voice, data, and messaging services in the foreign network. Once the roam-

ing user is whitelisted, the addresses of the network servers that are currently serving

this user are stored and kept updated in the foreign HLR. Now, for example, if another

mobile subscriber from the local network wants to make a voice call to this roaming

user, then the local Mobile Switching Centre (MSC) server first looks up the subscriber

location information in its cache, and, if not found, it then sends a request to the local

operator’s HLR. When the local HLR notices this lookup request is designated for a user

that is currently roaming to a foreign network, it then forwards the address of the for-

eign HLR to the local MSC. The local MSC then directly communicates with the foreign

HLR to retrieve the address of the MSC server serving the roaming user. Once the com-

munication link between the local and foreign MSCs is established, the roaming user

is paged to answer the incoming voice call. A similar technique is used to implement

roaming in Mobile IPv6 [142] networks with the aid of care-of address (CoA) [143].

We adopted the abovementioned approach for implementing a distributed data

lookup in the proposed workload-aware incremental repartitioning architecture. At

present, distributed databases support data lookup operations either in a centralised

way in the range, or in a distributed way in the hash/consistent-hash partitioned [2]

databases. To adopt on-the-fly physical data migrations for the repartitioning pro-

cess, the data lookup technique in the range partitioned databases needs to be scalable

and consistent enough to handle simultaneous updates in the lookup table, which is

hard to achieve in such centralised systems. On the other hand, data lookup (espe-

cially for random read queries) using consistent-hash keys is much more scalable in

the consistent-hash partitioned databases. However, there is no inherent mechanism

in the lookup process that handles data roaming between the partitions. Presently,

most of the OLTP applications use either a range partitioned database, which handles

range queries through its centralised lookup mechanism, or a hash/consistent-hash par-

titioned database that handles such queries by writing complex application level codes.

Therefore, there is always a dilemma for application developers to choose a particular

type of database for serving multiple transactional query patterns.
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Figure 3.2: A distributed data lookup technique for roaming tuples with a maximum of two
lookup operations in home and foreign data partitions

We propose a simple solution to this problem by introducing a partition-level lookup

table to keep track of the roaming data while incrementally repartitioning the database

to adopt workload changes. By maintaining a key-value list of roaming and foreign

data ids with their corresponding partition ids, individual partitions can consistently

answer the lookup queries. Tuples are assigned a permanent home partition id for their

lifetime when the database is initially partitioned using a range, hash, or consistent-

hash technique. The Home partition id only changes when a partition splits or merges,

and these operations are overseen by the partition-aware application libraries (shown

in Figure 3.1). Thus, scaling-out the database storage layer is independent of the dis-

tributed lookup scheme. As the tuple locations are managed by their home partitions,

data inconsistency can be strictly prevented. Unless a tuple is fully migrated to another

partition, and its roaming location is consistently written in the home partition’s lookup

table entry, the old partition continues to serve incoming data lookup requests. Once

done, the old serving partition deletes the tuple from the storage.

When a tuple migrates to another partition within the process of incremental repar-

titioning, only its respective home partition needs to be aware of it. The target roaming

partition treats this migrated tuple as a foreign tuple and updates its own lookup table

accordingly. Meanwhile, the original home partition marks this tuple as roaming in

its lookup table, and updates its current location with the roaming partition’s id. As

shown in Figure 3.2, the lookup process always sends a lookup request to a tuple’s
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home partition for its location information. If the tuple is not found in its home loca-

tion, then the lookup table entry returns the most recent roaming location of the tuple,

and redirects the lookup query to the roaming partition. Therefore, a maximum of two

lookup operations are required to find a tuple within the entire database. Note that,

through caching, an application can directly work with the roaming partition for any

subsequent request for that tuple. If the tuple has been migrated again in the mean-

time, the direct request will fail, the cache is cleared, and a new request is made to the

home partition as usual. With a high probability, individual data migration in the in-

cremental repartition process requires updating the location information in the lookup

tables of up to three RMs that are serving the home partition and current and target

roaming partitions. Finally, this novel idea of a distributed data lookup, using the con-

cept of roaming, enables the use of consistent-hash based initial data partitioning for

OLTP databases that not only ensures high scalability but also reduces the burden on

the application developers for large-scale distributed systems development in practice.

3.3 Workload-Aware Incremental Repartitioning

In this section, the problem of workload-aware incremental repartitioning, related

properties, and relevant terms are formally defined.

3.3.1 Problem Formulation

Let S = {S1, ...,Sn} be the set of n shared-nothing physical DSs where each Si =

{Pi,1, ...,Pi,m} denotes the set of m logical partitions residing in Si. Let the set of

data tuples that reside in Pi, j be denoted by DPi, j
= {δi, j,1, ...,δi, j,|DPi, j

|}. Collectively,

DSi
=

⋃
∀ j DPi, j

and DS =
⋃
∀i DSi

denote the set of data tuples in a DS Si and the en-

tire partitioned database, respectively, where |DS| represents the data volume size of

the entire database. For the sake of simplicity, the data volume size of the tuples is

considered of equal unit size.

Let W be the workload observation time window consisting of |W |= R W transac-

tions at the time of repartitioning where R is the transaction generation rate. Let the

transactional workload in W be represented by T = {τ1, ...,τ|T |} where τi’s are the |T |
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unique transactions observed in W . Furthermore, the set of DTs and NDTs are respec-

tively denoted as Td and Td̂ . Thus, T = Td
⋃

Td̂ and Td
⋂

Td̂ = φ where Td = {τd1
, ...,τd|Td |

}

and Td̂ = {τd̂1
, ...,τd̂|Td̂ |

}. A DT τdi
and a NDT τd̂i

can appear (i.e., repeat) multiple times

within W , hence their frequencies can be represented by f (τdi
) and f (τd̂i

), respectively.

Data tuples of a transaction τ may reside in one or more servers. Let 1 ≤ s(τ) ≤ |S|

denote the span of τ. For DTs, s(τdi
)> 1 and for NDTs s(τd̂i

) = 1.

3.3.1.1 Problem Definition

In OLTP, as alluded to in Section 2.2.3 of Chapter 2, DTs create a major bottleneck

for the system to reach eventual consistency due to the potential delays in arriving at

consensus while executing a commit or abort operation. The end-users ultimately suf-

fer from both potential inconsistency and the delays that are often collectively referred

to as the impacts of DTs, Id . Clearly, the span s(τ) of a transaction τ, defined as the

number of servers where the data tuples of τ spread across, contributes directly to Id .

Collectively, the cost of a span is proportional to the average span of all DTs under

consideration, i.e., Id ∝ s(τd).

The impacts of DTs can be kept in check by ensuring that s(τd)� |S|. As the system

has no control on how the end-users initiate a transaction, the only effective way to

reduce Id is by consolidating the span of DTs to fewer servers by physically moving

some of their data tuples. Such reactive data migration plans may put the inter-server

communication networks under stress, causing network delays that may lead to po-

tential SLA violations. This is referred to as the indispensable data migration cost,

Dm, associated with minimising the impacts of DTs. Data migration plans are expected

to be triggered simultaneously for a large number of targeted DTs that take place in

parallel so long as the sending- and receiving-end servers of concurrent data transfers

remain mutually exclusive. Collectively, the cost of data migration is proportional to

the average number of cycles needed to move all the data tuples targeted.

Data migration plans may also severely affect the overall balance of server-level

loads when the data tuples are not eventually stored evenly across all servers, lead-

ing to potential increases in rate of hardware failure. In the long run, some of the
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servers may be used significantly more than others and reach their life expectancy ear-

lier, leading to unplanned interruptions of services. This is referred to as the cost of

(disturbing) load balancing, Lb, which is proportional to the variance in data volume

across the servers. We now define the key optimization problem addressed in this thesis

as follows.

Main Problem: How to minimise the impacts of DTs with minimal data migration while

maintaining the load balancing of the servers.

Sub-problem 1: How to detect whether the impacts of DTs of a system has crossed its

critical level and how often the system should be checked.

Sub-problem 2: How to trade-off the impacts of DTs and the associated costs of data

migration and server-level load imbalancing.

In order to address the problems adequately, we need to first develop specifica-

tions and means to estimate Id , Dm, and Lb accurately. These estimates should also be

normalised appropriately so that they are not affected by the high scalability of OLTP

systems. The first part of Sub-problem 1 may then be deemed as straightforward:

namely, setting up some user-defined thresholds on these metrics after considering the

workload models and database schemas. The second part of Sub-problem 1 involves

investigating both proactive and reactive approaches for triggering incremental repar-

titioning. We plan to address Sub-problem 2 using both graph-theoretic and proce-

dural approaches, focusing on computational efficiency and lower-bounds. Successful

implementation of incremental repartitioning is dependent on designing an efficient

data lookup mechanism, which is transparent to the end-users from the data migration

plans. This chapter has already presented a novel data lookup mechanism from that

perspective in Section 3.2.4.

3.3.2 Incremental Repartitioning

In this thesis, three strategies for incremental repartitioning are used. The first

strategy takes the transactional workload as an input and represents it as a workload

network (e.g., graph or hypergraph). The workload representations are then clustered

using graph-cut libraries that minimise the edge cuts. This eventually reduces the num-

ber of DTs in the workload while the output clusters are distributed accordingly within
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the logical data partitions in order to achieve load-balance across the DSs. In short, the

graph-cut based strategy is an implicit approach for repartitioning the database where

minimisation of DTs and load-balance come as the by-products. However, this ap-

proach does not guarantee minimum data migrations during the repartitioning process

and there is no explicit control over how to maximise the other objectives of minimising

the overall impacts of DTs in the system and load-balance.

The second approach, on the other hand, operates exhaustively over the given

transactional workload and uses a specific heuristic either to maximise a specific repar-

titioning objective or to balance multiple objectives by minimising their cost of per

data migration. This explicit repartitioning strategy is particularly useful for situations

when a system requires to achieve any particular repartitioning goal while performing

minimum physical data migrations over the network.

Finally, in the third approach, a frequent tupleset mining technique is used to re-

duce the workload network size for making on-demand and more frequent repartition-

ing decisions. Furthermore, both graph theoretic and greedy heuristic approaches are

combined in this latter approach, where graph a min-cut technique is used to cluster

compact workload networks created through transactional mining, and transactional

associativity based ranking is used to determine the best data migration plan for on-

demand incremental repartitioning.

3.3.3 Evaluation Process

The performance of the proposed incremental repartitioning schemes is evalu-

ated using simulated shared-nothing distributed RDBMS environments under synthetic

OLTP workloads. A novel simulation platform called OLTPDBSim is designed and de-

veloped from scratch using the Stochastic Simulation in Java (SSJ) [144] library. A

unique transaction generation model is developed and incorporated with OLTPDBSim

for simulating different variants of transactional workloads. Using a parametric repre-

sentation of the workload, underlying database, and the system under test, a simulated

shared-nothing OLTP environment is created. It contains S physical servers, and an ini-

tial database where the tables are partitioned into P logical partitions using either



§3.4 Workload Characteristics and Transaction Generation 81

Database  

Schema 

Transaction  

Profile 

Data 

Popularity 

Profile 

Workload Generation 

Synthetic  

Data Tuple 

Generation 

Distributed 

Database Simulation 

(SSJ Engine) 

Incremental  

Repartitioning 

Partition  

Management 

Data Migration 

Management 

Performance 

Metrics  

Collection 

Unique 

Transaction 

Generation 

Model 

Figure 3.3: An overview of the OLTPDBSim simulation framework and its components

range or consistent-hash based initial data partitioning. Figure 3.3 presents a high-level

overview of the OLTPDBSim simulation framework.

3.4 Workload Characteristics and Transaction Generation

In this section, the characteristics and specific implementations of two mainstream

OLTP workloads – TPC-C and Twitter – are presented. Later, a novel transaction gener-

ation model is proposed with a detailed sensitivity analysis, along with specific reviews

of the existing literature on synthetic workload generation.

3.4.1 Workload and Transaction Profile

One of the major components in OLTPDBSim is the OLTP workload generation pro-

cess that involves synthetic data tuple generation based on a data popularity profile

and database schema. This is followed by workload generation of specific types based

on their transaction profiles, and controlled by the transaction generation model. To

evaluate the performance of various incremental repartitioning strategies, two specific

types of OLTP workloads are developed following their individual schema, guidelines,

and specifications for transaction profile and mix. A brief description of each of the

workloads is presented in the following subsections.
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3.4.1.1 TPC-C Workload

TPC-C [145] is the industry standard workload specification for evaluating OLTP

database performance. A typical TPC-C database contains nine tables, and five transac-

tion classes, and it simulates an order-processing transactional system within geograph-

ically distributed districts and associated warehouses. The TPC-C schema diagram is

shown in Figure 3.4. It is a write-heavy benchmark where transactions are concur-

rent, and complex, and they often perform multiple table JOIN operations. Among

the nine tables, ‘Stock’ and ‘Order-Line’ tables grow faster in volume, thus all the log-

ical database partitions are not homogeneous in size if the database is initially range

partitioned. New tuples are also inserted into ‘Order’ and ‘Order-Line’ tables using the

‘New-Order Transaction’ which usually occupies nearly 44.5% of the workload. The

table partitions are distributed equally within the physical servers following a round-

robin placement strategy, thereby ensuring equal load distribution occurs at the initial
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stage of the database’s life-cycle. The five transaction classes are weighted from heavy

to light (in terms of processing), and these classes appear at high to low frequencies

within the workload. Two of the most high frequency transaction classes in TPC-C

have strict response time requirements and cover almost 87.6% of the total generated

transactions. The synthetic data generation process shown in Figure 3.3 follows Zipf’s

law [118] for generating ‘Warehouse’ and ‘Item’ tables’ data, and it uses the table re-

lationships to generate others. In overall, TPC-C specification guidelines are followed

closely while implementing the workload for OLTPDBSim.

3.4.1.2 Twitter Workload

The Twitter workload is based on the popular micro-blogging Web site and it rep-

resents the social-networking OLTP application domain. In OLTPDBSim, only a subset

of the Twitter workload is implemented by closely following the implementations of

the Oltpbench [146] workload generator. It primarily includes the ‘User’–‘Tweets’ and

‘Follower’–‘Followee’ relationships. The workload contains four tables and five classes

of transactions without having any JOIN operations. The schema diagram is shown

in Figure 3.5. Among the five classes of transactions, the most frequently occurring

transactions are selecting tweets for a given user id, and selecting tweets from users
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that a given user follows, and that altogether cover almost 98.9% of the entire work-

load. Although the implemented Twitter workload is not an actual representative of

the workload driven at the micro-blogging site, it sufficiently captures the complex so-

cial graph network, which is heavily skewed with many-to-many ‘Follows’–‘Follower’

relationships following Zipf’s law [118].

3.4.2 Modelling Transactional Workload

In this section, some of the key existing techniques for modelling synthetic trans-

actional workloads are discussed. Later, a novel transaction generation model for syn-

thetic OLTP workload generation is presented with its mathematical properties, fol-

lowed by a detailed sensitivity analysis.

3.4.2.1 Existing Transactional Workload Generation Models

The primary goal of most of the existing session-based [147, 148] synthetic work-

load generation tools is to measure the back-end performance in terms of throughput

achieved from parallel user loads or scalability testing by simultaneously increasing the

number of users until the system saturates. Cloudstone [149] was among the earliest to

provide a micro-benchmark toolkit for analysing the performance of Web 2.0 applica-

tions. It uses an open-source social-events Web application called Olio for benchmark-

ing purpose, and includes a Markov process based transactional workload generator

called Faban [150].1 It is an open-source synthetic workload generator which aims to

facilitate performance and user load testings for Web applications. It allows creating

simple to complex workloads by specifying different mixes of transaction classes for

generating new transactions. Furthermore, inter-transaction generation in Faban fol-

lows standard distributions like negative exponential, uniform, and fixed time. The

number of simulated users can also be varied during the runtime. Nonetheless, Faban

provides various options and configuration parameters to generate different workload

scenarios at the transaction class level while simultaneously increasing the number of

system users. However, it does not include any model for controlling the repetition of

1
http://faban.org

http://faban.org
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transactions over time, which is a rather common case in OLTP workloads. CloudSuite

2.0 [151, 152], which is a more recent and compact development based on both Cloud-

Stone and Faban, provides updated documentations for installation, configuration, and

integration with different components.

The Rain Workload Generation Toolkit [153, 154] is yet another workload gener-

ation model based on the statistical properties of the OLTP applications. It supports

workload variations in three key directions—system load and resource consumption,

transactional and operational mixes, and data popularity and transient hot spots. Based

on the changes in statistical properties and probability distributions, Rain provides a

way of performing effective cost-benefit analysis to make ’what-if’ scenario-based de-

cisions. Rain also uses Olio target Web application and CloudStone project as a bench-

mark suite. More recently, OLTP-Bench [146, 155, 156] was developed primarily to

benchmark JDBC-enabled RDBMS with various OLTP workloads. It supports three

types of transaction generation: 1) closed-loop, 2) open-loop, and 3) semi-open-loop.

With the closed-loop setting, the generator initialises a fixed number of worker threads

that repeatedly generate new transactions with a random think time. With the open-

loop setting, new transaction generation by the workers follows a stochastic process.

Finally, in the semi-open-loop setting, the worker threads pause for a random think

time before generating a new transaction following the open-loop model. Although

both Rain and OLTP-Bench ensure good statistical properties for OLTP workload gener-

ation, none of them support unique transaction generation with controlled repetition

to automatically generate different kinds OLTP workload in a parameterised way.

3.4.2.2 Proposed Transaction Generation Model

In order to evaluate the performance of the proposed workload-aware incremental

repartitioning schemes, one needs to be careful to avoid any undue influences from

any external entity (e.g., graph clustering libraries). The easiest way to achieve this

is by designing a transaction generation model capable of generating transactions at a

target rate R while maintaining a target unique transaction proportion U = |T |/|W | in

the observation window W . This will allow us to use similar sized workload networks

while comparing the performance of the same repartitioning algorithm on different
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scenarios, or different repartitioning algorithms under the same scenario. The trans-

action generation model, however, has to be flexible enough to allow us to control

the transaction mix such that at any transaction generation instance, a new transac-

tion is introduced with probability p; otherwise an existing transaction is repeated. In

contrast, real-life OLTP workloads do not necessarily maintain a fixed target percent-

age of unique transaction generations. Therefore, by setting the system parameters

〈R , p,W ,U〉 with appropriate values, a wide variety of transactional systems can be

modelled for simulation purposes. Let η = R p be the average generation rate of new

transactions in the current observation window. Obviously U is bounded as follows:

η≤U ≤ R . (3.1)

Implementation of this transaction model is quite straightforward. The only chal-

lenge remaining is to set a limit on how far back the generator should look for trans-

action repetitions so that the target U is achieved. Let the generator consider only

the latest U′|W | unique transactions and randomly select one of them with uniform

distribution for repetition. For average-case analysis, U′ may now be restricted within

the following lower and upper bounds

U−η≤U′ ≤U. (3.2)

If U′ < U−η, the target U is likely to be under-achieved as the number of unique

transactions in the repetition pool is less than (U − η)|W |. On the other hand, if

U′ > U, the target U is likely to be over-achieved as the number of unique transactions

in the repetition pool is more than η|W |.

The functional model

U′ = U
(

1−
(

η

U

)q)
(3.3)

can ensure the abovementioned boundaries when q is finite and q > 1. Our empirical

analysis has found that the target U can be achieved best for q = 2.

The proportion of unique transactions in the generated transactional workload will

vary from the target U if the observation window size deviates from W used by the
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Figure 3.6: Target percentage of new transaction generations using different observed win-
dows with 〈R ,U,W , p〉 = 〈1,25%, ∈ {1200,2400,3600,4800,6000},∈ {0.05,0.1,0.15,0.2,0.25}〉

transaction generation model. If the window size is smaller than W , the proportion

will be higher for p < U and lower for p > U. The opposite occurs when the window

size is larger than W .

3.4.2.3 Sensitivity Analysis

A detailed sensitivity analysis of the proposed transaction generation model is per-

formed for different combinations of 〈R ,U,W , p〉 by varying p. Given R of 1 transac-

tion per second (tps), the target is set to generate 25% unique transactions within an

observation time window W of 1 h (3600 s)) that will contain |W | = 3600 preceding

transactions. This generation process lasts for a total period of 24h. The value of p

is varied from 0.05 to 0.25 with a step size of 0.05. Appendix A.1 lists the MATLAB

code written to perform the sensitivity analysis of the proposed transaction generation

model. Figure 3.6 presents the consistent generation of a target percentage of new

transactions with respect to different values of p, observed over five observation win-

dows W = 1200, 2400, 3600, 4800, and 6000 seconds. This is an essential property

of any transaction generator, and hence it is observed and satisfied for the proposed
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Figure 3.7: Unique transaction generations using a restricted repetition pool with 〈R ,U,W , p〉
= 〈1,25%,3600, ∈ {0.05,0.1,0.15,0.2,0.25}〉

model as well, for any given p across all observation windows. The whiskers and out-

liers observed in the plots are due to the data points from the initial warming up phase

of the model, and these can be ignored.

Figure 3.7 shows the consistency of the proposed transaction generation model for

generating a target of 25% unique transactions over a particular window size of 3600 s

using a restricted repetition pool based on (3.2) and (3.3). As one can observe, the

proposed model has met the target, observed over 3600 s for any values of p. Further-

more, as the observation window size decreases from 3600 s down to 1200 s and 2400

s, the percentage of unique transactions increases for cases p < U. On the other hand,

when the observed window size increases, the proportion of U in W decreases for cases

p < U. In both of these cases, the target is met when p = U, as per (3.1). Further-

more, for observed windows 4800 s and 6000 s, the size of the repetition pools (e.g.,

644 and 500, respectively, for p = 0.1) is less than the required (U−η)|W | amount of

720 and 900 transactions, respectively. On the other hand, for window sizes 1200 s

and 2400 s, the target is overachieved as the size of the repetition pools (e.g., 884 and

836, respectively, for p = 0.1) is much larger than the required η|W | amount of 120
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Figure 3.8: Unique transaction generations using an unrestricted repetition pool with
〈R ,U,W , p〉 = 〈1,∈ φ,3600, ∈ {0.05,0.1,0.15,0.2,0.25}〉

and 240 transactions, respectively.

Figure 3.8, shows the proposed transaction generation model’s capability of gen-

erating unique transaction mixes for an observation window size of 3600 s using an

unrestricted repetition pool. As can be seen, as the observed window size increases

there are fewer unique transactions per observation due to a smaller repetition pool,

and the opposite occurs when the window size decreases.
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Table 3.1 lists the statistics of transactional repetitions using a restricted repetition

pool for generating 25% unique transactions within the observation window of 3600 s

for different values of p, given R = 1. For smaller values of p, the repetition pool tends

to be larger, therefore each unique transaction is picked up less often (less frequently

with a longer inter-repetition interval) for repetitions. The opposite is true for larger

values of p. Finally, the repetition frequencies get restricted at 1, when the η and U

become equal, following the bounds mentioned in (3.1).

Table 3.2, on the other hand, lists the repetition statistics for unique transaction

generations within 3600 s of the observation window using an unrestricted repetition

pool. In this mode of generation, an individual unique transaction gets very limited

opportunity to reappear in the workload due to a larger repetition pool size equal to

|W |. This phenomenon can be observed in Figure 3.8 as well. Overall, the proposed

model shows its capability in controlling transactional repetitions in such a way that

it can meet the goal of generating a target percentage of unique transactions observed

over a given time window. This capability is particularly important in restricting work-

load network size while comparing different repartitioning schemes by avoiding any

undue external influence.

3.5 Repartitioning Performance Metrics

In this section, several workload-aware incremental database repartitioning KPIs

are proposed and analysed with their physical interpretations. Traditionally, system

administrators measure the scalability of a system under stress primarily in terms of

throughput. The Universal Scalability Law (USL) [157] is one well known measure for

scaling of such systems. The law combines 1) the effects of achieving equal system

throughputs for the given load, 2) the cost of shared resources, 3) depreciating returns

from contention, and 4) negative returns from incoherency. In a simplistic way, by

using a 3-way measure of the level of concurrency, contention, and coherence, the

USL provides a way of calculating the relative scalability of a software or hardware

platform.

Based on the same arguments, the repartitioning performance should be measured

in a way that also reflects the scalability measures of a distributed OLTP database. In
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evaluating the performance of the incremental repartitioning, previous work [93, 101]

only measures the percentage reductions in DTs within the entire workload. However,

this single measure fails to provide any meaningful insights into how the impacts of

DTs are minimised. Furthermore, there are no explicit measures available for overall

load-balance and data migrations during an incremental repartitioning process.

Here, three unique KPIs are proposed to measure the successive repartitioning qual-

ity achieving three distinctive objectives to minimise 1) the impacts of DTs, 2) server-

level load-imbalance, and 3) number of inter-server physical data migrations. The first

metric measures the impact associated the frequency of DTs and their related spanning

cost that are directly related to system resource consumptions. The second metric mea-

sures the tuple-level load distribution over a set of physical servers using the coefficient

of variation, which effectively shows the dispersion of data tuples over successive peri-

ods of observation. The third metric measures the mean inter-server data migrations

for successive repartitioning processes. This, in turn, is equal to the I/O parallelisms

achieved while processing simultaneous data migration operations by the underlying

OS, disk, and network cards. These KPIs are outlined in the following subsections.

3.5.1 Impacts of Distributed Transaction

Based on the definitions from Section 3.3, the cost of DT for any given τdi
is the

product of its spanning cost s(τdi
) and repetition frequency f (τdi

), observed within W .

Here, s(τdi
) = |{∀v ∈ τ : (server)a | ∃(server)a ∃(partition)b ∃(tuple)c δa,b,c = v}|, which

denotes the number of physical servers involved in processing τdi
; whereas, s(τd̂i

) = 1

for any NDTs. Note that, in reality, this cost represents the overhead of network I/O

while processing the DTs. Equation (3.4) below defines the spanning cost of DTs within

W for all τdi
∈ Td

c(Td) = ∑
∀τdi
∈Td

f (τdi
)s(τdi

). (3.4)

Similarly, (3.5) denotes the spanning cost of NDTs for all τd̂i
∈ Td̂

c(Td̂) = ∑
∀τd̂i
∈Td̂

f (τd̂i
). (3.5)
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Finally, the impacts of DTs is defined as:

Id(W ) =
c(Td)

c(Td)+ c(Td̂)
(3.6)

According to the definition in (3.6), the impacts of DTs is estimated in real domain

within the range [0,1]; the lower and upper limits are reached when there are no DTs

(Td = φ) and no NDTs (Td̂ = φ), respectively. This impact metric, however, suffers from

the following shortcomings:

(i) It is insensitive to the server spanning cost of the DTs when they significantly out-

number NDTs, i.e., |Td | � |Td̂ |. For example, when 90% of transactions are dis-

tributed, the impact metric Id(W ) varies within a very narrow range of [ 0.9×2
0.9×2+0.1 ≡

0.947,1), where 2 is the average spanning cost of DTs.

(ii) It is unstable when observed in a sliding window as the frequency f (τ) of each

transaction τ is estimated locally within the window, without considering the

trend. For example, Id in two reasonably overlapped windows with the same set

of unique transactions may vary significantly due to frequency differences.

The first shortcoming is addressed by expressing the impact relative to the worst

scenario, when every transaction is spanned across all the servers S. The second prob-

lem is mitigated by estimating the frequency of a transaction at the current instance

from its expected period of recurrence, calculated from the exponential moving aver-

age of its so far observed periods.

Let tτ(k) denote the time of the k-th occurrence of the transaction τ in the system

from the start of the system. Its observed period ϒτ(k) and expected period of recur-

rence ϒ̃τ(k) is at that instance updated as follows:

ϒτ(k) = tτ(k)− tτ(k−1) (3.7)

for k > 1 and

ϒ̃τ(k) =

 U′, k = 1;

αϒτ(k)+(1−α)ϒ̃τ(k−1), k > 1
(3.8)
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where the exponential averaging coefficient α is a constant between 0 and 1; a higher

α discounts older observations faster. The expected period of recurrence is initialised

with the number of unique recurring (not new) transactions U′, derived in (3.3) from

the target number of unique transactions U and the average number of new transac-

tions added in the observation window W , under the uniform recurrence assumption.

Let Tu = {τu1
, ...,τu|Tu |

} be the set of unique transactions in W . Considering that

frequency is reciprocal of period, the impacts of DTs in W may now be estimated with

the following novel estimator

Id(W ) =
∑∀ j s(τu j

) f (τu j
)

|S|∑∀ j f (τu j
)

=

∑∀ j

( s(τu j
)

ϒτu j
(k j)

)
∑∀ j

(
|S|

ϒτu j
(k j)

) (3.9)

where k j denotes the number of occurrences of unique transaction τu j
from the start

of the system. Note that, according to (3.9), Id(W ) is bounded in the range [ 1
|S| ,1];

therefore, it is also an indicator of server-level resource usage due to a particular trans-

actional workload.

3.5.2 Server-level load-balance

The measure of load-balance across the physical servers is determined from the

growth of the data volume with the set of physical servers. If the standard deviation

of data volume σDS
for all the physical servers is calculated, then the variation of dis-

tribution of tuples within the servers can be observed. The coefficient of variation (Cv)

defines the ratio between σDS
and µDS

, the mean data volume per server, and it is in-

dependent of any unit of measurement. Cv can tell the variability of tuple distribution

within the servers in relation to the mean data volume µDS
. Equation (3.10) below

estimates the server-level load-balance of the entire database cluster, in terms of Cv,

independent of any observation instance.

Lb =Cv =
σDS

µDS

(3.10)
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where µDS
= 1
|S|

|S|
∑

i=1
|DSi
| and σDS

=

√
1
|S|

|S|
∑

i=1

(
|DSi
|−µDS

)2
.

However, Cv, as a measure of load-balance, does not guarantee a normalised value

of Lb within a specific range. For instance, if µDS
tends to zero, Cv approaches to infinity.

On the other hand, if |DSi
|2 > 2µ2

DS
for any Si, then the value of Lb will be greater than

1. Thus, the measure of Lb in (3.10) does not have any upper limit. To bound the

value of Lb in the range of 0 and 1, the worst-case scenario is considered, where all the

data tuples reside in a single server and the remaining (|S| − 1) servers in the cluster

are empty. Based on this assumption, the worst-case measure of Cv can be derived as

follows:

σ
2
DS

∣∣
max =

1
|S|

[(
|DS|−µDS

)2
+
(
|S|−1

)(
0−µDS

)2
]

=
1
|S|

[(
|DS|−

|DS|
|S|

)2
+
(
|S|−1

) |DS|
2

|S|2

]

=
|DS|

2

|S|

[
1

|S|2
(
|S|−1

)2
+

1

|S|2
(
|S|−1

)]

=
|DS|

2

|S|2
(
|S|−1

)
∴Cv

∣∣
max =

σDS

∣∣
max

µDS

∣∣
max

=
√
|S|−1

(3.11)

Finally, by utilising (3.11), Lb can be normalised within the range of [0,1] as

Lb =
Cv

Cv
∣∣
max

=
σDS

µDS

√
|S|−1

(3.12)

3.5.3 Inter-Server Data Migrations

In any W , the total of inter-server data migrations within a repartitioning pro-

cess can be normalised by dividing it with the mean data volume µDS
. Let Dm be the

inter-server data migration metric with respect to an observed W during a particular

repartitioning cycle. Then, Dm may be estimated as

Dm =
Mg

µDS

(3.13)

where Mg is the total number of inter-server data migrations during W .
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However, if the number of servers increases or decreases in the cluster without

changing the total data volume |DS|, the mean data volume µDS
also decreases or in-

creases, concomitantly. Therefore, this simple cost metric in (3.13) does not provide a

normalised measure with appropriate physical interpretations. The cost of inter-server

data migrations can be better estimated considering the parallelisms in OS and inter-

networking levels, while transferring data between a pair of DSs. Therefore, by esti-

mating the total amount of pair-wise data migrations, and then dividing this number

by the total data volume |DS|, the measure of Dm can be appropriately normalised.

Given M = {m1,m2, ...,m|S|(|S|−1)} as the sorted set of integers representing the num-

ber of pair-wise 1-way inter-server data migrations during a repartitioning cycle within

|S| servers, the total number of inter-server data migrations can be defined as

M̃g = ∑
∀i

mi. (3.14)

Now, the problem is to find the number of mutually-exclusive pairs of servers to rep-

resent the set of
(
|S|(|S|−1)

)
pairs. This process involves |S|(|S|−1)⌊

|S|
2

⌋ or 2(|S|−1) iterations

to complete where
⌊ |S|

2

⌋
mutually-exclusive server pairs exist. Therefore, to migrate Mg

amount of data, there will be 2(|S|−1) data transfer cycles, each containing
⌊ |S|

2

⌋
par-

allel paths, and a total of
(
|S|(|S| − 1)

)
mutually-exclusive parallel sets of servers. To

estimate the true parallelism during data migrations, a simple scheduling algorithm is

presented in Algorithm 3.1 where the output Mg will be the true cost of serialised data

migrations during a repartitioning cycle. The order of finding Dm can be derived from

the order of sorting M (containing |S|2 elements), which is O(|S|2 log |S|).

In practice, it is the responsibility of the OS to perform such optimisation to max-

imise its parallelism for data transfer operations. However, to evaluate the performance

of a repartitioning scheme in a simulated environment, it is sufficient to find an approx-

imate value for pair-wise data migrations, which is very close to the true measure. A

simple heuristic is to sum up the counts in every
⌊
|S|
⌋

2 th position of M to get the ap-

proximate parallelism during data migration operations. Thus, the estimated pair-wise



§3.6 Conclusions 97

Algorithm 3.1 The algorithm to find parallelism for inter-server data migrations be-
tween mutually-exclusive server pairs

Input: Matrix C , where ci j is the count of data migrations between servers i and j
Output: Mg

1: procedure FINDPARALLELISM(C)
2: Mgp

← 0
3: create 〈K,V 〉, a sorted map, from C consisting of the mutually-exclusive server

pairs and their corresponding counts in ascending order
4: while 〈K,V 〉 6= φ do
5: select 〈k1,v1〉 and its mutually-exclusive pairs up to 〈kne

,vne
〉 having

minimum counts only
6: select the maximum count vmax from the selected pairs
7: Mg←Mg + vmax
8: remove all selected pairs from 〈k1,v1〉 up to 〈kne

,vne
〉 from 〈K,V 〉

9: end while
10: return Mg
11: end procedure

inter-server data data migrations can be defined as

M̃g =

⌈
|S|(|S|−1)⌊
|S|
2

⌋ ⌉
∑
i=1

m⌊ |S|
2

⌋
i
.

(3.15)

Finally, the normalised metric of inter-server data migrations can be redefined as

Dm =
M̃g

|DS|
. (3.16)

Note that, the value of M̃g will be naturally much smaller than |DS|; therefore, the

impacts of this metric will be much lower in observation as well.

3.6 Conclusions

To define a workload-aware incremental repartitioning system, it is essential to

define its core architecture, constructions, evaluation methods, and KPIs. In this chap-

ter, a high-level overview of the proposed workload-aware incremental repartitioning

framework is presented with detailed descriptions and functionalities of its key compo-

nents. A novel distributed data lookup technique is introduced, which enables scalable
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and consistent data lookup in a partitioned database, and allows elastic scale-out of

the underlying OLTP database cluster. Furthermore, to demonstrate the usability of

the proposed framework, a novel simulation platform is introduced, which contains

an innovative transaction generation model for two mainstream OLTP workloads, rep-

resenting business order-processing (TPC-C) and on-line social-networking (Twitter)

application domains. The capability of the proposed transaction generation model in

controlling transactional repetitions for generating a target proportion of unique trans-

actions within an observation window is demonstrated through a sensitivity analysis.

To evaluate the performance of the incremental repartitioning cycles, three unique

KPIs—Id , Lb, and Dm—are proposed, normalised, and explained with their physical in-

terpretations. In next chapter, we present a family of graph min-cut based incremental

repartitioning schemes and evaluate their repartitioning quality based on the proposed

KPIs in this chapter.



Chapter 4

Incremental Repartitioning with
Graph Theoretic Abstractions

In the previous chapter, the preliminaries of the proposed workload-aware incre-

mental repartitioning framework are discussed, along with a novel transaction gen-

eration model for restricting unique transaction generations, and essential KPIs for

evaluation purpose. In this chapter, a graph theoretic scheme for incremental repar-

titioning is presented which primarily focuses on reducing the adverse impacts of DTs

in OLTP databases. The proposed scheme uses the graph based workload network

clustering along with two cluster-to-partition mapping techniques that are proposed

to ensure the balance between maintaining effective server-level data distribution and

the amount of physical data migration.

4.1 Introduction

Among the incremental repartitioning strategies discussed in Chapter 2, the graph

based scheme is the oldest, and by far the most applied technique in the literature. The

primary reason for introducing a graph theoretic approach is to hide the underlying

complexities of a transactional workload network by creating a higher level of abstrac-

tions. In this process, the transactions are naturally represented as a network of graph

or hypergraph at first. Then, external graph min-cut libraries are used to produce bal-

anced clusters by intersecting a minimum number of edges. Finally, the clusters are

mapped back to the DSs by performing necessary data migrations. By imposing both

min-cut and balance constraints, the graph min-cut based strategy indirectly reduces

the overall impacts of DTs and produces similar sized clusters of tuples that should be

placed together in a DS. Therefore, the minimisation of the load-balance KPI Lb comes

as a by-product of the graph min-cut process, while there is no way to improvise Dm.

99
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Hence, in a graph theoretic approach, there are too many limitations in controlling

data distribution load imbalances with minimum data migrations. Furthermore, unless

the graph or hypergraph networks are not of the same size, it is infeasible to compare

and evaluate different graph theoretic repartitioning approaches.

In this chapter, a graph based approach for incremental repartitioning is used,

where, during each cycle, transactional workloads are represented by either a graph

or hypergraph network abstraction. This high-level network is then clustered using a

balanced graph min-cut technique, and the clusters thus produced are mapped back

to the logical database partitions instead of the physical DSs to ensure fine granular-

ity. A novel transaction classification technique is introduced as well, which creates a

sub-network, consisting of DTs and moveable NDTs containing at least a single tuple

in a DT. Two special cluster-to-partition mapping techniques are proposed to ensure

minimum physical data migrations by favouring the current partition of the major-

ity tuples in a cluster—the many-to-one version thus minimises data migrations alone,

and the one-to-one version reduces data migrations without affecting server-level load-

balance. Experimental evaluations using OLTPDBSim shows the effectiveness of the

proposed techniques by comparing different workload network representations, and

cluster mapping techniques, thanks to our novel transaction generation model. Exper-

imentations are conducted in a proactive (with hourly cycles) and a reactive manner,

both aimed at maintaining a user-defined threshold.

The rest of the chapter is organised as follows: Section 4.2 presents an overview

of the graph min-cut based incremental repartitioning scheme. The proactive transac-

tion classification technique is illustrated in Section 4.3. Section 4.4 discusses different

workload network representations and their formulations, followed by the k-way bal-

anced clustering to the workload networks in Section 4.5. Three cluster-to-partition

mapping strategies are illustrated with examples in Section 4.6. Section 4.7 has the

detailed discussion of the experimental evaluations and findings. Finally, Section 4.8

summarises the chapter contributions and results.
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Figure 4.1: An overview of the graph min-cut based incremental repartitioning framework
using numbered notations. Steps 1–7 represent the flow of workload analysis, representation,
clustering, and repartitioning decision generation.

4.2 Overview

Figure 4.1 presents the graph min-cut based incremental repartitioning framework

following steps 1–7. Recalling Figure 3.1, the input of the Workload Analyser Node is

the transactional log streams and the output is a live data migration plan. The overall

process has four primary activities as follows.

4.2.1 Transaction Pre-processing, Parsing, and Classification

Client applications submit database queries in step 1, which is then processed by a

Distributed Transaction Coordinator that manages the execution of DTs within a shared-

nothing DS cluster. Upon receiving the streams of transactional workloads, individual

transactions are processed to extract the contained SQL statements in step 1. For each
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SQL statement, the primary keys of individual tuples are extracted, and the correspond-

ing partition ids are retrieved from the embedded workload specific location catalogue

in step 2. In the classification process in step 3, DT and NDTs are identified along with

their frequency counts in W , and their associated costs of spanning multiple servers.

4.2.2 Workload Network Representations and k-way Clustering

In step 4, workload networks are generated from the extracted transactional logs

gathered in the previous step, using graphs or hypergraphs. Tuple-level compression

can further reduce the size of the workload network. Since simple graphs can not

fully represent transactions with more than two tuples using a pair-wise relationship,

it is not possible to minimise the impacts of DTs in the workload directly. However,

graph representations are much simpler to produce, and they have been adopted in

a wide range of applications that also help us understand its importance in creating

workload networks. On the other hand, hypergraphs can exploit exact transactional

relationships, thus the number of hyperedge-cuts exactly matches the number of DTs.

Yet, popular hypergraph clustering libraries are computationally slower than the graph

clustering libraries, and they produce less effective results [101]. In reality, with the

increase in size and complexity, both of these representations are computationally in-

tensive to manipulate. Furthermore, while compression techniques may address this

problem, dramatic degradation in clustering quality and overall load-balance occur

with a high compression ratio [125]. Finally, the workload networks are clustered

using k min-cut graph and hypergraph clustering libraries in step 5.

4.2.3 Cluster-to-Partition Mapping

In step 6, a mapping matrix is created with the counts for tuples that are placed

in the newly created cluster and that originated from the same partition as the matrix

element. The clusters produced from the min-cut clustering are then mapped to the

existing set of logical partitions by following three distinct strategies. At first, a uniform

random tuple distribution is used for mapping clusters to database partitions which

naturally balances the distribution of tuples over the partitions. However, there are no

proactive considerations in this random strategy for minimising data migrations.
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The second strategy employs a straightforward but optimal approach. It maps a

cluster to a respective partition which originally contains the maximum number of

tuples from that cluster, hence minimum physical data migrations take place. In many

cases, this simple strategy turns out to be many-to-one cluster-to-partition mapping

and it diverges from uniform tuple distribution. Again, incremental repartitioning can

create server hot-spots as similar transactions from the latest W s will always drive

more new tuples to migrate into a hot server. As a consequence, overall load-balance

decreases over time, which is also observed in our experimental results.

A way to recover from this situation is by ensuring that cluster-to-partition mapping

remains one-to-one, which is used as the third strategy. This simple, yet effective,

scheme restores the original uniform random tuple distribution with the constraint of

minimising data migrations. Finally, in step 7, based on different mapping strategies

and applied heuristics, a data migration plan is generated, and then forwarded to the

Data Tuple Migrator component located in the Workload Analyser Node.

4.2.4 Distributed Location Update and Routing

The analyser node caches the most frequently accessed tuples in a workload specific

location catalogue, and updates the associated locations at each repartitioning cycle.

Until a tuple fully migrates to a new partition, its existing partition serves all the query

requests. As discussed in Section 3.2.4, and depicted in Figure 3.2, the lookup table in

each data partition keeps track of the roaming tuples and their corresponding foreign

partitions. A maximum of two lookups are, therefore, required to find a tuple without

client-side caching. With proper caching enabled at the Workload Analyser Node, this

lookup cost can be even amortised to one for most of the cases with high cache hits.

4.3 Proactive Transaction Classification

Typical graph based repartitioning schemes only use DTs for min-cut clustering pur-

poses. However, there always exist NDTs that contain one or more tuples which also re-

side in a DT. During the repartitioning process, these NDTs may turn into DT if they are
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Figure 4.2: The proactive transaction classification tree identifying DTs, moveable NDTs, and
NDTs

Table 4.1: Proactive transaction classification of the sample workload

Id Tuples Class

τ1 {1, 4, 5, 6, 7, 8, 10} DT
τ2 {1, 4, 6, 9, 11} DT
τ3 {9, 15, 17} MNDT
τ4 {9, 17} MNDT
τ5 {5, 7, 18} DT
τ6 {15, 17} NMNDT
τ7 {2, 14, 16} NMNDT

not initially included in the workload network construction. This simple intuitive ob-

servation is used to classify the workload transactions into three different categories—

DTs, moveable NDTs (MNDTs), and NDTs i.e., non-moveable (NMNDT)—as shown in

Figure 4.2. For illustration purposes, the sample shared-nothing distributed database

cluster from Table 2.4 is considered. Transactions listed in Table 2.5 are reused here

to illustrate the different transaction classes described above. Here, transactions τ1,

τ2, and τ5 from the sample workload are identified as DTs. Transactions τ3 and τ4 are

labelled as MNDTs as both contained data tuple 9, which also resides in DT τ2. Finally,

τ6 and τ7 are discarded as purely NDT transactions as none of their data tuples resides

in any DT. The classified transactions are re-listed in Table 4.1.

The philosophy behind the above idea is quite intuitive. For a large graph, there
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may be many k-way min-cut clustering solutions, all inducing the minimum number

of edge-cuts. When a transactional workload graph is constructed using only the DTs,

one of the many possible k-way clustering solutions is picked, at random or based on

some other criteria, by the graph-cut algorithm in use. Consequently, the repartitioning

scheme has no means of protecting a NDT from becoming a DT after the repartitioning,

even when opportunities exist, unless all the clustering solutions are checked explicitly,

which is infeasible. If MNDTs are included in the graph with additional edges, a min-

cut solution will not cut one of these edges unless absolutely necessary, i.e., only when

all other possible k-way clustering options require cutting more edges. Effectively, the

repartitioning scheme is then able to protect implicitly NDTs from becoming DTs after

repartitioning when an alternative clustering opportunity exists.

Note that, the addition of an extra set of MNDTs increases the workload sub-

network size for clustering purposes. Therefore, there is a clear trade-off between the

increase in size of the workload networks and the benefits achieved. The smaller the

sub-network, the less costly it is, in terms of computations, processing, and IO. Alter-

natively, if all the current and future DTs are given to the min-cut clustering process, Id

might be reduced further during a particular repartitioning cycle. By aggressively clas-

sifying the moveable NDTs, the quality of the overall repartitioning process increases as

the impacts of DTs decreases, compared to a static repartitioning strategy, as validated

later in the experimental results.

4.4 Workload Network Representations

Following the transaction classification, a workload network is created from the se-

lective set of transactions as either a graph, a hypergraph, or one of their compressed

forms as discussed in Section 2.5. The workload networks are modelled under four dis-

tinct representations. Firstly, Graph Representation (GR) produces a fine-grained work-

load network, although it is unable to capture completely the actual transactional rela-

tionship between different tuples. Despite the shortcomings, a graph clustering process

can still produce high quality clusters for the repartitioning schemes to minimise Id .

However, this quality can only be maintained as long as the graph size increases with
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the workload volume and at least the necessary level of sampling is performed [101].

Secondly, Hypergraph Representation (HR) can represent the workload transactions in

an accurate manner. In empirical studies, it is found that a k-way min-cut balanced

hypergraph clustering process produces more consistent repartitioning outcomes than

graphs [116]. Finally, Compressed Graph Representation (CGR) and Compressed Hyper-

graph Representation (CHR) produces coarse-grained workload networks depending on

the compress level. With a lower level of compression, less coarse networks are gener-

ated and k-way clustering performs better. However, as shown in [125], as the level of

compression increases the quality of the clustering process degrades dramatically. We

turn now to defining the individual network representation formally in the following

subsections.

4.4.1 Graph Representation

Let V = {v1, ...,v|V |} ⊂ DS be the set of all data tuples collectively used in all DTs

and MNDTs in the transactional workload in an observation window W . By using

these data tuples as vertices, a graph representation GR G = (V,Eg) may be constructed

where an edge between two vertices exists only if both data tuples are used by a DT or a

MNDT, i.e., (vx,vy) ∈ Eg only when ∃τ among the DTs and MNDTs such that {vx,vy} ⊆ τ,

for all 1 ≤ x ≤ y ≤ |V |. A transaction τ using l data tuples is represented in this graph

by the ‘complete’ subgraph of the respective vertices having all possible
( l

2

)
= l(l−1)

2

pair-wise edges. Note the many-to-many relationship between edges and transactions.

An edge of the graph may be used to represent multiple transactions and vice versa.

In fact, two transactions τa and τb share
(|τa∩τb|

2

)
edges altogether. Such a convoluted

relationship may render the abstraction at least confusing and, therefore, the graph

representation is considered not ideal for our purposes as alluded to earlier. A weighted

graph is used by the k-way balanced min-cut algorithm. Weight wvx,vy
of each edge

(vx,vy) ∈ Eg is assigned as the sum of the frequencies of all related transactions, i.e.,

wvx,vy
= ∑∀τ|{vx,vy}⊆τ f (τ). Weight of each vertex represents the data size (in volume) of

the corresponding tuple.
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4.4.2 Hypergraph Representation

A hypergraph representation HR H = (V ,Eh) of the same transactional workload

uses the same set V of vertices used for the equivalent graph representation. The

pair-wise edge set, however, is replaced with a set of hyperedges, each uniquely rep-

resenting a DT or a MNDT with a one-to-one relationship. Just like a transaction, a

hyperedge is a subset of V , which is drawn with a bounded region covering all, and

only, the vertices used in the corresponding transaction. Again, a weighted hypergraph

is used by the k-way balanced min-cut algorithm where weight wτ of each hyperedge

τ ∈ Eh is assigned as the frequency of representing transaction τ, i.e., wτ = f (τ). The

weight of each vertex remains the same, i.e., the data size (in volume) of the corre-

sponding tuple.

4.4.3 Compressed Representation

Both the graph G = (V,Eg) and hypergraph H = (V,Eh) representations of the trans-

action workload can be compressed by collapsing the vertices onto a set of virtual

vertices V ′ = {v′1, ...,v
′
|V ′|} using a simple hash function on the primary keys [125]. Ef-

fectively, virtual vertices are disjoint subsets of V that cover it completely, i.e., v′i ⊂ V ,

for all 1 ≤ i ≤ |V ′|, such that v′i∩ v′j = φ, for all 1 ≤ i < j ≤ |V |, and v′1∪ ...∪ v′|V | = V . A

compressed graph representation CGR Gc = (V ′,E ′g), equivalent to graph G = (V,Eg),

has a compressed edge (v′i,v
′
j) ∈ E ′g only if ∃vx ∈ v′i and ∃vy ∈ v′j such that (vx,vy) ∈ Eg.

Similarly, a compressed hypergraph representation CHR Hc = (V ′,E ′h) equivalent to hy-

pergraph H = (V,Eh) has a compressed hyperedge e′h ∈ E ′h only if ∃eh ⊂ e′h such that

eh ∈ Eh. Weights of the virtual vertices and edges (hyperedges) of a compressed graph

(compressed hypergraph) are set by adding all associated weights in the correspond-

ing graph (hypergraph). Note that different graphs (hypergraphs) may be collapsed

onto the same compressed graph (compressed hypergraph), leading to a many-to-one

equivalence relationship. Also note that the ratio Cl =
|V |
|V ′| denotes the compression

level, ranging from 1 (no compression), when |V ′| = |V |, to |V | (full compression),

when |V ′|= 1.
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4.5 k-way Balanced Clustering of Workload Network

Given G and a maximum allowed imbalance fraction ε, the k-way clustering of G

can be defined as ζG = {V1, ...,Vk}, which thus minimises edge-cuts within the load bal-

ance factor tolerance range. Similarly, the k-way constrained and balanced clustering

of H is ζH = {V1, ...,Vk}, such that a minimum number of hyperedges are cut within

the imbalance fraction ε. Analogously, the k-way balanced clusterings of Gc and Hc are

ζGc
= {V ′1, ...,V

′
k} and ζHc

= {V ′1, ...,V
′
k}, respectively, with an imbalance fraction ε and

aiming at minimum compressed hyperedge-cuts. Note that, k is denoted as the total

number of logical partitions instead of the number of physical servers. From our em-

pirical studies, it is observed that executing the k-way clustering with k as the number

of partitions provides finer granularity in balancing the data distribution over the set

of physical servers.

When a set V of a large number of data tuples is divided into k disjoint subsets

(clusters) V1, ...,Vk, the load-balancing factor of the clustering may be calculated as

βk =
kmax1≤i≤kw(Vi)

∑
k
i=1 w(Vi)

(4.1)

where w(Vi) is the collective data size (in volume) of all tuples in cluster V1, for all

1≤ i≤ k. Note that βk ≥ 1 and the perfect load-balancing factor of 1 is achieved when

w(V1) = ... = w(Vk). Often, to provide some flexibility in a system, the load-balancing

factor is constrained to a range [1,1+ ε], where ε is a small real number, denoting the

maximum fraction of imbalance tolerated by the system. Figures 4.4 and 4.5 present

the k-way balanced clustering of different workload network representations of graph

and compressed graph, and hypergraph and compressed hypergraph, respectively.

Figure 4.3 shows the resulting 2-way min-cut clustering of the sample transactions

classified by the proposed proactive transaction classification tree which includes the

MNDTs τ3 and τ4. One can easily observe and compare the differences between the the

clustering performed without including τ3 and τ4 in Figure 2.9. For instance, we have

3 DTs after the HGR clustering without including the MNDTs whereas in Figure 4.3 we

can manage to convert one DT to an NDT as well as save the MNDT from becoming an

DT. This signifies the effectiveness of our proposed transaction classification technique.
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Figure 4.3: The 2-way min-cut clustering of the sample transactional workload network repre-
sented as graph, hypergraph, compressed graph, and compressed hypergraph using the proac-
tive transaction classification tree

4.6 Cluster-to-Partition Mapping Strategies

Following the k-way balanced min-cut process, next, the clusters need to mapped

back to the database. As mentioned earlier, for mapping purposes the logical par-

titions are used as the targets instead of the physical servers, firstly, to ensure finer

granularity, as the number of partitions are always much higher than the number of

DSs in the cluster, and secondly, for supporting our proposed distributed data lookup

technique which uses partition level lookup tables for both range- and consistent-hash

partitioned databases. In the following, illustrative examples are provided using the

simple database setup shown in Table 2.4 with 20 data tuples distributed over four

logical partitions and two physical DSs. A sample workload batch with seven transac-

tions and corresponding data tuples are also shown in Table 4.1. Figures 4.4 and 4.5

present a detail illustration of how the proposed cluster-to-partition mapping strategies

work with different workload representations.

In these examples, workload networks are represented as GR, CGR, HR, and CHR
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Figure 4.4: The k-way min-cut clustering of graph and compressed graph representations of
the workload networks followed by 3 cluster-to-partition mapping strategies

(with Cl = 2) for the transactions listed in Table 4.1. Three distinctive cluster-to-

partition mapping strategies (in matrix format) are also shown below their respective

workload network representations. The rows and columns of the matrices represent

partition and cluster ids, respectively. An individual matrix element represents tuple

counts from a particular partition which is placed by the clustering libraries under a

specific cluster id. The shadowed locations in the mapping matrices with the counts in

bold font represent the resulting decision blocks with respect to the particular cluster

and partition id. Individual tables below the matrices represent the state of the physi-

cal and logical layouts of the sample database. The last row of these tables reveals the

counts of inter- and intra-server data migrations for each of these nine representative

database layouts. The bold font numbers in the layout tables at the bottom denote

most balanced data distributions and minimum inter-server and inter-partition data

migrations. The details of the individual mapping techniques are discussed as below.
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Figure 4.5: The k-way min-cut clustering of hypergraph and compressed hypergraph represen-
tations of the workload networks followed by three cluster-to-partition mapping strategies

4.6.1 Random Mapping (RM)

Naturally, the best way to achieve load-balance in any granularity is to assign the

clusters randomly. Graph clustering libraries like METIS [87, 89] and hMETIS [85, 90]

randomly generate the cluster ids, and do not have any knowledge as to how the data

tuples are originally distributed within the servers or partitions. As a straightforward

approach, the cluster ids can be simply mapped one-to-one to the corresponding parti-

tion id as they are generated. Although this random assignment balances the workload

tuples across the partitions, it does not necessarily guarantee minimum inter-server

data migrations. As shown in Figures 4.4 and 4.5, the mapping matrices labelled with

RM and database layouts with GR-RM, CGR-RM, HR-RM, and CHR-RM are the repre-

sentatives of this class, respectively.

4.6.2 Maximum Column Mapping (MCM)

In this mapping, the aim is to minimise the inter-server physical data migration

within a repartitioning cycle. In the cluster-to-partition mapping matrix, the maximum
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tuple count of an individual column is discovered, and the entire cluster column is

mapped to the representative partition id of that maximum count. If multiple max-

imum counts are found, then the one directing the partition containing the lowest

number of data tuples is chosen. Thus, multiple clusters can be assigned to a single

partition. As the maximum numbers of tuples are originated from this designated par-

tition, they do not tend to leave from their home partitions which reduces the overall

inter-server physical data migrations. For OLTP workloads with skewed tuple distribu-

tions and dynamic data popularity, the impacts of DTs can rapidly decrease from this

greedy heuristic as tuples from multiple clusters may map into a single partition in the

same physical DS. However, this may lead to data distribution imbalance across the

partitions as well as the servers, despite our selection preference for the partition id in

the mapping matrix. Mapping matrices labelled as MCM with corresponding database

layouts of GR-MCM and CGR-RM in Figure 4.4, and HR-MCM and CHR-MCM in Fig-

ure 4.5, represent this mapping, respectively.

4.6.3 Maximum Submatrix Mapping (MSM)

In this final mapping technique, the natural advantages of the previous strategies

are combined in order to minimise load-imbalance and data migrations simultaneously.

At first, the largest tuple counts within the entire mapping matrix are found and placed

at the diagonally top left position by performing successive row-column rearrange-

ments. The next phase begins by omitting the elements in the first row and column,

then recursively searching the remaining submatrices for the element with the maxi-

mum tuple counts. Finally, all the diagonal positions of the matrix are filled up with

elements having maximum tuple counts. Mapping the respective clusters one-to-one to

the corresponding partitions in such this way results in both minimum data migrations

and distribution load-balance. Note that, multiple maximum tuple counts can be found

in different matrix positions, and the destination partition id is chosen randomly from

any of these places. The MSM strategy works similarly to the MCM strategy as it pri-

oritises the maximum tuple counts within the submatrices, and maps the clusters one-

to-one to the partitions like the RM strategy, thus preventing potential load-imbalance

across both the logical partitions and physical servers. In Figures 4.4 and 4.5, mapping
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matrices labelled as MSM, and representative database layouts GR-MSM, CGR-MSM,

HR-MSM, and CHR-MSM, represent this mapping strategy, respectively.

4.7 Experimental Evaluation

Both range and consistent-hash based initial data partitioning are used to evaluate

four different scenarios to evaluate the proposed graph theoretic incremental repar-

titioning schemes. The transaction generation model integrated with OLTPDBSim is

configured to use a restricted repetition window for generating a target proportion

of unique transactions to keep the generated workload network sizes the same across

all other settings. Table 4.2 lists the related simulation parameters. Both range- and

consistent-hash partitioned OLTP databases are simulated in OLTPDBSim following two

strategies: 1) no repartitioning or static (i.e., a single) repartitioning, and 2) incremen-

tal repartitioning—hourly or based on a predefined repartitioning triggering threshold

Rt . The No Repartitioning (NR) and Static Repartitioning (SR) (which will behave very

similarly to Schism [101]) schemes are considered as the baseline for comparing Hourly

Repartitioning (HR), and Threshold-based Repartitioning (TR) based incremental repar-

titioning strategies. In SR, the database is repartitioned only once after the database is

warmed up, and then remains static for the rest of its lifetime. As a proactive approach,

the HR process repartitions the database at the end of each observation window, regard-

less of whether the systemwide Id is below Rt or not. This eventually reveals the highest

ability of any data migration strategy to reduce the impacts of DTs in an incremental

manner. Finally, TR only works when the per transaction per unit time Id increases

over the triggering threshold. Following a repartitioning cycle the TR sets back a preset

cooling-off period of one hour and does not trigger another repartitioning phase within

this time. Furthermore, METIS [87, 89] and hMETIS [85, 90] k-way min-cut clustering

libraries are used with their default settings. These comprehensive experimentations

help in understanding the applicability of incremental repartitioning within a wide va-

riety of settings. The effectiveness of the proposed techniques is evaluated with respect

to Id , Lb, and Dm (as detailed in Chapter 3) for consecutive repartitioning cycles.
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Table 4.2: The key simulation configuration parameters defined in OLTPDBSim

Workload profile
TPC-C (at scale of 0.1 with 10 warehouses)
Twitter (at scale of 500 users)

Database tables
9 for TPC-C
4 for Twitter

Number of physical servers, S 4
Partition assignment to server Round-robin

Initial data partitioning
Range with 36 Partitions
Consistent-hash with 16 Partitions

Workload modelling GR, CGR, HR, CHR
Cluster-to-Partition mappings RM, MCM, MSM
〈R ,U,W , p〉 〈1,0.25,3600,0.15〉
Repartitioning triggering threshold, Rt 2/S
Repartitioning cooling off period 1 h
Transactional repetition pool Restricted
Exponential averaging weight, α 0.6
Compression level, Cl 6
Repartitioning schemes NRP, SRP, HRP, TRP
Database warm-up period 3 h
Database operational period 24 h

4.7.1 Analysis of Experimental Results for TPC-C and Twitter Workloads

The distributed OLTP databases are simulated with two different initial data parti-

tioning schemes: 1) range, and 2) consistent-hash. The following definitions of range

and consistent-hash schemes are adopted for initial data partitioning in the simulation.

Range scheme partitions each database table into a number of logical partitions with

fixed volume size based on the total number of physical servers allocated. When data

volume reaches its bound a partition split takes place to create two new equal sized

logical partitions, and later the partition management module can redistribute the par-

titions for load-balance purposes. Consistent-hash, on the other hand, starts with a

predefined number of logical partitions with a very large data volume limit. For exam-

ple, a consistent-hash ring made with ‘SHA-1’ has a bit space 2160, and with 16 fixed

logical partitions each holding up to 2160/16 data rows of a partitioned database. In

terms of scalability management, a new DS can be easily added by redistributing only
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a fixed amount of data tuples within the cluster while a consistent-hash scheme is used.

The data lookup process is also distributed and highly scalable as the consistent-hash

function never changes. In contrast, a centralised lookup server is required for a range

scheme and a large volume of data migrations is required while adding a new server

in the system. By adopting the proposed distributed data lookup method based on

the concept of roaming (as proposed in Section 3.2.4), both of these data partitioning

schemes are included in the simulation model.

To distinguish clearly the differences between different incremental repartitioning

schemes and data migration strategies, workload variations are not induced during

the lifetime of the simulated databases. Tuple-level data replications are also limited

to only 1 (i.e., no replication) so that the actual performance of graph or hypergraph

min-cut based clustering can be revealed. Four different repartitioning scenarios are

compared in the experiments conducted. Without adopting any repartitioning scheme,

the underlying database cluster maintains a consistent Id over successive time periods.

Applying any repartitioning scheme during this steady-state period triggers data redis-

tributions to minimise the value of Id , and the goal in these experimental evaluations

is to find out how a static, proactive, and reactive repartitioning approach reacts into

such situation. Furthermore, the results explain the overall behaviour of using a graph

theoretic repartitioning scheme which generally abstracts the workload complexities by

using higher level of abstractions. The performance of 12 different incremental reparti-

tioning schemes are examined under four categories for both range- and consistent-hash

partitioned databases. The user-defined repartitioning triggering threshold Rt is set to

2/|S| as per (3.9): that means Rt is set such that on average each transaction only spans

half of the DSs, thus maintaining an overall balance for physical resource usages. Be-

low the repartitioning KPIs of the proposed schemes and their variations are compared.

The progressions of Id values are observed in line plots (by applying appropriate line

smoothing), while Id , Lb, and Dm are presented in the box plots as well.

4.7.1.1 Range-Partitioned Database

Figure 4.6 demonstrates the impacts of DTs for a range-partitioned database under

TPC-C workload. As observed, the value of Id remains around 0.7 for the entire lifetime
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Figure 4.6: Comparison of different incremental repartitioning schemes in a range-partitioned
database cluster for observing the variations of Id under TPC-C workload
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of the database if no repartitioning cycle is carried out. This is the worst-case scenario

and the baseline in accordance with the usual transaction processing operations of the

underlying database. A single repartitioning cycle (i.e., SRP) can hold down the value

of Id for a certain amount of time, after which it gradually increases again over time.

For GR-MSM, the increase in Id beyond 0.7 indicates that the SRP strategy is worse

than having no repartitioning cycles at all, at least for some cases. Both HRP and TRP

strategies for RM and MSM data migrations reduce the value of Id within the range

of 0.65–0.60 but not below that. Hence, it is the maximum ability of these reparti-

tioning schemes to hold down the increase of Id by redistributing data tuples within a

database for TPC-C workload. On the other hand, MCM based strategies are the only

incremental repartitioning schemes that are able to hold down Id below the Rt mar-

gin. As MCM implements a many-to-one cluster-to-partition data migration strategy

which is simultaneously applied over time, HRP tends to decrease Id up to its lower

bound. TRP for MCM strategies, on the other hand, works as anticipated and performs

incremental repartitioning whenever Id suppresses Rt . For all the MCM strategies under

this scheme have nine incremental repartitioning cycles over the period of 24 h under

TPC-C workload.

In the case of Twitter workload as shown in Figure 4.7, the value of Id remains above

0.95 with NRP. As the workload presents complex network relationships, the perfor-

mance of incremental repartitioning depends greatly on how it is actually represented

to the graph min-cut libraries. Furthermore, depending on how effective the initial

data redistribution is, the overall performance of a repartitioning scheme increases or

decreases over repetitive cycles over time. Considering the RM data migration strategy,

the GR and CGR based SRP, HRP, and TRP schemes consistently fluctuate between the Id

range of 0.55–0.65. On the other hand, the HR and CHR based schemes fall below 0.35

from Rt , which indicates that most of the workload data tuples are now concentrated

in a single DS within the cluster, a situation which could lead to data distribution im-

balance. Similarly, MCM based strategies for all of the repartitioning schemes steadily

fall below Rt . In the case of the MSM based strategy, however, it shows similar char-

acteristics to RM. While the HGR and CHR based repartitioning schemes consistently

fall below Rt , the GR and CGR based HRP and TRP techniques gradually decrease the

overall Id of the system. CGR-MSM, in particular, performs well for both HRP and TRP
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Figure 4.7: Comparison of different incremental repartitioning schemes in a range-partitioned
database cluster for observing the variations of Id under Twitter workload
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to maintain a consistent Id value near the Rt margin.

Figure 4.8 uses box-plots to present the simulation statistics for Id , Lb, and Dm for

TPC-C workload. From the results, it is clear that both RM and MSM based strategies

maintain the load-balance for all workload representations for both HRP and TRP. In

the case of MCM, severe load imbalance occurs for HRP due to the tendency to migrate

more and more data tuples into the same DS over the incremental repartitioning cycles.

Initial range partitioning also produces uneven logical data partitions, which also play

a role as the decision of data migration is made at partition level. TRP, on the other

hand, performs better; thus the mean values for all workload representations are close

to SRP. In terms of inter-server data migrations, both RM and MSM strategies perform

similarly, although the latter performs slightly fewer data migrations than the former.

For all the cases of MCM, data migrations are very low, although the TRP scheme

has visibly higher level fluctuations compared to the HRP. Overall, the proposed MCM

strategy in combination with TRP works well for the range-partitioned OLTP database

cluster under TPC-C workload.

In all cases of Twitter workload, as shown in Figure 4.9, the load-balance perfor-

mance is strictly maintained for the RM and MSM based repartitioning schemes. The

consistent fall of Id below the Rt margin, as shown in Figure 4.7, and as anticipated,

does not significantly contribute to the load imbalance for the HR and CHR based

HRP and TRP schemes. Further investigation reveals that this is due to a few of the

highly popular data tuples within the workload which significantly contribute to Id ,

and which are later concentrated in a single DS during incremental repartitioning cy-

cles. The MCM based HRP and TRP schemes for HR and CHR are primarily affected by

load imbalance, while GR and CGR perform steadily in most of their cases. In case the

of Dm, the RM and MSM based techniques perform more data migrations to maintain

their load-balance compared to MCM. Among the proactive HRP schemes data migra-

tions are less than, in the reactive TRP approaches. Furthermore, the GR and CGR based

repartitioning schemes need to carry out fewer data migration operations comparing

to HR and CHR based schemes for Twitter workload, in particular.
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Figure 4.8: Comparison of different incremental repartitioning schemes in a range-partitioned
database cluster for observing Id , Lb, and Dm under TPC-C workload
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Figure 4.9: Comparison of different incremental repartitioning schemes in a range-partitioned
database cluster for observing Id , Lb, and Dm under Twitter workload
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Figure 4.10: Comparison of different incremental repartitioning schemes in a consistent-hash
partitioned database cluster for observing the variations of Id under TPC-C workload
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4.7.1.2 Consistent-Hash Partitioned Database

The overall impacts of DTs is compared in a consistent-hash partitioned OLTP database

under a TPC-C workload as shown in Figure 4.10. As with NRP, Id maintains a steady

margin just above 0.8 for all the scenarios, which is higher than a range-partitioned

system as shown in Figure 4.6. Although SRP reduces the margin of Id between 0.7–

0.75 for both the RM and MSM strategies and between 0.65–0.7 for MCM, over time Id

gradually increases to reach the NRP margin again. The RM and MSM strategies per-

form similarly while the MSM has a slightly better result. However, both fail to reduce

Id below the user-defined Rt value for HRP and TRP. Similar to the range-partitioned

database, the MCM strategy performs well for all of the workload network representa-

tions. Although, on average, 15 repartitioning cycles are required for TRP compared to

the results in Figure 4.6, overall, MCM is the only strategy that is capable of holding

any preset Rt . HRP also performs similar to that in Figure 4.6, and continues to reduce

Id within incremental repartitioning cycles for all workload network representations.

Figure 4.11 compares the Id variations of different repartitioning schemes for the

Twitter workload. Similar to the TPC-C workload, the Id margin is steady at round 0.96

for the consistent-hash partitioned database under a Twitter workload. The results show

similar perspectives for the graph and hypergraph (and their compressed forms) based

workload network representations that have been already observed in Figure 4.7 for

a TPC-C workload. For RM based data migrations, the HR and CHR based repartition-

ing schemes perform much better compared to all the other approaches for a Twitter

workload. The GR and CGR based schemes, however, deviate from their initial repar-

titioning results over time, and maintain a steady margin near 0.75. The MCM based

approaches, however, succeed in reducing the Id margin below the preset Rt . The HRP

and TRP schemes for MCM gradually reduce Id between 0.45–0.35 which have been

similarly observed for a TPC-C workload as well. The MSM based schemes for GR and

CGR perform significantly below expectations, and it seems they are not appropriate

for handling the social-networking workloads at all. The HR and CHR based schemes

like, HRP and TRP, perform well using MSM based data migrations apart from some

fluctuations for HR.

While analysing server-level load-balance for the TPC-C workload, as shown in Fig-
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Figure 4.11: Comparison of different incremental repartitioning schemes in a consistent-hash
partitioned database cluster for observing the variations of Id under Twitter workload
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Figure 4.12: Comparison of different incremental repartitioning schemes in a consistent-hash
partitioned database cluster for observing Id , Lb, and Dm under TPC-C workload
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Figure 4.13: Comparison of different incremental repartitioning schemes in a consistent-hash
partitioned database cluster for observing Id , Lb, and Dm under Twitter workload
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ure 4.12, both the RM and MSM strategies work very strictly in maintaining the load-

balance adopted by the initial consistent-hash data partitioning in all cases. Although

MCM strategies increase the flexibility of being balanced, TRP continues to show bet-

ter control over load imbalance than the proactive HRP. In terms of inter-server data

migrations, MSM strategies perform marginally better than RM; however, both require

a large number of data migrations between the DSs to maintain the load-balance. On

the other hand, the flexibility adopted by MCM sets it apart by performing fewer data

migrations; thus, by accepting a slight load imbalance, it can reduce Id in a controlled

way. In comparing the reactive TRP with the proactive HRP scheme, inter-server data

migrations are always higher in the former.

Figure 4.13 presents the load-balance and data migration statistics for the Twitter

workload using box-plots. Due to the strong load-balance properties of consistent-

hash partitioned system, the values of Lb are consistent throughout the repartitioning

cycles. For RM, the GR and CGR based schemes perform better than the HR and CHR

approaches which are orthogonal in the case of MCM based data migration schemes.

In the MCM strategy, similar observations are found where the GR and CGR based

approaches perform better than the rest. Similar to Figure 4.9, the RM and MSM

strategies require more data migrations than the MCM in order to maintain an adequate

level of load-balance in the cluster. Overall, the GR and CGR based techniques require

slightly fewer data migrations than the HR and CHR based repartitioning schemes.

4.7.2 Comments on the Experimental Results

From the above discussion, it is clear that the TRP based MCM strategy is bet-

ter suited for both range- and consistent-hash partitioned databases under the TPC-C

workload. On the other hand, the CGR-RM and HR-RM/CHR-MSM schemes are better

suited for range- and consistent-hash partitioned databases, respectively, for the Twit-

ter workload. Compared with the proactive approach, the reactive incremental cycles

are capable of maintaining a user-defined Rt while performing a constant server-level

load-balance with the necessary amount of physical data migrations. In terms of work-

load network representations, GR is somehow ambiguous in representing the actual
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transactional interactions, and hence not capable of producing the exact workload net-

work. Therefore, in situations where the database cluster is under stress, the results

are not consistent with the expected outcomes. HR can represent the exact workload

network, but this allows the external graph min-cut libraries to produce clusters that

require a large number of physical data migrations in order to maintain adequate load-

balance. CGR and CHR, on the other hand, provide less flexibility for the external

graph min-cut libraries, as they compress inter-related edges and hyperedges together,

and thus produce better results in reducing the overall impacts of DTs. Overall, TRP

based CHR-MCM incremental repartitioning shows better control and adaptability in

a reactive manner for both range- and consistent-hash partitioned databases under the

TPC-C and Twitter workloads.

4.8 Conclusions

Graph-cut based incremental repartitioning is an indirect way of achieving repar-

titioning benefits, in terms of minimising the impacts of DTs and load imbalance, by

performing a minimum number of data migrations. By abstracting the workload level

complexities to a higher dimension, graph theoretic schemes can indirectly improve

some of the repartitioning KPIs. However, the overall process varies greatly depending

on the workload profile and transactional network characteristics. Therefore, there are

no direct ways of forcing any of the repartitioning objectives to minimise the KPIs be-

low a preset threshold of Rt . From experimental evaluations, it is clear that, as TPC-C

and Twitter workloads have different transactional profiles and characteristics, no sin-

gle combination of workload representation and cluster-to-partition mapping strategy

can manage to deal with them. For instance, a compressed hypergraph based workload

network representation with MCM data migration strategy performs better for TPC-C

workloads, where transactions are highly concurrent and tuple-level transactional as-

sociations are primarily controlled by ‘Warehouse’ and ‘Item’ ids. On the other hand,

graph and compressed graphs are deemed suitable for Twitter workloads, where RM

and MSM data migrations strategies help the HRP and TRP schemes to minimise the

repartitioning KPIs. Based on the the Twitter workload implementation (as described
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in Chapter 3), most of the transactions involve in retrieving tweets for a given pop-

ular user that are generated by a fixed number of other users they follow in their

social-network. In such situation, the repartitioning results from the simulations are

seemed optimistic. In overall, although graph min-cut based repartitioning scheme is

a popular technique used in existing literatures, until now, it has not been explored

deeply enough to understand its implications and effectiveness under different circum-

stances. In next chapter, we propose a greedy heuristic based repartitioning scheme

which removes workload level abstractions altogether and provides more flexibility to

the system owners for directly influencing the repartitioning decision to achieve spe-

cific balance between multiple repartitioning KPIs. Furthermore, we also discuss open

issues left with graph min-cut based repartitioning scheme and propose ways to deal

with them using a greedy approach.



Chapter 5

Incremental Repartitioning with
Greedy Heuristics

In the previous chapter, a graph theoretic incremental repartitioning scheme is pro-

posed that uses higher-level network abstractions and utilises balanced graph min-cut

clustering to reduce the number of DTs in the workload. Furthermore, two cluster-

to-partition mapping techniques are used to aid this scheme to provide sub-optimal

repartitioning results for minimising data distribution load imbalance and physical data

migrations. However, such a model does not allow the system administrators to im-

plement any preferential policy mix of multiple KPIs in order to obtain an optimal or

near-optimal repartitioning outcome. In this chapter, a greedy heuristic based scheme

is proposed which avoids network abstractions altogether and directly operates at the

transaction-level to derive an optimal repartitioning decision.

5.1 Introduction

Greedy optimisation heuristics are often used when it is computationally challeng-

ing to find an optimal solution for a problem with large search space. As a simplistic

example, if an optimisation problem exists which is trying to minimise/maximise some

function f (x) over domain X , then a greedy heuristic computes the value f (x) locally

for all x in the neighbourhood space, and selects the local optima to progress to the

next level of solution. Similarly, finding an optimal solution for semi-orthogonal repar-

titioning KPIs is not trivial. A balanced graph min-cut based repartitioning scheme,

discussed in the previous chapter, is only able to achieve an optimal repartitioning goal

on a single direction (i.e., minimise Id) unless artificial cluster-to-partition mappings

are used to achieve some further level of balance with the other repartitioning KPIs,

Lb and Dm. Although the objective to achieve an optimal balance for both Id , Lb, and

130
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Dm in a partitioned database seems orthogonal, such an approach, which focuses on

optimising each possible data migration for a particular DT in hand, along with appro-

priate heuristics, is entirely feasible. In this chapter, a greedy incremental repartition-

ing scheme is introduced which aims finding a user-defined balance between multiple

repartitioning KPIs over time in order to achieve a near-optimal solution to the reparti-

tioning problem. Theoretical arguments and experimental results jointly confirm that

by adopting an exhaustive technique with suitable heuristics, optimal results can be

guaranteed in a multi-objective demand-driven repartitioning scenario.

The rest of the chapter is organised as follows. Section 5.2 discusses the motiva-

tions, significance, and an overview of the proposed repartitioning scheme. Section 5.3

formally introduces the proposed scheme using detailed mathematical and algorithmic

constructions. Section 5.4 discusses the experimental results using the proposed repar-

titioning scheme for different scenarios and parameter settings. Finally, Section 5.5

comments on the challenges of the proposed scheme and concludes the chapter.

5.2 Overview

In this section, a detailed discussion of the shortcomings of graph theoretic repar-

titioning scheme is presented. This is followed by the development of, and a proposal

for a novel greedy heuristic algorithm for optimal incremental repartitioning.

5.2.1 The Practical Aspects of Graph Theoretic Repartitioning

A graph or hypergraph network is an abstract representation of a transactional

workload. Abstractions are generally used to hide underlying complexities of a system.

Similarly, the network abstractions used in the previous chapter hide the complexities

of transactional workloads and provide much simpler representations. Theoretically,

while simpler representations present fewer computational complexity, the solutions

can at best be only a rough approximation of the original problem. The higher the

level of abstraction, the coarser the level of approximation. As a consequence, when

a repartitioning solution is derived from graph based abstract representations (using

graph min-cut techniques), it may not be perfectly aligned with the solutions that would
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have been produced using low level transactional representations. We may then con-

clude that the graph min-cut based repartitioning solutions are not necessarily optimal.

The primary motivation of this chapter, therefore, is to develop a repartitioning scheme

without resorting to any high level abstraction, where multiple KPIs can be traded-off

in order to find an optimal solution by achieving a balance between multiple objectives,

i.e., reduce the impacts of DTs and maintain server-level load-balance at a certain pro-

portion. Provisioning user level control to trade-off operational KPIs is highly desirable

for any distributed OLTP database in practice.

In this chapter, an incremental repartitioning scheme is derived by completely re-

moving the network abstractions used in the previous chapter, and directly utilising

the physical properties of a transactional workload to reduce server spans and load

imbalance while restricting the amount of inter-server data migrations. This way, the

repartitioning solutions can be genuinely mapped to the root causes of the problems

emanating from the transactional workload. Now, it is essential to ascertain whether

it would even be possible to work at such a low level where no abstraction layer is

present. In the proposed approach, all the DTs (that is Td) within the most recent work-

load observation window W are exhaustively examined in a greedy ordering without

any backtracking to determine a near-optimal repartitioning solution. Therefore, it

is necessary to understand whether such an exhaustive greedy approach can be com-

pleted within a polynomial time bound.

The experimental results on graph theoretic repartitioning schemes presented in

the previous chapter have been obtained by restricting the repetition pool for unique

transaction generations as described in Chapter 3. This is done to avoid any undue in-

fluence of external graph clustering libraries, while comparing different repartitioning

schemes. In reality, however, the repetitive nature of OLTP workloads is not bounded

to a fixed set of unique transactions over an observation window. Therefore, the actual

repartitioning time for any graph min-cut based scheme will be much higher, and in

some cases may be impractical when rapid repartitioning decision making is necessary.
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Table 5.1 presents a comparison between average repartitioning times1 for the

graph min-cut based scheme following MCM cluster-to-partition mapping strategy, us-

ing both restricted and unrestricted unique transaction generation models. From the

observations, it is clear that the average repartitioning time for unrestricted unique

transaction generations is several magnitudes higher than the restricted model, for all

workload types and representations.

For real-life production deployment of very large-scale OLTP databases, the size of

the observed workload network can grow beyond millions of vertices and edges. It

is well known that the order of graph theoretic algorithms in general is O (|V |+ |E|)

where V and E are the set of vertices and edges of the underlying graph, respectively.

Therefore, in practical scenarios, incremental repartitioning following a graph theoretic

approach can be problematic, when an on-the-spot repartitioning decision is required.

Furthermore, with a sub-optimal outcome, the repartitioning process may also fail to

make the right balance within the KPIs for multi-objective repartition goals.

5.2.2 Challenges in Finding an Optimal Repartitioning Decision

Based on the discussion on the properties of transactional workloads in Chapter 3,

OLTP transactions usually operate over a fixed number of data tuples within a database

in a repetitive manner. For example, TPC-C transactions are mostly controlled by the

given Warehouse ‘id’ which associates its related data tuples in the database. Similarly,

Twitter transactions modelled in OLTPDBSim are primarily steered by the given User

and Tweet ids that eventually control the number of Tweets to be retrieved from the

Followers and Follows relationships.

OLTP workloads, in a sense, operate over a network of relationships. Thus, the size

of the dataset for individual transactions are constant for a particular class or type of

transaction from the transaction profile of an OLTP application. Therefore, it can be

assumed that any particular tuple is shared within a relatively small number of DTs.

Furthermore, from the study of network science it is found that such information access

patterns in the Web do not follow the characteristics of a random network, rather the

1 Repartitioning times here include both graph compression and repartitioning decision making times,
while excluding the time taken for physical data migrations.
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repetitive visits by the users and their information retrieval patterns follow the scale-

free property [158–161].

Consider the scenarios involving individual banking transactions, as an example.

Data tuple representing individual account numbers can present in the transactions

initiated by the particular account holder. Considering that the number of transactions

initiated by individuals is limited and the people they conduct these transactions with

are also limited, it can be safely assumed that these numbers will remain relatively

constant, even if the number of transactions in the overall banking application grows

over time. Similarly, in a social networking application, it is possible to show that ev-

ery user is connected with one another despite having a limited number of individual

connections. Therefore, the degree2 of a data tuple in the workload network repre-

senting the number of its incident transactions may be assumed to be a small constant.

This claim can be supported from studies in the existing literature. For instance, the

average distance between all pairs of users within Facebook was 5.28 hops in 2008 and

became 4.74 by 2011, as the global network became more and more connected [162].

Similar characteristics can also be found in other OLTP applications. Furthermore,

this phenomenon, which was originally observed from the studies of Small-World Prob-

lem [163, 164], has been extensively studied in the literature.

5.2.3 Proposed Greedy Repartitioning Scheme

The main concept of the proposed greedy heuristic as well as some implementation

issues are presented in the following two subsections.

5.2.3.1 Main Concept

Let us consider the sample OLTP database and transactional workload in Tables 2.4

and 4.1, respectively, to assist in presenting the main concept of the proposed greedy

heuristic based repartitioning scheme. Let us further assume that these seven unique

transactions occur in the workload with frequencies 10, 5, 3, 2, 2, 1, and 1, in that

order. Note that the server span of three DTs is 2 and rest are 1. The impacts of

2 The degree of a vertex in a network represents the number of edges it has to other vertices.
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distributed transactions and server level load balancing KPIs of the system can be cal-

culated using (3.9) and (3.12), respectively, as

Id =
2×10+2×5+1×3+1×2+2×2+1×1+1×1
2×10+2×5+2×3+2×2+2×2+2×1+2×1

=
41
48

,

Lb =

√
(10−10)2+(10−10)2

2

10
√

2−1
= 0.

Now, the server span of a DT can be reduced by 1 if all its data tuples in a physical

server are moved to another server from where the DT uses some data tuples. For

example, server span of DT τ2 can be reduced to 1 by migrating either tuples {4,6}

from server S1 to S2 or tuples {1,9,11} from S2 to S1. The first data migration plan does

not change the span of any other transaction; but the load of servers changes by 2.

Effectively, the KPIs are changed as follows:

I′d =
2×10+1×5+1×3+1×2+2×2+1×1+1×1
2×10+2×5+2×3+2×2+2×2+2×1+2×1

=
36
48

,

L′b =

√
(8−10)2+(12−10)2

2

10
√

2−1
=

1
5
.

The second plan increases the span of MNDTs τ3 and τ4 by 1, and the load of servers

is changed by 3. Effectively, the KPIs are changed as follows:

I′′d =
2×10+1×5+2×3+2×2+2×2+1×1+1×1
2×10+2×5+2×3+2×2+2×2+2×1+2×1

=
41
48

,

L′′b =

√
(13−10)2+(7−10)2

2

10
√

2−1
=

3
10

.

It is, therefore, possible to measure the net improvement (NI) of a KPI (∆KPI) for

any migration plan. For the first plan above, ∆
′Id = Id − I′d = 5

48 and ∆
′Lb = Lb−L′b =

−1
5 . Similarly, for the second plan above, ∆

′′Id = Id− I′′d = 0 and ∆
′′Lb = Lb−L′′b =− 3

10 .

Note that the higher these values the higher the improvement and that negative values

indicate deterioration.

By considering ∆KPI per data tuple migration, it is possible to compare feasible

migration plans for a DT to find the best one. For example, the first plan above is best

for Id improvement as ∆
′Id
2 (= 5

96)>
∆
′′Id
3 (= 0) and both plans are best for Lb improvement
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as ∆
′Lb
2 = ∆

′′Lb
3 = − 1

10 . Using the same principle, DTs can also be compared to find the

best one. This ultimately establishes a greedy heuristic for incremental repartitioning

where iteratively the best migration plan of the best DT is executed. Note that due to

using per data improvement, the greedy heuristic also indirectly keeps the inter-server

data migrations KPI Dm in check.

This greedy approach is flexible enough to optimise the repartitioning problem sub-

ject to the weighted mean KPI λId +(1−λ)Lb where λ is a user-defined weight in the

range of [0,1]. In that case, KPI is obtained using the same weighted mean formula as

∆
′KPI = (λId +(1−λ)Lb)− (λI′d +(1−λ)L′b) = λ(Id− I′d)+(1−λ)(Lb−L′b)

= λ∆
′Id +(1−λ)∆′Lb

The example used in this section has the opportunity to reduce the span of a DT

by 1 only as |S| = 2. For large OLTP applications with more than 2 physical servers,

the concept can be extended to consider migration plans that move data tuples from

multiple servers into another server, and hence reduce the span of a DT by more than

1. Such generalisation can be bounded to γ-span, 1 ≤ γ < |S|, where migration plans

are restricted such that data tuples from most servers are moved.

Finally, another strength of the proposed greedy approach is its ability to terminate

a repartitioning initiative as soon as the user-defined target is achieved as migration

plans are selected one-by-one. The graph theoretic approach proposed in the previous

chapter cannot be terminated in the middle as the migration plans are selected together

only after the min-cut clustering is completed.

5.2.3.2 Implementation Issues

To implement such a multi-objective optimisation algorithm, consider a priority

queue P Q , which orders the DTs in T by their maximum gains in reducing the adverse

impacts of the repartitioning problem, i.e., impacts of DTs (Id) and load imbalance.

Transactions are peeked3 from P Q for processing, i.e., redistributing its tuple set to

achieve the repartitioning objectives. The set of incident transactions is also updated

3 Peek retrieves, but does not remove, the highest priority element from the head of the queue.
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accordingly and reinserted back in P Q to reorder the priority. This entire process af-

fects the repartitioning gains achievable by its incident transactions in future. Either

the gain achieved by the transaction under processing will suppress the future gains by

its incident transactions, or vice versa. Or, the current achievement may be subjugated

by the changes made from processing its incident transaction in future. Therefore, an

already processed transaction may need to reappear again and again in P Q , hence cre-

ating ping-pong effect which makes it an NP-complete problem. This process continues

until P Q becomes empty.

In regard to the computational order of the above algorithm, it takes logn time to

poll 4 a single element from a P Q , and reorder it as described above. Let, c be the

constant number of incident DTs for any DT in P Q . Therefore, it will take (c+1) logn

time to poll each DT from P Q , and then reorder the it accordingly. For n number

of DTs in P Q , it will take (c+ 1)n logn time to complete a single iteration of the in-

cremental repartitioning process. Despite the fact that the constant c can be a large

value depending on the workload characteristics, the complexity of this algorithm can

be reduced to O(n logn) which is polynomial. However, processing each transaction

involves processing its incident set of transactions and processing any of these incident

transaction may require modifying the current transaction under processing. This phe-

nomenon may create a ping-pong effect within the workload network which does not

have any polynomial bound to finish, hence the algorithm outlined above may not be

able to complete in polynomial time as expected. This proves NP-completeness of the

above mentioned approach, therefore no optimal solutions can be found to solve this

problem.

To find an algorithm for the above problem which completes in polynomial time re-

quires the development of special heuristics. As discussed in Chapter 4, balanced graph

min-cut based incremental repartitioning schemes also use heuristics where workload

network abstractions are created using graph, hypergraph, or their compressed repre-

sentations. Experimental results from Chapter 4 have also shown that the solutions

are not optimal in achieving specific repartitioning objectives such as minimising the

impacts of DT or maintaining server-level load-balance. However, workload network

4 Poll – retrieves and remove, the highest priority element from the head of the queue.
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abstractions that are created at far higher level do not provide sufficient flexibility to

manipulate individual transactions at the lowest level. Therefore, in this chapter simple

heuristics are used in incremental repartitioning schemes which simultaneously allow

them to operate over individual DTs while exhaustively processing the P Q .

A simple heuristic to avoid creating a ping-pong effect in processing the incident

transactions within P Q is to forbid processing a DT which may adversely affect the

gains achieved by any of its incident transactions (i.e., predecessors) which have been

already processed. As P Q is ordered according to the maximum gain achievable by

each transaction, therefore bypassing the processing of a future incident transaction of

a transaction that has been already processed to achieve a higher gain has a neutral

affect on the overall impacts of DT within the system. This simple heuristic allows

the algorithm to complete in polynomial time with complexity O(n logn) as the num-

ber of elements in P Q reduces at each iteration. In the following sections, the above

greedy heuristic based repartitioning algorithm will be presented using mathematical

notations based on the above heuristics and then evaluated in simulation to show their

effectiveness in achieving particular repartitioning goals using the more realistic unre-

stricted transaction generation model.

5.3 Greedy Heuristic based Incremental Repartitioning Scheme

Let T be the set of all transactions. Let ∆i = {δi,1, ...,δi,|∆i|} denote the tuple set of

transaction τdi
, and DS j

be the tuples residing in server S j. Let ψ(δ) denote the resident

server of tuple δ and ψ(∆) =∪δ∈∆ψ(δ) denote the residing set of servers for all tuples in

∆. Note that ψ(∆i) denotes the set of servers spanned by τdi
. Let ∆i, j = {δ∈∆i

∣∣ψ(δ)= S j}

denote the tuple set of τdi
stored in server S j and ∆i,A = ∪ j∈A∆i, j denote the collective

tuple set of τdi
stored in the set of server A ⊂ ψ(∆i). Let ϒ̃τ be the expected period of

recurrence of transaction τ. Let Ton
i = {τd j

∈ Td \ {τdi
}
∣∣∆ j ∩∆i 6= φ} be the set of DTs

incident to τdi
. Let mi,A→b denote a migration plan for τdi

by moving tuple set ∆i,A from

A to a single server b ∈ ψ(∆i)\A.

Let ∆Id(mi,A→b) and ∆Lb(mi,A→b) denote the net improvement per data migration
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(NIPDM), the higher the better, in Id and Lb, respectively, that are calculated as follows:

∆Id(mi,A→b) =
Id− Id [[mi,A→b]]

|∆i,A|
=

1
|∆i,A|

|A|
ϒ̃τdi

+ ∑
τd j
∈Ton

i

|A|−|ψ(∆ j,A\ ∆i,A)|−F0/1( j,b)
ϒ̃τd j

∑τ∈T
|S|
ϒ̃τ

(5.1)

where

F0/1( j,b) =

 0, b ∈ ψ(∆ j);

1, otherwise

and

∆Lb(mi,A→b) =
Lb−Lb[[mi,A→b]]

|∆i,A|
=

1
|∆i,A|

σDS
−σDS

[[mi,A→b]]

µDS

√
|S|−1

(5.2)

where the notation �[[mi,A→b]] is used to refer to a measure after the migration plan

mi,A→b is executed.

Let κλ(mi,A→b) be the weighted mean NIPDM (WMNIPDM) for migration plan mi,A→b

with weight λ, 0≤ λ≤ 1, defined as

κλ(mi,A→b) = λ∆Id(mi,A→b)+(1−λ)∆Lb(mi,A→b). (5.3)

For already executed migration plans covering set of transactions Tex, let M̃i,Tex
rep-

resents the set of non-contradicting migration plans for τdi
such that, if executed, none

of the plans would extend the server span of any of the transactions in Tex.

Given λ, Tex, and γ-span, an upper limit on the cardinality of A, let mγ,λ,Tex
i,A→b be the

best non-contradicting migration plan, achieving the maximum possible WMNIPDM,

for τdi
, which is defined as

mγ,λ,Tex
i,A→b =


null, M̃i,Tex

= φ;

argmax
∀mi,A→b ∈ M̃i,Tex

∣∣|A|≤γ

κλ(mi,A→b), otherwise. (5.4)

Finally, Algorithm 5.1 lists the greedy heuristic based incremental repartitioning

algorithm as follows.
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Algorithm 5.1 The greedy heuristic based incremental repartitioning algorithm

1: procedure PROCESSPQ(S,Td ,γ,λ)
2: Tex← φ

3: while Id > th do
4: i∗ = argmax

∀i
mγ,λ,Tex

i,A→b

5: if mi∗,A→b = null then
6: EXIT
7: end if
8: Execute migration plan mi∗,A→b
9: Tex ← Tex ∪ {τdi∗

}
10: end while
11: end procedure

5.4 Experimental Evaluation

In this section, we evaluate the performance of the proposed greedy heuristic based

repartitioning algorithm in its four different variations. Note that, in this proposed

approach for each DT in hand, we calculate the NIPDM values for Id and Lb for each

possible migration plan according to (5.1) and (5.2), respectively. These are the per

data migration gains for Id and Lb. Finally, (5.3) provides the corresponding mi,A→b’s

WMNIPDM depending on the pre-defined weight factor λ. For individual mi,A→b, it is

possible to calculate the Id and Lb gains in (5.1) and (5.2) without dividing by |∆i,A|,

i.e., the required amount of data to be migrated from A. This will provide the best Id

and Lb gain values for the corresponding mi,A→b without considering any data migration

optimisation. Furthermore, by relaxing or restricting the |A| ≤ γ condition in (5.4), we

can also control the possible number of migration plans to be generated and computed

for WMNIPDMs. By restricting the condition as |A| = γ in (5.4), we can expedite the

convergences of the Id and Lb KPIs by allowing only the largest possible many-to-one

data migration plans to be computed.

By controlling the behaviour of whether data migration optimisation is applied or

not, and whether fast or slow convergence is required, it is possible to simulate several

variations of the proposed algorithm. This will allow us to examine the adaptability

of the proposed greedy heuristic based incremental repartitioning scheme for different

scenarios of OLTP applications. Based on these two criteria, we examine four different

variations of the proposed algorithm as
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(1) with Division no Restriction (wDnR)—which is the original version of the proposed

algorithm that calculates the NIPDM values of Id and Lb for all possible migration

plans of an individual DT.

(2) with Division with Restriction (wDwR)—which restricts the number of possible mi-

gration plans to be considered by imposing |A|= γ condition while calculating the

NIPMD values of Id and Lb for an individual DT.

(3) no Division no Restriction (nDnR)—which will allow the migration plans with the

highest Id and Lb net improvements to be selected for an individual DT

(4) no Division with Restriction (nDwR)—which imposes the |A| = γ restriction on se-

lecting the possible data migration plans while ensuring the highest Id and Lb gains

to be computed for an individual DT.

The greedy heuristic based repartitioning algorithm is evaluated using OLTPDBSim

with the same simulation parameters listed in Table 4.2 using an unrestricted transac-

tion generation model and a pre-defined repartitioning triggering threshold Rt of 0.5

for four DSs. In order to further examine the individual variation of the proposed

algorithm, we vary λ from 0.0 to 1.0 with an interval of 0.25, prioritising Lb and Id

gains, respectively, during the best migration plan selection for an individual DT. These

wide-scale experimentations show the proposed repartitioning scheme’s capability in

handling different scenarios of modern OLTP applications.

5.4.1 Analysis of Experimental Results for TPC-C and Twitter Workloads

In this section, experimental results are shown for a range- or consistent-hash parti-

tioned database cluster under TPC-C and Twitter workloads, respectively.

5.4.1.1 Range-Partitioned Database

Figure 5.1 presents the experimental results using a range-partitioned database un-

der TPC-C workload. From Figure 5.1(a), one can visualise the difference in Id con-

vergences of the four variations of the proposed incremental repartitioning scheme for
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Figure 5.1: Comparison of greedy heuristic based repartitioning schemes with different λ val-
ues in a range-partitioned database cluster for observing Id , Lb, and Dm under TPC-C workload
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Figure 5.2: Comparison of greedy heuristic based repartitioning schemes with different λ val-
ues in a range-partitioned database cluster for observing Id , Lb, and Dm under a Twitter workload
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λ = 1.0. The wDnR is the exact implementation of the proposed algorithm which con-

verges slowly to reduce Id below Rt . The convergence of wDwR is faster the former

one as only the migration plans with γ = |S|−1 are selected. For both nDnR and nDwR

variations, the Id convergences for λ = 1.0 are exactly the same. This is because both

of these select the best migration plans prioritising Id gain which is independent of γ

condition when no data migration optimisation is used. Notice that, for λ values 0.0 to

0.75, the resulting Id performances are very close to each other, which indicates that

the relationship between Id and Lb is not fully orthogonal. Therefore, it is not possible

to achieve a situation where Id can be entirely sacrificed in cases for λ < 1.0.

This phenomenon is more clearly captured in the results shown in Figure 5.1(b),

where the Id , Lb, and Dm metrics are presented in box plots. The semi-orthogonal

relationships between Id and Lb as well as Lb and Dm can be observed with different λ

values. For all situations where λ < 1.0 there are hardly any differences in Lb and Dm

KPIs for all of the variations examined.

For Twitter workload using the range-partitioned database as shown in Figure 5.2,

the results are rather difficult to distinguish for λ = 1.0 in all of the variations. Due

to the specific characteristics of a Twitter workload, all the variants of the proposed

algorithm have successfully managed to reduce the overall impacts of DT under the

preset threshold as can be seen from Figure 5.2(a). The only distinctions to be noticed

are for the wDnR and nDnR variations where the Id lines are rather separable due to the

fact that different migration plans are selected for different λ values as no restriction is

applied.

Figure 5.2(b) presents Id , Lb, and Dm KPIs in box plots observed for the entire

simulation period. In the cases of wDnR and wDwR, the Lb and Dm performances are

very similar for cases where λ < 1.0. For the nDnR and nDwR variations, the reduction

of Id is achieved in λ = 1.0 by performing more data migrations which also leads to

high Lb values.

5.4.1.2 Consistent-Hash Partitioned Database

Figure 5.3 presents the results obtained from experimenting in a consistent-hash

partitioned database under a TPC-C workload. As expected, the results in Figures 5.3(a) and (b)
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Figure 5.3: Comparison of greedy heuristic based repartitioning schemes with different λ val-
ues in a consistent-hash partitioned database cluster for observing Id , Lb, and Dm under a TPC-C
workload



§5.4 Experimental Evaluation 147

wDnR wDwR

nDnR nDwR

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0 3 6 9 12 15 18 21 24 27 0 3 6 9 12 15 18 21 24 27

0 3 6 9 12 15 18 21 24 27 0 3 6 9 12 15 18 21 24 27
Time (in hrs)

(a)

I d

wDnR wDwR nDnR nDwR
●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●●
● ● ● ●

●●●

●●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●

● ● ● ●

● ● ● ● ●

●●● ●●●

●

●●●

●

●●●

●

●●●

●

● ● ● ● ●

●●● ●●●

●

●●●

●

●●●

●

●●●

●

●

● ● ● ●

●

● ● ● ●

●●● ●●●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●

● ● ● ●

●●●

●

●●●
●

●

●●●
●

●

●●●
●

●

●●●
●

●

●

● ● ● ●

●

● ● ● ●

●●● ●●● ●●● ●●● ●●●

●
● ● ● ●

●●●

●

●●● ●●● ●●● ●●●

●

● ● ● ●

●

● ● ● ●

0.4

0.6

0.8

0.0005

0.0010

0.0015

0.0020

0.0025

0e+00

1e−04

2e−04

3e−04

4e−04

5e−04

I d

Lb

Dm

Repartitioning schemes

(b)

Weight factor, λ 1.0 0.75 0.5 0.25 0.0

Figure 5.4: Comparison of greedy heuristic based repartitioning schemes with different λ val-
ues in a consistent-hash partitioned database cluster for observing Id , Lb, and Dm under a Twitter
workload
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reveal close similarities with the results shown in Figure 5.1. For the wDnR and wDwR

variations, the slow convergences of Id for λ = 1.0 is clearly visible. For all other cases

(λ < 1.0), the variations of Id lines in wDnR flatten out and are almost inseparable,

while for the added restriction in data migration plan generation the Id performances

are within close range. Figure 5.3(b), where the resultant KPIs are presented using box

plots, shows similar characteristics to those observed for range-partitioned database

cases in Figure 5.1(b). The Lb and Dm KPI performances are very similar to each other

in all cases except for λ = 1.0. For the nDnR and nDwR variations, the Id fast conver-

gences are achieved by performing more data migrations in bursts. On the other hand,

due to the optimised data migrations over consecutive repartitioning cycles, the wDnR

and wDwR variations slowly converge Id towards Rt .

The experimental results using a consistent-hash partitioned database under a Twit-

ter workload are presented in Figure 5.4. Again, these results are very similar to the

results obtained in Figure 5.2. The Id line graphs, as shown in Figure 5.4(a), for each

variant of the proposed algorithm are very close to each other and are due to specific

characteristics of the Twitter workload. Figure 5.4(b) shows the Id , Lb, and Dm values

for the experimental variants in box plots which again affirm similarity with those in

Figure 5.2.

5.4.2 Combined Analysis of Experimental Results for λ = 1.0

In this section, experimental results for all of the abovementioned four variations

where λ = 1.0 are observed together and compared against SWORD [93, 124, 125]—

an exhaustive incremental repartitioning scheme discussed in Section 2.6.4.2.4. From

Figure 5.5(a) for a TPC-C workload, it is clear that, due to the exhaustive search for

suitable swapping pairs of virtual nodes which in most cases are limited in number, the

value of Id flatten out at 0.8 and is unable to converge towards the Rt threshold of 0.5.

For a Twitter workload, although SWORD manages to aggressively reduce Id below Rt

following that it gradually starts to show signs of divergence from the preset Rt margin.

To confirm these for both the TPC-C and Twitter workloads, we ran the simulations for

72 h, and observe that SWORD is unable to maintain an effective Id level for both cases.

Figure 5.5(b) also confirms the high volume of data migrations that SWORD needs to
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perform initially for a TPC-C workload. All variations of our proposed greedy heuristic

based incremental repartitioning scheme perform much better than SWORD, a state-

of-the-art dynamic incremental repartitioning scheme. Overall, both the nDnR and

nDwR variations aggressively converge Id below the Rt margin by performing more data

migrations compared to the wDnR and wDwR variations that converge rather slowly

over time. However, considering all three repartitioning KPIs, wDwR performs better

as it keeps the impacts of DTs and number of data migrations low simultaneously, for

both of the workload and database cluster types.

5.4.3 Comments on the Experimental Results

To summarise, in situations where we need to immediately reduce Id , either of

the nDwR or nDnR variations is the preferable choice considering data transfer cost is

negligible and one-time large volumes of data migration bursting is tolerated by the

system. These two variations will always choose the best migration plan for reducing

Id (for λ = 1.0), whether we restrict the migration plan generations or nor. Both wDnR

and wDwR variations are most suitable for normal operational conditions as they force

Id to slowly converge towards the Rt threshold with minimum data migrations over

time. The wDnR variation is best for achieving the highest per data migration net gain

for Id in each repartitioning cycle, and is better suited to systems with limited IOPS

resources. On the other hand, if the underlying system can support occasional I/O

bursting then the wDwR variation is the best option, as it can more aggressively reduce

Id compared to wDnR by migrating nearly the same amount of physical data.

From experimental analysis, it is clear that the proposed greedy heuristic based

incremental repartitioning scheme can produce near-optimal repartitioning. Further-

more, the convergence of the proposed algorithm can be easily controlled by setting

appropriate values for λ and γ. In the graph theoretic schemes, an MCM based TRP

approach is the only one that manages to aggressively reduce Id below the trigger-

ing threshold for both range and consistent-hash based databases under both a TPC-C

and Twitter workload. However, the Lb KPI seems to suffer in all of those scenarios

due to its aggressive nature of pushing more tuples into a single DS using the many-

to-one cluster-to-partition mapping. In the greedy heuristic approach, however, it is
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possible to prioritise Lb gains by executing migration plans that are optimised for data

migrations. Therefore, the Lb KPI performances are much better than the graph min-

cut based schemes for all settings. The proposed greedy scheme also validates that

it is possible to find optimal/near-optimal repartitioning results with an unrestricted

unique transaction generation model, while overcoming the shortcomings of the graph

based abstractions and increasing network size in real-world scenarios.

5.5 Conclusions

In this chapter, a greedy approach for workload-aware incremental repartitioning of

OLTP databases is proposed which produces optimal/near-optimal results using multi-

objective KPI requirements. The proposed scheme very clearly outperforms existing

exhaustive approaches like SWORD by using effective greedy heuristics. By removing

the workload network abstraction layer altogether, as introduced in the previous chap-

ter, direct transaction-level optimisations greatly improve the performance of the over-

all repartitioning process. However, due to the iterative data migrations during each

cycle, it is not possible to direct the repartitioning process towards achieving any partic-

ular KPI—Id or Lb. In fact, the repartitioning KPIs Id and Lb behave semi-orthogonally

to each other while physical data migrations take place; therefore, it is often hard to

achieve a proper trade-off between them. This has also been clearly observed in the ex-

perimental results. For large-scale deployment and real deployments, the search space

for a repartitioning problem can still grow large even for the most sophisticated greedy

heuristics. Therefore, there is still a need to reduce the repartitioning search space to

a level that can only work with the representative transactional snapshots containing

the frequently appearing elements in a workload. Finally, an on-demand repartitioning

solution can take advantage of this to find an approximate solution to the incremental

repartitioning problem that is effective to use in practice. In next chapter, we further

discuss these abovementioned issues and present an dynamic repartitioning approach

based on transactional stream mining.



Chapter 6

Incremental Repartitioning with
Transactional Data Stream Mining

In the previous chapter, a greedy heuristic based approach for incremental database

repartitioning has been discussed and evaluated. The scheme has shown effective-

ness in achieving the two repartitioning KPIs—the impact of DTs and server-level

load-balance with strict control over physical data migrations. However, the num-

ber of transactions in any given observation window may create a bottleneck on the

performance of such schemes. In this chapter, a transactional Data Stream Mining

(DSM) based incremental repartitioning scheme is proposed to facilitate effective deci-

sion making by analysing only a limited number of highly recurring DTs.

6.1 Introduction

In a dynamic OLTP application, the number of unique transactions is expected to

grow with time. By discarding the transactions that were generated before the current

workload observation window, the growth rate in the number of unique transactions

may be considerably held in check, but it will, nevertheless, be high in the long run.

Consequently, scalability of both the graph min-cut based repartitioning (Chapter 4)

and the greedy optimisation based repartitioning (Chapter 5) schemes can suffer sig-

nificantly due to incremental computational complexity overload. The running time

of a graph min-cut algorithm depends on the number of edges as well as vertices in

the graph that are directly proportional to the number of unique DTs, along with the

MNDTs and the data tuples collectively covered by them, respectively. The computa-

tional complexity of the greedy optimisation heuristic depends on these aspects.

An incremental increase in the number of unique transactions may also lead to infe-

rior repartitioning decisions as the proposed schemes do not factor in data popularity,

152
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a phenomenon widely observed in random networks. Not all transactions are alike in

popularity, which is driven by either the underlying workload generation model or by

external events relevant to the OLTP application. To make sense of all transactions, it

is vital to understand how they are being used, both in the workload and by the asso-

ciated KPIs. To make the right business and operational decisions, it is now common

practice to classify data according to a temperature scale of hot, warm, and cold, rep-

resenting data that are used frequently (dominant), less frequently (commoner), and

rarely (outlier), respectively. It has been observed on many types of data studied in

the physical and social sciences that the frequency of data is inversely proportional to

its rank in the frequency table, referred to as the empirical Zipf law [118]. In general,

the number of unique data items classified as hot is a small fraction of the entire set

of unique data, while they represent a large fraction of the workload due their high

frequency of usage.

This chapter investigates ways of constructing a representative sub-network of rep-

resentative transactions and of performing transaction-level adaptive repartitioning on

this sub-network only. This strategy is expected to keep the computational complexity

in check as all the outliers and a large number of commoner transactions are not con-

sidered. Concomitantly, the performance of the repartitioning schemes is also expected

to improve due to the filtering out of a significant volume of infrequent transactions

that have little bearing on the KPIs. Recently, the transactional stream mining of Fre-

quent Itemsets (FIs),1 i.e., Frequent Tuplesets (FTs), has gained prominence in Big

Data applications in order to discover interesting trends, patterns, and exceptions over

high-speed data streams. On-line stream mining techniques [165, 166] that incre-

mentally update FIs over a sliding window are the most appropriate tools for achieving

the goal of this chapter as their amortised computational complexity [167] is signif-

icantly lower. Mapping graph min-cut clusters of the sub-network of representative

transactions directly to the physical servers also provides an opportunity to develop

atomic incremental repartitioning schemes where an individual transaction may trig-

ger repartitioning decisions for the data tuples covered by that transaction based on

some server-associativity metric.

The rest of the chapter is organised as follows. The motivations and significance of
1 The terms itemset and tupleset are used interchangeably in this thesis.
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using transactional DSMs to identify and utilise the frequently occurring transactions

for incremental repartitioning is discussed in Section 6.2. An extended transaction

classification technique accompanying the graph min-cut based repartitioning is pre-

sented in Section 6.3, along with experimental evaluation and comparative analysis

with the results obtained in Chapter 4. Section 6.4 details the Association Rule Based

Hypergraph Clustering (ARHC) [168] based atomic incremental repartitioning scheme

which uses the extended transaction classification method from Section 6.3. From

experimental results, this adaptive version justifies its effectiveness for practical use.

Finally, Section 6.5 concludes the chapter by discussing the potential and limitations of

the proposed technique.

6.2 Overview

In this section, the challenges related to incremental repartitioning of large-scale

transaction processing systems and possible ways forward are discussed.

6.2.1 The Impacts of Transactional Volume and Dimensions

To demonstrate the adverse effects of increasing transactional volume and dimen-

sions on the graph min-cut based clustering process, a three-dimensional empirical

analysis is conducted on hypergraph based transactional networks. The khmetis graph

min-cut library is used to perform k-way balanced clustering of the network while vary-

ing 1) the number of transactions to 500, 1000, 1500, and 2000; 2) the target number

of clusters to 100, 200, 300, and 400; and 3) the transactional dimensions, i.e., vary-

ing the number of tuples in a transaction to 5, 10, 15, 20, and 25. In Figure 6.1,

the cluster times are presented in bar plots with respect to the varying size of clusters

(Figure 6.1(a)) and different number of transactions (Figure 6.1(b)). It can be clearly

observed from the figure that clustering time grows at polynomial order with the in-

crease in all three dimensions – transactional dimensions, volume, and target number

of clusters. This monotonically increasing time in the clustering process reveals the lim-

itations of using a graph min-cut based repartitioning scheme in real-life. Similarly, the

computational time complexity of the greedy heuristic based repartitioning approach is
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Figure 6.1: The clustering times for transactional hypergraphs with different dimensions relat-
ing to a) increasing number of transactions, and b) increasing number of target clusters

also bounded by linearithmic order on the number of DTs as discussed in Section 5.2.

Therefore, in practice, it is challenging to obtain either a sub-optimal or near-optimal

repartitioning solution when the transactional volume is in the magnitude of millions

within an observation window and, at the same time, spanned over several thousands

of database partitions and hundreds of physical servers. A natural way to deal with

the abovementioned challenge is to determine the hot tuples in the database and con-

struct a representative workload network with the transactions containing them. More

specifically, by identifying the representative transactions containing the frequent tu-
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plesets, the workload size for analysis and processing can be dramatically reduced to

make quick repartitioning decisions.

6.2.2 Transactional Stream Mining

Tracking the hot, i.e., frequently recurring, tuplesets within the transactional streams

from the database logs has been extensively studied [165, 169–171] and used in prac-

tice [172, 173]. Over the past years, DSM techniques become extremely popular in

understanding the insights of real-time database usage patterns for e-commerce, bank-

ing, insurance, retail and manufacturing, and telecommunication applications. Tradi-

tionally, transactional logs are first archived and indexed within a data warehouse en-

vironment, then data mining techniques are used to understand and retrieve the useful

and interesting facts in and about the data. However, transactional queries in modern

OLTP systems are generated at an unparalleled high rate that requires on-demand and

real-time analytic insights. Real-time predictive analytic services typically use a single

pass over the incoming transactional streams to generate the outputs. In cases where

the outputs can be useful at the end of an observational phase, a sliding window is

maintained where the predictive outputs are kept updated upon the processing from

an individual pass. Depending on the size of these sliding windows and types, whether

time or transaction sensitive, a trade-off between the quality of the outputs and how

quickly predictive decisions are made is determined.

The task of finding the frequently occurring items in data streams is of significance

in many application areas. For instance, identifying frequently transmitted packets

within an Internet router at any ISP can reveal the users with the highest bandwidth

usage or the most popular destinations of its users in the Web. DSM schemes are also

used for market-basket analysis, marketing and determining pricing policies, credit

card fraud detections, real-time detections, click stream analysis in Web sites, etc. Sim-

ilarly, DSM techniques can be used to determine the representative set of transactions

containing frequently appearing tuplesets in a distributed OLTP database in order to

make effective incremental repartitioning decisions without analysing large volumes of

transactional logs.
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6.2.2.1 Frequent Tupleset Mining in a Transactional Database

Let δ̄i ∈℘(D), where ℘ denotes the power set, be any arbitrary tupleset and T
δ̄i

be the set of transactions containing δ̄i. The support and relative support of δ̄i can be

defined, respectively, as follows:

sup(δ̄i,T ) = |Tδ̄i
| (6.1)

s̃up(δ̄i,T ) =
|T

δ̄i
|

|T |
(6.2)

Given a Minimum Support Threshold (MST) ∂, δ̄i is called frequent i.e., a Frequent

Tupleset (FT) in T , if and only if, s̃up(δ̄i,T )≥ ∂.

In the literature, Apriori [174] is one of the oldest algorithms to find frequent tu-

plesets from a static set of transactions in an iterative way. By performing a level-wise

search using tuplesets of k length, the algorithm finds the set of candidate patterns

with the length of k+ 1. This iterative process continues until all the frequent tuple-

sets with the longest possible length are found and no further frequent tuplesets exist.

However, this static process is not suited to iteratively scanning very large candidate

sets generating long frequent tuplesets. Later, Han et al. [175] utilised frequent pat-

tern trees (FP-tree) for storing frequent patterns in a compressed way, and a frequent

pattern growth (FP-growth) technique to find the complete set of frequent patterns by

concatenating the frequent 1-itemsets iteratively. Despite its superiority over the origi-

nal Apriori approach, where there are high transactional volumes and dimensions, the

iterative search spaces can exponentially grow over time along with the number of FIs.

To further optimise this process, frequent closed tuplesets (FCTs) are introduced. A

tupleset δ̄i is said to be closed if there exist no frequent superset δ̄ j such that

6 ∃ δ̄ j ⊃ δ̄i | s̃up(δ̄ j) = s̃up(δ̄i) (6.3)

therefore, the set of FCTs only contains unique elements and is typically much smaller

than the set of FIs. Most importantly, the set of FTs can be calculated from the FCIs

as a tupleset will be frequent if, and only if, it is a subset of any FCI. This approach

allows the FCI mining algorithms to save computing time and space and allow for non-
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duplicate outputs. The particular problem of finding FCIs from a set of transactions in

a static database has been extensively studied in the literature [176–179].

6.2.2.2 Frequent Tupleset Mining in Transactional Streams

The problem of finding frequent tuplesets in the transactional streams is similar

to the problem discussed above, except that the search space is not a static dataset

anymore, but a sliding window over the stream that slides forward over time. The

window can be either time-sensitive – it contains transactions arriving within the last t

time units, or transaction-sensitive – it contains the last n transactions independent of

the transaction generation rate R . In this thesis, the transaction-sensitive approach is

adopted for mining FCIs in the stream, as it is more practical to define a transaction

batch size for a fixed R to be analysed in practice. Furthermore, it helps in compar-

ing the results in a simulation environment, rather than having varying a number of

transactions over fixed size time-sensitive sliding windows. Let W be the transaction-

sensitive sliding window containing the set of fixed number of transactions, and |W | be

the window size. Therefore, (6.2) can be adopted for W as

s̃up(δ̄i,W ) =
|T

δ̄i
|

|W |
. (6.4)

The process of FCI mining in the transactional streams can be either exact or approx-

imate. Exact mining needs to preserve all the FCIs in W in order to track the infrequent

tuplesets that might become frequent over time. On the other hand, the approximate

process can contain false positives and/or false negatives as it does not store FCIs from

the past. In most real-life scenarios, approximate outcomes are acceptable as the exact

solutions can become impractical for large W s and high values of R . In this thesis, an

approximate FCI/FCT mining approach is taken based on the above analogy. Interested

readers can read further about other methodologies for an exact FCI mining processes

using a time-sensitive sliding window in [165, 166, 180–184].

To further optimise the approximate mining technique, Cheng et al. [185] propose

semi-FCIs where the MST of an FCI is increased over time as it constantly appears

within successive W s. This relaxed-MST or maximum support error is used to prevent
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the dropping of a frequent tupleset from the solution when it becomes infrequent over

few slides of W . Based on this novel notion of semi-FCI, the authors proposed IncMine,

an approximate FCI mining algorithm, that uses an update per transaction batch pol-

icy over a time-sensitive sliding window model in order to incrementally update the

set of semi-FCIs over high-speed data streams. A high-level description of the IncMine

algorithm will be presented here for the readers to understand the iterative semi-FCI

update process which is later incorporated with the proposed incremental repartition-

ing algorithms.

In its simplistic form, the objective of IncMine is to find the closed FCIs over W . Let

F be the set of FCIs determined over W in a particular instance. As a new batch of

transactions arrive, F needs to be updated to incorporate the new transactions and

compensate the effects of the old transactions from the last batch update process. It

first searches the semi-FCIs from the latest transactions, and then updates L with the

latest findings. Consider, a tupleset δ̄i is marked as an FCI during the last batch update

with s̃up(δ̄i,T ) ≥ ∂, but becomes infrequent in the latest W . It is possible that δ̄i may

become frequent again, i.e., by obtaining relative support of at least ∂|T | in the next

slide. However, it is not guaranteed, thus, δ̄i can be silently dropped from F .

In such situations, a relaxation factor, r ∈ [0,1] can be used to check whether the

tuplesets in W have at least ∂r support to be stored in L as an FCI. IncMine extends this

idea by dynamically increasing the value of r for a δ̄i if it was an FCI in the previous

observations. As IncMine uses an update per transaction batch policy, let B be the

fixed size transaction batch where n number of Bs constitute W i.e., W = nB. Now, for

k ∈ {1, ...,n}, let minsup(k) be the incremental minimum MST function for τ̄i as

minsup(k) = d∂rke; (6.5)

where

rk =
1− r
n−1

(k−1)+ r (6.6)

which gradually increases the value of r for each succeeding B. Note that, r1 = r and

rn = 1. Any τ̄i is kept in the semi-FCI list if, and only if, its approximate support over

the most recent Bs is no less than minsup(k) i.e., s̃up(τ̄i)≥ minsup(k).



§6.2 Overview 160

Table 6.1: The key DSM configuration parameters used in OLTPDBSim

Sliding window type Transaction-sensitive
Sliding window size, |W | 3|W |
Transaction batch size, |B| |W |
Frequent tupleset mining CHARM [186] implementation using Java BitSet
Transactional stream mining IncMine [185]
Minimum support threshold (MST), ∂ 0.1
Initial relaxation rate, r 0.5
Maximum tupleset length Disabled – will perform full stream mining

Let us now formally define representative transactions (RTs) that are used in the

proposed repartitioning schemes presented in this chapter. A transaction τ is referred

to as an RT only if there exists an FCI δ̄i such that δ̄i ∈ τ. To distinguish RTs from the

set of all transactions T , we use the notation τ̄ to denote an RT and the set of all RTs is

denoted by T , T = {τ̄1, ..., τ̄|T |} ∈ T .

6.2.3 Transactional Stream Mining in OLTPDBSim

To incorporate DSM into OLTPDBSim, an efficient implementation of the IncMine

algorithm is used from [187] which has been developed on top of the existing MOA

(Massive On-line Analysis) [172] platform. For mining the tuplesets in successive trans-

actional streams the particular IncMine package in MOA uses an efficient implemen-

tation of the CHARM algorithm [186] using BitSet2 for finding the FIs. The stream

collector implementation uses EvictingQueue3 to construct a circular FIFO for storing

the transactional streams. This FIFO implements the sliding window W which contains

a fixed number of transactional batches, Bs. Most of the IncMine implementations are

fork lifted from MOA [172] under its open source license and properly modified to

integrate into the Incremental Repartitioning module of the OLTPDBSim simulator as

shown in Figure 3.3. When transactional stream collection is enabled in the simulation

configuration file, the stream collector FIFO continuously collects transactional logs.

2 Java BitSet is a data structure of dynamically resizing array of bits.
3 EvictingQueue is imported into OLTPDBSim from Google’s Guava library, which is a fixed-size queue

that automatically removes elements from the head when attempting to add elements to a full
queue.
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During each trigger of the repartitioning process, the entire FIFO is passed to the In-

cMine process as a sliding window, and the algorithm then processes and updates the

transactions per batch as defined in the configuration. The DSM output consisting of

the semi-FCIs are then used to find the set of representative transactions T . Finally,

a representative workload network is constructed from T which is much smaller than

any of the original graph based networks previously used in this thesis. Table 6.1 refers

to the key DSM parameters for IncMine implementation used in OLTPDBsim in order

to utilise transactional stream mining to facilitate the incremental repartitioning deci-

sion. As an example, according to Table 6.1, the values of |W | and |B| will be set to

10800 and 3600, respectively, for 〈R ,W , p〉 = 〈1,3600,0.15〉. With these settings, the

possible values for r can be 0.5, 0.75, and 1, thus the set of minsup(k) values to 0.05,

0.075, and 1 for the IncMine process in order to dynamically adjust the MST values for

transactional steam mining.

6.3 Transactional Classifications using Stream Mining

In this section, transactional stream mining is used to extend the proactive transac-

tion classification scheme discussed in Section 4.4.

6.3.1 Extended Proactive Transaction Classifications

The notion of moveable NDT (MNDT) has been introduced in the proactive transac-

tion classification technique to create a workload network consisting of DTs and NDTs

that have at least one tuple in a DT. This special sub-network is then used in the graph

min-cut based incremental repartitioning process to prevent those NDTs from turn-

ing into DTs over time. By continually mining the semi-FCIs from the transactional

sliding windows, DTs and NDTs in the classification tree can be further classified by

introducing the notions of distributed semi-FCTs (DFCTs) and non-distributed semi-

FCTs (NDFCTs). These selective sets of DTs and MNDTs are then used to construct a

representative workload network, which is much smaller in size compared to a net-

work containing every DT from W . The obvious drawback to this approach is the

slow convergence of Id towards the repartitioning triggering threshold Rt during each
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Figure 6.2: The proactive transaction classification process enhanced by identifying the fre-
quent closed tuplesets in the transactional workload

repartitioning cycle, which also influences the server-level data distributions. Yet, in

an approximate solution, the benefits from faster workload network processing with

fewer transactions can compensate for the abovementioned shortcomings over time.

Based on the above heuristic, an extended proactive classification tree is presented

in Figure 6.2. Transactions are classified as DTs and NDTs at the top-level. NDTs are

further classified into moveable and non-moveable groups. The moveable type contains

at least a single tuple which is also present in a DT, while the non-moveable type rep-

resents pure NDTs. By utilising the DSM technique, both DTs and moveable NDTs

are further classified on the basis of containing DFCIs and NDFCIs, i.e., semi-FCIs. All

other DTs and NDTs are classified as infrequent. From the above classifications, three

distinctive proactive transaction classification techniques can be derived as

(1) No Transaction Classification (NTC)—includes all DTs only

(2) Base Transaction Classification (BTC)—includes all DTs and MNDTs (as proposed in

the original proactive transaction classification technique described in Section 4.4)

(3) Partial Representative Transaction Classification (PRTC)—only includes DTs and

MNDTs that contain distributed semi-FCTs and moveable but non-distributed semi-

FCTs (i.e., DFCT-DTs and NDFCT-MNDTs)
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(4) Full Representative Transaction Classification (FRTC)—only includes DTs and MNDTs

that contain any of the semi-FCTs (i.e., DFCT-DTs, NDFCT-DTs, and NDFCT-MNDTs).

6.3.2 Experimental Evaluation

In this section, the proposed extended proactive transaction classification tech-

niques are compared using the same graph theoretic incremental repartitioning schemes

proposed in Chapter 4. Experimentations are performed following a reactive and

threshold-based (TRP) approach. The incremental repartitioning process starts once

the system Id increases for a pre-defined value of repartitioning triggering threshold Rt .

Transactional logs observed within the preceding W are then used to create a work-

load network as either GR, CGR, HR, or CHR. This workload graph is then clustered

and mapped back to the database partitions based on the proposed cluster-to-partition

mapping techniques detailed in Section 4.6. We decided to use the MCM mapping

technique as it exhibited superior incremental repartitioning performance in the ex-

perimental evolutions of Section 4.7.

By enabling transactional DSMs in OLTPDBSim, the proposed PRTC and FRTC tech-

niques are implemented; later their effectivenesses is compared with the NTC and BTC

approaches for graph theoretic incremental repartitioning. We will refer to these four

different repartitioning approaches as NTC-MCM, BTC-MCM, PRTC-MCM, and RTC-

MCM. Both TPC-C and Twitter workloads are simulated using a restricted transaction

generation model for range- and consistent-hash partitioned database clusters each con-

sisting of four physical DSs. The necessary simulation parameters are used as listed in

Tables 4.2 and 6.1.

6.3.2.1 Analysis of Experimental Results for TPC-C and Twitter Workloads

In this section, the experimental results for both range- and consistent-hash par-

titioned database clusters under TPC-C and Twitter workloads are presented and dis-

cussed.
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Figure 6.3: Comparison of graph min-cut based incremental repartitioning schemes with dif-
ferent transaction classifications in a range-partitioned database under a TPC-C workload
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6.3.2.1.1 Range-Partitioned Database

Figure 6.3 presents the simulation results comparing the NTC-MCM, BTC-MCM, PRTC-

MCM, and FRTC-MCM techniques in a range-partitioned database driving TPC-C work-

loads. Figure 6.3(a) shows the performance of Id for each of the workload network

representations of GR, CGR, HR, and CHR. The results reveal that there are hardly

any observational differences in the repartitioning KPIs between using NTC-MCM and

BTC-MCM, or between PRTC-MCM and FRTC-MCM techniques. The frequent tupleset

mining technique slowly reduces Id towards the threshold, as was expected. This is

due to the approximate solutions obtained from each of the incremental repartitioning

cycles. Similarly, Figure 6.3(b) presents the results for all three repartitioning KPIs—Id ,

Lb, and Dm—using box plots, and again the results are hardly distinguishable between

NTC-MCM and BTC-MCM, or between PRTC-MCM and FRTC-MCM. One of the notice-

able distinctions in the Lb performances for PRTC-MCM and FRTC-MCM are that these

are slightly worse compared to NTC-MCM and BTC-MCM. Figure 6.4 presents the re-

sults for a Twitter workload in the same range-partitioned database. The results are

almost identical in terms of distinguishing between using NTC-MCM and BTC-MCM, as

well as between PRTC-MCM and FRTC-MCM. However, as shown in Figure 6.4(b) both

Lb and Dm performances for PRTC-MCM and FRTC-MCM are much better compared to

NTC-MCM and BTC-MCM, while Id performances are almost identical in all cases.

6.3.2.1.2 Consistent-Hash Partitioned Database

Figures 6.5 and 6.6 present the experimental results comparing NTC-MCM, BTC-MCM,

PRTC-MCM, and FRTC-MCM in a consistent-hash partitioned database driving TPC-C

and Twitter workloads, respectively. According to Figure 6.5(a), Id performances do

not vary much between NTC-MCM and BTC-MCM, or between PRTC-MCM and FRTC-

MCM, for GR and CGR networks. For the HR network, the distinctions between dif-

ferent transaction classifications is very clear. The NTC-MCM technique makes rapid

progress in reducing Id , while BTC-MCM, PRTC-MCM, and FRTC-MCM are all making

slow progress, respectively, dropping Id below the threshold. Similar trends are also

noticeable for CHR networks. From Figure 6.5(b), the Lb and Dm performances of the

PRTC-MCM and FRTC-MCM techniques are better than NTC-MCM and BTC-MCM as

they were also making slow progress in reducing Id .
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Figure 6.4: Comparison of graph min-cut based incremental repartitioning schemes with dif-
ferent transaction classifications in a range-partitioned database under a Twitter workload
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Figure 6.5: Comparison of graph min-cut based incremental repartitioning schemes with differ-
ent transaction classifications in a consistent-hash partitioned database under a TPC-C workload
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Figure 6.6: Comparison of graph min-cut based incremental repartitioning schemes with differ-
ent transaction classifications in a consistent-hash partitioned database under a Twitter workload
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While using Twitter workload, as shown in Figure 6.6(a), only GR and CGR net-

works show a declining trend in Id over time. For the HR network, both the PRTC-MCM

and FRTC-MCM techniques fail to reduce Id below the threshold over a simulation

period of 24 hours. In contrast, the PRTC-MCM technique for CHR representation man-

aged to reduce Id gradually but FTC-MCM failed to reduce Id over time. As shown in

Figure 6.6(b), the Lb and Dm performances for the PRTC-MCM and FRTC-MCM tech-

niques are very similar with few physical data migrations, which explains why both

these techniques took longer in reducing Id .

Overall, the BTC-MCM technique performs better than other techniques; however,

it certainly requires processing more transactions compared both the PRTC-MCM and

FRTC-MCM techniques, as expected. As a concluding remark, it is obvious that the

DSM based extended transaction classification techniques require less transactional

processing while compensating repartitioning KPIs over time. Therefore, such graph

theoretic approaches do not have the quality to be applied in real-life deployments. In

the next section, a transactional stream mining technique is exploited to enhance the

greedy heuristic based incremental repartitioning scheme for applying in practice.

6.4 Atomic Incremental Repartitioning

The experimental results from the previous section reveal the inability of the trans-

action classification process alone to fully utilise the benefits of DSM. The primary

observation is that each incremental repartitioning cycle tends to perform better when

the input workload network contains all the DTs and MNDTs, in contrast to the net-

work which only contains a selective set of transactions that contains only the frequent

tuplesets. An obvious drawback here is that, as the workload network size grows, the

ability to run the incremental repartitioning cycles on-demand and more frequently

is lost. Therefore, there is a clear need to ensure a compact representative workload

network as an input to the incremental repartitioning problem. This might not out-

put an optimal repartitioning result, but the related KPIs will eventually catch up over

time. Most importantly, this enables us to run incremental repartitioning cycles more

frequently and in an on-demand basis.
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In the previous section, the frequent tuplesets are directly used to identify the repre-

sentative set of DTs and NDTs for constructing the input graph or hypergraph network.

This is a fine-grained approach to utilise the associative knowledge of clustered tuple-

sets in incremental repartitioning. However, the same approach can be used to discover

high-level knowledge by constructing a representative hypergraph network from the

frequently appearing tuplesets found during the transactional tupleset mining process.

By performing min-cut clustering on this compact hypergraph, it is possible to group

the set of all the frequently occurring tuples together in transactions. Furthermore, it

distributes the transactional data access load within the entire database cluster. This

clustering of tuplesets can be particularly useful in classifying incoming transactions

based on their data access patterns.

A similar technique has been reported as successful in the literature for perform-

ing Association Rule Hypergraph Clustering (ARHC) [168, 188, 189]. In ARHC, the

knowledge (i.e., pattern) represented by these clusters is used to classify the actual

transactions into different groups to understand the database usage patterns by the

users. For example, clusters of items from the shopping carts in an on-line retail Web

application can help in classifying the group of customers who have young children.

This same idea can be adopted to repartition incoming transactions based on their

maximum association to a particular cluster containing a set of frequent tuples.

In light of the repartitioning problem, the set of frequent tuplesets, i.e., semi-FCTs,

can be mined using the transactional stream mining technique and referred to as asso-

ciation rules in this context. These semi-FCTs can be further used to create a hypergraph

network, where an individual semi-FCT can denote a hyperedge and its contained tu-

ples represent the overlaid vertices. The frequency counts of an individual semi-FCT

denote the weight of the hyperedge. Vertex weight in a hyperedge is represented by

its data size (in volume), which is considered to be the same for all tuples in the

database for simplicity. This hypergraph representation is equivalent to an Associa-

tion Rule Hypergraph (ARH) network mentioned above. Then, a graph-cut library like

HMETIS [85, 90] is used to perform ARHC to produce balanced clusters and redistribute

them back to the DSs.

As the representative ARH network will be much smaller than a graph or hyper-

graph network containing all the DTs and MNDTs from an observing W , it is, there-
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fore, better to map the clusters to the physical servers instead of the logical database

partitions (as we did in Chapter 4). The clusters can be mapped to the DSs using

the same cluster-to-partition mapping techniques—RM, MCM, and MSM. This process

can be run every time the system wide Id increases above Rt , and the results can be

stored to perform transaction-level atomic repartitioning for each of the transactions

that arrives.

Following an ARHC process, an on-demand atomic repartitioning decision is made

for each incoming transaction. Now, to select a data migration plan for an individual

transaction, its associativity is measured against all the ARH clusters. Based on the

highest associativity value, the residing DS of the particular ARH cluster is chosen as the

destination server for many-to-one data migrations. If a transaction does not show any

association with any of the ARH clusters through its associativity measure, it is simply

marked as processed and no repartitioning takes place. Furthermore, in order to avoid

the ping-pong effect, the same heuristic is borrowed from Chapter 5, that works over a

particular observation window. This is to ensure that an atomic repartitioning does not

affect its preceding incident transactions that have been already marked processed by

repartitioning scheme, observed over the same time window.

Note that, in this proposed scheme, there are no explicit controls to keep any par-

ticular repartitioning KPIs–Id , Lb, and Dm—in check. However, grouping transactions

into DSs, based on their frequent access patterns (i.e., association with a ARH cluster),

can successfully reduce the overall impact of DTs in the system (as will be observed in

the experimental results). Furthermore, this atomic approach can approximately dis-

tribute the server-level load based on transactional access patterns. Thus, server-level

load-balance is also maintained as a repartitioning by product. In addition, unlike the

repartitioning schemes presented in Chapters 4 and 5, which require decisions and the

performing of all necessary data migrations at a single point in time, the atomic repar-

titioning can distribute the computational cycles, disk operations, and network I/Os

over the entire observation window. Therefore, the overall cost of the repartitioning

process can be amortised over time. This is By far the most scalable approach as well,

compared to the graph theoretic and greedy heuristic repartitioning schemes consid-

ering the volume of transactional logs to be stored and analysed. Most importantly,

this novel approach will allow the system administrator to activate and de-activate
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on-demand incremental repartitioning during any observation window.

6.4.1 Proposed Atomic Repartitioning Scheme

In this section, we will discuss how the abovementioned idea can be implemented

as an on-demand atomic repartitioning scheme using the ARHC technique. Let Λ =

{δ̄1, ..., δ̄|Λ|} be the set of all semi-FCTs mined over Wi to create an ARH H̃ . To perform

ARHC on H̃ , where a k-way balanced min-cut process is used with a load balancing

factor βk based on (4.1) where k = |S|, let Ṽ = {V1, ...,Vk} be the set of ARH clusters

obtained from H̃ , where each Vi contains the set of vertices representing the frequently

accessed data tuples observed over Wi. Finally, the ARH clusters are distributed among

k DSs following either of the RM, MCM, and MSM techniques.

To perform atomic repartitioning, each incoming τi will be classified under FRTC

based on the extended proactive transaction classification tree shown in Section 6.3.1.

Let us define the associativity function for any τi as

Ac(τi,Vi) =
w(Vj)

∑
k
l=1 w(Vl)

|τ∩Vj|

∑
k
l=1|Vl|

. (6.7)

An individual associativity score is taken for all the ARH clusters in order to find the

residing DS Si of Vi which has the highest associativity value for τi. Once the destina-

tion DS has been decided, then the entire tupleset of τi is migrated to Si by performing

many-to-one data migrations. If τi is a DT, then after this migration it will be converted

to an NDT; otherwise, it will remain a DT. By applying the greedy heuristic described

in Section 5.2.3.2, atomic repartitioning is skipped if the intended data migrations are

likely to affect any of the preceding incident transactions that have been already pro-

cessed within this Wi to avoid the ping-pong effect. This atomic repartitioning process

continues until the systemwide measure of Id goes below the repartitioning threshold.

Once Id rises above this threshold, the ARHC process takes effect and utilises the ongo-

ing transactional streams to find the frequently appearing FCTs in the current workload

observation window.
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6.4.2 Experimental Evaluation

This section reports on simulation based experimentations conducted to compare

the transactional DSM based PRTC-MCM and FRTC-MCM schemes with the proposed

ARHC based atomic incremental repartitioning scheme. We use similar experimental

setups to those in Section 6.3.2 with the simulation parameters listed in Tables 4.2 and 6.1

for OLTPDBSim except that this is an unrestricted transaction generation model. In the

experimentations, the incremental repartitioning process begins once the systemwide

Id increases over Rt at any point during the database lifecycle. The set of semi-FCTs

over W are then used from the continuous transactional log stream mining process,

and to construct the ARH network. This compact ARH subgraph is then partitioned

into four clusters (as four DSs are used in the experiment) using the HMETIS [90] hy-

pergraph clustering library. These clusters are then placed into the underlying physical

DSs following the mapping techniques proposed in Section 4.6.

Incoming transactions are classified using FRTC based on the extended classification

tree presented in Figure 6.2. Individually selected DTs are then evaluated on their Ac

scores measured against the ARH clusters (based on (6.7)). Once a destination DS is

decided based on the highest Ac score for a DT, the many-to-one data migration process

then converts it to an NDT in an atomic step.

For ease of comparison, we denote the ARHC based atomic incremental reparti-

tioning schemes as ARHC-RM, ARHC-MCM, and ARHC-MSM depending on the ARH

cluster-to-server mapping technique that is used. In the following sections, the KPIs

of the abovementioned atomic incremental repartitioning techniques are then com-

pared with the previously evaluated PRTC-MCM and FRTC-MCM schemes outlined in

Section 6.3.2.

6.4.2.1 Analysis of Experimental Results for TPC-C and Twitter Workloads

In this section, the experimental results for a range- and consistent-hash partitioned

database cluster under the TPC-C and Twitter workloads are presented and discussed.
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6.4.2.1.1 Range-Partitioned Database

Figure 6.7 presents the experimental results of the ARHC based atomic incremental

repartitioning schemes—ARHC-RM, ARHC-MCM, and ARHC-MSM—in a range-partitioned

database under the TPC-C workload. Figure 6.7(a) compares the Id performances of the

proposed schemes. Based on the results, ARHC-MCM performs aggressively compared

to others and quickly converges to bring down Id under Rt within a few repartitioning

cycles. The other two MCM based schemes—PRTC-MCM and FRTC-MCM—show very

slow convergence over the period of 24 h and are almost inseparable in the line plots.

The ARHC-RM and ARHC-MSM schemes do not converge well, rather they maintained

a steady level of Id just above the Rt margin. Figure 6.7(b) presents the overall Id , Lb,

and Dm performances using box plots. In all cases, ARHC-MCM shows promising re-

sults to maintain adequate levels of all three KPIs. The ARHC-MCM scheme acts more

aggressively compared to others and performs more data migrations during each of the

atomic repartitioning operations, but the overall Lb performance manages to spread out

over time due to occasional repartitioning triggering. On the other hand, the ARHC-

RM scheme maintains Lb by performing more data migrations while the ARCH-MSM

scheme performs fewer selective data migrations and does the same task in a better

way.

Experimental evaluations under a Twitter workload are presented in Figure 6.8.

Figure 6.8(a) presents the Id performance while Figure 6.8(b) shows the overall Id ,

Lb, and Dm characteristics of the compared schemes. Due to the specific implemen-

tation of our Twitter workload, the Follower and Follows relationships stabilise once

the frequently appearing Followers are placed into the same physical server, and then

rarely migrate from there. Therefore, in the case of MCM based schemes—PRTC-MCM,

FRTC-MCM, and ARHC-MCM—once Id values drop below the preset Rt = 0.5 within a

few incremental repartitioning cycles, no further repartitioning cycles are needed. For

ARHC-RM, as the representative data tuples migrate randomly into the physical servers

over consecutive repartitioning cycles, the transition of Id towards the Rt threshold is

much slower. Finally, in the case of ARHC-MSM mapping, this abovementioned process

is much slower due to the added restrictions on inter-server data migration policy. This

explains the Lb and Dm characteristics in the results shown in Figure 6.8(b).
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6.4.2.1.2 Consistent-Hash Partitioned Database

Figure 6.9 presents experimental results for the proposed ARHC based atomic in-

cremental repartitioning schemes compared with PRTC-MCM and FRTC-MCM within

a consistent-hash partitioned database driven under a TPC-C workload. Figure 6.9(a)

compares the Id performances of the evaluated schemes. Among these techniques,

only ARHC-MCM manages to reduce Id below Rt more aggressively than others. While

ARHC-RM and ARHC-MSM maintain a steady level of Id , both PRTC-MCM and FRTC-

MCM schemes show slow convergence towards Rt . As expected from an MCM based

technique, ARHC-MCM triggers aggressive data migrations bursts to reduce Id when-

ever it is necessary, therefore it converges very quickly compared to others. Fig-

ure 6.9(b) shows the overall Id , Lb, and Dm performances of the experimental results

using box plots. It is interesting to notice that, although ARHC-MCM performs more

data migrations than any of the other schemes compared, it can still maintain a better

Lb due to its occasional triggering of the repartitioning cycles.

Finally, Figure 6.10 presents the experimental results for the proposed schemes in

a consistent-hash partitioned database under a Twitter workload. As can be observed

from Figure 6.10(a), all the ARHC based schemes show good convergence in bringing Id

down under the Rt threshold over time. Unlike the performances of the PRTC-MCM and

FRTC-MCM schemes in a range-partitioned database under a Twitter workload observed

in Figure 6.8(a), Id performances show less convergence in this instance. This is due

to how the Twitter database is distributed in a range- and consistent-hash partitioned

database. By performing the graph theoretic PRTC-MCM and FRTC-MCM repartitioning

schemes in a range-partitioned database, the most frequently occurring tuples can be

grouped into the same physical DS very quickly with the MCM mapping technique.

However, for a consistent-hash partitioned database, it is not possible to utilise this

DSM knowledge when the representative workload networks from the PRTC and FRTC

classifications are clustered.

Figure 6.10(b) presents the overall Id , Lb, and Dm performance of the schemes

compared in box plots. Simulation results show similar behaviours to those observed

in other cases under a Twitter workload. Due to the unique characteristics of the Twitter
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workload, once the frequently occurring tuplesets are identified, and repositioned in

a designated DS, then all the other closely associated tuplesets just follow to the same

destination during its atomic repartitioning. Whhen these representative tuplesets are

randomly (RM) or semi-randomly (MSM) distributed within the DSs, then the ARHC-

RM and ARHC-MSM schemes progress slowly over time compared to ARHC-MCM.

6.4.2.2 Comments on the Experimental Results

From the analysis of experimental results presented in Section 6.3.2, it is obvious

that the extended transactional classification based graph theoretic incremental repar-

titioning schemes are not as capable of converging Id as fast as can be expected in many

instances of OLTP applications. In practice, however it is necessary to perform incre-

mental repartitioning in such a way that converges quickly to reduce the impacts of

DTs. In the first approach, the fine-grained knowledge of transactional classifications is

not completely utilised when used within a higher-level abstraction of graph networks.

Therefore, in the latter approach, representative tuplesets from transactional logs are

used to create lower-level associativity knowledge that can be directly utilised by the

transaction-level atomic repartitioning process. This is supported by the experimental

results presented in Section 6.4.2. The core repartitioning decision is made during each

ARHC run, which is less time consuming due to the compact size of the representative

workload network, thanks to the effective integration of the transactional stream min-

ing technique in OLTPDBSim. Therefore, the overall incremental repartitioning time is

amortised over any observed W .

Furthermore, the experimental results presented in Chapter 5 suggest that the

greedy heuristic based repartitioning schemes that converge quickly are better suited

for systems that can support burst IOPS operations, as an individual repartitioning cycle

needs to perform large volumes of physical data transfer over the network. However,

the proposed atomic incremental repartitioning, ARHC-MCM, in particular, does not

require such IO bursting requirements from a system as the data migration operations

are spread out over an entire observation window W .
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6.5 Conclusions

In this chapter, it has been shown conclusively how transactional data stream min-

ing can play a significant role in aiding incremental database repartitioning. By con-

tinuously mining the representative tuplesets i.e., frequently appeared transactional

tuplesets, from successive W s, a high level workload network can be constructed dur-

ing an individual repartitioning cycle. These networks can then be used to construct

an adaptive transaction classification tree for performing graph min-cut based repar-

titioning using a selective set of DTs and MNDTs. However, experimental evaluations

show that, by using the representative set of transactions, the graph min-cut scheme

with PRTC and FRTC classifications slowly converge towards the pre-defined Rt based

on the approximate repartitioning solutions obtained from each cycle. Next, the trans-

actional DSM technique is further utilised to generate compact workload networks

based on ARH and later used to perform ARHC, in order to obtain high-level knowl-

edge on how to effectively partition incoming transactions so as to reduce the adverse

impacts of DTs. Experimental results show that the clustering of ARHs is particularly

useful in classifying transactions according to their associativity with a set of tuple-

sets that frequently appear together in the workload. This process eventually helps

to convert DTs into NDTs within a given W by performing on-demand atomic repar-

titioning. The latter scheme has shown superior performance improvements over the

graph min-cut and greedy heuristic based schemes by providing an approximate repar-

titioning solution. The ability of the ARHC based repartitioning scheme to perform

on-demand transaction-level atomic repartitioning with minimum computational foot-

print and maximum effectiveness in reducing the adverse impacts of DTs, surely proves

it to be a suitable candidate for production deployments. In next chapter, we conclude

the thesis by summarising and discussing the research contributions.



Chapter 7

Conclusions and Future Directions

This chapter summarises the research contributions on workload-aware data man-

agement in shared-nothing distributed OLTP databases presented in the thesis and dis-

cusses the key findings. It also mentions the research challenges open in this particular

domain and points to future research directions from the thesis.

7.1 Conclusions and Discussion

Modern OLTP applications operating at the Web scale require high scalable trans-

action processing to deal with large volumes of end-users’ requests simultaneously. In

response to this challenge, shared-nothing distributed OLTP databases are used to pro-

vide horizontal data partitioning in order to increase database write scalability. How-

ever, this scalable approach can still suffer when a large proportion of the user queries

need to access database records from multiple physical DSs to process the transactions,

i.e., DTs. Processing DTs in such a way can create significant scalability bottlenecks,

impacting the the entire database cluster. Furthermore, initial database partitioning

based on design phase decisions will not be capable of adapting to OLTP workload

variations in the future. It is, therefore, necessary to properly understand the impacts

of DTs within an OLTP system and express them as measurable KPIs. By intelligently

facilitating workload-aware incremental database repartitioning it is possible to reshuf-

fle only the workload-related data tuples by performing on-the-fly data migrations so

as to reduce the adverse impacts of DTs.

In this context, we have investigated the abovementioned incremental repartition-

ing problem and proposed novel ways to deal with it. From a top level view, the ob-

jectives of this research have been 1) to develop repartitioning KPIs with appropriate

physical interpretations, 2) to use high-level workload network abstractions in order to

182
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study and extend existing graph theoretic approaches to performing incremental repar-

titioning which provide sub-optimal results, 3) to avoid constructing network abstrac-

tion layers and use greedy heuristics to find near-optimal incremental repartitioning

decisions, and 4) to utilise data stream mining so as to identify the representative set

of transactions from the workload and employ transactional associativity to perform

on-demand atomic repartitioning of the incoming DTs.

We first discuss the application and database level inherent challenges of a dis-

tributed OLTP system supporting multi-tier Web applications, and later examine exist-

ing literature that deals with the repartitioning of such DDBMSs, in Chapter 2. There

has been a significant revolution in database research and developments over the last

decade in the post-Internet era. To capture that, a detailed discussion has been pre-

sented for the readers to understand the challenges related to modern OLTP applica-

tions, scalable transaction processing, and the underlying shared-nothing distributed

database domain and specific use-cases. Based on this study, the existing literature has

been classified and notable contributions are presented highlighting their strengths

and shortcomings. Finally, a conceptual framework of the workload-aware incremen-

tal repartitioning process is presented to identify the gaps in the existing literature and

how they fit into this framework.

In the process of developing the conceptual framework, Chapter 3 has presented

the overall system architecture necessary for an incremental repartitioning scheme, the

workload properties, and important repartitioning KPIs. Two fundamental challenges

in adopting a workload-aware repartitioning scheme in an OLTP database are on-the-

fly live data migrations and data lookup. We have solved these problems by proposing

a novel distributed data lookup technique that can take a maximum of two lookups

(one lookup in most cases via caching the location information) to locate a data tuple

within the entire database cluster. Furthermore, we have adopted the concepts of

roaming from mobile wireless networks and a partition-level data lookup mechanism

to support on-the-fly live data migrations without compromising data consistency and

write scalability. This provides the base foundation to utilise an RDBMS like a high

scalable NoSQL data store while adopting both range and consistent-hash based initial

data partitioning. Chapter 3 has also formally defined the incremental repartitioning

problem and presents a novel transaction generation model to aid simulation based
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experimental evaluations. The proposed model has been shown to be successful in

restricting a fixed proportion of unique transaction generations which is necessary so

as to evaluate graph theoretic repartitioning schemes by avoiding any undue external

effects. Finally, three unique KPIs have been presented and formulated with their

physical interpretations to measure the systemwide impacts of DTs (Id), server-level

data distribution load-balance (Lb), and inter-server physical data migrations (Dm).

In the first stage of developing an incremental repartitioning solutions, graph the-

oretic schemes have been presented in Chapter 4, that use high-level network abstrac-

tions by adopting graph, hypergraph, or their compressed forms to hide underlying

transactional complexities. We have proposed a novel proactive transactional clas-

sification technique that includes moveable NDTs (MNDTs) in the workload network

clustering process to prevent them becoming DTs over successive repartitioning cycles.

In the graph theoretic approach, the impacts of DTs are reduced by the balanced graph

min-cut clustering process and there are no explicit ways to control the amount of

physical data migrations over time. We have proposed two unique cluster-to-partition

mapping techniques—MCM and MSM—to aid this challenge, that perform many-to-

one minimum data migrations and one-to-one data migrations without affecting load-

balance, respectively. Furthermore, both proactive and reactive incremental repartition-

ing schemes have been evaluated which show the efficacy of the proposed techniques

for different workload network representations. Overall, the compressed hypergraph

based MCM technique CHR-MCM has performed better in adapting to different work-

load and database types. However, due to the use of higher-level abstractions in such

graph theoretic approaches, there has been no certainty to confirm whether the repar-

titioning KPIs—Lb and Dm—are near- or sub-optimal or not.

One of the primary challenges in the graph theoretic approach is that the graph

sizes can grow extensively large and this can increase the graph min-cut based clus-

tering time in polynomial order. In Chapter 5, a greedy heuristic based incremental

repartitioning scheme has been developed which works directly at the transaction-level

without using any network abstractions to find an optimal or near-optimal repartition-

ing outcome. In this approach, for individual transactions, all possible many-to-one

migration plans are computed and the best plan is chosen based on the maximum

weighted net improvement of Id and Lb gains. The effective use of the proposed greedy
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heuristic has ensured that by selectively transforming a DT into NDT it is possible to

prevent ping-pong effects within its incident transactions. Furthermore, the proposed

scheme has shown its ability to converge on-demand by controlling the possible num-

ber of migration plan generations and performing data migration optimised migration

plan executions. Based on experimental results, the greedy incremental repartition-

ing scheme has been shown efficient in adopting a wide variety of OLTP application

cases and system-level resource availability for occasional IOPS bursting or fixed IOPS

usage at regular intervals. However, the computational complexities of such a greedy

approach can still grow with the increase in transactional volumes and dimensions, as

well as the database cluster size.

To deal with the abovementioned challenges, a transactional stream mining tech-

nique has been used to convincingly find representative transactions to perform in-

cremental repartitioning in Chapter 6. Inherently, this adoption has solved another

important challenge of performing on-demand incremental repartitioning. First, an

extended transaction classification tree has been proposed to incorporate the knowl-

edge of transactional classifications into graph theoretic incremental repartitioning.

However, due to the use of workload network abstractions it is not fully possible to ex-

ploit this knowledge to perform repartitioning effectively in a scalable way in practice.

Later, an Association Rule Hypergraph Clustering based atomic incremental repartition-

ing scheme has been proposed which can fully leverage the knowledge derived from

the clustering of the compact representative network of transactional tuplesets. An

individual transaction can atomically transform from DT to NDT by simply associating

itself to a particular representative cluster stored in a particular DS. This innovative

approach has been found effective through experimental evaluations to be less compu-

tationally in finding the approximate repartitioning solution for aggressively reducing

the adverse impacts of DTs. As the computational complexities and physical resource

usage to find this approximate solution are amortised over an entire workload observa-

tion window, the proposed scheme, ARCH-MCM scheme in particular, to be successful

for practical adoption.

Finally, based on the above discussion, the following key observations and their

implications can be directly derived from this thesis:
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(i) A distributed OLTP database can support high scalability requirements by sim-

ply adopting an on-the-fly live data migration technique similar to the mobile

subscribers roaming in a mobile wireless network.

(ii) The repartitioning KPIs—Id , Lb, Dm—have explicit physical interpretations relat-

ing to the OLTP workload characteristics in terms of transactional recurrence and

server span, physical data distributions, and CPU and I/O parallelism of the un-

derlying database cluster.

(iii) By including the MNDTs that are incidental to a DT in a graph min-cut based

repartitioning process, can prevent them turning into DTs in future.

(iv) Compact network representations are better for performing graph min-cut cluster-

ing as they can preserve more edges (by the contraction process) closely related

to each other.

(v) Graph theoretic repartitioning can only provide sub-optimal results for reducing

the impacts of DTs where load-balance comes as a by-product and there is no

explicit control over data migrations.

(vi) The simple heuristic to prevent processing certain DTs in order to preserve the

gains achieved by their already processed incident DTs, helps to avoid ping-pong

effects during a repartitioning cycle. This is similar to the thrashing effect as well.

(vii) In greedy heuristic based incremental repartitioning it is possible to control the

convergence of Id by controlling the number of migration plans to be computed

and calculating net Id and Lb gains optimised per data migration.

(viii) The repartitioning KPIs Id and Lb are not fully orthogonal to each other. There-

fore, one can not be traded-off for another in a straightforward way.

(ix) The size of the transactional workload to be analysed can be significantly reduced

by utilising stream mining to construct a compact and representative workload

network which is much smaller to maintain and can be used for low granularity

knowledge discovery.



§7.2 Future Research Directions 187

(x) It is possible find an approximate repartitioning solution by directly applying the

knowledge derived from transactional associativity with the representative work-

load network.

(xi) An atomic incremental repartitioning approach requires less computational foot-

prints and the overall cost of repartitioning decision making and data migration

operations can be amortised over the entire observation period.

(xii) A TPC-C workload shows high similarity to a random graph network with a high

number of hubs with low node degree, therefore achieving repartitioning objec-

tives is challenging and difficult to maintain over time.

(xiii) A Twitter workload contains a small number of hubs with a very high node degree,

therefore repartitioning objectives are much easier to achieve and maintain.

7.2 Future Research Directions

With the rapid increase and growth of Internet-scale Web applications, workload-

aware data management in shared-nothing distributed OLTP databases is a challenging

task to achieve. Based on the research findings in this thesis we would like to point to

the following open research challenges.

(i) In this thesis, we have observed the interesting dilemma of obtaining a sub-

optimal, a near-optimal, and an approximate incremental repartitioning decision.

An immediate extension of this research would have been a theoretical and math-

ematical analysis of these three unique decision choices based on our proposed

repartitioning KPIs. This would help future researchers to understand and further

analyse the inherent complexities of this problem domain with respect to proper

physical interpretations.

(ii) The primary challenge remaining in a workload-aware incremental repartitioning

framework is how we can analyse a snapshot of the workload network represen-

tation efficiently in order to make appropriate clustering decisions either at higher

or lower granularity in order to quickly reduce the sever impacts of DTs. In this
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context, a detailed analysis can be carried out from a network science perspective.

One of the interesting ideas of colocating associative data tuples in the workload

network would be by measuring the assortativity and degree correlations. This

would assist the repartitioning scheme to identify the node connectivity patterns

and answer questions such as whether the hubs are internally connected or they

are avoiding each other, i.e., connected to many other small-degree nodes. From

our observations in the thesis, it seems the TPC-C workload network may have a

disassortative pattern where hubs are connected to many other small-degree nodes.

In contrast, the Twitter workload network might exhibit an assortativity pattern

where it seems the hubs are connected to each other and small-degree data tuples

are connected to other such tuples.

(iii) From the network science context, another interesting approach would be using

network epidemic and contagion analysis to understand how the FCTs and semi-

FCTs manipulate the behaviour DTs in an OLTP environment. Such analysis would

help us designing a proactive repartitioning scheme that might predict the pattern

and potential impacts of DTs in large-scale OLTP system in advance.

(iv) Due to its small computational footprint, transactional stream mining based atomic

incremental repartitioning can be further extended to identify concept drifts in the

ARH network and its clustering. This important detection would tell us how fre-

quently the repartitioning framework should be triggering the ARHC process to

be more adaptive to the dynamic OLTP environment.

(v) Extension and improvement of the OLTPDBSim simulator can be another poten-

tial contribution to made by the research community. It is often challenging to

implement diverse application scenarios and workloads to test the performance

of a proposed repartitioning scheme. At present, most of the synthetic OLTP

workload generators and benchmarking tools are built to measure engine specific

database performances only in terms of their transaction processing capabilities.

However, to understand the effects of an incremental repartitioning process based

on our proposed KPIs, it is sufficient to use a more simplistic workload generation

tool based on parameterised statistical configurations so as to emulate interesting

network properties.
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To this end, the study and analysis of the workload-aware incremental repartition-

ing of shared-nothing distributed OLTP databases is more challenging and intractable

than we had anticipated at the beginning. As we dive deep into this research, the

challenge seems intertwined with many interesting and complex elements that are not

trivial to deal with. However, we believe that, with the aid of the proposed repartition-

ing schemes, it is possible to near optimally solve this problem. Furthermore, future

research in this particular problem domain can certainly benefit from following our

footsteps in this thesis.



Appendix A

Transaction Generation Model

Listing A.1: MATLAB source code for sensitivity analysis of the transaction generation model

1 s = RandStream ( ' mt19937ar ' , ' Seed ' ,1) ;

2 RandStream . setGlobalStream ( s ) ;

3 W = 3600; % Observat ion window s i z e ; 1 h or 3600 s

4 p = 0.15; % P r o b a b i l i t y of new t r a n s a c t i o n generat ion

5 R = 1; % Transac t ion generat ion ra t e

6 eta = R*p ; % Average new t r a n s a c t i o n generat ion ra t e

7 N = W*24; % Simulate f o r 24 h

8 nT = 0; % Transac t ion id

9 T = [ ] ; % Matrix to hold the generated t r a n s a c t i o n s

10 alpha = 0 .6 ; % Exponent ia l averaging weight f o r recurrence per iods

11 uNmaxT = W*0.25;% Target number of unique t r a n s a c t i o n s ; 25% of 3600

12 uNmax = W; % U n r e s t r i c t e d r e p e t i t i o n window

13 uNmax = max(1 , round (uNmaxT*(1 - ( eta /uNmaxT) ˆ2) ) ) *W; % R e s t r i c t e d window

14

15 f o r i = 1:N

16 i f isempty (T) | | rand ( s ) ≤ p

17 nT = nT + 1;

18 T = [T , -nT ] ;

19 Per iod (nT) = uNmax;

20 Time(nT) = i ;

21 e l s e

22 [¬ , idx ] = unique ( abs (T(1 : i -1) ) , ' l a s t ' ) ;

23 [¬ , idx2 ] = s o r t ( idx , ' descend ' ) ;

24

25 uT = abs (T( idx ( idx2 (1 : min( length ( idx ) ,uNmax) ) ) ) ) ;

26 n = randi ( s , length (uT) ) ;

27 T = [T , uT(n) ] ;

28

29 Per iod (uT(n) ) = Per iod (uT(n) ) * alpha + ( i - Time(uT(n) ) ) *(1 - alpha ) ;

30 Time(uT(n) ) = i ;

31 end

32 i f i ≥ W

33 unq = unique ( abs (T(( i -W+1) : i ) ) ) ;

34 unq len ( i -W+1) = length (unq) ;

35 end

36 end
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