
  

Utility-Oriented Internetworking of 
Content Delivery Networks 

 
 
 

by 
 

 

Al-Mukaddim Khan Pathan 

 

 

Submitted in total fulfilment of 

the requirements for the degree of 

 

Doctor of Philosophy 

 
 

 
 

 
 

Department of Computer Science and Software Engineering 

The University of Melbourne, Australia 

 
 

November 2009 
 
 
 
 

Produced on archival quality paper 



  ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 iii 
 

Utility-Oriented Internetworking of Content Delivery Networks 

Al-Mukaddim Khan Pathan 

Supervisor: Professor Rajkumar Buyya 

Abstract 

Today’s Internet content providers primarily use Content Delivery Networks 
(CDNs) to deliver content to end-users with the aim to enhance their Web access 
experience. Yet the prevalent commercial CDNs, operating in isolation, often face 
resource over-provisioning, degraded performance, and Service Level Agreement 
(SLA) violations, thus incurring high operational costs and limiting the scope and 
scale of their services. 

To move beyond these shortcomings, this thesis establishes the basis for de-
veloping advanced and efficient content delivery solutions that are scalable, high 
performance, and cost-effective. It introduces techniques to enable coordination 
and cooperation between multiple content delivery services, which is termed as 
“CDN peering”. In this context, this thesis addresses five key issues―when to peer 
(triggering circumstances), how to peer (interaction strategies), whom to peer with 
(resource discovery), how to manage and enforce operational policies (re-
quest-redirection and load sharing), and how to demonstrate peering applicability 
(measurement study and proof-of-concept implementation). 

Thesis Contributions: To support the thesis that the resource over-provi-
sioning and degraded performance problems of existing CDNs can be overcome, 
thus improving Web access experience of Internet end-users, we have: 

• identified the key research challenges and core technical issues for CDN 
peering, along with a systematic understanding of the CDN space by cov-
ering relevant applications, features and implementation techniques, 
captured in a comprehensive taxonomy of CDNs; 

• developed a novel architectural framework, which provides the basis for 
CDN peering, formed by a set of autonomous CDNs that cooperate 
through an interconnection mechanism, providing the infrastructure and 
facilities to virtualize the service of multiple providers; 

• devised Quality-of-Service (QoS)-oriented analytical performance models 
to demonstrate the effects of CDN peering and predict end-user perceived 
performance, thus facilitating to make concrete QoS performance guaran-
tees for a CDN provider; 

• developed enabling techniques, i.e. resource discovery, server selection, 
and request-redirection algorithms, for CDN peering to achieve service 
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responsiveness. These techniques are exercised to alleviate imbalanced 
load conditions, while minimizing redirection cost; 

• introduced a utility model for CDN peering to measure its content-serving 
ability by capturing the traffic activities in the system and evaluated 
through extensive discrete-event simulation analysis. The findings of this 
study provide incentive for the exploitation of critical parameters for a 
better CDN peering system design; and 

• demonstrated a proof-of-concept implementation of the utility model and an 
empirical measurement study on MetaCDN, which is a global overlay for 
Cloud-based content delivery. It is aided with a utility-based redirection 
scheme to improve the traffic activities in the world-wide distributed 
network of MetaCDN. 
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Chapter 1  

Introduction 
Over the last decades, Web users have witnessed the spread and maturity of the 

Internet that have caused enormous growth in network traffic, driven by the rapid 

acceptance of broadband access, increase in systems complexity, and content richness. 

The ever-evolving nature of the Internet brings new challenges in managing and de-

livering content to end-users. For example, popular Web services often suffer 

congestion and bottlenecks due to the large demands posed on them. Such a sudden 

spike in Web content requests (e.g. the one occurred during the 9/11 terrorist attack 

in the USA) is often termed as flash crowds [14] or SlashDot [2] effects. It may cause 

heavy workload on particular Web server(s), and as a result a hotspot [14] can be 

generated. Coping with such unexpected huge request traffic causes significant strain 

on a Web server and eventually the Web servers are totally overwhelmed with the 

sudden increase in traffic. This causes the Web site holding the content to become 

temporarily unavailable. 

Content Delivery Networks (CDNs) [33, 98, 152, 166, 176, 211, 215] have emerged 

to overcome these limitations by offering infrastructure and mechanisms to deliver 

content and services in a scalable manner, enhancing end-users Web access experi-

ence, in terms of response time and system throughput. A CDN (Figure 1.1) is a 

collaborative collection of network elements spanning the Internet, where content is 

replicated over several mirrored Web servers (i.e. surrogate) located at the edge of the 

network to which end-users are connected. Content is replicated by the CDN’s con-

tent distributor, either on-demand or beforehand, by pushing the content from the 

origin server to the surrogates. As an end-user is served with the desired content 
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from the nearby server, the user ends up unknowingly communicating with a repli-

cated surrogate close to him/her and retrieves content from that server. 

 

Figure 1.1: Abstract view of a CDN. 

1.1 Motivation and Scope 
Running a global CDN is challenging in technical, administrative, and financial terms. 

A CDN provider places Web server clusters at numerous geographical locations 

worldwide to deliver content on behalf of content providers under specific Service 

Level Agreements (SLAs) [26]. These SLAs detail commitments for the CDN provider 

to deliver services within certain response time and throughput constraints. A CDN 

provider realizes monetary penalization if it fails to meet SLA-bound commitments 

to provide high quality service to end-users. The provision for such requirements 

forms a substantial entry barrier for new CDNs, as well as affects the commercial vi-

ability of existing ones. This is evident from the major consolidations of the CDN 

market, down to a handful of key players, which has occurred in recent years [5]. 

To operate effectively a CDN is required to either over-provision its resources or 

harness external resources on demand. Unfortunately, due to the proprietary nature, 
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existing CDNs do not cooperate in delivering content to end-users. A content pro-

vider typically subscribes to one CDN and thus cannot use the resources of multiple 

CDNs at the same time. Such a closed, non-cooperative model results in disparate 

CDNs who are often prone to resource over-provisioning, degraded performance, 

SLA violations, and high operational costs. Internetworking of distinct CDNs is one 

of the possible solutions to handle flash crowds [14] and anticipated increases in de-

mand, Web resources over-provisioning, and adverse business impact by providing 

cooperative content delivery among CDNs. It can also achieve economics of scale, in 

terms of cost effectiveness and performance for both providers and end-users. 

Analysis of previous research efforts [10, 24, 72, 79, 119, 208, 210] in this context 

reveals that there has been only modest progress on the frameworks and policies re-

quired to allow internetworking between providers. The reasons for this lack of 

progress are due to the complexity of the technological problems, legal, and com-

mercial operational issues that need to be solved in the practical context. 

This thesis sets out to move beyond the shortcomings of prevalent commercial 

CDNs that limit the scope and scale of their services. We term the technology for in-

terconnection and interoperation between CDNs as “peering” and the resulting 

system as “CDN peering”, as defined in the following: 

CDN peering is formed by a set of autonomous CDNs {CDN1, CDN2, …, CDNn}, which 

cooperate through an interconnection mechanism M that provides facilities and infra-

structure for sharing resources in order to ensure efficient service delivery. Each CDNi is 

connected to other peers through a ‘conduit’ Ci that assists in discovering external re-

sources that can be harnessed from other CDNs. 

The rest of this chapter establishes the significance and relevance of our proposal 

by describing specific research issues, objectives, solution methodology, and implica-

tions, followed by thesis contributions and organization. 

1.2 Significance of CDN Peering 
Flash crowds [14] occur due to external events of extreme magnitude and interest or 

sudden increases in visibility after being linked from popular high traffic Websites, 
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such as Slashdot or Digg. As a consequence, Web sites often suffer congestions, bot-

tlenecks, and lengthy downtime due to large demands made on the resources of the 

provider hosting them. Increases in Web traffic can also occur due to the staging of 

popular events, such as the Olympic Games or the FIFA World Cup. 

 

(a) Expansion of a CDN provider through placing new POP. 

`

User 1

Cricinfo’s 
Origin Server

`

User N

(1) User 
requests`

User 2

(3) Akamai partners 
with Mirror Image, 
who has POP in 
Bangalore, India

(4) Users are served 
from Mirror Image’s 
edge servers in a 

transparent manner

CDN 
Peering

Forward 
request

Selected embedded 
objects to be served 

by  CDN provider

Akamai Replica 
servers in 
Singapore

Mirror 
Image

Mirror Image’s 
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Web Server 
Selection 
Algorithm
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Figure 1.2: A CDN peering scenario. 
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Historical evidences show that the level of demand generated for popular Web-

sites, e.g. 12 million requests per hour to the 1998 Soccer World Cup Website [14] and 

56.8 million requests on a peak day to the 1998 Winter Olympic Website [101], can be 

impossible to satisfy using a single server, or even a cluster. During September 11, 

2001, server availability approached 0% for many popular news Websites with pages 

taking over 45 seconds to load, if at all [148]. Given that end-users will wait as little as 

10 seconds before aborting their requests, this can lead to further bandwidth and re-

source wastage [96]. More recently, the Internet community has observed instances 

of flash crowds, such as the live inaugural address of US President Barack Obama in 

2009, producing 54% spike in global Internet traffic [89]. Akamai and Limelight Net-

works have been reported to respectively deliver more than 7 million simultaneous 

video streams [6] and 2.5 million streams with 250 Gbps data [127]. 

CDN peering, as a solution to handle flash crowds, allows providers to coopera-

tively achieve greater scale and reach, as well as service quality and performance, 

than they could otherwise attain individually. Its significance can be better under-

stood by the scenario in Figure 1.2. The ICC Cricket World Cup 2011 is being held in 

South Asia, and www.cricinfo.com is providing the live media coverage. As a content 

provider, www.cricinfo.com has an exclusive SLA with the CDN provider, Akamai 

[76]. However, Akamai does not have enough Point of Presence (POP) in India, Sri 

Lanka and Bangladesh, where the event will be held. Given that cricket is the most 

popular sport in South Asia, people of the hosting countries will have enormous in-

terest in the live coverages provided by www.cricinfo.com. Since Akamai will be aware 

of this event well in advance, its management can take steps to deal with the evolv-

ing situation. To better serve end-users, Akamai may decide to extend its reach by 

placing more surrogates in South Asia, or they may use distant edge servers in Sin-

gapore (Figure 1.2(a)). Nevertheless, placing new surrogates just for one event will be 

costly and may not be useful after the event. Akamai risks its reputation if it can not 

provide the agreed Quality of Service (QoS) to user requests, thus violating SLAs and 

causing profit reduction. Therefore, the solution for Akamai is to cooperate with 

other CDNs to deliver the service that it cannot provide otherwise (Figure 1.2(b)). 
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Such resource sharing and cooperation between CDNs may vary in terms of the 

purpose, scope, incoming traffic size, and duration. In the face of flash crowds, CDN 

peering should be automated to react within a tight time frameas it is unlikely that 

a human directed negotiation will occur quickly enough to satisfy the evolved niche. 

For long-duration events (Figure 1.2), a human-directed agent can negotiate to ensure 

that the resulting decisions comply with the strategic goals of participating CDNs. 

1.3 Research Problem and Objectives 
This thesis tackles the research challenges in relation to the development of advanced, 

high performance, and cost effective content delivery solutions by enabling coordi-

nation and cooperation between multiple content delivery services. 

An ad-hoc or planned peering of CDNs requires fundamental research to be un-

dertaken to address the core problems of load index measurement and dissemination; 

request assignment and redirection; content replication; and sustained resource 

sharing among participants on a geographically distributed Internet-scale. These is-

sues are deeply interrelated and co-dependent for a single CDN. However, they must 

now be considered in a cooperative manner among peered CDNs, whilst satisfying 

the complex multi-dimensional constraints placed on each individual provider. 

1.3.1 Research Issues 
While CDN peering is appealing, the challenges in adopting it include architecting a 

system that virtualizes multiple providers and offloads excessive user requests, 

through distributed request-redirection, from overloaded CDN servers to least 

loaded servers based on cost, performance, and incoming traffic. In particular, we 

identify and investigate the following five key research issues: 

• When to peer. The circumstances that trigger peering. The initiating condition 

must consider expected and unexpected load increases. 

• How to peer. The strategy taken to motivate and form CDN peering. Such a 

strategy must specify the interactions, accounting, and revenue-sharing among 

entities and allow the usage of divergent policies for operations. 
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• Whom to peer with. The decision making mechanism used for choosing CDNs 

to peer. It includes predicting performance of providers, working around is-

sues of separate administration and limited information sharing between 

multiple CDNs. 

• How to manage and enforce operational policies. How operational policies are 

managed to ensure effective cooperation. It includes deploying necessary re-

quest-redirection and load distribution strategies and administering them. 

• How to demonstrate peering applicability. The process to show the usefulness 

of explored strategies, which relates to their proof-of-concept implementation. 

1.3.2 Objectives 
To deal with the challenges associated with the above research issues, we delineate 

the following objectives: 

1. Position the concept of CDN peering by providing a systematic understand-

ing and categorization of the CDN space in terms of applications, features, 

and implementation techniques. 

2. Provide a novel architecture for CDN peering to enable resource sharing 

among multiple CDNs and demonstrate the effectivenss of CDN peering. 

3. Investigate enabling techniques, i.e. resource discovery, server selection, and 

request-redirection, in relation to CDN peering. 

4. Investigate the QoS-oriented aspect of request servicing via a utility model for 

CDN peering and demonstrate its applicability in practice. 

1.4 Methodology 
A model for CDN peering takes the form of an overlay network consisting of re-

sources spanning multiple providers, as depicted in Figure 1.3. Such an arrangement 

serves as a means to address unexpected spike in incoming traffic, as well as antici-

pated short or long-term increases in demand, when a single CDN has insufficient 

resources. From the figure we see that end-user requests for content are made to the 

Request Routing System (RRS) of a CDN provider. The RRS is equipped with neces-



  8 
 

sary request-redirection and load distribution mechanisms to forward user requests 

either directly to its server(s) or to a peer. As for instance, some user requests of CDN 

1 are served by its local server or the origin server (on cache miss), whereas others 

are being served by external Web servers of a peer, CDN 2. Again in the same peer-

ing relationship, when another CDN experiences high load (for example, CDN 2), its 

users may be served by its peer’s (CDN N) servers over this shared infrastructure. 

 

Figure 1.3: Abstraction of CDN peering. 

1.4.1 Implications 
With the aid of the methodology described above, we address the research issues 

stated in Section 1.3.1. Specifically, an architectural model is proposed to answer 

when and how to initiate peering. It is supported by an analytical model to demon-

strate peering effectiveness. Novel techniques are proposed to investigate how 

external resources of disparate CDNs are discovered and how the optimal server is 

selected for distributed load sharing. The proposed mechanisms are evaluated 
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through discrete-event simulations by conducting repeatable experiments in a con-

trolled environment. The notion of CDN peering is realized through empirical studies 

on the MetaCDN system [29, 157], which is an integrated overlay network to enable 

high performance content delivery. 

1.5 Contributions 
The contributions of the thesis broadly fall into three categories: architectural models, 

peering mechanisms and implementation. Figure 1.4 shows this categorization. 

 

Figure 1.4: Thesis contributions and organization. 

In the following we detail the major thesis contributions: 

1. CDN taxonomy and insights. This thesis presents a taxonomy of CDNs based 

on the state of the art. It investigates related key concepts and technologies, 

describes the background highlighting the evolution of CDNs, and identifies 

uniqueness from other related distributed computing paradigms. The pre-

sented taxonomy is mapped to present-day CDNs to demonstrate its 

applicability to categorize and analyze the content delivery landscape. Thus, 

this thesis provides a roadmap for researchers to interpret related essential 

concepts and assists to perform a “gap” analysis in this domain. 

2. CDN peering architecture. This thesis introduces an architectural model for 

CDN peering. It describes the components, architectural features, use cases, 

and formation of peering arrangements. In addition, it presents two comple-
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mentary models to assist CDN peering, compares the proposed models, and 

summarizes their unique features. The challenges and core technical issues to 

implement CDN peering are also discussed, thus establishing the basis to de-

velop necessary enabling techniques. 

3. Analytical models. This thesis presents analytical models for CDN peering 

based on the fundamentals of queuing theory. Along with the derivation of 

the performance models, it conducts a systematic analysis to study the impact 

of key performance parameters such as load and measurement errors that can 

be expected from a real system. The presented models assist to demonstrate 

the effects of CDN peering and predict end-user perceived performance. It 

also facilitates in making concrete QoS guarantee for a CDN provider. 

4. Enabling techniques for CDN peering. This thesis investigates the techniques 

to enable CDN peering. For this purpose, it presents resource discovery and 

request-redirection mechanisms, coupled with an optimal server selection 

strategy to perform load sharing in a CDN peering arrangement. The pro-

posed mechanisms are evaluated through discrete-event simulations and a 

sensitivity analysis is performed using critical system parameters. Thus, this 

thesis demonstrates the novelty and effectiveness of the proposed techniques 

to achieve service “responsiveness” even under degenerated load conditions. 

5. A utility model. This thesis introduces a utility model for CDN peering to 

measure its content-serving ability. The utility model captures the traffic ac-

tivities in the system and helps to reveal the true propensities of participating 

CDNs to cooperate in peering. Through extensive simulations, this thesis un-

veils interesting observations on how the utility is varied for different system 

parameters and provide incentives for their exploitation in the system design. 

6. Proof-of-concept implementation. This thesis provides an implementation 

perspective for CDN peering, realized through the MetaCDN overlay system 

[29, 157]. It investigates the design space of a competent request-redirection 

technique for MetaCDN and reports a proof-of-concept empirical study on a 

global testbed to evaluate the performance of a utility-based re-
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quest-redirection technique and provide insights on the MetaCDN utility. 

Thus, this thesis addresses the problem of designing a redirection technique 

in practical context that is both responsive to a wide range of workload varia-

tions, and uplift end-user perceived performance. 

To summarize, the work presented in this thesis is in line with the current trends 

in CDNs to shift towards a utility computing model [39], which allows customers to 

exploit content delivery services without having to build a dedicated infrastructure 

[92, 207]. Therefore, it is our thesis to present advanced and efficient content delivery 

solutions that are scalable, high performance and cost effective. 

1.6 Thesis Organization 
The core chapters of this thesis are derived from various papers published during the 

PhD candidature. As shown in Figure 1.4, the remainder of the thesis is organized as: 

• Chapter 2: Content Delivery Networks. This chapter provides an in-depth 

analysis and overview of CDN technologies. It presents a taxonomy of CDNs 

with a complete coverage of the field. This chapter is partially derived from: 

o A.-M. K. Pathan, R. Buyya, and A. Vakali, "CDNs: State of the art, insights, 

and imperatives," Content Delivery Networks, R. Buyya et al. eds., pp. 3-32: 

Springer-Verlag, Germany, 2008. 

o A.-M. K. Pathan and R. Buyya, "A taxonomy of CDNs," Content Delivery 

Networks, R. Buyya et al. eds., pp. 33-77: Springer-Verlag, Germany, 2008. 

• Chapter 3: CDN Peering. This chapter presents an architecture to enable CDN 

peering. It describes the key concepts and identify the associated challenges to 

realize CDN peering. This chapter is partially derived from: 

o R. Buyya, A.-M. K. Pathan, J. Broberg, and Z. Tari, "A Case for Peering of 

Content Delivery Networks," IEEE DSOnline, vol. 7, no. 10, pp. 3, 2006. 

o A.-M. K. Pathan, J. Broberg, and R. Buyya, "Internetworking of CDNs," 

Content Delivery Networks, R. Buyya et al. eds., pp. 389-413: Springer-Verlag, 

Germany, 2008. 
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• Chapter 4: Performance Modeling. This chapter develops performance models 

to highlight on peering effectiveness. The analytical models presented in this 

chapter are derived from the following publication: 

o A.-M. K. Pathan and R. Buyya, “Architecture and performance models for 

QoS-driven effective peering of content delivery networks,” Multiagent and 

Grid Systems Journal, vol. 5, no. 2, pp. 165-195, 2009. 

• Chapter 5: Resource Discovery and Request-Redirection. This chapter presents 

enabling technologies for CDN peering so as to perform load sharing and han-

dle flash crowds. The mechanisms and the simulation results presented in this 

chapter are derived from the following publication: 

o A.-M. K. Pathan and R. Buyya, “Resource discovery and request-redirec- 

tion for dynamic load sharing in multi-provider peering content delivery 

networks,” Journal of Network and Computer Applications, vol. 32, no. 5, pp. 

976-990, 2009. 

• Chapter 6: Utility of CDN Peering. This chapter lays out a utility model for 

CDN peering. It describes the impact of key system parameters on utility. This 

chapter is derived from the following publication: 

o A.-M. K. Pathan and R. Buyya, “A utility model for peering of multi-prov- 

ider content delivery services,” Proc. 34th IEEE International Conference on 

Local Computer Networks (LCN'09), IEEE CS Press, USA, pp. 475-482, 2009. 

• Chapter 7: Optimizing Utility of a Content Delivery Cloud. This chapter pre-

sents the results of a measurement study on the global MetaCDN testbed. It is 

partially derived from the following publication: 

o A.-M. K. Pathan, J. Broberg, and R. Buyya, “Maximizing utility for content 

delivery clouds,” Lecture Notes in Computer Science, Proc. 10th International 

Conference on Web Information Systems Engineering (WISE'09), LNCS 5802, 

Springer, Germany, pp. 13-28, 2009. 

• Chapter 8: Conclusion and Future Directions. The concluding chapter provides 

a summary of contributions and a comprehensive future research roadmap. 
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Chapter 2  

Content Delivery Networks 
Content Delivery Networks (CDNs) is a thriving research field, where advanced 

technologies, solutions and capabilities are being introduced constantly. This chapter 

provides an in-depth analysis of CDN technologies, origins, and evolution by cap-

turing a “snapshot” of the state of the art in this domain. This chapter also presents a 

taxonomy of CDNs with a complete coverage of this field to provide a comprehen-

sive account of applications, features, and implementation techniques. The taxonomy 

provides a basis for categorizing related solutions and systems. It is mapped to a few 

representative systems to validate its accuracy and demonstrate its applicability to 

present-day CDNs. This mapping assists to perform a “gap” analysis in this domain 

by interpreting related concepts. 

2.1 Introduction 
In the context of CDNs, content delivery describes an action of servicing content based 

on end-user requests. Content refers to any digital data resources and it consists of 

two main parts: the encoded media and metadata [171]. The encoded media includes 

static, dynamic, and continuous media data (e.g. audio, video, documents, images 

and Web pages). Metadata is the content description that allows identification, dis-

covery, and management of multimedia data, and facilitates its interpretation. 

Content can be pre-recorded or retrieved from live sources; it can be persistent or 

transient data within the system [171]. A CDN can be seen as a new virtual overlay to 

the Open Systems Interconnection (OSI) network reference model [100]. It provides 

overlay network services relying on application layer protocols such as Hyper Text 

Transfer Protocol (HTTP) or Real Time Streaming Protocol (RTSP) for transport [72].  



  14 
 

The three main entities in a CDN system are the following: content provider, CDN 

provider, and end-users. A content provider or customer is the one who delegates the 

Uniform Resource Identifier (URI) name space of the Web objects to be distributed. 

The origin server of the content provider holds those objects. A CDN provider is a pro-

prietary organization or a company that provides infrastructure facilities to content 

providers in order to deliver content in a timely and reliable manner. End-users or 

clients are entities who access content from the content provider’s Web site. 

 

Figure 2.1: Architectural components of a CDN. 

CDN providers use caching and/or replica servers located in different geographical 

locations to replicate content. CDN cache servers are also called edge servers or surro-

gates. A collective set of CDN edge servers are often referred to as a Web cluster. 

CDNs distribute content to edge servers in such a way that all of them share the same 

content and URI. End-user requests are redirected to the nearby optimal edge server 

and it delivers requested content to end-users. Thus, transparency for users is 

achieved. Additionally, edge servers populate the accounting information on the de-

livered content for traffic reporting and billing purposes. 

2.1.1 CDN Components 
Figure 2.1 shows the architecture of a CDN system comprising four main compo-

nents. These components and their operational steps are described in the following: 
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• Content-delivery component. It consists of the origin infrastructure (applica-

tion severs, Web servers and databases hosted by content provider) and edge 

infrastructure (a set of replica servers hosted by the CDN). The origin server 

delegates the URI namespace of the content to the request-routing component 

(step 1) and publishes the content into the distribution component (step 2). 

• Distribution component. It moves content from the origin server to the replica 

servers and ensures consistency of the content in the caches. It also providees 

feedback to the request-routing component in order to assist in replica server 

selection for delivering content to end-users (step 3). 

• Request-routing component. It receives end-user content requests due to the 

URI namespace delegation and directs them to appropriate replica servers 

(step 4). It also interacts with the distribution component to keep an up-to-date 

view of the content stored in the replica servers. The selected replica server de-

livers the requested content to end-users (step 5) and sends accounting 

information of the delivered content to the accounting component (step 6).  

• Accounting component. It maintains logs of user accesses and records the us-

age statistics of CDN resources. This aggregated information is used for traffic 

reporting and usage-based billing by the origin server or a third-party billing 

organization (step 7). The recorded statistics are also used as feedback to the 

request-routing component. 

With the aid of the above components, a CDN provider focuses on providing the 

following services and functionalities: storage and management of content; distribu-

tion of content among edge servers; cache management; delivery of static, dynamic, 

and streaming content; backup and disaster recovery solutions; monitoring services; 

performance measurement; and reporting. 

A content provider (i.e. customer) signs up with a CDN for service and has its 

content placed on the replica servers. In practice, CDNs typically host third-party 

content including static content (e.g. static HTML pages, images, documents, soft-

ware patches), streaming media (e.g. audio, real time video), User Generated Videos 

(UGV), and varying content services (e.g. directory service, e-commerce service, file 
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transfer service). The sources of content include large enterprises, Web service pro-

viders, media companies, social networking Web sites and news broadcasters. 

Typical customers of a CDN are media and Internet advertisement companies, data 

centers, Internet Service Providers (ISPs), online music retailers, mobile operators, 

consumer electronics manufacturers, and other carrier companies. Each of these cus-

tomers wants to publish and deliver its content to end-users on the Internet in a 

reliable and timely manner. End-users can interact with the CDN by specifying the 

content/service requests through cell phones, smart phones/PDAs, laptops or desk-

tops. Figure 2.2 depicts the different content/services served by a CDN to end-users. 

 

Figure 2.2: Content/services provided by a CDN. 

CDN providers charge their customers according to the content delivered (i.e. 

traffic) to end-users by their replica servers. The average price of CDN services is 

quite high [186], often out of reach for many Small-to-Medium Enterprises (SME) or 

not-for-profit organizations. The price of CDN services are mainly affected by [152], 

• Bandwidth usage, which is measured by the CDN provider to charge (per Mbps) 

customers typically on a monthly basis;  

• Variation of traffic distribution, which characterizes pricing under different situa-

tions of congestion and bursty traffic; 

• Size of the content replicated over edge servers, which is a critical criterion for pos-

ing charges (e.g. price per GB) on customer audiences; 
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• Number of edge servers, which captures the ability of a CDN to offer content at 

charges that will not exceed the charges in typical caching scenarios; and 

• System reliability, stability and security issues for outsourcing content delivery. It 

also inhibits a cost of sharing confidential data, which varies over different 

content providers on the basis of the protected content type. 

2.2 Background and Related Systems 
Content providers earn significant financial incentives from Web-based e-business 

and they are concerned on improving the service quality experienced by end-users 

while accessing their Web sites. As such, the past few years have seen an evolution of 

technologies that aim to improve content delivery and service provisioning over the 

Web. When used together, the infrastructure supporting these technologies forms a 

new type of network, which is often referred to as a ‘content network’ [171]. 

2.2.1 The Evolution of CDNs 
Several content networks attempt to address the performance problem by using dif-

ferent mechanisms to improve the Quality of Service (QoS) experienced by end-users: 

• Improved Web server. An initial approach is to modify the traditional Web ar-

chitecture by improving the server hardware adding a high-speed processor, 

more memory and disk space, or maybe even a multi-processor system. This 

approach is not scalable, since small enhancements are not possible and at 

some point, the complete server system might have to be replaced [98]. 

• Caching proxy deployment by an ISP. It can be beneficial for the narrow 

bandwidth users accessing the Internet, since to improve performance and re-

duce bandwidth utilization, caching proxies are deployed close to end-users. 

Caching proxies may also be equipped with technologies to detect a server 

failure and maximize efficient use of caching proxy resources. Users often con-

figure their browsers to send Web requests through these caches rather than 

sending directly to origin servers. When this configuration is properly done, a 

user’s entire browsing session goes through a specific proxy. Thus, the caches 
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contain most popular content viewed by all the users of the caching proxies.  

• Hierarchical caching and server farms. A provider may also deploy different 

levels of local, regional, international caches at geographically distributed loca-

tions. Such arrangement is referred to as hierarchical caching. This may provide 

additional performance improvements and bandwidth savings [22]. The estab-

lishment of server farms is a more scalable solution that has been in 

widespread use for several years. A server farm comprises multiple Web serv-

ers, each of them sharing the burden of answering requests for the same Web 

site [98]. It also makes use of a Layer 4-7 switch (intelligent switching based on 

information such as URL requested, content type, and username, which can be 

found in layers 4-7 of the OSI protocol stack of the request packet), also called 

Web switch or content switch that examines content requests and dispatches 

them among the group of servers. A server farm can also be constructed with 

surrogates instead of a switch [67]. This approach is more flexible and shows 

better scalability. Moreover, it provides the inherent benefit of fault tolerance. 

Deployment and growth of server farms progress with the upgrade of network 

links that connect Web sites to the Internet. 

• CDNs. Traditional hosting solutions such as server farms and hierarchical 

caching proxies fall significantly short of meeting critical requirements of 

availability, performance and scalability [180]. Some of these shortcomings can 

be alleviated by multihoming (multiple ISPs connectivity to an origin site) and 

mirroring (multiple origin sites). However, Internet middle-mile degradations 

and scalability remain issues. Furthermore, network and server resources need 

to be over-provisioned during failures, since a subset of links and/or data cen-

ters must be able to handle the entire traffic load for a content site. To address 

these limitations, Content Delivery Network has been deployed in the late 1990s. 

With the introduction of CDNs, content providers started putting their Web site 

content on a CDN. Soon they realized its usefulness through receiving increased re-

liability and scalability without the need to maintain expensive infrastructure. Hence, 

several initiatives kicked off for developing infrastructure for CDNs. As a conse-
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quence, Akamai Technologies [76] evolved out of an MIT research effort aimed at 

solving the flash crowd problem. Scientists developed a set of breakthrough algo-

rithms for routing and replicating content over a large network of distributed servers 

spanning the globe. Within a couple of years, several companies became specialists in 

providing fast and reliable delivery of content, and CDNs became a huge market for 

generating large revenues. The flash crowd events [14, 105], such as during the 9/11 

terrorist attack in the USA, resulted in serious caching problems for some sites. This 

influenced the providers to invest more in CDN infrastructure development, since 

CDNs provide desired level of protection to Web sites against flash crowds. 
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Figure 2.3: Evolution of CDN technologies. 

First generation CDNs mainly focused on static and dynamic content delivery 

[122, 211]. The main technological feature for this generation is the development of 

techniques for intelligent routing, replication, and edge computing (splitting applica-

tion and data across the origin and the edge). For the second generation CDNs, the 

focus has shifted to Video-on-Demand (VoD), news on-demand, audio and video 

streaming with high user interactivity. This generation has also witnessed the growth 

of CDNs (e.g. Ortiva Wireless) that are dedicated for content delivery to mobile de-
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vices. This generation can be technologically attributed for the use of Peer-to-Peer 

(P2P), Cloud Computing, and energy-aware techniques [175] for content delivery 

and management. Although a few commercial CDNs provide capabilities of the sec-

ond generation CDNs, most of the efforts on this type of CDNs are still in their 

infancy and have not yet fully reached the market. It is anticipated that the third 

generation CDNs will be community-based CDNs, i.e. they will be mainly driven by 

the common “people” or the average end-users. The main technological features for 

this generation of CDNs will be autonomic (self-configuring, self-organizing, 

self-managing, and self-adapting) composition and content delivery, with the main 

focus on meeting Quality of Experience (QoE) of end-users. There are a few research 

initiatives from the academic domain to develop the architecture and models in this 

context. More information on such community-based CDNs, along with the descrip-

tion of architectural components, technology, and characteristics have been described 

by Plagemann et al. [170]. Figure 2.3 shows the generations of CDNs and their tech-

nological features with a prediction of future evolution. 

With the booming of the CDN business, several standardization activities also 

emerged. The Internet Engineering Task Force (IETF) as an official body has taken 

several initiatives through releasing Request For Comments (RFCs) [18, 20, 67, 72] in 

relation to the CDN research initiatives. Other than IETF, several other organizations 

such as Broadband Services Forum (BSF), Internet Content Adaptation Protocol 

(ICAP) forum, and Internet Streaming Media Alliance have developed standards for 

delivering broadband content and streaming of rich media contentvideo, audio, 

and associated dataover the Internet. In the same breath, by 2002, large-scale ISPs 

started building their own CDN functionality, providing customized services. 

2.2.2 A Comparative Analysis 
Data grids [140, 213], distributed databases [47, 147], and P2P networks [12, 16, 145] 

are three distributed systems that have some characteristics in common with CDNs. 

However, they differ in terms of architecture, goals, soperations, and functional 

characteristics. Table 2.1 provides a comparative analysis between CDNs and the re-

lated systems. Detailed description on them can be found in a previous work [164]. 



 

 21 
 

Table 2.1: Comparison between CDNs and related systems. 

Features CDNs Data Grids Distributed 
Databases P2P Networks 

Category 

A collection of 
networked com-
puters spanning 
the Internet 

A data intensive 
computing 
environment in the
form of a Virtual 
Organization (VO) 

Locally organized 
collection of data 
distributed across 
multiple physical 
locations 

Information re-
trieval network 
formed by ad-hoc
resource 
aggregation 

Constitu-
tion 

Distribution of 
edge servers across
Internet 

Formation of a VO 
of participating 
institutions 

Federation or split-
ting of existing 
database(s) 

Collaboration 
among peers 

Main goal 
Reducing Web la-
tency during 
content delivery 

Performance gain 
through optimal 
and high speed 
data distribution 
from the source 

Transparent inte-
gration of existing 
databases and rep-
lication of database 
fragments 

File sharing 
among peers 

Integrity Integrity between 
caches 

Integrity between 
data grid replicas 

Integrity between 
multiple DBs N/A 

Consistency 
Strong cache con-
sistency between 
replicated content 

Weak consistency 
between data grid 
replicas 

Strong consistency 
between distribut- 
ed databases 

Weak consistency
between cached 
content 

Autonomy None Autonomous 
participants 

Autonomous DDB 
sites 

Autonomous 
peers 

Operational 
activities Content caching 

Data analysis, col-
laboration, and 
maintenance 
across organiza-
tional and regional 
boundaries 

Query processing, 
optimization, and 
management 

Locating or 
caching content, 
encrypting, 
retrieving, de-
crypting, and 
verifying content 

Admini-
stration 

Individual compa-
nies. Proprietary 
in nature 

Institutions who 
cooperate on some 
shared goals 

Single authoritative 
entity 

Self-interested 
end-users/peers 

2.3 Existing CDNs: State of the Art 
Current content delivery landscape consists of three types of CDNs―commercial, aca-

demic, and cloud-based CDNs. The CDN industry is dominated by commercial CDNs. 

Academic CDNs emerged as the outcome of research initiatives at various institu-

tions. Cloud-based CDNs have recently been emerged, mainly from the commercial 

domain. In this section, we provide a snapshot of the current CDN domain by listing 

representative CDNs from each category. An updated listing can be found in the re-

search directories of Davison [71] and Pathan [154]. 
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Table 2.2: Summary of representative commercial CDNs. 

CDN Name Service Type Coverage Products/Solutions 
(If any) 

Akamai 
www.akamai.com 

Content delivery ser-
vices, including 
streaming 

Covers 85% of the 
market. 48,000 serv-
ers in 1000 networks 
in 70 countries. It 
handles 20% of total 
Internet traffic today 

Edge Platform for han-
dling static as well as 
dynamic content, Edge 
Control for managing 
applications, and Net-
work Operations 
Control Center 

EdgeStream 
www.edgestream  
.com 

Video streaming ser-
vices over the public 
Internet 

Provides video 
streaming over con-
sumer cable or 
ADSL modem con-
nections worldwide 

EdgeStream video 
on-demand and IPTV 
streaming software for 
video streaming 

Limelight Networks 
www.limelightnetw
orks.com 

Distributed 
on-demand and live 
delivery of video, mu-
sic, games and 
download 

Edge servers located 
in 72 locations 
around the world 

Limelight ContentEdge 
for HTTP content deliv-
ery, MediaEdge 
Streaming for distrib-
uted video and music 
delivery, and Custom 
CDN for customized 
delivery solutions 

Mirror Image 
www.mirror-image.
com 

Content delivery, 
streaming media, Web 
computing and traffic 
reporting  

Edge servers located 
in 22 countries 

Global Content Cach-
ing, Extensible Rules 
Engine, VoD, and Live 
Webcasting 

2.3.1 Commercial CDNs 
Almost all of the operational CDNs are developed by commercial companies which 

are subject to consolidation over time due to acquisition and/or mergers. Hence, we 

focus on studying only those CDNs that have been in stable operation for a signifi-

cant period of time. Table 2.2 shows a list of four commercial CDNs and presents a 

brief summary of each of them. Detailed description of selected commercial CDNs 

can be found in a previous study [164]. 

2.3.2 Academic CDNs 
Unlike commercial CDNs, the use of P2P technologies is mostly common in academic 

CDNs. One notable exception is the COMODIN system [83, 85] that uses a protocol 

to let a group of users to coordinate and control the playback of a shared multimedia 
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streaming session. Content delivery in an academic CDN follows a decentralized ap-

proach and request load is spread across all the participating hosts, and the system 

can handle node failures and sudden load surges. Academic CDNs built using P2P 

techniques are effective for static content only, and therefore, are unable to handle 

dynamically generated content due to the uncachable nature of dynamic content. 

Table 2.3 provides a brief summary of the representative academic CDNs. Details on 

academic CDNs are available in existing literature [83, 85, 87, 164, 168, 223, 228]. 

Table 2.3: Summary of existing academic CDNs. 

CDN Name Description Service Type Implementation 
and Testing Availability 

CoDeeN 
www.codeen.cs. 
princeton.edu 

CoDeeN is an 
academic test-
bed CDN built 
on PlanetLab 

Provides caching 
of content and re-
direction of HTTP 
requests 

C/C++ imple-
mentation. 
Tested on Linux 
(2.4/2.6) and 
Mac (10.2/10.3)  

N/A 

COMODIN 
http://lisdip.deis.
unical.it/research 
/index.html 

COMODIN is 
a streaming 
CDN deployed 
on an interna-
tional testbed 

Provides collabo-
rative media 
playback service 

Java-based ap-
plications and 
applets. Tested 
on Unix/Linux 
and Windows 

N/A 

Coral 
www.coralcdn.org 

Coral is a free 
P2P CDN. It is 
hosted on 
PlanetLab 

Provides content 
replication in pro-
portion to the 
content’s popular-
ity 

C++ implemen-
tation. Tested on 
Linux, openBSD, 
FreeBSD, and 
Mac OS X 

No official re-
lease yet. Coral is 
a Free software, 
licensed under 
GPLv2 

Globule 
www.globule.org 

Globule is an 
open source 
collaborative 
CDN. A Third 
party module 
for Apache 
Web server 

Provides replica-
tion of content, 
monitoring of 
servers and redi-
recting client 
requests to avail-
able replicas 

Implemented 
using PHP 
scripting, C/C++
and tested on 
Unix/Linux and 
Windows 

Subject to a 
BSD-style license 
and the Apache 
software license 
for the packaged 
Apache HTTP 
Web server 

2.3.3 Cloud-based CDNs 
With the introduction of Cloud Computing1 [15, 35], the hottest concept in IT today, 

the CDN landscape has experienced the growth of cloud-based CDNs or Content De-

                                                 
1 A recent technology trend that moves computing and data away from desktop and portable PCs into 
computational resources such as large Data Centers (“Computing”) and make them accessible as scal-
able, on-demand services over a network (the “Cloud”). 
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livery Clouds [60]. They extend traditional CDNs model by exploiting clouds for 

content and Web application delivery, as well as storage, raw computing, or access to 

any number of specialized services. By doing so, they endeavor to improve cost effi-

ciency, accelerate innovations, attain faster time-to-market, and achieve application 

scalability [124]. There are a number of major players in this domain that are provid-

ing cloud-based content delivery services on a commercial basis, either by 

themselves or by partnering with an existing CDN. An example research initiative in 

this context is MetaCDN [29, 157], an integrated overlay network that leverages re-

sources from existing storage clouds to provide content delivery sevices (described in 

Chapter 7). The main goals of the MetaCDN system is to provide economics of scale 

and high content delivery performance through its simple yet general purpose, re-

usable, and reliable geographically distributed framework. 

A comparative analysis of the representative cloud-based CDNs is provided in 

Table 2.4. Details on them are available in the research directory of Pathan [154]. 

Table 2.4: Feature comparison of cloud-based CDNs. 

Feature Amazon (S3 and 
CloudFront) 

Voxel (VoxCAST and 
Silverlining) 

Akamai (Cloud 
Optimizer) 

Storage and 
content  
delivery 

S3 Storage services;  
CloudFront content 
delivery 

Silverlining cloud services; 
VoxCAST CDN 

NetStorage services; 
EdgePlatform content 
delivery 

Service type 

On-demand storage in 
multiple datacenters; 
on-demand content 
delivery 

Managed hosting; 
On-demand content 
delivery 

On-demand storage 
and content delivery 

Performance 

Comparable latency 
with customer-owned 
data centers. Sparsely 
reported performance 
problem due to out-
ages 

Reported consistent per-
formance on par with 
competitors such as 
Akamai and Limelight 

Up to 400% improve-
ment and at least twice 
faster application re-
sponse time than 
Amazon EC2 

Availability 
and reliability 

Availability zones to 
enable resiliency for 
single location failure, 
and redundancy 

All time availability as it 
fails safe against origin 
server outages  

No single point of fail-
ure, automatic failover 
and redundancy 

Geographic  
distribution 

Datacenters at 14 loca-
tions in Asia, Europe 
and North America 

Point of Presence (POP) at 
17 locations in Asia, 
Europe and North America

48000 servers in 1000 
networks world-wide 

Multi-tenancy/
Service sharing Yes Yes (also dedicated mode) Yes 
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Feature Amazon (S3 and 
CloudFront) 

Voxel (VoxCAST and 
Silverlining) 

Akamai (Cloud 
Optimizer) 

Load  
balancing 

Listed in future in-
vestments Yes (server switching) Yes (global and dy-

namic load balancing) 
On-demand  
scalability Yes Yes Yes 

Developer API Yes (Amazon Web 
services-AWS) Yes (Hosting API) Yes (EdgeScape API) 

Automatic  
replication 

S3: No; CloudFront: 
Yes Yes Yes 

SLA (%) 99-99.9 100 100 

Accessibility AWS API or man-
agement console 

VoxCAST Web-based 
portal Akamai EdgeControl 

Economic 
model and 
pricing 

Pay-as-you-go Progressive universal scale 
billing upon usage 

Volume-based pricing; 
pay-per-use model for 
NetStorage 

Security 
Protection for DDoS 
attacks, access control 
list and firewalls 

Secure authentication, 
firewalls 

Protection for DDoS 
attacks and application 
firewall 

2.4 A Taxonomy of CDNs 
CDNs have received considerable research attention in the recent past [33, 98, 176, 

215]. A few studies have investigated CDNs to categorize and analyze them, and ex-

plore the uniqueness, weaknesses, opportunities, and future directions in this field. 

Peng [166] presents an overview of CDNs. He describes the critical issues involved in 

designing and implementing an effective CDN, and surveys the approaches pro-

posed in literature to address these problems. Vakali and Pallis [211] present a survey 

of CDN architecture and popular CDN service providers. The survey is focused on 

understanding the CDN framework and its usefulness. They identify the characteris-

tics and current practices in the content networking domain, and present an 

evolutionary pathway for CDNs, in order to exploit the current content networking 

trends. Dilley et al. [76] provide an insight into the overall system architecture of the 

leading CDN, Akamai. They provide an overview of the existing content delivery 

approaches and describe Akamai’s network infrastructure and its operations in detail. 

They also point out the technical challenges that are to be faced while constructing a 

global CDN like Akamai. Saroiu et al. [188] examine content delivery from the point 

of view of four content delivery systems: Hypertext Transfer Protocol (HTTP) Web 
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traffic, the Akamai CDN, Gnutella [1, 199], and KaZaa [123, 136] peer-to-peer file 

sharing systems. They also present significant implications for large organizations, 

service providers, network infrastructure providers, and general content delivery 

providers. Kung and Wu [118] describe a taxonomy for content networks and intro-

duce a new class of content networks that perform “semantic aggregation and 

content-sensitive placement” of content. They classify content networks based on the 

attributes in two dimensions: content aggregation and content placement. 

Sivasubramanian et al. [198] identify the issues for building a Web replica hosting 

system. Since caching infrastructure is a major building block of a CDN and content 

delivery is initiated from the origin server, they consider CDNs as replica hosting 

systems. In this context, they propose an architectural framework, review related re-

search work, and categorize them. A survey of peer-to-peer (P2P) content 

distribution technologies [12] studies current P2P systems and categorize them by 

identifying their non-functional properties such as security, anonymity, fairness, in-

creased scalability, and performance, as well as resource management, and 

organization capabilities. Through this study the authors make useful insights for the 

influence of the system design on these properties. Cardellini et al. [41] study the 

state of the art of Web system architectures that consist of multiple server nodes dis-

tributed on a local area. They provide a taxonomy of these architectures, and analyze 

routing mechanisms and dispatching algorithms for them. They also present future 

research directions in this context. 

2.4.1 Motivations and Scope 
As mentioned above, there exist a wide range of work covering different aspects of 

CDNs such as content distribution, replication, caching, and Web server placement. 

However, none of them performs a complete categorization of CDNs by considering 

the functional and non-functional aspects. Functional aspects include technology us-

age and operations of a CDN, whereas the non-functional aspects focus on CDN 

characteristics such as organization, management, and performance issues. We set 

out to consider both functional and non-functional aspects of CDNs, which assist in 

examining the way in which the characteristics of a CDN are reflected in and affected 



 

 27 
 

by the architectural design decision followed by a given CDN. We develop a com-

prehensive taxonomy of CDNs that identifies and categorizes numerous solutions 

and techniques related to various design dynamics [160]. 

The taxonomy is built around the core issues for building a CDN system. We 

identify the following key issues that pose challenges in the development of a CDN: 

• What is required for a harmonious CDN composition. It includes decisions 

based on different CDN organization, node interactions, relationships, and 

content/service types. 

• How to perform effective content distribution and management. It includes the 

right choice of content selection, surrogate placement, content outsourcing, and 

cache organization methodologies. 

• How to route client requests to an appropriate CDN node. It refers to the usage 

of dynamic, scalable, and efficient routing techniques. 

• How to measure a CDN’s performance. It refers to the ability to predict, moni-

tor, and ensure the end-to-end performance of a CDN. 

A full-fledged CDN system design seeks to address additional issues to make the 

system robust, fault tolerant, secure, and capable of wide-area application hosting. In 

this context, the issues to be addressed are: 

• How to handle wide-area failures in a CDN. It involves the use of proper tools 

and systems for failure detection. 

• How to ensure security in a wide-area CDN system. It refers to the solutions to 

counter distributed security threats. 

• How to achieve wide-area application hosting. It seeks to develop proper 

techniques to enable CDNs to perform application hosting. 

Each of the above issues is an independent research area itself and many solu-

tions and techniques can be found in literature and in practice. While realizing 

proper solution for the additional issues is obvious for a CDN development, our 

taxonomy [160] concentrates on the first four core issues. Nevertheless, Section 2.6 

presents a coverage of the relevant solutions in the context of the additional issues. 
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2.4.2 Taxonomy 
Table 2.5 summarizes a taxonomy of CDNs based on four key issues―CDN composi-

tion, content distribution and management, request-routing, and performance measurement. 

The first issue covers several aspects of CDNs related to their organization and for-

mation. It classifies the CDNs with respect to their structural attributes. The next 

issue pertains to the content distribution mechanisms in CDNs. It describes the con-

tent distribution and management approaches of CDNs in terms of surrogate 

placement, content selection and delivery, content outsourcing, and caches/replica 

organization. Request-routing techniques in the existing CDNs are described under 

the next issue. Finally, the last issue deals with the performance measurement meth-

odologies of CDNs. Detailed description, case studies, and relevant examples of the 

CDN taxonomy are reported in a prior publication [160]. 

Table 2.5: CDN taxonomy. 

Issues Taxonomy 

CDN composition 

• CDN organization (overlay and network approach) 
• Servers (origin and replica server) 
• Relationships (client-to-surrogate-to-origin, network element-to-caching 

proxy, inter-proxy) 
• Interaction protocols (network elements and inter-cache interaction) 
• Content/service types (static, dynamic, streaming content and services) 

Content distribution 
and management 

• Content selection and delivery (full and/or partial site―empirical, popu-
larity, object, and cluster-based) 

• Surrogate placement (single or multi-ISP approach using―center, greedy,
hotspot, topology-informed, tree-based and scalable replica placement) 

• Content outsourcing (cooperative push-based, non-cooperative pull-based, 
or cooperative pull-based) 

• Cache organization (caching techniques―Intra- and inter-cluster caching; 
and cache update—periodic, on-demand, propagation, invalidation) 

Request-routing 

• Request-routing algorithms (adaptive or non-adaptive) 
• Request-routing mechanisms (DNS-based―NS and CNAME redirec-

tion, application-level and IP anycasting; transport-layer―usually 
combined with DNS-based techniques; and application-layer―HTTP redi-
rection, URL rewriting, and CDN peering using centralized directory, 
Distributed Hash Table (DHT), or document routing model) 

Performance 
measurement 

• Internal and external measurement (network statistics acquisi-
tion—network probing, traffic monitoring, surrogate feedback to measure 
performance metrics such as geographical proximity, latency, packet loss, 
average bandwidth, downtime, startup time, frame rate, server load; and 
simulation-based performance measurement) 
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The analysis of the structural attributes of a CDN reveals that its infrastructural 

components are closely related to each other. The structure of a CDN varies depend-

ing on the content/services it provides to its users. Within a CDN structure, a set of 

surrogates is used to build the content-delivery component, some combinations of 

relationships and mechanisms are used for redirecting end-user requests to a surro-

gate and interaction protocols are used for communications between CDN elements. 

Content distribution and management is strategically vital in a CDN for efficient 

content delivery and overall performance. Content distribution includes content se-

lection and delivery based on the type and frequency of specific end-user requests; 

placement of surrogates to some strategic positions so that the edge servers are close 

to end-users; and content outsourcing to decide which outsourcing methodology to 

follow. Content management is largely dependent on the techniques for cache or-

ganization (i.e. caching techniques, cache maintenance, and cache update). 

(3) Redirect request to CDN 

provider

Replica server

Replica server

Origin Server

(5) Closest replica 

server serves 

selected embedded 

objects

(1) All client requests 

arrive to the origin server 

of content provider

` (2) Discovery’s origin 

server returns the basic 

index page

Index.html

Selection 
Algorithm

(4) Forward 
request

Selected embedded 
objects to be served 

by  CDN provider

User

CDN Provider

Replica server

 

Figure 2.4: Request-routing in a CDN. 

Request-routing is an indispensible enabling cornerstone for CDNs. It is generally 

used to direct end-user requests to replica servers based on various policies and a 

possible set of metrics, such as network proximity, user perceived latency, band-

width, content availability, and replica server load. The request-routing system in a 

CDN deploys a request-routing algorithm and uses a request-routing mechanism 
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[198]. A request-routing algorithm specifies how to select an edge server in response 

to a given request. It is at first invoked upon receiving an end-user request. Then the 

user is informed about the selection using a request-routing mechanism. 

Figure 2.4 provides a high-level view of the request-routing technique in a typical 

commercial CDN environment. The interaction flows are: (1) the end-user requests 

content from the content provider by specifying its URL in the Web browser. User’s 

request is directed to the origin server; (2) when the origin server receives a request, 

it makes a decision to provide only the basic content (e.g. index page of the Web site); 

(3) to serve the high bandwidth demanding and frequently asked content (e.g. em-

bedded objects―dynamic content, images, logos, navigation bar, and banner 

advertisements), content provider’s origin server redirects user’s request to the CDN 

provider; (4) using the proprietary selection algorithm, the CDN provider selects a 

replica server which is the ‘closest’ to the end-user in order to serve the requested 

embedded objects; (5) selected replica server gets the embedded objects from the ori-

gin server, serves the user requests, and caches it for subsequent request servicing. 

Performance measurement of a CDN is done to evaluate its ability to serve the 

customers with the desired content and/or services. Typically five key metrics are 

used by the content providers to evaluate the performance of a CDN [77, 88, 104, 116, 

125]. They are: cache hit ratio, reserved bandwidth, latency, surrogate server utiliza-

tion, and reliability. In addition to performance measurements on CDN testbeds, 

researchers often use simulation tools [28, 52, 108, 205, 222] to measure a CDN’s per-

formance or experiment specific policies on overlay platforms such as PlanetLab [57]. 

2.5 Mapping the Taxonomy to CDNs 
This section maps the above taxonomy to a few representative CDNs (Section 2.3) to 

demonstrate its applicability to categorize and analyze the present-day CDNs. In ad-

dition, it presents perceived insights and a critical evaluation of existing systems. 

2.5.1 CDN Composition 
Table 2.6 shows the annotation of representative CDNs based on the composition 

taxonomy. The majority of existing CDNs use overlay approach (application-specific 
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servers and caches for content delivery) for CDN organization, while some use net-

work approach (network components equipped with logic for application-specific 

content delivery) or both. The use of both overlay and network approaches is com-

mon among commercial CDNs such as Akamai and Mirror Image. When a CDN 

provider uses a combination of these two for CDN formation, a network element can 

be used to redirect HTTP requests to a nearby application-specific surrogate server.  

Most of the academic CDNs are built using P2P techniques following an overlay 

approach. COMODIN is an exception which uses network approach to deliver col-

laborative media support over IP-based networks. Each of the P2P-based academic 

CDNs differs in the way the overlay is built and deployed. For example, CoDeeN 

overlay consists of deployed “open” proxies, whereas Coral overlay (consisting of 

cooperative HTTP proxies and a network of DNS servers) is built relying on an un-

derlying indexing infrastructure, and Globule overlay is composed of the user nodes.  

Recently emerged cloud-based CDNs exploit an overlay approach with the use of 

multiple datacenters, i.e. distributed cloud infrastructure, for storage and content de-

livery. They differ in the way they use cloud services for content delivery. For 

instance, Amazon CloudFront operates with the assistance of its companion Amazon 

Simple Storage Service (S3) for durable storage of original, definitive version of the 

content, VoxCAST operates with its Silverlining cloud computing platform, and 

Akamai’s Cloud Optimizer is built on its EdgeComputing platform consisting of a 

highly distributed network of edge servers. 

In an overlay approach, client-to-surrogate-to-origin server and network ele-

ment-to-caching proxy relationships are the most common. Inter-proxy relationship 

is also observed that supports cache interaction. When network approach is used, 

CDNs deploy request-routing logic to the network elements based on predefined 

policies and provide content delivery services. The overlay approach is preferred 

over the network approach because of the scope for new services integration and 

simplified management of underlying infrastructure. Offering a new service in over-

lay approach is as simple as distributing new code to CDN servers [122]. 

CDNs use origin and replica servers to perform content delivery. Most of the rep-
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lica servers are used as Web servers for serving Web content. Some CDNs such as 

Akamai, EdgeStream, Limelight Networks, and Mirror Image use their replicas as 

media servers for delivering streaming media and video hosting services. Replica 

servers can also be used for providing caching, large file transfer, reporting, and DNS 

services. Alike commercial CDNs, cloud-based CDNs support origin and replica 

servers either through their own infrastructure (e.g. Cloud Optimizer, VoxCAST) or a 

companion storage cloud platform (Amazon CloudFront). P2P-based CDNs config-

ure replicas to serve different purposes. For example, each CoDeeN node is capable 

of acting as a forward, reverse, and redirection proxy; Coral proxies are cooperative; 

and a Globule node can play the role of an origin, replica, backup, and/or replica. 

Table 2.6: CDN composition taxonomy mapping. 

CDN 
Name 

CDN  
Organization Servers Relationships Interaction  

Protocols 
Content/Service 
Types 

Akamai 
Network and 
overlay 
approach 

Origin and 
replica 
servers 

Client-to-surro 
gate-to-origin, 
Network 
element-to- 
caching proxy, 
Inter-proxy 

Network 
elements 
interaction, 
inter-cache 
interaction 

Static and dynamic 
content, streaming 
media, and services
(network monitor-
ing, geographic 
targeting) 

Edge 
Stream 

Network 
approach N/A N/A 

Network 
elements 
interaction 

Video streaming 
and video hosting 
services 

Limelight 
Networks 

Overlay 
approach 

Origin and 
replica 
servers 

Client-to-surro 
gate-to-origin, 
Network-to- 
caching proxy 

Network 
elements 
interaction 

Static content, 
streaming media  

Mirror- 
Image 

Network and 
Overlay 
approach 

Origin and 
replica 
servers 

Client-to-surro 
gate-to-origin, 
Network  
element-to- 
caching proxy 

Network 
elements 
interaction 

Static content, 
streaming media, 
Web computing 
and traffic report-
ing services 

CoDeeN  

Overlay ap-
proach with 
“open” cach-
ing proxies 

Origin and 
replica 
(forward, 
reverse, re-
director) 
servers 

Client-to-surro 
gate-to-origin, 
Network  
element-to- 
caching proxy, 
Inter-proxy 

Network 
elements 
interaction, 
inter-cache 
interaction 

Participating users 
receive better per-
formance to most 
sites; only provides 
static content 

COMODIN Network 
approach 

Origin and 
replica 
servers 

Client-to-surro 
gate-to-origin 

Network 
elements 
interaction 

Streaming media 
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CDN 
Name 

CDN  
Organization Servers Relationships Interaction  

Protocols 
Content/Service 
Types 

Coral 

Overlay ap-
proach with 
an underlying 
indexing in-
frastructure 

Origin and 
replica (co-
operative) 
proxy cach-
ing servers 

Client-to-surro 
gate-to-origin, 
Network-to- 
caching proxy, 
Inter-proxy 

Network 
elements 
interaction, 
inter-cache 
interaction 

Most users receive 
better performance 
to participating 
sites; only provides 
static content 

Globule 

Overlay ap-
proach with 
end-user 
nodes 

Origin, rep-
lica, backup 
and/or re-
director 
servers 

Client-to-surro 
gate-to-origin, 
Network-to- 
caching proxy, 
Inter-node 

Network 
elements 
interaction, 
inter-cache 
interaction 

Improved Web site 
performance and 
availability; static 
content delivery 
and monitoring 

CloudFront 
(Amazon) 

Overlay ap-
proach with 
multiple 
datacenters 

Replica 
servers (ori-
gin servers 
through S3) 

Network 
element-to- 
datacenter 
servers, In-
ter-proxy 

Network 
elements 
interaction, 
inter-cache 
interaction 

Static content and 
streaming media 

Cloud 
Optimizer 
(Akamai) 

Overlay ap-
proach with 
edge servers 

Origin and 
replica (Net-
Storage 
services) 

Client-to-surro 
gate-to-origin, 
Network-to- 
caching proxy, 
Inter-proxy 

Network 
elements 
interaction, 
inter-cache 
interaction 

Static, dynamic 
cloud applications 
and uncachable 
content 

VoxCAST 
(Voxel) 

Overlay ap-
proach with 
multiple 
datacenters 

Origin and 
replica 
(cloud host-
ing servers) 

Client-to-surro 
gate-to-origin, 
Network-to- 
caching proxy, 
Inter-proxy 

Network 
elements 
interaction, 
inter-cache 
interaction 

Static content, and 
live audio/video 
streaming 

From Table 2.6, it can also be seen that most of the CDNs are dedicated to pro-

vide particular content, since variation of services and content requires the CDNs to 

adopt application-specific characteristics, architectures, and technologies. Most of 

them provide static content, while only a few of them provide streaming media, 

broadcasting, and other services. Cloud-based CDNs mostly provide static content 

delivery and limited streaming services. Most of the cloud-based CDNs (except 

Akamai Cloud Optimizer) are yet to realize the functionalities for dynamic and Web 

application delivery services. While the main business goal of commercial CDNs is to 

gain profit through content and/or service delivery, the goal of academic CDNs dif-

fers from each other. As for instance, CoDeeN provides static content with the goal of 

providing participating users better performance to most Web sites; COMODIN fo-

cuses to provide collaborative playback control services on streaming media, rather 
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than content delivery; Coral aims to provide most users better performance to partici-

pating Web sites; and Globule targets to improve a Web site's performance, 

availability, and resistance (to some extent) to flash crowds and the Slashdot effects. 

Table 2.7: Content distribution and management taxonomy mapping. 

CDN Name Content Selection 
and Delivery 

Surrogate 
Placement 

Content  
Outsourcing 

Cache  
Organization 

Akamai 

Content selection 
• Full and partial- 

site delivery 
Content Clustering 
• Users’ sessions 

based 

Multi-ISP approach; 
Hotspot placement 
by allocating more 
servers to sites  
experiencing high 
traffic load 

Non- 
cooperative 
pull-based 

Caching technique 
• Intra and inter- 

cluster caching 
Cache update 
• Propagation 
• On-demand 

Edge 
Stream 

Content selection 
• Partial-site    

delivery 
Content Clustering 
   N/A 

Single-ISP  
approach 

Non- 
cooperative 
pull-based 

Caching technique 
• Inter-cluster 

caching 
Cache update 
   N/A 

Limelight 
Networks 

Content selection 
• Partial-site    

delivery 
Content Clustering 
   N/A 

Multi-ISP approach 
Non- 
cooperative 
pull-based 

Caching technique 
• Intra-cluster 

caching 
Cache update 
• On-demand 

Mirror 
Image 

Content selection 
• Partial-site    

delivery 
Content Clustering 
• URL based 

Multi-ISP approach; 
Center placement 
following a concen-
trated “Superstore” 
architecture 

Non- 
cooperative 
pull-based 

Caching technique 
• Intra-cluster 

caching 
Cache update 
• On-demand 

CoDeeN 

Content selection 
• Partial-site    

delivery 
Content Clustering 
   N/A 

Multi-ISP approach; 
Topology-informed 
replica placement 

Cooperative 
pull-based 

Caching technique 
• Intra and inter- 

cluster caching 
Cache update 
• On-demand 

COMODIN 

Content selection 
• Full-site     

delivery 
Content Clustering 
   N/A 

Single-ISP  
approach 

Non- 
cooperative 
pull-based 

Caching technique 
• Intra-cluster 

caching 
Cache update 
• Periodic update 

Coral 

Content selection 
• Full and partial- 

site delivery 
Content Clustering 
• Users’ sessions 

based 

Multi-ISP approach; 
Tree-based replica 
placement 

Cooperative 
pull-based 

Caching technique 
• Intra and inter- 

cluster caching 
Cache update 
• Cache invalida-

tion 
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CDN Name Content Selection 
and Delivery 

Surrogate 
Placement 

Content  
Outsourcing 

Cache  
Organization 

Globule 

Content selection 
• Full and partial- 

site delivery 
Content Clustering 
   N/A 

Single-ISP approach; 
Replica placement 
strategy is dynami-
cally selected by 
evaluating different 
strategies 

Cooperative 
pull-based 

Caching technique 
• Intra and inter- 

cluster caching 
Cache update 
• Adaptive cache 

update 

CloudFront 
(Amazon) 

Content selection 
• Partial-site    

delivery 
Content Clustering 
   N/A 

Multi-ISP approach 
with 14 datacenter 
locations 

Cooperative 
pull-based 

Caching technique 
• Intra and inter- 

cluster caching 
Cache update 
• Propagation 

Cloud 
Optimizer 
(Akamai) 

Content selection 
• Full and partial- 

site delivery 
Content Clustering 
• Users’ sessions 

based 

Multi-ISP approach 
with 48000 servers at 
distributed edge 
locations 

Non- 
cooperative 
pull-based 

Caching technique 
• Intra and inter- 

cluster caching 
Cache update 
• Propagation 
• On-demand 

VoxCAST 
(Voxel) 

Content selection 
• Full and partial- 

site delivery 
Content Clustering 
   N/A 

Multi-ISP approach 
with 17 POP loca-
tions 

Non- 
cooperative 
pull-based 

Caching technique 
• Intra and inter- 

cluster caching 
Cache update 
• Propagation 

2.5.2 Content Distribution and Management 
The mapping of the content distribution and management taxonomy to the repre-

sentative CDNs is shown in Table 2.7. It is observed that most of the representative 

CDNs with extensive geographical coverage follow multi-ISP approach to place nu-

merous number of surrogate servers at many global ISP POPs. Commercial CDNs 

such as Akamai, Limelight Networks, Mirror Image, and academic CDNs such as 

Coral [87] and CoDeeN [222] use multi-ISP approach. Cloud-based CDNs also follow 

this approach as they build their cloud infrastructure by placing multiple datacenters 

at edge locations distributed around the globe. Single-ISP approach suffers from the 

distant placement of surrogates with respect to the locality of end-users. However, 

the setup cost, administrative overhead, and complexity associated with the system 

deployment and management in multi-ISP approach is higher. An exception is found 

for high traffic volume sites. Multi-ISP approach performs better as single-ISP ap-

proach is suitable only for low-to-medium traffic volume sites [211]. 
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Content outsourcing of the commercial CDNs mostly use non-cooperative 

pull-based approach because of its simplicity enabled by the use of DNS redirection 

or URL rewriting. Cooperative push-based approach is still theoretical and none of 

the existing CDNs supports it. Cooperative pull-based approach involves complex 

technologies, e.g. Distributed Hash Table (DHT), as compared to the non-cooperative 

approach and it is used by the P2P-based academic CDNs [152]. Moreover, it imposes 

a large communication overhead (in terms of number of messages exchanged) when 

the number of clients is large. It also does not offer high fidelity when the content 

changes rapidly or when the coherency requirements are stringent. 

From Table 2.7 it is also evident that representative commercial, academic and 

cloud-based CDNs with large geographic coverage use inter-cluster (and a combina-

tion of inter and intra-cluster) caching. CDNs mainly use on-demand update as their 

cache update policy. Only Coral uses invalidation for updating caches since it deliv-

ers static content which changes very infrequently. Globule follows an adaptive 

cache update policy to dynamically choose between different cache consistency en-

forcement techniques. Of all the cache update policies, periodic update has the 

greatest reach since the caches are updated in a regular fashion. Thus, it has the po-

tential to be most effective in ensuring cache content consistency. Update 

propagation and invalidation are not generally applicable as steady-state control 

mechanisms, and they can cause control traffic to consume bandwidth and processor 

resources that could otherwise be used for serving content [92]. Content providers 

themselves may administer to deploy specific caching mechanisms or heuristics for 

cache update. Distributing particular caching mechanism is simpler to administer but 

it has limited effects. On the other hand, cache heuristics are a good CDN feature for 

content providers who do not want to develop own caching mechanisms. However, 

heuristics do not deliver the same results as well-planned policy controls [92]. 

Table 2.8: Request-routing taxonomy mapping. 

CDN Name Request-routing Technique 

Akamai 
• Adaptive request-routing algorithms which takes into account 

server load and various network metrics 
• DNS-based and application-layer (URL rewriting) request-routing  
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CDN Name Request-routing Technique 
EdgeStream Application-layer (HTTP redirection) 
Limelight Networks DNS-based request-routing 

Mirror-Image 
Global Server Load Balancing (GSLB) 
• Global awareness 
• Smart authoritative DNS 

CoDeeN 
• Transport-layer (request-routing algorithm takes into account re-

quest locality, system load, reliability, and proximity information) 
• Application-layer (HTTP redirection) 

COMODIN DNS-based request-routing 

Coral 
• Transport-layer (request-routing algorithms to consider locality by 

exploiting on-the-fly measurement and storing topology hints) 
• DNS-based request-routing 

Globule • Adaptive request-routing algorithms considering AS proximity 
• Single-tier DNS-based request-routing 

CloudFront 
(Amazon) 

• DNS-based request-routing (CNAME redirection) 
• Application-layer (HTTP redirection) 

Cloud Optimizer 
(Akamai) 

• DNS-based request-routing 
• Application-layer request-routing (proprietary) 

VoxCAST (Voxel) DNS-based request-routing 

2.5.3 Request-Routing 
Table 2.8 maps the request-routing taxonomy to the representative CDNs. It can be 

observed from the table that DNS-based mechanisms are very popular for re-

quest-routing. The main reason of this popularity is its simplicity and the ubiquity of 

DNS as a directory service. DNS-based mechanisms mainly use a specialized DNS 

server in the name resolution process. Among other request-routing mechanisms, 

HTTP redirection is also highly used in the CDNs because of the finer level of granu-

larity on the cost of introducing an explicit binding between a client and a replica 

server. Flexibility and simplicity are other reasons to use HTTP redirection for re-

quest-routing in CDNs. Some CDNs such as Mirror Image uses GSLB for 

request-routing. It is advantageous since less effort is required to add GSLB capabil-

ity to the network without adding any additional network devices. Transport-layer 

request-routing is mostly used in academic CDNs. Among them, Coral exploits 

overlay routing techniques, where indexing abstraction for request-routing is done 

using Distributed Sloppy Hash Table (DSHT). Thus, it makes use of P2P mechanism 
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for request-routing. The request-routing algorithms used by the commercial CDNs 

are proprietary in nature. The technology details of most of them have not been re-

vealed. Our analysis of the existing CDNs indicates that Akamai and Globule use 

adaptive request-routing algorithms for their request-routing system. Akamai’s 

adaptive (to flash crowds) request-routing takes into account server load and various 

network metrics; whereas Globule measures only the number of Autonomous Sys-

tems (AS) that a request needs to pass through. In CoDeeN, the request-routing 

algorithm takes into account request locality, system load, reliability, and proximity 

information. Coral’s request-routing algorithm improves locality by exploiting 

on-the-fly network measurement and storing topology hints in order to increase the 

possibility for the clients to discover nearby DNS servers. 

Table 2.9: Performance measurement taxonomy mapping. 

CDN Name Performance Measurement 

Akamai 

Internal measurement 
• Network probing 
• Traffic monitoring (proactive) 
External measurement 
• Performed by a third party (Giga Information group) 

EdgeStream 
Internal measurement 
• Traffic monitoring through Real Time Performance 

Monitoring Service (RPMS) 

Limelight Networks 

Internal measurement 
• Traffic monitoring (proactive) and reporting 
External measurement 
• Support for Omniture measurement system 

Mirror-Image 
Internal measurement 
• Network probing 
• Traffic monitoring and reporting 

CoDeeN Internal measurement 
• Local traffic and system monitoring 

COMODIN Internal measurement 
• Network probing and feedback from surrogates 

Coral 
Internal measurement 
• Traffic monitoring 
• Liveness checking of a proxy via UDP RPC 

Globule 
Internal measurement 
• Traffic monitoring 
• Monitoring of server availability by the redirectors 
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CDN Name Performance Measurement 

CloudFront 
(Amazon) 

Internal measurement 
• Traffic monitoring, reporting and usage logging 
External measurement 
• Performed by end-users [154] 

Cloud Optimizer 
(Akamai) 

Internal measurement 
• Network probing 
• Traffic monitoring (proactive) 
Performance also measured externally 

VoxCAST (Voxel) Internal measurement 
• Traffic statistics, usage reporting and historical logs 

2.5.4 Performance Measurement 
Table 2.9 shows the mapping of different performance measurement techniques to 

representative CDNs. Performance measurement of a CDN through some metric es-

timation measures its ability to serve the customers with the desired content and/or 

services. The performance of a CDN should be evaluated in terms of cache hit ratio, 

bandwidth consumption, latency, surrogate server utilization, and reliability. In ad-

dition, other factors such as storage, communication overhead, and scalability can 

also be taken into account. The estimation of performance metrics gives an indication 

of system conditions and helps for efficient request-routing and load balancing in 

large CDN systems. It is important to a content provider to analyze the performance 

study results of a CDN so as to select the most appropriate CDN provider for itself. 

However, the proprietary nature of CDN providers usually does not allow a content 

provider to conduct performance measurement on them. 

From Table 2.9, we see that performance measurement of a CDN is done through 

internal measurement technologies as well as from the customer and end-user per-

spective. It is evident that most of the CDNs use internal measurement based on 

network probing, traffic monitoring, or the like. Akamai uses proactive traffic moni-

toring and network probing for measuring performance. In the academic domain, 

CoDeeN has the local monitoring ability that examines a service’s primary resources, 

such as free file descriptors/sockets, CPU cycles, and DNS resolver service; CO-

MODIN controls the collaborative streaming performance via network probing and 

surrogate feedback; Coral performs a proxy’s liveness check (via UDP Remote Pro-
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cedure Call (RPC)) prior to replying to a DNS query; whereas, Globule has imple-

mented monitoring ability in its redirector servers to check server availability. 

External performance measurement of CDNs is not common because most of the 

operating CDNs are commercial enterprises, which are not run transparently, and 

there are corporate advantages to keep the performance metrics and methodologies 

undisclosed. Despite this, some CDNs such as Akamai and Limelight Networks al-

low third-party external measurements. 

2.6 Discussion 
As stated in Section 2.4.1, a full-fledged CDN development requires addressing addi-

tional issues (other than the four core issues considered for the taxonomy) such as 

fault tolerance, security, and the ability for Web application hosting. In this section, 

we present a brief discussion on them and assist CDN researchers to comprehend 

respective fields by providing referral to relevant research materials. 

Being CDNs a complex fabric of distributed network elements, failures can occur 

at many places. Following a concentrated architecture such as local clustering may 

improve fault-tolerance. However, it creates a single-point of failure, when the ISP 

connectivity to the cluster is lost. This problem can be solved through deploying Web 

clusters in distributed locations (mirroring) or using multiple ISPs to provide connec-

tivity (multihoming). While clustering, mirroring, or multihoming address the CDN 

robustness issue to some extent, they introduce additional problems. Clustering suf-

fers from scalability, while mirroring requires each mirror to carry entire load, and 

multihoming requires each connection to carry the entire traffic. Commercial CDNs 

follow their own proprietary approaches to provide fault-tolerance and scalability. 

As for instance, Akamai has developed a distributed monitoring service to ensure 

that server or network failures are handled immediately without affecting end-users. 

There are numerous existing solutions, some of which are used in real systems. In-

terested readers are referred to existing literature [102, 172, 189] to find descriptions 

on the explicit fault-tolerance solutions in wide-area systems such as CDNs. 

Ensuring security in CDNs pose extra challenges in system development. There 
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are security concerns at different levels of a CDN such as network, routers, DNS or 

Web clusters. One common security threat is the DDoS attack. The DDoS attack can 

be aimed at (a) consumption of scarce resources such as network bandwidth or CPU; 

(b) destruction or modification of configuration information; and (c) physical de-

struction or modifications of network components [184]. Security threats also include 

attacks that exploit software vulnerabilities (intrusion attacks) and protocol inconsis-

tencies (protocol attacks). There exist many research addressing wide-area security 

problems. Extensive coverage and documentation of related solutions are available in 

the literature [91, 105-107, 111, 114, 184]. 

Nowadays, commercial CDNs such as Akamai provide usage-based content and 

application delivery solutions to end-users. Akamai Edge Computing Infrastructure 

(ECI) [76], Active Cache [40], and ACDN [177] replicate the application code to the 

edge servers without replicating the application data itself. Rather, the data is kept in 

a centralized server. This approach enables the Web tier applications to extend to the 

CDN platform so that end-user requests for application object would be executed at 

the replica server rather than at the origin. However, this approach suffers from in-

creased wide-area latency due to excessive data access and bottleneck due to the 

concentration on a centralized server. To overcome these limitations, Sivasubrama-

nian et al. [196] propose an approach for replicating Web applications on-demand. 

This approach employs partial replication to replicate data units only to the servers 

who access them often. In another work, application-specific edge service architec-

ture [90] is presented where the application itself is responsible for its replication 

with the compromise of a weaker consistency model. More information on hosting 

wide-area applications can be found in an analysis of Web applications caching and 

replication strategies by Sivasubramanian et al. [197]. 

2.7 Positioning the Thesis 
Along with providing an operational understanding for a CDN, the proposed tax-

onomy and the covered technologies establish the background for this thesis. Our 

work on CDN peering (Chapter 1) is targeted to provide larger scale (aggregate in-
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frastructure size), reach (diversity of content locations), and sustainability of a CDN 

provider than they could otherwise achieve. However, there are limits to how large 

any CDN’s scale and reach can be. Essentially a given CDN’s scale or reach is limited 

by its operational cost, geographical coverage, and the demand for that scale/reach 

of its infrastructure [72]. Often these factors put constraints on a CDN’s existence. 

Our investigation on the current CDNs reveals that the CDN industry is getting 

consolidated as a result of acquisitions and/or mergers. Moreover, with the intro-

duction of recent IT trends such as Cloud Computing, content delivery, caching, and 

replication techniques are gaining more attention in order to meet up the new tech-

nical and infrastructure requirements for the next generation CDNs. CDN peering is 

an answer to deal with such consolidations and new technology integrations, with 

improved coverage and performance for CDN providers. Identifying new issues, in-

novations, and challenges in the design, architecture and development of such an 

advanced content delivery service requires better understanding and interpretation 

of the essential concepts in this area. Therefore, the in-depth analysis of CDN tech-

nologies and comprehensive comparison framework based on the presented 

taxonomy will not only serve as a tool to understand this complex area, but also will 

help to map future research efforts in CDNs. 

The issues considered in the taxonomy provide us a guideline for developing 

CDN peering solutions. We follow an overlay approach to develop an architecture 

(Chapter 3) for CDN peering by exploiting available and underutilized resources 

from multiple CDNs. The proposed architecture encloses the structural attributes of a 

CDN―servers, relationships, and interaction protocols. The developed architecture is 

mainly focused on static content delivery. However, it can be extended to deliver 

dynamic, streaming media content, and services. 

In the thesis, we have limited focus on the issues for content distribution and 

management. However, at times we have made a few assumptions to implicitly take 

them into account in order to ensure efficient content delivery and improved per-

formance. Our work is applicable for both full and partial site content selection and 

delivery. Depending on the demand for scale and reach, we may follow a single or 
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multi-ISP approach for placing surrogates. We further seek to use a cooperative 

push-based approach to outsource content to the servers of the participating CDNs. 

We have conducted performance modeling (Chapter 4) and discrete-event simula-

tions (Chapter 5), based on Independent Replication Method [42, 64, 121], with the 

assumption that each participating CDN holds a copy of the content to be served in 

its contributing servers. We follow a hierarchical approach for load index dissemina-

tion where server state information is reported to the CDN gateway using an 

asynchronous feedback mechanism. While the use of any specific technique for cache 

organization is out of scope for this thesis, inter-cluster caching with periodic or 

on-demand update can be anticipated within the CDN peering architecture. 

We present an adaptive request-redirection algorithm that takes traffic load and 

network proximity into account (Chapter 5). Within the CDN peering architecture, 

request assignments endeavor to make use of both DNS and gateway redirection. 

Thus, we address the need to handle dynamically changing conditions such as flash 

crowds and other unanticipated events. Furthermore, we exploit a combination of 

DNS and application-layer techniques to develop and implement a utiliy-based re-

quest-redirection for the MetaCDN overlay system [157] (Chapter 7). 

Along with simulations, we conduct proof-of-concept testbed measurement to 

evaluate the performance of the develop models and request-redirection mechanisms. 

We utilize traffic monitoring and surrogate feedback to measure a number of per-

formance metrics such as response time, incoming traffic load, network proximity, 

throughput, and network utility. 

Dealing with wide-area network failures, security threats, usage-based content 

and application delivery do not fall within the scope of this thesis. Therefore, we re-

frain from developing solutions for them. In Section 2.6, we have provided brief 

discussion on these issues along with necessary references to existing work. 

2.8 Summary and Conclusion 
In this chapter, we have presented a state-of-the-art survey of existing CDNs. After 

analyzing the CDN landscape, we have categorized CDNs according to the func-
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tional and non-functional attributes. We have developed a comprehensive taxonomy 

based on four issues: CDN composition, content distribution and management, re-

quest-routing, and performance measurement. We further develop taxonomies for 

each of these paradigms to classify the common trends, solutions, and techniques in 

content networking. Additionally, we identify three issues, namely, fault tolerance, 

security, and ability for Web application hosting as to introduce challenges in CDN 

development. Hereby, we provided pointers to related research work in this context. 

In doing so, we assist CDN researchers to gain insights into the technology, services, 

strategies, and practices that are currently followed in this field. We have also per-

formed a mapping of the taxonomy to representative CDNs. Such a mapping 

provides a basis to realize an in-depth analysis and complete understanding of the 

CDN domain, and to validate the applicability and accuracy of the taxonomy. 

In the next chapter, we present an architecture that enables coordinated and co-

operative content delivery via internetworking between multiple content delivery 

services to rapidly “scale-out” to meet both flash crowds [14] and anticipated in-

creases in demand, and remove the need for a given CDN to over-provision its 

resources. 
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Chapter 3  

CDN Peering 
Existing Content Delivery Networks (CDNs), operating in isolation, are often prone 

to Service Level Agreement (SLA) violations and resources over-provisioning in or-

der to ensure high quality services to end-users, thus incurring extensive operational 

cost and labor. As mentioned in Chapter 1, CDN peering [34, 155, 156, 161] is an ap-

proach to reduce expenses and avoid adverse business impact. It is formed by a set of 

autonomous CDNs who cooperate through a mechanism to share resources while 

enjoying larger scale and reach. This chapter presents a novel architecture that estab-

lishes the basis to form CDN peering. This chapter also outlines a comparative 

analysis with related research and presents two complementary models to assist 

peering. Finally, it lists the research challenges to realize the presented architecture. 

3.1 Introduction 
CDN peering exhibits a negotiated “resource sharing” relationship among multiple 

providers. It offers necessary distributed computing and network infrastructure to 

handle unexpected or anticipated traffic load spikes in demand, when a single pro-

vider has insufficient resources. The initiating provider to form a CDN peering 

arrangement is called a primary, whereas other CDNs who agree to share resources 

are called peers. In the CDN peering system, a provider serves user requests as long 

as the incoming traffic load can be handled internally. If the load exceeds its capacity, 

the excess requests are offloaded to other least loaded Web server(s) of its peers, 

while still upholding user perceived performance. Each CDN has its own user re-

quest stream and a set of Web servers, but delegates only a subset of them, i.e. 
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subCDN, to take part in peering. The endpoint of a peering negotiation between two 

CDNs is a contract (SLA) that specifies the peer resources (servers, bandwidth etc) 

that will be allocated to serve content on behalf of the primary. The primary directly 

manages the resources it has acquired, insofar that it determines what content is 

served and what proportion of the incoming traffic is redirected. At any time, a given 

CDN may be in the roles of either a primary or a peer, i.e. the roles are fluid. The par-

ticipants in peering act as a single conceptual unit in the execution of common goal(s). 

A content request to the CDN peering system further initiates activities that users are 

unaware of, e.g. inter-provider request-redirection, content replication and delivery. 

 

Figure 3.1: Example of CDN peering. 

A CDN peering arrangement comprises explicit members―a primary and peers, 

who cooperate for resource sharing, and implicit members, who are content providers 

and end-users. While implicit members are transparent to peering, they share bene-

fits from it. Figure 3.1 shows an example with two peering arrangements, P1 and P2. 

User requests are forwarded to the primary that is holding the content from the con-

tent provider. The requested content is served either directly by the primary or by a 

peer. Let us consider content c1 and c3 in the figure. Since c1 and c3 reside in the 

servers within P1 and P2 respectively, requests for c1 and c3 are served from P1 and 

P2. In case of content c2, the primary directly delivers the requested content. 
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3.2 CDN Peering Initiatives 
Interconnecting multi-provider content delivery capabilities is gaining popularity in 

the research community, due to its flexibility and effectiveness to improve perform-

ance for end-users and to achieve pervasive geographical coverage and increased 

capacity for a provider. In this section, we provide a comparative analysis of research 

related to CDN peering in order to ascertain the feasibility of our architecture and 

position it as the basis to address the shortcomings of prior initiatives. 

Related research efforts found in literature can be separated into different groups: 

architectural models vs. analytical performance models, and provider vs. end-user 

side perspective to assist peering. We start with investigating the architectures for 

enabling the peering concept and then present related performance modeling ap-

proaches. We also mention the initiatives in this context from user-side perspective 

along with the deployed Peer-to-Peer (P2P) CDNs. 

The Content Distribution Internetworking (CDI) [72] model allows CDNs to have 

a means of affiliating their delivery and distribution infrastructure with other CDNs 

that have content to distribute. Each provider treats its neighbors as black boxes, and 

uses commonly defined internetworking protocol, while using its proprietary proto-

col internally. While the CDI model lays the foundation for interconnecting providers, 

it provides only an abstract view of how this interconnection could be formed. Based 

on the CDI model, Turrini [209, 210] presents a protocol architecture, where per-

formance data is interchanged between CDNs before forwarding a request by an 

authoritative CDN (for a particular group). This approach adds an overhead to the 

user perceived response time. Moreover, being a point-to-point protocol, if one 

end-point is down the connection remains interrupted until that end-point is restored. 

Since no evaluation is provided for performance data interchange, the effectiveness 

of the protocol is unclear. Our work in this thesis is complementary to the CDI model 

in that we present a CDN peering architecture, and devise mechanisms to enable 

peering among providers. 

Several research efforts follow the CDI initiative. Specifically, a brokerage system, 

called CDN Brokering [24], is developed and deployed on the Internet on a provi-
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sional basis. It is based on an Intelligent Domain Name Server (IDNS), a specialized 

request-routing DNS server, with a proprietary routing mechanism that allows one 

CDN to intelligently redirect end-users to other CDNs in that domain. The aim of this 

work is not to devise mechanisms for load sharing among providers or to explicitly 

consider end-user perceived performance to satisfy QoS while serving requests, but 

to demonstrate the usefulness of brokering. We differ by following a peering ap-

proach with the focus on improving end-user experience via dynamic load 

distribution using request-redirection. Our practical work in this context (Chapter 7) 

is rather in line with the brokering concept. 

Cardellini et al. [45] presents an architecture for geographically distributed Web 

systems that integrates DNS proximity and dispatcher scheduling with an HTTP re-

direction mechanism. It aims to minimize the response time experienced by users 

while accessing geographically distributed Web sites. One potential drawback of this 

work is the use of HTTP request redirection, which may lead to increased network 

impact on user perceived response time. Our approach is significantly different as 

they do not capture the heterogeneity in Web server systems and only consider ho-

mogeneous Web clusters belonging to a single entity. 

While the above mentioned research do not explicitly virtualize multiple provid-

ers, Amini et al. [10] present a peering system for content delivery workloads in a 

federated, multi-provider infrastructure. The core component of the system is a 

peering algorithm that directs end-user requests to partner providers to minimize 

cost and improve performance. While this work is appealing, the peering strategy, 

resource provisioning, and QoS guarantees between partnering providers are unex-

plored in this work. 

There also exist several research to develop analytical models for geographically 

distributed Web servers. Among them an approach to model traffic redirection in 

geographically diverse server sets [9] and Wide Area Redirection of Dynamic Con-

tent (WARD) [182] can be mentioned. The first uses a novel metric, called Server Set 

Distance (SSD) to simplify the modeling and classification of redirection schemes. 

The latter presents an architecture for redirecting dynamic content requests from an 
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overloaded Internet Data Center (IDC) to a remote replica. Both of them do not con-

sider multiple providers in the developed models. 

From a user-side perspective, Cooperative Networking (CoopNet) [148] provides 

cooperation of end-hosts to improve network performance perceived by all. This co-

operation between end-users is invoked for the duration of a flash crowd. CoopNet is 

found to be effective for small Web sites with limited resources, but sacrifices trans-

parency to end-users. Therefore, it can not be used as a replacement or alternative for 

cooperation among infrastructure-based CDNs. 

Among the deployed P2P-based CDN systems, CoDeeN [151, 223], CoralCDN 

[87], and Globule [167, 168] can be mentioned. CoDeeN provides content delivery 

services, driven entirely by end-user demands. However, utilizing its services is not 

transparent to end-users, as they require them to “opt-in” by setting their browser 

proxy manually to interact with the CoDeeN network. This user-driven approach 

means that CoDeeN is essentially an enhanced caching mechanism rather than a true 

CDN. While CoDeeN may cooperate with external content providers, it is yet to be 

explored. 

CoralCDN utilizes a P2P DNS approach to direct users to replica nodes in the 

CoralCDN overlay network, reducing the stress on origin servers and improving 

performance for end-users. It is a cooperative network, but there is no means for 

nodes (or providers) to participate in peering with nodes that are outside of Planet-

Lab. The nodes that can participate are only offered a coarse level control over their 

participation (such as allowing individual servers to specify their maximum peak 

and steady-state bandwidth usage) but there is no fine grained control over exactly 

what content a node has agreed to serve, nor are there service guarantees. 

Globule is a third-party module for Apache Web server to provide services of a 

collaborative CDN. It enables server-to-server peering, ad-hoc selection, creation, and 

destruction of replicas, consistency management and relatively transparent redirec-

tion (via HTTP or DNS) of end-users to high-performing replicas. A brokerage 

service is offered where participants can register and access other participants’ de-

tails in order to initiate negotiations. While such negotiations could be aided with 



  50 
 

necessary muti-provider peering mechanisms, this has not been explored deeply in 

Globule. 

DotSlash [229] is a community driven “mutual” aid service to offer support for 

small sites that would not have the resources to cope during flash crowds. Provided 

the site in question has configured itself to access DotSlash, the service automatically 

intervenes during the flash crowd, allocating and releasing “rescue” servers depend-

ing on the load, and is phased out once the flash crowd passes. We draw similarity 

with the above mentioned collaborative CDNs; however, we show uniqueness by 

capturing the notion of multi-provider existence for content delivery. 
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Figure 3.2: Architecture of a system to assist the creation of CDN peering. 

3.3 System Architecture 
Figure 3.2 presents the cooperative architecture of a system for CDN peering. The 

terminologies used to describe the system are listed in Table 3.1. 
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Table 3.1: List of commonly used terms. 

Terminology Description 
Web server (WS) A container of content 
Mediator An authoritative entity for policy negotiation and management 
Service registry (SR) Discovers and stores local resource and policy information 
Peering Agent (PA) A resource discovery module in the CDN peering environment 
Policy repository (PR) A storage of Web server, mediator, and peering policies 
PWS A set of Web server-specific rules for storage and management 
PM A set of mediator-specific rules for interaction and negotiation 
PPeering A set of rules for creation and growth of the peering arrangement 

3.3.1 Architectural Components 
In the following we describe the core components of the proposed architecture along 

with their responsibilities: 

• Web server. Web servers are responsible for storing content and delivering 

them reliably. We separate a server’s structure into two layers: overlay and core. 

In the overlay layer, a server comprises a Web-service host (for example, 

Apache or Tomcat), a policy agent, and an SLA-allocator. The Web-service host 

ensures the delivery of content to end-users based on the negotiated policies.  

The policy agent is responsible (in conjunction with the mediator) for deter-

mining which resources can be delegated and under what conditions (policies) 

delegation is permitted. The SLA-allocator performs the provisioning and res-

ervation of Web server’s resources (e.g. CPU, bandwidth, storage etc.) to 

satisfy both local and delegated SLAs, and ensures that the terms of the SLAs 

are enforced. The Web server’s core consists of high performance computing 

systems such as symmetric multiprocessors, cluster systems, or other enter-

prise systems (such as desktop grids). The Web server’s underlying algorithms 

perform on-demand caching, content selection, and routing between servers. 

This requires each Web server to express its own policies (PWS) for storage and 

management of content. 

• Mediator. The (resource) mediator is a policy-driven authoritative entity in a 

peering arrangement. The raison d’être for an instance of the mediator is to 
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ensure that the participating entities are able to adapt to changing circum-

stances (agility) and are able to achieve their objectives in a dynamic and 

uncertain environment (resilience). Once a peering arrangement is formed, the 

mediator, on behalf of the primary, controls what portion of the Web traffic (i.e. 

end-user requests) is redirected to the Web servers of the CDN peering system, 

which content is replicated there, how the replication decision is taken, and 

which replication policies are being used. When performing automated nego-

tiation the mediator directs any decision made during peering negotiations, 

policy management, and scheduling. A mediator holds the initial policies (PM) 

for peering formation and obtains additional composite polices (PPeering) as a 

result of successful negotiations. A mediator works in conjunction with its local 

Peering Agent (PA) to discover external resources and to negotiate with other 

CDNs. An example of a mediator led negotiation is given in Section 3.3.3. 

• Service Registry (SR). The SR encapsulates the resource and service informa-

tion for each CDN. It helps in discovering local resources through enabling the 

Web servers of CDN providers to register and publish their resource, service 

and policy details. In the face of traffic surges, the SR is accessed by the me-

diator to supply any necessary local resource information. When a new peering 

arrangement is formed, an instance of the SR is created that encapsulates all 

local and delegated external CDN resources’ information. 

• Policy Repository (PR). The PR virtualizes all the policies within a peering ar-

rangement. It includes the Web server-specific policies, mediator policies, 

peering formation policies along with any policies for resources delegated as 

the result of peering. These policies are a set of rules to administer, manage, 

and control access to shared resources. They provide a way to manage the 

components in the face of complex technologies. 

• Peering Agent (PA). The PA is a CDN specific entity that exists prior to the 

formation of CDN peering. It is independent of any peering arrangement. It 

acts as a policy-driven resource discovery module and is used as a conduit or 

gateway (with mediator and PR as a single conceptual entity) to exchange pol-
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icy and resource information with other CDNs. It is used by the primary CDN 

to discover its peers’ (external) resources, as well as to let them know about the 

local policies and service requirements prior to the commencement of actual 

negotiation by the mediator. 

 

Figure 3.3: Interaction flows in a CDN peering arrangement. 
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3.3.2 Peering Lifecycle 
CDN peering can be short-term wherein CDNs operate to handle flash crowds, or 

long-term in which they explore the delivery of specialized services. A short-term 

CDN peering is formed on-demand (detailed description is available in Section 3.3.3) 

and it phases out when the workload returns to normal. On the other hand, a 

long-term CDN peering is formed for an event which is well known in advance. 

Figure 3.3 shows the interaction flows to form a CDN peering arrangement. A 

peering lifecycle goes through six major steps, as described in the following: 

1. Initiation. Peering is triggered by an initialization request sent to the media-

tor under exceptional circumstances, e.g. flash crowds, when the (primary) 

CDN realizes that it cannot handle a part of the workload on its Web Servers. 

The triggering condition must consider the expected and unexpected load in-

creases in the primary CDN. 

2. Negotiated relationship. The controlling interest of a CDN to interconnect 

with other CDNs leads to the creation of a negotiated relationship. This rela-

tionship describes the expected level of services from the involving parties 

such as storage requirements, the required rate of transfer, cost of services; 

the expected duration of receiving service, penalties for service violations, 

and other preconditions such as the primary CDN’s preference to gain re-

sources at a particular region. Negotiated relationships can be established by 

means of non-technical terms (financial statement) or technical terms (SLAs). 

Thus, negotiated relationships must specify the interactions among entities 

including service administration, coordination and disband (or 

re-arrangement) of peered CDNs. In our architecture, the mediator instance 

obtains the resource and access information from the SR, whilst SLAs and 

other policies from the PR. The mediator instance on the primary CDN’s be-

half generates its service requirements based on the current circumstance and 

SLA requirements of its customer(s). Therefore, divergent policies are allowed 

that specify the information that can be shared during interaction through 

providing a certain level of visibility to preserve privacy. 
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3. Resource discovery. Once the primary CDN identifies its roles and activities 

through the negotiated relationships for coordination and cooperation be-

tween CDNs, the next step is to choose potential CDNs to peer with. The 

mediator instance passes the service requirements to the local PA to discover 

external resources from peers. The PA performs the resource discovery proc-

ess through predicting performance of peers, working around issues of 

separate administration and limited information sharing among enlisted 

CDNs. If there are any preexisting peering policies (for a long term scenario) 

then these will be returned at this point. Otherwise, a short-term negotiation 

(Section 3.3.3) is carried out with PA identified peering targets. 

4. CDN peering protocols. The next step is to configure the ‘CDN peering’ pro-

tocols at the conduit or gateway of the respective CDNs in order to 

technically support the terms and policies implicitly specified through the 

negotiated relationships. This step includes advertising the configurations 

(topology aspects, geographical proximity, capability, and performance) of 

the enlisted CDNs through inter-PA communication. Upon the establishment 

of a peering arrangement, these protocols also allow participating CDNs to 

exchange information regarding the content availability and assist to redirect 

requests to an optimal peer. Request-redirection in a peering arrangement 

depends on the content distribution and request-redirection policies (speci-

fied in the CDN peering protocols) associated with the content as well as the 

specific algorithms and methods used for directing these requests. 

5. Operational management. When the primary CDN acquires sufficient re-

sources from its peers to meet the SLAs with the customer, the new peering 

arrangement becomes operational. Once a peering arrangement is established, 

all participating parties cooperate in the execution of common goal(s). Peering 

enables providers to exchange accounting information to perform billing 

based on the negotiated relationships. If no CDN is interested to continue 

peering, re-negotiation is resumed by tuning the negotiated relationships 

with reconsidered service requirements. 
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6. Disband or re-arrangement. An existing peering arrangement may need to 

either disband or re-arrange itself (within the scope of the negotiated rela-

tionships) if any of the following conditions hold: (a) the circumstances under 

which the arrangement was formed no longer hold; (b) peering is no longer 

beneficial for the participating CDNs; (c) an existing peering arrangement 

needs to be expanded further in order to deal with additional load; or (d) par-

ticipating CDNs are not meeting their agreed upon contributions. 

3.3.3 Short-term Resource Negotiation 
In order to respond to hotspots that may result in a CDN failing to meet its QoS ob-

ligations, we propose that time-critical agreements for a short-term peering should be 

automatically negotiated. We expect any such agreements to hold for a limited dura-

tion and only involve a restricted set of CDN resources. Even so, there are crucial 

issues involving such agreements including trust, i.e. who governs the allocation de-

cisions and are they trustworthy; and the potential commercial sensitivity of 

information about the current state and costs of a CDN. Divulging commercially sen-

sitive information (e.g. resources, access and policies) as the basis for negotiating a 

peering arrangement would be, in general, commercially unacceptable. Even with 

the limitations placed on resources that can be automatically delegated; there must 

be checks and balances to ensure that any delegation is made properly. Otherwise, it 

would also be unlikely that a CDN would agree to have an external party (e.g. me-

diator of the primary CDN) make allocations of their resources and bind them to 

negotiated SLAs.  

One solution to these problems is to utilize a cryptographically secure auction 

[31], which hides both the valuations that CDNs place on their resources and who is 

participating in the auction. With this approach, no CDN needs to trust a particular 

auctioneer; rather the auction mechanism itself is trustworthy due to the crypto-

graphic guarantees. Thus, malicious behavior by any CDN (including the primary) or 

a third party auctioneer is prevented and sensitive bid prices are kept secret. More-

over, resource over-provisioning by harnessing data through fake membership, or 
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modifying and falsifying of content by some rogue CDN providers is not allowed. 

These auctions have been shown to be tractable in practice and are therefore an ideal 

basis for the automation of peering agreements [31]. 

A negotiation would start with the formation of CDN peering, upon determining 

the shortfall in resources in the primary CDN. The mediator then issues its local PA a 

call for bids and within this includes the SLAs that it requires. The PA distributes the 

request to other PAs of cooperating peers and each of them then passes the request to 

its mediator. All mediators that wish to bid then register with the requesting media-

tor and a subset of the mediators (acting as the distributed auctioneers) are selected via 

a cut and shuffle [144]. Note that the requesting mediator does not act as an auction-

eer. The auction is thus held securely and only the final resource allocations are 

revealed. The auction is combinatorial as multiple resource types can be specified 

and therefore different groupings and even substitutions of those resources over 

CDN peering are possible. 

An auctioneer starts an auction not for selling an item (i.e. allocation), but for 

buying it. Buyers (peers) bid with the price they are willing to sell the allocation of 

their Web servers. One bidder can not see the bid of other bidders. An auctioneer 

gathers bids from the bidders and selects the lowest bidding agent(s) as the winner 

and the winner is paid second-lowest bidding price. In other words, a reverse Vick-

rey auction [217] is used. 

Figure 3.4 shows the flowchart for autonomic negotiation through auction. In the 

following we provide a summary of the auction steps [158]: 

1. Phase I: Auction initiation. Auction starts when the mediator instance (Mi) of 

the primary CDN (buyer) initiates peering to handle flash crowds. It inter-

nally determines the maximum payable amount (expressed by Payoff Value). 

The mediator then issues its local PA a call for bids including its service re-

quirements (Auction Policy). The PA distributes the bidding request to other 

PAs of the peers and each of them passes the request to its mediator. 

2. Phase II: Bidding. All mediators that wish to bid then register with the re-

questing mediator. All bidders (peers) use a Bidding Function to determine the 
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bidding amount and potential peers bid their price. 

3. Phase III: Auction termination and re-negotiation. An auctioneer collects 

bids and they are then evaluated securely by the distributed auctioneers to 

determine the winners and the optimal combinations of resources. A winner 

is paid by the amount of the second-lowest bid. At this point, it can be as-

sumed that a CDN has acquired sufficient resources from its peers to meet its 

SLAs with customers. If no winner is selected, re-negotiation through auction 

takes place, starting from Phase I. 

 

Figure 3.4: Flowchart for a short-term resource negotiation through auction. 

3.3.4 SLA Negotiations 
During the formation of CDN peering, participating CDNs sign SLAs with different 

performance objectives. Once the SLAs have been agreed upon, they work in order to 

satisfy the negotiated SLAs. The SLA components include: 
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• Description of service requirements. A specification of the resource and service 

requirements of the primary CDN. This description includes the storage re-

quirements, the required transfer rate, the primary CDN’s preference to gain 

resources at a particular region, and the expected duration of receiving service. 

• Administration for VO activities. It specifies the role of the mediator as an 

authoritative entity in a CDN peering arrangement. 

• Renegotiation for problem resolution. It illustrates the steps to be undertaken 

in the face of any problem in providing necessary services. 

• Consequences of SLA violation. It outlines the possible results of SLA violation 

when service expectations are not met. The consequences of SLA violation may 

range from imposing penalty on the peers through reimbursement of part of 

the revenues lost due to the loss of service, to termination of the peering rela-

tionship, and to disbanding and/or rearranging the peering arrangement. 

• SLA bypassing conditions. It details the conditions under which SLAs are not 

applicable. Such situations include the damage of physical resources due to 

natural disaster, theft etc. 

3.3.5 Policy Management 
To operate effectively according to SLA specifications, the CDN peering architecture 

seeks for the consistent availability and usage of operational policies. A policy is a 

descriptive logical rule that allows an entity to properly administer, manage, and 

execute its activities. Policies in our context are rules that specify how the Web serv-

ers should deal with different traffic types, what type of content can be delivered, 

what resources can be shared between peers, what measures are to be taken to ensure 

QoS based on negotiated SLAs, and what operations are to be performed at the origin 

server. These policies provide a way to manage multiple entities deploying complex 

technologies within the CDN peering architecture. 

A policy-based framework can simplify the complexities involved in the opera-

tion and management of a CDN [216]. Hence, our architecture follows the basic 

policy framework of the IETF/DMTF [224] (Figure 3.5).  
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Table 3.2 provides a mapping of the CDN peering architecture with the basic 

policy framework. The PR from Figure 3.2 virtualizes the Web server, mediator and 

peering policies. These policies are generated by the policy management tool used by 

the administrator of CDN peering. The distribution network and the Web server 

components (i.e. Web Services host, Policy Agent, SLA-based Allocator) are the in-

stances of the Policy Enforcement Points (PEPs), which enforce the policies stored in 

the repository. The mediator, as an instance of the Policy Decision Points (PDPs), 

specifies the set of policies to be negotiated at the time of collaborating with other 

CDNs, and passes them to the PA at the time of negotiation. The policy management 

tool is administrator dependent and it is not shown in the CDN peering architecture 

(Figure 3.2). 

 

Figure 3.5: Basic policy framework. 
Our proposal follows a general implementation of policies that can be specified 

according to their granularity level. Being influenced by Verma et al. [216], we also 

argue for storing the specification of the policy rules in the PR for maintaining inter-

operability. We initiate simplified management by storing the definition of policies in 

the PR, and by defining abstractions that provide a machine dependent specification 

of policies. We propose that the policy specification contained in the PR should be 

defined in terms of the technology to which a policy would apply, rather than in 

terms of the configuration parameters of any specific resource. 
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Table 3.2: Policy components mapping. 

Policy 
component  

CDN peering 
component Specified policies Description 

System CDN peering All policies in the 
system 

The distributed computing and 
network infrastructure 

Admin 
domain 

Formed peering 
arrangement 

Negotiated VO 
policies 

Administrative entity for resource 
management and access control 

Policy man-
agement tool 

Administrator 
dependent – An administrator dependent tool to 

generate policies 
Policy 
repository 

Policy 
repository 

Server, peering and 
mediator policies Storage of policies in the system 

PEPs Web server 
components 

Web server 
policies 

A logical entity which ensures 
proper enforcement of policies  

PDPs Mediator Mediator policies, 
peering policies 

Authoritative entity for retrieving 
policies from the repository 

Now we delineate different levels of policies, namely―Web server policy (PWS), me-

diator policy (PM) and peering policy (PPeering) that are present within the CDN peering 

architecture. Specifically, Web server policies include: 

• how a server performs consistent content caching; 

• how the policy agent module operates based on negotiated SLAs; and  

• how the SLA-based allocator module ensures resource provisioning to satisfy 

negotiated SLAs. 

Mediator policies specify: 

• how the mediator interacts with the PA to pass service requirements; 

• how the mediator takes over the administration of delegated resources once 

they are acquired; 

• how the mediator effectively manages activities in a peering arrangement to 

cope with changing circumstances; and 

• how the mediator coordinates with other entities for resource allocation. 

Peering policies include: 

• the policies necessary for the formation of a peering arrangement; 

• the policies need to be administered in face of SLA violation by peers; and 

• the policies to dynamically disband or rearrange a peering arrangement. 
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Table 3.3: Comparison of CDN models. 

Typical CDN models Advanced models for CDN peering 
Features Conventional 

CDNs 
P2P-based 
CDNs CDN peering Brokering Customized 

brokering 
Nature of 
Content 
Delivery 

Based on Web 
server Col-
laboration 

Based on 
content 
availability  

Based on CDN 
internetwork-
ing/peering 

Based on 
CDN  
performance 

Based on user 
defined QoS  
(Customized) 

Operational 
responsibility 

CDN  
Provider 

Peers/ 
Users 

Primary CDN 
Provider 

Content  
Provider 

Content  
Provider 

Entities in 
agreement 

CDN-Content 
Provider 

Self-interes- 
ted users, no 
agreement 

CDN-Content 
Provider, 
CDN-CDN 

CDN- 
Content 
Provider 

CDN-Content 
Provider 

Agreement  
nature Static N/A Short-term or 

long-term Policy-based Dynamic 

Scalability Limited High High High High 
External CDN 
Cooperation No No Yes Yes Yes 

Cooperation 
among CDNs No No Yes No, work in 

parallel 
No, work in  
parallel 

Cooperation  
between users No Yes No No No 

3.4 Alternative Models for CDN Peering 
In this section we propose two additional models that can be used as alternatives to 

form CDN peering. They are brokering-based and QoS-driven (customized) broker-

ing-based models. They can be used to complement the CDN peering architecture 

presented in Section 3.3. To better understand the uniqueness of these models and to 

compare them with existing ones, we provide a comparative analysis in Table 3.3. 

3.4.1 Brokering-based CDN peering 
Figure 3.6 shows the first of the two models that we propose to assist the creation of 

CDN peering. In this model, “cooperative” content delivery is achieved by the con-

tent provider (or any third party service on its behalf), who leverages the services of 

multiple CDNs to ensure appropriate geographical coverage and that performance 

targets are met. The content provider has the responsibility for efficient content de-

livery. The interaction flows are: (1) an end-user requests content from the content 
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provider by specifying its URL in the Web browser. User’s request is directed to con-

tent provider’s origin server; (2) the content provider utilizes a brokering system of 

its own in order to select CDN(s) for delivering content to end-users. A given content 

provider can select multiple CDNs (based on a CDN’s QoS performance, capabilities, 

current load, and geographical location) for delivering content to its users. The se-

lected CDNs do not need to be aware that they are working in parallel with each 

other, as the content provider (or a third party) handles the management and separa-

tion of responsibilities; (3) a policy-based agreement between the content provider and 

the selected CDN(s) is established; (4) once peering is established, the proprietary 

algorithm of the selected CDN(s) chooses optimal server to deliver desired content to 

the end-user. 

 

Figure 3.6: Brokering-based approach to form CDN peering. 

In order to join in a peering arrangement according to this model, CDN providers 

have to provide improved performance. Content provider will keep track of the per-

formance of CDNs. Hence, selection of CDN(s) can be based on history information 

of the performance for similar content. This model also allows a content provider to 

offer preferential treatment to its users based on a certain policy (can be as simple as 

“receive service according to payment” or any other complex policy). 

This model is applicable in practical context. Specifically, it has been used to de-



  64 
 

velop a third-party cloud-based content delivery service, called MetaCDN [29, 157], 

which leverages multiple storage cloud providers’ resources to ensure high per-

formance content delivery. We elaborate on the MetaCDN system and performance 

measurements on its global testbed in Chapter 7. 

 

Figure 3.7: QoS-driven brokering-based approach for CDN peering. 

3.4.2 QoS-Driven (customized) Brokering-based CDN peering 
While the above model considers the performance of each potential participant to 

form CDN peering, it does not specifically consider the QoS required by end-users. 

Users can have dynamic requirements depending on situations (e.g. flash crowds) 

that will “customize” content delivery. Therefore, sophistication on user-defined QoS 

is required to be adopted in the model, which may depend on the class of users ac-

cessing the service. Hence, in Figure 3.7 we show an improvement on the previous 

model to assist CDN peering formation. In this model, the content provider performs 

the participant selection dynamically based on the individual user (or a group of us-

ers) QoS specifications. The interaction flows are: (1) an end-user requests content 

from the content provider with specific QoS requirements and it reaches the content 

provider’s origin server; (2) content provider uses a dynamic algorithm (based on 
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user-defined QoS) to select CDN(s); (3) content provider establishes dynamic agree-

ment with the CDNs it utilizes to ensure that end-user QoS targets are met; (4) once 

peering is established with the selected CDN(s), desired content is delivered from the 

optimal Web server of the selected peer(s). 

Such peering arrangements are user-specific and they vary in terms of QoS target, 

scope, size, and capability. It is evident that content provider has the responsibility 

for effective content delivery through dynamic peering arrangements. Thus, if a par-

ticular peering arrangement fails to meet the target QoS to effectively deliver content 

to end-users, content provider re-negotiate with the CDN providers to establish new 

peering arrangement(s). In Figure 3.7, we show that in the initial peering arrange-

ment, CDN 1 is responsible for delivering content to users. As the QoS requirements 

change (shown in dotted line), content provider revokes the CDN selection logic to 

establish a new peering arrangement. In the reformed peering arrangement, CDN N 

is the new participant that delivers content to the end-users from its Web server. 

It should be noted that brokering-based CDN peering can also be formed at the 

client-side, where brokering is performed by the end-user according to his/her ser-

vice requirements. It can be illustrated with a scenario where a content provider’s 

streaming media player chooses one among many CDNs based on various perform-

ance criteria including QoS. Premium content is streamed over a premium high 

performing CDN, while non-premium content is served through a cheap less per-

forming CDN (or even streamed directly from origin). Depending on the need, the 

end-user chooses where to stream from. 

3.5 Challenges to Realize CDN Peering 
There are a number of challenges, both technical and non-technical (i.e. commercial 

and legal), that can block the rapid growth of CDN peering. In this section, we out-

line some of the common stoppers for the uptake of CDN peering. 

• Legal/copyright issues. There can often be complex legal issues associated with 

the content to be delivered (e.g. embargoed or copyrighted content) that could 

prevent CDNs from arbitrarily cooperating with each other. Interactions be-
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tween peering partners must consider any legal issues associated with the 

content to be served when delegating it to participating mirror servers from 

different CDN providers. For instance, if a content provider needs some soft-

ware or documents that contained logic or information that was embargoed by 

certain governments, i.e. its access is restricted, all participating CDN provid-

ers would have to ensure this was enforced to comply with the appropriate 

laws. Currently, academic CDNs such as CoDeeN and Coral offer little to no 

control on the actual content a participating node delivers, and as such par-

ticipants in these systems could be inadvertently breaking these laws. Content 

that is copyrighted needs to be carefully managed to ensure that the copyright 

holder’s rights are respected and enforced. The operation (e.g. caching and 

replication) of some CDNs are user-driven rather than initiated by the content 

provider, who would prefer to distribute their content on their own terms 

rather than have it populated in caches worldwide without their consent.  

• Global reach. The most common scenario for CDN providers is a centrally 

managed, globally distributed infrastructure. Companies such as Akamai and 

Limelight Networks have their own far-reaching global networks that cover 

the vast majority of their customers needs. Indeed, their pervasive coverage is 

essentially their competitive advantage, and allows them to target the higher 

end of the customer market for these services. However, few providers can 

match their global reach, and as such they have little commercial or opera-

tional incentive to peer with other smaller providers.  

• Consolidation in CDN market. Direct peering might be advantageous for small 

CDN providers, if they wish to compete with larger providers based on cover-

age and performance. In recent years there has been an enormous 

consolidation of the CDN marketplace from 20-30 providers down to 5-10 pro-

viders of note [154, 164, 186]. It is clear that smaller providers found it difficult 

to compete on coverage and performance with Akamai and Mirror Image, and 

subsequently ceased operation or were acquired by the larger providers. CDN 

peering should restrict such acquisition and/or merger. 
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• Challenges in brokering-based CDN peering. An approach where a content 

provider itself (or a third-party on its behalf) manages the selection and con-

tribution of many CDNs to distribute its content seems appealing, especially, if 

they have the resources and the know-how to manage such an effort. CDN 

providers could be chosen on their respective merits (e.g. locality, performance, 

price) and their efforts combined together to provide a good experience for 

their customers. However, enforcing QoS to ensure a good end-user experience 

could be challenging when dealing with multiple providers, especially when 

they are not actually collaborating, rather simply operating in parallel. In this 

context, client-side brokering-based solution can be handy to solve end-user 

performance problem and QoS issues. 

• Challenges in P2P-based CDN peering. There has been a growing trend in the 

last decade toward exploiting user-side bandwidth to cooperatively deliver 

content in a P2P manner. Whilst initially this started against the wishes of con-

tent providers (e.g. Napster, Gnutella), eventually content providers embraced 

P2P technology, in particular BitTorrent, in order to distribute large volumes of 

content with scalability and performance that vastly exceeded what was possi-

ble with a traditional globally distributed CDN. Content providers have 

utilized this effectively to distribute digital media (movies, music), operating 

systems (e.g. Linux) and operating systems patches, games and game patches. 

With end-user bandwidth increases as a result of the proliferation of 

high-speed broadband, content providers leverage the masses, which upload 

data segments to peers as they download the file themselves. However, this 

approach is only effective for popular files, and can lead to poor end-user ex-

perience for a content that is not being ‘seeded’ by enough users. As such, it is 

difficult for content providers to guarantee any particular QoS bounds when 

the nodes distributing the content are simply end-users themselves that may 

have little motivation to cooperate once they have received their data. 

• Lack of incentives for cooperation. Further complicating the widespread de-

pendence of a P2P-based peering approach is a backlash by Internet Service 



  68 
 

Providers (ISPs) that are unhappy with the content providers pushing the 

burden and cost of content delivery onto end-users (and subsequently the ISPs 

themselves). Many ISPs are now actively blocking or throttling BitTorrent and 

other P2P traffic in response to this trend, to minimize increased utilization 

and reduction in revenue per user and the resulting cost it places on the ISP in 

provisioning additional capacity. Many ISPs in more geographically isolated 

countries, such as Australia and New Zealand are in particularly unique situa-

tions, depending on a small number of expensive data pipes to North America 

and Europe. Hence, the broadband access offered by ISPs in these regions have 

fixed data quotas (rather than ‘unlimited’) that users are restricted to, in order 

to ensure they remain profitable. These conditions may discourage the wide-

spread adoption and participation by users in cooperative content delivery. 

3.6 Technical Issues for CDN Peering 
In this section, we present some of the unique technical issues for CDN peering that 

are to be addressed from a research perspective. While some solutions exist for re-

lated problems in CDNs, the notion of peering poses extra challenges. We provide a 

research pathway by highlighting the key research questions to realize CDN peering. 

3.6.1 Load Distribution for CDN Peering 
The load distribution strategy for CDN peering includes request assignment and redi-

rection, load dissemination, and content replication. Coordination among them is another 

important consideration for successful exploitation of the load distribution strategy. 

Request assignment and redirection to geographically distributed Web servers of 

peers requires considering an end-user’s location, server loads, and link utilization 

between the end-user and server in addition to task size, i.e. processing requirements 

of a content request. It should also address the need to handle dynamically changing 

conditions, such as flash crowds and other unpredictable events. Request assignment 

and redirection can be performed in a CDN at multiple levels―at the DNS, at the 

gateways to local clusters and also (redirection) between servers in a cluster [46, 63]. 

Commercial CDNs predominantly rely on DNS level end-user assignment combined 
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with a rudimentary request assignment policy (such as weighted round robin, or 

least-loaded-first) which updates the DNS records to point to the most appropriate 

replica server [76]. In the CDN peering architecture, end-users can be assigned via 

DNS (by the PAs of participating CDNs updating their DNS records regularly) and 

also via redirection at the CDN gateway when appropriate. 

To deal with the load dissemination issue, the behavior of traffic can be modeled 

under expected peak load since in this case the server load is most severely tested. 

Load information can be measured and disseminated within individual CDNs and 

among other CDNs. A load index can provide a measure of utilization of a single re-

source on a computer system. Alternatively, it can be a combined measure of 

multiple resources such as CPU load, memory utilization, disk paging, and active 

processes. Such load information needs to be disseminated among all participating 

CDNs in a timely and efficient manner to maximize its utility. Such indices will also 

be crucial to identify situations where forming a peering arrangement is appropriate 

(e.g. when servers or entire CDNs are overloaded) or when CDNs’ resources are un-

derutilized and could be offered to other CDN providers. Within the CDN peering 

architecture, a hierarchical approach can be anticipated, where current bandwidth 

and resource usage of CDN servers is reported to the CDN gateway in a periodic or 

threshold-based manner. The gateways of participating CDNs then communicate 

aggregated load information describing the load of their constituent servers. 

Content replication occurs from origin servers to other servers within a CDN. Ex-

isting CDN providers (e.g. Akamai, Mirror Image) use a non-cooperative pull-based 

approach, where requests are directed (via DNS) to their closest replica server [76]. If 

the file requested is not held there, the replica server pulls the content from the origin 

server. Co-operative push-based techniques have been proposed that push content 

onto participating mirror servers using a greedy-global heuristic algorithm [43]. In 

this approach, requests are directed to the closest server, or if there is no suitable 

mirror nearby, they are directed to the origin server. In the context of our architecture, 

this replication extends to participating servers from other CDNs in a given peering 

arrangement, subject to the available resources it contributes to the collaboration. 
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In summary, the following questions are to be addressed to perform load sharing 

in a CDN peering arrangement: 

• How to deduce a dynamic request assignment and redirection strategy that 

calculates ideal parameters for request-routing during runtime? 

• How to ensure reduced server load, less bandwidth consumption (by particu-

lar CDN server) and improve the performance of content delivery? 

• How do participating CDNs cooperate in replicating content in order to pro-

vide a satisfactory solution to all parties? 

• What measures can be taken to ensure that the cached objects are not 

out-of-date? How to deal with uncacheable objects? 

3.6.2 Coordination of CDNs 
Any solution to the above core technical issues of load distribution must be coordi-

nated among all participants in a peering arrangement in order to provide high 

performance and QoS. A cooperative middleware should be developed to enable the 

correct execution of solutions developed to address each core issue. Related to this 

issue, the key question to be addressed is: 

• What kind of coordination mechanisms need to be in place to ensure the effec-

tiveness, scalability and growth of CDN peering? 

3.6.3 Service and Policy Management 
Content management in the CDN peering architecture should be highly motivated 

by end-user preferences. Hence, a comprehensive model for managing the distrib-

uted content is crucial to avail end-user preferences. To address this issue, content 

can be personalized to meet specific user’s (or a group of users) preferences. Alike 

Web personalization [137], user preferences can be automatically learned from con-

tent request and usage data by using data mining techniques. Data mining over CDN 

can exploit significant performance improvement through dealing with proper man-

agement of traffic, pricing and accounting/billing in CDNs [152]. In this context, the 

following questions need to be addressed: 
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• How to make a value-added service to an accessible infrastructure service?  

• What types of SLAs are to be negotiated among the participants? What policies 

can be generated to support SLA negotiation?  

• How can autonomous policy negotiation happen in time to form a time-critical 

peering arrangement? 

3.6.4 Pricing of Content and Services 
Sustained resource sharing between participants in a peering arrangement must en-

sure sufficient incentives exist for all parties. It requires the deployment of 

appropriate pricing, billing, and management mechanisms. The key questions are: 

• What mechanisms are to be used for value expression (expression of content 

and service requirements and their valuation), value translation (translating 

requirements to content and service distribution) and value enforcement 

(mechanisms to select and distribute different content and services)? 

• How do CDN providers achieve maximum profit in a competitive environ-

ment, yet maintaining the equilibrium of supply and demand? 

3.7 Summary and Conclusion 
This chapter presents an architecture to form CDN peering, which endeavors to bal-

ance a CDN’s service requirements against the high cost of deploying customer 

dedicated and therefore over-provisioned resources. In addition, this architecture 

promotes extended scalability and resource sharing with other CDNs through coop-

eration and coordination, thus evolving past the current landscape where disparate 

CDNs exist. We also present two alternative models to assist peering and identify the 

associated research challenges. 

To realize the concept of CDN peering, we develop necessary mechanisms for 

optimal resource discovery, server selection, and request-redirection. Specifically, in 

the next chapter, we start with presenting analytical models that demonstrate the ef-

fects of peering and predict user perceived performance. This model-based approach 

provides the foundation to perform effective peering among multi-provider CDNs.





 

 73 
 

Chapter 4  

Performance Modeling 
Analytical modeling of a system provides a clearer understanding of the associated 

research problems, thus assists in the efficient design and analysis of the system. In 

this chapter, we develop Quality of Service (QoS)-driven performance models based 

on the fundamentals of the queuing theory to demonstrate the CDN peering effects 

and characterize user perceived performance. In this model, an overloaded CDN re-

directs a fraction of its incoming requests to its peers and avoids the impact of flash 

crowds. This approach assists in making concrete QoS guarantee for a CDN. 

4.1 Introduction 
The definition of QoS relates to the agreements between a service provider and its 

customers, i.e. SLAs [26], which results in a fixed set of well understood termsin 

our case, the QoS requirements of end-users. Quality can be defined from the fol-

lowing three different perspectives and views [73]: 

• Quality as functionality. According to this view, quality is considered in 

terms of the amount of functionality that a service provider offers to its cus-

tomers. It characterizes the design of a service and can only be measured by 

comparing the service against other services offering similar functionalities. 

For example, if CDN A provides content delivery service for static content only, 

while CDN B provides the same for both static and dynamic content; then 

CDN B can be considered to offer better quality than CDN A. 

• Quality as conformance. In this view, quality is seen as being synonymous 

with meeting providers commitments and specification such as SLAs. Quality 



  74 
 

as conformance, which can be monitored for each service individually, usually 

requires the users’ experience of a service in order to measure the ‘promise’ 

against the ‘delivery’. For example, if CDN A makes the commitment to its 

customer that 95% of the end-user requests will be served within less than 2 

seconds, and it maintains it at all times in its operation, then CDN A is usually 

considered as offering good QoS. 

• Quality as reputation. In this view, quality is linked to the users’ perception of 

a service in general. This perception is developed gradually over the time of a 

service provider’s existence. Quality as reputation can be regarded as a refer-

ence to a service provider’s consistency over time in offering both functionality 

and conformance qualities, and can therefore be measured through the other 

two types of qualities over time. It can also be viewed as the ‘goodwill’ of a 

particular service provider. For example, Akamai [76] is generally considered 

as offering good quality services to end-users, due to its reputation and large 

market share developed in course of time. 

While it is possible to consider all three types of quality for a service in the CDN 

peering environment, it is perhaps most interesting and relevant to address the issue 

of ensuring QoS from the view of quality as conformance. In this chapter, we adopt 

the conformance view and define QoS as the experience perceived by an end-user for 

being serviced by a CDN. We define quality in the following way [159]: 

Let A be a CDN provider and S = {S1, S2, …, Sm} be the set of services provided by it. 

Assume that for each service Si, Sip is the quality that A promised to offer to users and Sid 

is the actual delivered quality. The QoS for CDN A is, QoSA = f(Sip, Sid), where f is the 

function that measures the conformance between Sip and Sid. 

In this definition, we capture the notion of conformance generally, but do not specify 

how Sip and Sid can be measured. We anticipate measuring the QoS assessment of a 

CDN in terms of the response time perceived by an end-user for getting service from 

the provider. We also state that the QoS measure may take into account not only the 

average response time, but also the percentile (95th percentile, for example) of the re-

sponse time. Response time is a summation of processing and waiting time. Given 
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that fact that most Web objects are small, for which the processing time is negligible, 

we specify response time as the time a service takes to respond to various types of 

requests, i.e. expected waiting time for a request to be served (Section 4.2). 

4.1.1 SLAs to Ensure QoS 
Ensuring QoS guarantees requires a means of establishing a set of common quality 

parameters and establishing which attributes are needed by a particular customer to 

describe its QoS requirements. These factors are combined in an SLA that both a cus-

tomer and provider agree to and that the provider refers to when monitoring its QoS 

performance. Examples of QoS parameters that an SLA may specify are: 

• The maximum response time for a service request will not exceed 0.5 seconds. 

• 95% of user requests will be completed in less than 2 seconds. 

• A service will be available for at least 99.9% of time. 

From a service management and business perspective, the fulfillment and assurance 

of SLAs is of key importance. In our context, the importance of an SLA lies in its en-

coding of performance obligations, so that a CDN can manage its workload. For 

example, the existing SLAs that a CDN currently holds firstly permit it to determine 

if a new SLA can be accepted as it is. Secondly, the SLAs are used to determine if the 

CDN is meeting user QoS requirements. Thirdly, a CDN uses its SLAs to quantify 

what further resources it would require in a peering arrangement. Thus, the existing 

SLAs are critical in establishing the runtime performance metrics for the CDN and as 

a basis to form CDN peering. Examples of attributes that an SLA encodes are: 

• Service type. Content and/or application delivery requested by a user. 

• Service requirements. Processing and capacity requirements to serve requests. 

• Duration. The maximum time duration to serve content requests. 

• Guaranteed QoS level. The level of guarantee (in terms of response time) that 

requests will be served within a delay threshold. 

With this overview on QoS and SLAs for CDN peering, in the next section, we 

focus on developing performance models to improve end-user perceived experience. 
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4.2 Performance Models 
An analytical model for CDN peering can be based on a complex combination of at-

tributes such as Web server responsiveness, incoming traffic load, expected network 

delay, or geographic location. Several of these potential attributes vary over time and 

there is no single repository for listing the value of attributes such as geographic lo-

cation or expected delay for all Internet-connected systems. Therefore, the values 

used in a CDN peering model are likely to be based on heuristics. In this section, we 

first position our effort with respect to other related work and develop simplified 

performance models based on queuing theory. For a given workload, mean and ser-

vice time, we derive necessary expressions for measuring expected waiting time and 

cumulative distribution to measure a CDN’s QoS performance. 

4.2.1 Motivation and Scope 
Several studies have focused on alleviating rapid and unpredictable spikes in request 

traffic. Many of these research efforts [53, 94, 105, 112, 125, 228] improve the greater 

good of the entire system for resource sharing and management. Recent proposals 

[23, 149, 200] also solve this problem using Peer-to-Peer (P2P) techniques. In CDNs 

context, despite the existence of a few research to model the behavior of CDNs, not 

much work has been done to understand the performance gains that can be achieved 

through CDN peering. Many of the prior work made simplifying assumption, thus 

losing generality. Moreover, most of the previous work analytically model a CDN as 

an M/M/1 queue, thus limiting the use of different service distributions for partici-

pating providers in a CDN peering arrangement. 

Molina et al. [138] present a general expression for a CDN environment by fol-

lowing an M/M/1 queuing approach based on the assumption of Agrawal et al. [3] 

and study the performance impact of several design variables. Villela and Rubenstein 

[218, 219] introduce M/G/k/k queuing models for a collective of content providers 

and demonstrate a thresholding approach to improve performance of heavily over-

loaded systems. Ciciani et al. [58] model a CDN system as a multi-class queuing 

network by abstracting the whole network as a single finite Markov chain. Other 
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studies have mainly focused on server placement [37] or the evaluation of response 

time. Different techniques such as queuing theory-based modeling of Web server 

processing time [3, 36] and water filling schema [134] have been used for the re-

sponse time evaluation. We differ by devising analytical performance models with 

the aim to demonstrate peering effectiveness and make concrete QoS guarantees for 

participating CDN providers in a peering arrangement. 

)(Tλ
 

Figure 4.1: A CDN modeled as an M/G/1 queue. 

4.2.2 Single CDN Model 
Based on the observations that Web user arrivals follow a memoryless process with a 

constant arrival rate over a significant period of time [225], we model a CDN as an 

M/G/1 queue as shown in Figure 4.1. Table 4.1 shows the parameters and expres-

sions that are used in the modeling. 

Table 4.1: Parameter and expressions for the analytical model. 

Parameter Expression 
Mean arrival rate  λ = (1/T) (requests/second) 
Mean arrival time  T 
Mean service rate  µ 
Load  ρ = (λ/µ) 

PDF of service distribution 1

)(1
)( −−

−
= α

α

αα x
pk

kxf , k ≤ x ≤ p 

Task size variation  α 
Smallest possible task size  k 
Largest possible task size  p 
Expected waiting time  E[W]  
Mean service time  E[X]  

We assume that the total processing of Web servers of a CDN is accumulated 

through the server. The request streams coming to the Web servers of the CDN are 

abstracted as a single request stream. As we follow an M/G/1 queuing system, it al-

lows us to define the service times independent of interarrival times and of one 
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another, and to have a general Probability Distribution Function (PDF). User requests 

arrive following a Poisson process with the mean arrival rate λ. All requests in its 

queue are served on a First-Come-First-Serve (FCFS) basis with mean service rate µ 

following a general distribution. Poisson modeling of end-user arrivals provides us a 

good basis for theoretical constructs and mathematical tractability. It also allows con-

sidering the complex network traffic dynamics as a “black box” and helps to estimate 

parameters (inputs) that are difficult to specify, collect, or measure in practice. 

The term ‘task’ is used as a generalization of a request arrival for service. We de-

note the processing requirements of an arrival as ‘task size’. We use the terms task 

and request arrival interchangeably. A request can be an end-user requesting an in-

dividual file or object, a Web page (containing multiple objects), the results of 

execution of a script (e.g. CGI, PHP) or any digital content. In a CDN, end-users re-

quest for content of varying sizes (ranging from small to large). Based on size of the 

content requested, the processing requirements, i.e. task size, also vary. 

It has been found that Internet workloads are heavy-tailed in nature [68, 69], 

which can be characterized by the function, Pr{X > x} ~ x–α, where 0 ≤ α ≤ 2. Based on 

this finding, we model the task size on a given CDN’s service capacity to follow a 

Bounded Pareto distribution. The PDF for the Bounded Pareto B(k, p, α) service dis-

tribution is, 

1

)(1
)( −−

−
= α

α

αα x
pk

kxf  

where α represents the task size variation, k is the smallest possible task size, and p is 

the largest possible task (k ≤ x ≤ p). By varying the value of α, we can observe distri-

butions that exhibit moderate (α ≈ 2) to high variability (α ≈ 1). 

We start with the derivation of the expected waiting time E[W], W is the time a 

user has to wait for service. E[Nq] is the number of waiting customers and E[X] is the 

mean service time. By Little’s law, the mean queue length E[Nq] can be expressed in 

terms of the waiting time. Therefore, E[Nq] = λE[W] and load on the server is, ρ = 

λE[X]. Let E[Xj] be the j-th moment of the service distribution of tasks. We have, 
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By applying Pollaczek-Khintchine formula, we get the measure of expected wait-

ing time, E[W] = λE[X2]/2(1-ρ), with respect to different server load and task sizes. 

Hyper-exponential approximation. To quantify the performance perceived by 

end-users while being serviced by a CDN, we need to find the PDF of waiting time 

distribution. The Bounded Pareto distribution has all moments finite; however, ad-

vanced analysis is complex due to the difficulties in manipulating the Laplace 

transforms of the queuing metrics, e.g. waiting time and busy period. Hence, the 

‘heavy-tailed’ Bounded Pareto distribution can be approximated with a series of ex-

ponential distributions (known as Hyper-exponential), while still maintaining the 

main characteristics of the original distribution, such as heavy tail, first and second 

moments [30]. Therefore, we use an n-part Hyper-exponential service distribution 

that has the following PDF: 
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Service distribution and waiting time. We devise the PDF of the waiting time 

based on the above approximation of the service distribution. For that we start with 

finding the Laplace transform of the service distribution, hn(t), as follows: 
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The moments of the service distribution can be obtained as: 
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where X is a continuous random variable with PDF hn(t). The first moment (mean) 

E[X] and the second moment E[X2] are: 
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The Laplace transform of the waiting time, LW(s) for an M/G/1 queue with the 

hyper-exponential approximation of a Bounded Pareto distribution is defined as: 
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This result can be numerically inverted to obtain the PDF of the waiting time dis-

tribution, w(t), and the Cumulative Distribution Function (CDF), W(t): 
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Using the CDF, concrete QoS guarantees can be made regarding the waiting time 

experienced by a certain percentage of user requests. Figure 4.2 shows the CDF of 

waiting time of a CDN for the system load ρ = 0.5. Here, the hyper-exponential ap-

proximation of a Bounded Pareto distribution is used with α = 1.5, k = 1010.15 and p 

= 1010. As for instance, there is about 50% probability that the waiting time experi-

enced by end-users will be less than 20000 time units. Thus, a particular CDN can 

make concrete guarantees to provide at least this much QoS experience to its users. 
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Figure 4.2: Cumulative distribution of waiting time. 

4.2.3 CDN Peering Model 
A CDN’s inability to meet end-user QoS requirements according to the established 

SLAs lead to the formation of CDN peering, which assists the primary CDN to redi-
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rect excess requests to the Web servers of its peers. Figure 4.3 provides a conceptual 

view of CDN peering where each CDN is modeled as an M/G/1 queue with general 

service distributions. It is abstracted that N independent streams of end-user requests 

arrive at a conceptual entity, called dispatcher, following a Poisson process with the 

mean arrival rate λi, i∈{1,2,…,N}. The dispatcher acts as a centralized scheduler in a 

particular peering relationship with an independent mechanism to distribute re-

quests among partnering CDNs in a user transparent manner. If, on arrival, a request 

can not be serviced by CDN i, it may redirect excess requests to the peers. Since the 

dispatching acts on individual requests of Web content, it endeavors to achieve a fine 

grain control level. We anticipate that it can also pave the ways in performing the re-

quest assignment and redirection at multiple levels―at the DNS, at the gateways to local 

clusters and also (redirection) between servers in a cluster. The dispatcher follows a 

certain policy that assists to assign a fraction of requests of CDN i to CDN j. The re-

quest stream to a CDN in the CDN peering model is λj,i = request to CDN j for CDN 

i’s content. For example, request to CDN B for CDN A’s content is denoted as λB,A. 

For ∀ j ≠ i, λj,i denotes redirected user requests, where CDN i is the primary where 

CDN j is a peer. For ∀ j = i, λj,i denotes the user requests to a primary CDN i.  
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Figure 4.3: Conceptual view of CDN peering. 

Inside each request stream, there is a FCFS service. Each stream is assigned a pri-

ority. Here, p = 1,2,…,P priority classes of end-user requests are assumed. A peer 

always prioritizes the requests from the primary CDN over its own user requests. 

However, if a redirected request (higher priority) arrives to a peer when its own user 

request (lower priority) is being served, it does not interrupt the current service. Thus, 

this priority discipline is non-preemptive during service quantum of user requests. 
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Waiting time. The classical result [59] on non-preemptive head-of-the-line (HOL) 

priority queue can be used to find the expected waiting time for the p-th (p = 1,2,…,P) 

priority user request, 
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W0 is the average delay for serving a particular priority end-user request due to other 

requests found in service. It can be expressed as, 
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where E[Xi2] is the second moment of service time for a user from class i. It can be 

mentioned that Wp does not depend on user requests from lower priority class, i.e. i = 

1, 2,…, p-1, except for their contribution to the numerator W0 [115]. 

Let us assume that the user requests for the primary CDN belongs to the p-th 

priority class. The Laplace transform of the waiting time for the primary CDN is de-

noted as W*p(s). Using the known solution [66] for the distribution of waiting time for 

each priority group in a priority queue, it can be expressed as, 
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Similarly, for any peer with the priority in the range 1,2 ...,(p-1) the Laplace 

transform of waiting time is found as, 
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Here, G*p(s) is the transform for the M/G/1 busy period distribution for a 

p-priority class, which is expressed as, 
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QoS performance. The ability to gauge the QoS of a CDN provider is crucial for 

achieving effective service from it. The PDF of the waiting time distribution (through 

numerical inversion) for each CDN, with independent priority class can be used to 

observe the expected waiting time perceived by the majority of end-users in the CDN 

peering system. Since a primary CDN’s request has priority over any peer’s own user 

requests, we can consider using (4.2) for a primary CDN, while (4.3) for any peer. 

Although these equations are useful for computation, the iterative expression for G*i(s) 

in (4.4) is impossible to invert numerically [115]. Therefore, in our work, the waiting 

time experienced by a primary CDN’s user requests is found using (4.2), while the 

classical result presented in (4.1) is used to find the average expected waiting time for 

a peer’s end-user requests. 

)(1,1 Tλ

)(2,2 Tλ

)(3,3 Tλ

)(1,2 Tλ
)(1,3 Tλ

 

Figure 4.4: A peering scenario with three CDNs. 

4.3 Performance Results 
We now present the performance results obtained for the analytical models. We use 

Mathematica2 to simulate a CDN peering arrangement consisting of three CDNs, as 

shown in Figure 4.4. Table 4.2 lists the notations used for this scenario.  

The scenario of Figure 4.4 provides a snapshot of the system when CDN 1 is in 

the role of a primary, while CDN 2 and CDN 3 are acting as peers. However, these 

roles may change over time, as the roles are dynamic and interchangeable depending 

on load (Chapter 3: Section 3.1). Each CDN is modeled as an M/G/1 queue with 

                                                 
2 An integrated computational software program that is used in scientific, engineering, and mathemati-
cal fields and other areas of technical computing. Please check: http://www.wolfram.com 
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highly variable Hyper-exponential distribution that approximates a heavy-tailed 

Bounded Pareto service distribution (α, k, p) with variable task sizes. Thus, the 

workload model incorporates the high variability and self-similar nature of Web ac-

cess. Table 4.3 shows the characteristics of the workload model. For our experiments, 

we consider the expected waiting time as an important parameter to evaluate the 

performance of a CDN. In the peering scenario, we assume that all peers hold the 

content required to serve redirected requests from the primary and there exists an 

SLA for serving all user requests by the primary CDN in less than 20000 time units. 

Table 4.2: List of notations used in the CDN peering scenario. 

Notation Description 
 N Number of CDNs, N = {1,2,…,N} 

][ j
iXE  j-th moment of CDN i’s service distribution 

 ρi Initial load on CDN i, ρi =λi,iE[Xi]  
 ρi* New load on CDN i, ρi* =λ*i,iE[Xi] 
 λi,i Initial arrival rate at CDN i 
 λ*i,i New arrival rate at CDN i, λ*i,i = λi,i – λiredirect 
 E[Wi] Expected waiting time (initial) at primary CDN i,  

 E[Wi*] 

Weighted average expected waiting time at CDN i, 

∑
−

=

+
−

=
1

1

* ][
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][][
i
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k

i
redirectk

i

i
redirect

i WE
w

WEWE
ρ
ρ

ρ
ρρ  

wk depends on the redirected ratio to a given peer 
 ρiredirect Fraction of content requests redirected from CDN i 

Table 4.3: Workload model. 

Category Distribution P.D.F Range Parameters 
Primary CDN, 
0.1 ≤ ρ ≤ 0.9 

Hyper- 
exponential ∑

=

−=
n

i

t
iin

iePth
1

)( λλ x ≥ k α = 1.5, k = 1010.15, p = 1010 

Peer 1, 
ρ = 0.5 

Hyper- 
exponential ∑

=

−=
n

i

t
iin

iePth
1

)( λλ x ≥ k α = 1.5, k = 1010.15, p = 1010 

Peer 2, 
ρ = 0.4 

Hyper- 
exponential ∑

=

−=
n

i

t
iin

iePth
1

)( λλ x ≥ k α = 2, k = 1500.23, p = 1010 

4.3.1 QoS Performance of the Primary CDN 
First, we provide the evidence that CDN peering is able to assist a primary CDN to 

provide better QoS to its end-users. The CDF of the waiting time of the primary CDN 

can be used as the QoS performance metric. In a highly variable system such as a 
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CDN peering arrangement it is more significant than average values. The waiting 

time corresponds to the time elapsed by a user request before being serviced by the 

CDN. Figure 4.5 shows the CDF of waiting time of the primary without peering for 

different loads. We observe that for a fair load ρ = 0.6 there is about 55% probability 

that users will have a waiting time less 20000 time units (SLA constraint). For a mod-

erate load ρ = 0.7, there is about 50% probability for users to have waiting time below 

the threshold, while for a heavy load ρ = 0.9 it reduces to about > 24%. 
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Figure 4.5: Cumulative distribution of waiting time (primary) without peering. 
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Figure 4.6: Cumulative distribution of waiting time (primary) in peering. 

The CDN peering model arranges the participating providers according to a 

non-preemptive HOL priority queuing system (Section 4.2.3). It is an M/G/1 queu-

ing system in which we assume that user priority is known upon their arrival to a 

CDN and therefore they may be ordered in the queue immediately upon entry. 

Therefore, various priority classes receive different grades of service and requests are 
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discriminated on the basis of known priority. Thus, in our model an incoming request 

(with priority p) joins the queue behind all other user requests with priorities less 

than or equal to p and in front of all the user requests with priority greater than p. 

Due to this nature of the CDN peering model, the effect of peering can be captured 

irrespective of any particular request-redirection policy. We provide necessary result 

to support this claim in Section 4.3.3. 

Figure 4.6 shows the C.D.F of the primary CDN with peering for different loads. 

By comparing Figure 4.5 and Figure 4.6, it can be found that for a fair load ρ = 0.6 

there is about 80% probability that users will have a waiting time of less than the SLA 

constraint, 20000 time units. Therefore, peering assists the primary to achieve a QoS 

performance improvement of about 31%. For a moderate load ρ = 0.7, there is > 81% 

probability for end-users to have waiting time below the threshold, an improvement 

of about 38%. For a heavily loaded primary CDN with ρ = 0.9 the probability be-

comes about 70%, which lead to an improvement of > 65%. Moreover, for loads ρ > 

0.9, still higher improvement can be predicted. Based on these observations, we state 

that CDN peering achieves substantial QoS performance improvement when com-

pared to the non-peering case. 

4.3.2 Request-Redirection Policies 
Now we focus on using request-redirection within the CDN peering model. We as-

sume no redirection until the primary CDN’s load reaches a threshold load (ρ = 0.5). 

This load value is also used as the baseline load for comparing waiting times at dif-

ferent primary CDN loads. Any load above that will be ‘shed’ to peers. A 

request-redirection policy determines which requests have to be redirected to the 

peers. Each peer is ready to accept only a certain fraction (acceptance threshold < 50%) 

of the redirected requests. Redirected requests to a given peer exceeding this accep-

tance threshold are simply rejected for service to maintain the system equilibrium. In 

the face of sudden surge in demand, the load on a given primary CDN i, where 

i∈{1,2,…,N} becomes, ρ*i = ρi – ρiredirect and the redirected load is distributed among the 

peers. The value of ρiredirect varies depending on the dispatcher-chosen redirection pol-

icy. The initial and new load on a primary CDN i is measured by, ρi =λi,iE[Xi] and 
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ρ*i =λ*i,iE[Xi] respectively. Here, λi,i is the initial request arrival rate, whereas λ*i,i = λi,i – 

λiredirect is the new request arrival rate after redirection. 
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Figure 4.7: Redirection ratio at different primary CDN loads. 

We define the following request-redirection policies that are used by the dis-

patcher in the CDN peering model to distribute redirected re quests to peers: 

• Uniform Load Balanced (ULB). It distributes the redirected content requests 

uniformly among all the peers. 

• Minimum Load Balanced (MLB). It assigns the redirected content requests to 

the peer with minimum expected waiting time. 

• Probabilistic Load Balanced (PLB). It distributes redirected content requests 

to the peers according to a certain probability. This probability depends on the 

load threshold for the fraction of redirected requests that a peer can accept 

from the primary. In the peering scenario (Figure 4.4), we use probabilities of 

0.4 and 0.6 to assign a certain fraction of the redirected requests to peer 1 and 

peer 2 (i.e. CDN 1 and CDN 2), respectively. We measure this probability 

based on the acceptance threshold and the service capacity of the peers. 

• Weighted Load Balanced (WLB). It assigns 80% of redirected content requests 

to the peer with minimum expected waiting time. The remaining 20% of traffic 

is uniformly distributed over all other peers. 

The amount of redirected requests is denoted as the redirection ratio, which is 

quantified as a percentage of the primary CDN’s load. The influence of different 
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primary CDN loads on the redirection ratio is shown in Figure 4.7. We find that the 

redirection ratio increases with the growing primary CDN’s load, independent of any 

particular request-redirection policy. In Figure 4.8, the redirection ratios assigned to 

the peers are shown. Each curve denotes a different redirection policy and x-axis de-

notes the load on the primary CDN. 

0

5

10

15

20

25

0.6 0.7 0.8 0.9
Load on Primary CDN

R
ed

ire
ct

io
n 

R
at

io
 (%

)

ULB
MLB
PLB
WLB

 

(a) Peer 1 
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(b) Peer 2 

Figure 4.8: Distribution of redirected requests to peers. 

In the ULB request-redirection policy, both peer 1 and peer 2 receive the same 

amount of redirected requests from the primary. When the MLB request-redirection 

policy is used by the dispatcher, it assigns all the redirected requests to peer 2, which 

has the minimum expected waiting time. Hence, no redirected request is assigned to 

peer 1. If PLB request-redirection policy is used by the dispatcher, it leads to a dis-

tribution of 40%-60% of the redirected requests to peer 1 and peer 2 respectively. A 
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dispatcher following the WLB request-redirection policy assigns 80% of redirected 

requests to peer 2 (with minimum expected waiting time) and the rest 20% to peer 1. 

4.3.3 Impact of Request-Redirection 
Now we study the impact of request-redirection on the expected waiting time of 

end-users on the primary CDN. Without request-redirection when the primary 

CDN’s load approaches to 1.0, the user perceived performance (in terms of waiting 

time and queue length) for service by the primary CDN tends to infinity. On the 

other hand, with request-redirection the waiting time of the primary CDN decreases 

as the requests are redirected to the peers. 
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Figure 4.9: Impact of request-redirection on waiting time of the primary CDN. 

Typically redirecting excess requests improves performance on the primary CDN. 

Figure 4.9 provides this evidence by showing the performance improvement (in 

terms of waiting time) that the primary gains for all the request-redirection policies. 

Here, we compare the expected waiting time as a function of system load under four 

request-redirection policies, by considering lightly loaded peers (load of peer 1 and 

peer 2 are set to ρ = 0.5 and ρ = 0.4 respectively), while tuning the primary CDN’s 

load (0.1 ≤ ρ ≤ 0.9). It can be noted that a weighted average value of waiting time is 

presented in order to capture the effect of request-redirection. From the figure it can 

be seen that as more requests are redirected to the peers, they realize higher waiting 

time due to the peers’ own load. 

Table 4.4 summarizes the reduction of the expected waiting time for the primary 

CDN in peering for different request-redirection policies. For all the four policies, it is 



  90 
 

observed that substantial performance improvement is achieved on the expected 

waiting time when compared to the non-peering case. Among all the four policies, 

ULB, PLB and WLB effectively have redirection ratio as the common performance pa-

rameter. For all these three policies, redirected requests are distributed among peers 

according to a certain percentage. Therefore, to some extent they exhibit similar 

characteristics. MLB assigns all redirected requests to a single peer. Although results 

for MLB may show as good performance as the other three policies (due to light load 

and less heavy-tail workload on peer 2), there is a possible concern for the peer with 

minimum expected waiting time to become overloaded with the redirected requests 

(herd effect [70]). Therefore, it is preferable to spread the load of redirected requests 

among multiple CDNs rather than assigning all redirected requests to a single peer. 

Table 4.4: Reduction of waiting time on the primary CDN. 

Reduction in waiting time % 
Load on primary CDN 

ULB MLB PLB WLB 
Fair load, ρ = 0.6 43.20% 44.41% 43.66% 44.24% 
Moderate load, ρ = 0.7 66.31% 69.31% 67.50% 68.91% 
Heavy load, ρ = 0.9 90.52% 93.70% 91.94% 93.39% 

From the results, it is clear that all the request-redirection policies guarantee that 

the maximum waiting time is below the SLA constraint of 20000 time units. This con-

firms that redirecting only a certain fraction of requests reduces instability and 

overload in the system because the peers are not overwhelmed by bursts of addi-

tional requests. 

4.3.4 Measurement Errors 
The dispatcher bases its redirection decision on the measured value of the primary 

CDN’s load. So far we have assumed that perfect information is available for this de-

cision. However, the dispatcher can have inaccurate information about the load on 

the primary CDN, e.g. due to delays in receiving the measurements. Therefore, the 

impact of measurement errors on the effectiveness of the redirection policies can be 

measured. Let us denote the measured load of the primary CDN at the dispatcher by 

ρ̃= λ ̃E[X], with λ ̃= λ(1±ε), where ε is the percentage of the correct load ρ. 
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Figure 4.10: Impact of measurement errors on redirection ratio. 
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Figure 4.11: Waiting time variation for different load measurement error. 

Figure 4.10 shows the effects of primary CDN’s load measurement error on the 

redirection ratio. Each line denotes a different primary CDN load ρ, and the x-axis 

denotes the measurement error ε, in percentage of ρ. A value of 0 on the x-axis corre-

sponds to perfect primary CDN load information. We have observed that the 

redirection ratio changes more for positive ε than for the corresponding negative ε. 
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Figure 4.11 shows the impact of primary CDN’s load measurement error on the 

waiting time for different request-redirection policies. It can be observed that in all 

the four cases, for measurement error ε > 0, the dispatcher assumes the primary 

CDN’s load to be higher than what it is and hence it redirects more requests than the 

actual load. The extra redirections incur additional waiting time for the user requests 

and hence it increases linearly from ε = 0. For negative ε, the dispatcher assumes the 

primary CDN’s load to be less than the actual and hence redirects pessimistically. As 

a result, requests on the primary could experience greater expected waiting time for 

being processed. However, the average of waiting time normalizes the adverse effect 

in order to keep the performance at an acceptable level. Nevertheless it can be con-

cluded that greater accuracy is needed in load measurement of the primary CDN. 

4.4 Summary and Conclusion 
In this chapter, we have presented innovative analytical models for CDN peering. 

According to the model, an overloaded CDN is stabilized by offloading a fraction of 

the incoming requests to its peers. We have also demonstrated the effects of peering 

and predicted end-user perceived performance from a given CDN. We have shown 

that it is easier to meet QoS goals through CDN peering, and that any resulting sys-

tem is more resilient to flash or periodic crowds. 

Although the performance models are simplified in order to accommodate the 

system complexities, we believe that they provide a foundation for performing effec-

tive peering between CDNs though achieving target QoS in service delivery to 

end-users. Our model-based approach is important since having each CDN provider 

communicate how it would service millions of potential end-users would introduce 

significant scalability issues, and requesting this information from each partnering 

provider at the user requests time would introduce substantial delays. 

Based on the findings from this chapter, we set to investigate techniques to enable 

CDN peering. Specifically, in the next chapter, we develop distributed load sharing 

strategy using dynamic request-redirection and provide discrete-event simulation 

analysis of the proposed redirection mechanism.
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Chapter 5  

Resource Discovery and  
Request-Redirection 
A dominant factor for the success of CDN peering is to serve each end-user by an op-

timal Web server, in terms of network cost, even under heavy load conditions. Before 

it can be comprehended, appropriate resource discovery and request-redirection 

mechanisms, coupled with an optimal server selection strategy, should be in place to 

perform the distribution of highly skewed loads. In this chapter, we devise a load 

distribution strategy by adopting distributed resource discovery and dynamic re-

quest-redirection mechanisms, taking traffic load and network proximity into 

account. We exercise an asynchronous resource discovery protocol, reminiscent of 

the publish/subscribe notion, and formulate the resulting redirection scheme. We 

provide extensive simulation analysis to show that our approach is effective to han-

dle heavy loads by preserving locality, and thus achieve service “responsiveness”. 

5.1 Introduction 
The success of peering and the effectiveness of operations for content delivery in a 

CDN peering system depend on its ability to perform resource discovery, server selec-

tion and dynamic request-redirection under degenerated load conditions, e.g. flash 

crowds. The resource discovery process specifies how external resources offered by 

disparate CDNs are discovered. An effective server selection strategy determines the 

least loaded edge server(s) that is best suited to serve user requests. The server selec-

tion phase typically chooses the “nearest” optimal server to the requesting user. A 
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dynamic request-redirection mechanism assists in directing user requests to the tar-

get edge server(s), in order to alleviate imbalanced load situations. These phases may 

be interleaved to collectively perform load distribution by reacting to overload con-

ditions in a multi-provider CDN peering system and thus endeavor to achieve 

scalability. Specifically, load distribution in our context can be stated as: 

Given current load information in an overload condition, the CDN peering system needs 

to select an optimal server to which a given request can be redirected. To obtain up-to-date 

load information, methods for load monitoring and load index dissemination is necessary. 

In an effective load distribution strategy, a load index of resources needs to be es-

timated with low computation and communication overhead. In addition, network 

proximity information (distance between users and servers) is also important for load 

distribution decision so that requests are directed towards nearby servers. Therefore, 

an ideal load distribution strategy should realize a redirection scheme that takes traf-

fic load and proximity into account. In our approach, load indices of distributed 

inter-CDN servers are obtained through an asynchronous feedback mechanism and net-

work proximity is measured using a pinger logic with low messaging overhead. 

The aims of this chapter are: i) to perform dynamic load distribution under traffic 

surges by redirecting excess requests to the least loaded Web server(s), thus binding 

users to optimal replicas (timeliness); (ii) to exhibit acceptable throughput under 

overload conditions (e.g. during flash crowds); iii) to scale to distributed inter-CDN 

resources scattered across the globe (dynamic lookup); and iv) to maintain administra-

tive control over local resources and their states (resource encapsulation). 

5.2 Motivation and Scope 
Resource discovery is a popular topic in large-scale distributed systems; whereas, 

request-redirection is an indispensable enabling cornerstone for CDNs. Many previ-

ous research efforts [44, 46, 62, 65, 97, 120, 190, 194, 230] have focused on these two 

topics separately in different domains, such as Grid computing, P2P-based systems, 

multi-agent systems, distributed Web servers, Internet, overlay and ad-hoc networks. 

However, they can not be directly applied for load distribution in a CDN peering 
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system, due to the necessity for handling dynamic circumstances, thus requiring 

up-to-date information about widely-distributed resources. In addition, providers 

should learn about available resources quickly, without using an inordinate amount 

of communication, and the resource discovery and redirection algorithms may be 

used repeatedly to obtain updated resource status information. There are also other 

challenges, which include virtualization of multiple providers and offloading re-

quests from the overloaded provider to its underloaded peers, based on cost, 

performance, and load. In such a cooperative multi-provider environment, requests 

are directed to sets of servers deployed across multiple CDNs as opposed to indi-

vidual servers belonging to a single entity. Therefore, resource discovery and 

request-redirections must occur over distributed sets of servers spanning multiple 

CDNs, without having complete state information. 

Analysis of previous research efforts, in relation to CDN peering, suggests that 

there has only been modest progress on devising resource discovery and re-

quest-redirection mechanisms. We justify this observation by comparing our 

approach with existing schemes. As mentioned previously (Chapter 3, Section 3.2), 

CDN peering initiatives and related research such as Content Distribution Internet-

working (CDI) model [72], request-routing mechanisms for content networks [19], 

CDN Brokering [19], modeling traffic redirection [9, 182], load distribution across 

geographically distributed Web servers [46] have mostly focused on describing 

peering architecture, performance evaluation, and redirection modeling. Many of 

them do not show the effectiveness of any particular redirection or load distribution 

mechanism. While we complement these research efforts, the CDI model in particu-

lar, we differ by devising mechanisms for resource discovery and request-redirection 

to perform dynamic load distribution. 

Ercetin et al. [79] model request-redirection for CDN brokering as a de-

lay-constrained routing problem. Unlike our work, the devised solution could only 

be applied to a snapshot of the system, thus limiting its scalability. Alzoubi et al. [8] 

present a load-aware IP Anycast CDN, incorporated with a route-controller, which 

takes server and network load into account to realize anycasting. This work estab-
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lishes the applicability of anycasting as a redirection technique in CDNs. Our work is 

in line with them, as we focus on minimizing the cost associated with re-

quest-redirection. We differ by avoiding the use of a centralized route controller and 

by not following a post-processing approach to offload overloaded servers. Conti et 

al. [65] presents a QoS-based architecture for load distribution among replicated Web 

servers. While this approach might be effective to handle highly skewed loads, the 

focus is particularly on a single domain of clustered servers. Another notable work is 

a request distribution system for PlanetLab [194], which considers server loads and 

proximity information from pre-defined landmarks to route requests. It performs 

centralized load index dissemination and arbitrary server selections. On the contrary, 

we follow a decentralized approach to improve adaptability to dynamic changes. 

There are also several representative work on resource discovery (and request re-

direction, to some extent) in large-scale distributed networks, i.e. non-CDN domains, 

such as Grids and P2P systems. Harchol-Balter et al. [97] present a distributed re-

source discovery algorithm, called name-Dropper, for large distributed networks of 

computers. This algorithm achieves near-optimal performance both with respect to 

time and network communication complexity. However, it may lead to the same par-

ticular target server selection by multiple originating machines. Lamnitchi et al. [120] 

study the resource discovery problem in a resource-sharing environment that com-

bines the complexity of Grid and the dynamism of P2P networks. They propose a 

Grid emulator for evaluating resource discovery techniques based on request propa-

gation. Unlike us, their work is targeted to a P2P-based Grid system, which does not 

realize CDN peering characteristics. 

P2P networks support unstructured, e.g. Gnutella [199] and Kazaa [126], or 

structured, e.g. CAN [185], Chord [206], and Pastry [187], discovery services. In the 

first approach, hosts and resources are made available on the network without an 

overlay planning. The latter exploits highly structured overlays, using distributed 

indexing data structure, such as Distributed Hash Tables (DHTs) to route queries 

over a P2P network. The peer discovery and membership services are mainly used 

for the construction and startup of P2P networks. Nevertheless, with the presence of 
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mechanisms to virtualize multiple providers and realize redirection for dynamic load 

distribution, P2P techniques such as gossip algorithms [27] can be effective for re-

source discovery in CDN peering. 

5.2.1 Resource Discovery 
In the CDN peering system, an overload condition occurs when incoming load on the 

primary exceeds a given alarm threshold, as reported by its server(s). Under such cir-

cumstances, the conduit or gateway, i.e. PA, Mediator and PR as a single conceptual 

entity (Chapter 3: Section 3.3), of the primary discovers external resources. 

The candidate resource discovery algorithm realizes a distributed nature, since 

there is no central control in the system. CDNs operate independently of each other; 

making local queries within its domain and transferring global information about 

part or all to the CDN peering system. A Service Registry (SR) instance in each CDN 

contains local resource information. Once a peer delegates its resources for use by the 

primary, gateways of the peers interact to register the offered resources to the global 

SR, which is a distributed SR implementation (Section 5.4.1), containing information 

of all resources in the peering arrangement. The list of registered resources in the 

global SR is updated periodically to realize a soft-state protocol for membership 

management. Gateways contact addresses are learned via out-of-band information. 

The communication protocol to aid resource discovery is reminiscent of the pub-

lish/subscribe paradigm. This approach endeavors to perceivescalability and full 

decoupling from other system operations; a possibly “offline” approach due to the 

asynchronous nature of resource discovery; and indirect addressing for load distri-

bution. However, our approach differs from the publish/subscribe system in terms 

of functionality. While the latter deals with resource publishing and message dis-

semination, our main focus is on efficient resource discovery. In addition, a 

publish/subscribe system is intended to find all potential participants who are capa-

ble of serving user requests. In contrast, our redirection strategy, followed by the 

resource discovery, attempts to find an “optimal” peer, not all of them. As a conse-

quence, a smaller fraction of the whole system is traversed and communicated. 
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5.2.2 Server Selection and Request-Redirection 
An effective request-redirection mechanism to perform load distribution in a CDN 

peering system could be devised by examining two alternatives. In the first case, all 

peers belonging to a subCDN (Chapter 3: Section 3.1) could provide a real-time load 

status of each surrogate in the global subCDN using standard metrics. The primary 

CDN (or an authoritative entity belonging to it) can compare these load indices with 

its metrics and choose whether requests have to be redirected to a peer. Practical 

constraints could be put in place to ensure that redirection cost is minimized and 

peers’ servers are not overloaded. Alternatively, an independent third party could 

supervise and manage all the peers for load distribution. However, security, trust, 

and proprietary issues make it unlikely that a CDN would agree to have an external 

party to make allocations of its resources according to some load distribution policy. 

Therefore, we follow the first approach by interleaving server selection and re-

quest-redirection to perform load distribution. Our approach seeks to prevent wide 

oscillation in the load distribution decisions by selecting optimal server(s) through 

cost minimization, taking traffic load and network proximity into account. 

5.3 Algorithms 
In this section, we first describe the workings of the resource discovery protocol for 

the CDN peering system. Then we present a load and proximity-aware redirection 

strategy, coupled with optimal server selection to perform dynamic load distribution. 

5.3.1 Resource Discovery Formulation 
Let M be the set of all possible resources from participating CDNs, with N users 

spreading across the system. Content request from user i is denoted as ri∈R, which is 

a constraint on the set of available resources. Let match(ri) ∈ M be the set of servers 

that satisfy ri. The primary CDN A, which receives the incoming request ri is expected 

to provide the set of resources match(ri). However, under peak load, CDN A may not 

be able to serve ri, and therefore, searches for other peers to serve the request on its 

behalf. Let us consider a peer B, which can provide resources match(ri'), satisfying 
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user request ri'. We say that ri and ri' overlap iff match(ri) ∩ match(ri') ≠ ∅ and there 

exists at least one resource that satisfies both ri and ri'. Therefore, least loaded servers 

from CDN B can be utilized by CDN A to satisfy the content request. 

  
 begin ... 

1: for all r ∈ R do 
2: if alarm_flag = false && match(r) ≠ ∅ then 
3: Serve content request r from primary CDN’s Web servers 
4: else if alarm_flag = true || match(r) = ∅ then             
5: if WSList = null then 
6: Populate n, WSList from p peers using lookupMethod 
7: end if 
8: end if 
9: for i =1 to n do 

10: Send ServiceRequest(r) to i.WSList 
11: Receive ServiceResponse(AcceptedReqList, RejectedReqList) from i.WSList 
12: end for 
13: end for 

 ... 
 end  

Figure 5.1: Service Request from the primary CDN during resource discovery. 

  
 begin ... 

1: for all s ∈ S do 
2: if s can be serviced && s is not already accepted then 
3: Add s to AcceptedReqList 
4: else if s can not be serviced then 
5: Add s to the RejectedReqList 
6: end if 
7: end for 
8: Send ServiceResponse(AcceptedReqList, RejectedReqList) to the primary CDN 

 ... 
 end  

Figure 5.2: Service response from a peer’s server during resource discovery. 

Distributed resource discovery algorithm. Figure 5.1 and Figure 5.2 respectively 

present the pseudocode for service request and service response procedures, which 

are required during resource discovery. The principle of resource discovery in CDN 

peering is as follows. Upon receiving user requests for content, the primary CDN 
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finds suitable Web servers to serve them (Figure 5.1: Lines 1 to 3). In order to pre-

serve locality, the primary CDN issues local queries to the local SR instance, to find 

the potential local resources that are able to serve the incoming requests. Under traf-

fic surges, incoming load of a primary CDN exceeds a given alarm threshold. When 

this occurs, an alarm_flag is set to indicate that no optimal resource is found within 

the local domain. The primary uses a lookupMethod to contact peers and populate a 

list WSList of available resources from participating providers (Figure 5.1: Lines 4 to 

8). The primary sends a ServiceRequest message to peer(s), containing the required 

service requirements, and receives the ServiceResponse from the peers’ servers (Figure 

5.1: Lines 9 to 13). When a peer’s server receives a ServiceRequest message, it chooses 

the requests that it accepts to serve and the ones that it refuses to serve, based on 

whether it can meet the service requirements. It then sends a ServiceResponse message 

containing the lists of acceptable and rejected requests (Figure 5.2: Lines 1 to 8). Upon 

receiving peers’ response, excess requests are redirected from the primary to the least 

loaded peer(s), using the redirection mechanism outlined in the next section. 

The lookupMethod during service request determines the way peer selection is 

performed. It depends on whether the peers share partial information about their 

services, i.e. topology, connectivity information, dynamic link properties (link weight, 

background traffic, and congestion level), and dynamic node properties (bandwidth 

and processing power, shared by peers’ servers). The lookupMethod may follow 

broadcast or selective mode. The first operational mode is the only choice when a CDN 

does not possess an SR instance to store its local resources information. With the 

presence of an advertising mechanism and the existence of an SR instance at each 

CDN, peer selection can be performed selectively. We exploit dynamic status and 

availability information of offered resources from peers, by searching the global SR. 

We preserve locality, since the attempt is to find local resources first, thus realizing 

dynamic lookup and increasing resource encapsulation within the primary’s domain. 

Other complementary selective modes could be: controlled anycast, greedy random 

and greedy ordered. Controlled anycast employs a route controller [212, 214] to which 

the Web servers within the CDN peering system advertise the anycast address. As 
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such, the route controller can influence the route selection to peers using some exter-

nal intelligence [8]. In the greedy random mode, one peer is selected that can serve 

the content request on behalf of the primary, chosen uniformly at random. The 

greedy order mode chooses a peer according to some predefined criteria, such as 

network factors and QoS. 

Table 5.1: Annotation of the resource discovery algorithm. 

Properties Parameters Description 

Notion Fully decoupled “offline” approach 
(asynchronous) Methodology 

Interconnection topology CDN Peering (system under consideration) 
Granularity End-user requested content 
Distribution Distributed query-based approach 

Data integration scheme Gateway (information exchange and 
request-redirection) Implementation 

Peer selection Resource encapsulation and dynamic 
lookup (searching within local domain first) 

Data volume or index 
representativeness 

Scalable content-based searching upon 
user requests 

Traffic intensity Incoming traffic for replicated content Scalability 

Resource identification Request mapping (accepted and rejected 
requests lists) 

Table 5.1 summarizes the properties of the resource discovery algorithm. This 

annotation avails to analyze our approach and assists in making the right system de-

sign choice. The first property specifies the basic notion of resource discovery and the 

domain within which it is initiated. The next property focuses on the implementation, 

specifying the granularitytask unit that the system can support; distribu-

tionparticular design choice; data integration schemehow to gain access to 

necessary data of interest; and peer selectionhow locality is preserved for effective 

resource discovery. The last property delineates the perceived scalability of our ap-

proach by stating the prime means to support resource discovery, instrumentation of 

user access pattern, and identification of available resources. 

5.3.2 Request-Redirection Formulation 
Since request-redirection is at the heart of our load distribution strategy, we first 

formulate the redirection problem and then present the devised algorithm. We define 
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redirection cost Rc, for serving requests through redirection in overload conditions. It 

varies for different servers of peers, as it depends on a server’s traffic load and net-

work proximity (in terms of round-trip response time). Specifically, Rc is defined as: 



 ∞
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ijij
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jiR
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otherwise
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where lij is the incoming traffic load from user i on server j, and pij is the network 

proximity between them. It is known that a server’s response load indicates the po-

tential load assigned to it, since request and response loads on a CDN server are 

linearly correlated [8]. Therefore, the request load lij (traffic volume) can be calculated 

based on the server load. A server j’s load is the product ujSj, where uj is the server 

utilization in [0, 1] as reported by the load monitoring apparatus (mediator and SR) 

and Sj is its capacity, specified by the maximum number of serviced requests/second 

as reported in the CDN server’s configuration specifications. 

The delay caused by inter-CDN redirection depends on the network proximity pij: 
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where rtij is the response time from user i to server j and ID is the delay. To minimize 

redirection cost during load distribution, the redirection problem is formulated as: 
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N

i

M

j
c ajiR∑∑

= =1 1
),(  

subject to ja
N

i
ij ∀=∑

=

 ,1
1

 

∑ ∀≤ jSal jijij  ,  

jiaij , },1,0{ ∀∈  

where aij is an indicator variable to determine whether the Web server j is in the same 

CDN as user i; aij = 1 if server j is an inter-CDN server, and aij = 0 otherwise. Finding 

an optimal solution for the above Integer Linear Program formulation is NP-hard, 

when aij is an integer. Therefore, a near-optimal solution can be found in the form of 

an approximation algotirhm by relaxing the integrality constraint and rounding 

based on a fractional solution to the LP relaxation [193]. 
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Table 5.2: Significant properties of the request-redirection scheme. 

Properties Parameters Description  
Activation trigger (when) Asynchronous (on CDN server request) 

Activation Activation decision 
(where) 

Distributed (Gateway redirection upon re-
quests from distributed servers) 

Implementation Status information 
Traffic load (correlated 
with server response load 
= utilization * capacity) 

Alarm (Asynchro-
nous feedback) 

Server selection (how) Minimize redirection cost (mapping of over-
loaded and underloaded server lists) Redirection 

policy Redirected entities (what) End-user requests 

Table 5.2 summarizes the properties of the redirection scheme, according to the 

classifications presented by Cardellini et al. [42]. The first property specifies the 

mechanism in which redirection is activated and where the activation decision proc-

ess is made. The next property focuses on the implementation, specifying the status 

information used for redirection. The last property delineates the redirection policy 

by stating the server selection strategy and the entities that are redirected. We de-

scribe these properties in more detail in later sections. 

Dynamic load distribution algorithm. Figure 5.3 presents the pseudo-code for the 

proposed load distribution algorithm, named LD_minCost, which integrates the re-

source discovery, server selection, and request-redirection phases. It does not attempt 

to perform load distribution when the servers of a primary CDN are working under 

an acceptable load. At a given time, if an overload condition exceeding an alarm 

threshold is reached, as reported by a primary CDN server, servers’ status (response 

load) is assessed and a list of lightly loaded servers is generated from each partici-

pating CDNs (Lines 1 to 5), making use of the resource discovery algorithm stated in 

the previous section. The traffic load and network proximity for each underloaded 

server are measured and the redirection cost Rc is calculated in Lines 6 to 10. The op-

timal server from the underloaded server list is selected such that Rc is minimized 

upon redirection and the server does not get overloaded due to steered traffic. The 

optimal server opWS is added to a set of usable server list targetWSList, maintained 

by the primary to satisfy its requests. Thus, a mapping is maintained between the 

requests and a set of suitable servers to serve those requests. As long as there is an 
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overloaded primary CDN server, a new server minimizing Rc (except the optimal 

server selected earlier) is added to this list (Lines 11 to 15). By using this strategy, we 

prevent a server from going into an overloaded state and multiple servers can serve a 

peak demand or a flash crowd situation. Moreover, if targetWSList contains several 

servers and their average load decreases significantly, one server is removed at a 

time from the list (Lines 17 to 21). It ensures that the degree of replication for serving 

requests does not remain unnecessarily high when requests relinquish over time. 

Moreover, it also guarantees that sufficient underloaded resources are always avail-

able in the CDN peering system so as to utilize them during load distribution. 

  
 begin … 

1: for all r ∈ R do 
2: Obtain the list of available servers n, WSList from peers 

/* Resource discovery */ 
3: for i = 1 to n do 
4: Populate o, OWSList and u, UWSlist 

/* Overloaded and underloaded server lists */ 
5: end for  
6: for j = 1 to u do 
7: Calculate incoming traffic load based on loadmetric 
8: Measure network proximity 
9: Calculate redirection cost Rc 

10: end for 
11:    do 
12: Select optimal server opWS minimizing Rc 

/* Server selection */ 
13: Add opWS to targetWSList 
14: Redirect request to opWS 
15:    while alarm_flag = true 
16: if |targetWSList| > 1 then 
17: if targetWSList.avgLoad <= alarm_threshold/2 then 
18: Remove least loaded server in targetWSList 
19: end if 
20: end if 
21: end for 

 ... 
 end  

Figure 5.3: Load distribution algorithm (LD_minCost). 
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5.3.3 Perceived Benefits 
A major advantage of our approach over traditional DNS-based redirection systems 

is that the actual end-user requests (eyeballs) are being redirected, opposing to the 

local DNS requests as in DNS-based redirection. Therefore, we can achieve a finer 

grain redirection. Since load distribution is performed dynamically, any redirection 

change takes effect instantly. In contrast, due to the IP-address caching in the inter-

mediate name server, the DNS dispatcher loses direct control on subsequent requests 

for a Time-To-Live (TTL) period following address resolution, and thus causes some 

delay before redirection changes have an effect [62]. We also seek to achieve high lo-

cality with good load balancing, since requests targeted to the primary CDN stay 

within its domain as much as possible and are redirected to least loaded peers only 

during peak load conditions. In this way, our solution does not produce widely os-

cillated outcomes due to load distribution through request-redirection, and thus we 

seek to achieve service “responsiveness”. Finally, our approach is beneficial for larger 

Web objects in particular and it endeavors to neutralize any load imbalance in the 

system, since CDNs have dynamic nature to act in primary or peering roles. The 

performance results and simulation analysis in Section 5.5 support these claims. 

5.3.4 Time Complexity 
Let us consider a peering arrangement of one primary and P peers, with N users 

generating R requests in the system. Let n be the number of available resources, 

which are found during the lookup process. The time complexity for populating an 

available resources list from P peers is O(P). Further, O(n) is the worst case complex-

ity for contacting n available resources by the primary to identify the servers that can 

serve the given content requests. Then the complexity for requesting service for one 

request from the available resources of the peers is O(P+n). Therefore, the time com-

plexity of the algorithm in Figure 5.1 is O(PR+nR). A peer’s server receives S service 

requests from the primary. A worst case scenario gives S = R, thus producing a time 

complexity of O(nR) for all the n available servers to be used by the primary. Hence, 

the resultant complexity of the service request and response during resource discov-

ery is also O(PR+nR). 
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Let us consider that load distribution is performed among u number of optimally 

underloaded servers, from the list of n available servers. Given an overloaded condi-

tion remains for a constant time T, the complexity of the load distribution algorithm 

LD_minCost in Figure 5.3 is O(nR+uR+T). By omitting the constant, the resultant 

complexity is given by O(nR+uR). However, the resource discovery, server selection, 

and request-redirection are integrated to perform load distribution in the peering ar-

rangement. Therefore, the overall time complexity is O(PR+nR+uR). 

5.4 Methodology 
Measurement based performance studies may not reproduce the problems and sce-

narios for which the solutions are designed, since in real testbeds several important 

parameters, such as server and network load conditions, can not be controlled. It is 

also difficult to have a significant amount of geographically dispersed users simulta-

neously to generate traffic causing a flash crowd. An alternative can be conducting 

experiments on real nodes using a controlled network environment with a WAN 

emulator or Emulab network testbed. However, our main focus is on CDN peering, 

with the assumption that network is not the main bottleneck. In our context, simula-

tion can provide a reasonably detailed representation of key system parameters. 

Therefore, we have developed a simulator, based on Independent Replication 

Method, using the CSIM/Java3 simulation toolkit. It assists to conduct repeatable and 

controlled experiments that would otherwise be difficult to perform in real CDNs. 

5.4.1 Simulation Environment and Parameters 
In our simulation model is based on a reference scenario (Figure 5.4), which is an ap-

proximate representation of the environment, yet representative of the key system 

attributes. There is an established peering arrangement, consisting of four CDNs with 

their sets of Web servers placed at different geographical locations across the Internet. 

Each CDN has a set of servers and a pool of users to generate request streams. 

End-users request content via their browsers and make use of a proxy server accord-

ing to the same client-side policy. In order to take part in peering, each CDN defines 
                                                 
3 It creates process-oriented discrete-event simulation models. Please check: http://www.mesquite.com 
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a subCDN with a subset of its resources. To provide an accurate characterization of 

the scenario, we have simulated the main system entities: (i) Web servers, (ii) media-

tor, (iii) distributed SR, (iv) congestions, and (v) end-users. In our simulations, PA 

and PR have limited functionality for SLA-based negotiation, policy classifications 

and policy enforcement (Chapter 3). Since our goal is to measure the impact of re-

quest-redirection for distributing load in CDN peering, we refrain from simulating 

more detail of the network, i.e. Internet connections, network hierarchies, and narrow 

network bandwidth in the last mile, by using a network topology generator. 
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Figure 5.4: Reference Scenario for simulation. 

Table 5.3 reports the system parameters used in our analysis. The parameter val-

ues, indicative of the simulation model, are chosen as follows. Each server calculates 

its utilization and updates the SR every 30s by sending an 11byes load index dis-

semination message. An alarm signal is sent if this value exceeds 80% of a server’s 

utilization, i.e. alarm threshold. We use TCP for disseminating reliable and valid load 

index and UDP for network proximity measurement. The reason for using UDP in 
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the proximity measurement is because there are devices which will prioritize ICMP 

traffic (in case of TCP) over other traffic, which if there is congestion along the way, 

could skew the load. Some service setups such as firewalls and routers also limit 

ICMP traffic because of various denial of service threats. Since we intend to measure 

proximity under "realistic" traffic, using something closer is deemed significant. UDP 

also does not require acknowledgement of the received packets, causing less mes-

saging overhead than TCP. We use an 18bytes proximity measurement query with a 

timeout period of 1000ms. To capture the unreliable nature of UDP, we model 30% 

packet loss rate. Finally, in order to reflect the effects of network congestions in our 

model, we use 100ms average network delay and 200ms average inter-CDN delay. 

Table 5.3: Parameters for the system model. 

Parameter Value 
SR update frequency 30s 
Size of load index dissemination message 11bytes 
Size of proximity measurement query 18bytes 
Timeout period for proximity measurement 1000ms 
UDP packet loss rate 0.3 
Average network delay 100ms 
Average inter-CDN delay 200ms 
Alarm threshold 80% of a server’s utilization 
Traffic (end-user) distribution kxkxkxf ≥>= −−  ,0 , ,)( 1 αα αα  

CDN Web servers. We have implemented the CDN servers as a set of facilities4 

that provide services to end-user requests. We have configured the servers according 

to the specifications from Fourth Quarter 2006 SPECweb2005 Results5. Table 5.4 

summarizes the configurations of the Web servers. To anonymize this list, we have 

assigned a numeric identifier in the form WSi, i∈{1,2,...,M} to each server. We have 

used the domain part of the DNS name to distinguish between providers and as-

signed a provider identifier in the form CDNj, j∈{1,2,...,N} to illustrate which server is 

acquired from the same CDN provider. It has been found by Amini et al. [9] that a 

CDN provider may deploy unique IP addresses to its geographically diverse servers. 

Therefore, the distribution of the list of simulated Web servers follows such deploy-

                                                 
4 Each facility is a simulated resource with a single server and a queue for waiting requests. 
5 Standard Performance Evaluation Corporation. http://www.spec.org 
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ments. Column 4 of Table 5.4 presents the capacity of the Web servers, expressed as 

their ability to serve the maximum number of requests/second. To calculate the ca-

pacity for each server, we normalize the total number of multiple user sessions 

(SPECweb2005 reported performance) by the number of connected client machines as 

reported in the results. We model the servers to follow different service distributions 

with parameter values representative of the reference scenario. Column 5 specifies 

the used service distributions along with their PDFs and associated properties. 

Table 5.4: Configuration of the simulated CDN Web servers. 

Server 
ID 

Provider 
ID 

System 
Properties 

Capacity 
(Req/s) 

Service Distribution, 
PDF and Properties 

WS1 CDN1 
Dell PowerEdge 2950, Intel 
Xeon 5160 Processor 906 Pareto, 1−−ααα xk  

α = 1.25, k = 1 

WS2 CDN1 
Dell PowerEdge 2950, Intel 
Xeon X5355 Processor 1052 Pareto, 1−−ααα xk   

α = 1.25, k = 1 

WS3 CDN1 
Dell PowerEdge 860, Intel 
Xeon 3070 Processor 506 Pareto, 1−−ααα xk  

α = 1.25, k = 1 

WS4 CDN2 
Fujitsu PRIMERGY TX150 S5, 
Intel Xeon3060 Processor 200 

Log-normal, 2

2

2
)(ln

22
1 σ

µ

πσ

−− x

e
x

 

µ = 0.9681, σ2 = 1.5846  

WS5 CDN2 
Fujitsu PRIMERGY TX300 S3, 
Intel Xeon5355 Processor 

310 
 

Log-normal, 2

2

2
)(ln

22
1 σ

µ

πσ

−− x

e
x

 

µ = 0.9681, σ2 = 1.5846 

WS6 CDN3 
HP ProLiant DL145 G2, AMD 
Opteron 285 Processor 471 

Hyper-exponential, ∑
=

−
n

i

x
ii

ieP
1

λλ   

µ = 0.5967, σ2 = 2.6314 

WS7 CDN1 
HP ProLiant DL380 G5, Intel 
Xeon 5160 Processor 552 Pareto, 1−−ααα xk  

α = 1.25, k = 1 

WS8 CDN3 
HP ProLiant DL585 G2, AMD 
Opteron 8212 Processor 624 

Hyper-exponential, ∑
=

−
n

i

x
ii

ieP
1

λλ   

µ = 1.65, σ2 = 3.70 

WS9 CDN3 
HP ProLiant DL585 G2, AMD 
Opteron 8220 Processor 843 

Hyper-exponential, ∑
=

−
n

i

x
ii

ieP
1

λλ   

µ = 1.10, σ2 = 5.65 

WS10 CDN4 
HP ProLiant DL585, AMD 
Opteron 885 Processor 660 

Erlang, 
)!1(

1

−

−−

k
ex xkk λλ  

µ = 4.529, σ2 = 0.321 

The response load of a Web server (LoadMetric) is expressed as a product of its utili-

zation in [0, 1] at a given time during simulation and the maximum number of served 
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requests/second (capacity). We use an asynchronous feedback mechanism, which 

assists the Web servers to trivially measure their actual loads and periodically update 

them in the SR. If a server’s load exceeds a given alarm threshold, it signals the me-

diator to perform load distribution. A normal signal is sent when the load returns 

below the threshold. The use of such an asynchronous feedback mechanism suffices 

to consider a server as a candidate for receiving requests only if that server has not 

declared itself critically loaded. 

CDN servers (facilities) have no queuing delay, since they are configured to have 

high capacity and large bandwidth. This approach leads to the logical implication 

that servers in the simulation can handle any size of load. This assumption is neces-

sary to deal with request arrivals with very large processing requirements [8]. The 

load distribution algorithm deployed in the mediator decides, upon receiving an 

alarm signal, whether a server is overloaded or not, depending on its load informa-

tion from the global load table maintained by the distributed SR. 

Distributed SR implementation. There is a distributed implementation of the SR 

in our simulation, wherein each CDN has an SR instance to get the load status of its 

Web servers. Once a peer delegates a set of its servers to define the subCDN, the 

real-time state of each surrogate is passed to a global load table of the SR using stan-

dard load metrics (LoadMetric). The global load table stores the overall state of the 

servers in the peering arrangement using a tuple (Web Server, LoadMetric). 

Two key data structures are maintained to realize the distributed SR implementa-

tion. First, each SR instance in a peer is responsible for keeping a local copy of the 

load status of its servers. Load index is not necessarily propagated straightaway to 

the CDN peering system. Second, the primary CDN maintains a global load table to 

store the system load. Therefore, it globally communicates load index amongst the 

peers so that intelligent load distribution decisions may be made. The asynchronous 

feedback by the servers is used for consistency of global load information. Such 

best-effort data consistency mechanism allows proceeding with the operations with-

out querying the servers for updated load index. Thus, the servers are made to 

decide on the tradeoff between serving requests and updating load information. 
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Maintaining a data structure for the global load table in the primary CDN may 

seem infeasible with regard to security and fault tolerance. However, assuming a set 

of trustworthy participants, mendacious behavior from a provider, posing security 

threats, is not expected to be usual. This assumption can be justified by the fact that a 

given peering arrangement is likely to contain a handful of providers. The overhead 

of load update messages could be high if a large number of Web servers from the 

participating CDNs are present in the system. Nevertheless, at an instant it is 

unlikely to have more than a few hundred or thousand nodes in a peering arrange-

ment from a small number of participants. The other mitigating factor is that load 

information is updated periodically and the only data that needs to be sent is a few 

bytes of load index. For example: a total number of 1000 servers in a peering ar-

rangement, 30s update frequency and 11bytes of data transfer for each load table 

entry “WebServer_ID LoadMetric” will lead to about 22KB/min, or < 0.5KBps for the 

messaging overhead due to the asynchronous feedback by the servers to the SR. 

 

Figure 5.5: Operations of the mediator. 

Mediator. Figure 5.5 illustrates the workings of the mediator, which is simulated 

to act as an authoritative entity in a given peering arrangement. It monitors the 

global load table to get Web servers’ status and uses the pinger logic to get their 

network proximity information, in terms of round-trip response time (in millisec-

onds), assuming that they are directly correlated. The pinger logic uses the User 

Datagram Protocol to send an 18bytes proximity measurement query (as UDP packet) 

of the format “PING Time CRLF” to each Web server for the network proximity 

measurement. Time represents the timestamp when query is sent and CRLF repre-
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sents the carriage return and line feed characters that terminate the query message. 

We also set a timeout period of 1000ms to check whether the servers are reachable. 

Thus, along with the proximity measurement, the pinger logic tests a Web server’s 

ability to respond to a proximity measurement query, as well as its level of respon-

siveness under the current load. 

 
Figure 5.6: Network proximity measurement. 

The evaluation of network proximity among end-users and edge servers is a 

function of network topology and dynamic link characteristics. Therefore, the pinger 

logic is deemed to be located close to the users so that the mediator ideally can have 

the same view of the network status as the user’s browser (Figure 5.6). This approach 

allows estimating, reasonably accurately and possibly offline, the network proximity 

between the user and CDN Web servers. It may appear that this approach leads to a 

load distribution system that does not scale enough as it requires an instance of 

pinger logic to be placed close to each of the numerous number of users in the Inter-

net. However, in practice it is observed that most of the end-users make use of a 

proxy server which filters Web accesses through caching. Content that is not avail-

able in the proxy server is retrieved from the origin server(s) and stored locally in a 

cache. Additional requests for the same content are served by the proxy until the ex-

piration time after which the content is considered ‘stale’. Therefore, the scalability 

problem can be solved by placing the pinger logic in the proxy server. This solution 

is feasible because the pinger logic is activated by the mediator for network prox-

imity measurement only when the requested content is not in the proxy cache. 
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Network congestions. In order to consider the impact of network congestions on 

load distribution strategies, we model two types of networks delays, namely, in-

ter-CDN and intra-CDN delays. In addition, for network proximity measurement we 

have simulated the UDP packet loss (LOSS_RATE = 0.3) due to network congestions. 

Intra-CDN delays have three components: (i) minimum round-trip time between 

server and the user browser, (ii) queuing delays at the mediator6, and (iii) packet 

transmission time for each link on the user browser and CDN Web server path. 

While (i) and (ii) are measured through simulation, (iii) is modeled as average net-

work delay of 100ms. Inter-CDN delays are random variables that model 

communication latency between different geographical CDN domains. The In-

ter-CDN delays are 200ms in average. Within the simulation model, we do not 

characterize the delays spent for address resolution of Web servers. 

End-user traffic. User requests are implemented as CSIM processes7. We assume 

that users request content via their own browsers to the CDN, according to the same 

client-side policy. The hidden load weight [62] is implicitly taken into account 

through the user distribution, as requests to different CDNs are properly weighed 

and are distributed to the servers, according to a Zipf distribution with parameter α 

= 0.8, corresponding to a highly skewed function [61, 169]. 

Alike the Internet access workloads, end-user requests show self-similarity. A 

self-similar process has observable bursts in all time scales. It exhibits long-range de-

pendence, where values at any instance are typically correlated with all future values. 

This self-similar nature can be described by using a heavy-tailed distribution [68, 69]. 

Therefore, we model the end-user requests to each CDN server to follow a highly 

variable Pareto distribution with the PDF, 

kxkxkxf ≥>= −−  ,0 , ,)( 1 αα αα  

where the weight of the tail of the distribution is determined by α < 2. 

With this model, a realistic simulation environment for CDN peering is achieved. 

                                                 
6 The queuing delay at the mediator occurs for any possible congestion during load distribution in the 
CDN peering system. 
7 CSIM processes are objects, based on Java threads, which make use of simulated resources. 
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Table 5.5: List of Performance indices. 

Performance Index Description 

Concurrent     
flows 

Number of ongoing requests at each server. A desirable scheme 
should always keep the number below each server’s capacity limit. 

Completions Number of completed requests at each server. It is used to evaluate the
performance of the proposed resource discovery mechanism. 

Rejection rate The percentage of dropped requests due to service unavailability. It 
assists in investigating the service disruptions in each scheme. 

Utilization 
A server’s utilization in [0, 1] as reported by the load monitoring 
apparatus. It is used to demonstrate the performance of the proposed 
redirection scheme. 

Maximum      
utilization 

Highest utilization at a given instant among all primary CDN servers. 
It is used to emphasize the impact of redirection on load distribution 
of primary CDN servers. 

Cumulative 
frequency of 
maximum  
utilization 

The probability that the maximum utilization of the primary CDN is 
below a certain value. It is a major performance criterion which de-
termines whether the primary CDN is overloaded or not, by focusing 
on the highest utilization among all primary CDN servers. 

5.4.2 Schemes and Metrics for Comparison 
Traditional use of DNS scheduler for load balancing generally applies the 

Round-Robin (RR) algorithm to map requests to servers [62]. Therefore, we use an 

RR-based and a probabilistic version of this policy to assess the effectiveness and to 

evaluate the performance of our approach. We also use a simple deterministic 

scheme for comparison purposes. Specifically, we experiment with the follow poli-

cies: LD_RR, LD_PRR, and LD_LL. When incoming load exceeds the alarm threshold, 

the LD_RR policy uses a Round-Robin approach to redirect excess requests to all 

available underloaded servers in a cyclic order. The LD_PRR policy is a variant of the 

LD_RR policy. The basic idea is to make probabilistic round-robin type assignment to 

the servers. The probability is based on the residual capacity of servers in a given 

peering arrangement using the latest server load index. For this purpose, we generate 

a random number υ (0 ≤ υ ≤ 1), and under the assumption that i–1 is the last chosen 

server, we assign the new requests to server i with loadmetric (utilization) ui, only if υ 

≤ ui. Otherwise, we skip the server i and consider i+1 repeating the same process. The 

LD_LL policy uses a trivial approach that performs load distribution by redirecting 
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excess requests to the least loaded server. Just for comparison purpose, we also con-

sider no redirection, which tries to assign requests to the closest server without 

considering the load. Table 5.5 lists the performance indices that are used in the ex-

perimental evaluation. 

5.5 Experimental Evaluation 
In this section, simulation results are presented to evaluate the performance and to 

provide critical assessment of our approach. We run our experiments for the refer-

ence simulation model of Section 5.4, with one provider as primary (CDN 1) and 

others as peers. Results are obtained from ten simulation runs, where the duration of 

each run is determined by the run length control algorithm built in CSIM. On aver-

age, each run counts for 10000s (approximately 3 hours) of the system activities. 

While our simulations are designed to converge to the “true solution” of the 

model, running the experiments for a finite amount of time may not produce the ex-

act true solution. However, choosing the right length of a simulation run is not 

obvious. Overly short simulation runs result in highly inaccurate performance statis-

tics, whereas too long simulation runs unnecessarily waste computing resources and 

delay the completion of the simulation study. This problem can be address by esti-

mating a confidence interval that is a range of values in which the true answer is 

believed to lie with a high probability. Therefore, we have calculated confidence in-

tervals in order to show the accuracy in the results of simulation output. In our case, 

confidence interval with 95% confidence level is estimated to be within 4% of mean. 

5.5.1 Traffic Load on Servers 
Figure 5.7 shows the number of connections at each server. By keeping track of the 

concurrent flows at each server, we examine the performance of load distribution. 

These results indicate whether a scheme can keep the number of active connections 

(requests) to each server below respective capacity limit. For the clarity of presenta-

tion, we plot samples after each simulation run, using two scalesScale 1 and Scale 

2to show the concurrent flows at servers of the primary and peers, respectively. 
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Figure 5.7: Number of concurrent requests for each scheme. 

Server load is not taken into account in the no redirection policy and user re-

quests are sent to the closest server. Hence, from Figure 5.7(a) we observe that the 

load at a few servers, in the primary CDN domain, grows significantly. For example: 
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throughout the simulations, Server 1 and Server 2 receive more requests than their 

capacities. Unless they are provisioned with enough capacity to serve more concur-

rent connections, they will end up dropping many requests. In Figure 5.7(b), we see 

that LD_RR performs some load distribution by sending extra requests to the under-

loaded servers. However, it does not take cost (in terms of traffic load and proximity) 

into account and can potentially lead to high redirection cost. 

Figure 5.7(c) presents the performance of LD_PRR. Since it assigns some prob-

ability to the underloaded servers based on their residual capacity, it redirects more 

requests to the server(s) with high probability. Therefore, it performs some load dis-

tribution but may cause sudden surge to a particular server, thus leading to 

imbalance load situations. For example: during simulation time 8 and 10 (x10000s), 

Server 1 receives many more requests than its capacity. LD_LL does not perform well 

as it fails to distribute loads to multiple servers. As for instance, from Figure 5.7(d), 

we observe that as simulation time passes, Server 1 receives more requests than its 

capacity, specifically, during simulation times 2, 4, 6, and 8 (x10000s), and Server 7 

constantly receives extra requests than that it can handle. 

In Figure 5.7(e), we present the performance of LD_minCost. The main objective 

of LD_minCost is to redirect extra requests in an imbalanced load situation, mini-

mizing the redirection cost in terms of traffic load and network proximity, without 

violating the (practical) server capacity constraints. We observe that none of the pri-

mary CDN servers operate beyond their capacity during simulations. In order to 

prevent wide oscillation in the load distribution decisions, incoming requests to the 

primary CDN stay within its domain as much as possible and only cross the in-

ter-CDN barrier during excessive load imbalance. Since redirection cost is taken into 

account, requests are served by the least loaded optimal servers, in terms of network 

cost. As a result, a few primary CDN servers receive only relatively few requests, 

while other better located servers run close to their capacity. In addition, request re-

jections are minimized as LD_minCost leads to optimal server selections. Moreover, 

any dynamic load changes, e.g. sudden load increase in Server 9 at simulation time 5 

(x10000s), are also taken into account and load is distributed in a timely fashion. 
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Therefore, our approach performs well even under high traffic surges such as flash 

crowds. 
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Figure 5.8: Number of completed requests at each server in different schemes. 
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Figure 5.9: Total completions in each scheme. 

5.5.2 Number of Completions 
Now we evaluate the efficiency of our approach in terms of request completions. 

Figure 5.8 presents the average number of completed requests at each server over the 

simulation runs. It is found that in comparison to other alternatives, our approach is 

susceptible to handle more requests during load imbalance. LD_LL shows the worst 

performance among all the schemes. With no redirection, each CDN server attempts 

to serve the incoming requests to it, without any provision to redirect the request to a 

peer’s server. Although servers are over-utilized during load imbalance, it does not 

perform well to serve all the incoming requests. Notably, LD_RR and LD_PRR show 
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almost similar performance in terms of the number of completions at each server. 

While it is expected that LD_RR and LD_PRR would exhibit better performance than 

no redirection, they perform as poorly as the no redirection policy. This is because 

many requests are dropped due to service disruptions. We further elaborate on this 

aspect with supporting results in the next section. 

Figure 5.9 demonstrates a similar trend, which presents the total completions in 

the CDN peering system for different schemes. As adverted, LD_minCost assists in 

serving the highest number of requests collectively in the CDN peering system. 

LD_RR and LD_PRR, along with no redirection demonstrate almost similar per-

formance in terms of the total completions. As expected, LD_LL performs the worst 

and leads to serving the least number of requests in the system. 
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Figure 5.10: Service rejection rate for each scheme. 

5.5.3 Service Disruptions 
In this section, we investigate the impact of service unavailability for each scheme. 

Our redirection scheme directs comparatively more requests during load imbalance. 

On the contrary, LD_RR, LD_PRR, and LD_LL do not show a high redirection per-

centage under traffic surge. Eventually, many requests are dropped as incoming 

requests arrive to a primary CDN server and find that the server is operating at its 

highest capacity. Thus, the inability to redirect more requests due to limited server 

capacity leads to significant service disruptions in these schemes. It is evident from 
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Figure 5.10, which presents the percentage of disrupted services for each scheme, in 

terms of the average service rejection rate. In order to compute this performance met-

ric, we first calculate the rejected service ratio as the number of requests that yielded 

a negative response (i.e. the system has not found a resource to serve this request), 

over the number of incoming requests. We then computed the average service rejec-

tion ratio as the average value over the number of total requests in the system. Figure 

5.10 is obtained with a fixed number of 100,000 requests. From the figure, we observe 

that LD_minCost clearly outperforms other schemes, by exhibiting the lowest service 

rejection rate. 
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Figure 5.11: Server utilization for each scheme. 

5.5.4 Server Utilization 
We use utilization to determine whether the primary CDN servers operate under an 

acceptable level of load during high traffic surges. Figure 5.11 presents the utilization 

of the primary CDN servers for each request-redirection scheme. We observe that 

LD_minCost performs better than other redirection schemes for load distribution of 

the overloaded primary CDN servers. With no redirection, most of the primary CDN 

servers receive excessive traffic and utilization stays over the alarm threshold (80% of 

a server’s capacity). While LD_RR and LD_PRR demonstrate similar characteristics to 

perform some load balancing, none of them reduces utilization of all the primary 

CDN servers below the threshold. LD_LL policy fails to perform load distribution 

among multiple servers and always overloads Server 1 and Server 2. On the other 

hand, LD_minCost exhibits the best performance by reducing the utilization of all the 
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primary CDN servers below the threshold. Since requests stay within the primary 

CDN domain as much as possible to minimize redirection cost, a better located 

server, e.g. Server 3 in Figure 5.11, may show more utilization than its allies. How-

ever, still the primary CDN operates under an acceptable level of load. It is also 

evident from Figure 5.12, which presents the average utilization of the primary CDN 

in each redirection scheme. LD_RR, LD_PRR, and LD_LL do not reduce the average 

utilization significantly below the threshold. Therefore, with these schemes primary 

CDN servers may be unable to receive more requests during sudden excessive traffic 

(flash crowds) in future and thus requests may have to be redirected outside the do-

main. With LD_minCost the average utilization of the primary CDN system is 

significantly brought down and makes its servers possible to cope up with succeed-

ing traffic outbursts. 
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Figure 5.12: Average utilization of the primary for each scheme. 

5.5.5 Redirection Performance 
We investigate the impact of our request-redirection scheme on avoiding a primary 

CDN server that is overloaded. Hence, we do not adopt traditional metrics such as 

the standard deviation of server utilization for this purpose. We rather evaluate the 

performance of the request-redirection policies through the maximum utilization ob-

served during a simulation run. The main performance metric we use is the 

cumulative frequency of maximum utilization, i.e. the probability for each utilization 

level that all server utilizations stay within that level. This metric provides an indica-

tion on the relative frequency of overloading. As for instance, a probability value of 
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0.8 for all servers to be less than 90% utilized implies that at least one server exceeds 

the 90% utilization level with probability 0.2. 
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Figure 5.13: Comparison of the request-redirection schemes. 

Figure 5.13 summarizes the performance of the request redirection schemes in 

terms of cumulative frequency of maximum utilization of the primary CDN servers. 

It shows that LD_minCost has a probability of 1.0 for not causing any primary CDN 

server to exceed 80% utilization (alarm threshold). From the figure we can see that 

other schemes such as LD_RR, LD_PRR and LD_LL do not perform well. Specifically, 

they exhibit a probability of 0.5 of not causing any Web server to exceed the thresh-

old. Moreover, as predicted, with no redirection there is very low probability of only 

0.25 that primary CDN servers will operate under the threshold. 

5.5.6 Sensitivity Analysis 
The performance of the redirection schemes can also be evaluated as a function of 

system parameters. We conduct a sensitivity analysis for the primary CDN, consid-

ering critical parameters such as utilization and traffic distribution. Changing other 

system parameters, such as the average number of requests or total simulation time, 

does not show noticeable differences among the redirection approaches. Therefore, 

we do not present those results here. 

In Figure 5.14, we compare the sensitivity to the utilization for the primary CDN 

in each redirection scheme, using the probability that no server in its domain is over-

loaded as the performance metric. Therefore, we vary the alarm threshold from 0.75 

to 1. We observe that our redirection scheme, LD_minCost, shows the best result in 
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all cases. Analogous conclusion can be drawn when we vary the distribution of users 

among the CDN servers, and obtain results based on 90% of the maximum utilization, 

i.e. the Prob(Maximum Utilization < 0.9). Figure 5.15 shows the probability that no 

server has a utilization higher than 90% as a function of the shape parameterα, which 

is varied from 1 (high variability) to 2 (moderate variability). Here, the performance 

metric (threshold) is changed from 80% to 90% to show the novelty of our scheme 

even under highly variable end-user request pattern. 

0

0.2

0.4

0.6

0.8

1

0.75 0.8 0.85 0.9 0.95 1

Utilization [Primary CDN]

Pr
ob

 (N
ot

 O
ve

rlo
ad

ed
 S

er
ve

r)

LD_RR
LD_PRR
LD_LL
LD_minCost

 
Figure 5.14: Sensitivity to utilization. 
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Figure 5.15: Sensitivity to traffic distribution. 

5.6 Summary and Conclusion 
In this chapter, we present resource discovery and request-redirection algorithms for 

a dynamic load distribution strategy, which alleviates any load imbalance in the 

CDN peering system. Resource discovery in our approach follows a distributed and 
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asynchronous nature, using a communication protocol that conservatively imple-

ments the publish/subscribe paradigm. In addition, request-redirection occurs over 

distributed sets of servers, minimizing redirection cost. Specifically, in our approach, 

when any Web server in a CDN peering arrangement reaches an overload condition 

exceeding the alarm threshold, the load distribution strategy reacts to redirect loads 

by selecting available least loaded server(s), while not compromising network prox-

imity. We validate our proposal with the aid of simulations, considering practical 

constraints and significant system parameters; and demonstrate its performance us-

ing metrics such as the number of ongoing connections, number of completions, 

service disruptions, server utilization, and the cumulative frequency of maximum 

utilization. We also perform a sensitivity analysis of our redirection scheme by taking 

critical system parameters into account. 

Our approach is novel as it seeks to perform load distribution in the CDN peering 

system through distributed resource discovery and dynamic request-redirection, 

taking network cost (in terms of load and network proximity) into account, and cop-

ing up with the practical constraints in the CDN domain. Our approach can alleviate 

problems with the commonly used DNS-dispatching policies for load balancing that 

do not provide sufficient control on end-user requests, e.g. it can have control on as 

little as 5% of requests in many instances [62]. Moreover, DNS-dispatching is less 

useful for fine-grain server selections. In contrast, we achieve a significant level of 

granularity, since the actual user requests (eyeballs) are redirected during load dis-

tribution among the servers in a CDN peering arrangement. Our approach endeavors 

to produce optimal server selections, even under high load skews. 

Although there are many advantages, the proposed load and proximity-aware 

request-redirection scheme has some downsides. Since the actual user requests are 

redirected, it may incur additional round-trip latency. Specifically, fine-grain redirec-

tion for small objects may increase the latency. However, our approach is particularly 

beneficial for the delivery of large objects, e.g. software downloads, large on-demand 

files, and live streaming. It can be backed up by the evolving creation of more and 

more large Web content and media streaming integration in CDNs. 
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There is room for further improving our approach in terms of communication 

cost. While the asynchronous feedback mechanism has little communication over-

head, it may suffer from unnecessary message passing at periods when the traffic 

load metric remain stable. As an alternative, we can use a triggered update strategy, 

where updates are triggered by the CDN servers as soon as they discover a potential 

change (measurement of old and new utilization and check whether it exceeds alarm 

threshold) in the end-user request patterns. Consequently, the communication over-

head in the system is further reduced from periodic update, in order of the number 

of bytes/second. 

Our approach could be aided with a market model that reflects the QoS-oriented 

aspects (user demand and satisfaction) for request servicing. This model can be used 

to analyze the sensitivity of performance metrics such as expected net utility [141, 204] 

of the involving entities with respect to various system parameters. Specifically, in 

the next chapter, we introduce a utility model for CDN peering and provide analysis 

on the measured content-serving ability of the system. This analysis provides incen-

tives for the exploitation of different system parameters for a better CDN peering 

system design.
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Chapter 6  

Utility of CDN Peering 
In addition to the ability to handle workload variations and thus allowing providers 

to expand their reach and capacity, recent trends foster the need for a utility model 

for the CDN peering system. Such a model endeavors to provide transparency, high 

availability, reduced investment cost, and improved content delivery performance. 

This chapter introduces a utility model and measures the content-serving ability of 

the CDN peering system. The proposed model provides a customer view of the 

system’s health for different traffic types. It also captures the traffic activities in the 

system and helps to reveal the true propensities of participating CDNs to cooperate 

in peering. Through extensive simulations we unveil many interesting observations 

on how the utility of the CDN peering system is varied for different system parame-

ters and provide incentives for their exploitation in the system design. 

6.1 Introduction 
The main value proposition for traditional CDN services has shifted over time. Ini-

tially, the focus was on improving end-user perceived experience by decreasing 

response time, especially when the customer Web site experiences unexpected traffic 

surges. Nowadays, CDN services are treated by content providers as a way to use a 

shared infrastructure with improved utility to handle their peak capacity require-

ments, thus allowing reduced investment cost in their own Web site infrastructure. 

Moreover, recent trends in CDNs indicate a large paradigm shift towards a utility 

computing model [39], which allows customers to exploit advanced content delivery 

services without having to build a dedicated infrastructure [92, 207]. Utility refers to 
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the quantification of a CDN’s traffic activities and represents the usefulness of its 

replicas in terms of data circulation in its distributed network. It is vital as system 

wellness greatly affects the content delivery performance to end-users [163]. 

The CDN peering system is a type of content-utility system [207], characterized as 

offering efficient content delivery services with high availability, transparency, and 

improved performance without requiring content providers to build or manage 

complex infrastructure themselves. In this chapter, we exploit a utility-based privi-

leged provider model to capture the content-serving ability of the CDN peering system 

via a utility measure. This is a monopolistic-natured model, where a CDN that initi-

ates peering, i.e. primary, has the exclusive authority in the system. The measured 

utility can be translated into the usage benefits from the system. The simulation 

analysis of the proposed model reflects on the impact of system parameters on utility 

and provides insights for the CDN peering system design. 

6.2 Motivation and Scope 
Several recent trends demonstrate the emergence of the utility models for CDNs and 

general Web applications in the Internet. However, analysis of the prior work reveals 

only a modest progress in evaluating the utility for CDN peering. Prior work reflect-

ing the utility computing notion mostly focus on the design and development of a 

utility computing platform. Specifically, Gayek et al. [92] provide an architectural 

framework for Content Serving Utility (CSU). Along with the component description, 

they provide performance results and key issues for designing and deploying the 

CSU. Subramanya et al. [207] propose a content-utility model for digital content de-

livery. They detail on the system overview and characterize its features. Canali et al. 

[39] present a Web-based utility computing model for Internet applications. They 

describe the approaches and challenges related to the design and development of a 

utility computing platform for CDNs. Our work is in line with these research efforts; 

however, we differ in that we not only provide an overview of the utility model for 

the CDN peering system, but also quantify the perceived utility. 

There also exist research initiatives to perform simulation-based evaluation of 
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utility, as described in previous work [141, 204]. While the first explores a util-

ity-based cumulative reputation system to encourage cooperation in a Peer-to-Peer 

(P2P) network, the latter set forth the usefulness of replicas and examine how single 

CDN utility is affected by various parameters. Our work is complementary to these 

work, as we provide simulation analysis of the proposed utility model for the CDN 

peering system. We differ by utilizing a privileged provider model to capture the 

content-serving ability of the system. We also reveal the impact of system parameters 

on the utility of CDN peering. 

We foster the necessity and success of a well-designed content-utility system to 

provide highly scalable Web content delivery over the Internet. Utility of content de-

livery services can be measured using a representative metric that captures the traffic 

activities in a CDN, expressing the usefulness of its replica servers [204]. In the con-

text of CDN peering, utility refers to the quantitative measure of the system-specific 

perceived benefit for content delivery. Customers interact with the CDN peering 

system in a limited number of ways and have little experience of the associated com-

plex technologies. The responsibility of ensuring high performance content delivery 

is largely on the CDN peering system itself. Therefore, a comprehensive analysis of 

the impact of several system parameters on utility is important to improve the sys-

tem’s content-serving ability. 

6.3 Utility Model for CDN Peering 
The CDN peering system can be interpreted as a content-utility system [207], as 

shown in Figure 6.1. It comprises three main entities―customers, service providers, and 

consumers. Under this model, a provider can adjust resource provisioning for its con-

tent delivery services dynamically based on end-user demand. 

Content providers are responsible for creating content, processing it to conform 

to certain formats, and developing content metadata. The CDN peering system as a 

service provider encapsulates several distinct CDN providers with storage and rep-

lication services to provide and manage content storage; network and 

communication services to enable swift and seamless transfer of content over com-
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munications and data networks; and content delivery services to ensure easy and ef-

fective content consumption. Finally, consumers interact with the system by 

specifying the content/service requests through cell phone, smart phone/PDA, lap-

top, and desktop. 

 
Figure 6.1: The CDN peering system as a content-utility system. 

Figure 6.2 shows the major operational steps in the utility model for CDN peering. 

The system first captures/generates content from the customer (content provider). 

The generated content is then processed, indexed, and stored for online access. Upon 

receiving end-user requests for content, peers’ resources are discovered using a 

communication protocol, reminiscent of the publish/subscribe paradigm (Chapter 5: 

Section 5.2.1). Under traffic surges, request-redirection is performed from the pri-

mary to the least loaded servers of peers. Consequently, the system then delivers the 

requested content to consumers in a swift and cost-effective manner. Once the system 

is fully in operation, its utility is disclosed to indicate to what extent it could fit an 

individual content provider’s needs. 

 
Figure 6.2: Major operational steps in the content-utility system. 

An important benefit of this content-utility model is the availability of several 

services to enhance content usage and enrich end-users (consumers) experience with 

minimal burden. It also allows content providers (customers) to seamlessly interact 
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with the CDN peering system. The benefits for the CDN providers include the op-

portunity to exploit the availability of powerful, cost-effective services that offer 

customized content delivery. 

6.3.1 Content-Serving Utility 
To quantify the usage benefits of CDN peering, we develop metrics to measure its 

content-serving utility. Let us consider a CDN peering system comprising N replica 

servers from multiple participants, with the primary CDN having exclusive right to 

redirect requests for content. We use R = {rj}, j∈{1, 2, …, M} to denote the set of user 

requests, with rj being the j-th arriving request to the system. A utility metric uij ex-

presses the value gained by a server i for serving an assigned request rj according to 

the specified service requirements, i.e. 



 =

=
 Otherwise0

1 iff   iji
ij

xu
u  

where xij is the indicator variable to determine whether request rj is assigned to 

server i according to the service requirements. 

The most useful replicas for the CDN peering system are those exhibiting the 

highest utility. In this regard, we have drawn inspiration from Mortazavi and Kesidis 

[141], who use the notion of net utility to study the reputation of a node in a P2P sys-

tem. We quantify the utility of a replica server with a value that expresses the relation 

between the number of serviced content requests against the number of rejected con-

tent requests. It is bounded to the range [0, 1] and provides an indication of the traffic 

activity. Formally, we quantify the utility ui of a replica i to serve the assigned re-

quests by using the following equation: 

)arctan()/2( ζπ ×=iu  (6.1)

The main idea behind this metric is that a peer’s replica is considered to be useful 

(high utility) if it serves content more than it rejects, and vice-versa. The parameter ζ 

is the ratio of the serviced requests to the rejected requests, 
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ζ = No. of serviced requests / No. of rejected requests (6.2)

The arctan function in (6.1) assists to obtain scaled resulting utility in the range [0, 

1]. The value ui = 1 is achieved if the replica does not reject any request. It can happen 

when the replica is working well under its capacity (i.e. almost idle) and ready to re-

ceive more content requests (yielding ζ = ∞). The value ui = 0 is achieved if the server 

is down and/or overloaded and cannot serve any request (ζ = 0). In case of equal 

number of serviced and rejected requests, the resulting utility is 0.5. Ideally for the 

CDN peering system, the most cooperative replicas are those with high utility values.  

By using individual server utility values and assuming that the requested content 

delivery services have been performed, we can compute the utility of the CDN peer-

ing system by taking the mean value of the yielded replica utilities. We refrain from 

using weighted average for this purpose as our aim is to reveal the true propensity of 

a CDN to cooperate in peering. For a CDN peering system governing N replicas from 

multiple providers, the content-serving utility UP is: 

NuU N

i iP ∑=
=

1  (6.3)

The obtained utility using (6.3) can be translated into the content-serving ability 

(durability) of CDN peering. A highly durable CDN peering system exhibits high util-

ity. This quantitative measure provides an indication of the effectiveness (health) and 

usage benefits of the system to content providers. 

6.4 Evaluation Methodology 
A schematic representation of the methodology used to evaluate the utility of CDN 

peering is provided in Figure 6.3. Herein we exploit the resource discovery and re-

quest-redirection mechanisms presented in Chapter 5. The simulation methodology 

realizes a privileged provider model (Figure 6.3(a)), with the primary CDN having 

the authoritative right over the resources it has acquired―which are delegated rights 

for the peers’ physical resources. Content requests from end-users arrive to the Re-

quest Routing System (RRS) of the primary CDN. For certain content requests, under 

peak load or traffic surges (during a flash crowd event), users are redirected to the 
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least loaded server(s) of peers. Prior to redirection, matching of service requests and 

responses is performed to find target peers. Upon resource discovery, excess requests 

are offloaded to peers’ server(s) in a cost-effective manner (in terms of traffic load 

and network proximity). To ensure scalability, redirection is performed in a per-flow 

manner, i.e. an optimal server is selected to accommodate multiple user flows. Re-

quests for the same content from the same user group are aggregated and routed to 

the selected server(s). Any load imbalance in the system is alleviated through the re-

peated use of dynamic request-redirections [162] (Chapter 5). 

(2) Service requests and 
responses

(1) Request 
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PA CDN 1
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requirements

Primary CDN

.

.

.

RRS

PA

Requests 
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Service Provider 
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(3) Request 
redirection

 

(a) Simulation model 

 

(b) Request servicing and utility measurement by a provider. 

Figure 6.3: A schematic representation of the evaluation methodology. 
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The request servicing and utility measurement methodology in the CDN peering 

system by the selected optimal server of a participating provider is fleshed out in 

Figure 6.3(b). Our approach ensures that requests are serviced by the best responding 

server even under highly skewed load, while shifting traffic away from sites that are 

unreachable or near capacity. Simulations ensure that the system is autonomic and 

self-healing in the sense that if some sites are unusable, it moves traffic to others with 

no manual intervention. Each participating provider (peer) publishes aggregated in-

dividual success rate for satisfying incoming content requests at a time interval 

(epoch) during simulations so that replica utilities and consequent CDN utility can be 

measured. The CDN peering system in turn uses the individual utility functions to 

measure its utility and durability under variable incoming traffic. The outcomes can 

be conveyed to content providers as usage benefits of the CDN peering system. 

6.4.1 Simulation Environment and Parameters 
We resort to simulations to evaluate the utility model of CDN peering. We have used 

the simulator built using the CSIM/Java simulation toolkit, presented in Chapter 5, 

to conduct repeatable and controlled experiments. 

Table 6.1: Parameters used for evaluation. 

Parameter Value 
Number of CDNs 4 
Sets of servers 10 
Server capacity Finite and heterogeneous 

Service distribution 
among servers 

Dissimilar. Pareto: 1−−ααα xk , Log-normal: 2

2

2
)(ln

22
1 σ

µ

πσ
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e
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Hyper-exponential:∑
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x
ii

ieP
1

λλ , and Erlang:
)!1(

1

−

−−

k
ex xkk λλ    

Traffic (end-user) 
distribution kxkxkxf ≥>= −−  ,0 , ,)( 1 αα αα  

Traffic types High to moderate variable, depending on the traffic distribution. 
Class 1 (α = 1), Class 2 (α = 1.2), Class 3 (α = 1.5), and Class 4 (α = 2) 

Agreegated success 
rate refresh interval 1000s 

As stated in Chapter 5, the simulation model is representative of a CDN peering 

environment and it is based on a reference scenario consisting of four CDNs with 
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their sets of servers placed at different geographical locations across the Internet. 

Each CDN has a set of servers and a pool of users to generate its own request stream. 

Users request content via their browsers and make use of a proxy server according to 

the same client-side policy. To take part in peering, each participating CDN defines a 

subCDN with a subset of its resources. To provide an accurate characterization of the 

scenario, we simulate the main system entities―Web servers, mediator, distributed 

Service Registry (SR), network congestions and end-user traffic. Table 2.1 reports the 

indicative system parameters for the simulation model. 

CDN servers are implemented as a set of finite and heterogeneous capacity CSIM 

facilities, which serve incoming requests according to different service distributions. 

They are configured according to the specifications from Fourth Quarter 2006 SPEC-

web2005 Results (Chapter 5). We keep track of the number of active connections at 

the server side to calculate the aggregated success rate during simulations. 

User requests are implemented as CSIM processes. Like the Internet access 

workloads, these user requests exhibit self-similarity. A self-similar process has ob-

servable bursts in all time scales. It exhibits long-range dependence, where values at 

any instant are typically correlated with all future values. This self-similar nature in 

user requests to each CDN Web server is captured by using a heavy-tailed [68, 69] 

Pareto distribution with the following Probability Density Function (PDF): 

kxkxkxf ≥>= −−  ,0 , ,)( 1 αα αα  

where α determines the weight of the tail of the distribution. 

6.4.2 Performance Metrics 
We evaluate the utility of the CDN peering system under four types of request traf-

fic―Class 1 (α = 1), Class 2 (α = 1.2), Class 3 (α = 1.5), and Class 4 (α = 2)―varying the 

request arrival from high (α = 1) to moderate (α = 2) variability. The reason behind 

using different traffic classes is due to the observation that subscribing content pro-

viders can be highly heterogeneous in terms of their traffic patterns and the type of 

content they handle [75]. Hence, end-users request for content of varying sizes 

(ranging from small to large). The processing requirements also vary based on size of 
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the requested content. The use of different traffic types allows us to reflect different 

user preferences and content request types. Consequently, these traffic types deter-

mine the behavior of processing in a given CDN’s service capacity and influences the 

measured utility. 

The primary focus of the study in this chapter is to provide observations on how 

the CDN peering system’s content-serving ability is varied for different system pa-

rameters. The utility of CDN peering is measured according to the model in Section 

6.3.1. Using the notion of utility, we express the traffic activity of the system. High 

utility value not only indicates the proficient content-serving ability of the system, 

but also signifies its durability even under highly variable traffic activities. 

Table 6.2: List of performance indices. 

Performance Index Description 
Utility Content-serving ability, ranges in [0, 1] 
Minimum utility Lowest utility at a given instant in the CDN peering system 
Cumulative frequency 
of minimum utility 

The probability that the minimum utility of the CDN peering 
system is below a certain value 

Response time The time experienced by an end-user to get serviced 
Completions Number of completed requests 
Rejection rate The percentage of dropped requests due to service unavailability 

To emphasize the impact of different traffic types on the measured utility, we re-

port the cumulative frequency of the minimum utility (at a given instant) in the CDN 

peering system. We present for each level of utility the probability (or fraction of time) 

that the system realizes a given minimum utility for a certain traffic class. This metric 

provides an indication of the relative frequency of satisfying user requests for differ-

ent traffic types. For example, if the probability of achieving 0.8 utility is 0.75, it 

implies that there is a probability 0.25 that the system realizes utility below 0.8. 

We also measure the mean response time of each CDN, which specifies the average 

serving time of end-user requests. Lower values indicate fast serviced content. In ad-

dition, we keep track of the number of completions to show how a CDN is susceptible 

to different traffic types. Finally, we use the rejection rate, which depends on the 

number of disruptions due to service unavailability. Table 6.2 summarizes the per-

formance indices that are used in the experimental evaluation. 
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6.5 Experiment Results 
We run our experiments according to the methodology (Section 6.4) for a reference 

scenario (Chapter 5: Section 5.4.1), with one provider as primary (CDN 1) and others 

as peers. Results are averaged over ten simulation runs, where the duration of each 

simulation run is determined by the run length control algorithm built in CSIM. This 

approach endeavors to converge to the true solution of the simulation model in a fi-

nite simulation run. We avoid the adverse effects of both overly short and too long 

simulation runs, which may respectively cause inaccurate performance statistics, and 

unnecessary wastage of computing resources and delays in the completion of the 

simulation study. It is found that each simulation run is for approximately 3 hours of 

the CDN peering system activities. During a simulation run there are epochs of 1000s, 

at which the aggregated success rate of serviced requests is published. For all simula-

tion results, confidence intervals8 are estimated, and the 95% confidence interval is 

observed to be within 3% of the mean. 
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Figure 6.4: Utility measures for different traffic types. 

6.5.1 Request Traffic vs. Utility 
We first present the utility of the participating CDNs for different traffic types 

(Figure 6.4). For a provider, it is a normalized ratio (in [0, 1]) expressing the number 

of serviced requests against the number of rejected requests (Section 6.3.1). Each bar 
                                                 
8 A range of values in which the true answer is believed to lie with a high probability. 
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represents different CDNs, while the bold line represents the utility of the CDN 

peering system as a whole. In general, we observe that altering from high to moder-

ate variable request traffic results in lower to higher utility for the participating 

providers. We revisit this point in more details in the next sections. 

In the CDN peering system, a CDN provider’s utility implicitly depends on the 

number of its allocated servers and their associated service capacities. Moreover, op-

timal server selection using request-redirection [165], taking into account network 

proximity, congestion and traffic load of a server, also impacts the resulting utility in 

a CDN. It should also be noted that the use of different redirection policies by the 

primary to direct requests to the participating peers’ server under different scenario 

may result in different utility values. Figure 6.4 shows that CDN 1 (primary) and 

CDN 3 (a peer) demonstrate higher utility than that of other peers. They contribute 

more servers (with higher capacity) to the system than other peers. In addition, 

server selection results in more requests to be redirected from CDN 1 to the servers 

of CDN 3, identifying it as a peer with close proximity to the primary. 

While CDN 2 does not allocate as many servers as CDN 1 and CDN 3, it still ex-

hibits higher utility than CDN 4. The reason behind this result lies in the difference of 

service distribution and capacity of CDN 4. Moreover, this peer contributes the few-

est servers to the system. Optimal server selection does not produce as many target 

servers from CDN 4 as in other peers. Hence, it can only gain low utility for the fewer 

(in comparison to other peers) redirected requests. This leads to the logical implica-

tion that the contributing server of CDN 4 is distant in terms of network proximity, 

there might be congestion in the network path, and/or it has been suffering high 

traffic load. Our reasoning is justified in Section 6.5.3 with supporting results. 

From Figure 6.4, it can be seen that a low utility value of CDN 4 significantly 

contributes to the overall utility of the CDN peering system. Since the resulting util-

ity of the system is averaged over the individual utilities of participants, without the 

contribution from CDN 4 the system yields more utility value. Therefore, the primary 

may decide to either re-negotiate peering or exclude CDN 4 from peering in order to 

harness better content-serving ability from the system. 
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Figure 6.5: Cumulative frequency of minimum utility. 

6.5.2 Content-Serving Ability 
In this section, we focus on the content-serving ability of CDN peering. For that we 

investigate into detail the impact of different traffic types for the resulting utility in 

the CDN peering system. Figure 6.5 summarizes the effect of request distributions of 

candidate traffic classes on the achieved utility. The main goal is to show to what ex-

tent the system can satisfy user requests. For this reason, rather than adopting 

traditional metrics such as the standard deviation of utilities, we evaluate the pri-

mary CDNs performance under different traffic types through the minimum utility 

observed during simulation epochs. Figure 6.5 shows the cumulative frequency of 

the minimum utility as a major performance criterion. It indicates the probability (or 

fraction of time) that the system is able to achieve a given utility level. From the fig-

ure, it is visible that for moderate traffic (α = 2), CDN peering has a probability of 1.0 

that it can realize little higher than 0.8 utility. The system is susceptible to traffic 

variability and thus exhibits lower utility values for heavy traffic. When the traffic 

distribution is highly variable (α = 1), the finite capacity servers of the participating 

providers fail to serve many requests. Specifically, under this traffic class, the CDN 

peering system can only achieve less than 0.7 utility. It establishes the reasoning that 

the utility of the CDN peering system is heavily dependent on the incoming traffic. 

To report the individual content-serving ability of participants, we use the prob-

ability that the minimum utility is above 0.65, i.e. Prob (Min Utility > 0.65). Figure 6.6 
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presents the sensitivity to traffic distribution for each participating CDNs. We ob-

serve that the primary (CDN 1) realizes invariant performance for any traffic type 

(moderate to highly variable). It exhibits the maximum utility at all times and does 

not go below the minimum utility level. On the contrary, its peers (CDN 2 and CDN 

3) are prone to the variability of incoming traffic. Specifically, they demonstrate di-

minishing performance with heavy traffic. Among all the peers, CDN 4 has the worst 

performance and shows close to 0.4 probability of gaining utility above the minimum 

utility level under heavy traffic demand with high variability. This is due to the fact 

that this peer drops many requests due to service disruptions. We further elaborate 

on the service disruption aspect with supporting results in Section 6.5.4. 
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Figure 6.6: Sensitivity to traffic distribution. 

6.5.3 Response Time vs. Utility 
Figure 6.7 records the utility and mean response time of the participating CDNs. Two 

scalesScale 1 and Scale 2are used to respectively plot the response time and util-

ity of each provider against different traffic types. The mean response time measure 

indicates the responsiveness of an individual CDN and the user perceived experience 

when accessing its servers. 

From the figure it can be noted that response time and utility are inversely related. 

For a low response time, a high utility value could be achieved. For all the partici-

pating providers in the CDN peering system, we observe a similar trend. When a 

CDN is more responsive to incoming requests, end-users comprehend low response 

time, as fewer requests are dropped due to service unavailability. Although it is de-
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sirable to achieve low response time and high utility at all times, variability in the 

incoming traffic impacts the response time and thus leads to higher response time 

and lower resultant utility. In particular, Figure 6.7 shows that the mean response 

time of CDN 2 and CDN 4 are more susceptible to incoming request variability. For 

highly variable incoming traffic (under traffic surges), the end-user perceived re-

sponse times from these providers are increased, thus showing the evidence of likely 

network perturbations and heavy traffic load on their servers. 
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Figure 6.7: Relation between mean response time and content serving utility. 

6.5.4 Service Completions 
Now we investigate how the number of satisfied requests dictates the utility of CDN 

peering. For that we first study the number of request completions and rejections due 

to service unavailability. In our simulation, each server processes requests according 
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to its finite capacity. Figure 6.8 presents the average number of completed requests at 

each server over the simulation runs. It is found that with moderate incoming traffic, 

CDN servers attempt to serve more requests than that of the presence of highly vari-

able request traffic. A similar trend can be observed from Figure 6.9, which shows the 

total completions in each participating CDN and in the CDN peering system. 
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Figure 6.8: Number of completions in each CDN server. 
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Figure 6.9: Total completions in each CDN and in the CDN peering system. 

If a server receives more requests than its capacity, unless it is provisioned with 

enough capacity to serve more concurrent connections, it will end up dropping many 

requests. Since the servers are configured to operate below their finite capacity, they 

suffer from service disruptions under traffic surges with highly variable incoming 

requests. Consequently, many requests can not be served as incoming requests arrive 

to a CDN server and find that it is operating at its highest capacity. Figure 6.10 pre-
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sents the average percentage of disrupted services for different traffic types at each 

epoch during the simulation runs. This figure is obtained with a fixed number of 

1,000,000 requests. Service disruptions are expressed in terms of the average service 

rejection rate. To compute this performance metric, we first calculate the rejected ser-

vice ratio as the number of requests that yielded a negative response (i.e. the system 

has not found a resource to serve this request), over the number of incoming requests. 

We then compute the average service rejection ratio as the average value over the 

number of total requests in the system. From Figure 6.10, it is evident that finite 

server capacities lead to service disruptions, which is more significant for highly 

variable traffic. We observe higher service rejection rate than that reported in Chapter 

5. This difference is realized as we generate more requests than previously, with 

stringent requirements to publish aggregated success rate at regular intervals. 
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Figure 6.10: Service rejection rate in the CDN peering system. 
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Figure 6.11: Total completions and utility for CDN peering. 
Finally, we demonstrate the impact of completions on the utility of the CDN 
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peering system. As conveyed earlier, the total number of completions and resulting 

utility lessens with highly variable traffic types. The observed trend is sensible as the 

number of serviced requests (completions) and associated rejections act as major pa-

rameters in our utility model. The supporting results are presented in Figure 6.11. 

6.6 Summary and Conclusion 
CDN peering is a content-utility system that improves site performance and avail-

ability without requiring content providers to build or manage complex content 

delivery infrastructure themselves. In this chapter, we introduce a utility model to 

measure the availability level and health (content-serving ability) of the CDN peering 

system under variable traffic. This measure is crucial as the system wellness greatly 

affects the delivery and consumption of content. The outcomes can be interpreted as 

the benefits for a content provider to use CDN peering. We also show that our utility 

model can assist to reveal the true propensity of a provider to cooperate in peering. 

 With the aid of simulation experiments, we analyze the impact of system pa-

rameters on the perceived utility. We show that although the CDN peering system 

observes high utility in terms of satisfying content requests, its content-serving abil-

ity is largely dependent on the participating providers utilities. These utilities are 

essentially tailored to individual provider’s service capacity, proximity, network 

conditions, and incoming request traffic. Our observations can be exploited for a bet-

ter system design to cope with high traffic phenomena such as the flash crowd 

events. 

The experiment results are quite encouraging to spawn further study on utility 

for content delivery services in a practical system. In the next chapter, we demon-

strate our work in this context. Specifically, we implement the proposed utility model 

in the MetaCDN [29, 157] system that makes use of the brokering-based model for 

peering (Chapter 3: Section 3.4.1). We also devise a utility-based request-redirection 

policy and define a pricing policy to empirically measure the content provider and 

system surplus.
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Chapter 7  

Optimizing Utility of a  
Content Delivery Cloud 
In this chapter, we report the results of a proof-of-concept testbed experiment on 

MetaCDN [29] that realizes a Content Delivery Cloud [60, 154] by utilizing Cloud 

Computing [35] to provide content delivery services to Internet end-users. While it 

ensures satisfactory end-user perceived performance, it also aims to improve the 

traffic activities in its world-wide distributed network and uplift the usefulness of its 

replicas. As an enhancement to this system, we measure the utility of content deliv-

ery via MetaCDN, capturing the system-specific perceived benefits [157]. We use a 

novel utility measure to devise a request-redirection policy that ensures high per-

formance content delivery. We also quantify a content provider’s benefits from using 

MetaCDN. Empirical performance results are presented to reveal our observations on 

the MetaCDN utility and content providers benefits from using MetaCDN. 

7.1 Introduction 
The CDN industry, i.e. content delivery, consumption and monetization, has been 

undergoing rapid changes. The multi-dimensional surge in content delivery from 

end-users has lead to an explosion of new content, formats as well as an exponential 

increase in the size and complexity of the digital content supply chain. These changes 

have been accelerated by the economic downturn in the sense that the content pro-

viders are under increasing pressure to reduce costs while increasing revenue. 

From the previous chapters we know that with the traditional model of content 
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delivery, a content provider is locked-in for a particular period of time under specific 

Service Level Agreements (SLAs) with a high monthly/yearly fees and excess data 

charges [99]. Thus, far from democratizing content delivery, most CDN services are 

often priced out of reach for all but large enterprise customers [186]. On the other 

hand, a commercial CDN provider realizes high operational cost and even monetary 

penalization if it fails to meet the SLA-bound commitments to provide high quality 

service to end-users. Thus, it suffers from―spiraling ownership costs; resource wast-

age for maintaining infrastructure; inability to grow or profit from economics of scale; 

inability to fully monetize new or long tail content―to leave lucrative business deals 

on the table and forfeit profits. Moreover, as discussed in Chapter 6, there is a trend 

shift in the main value proposition for CDN services, from uplifting end-user ex-

perience to making use of a shared infrastructure in order to reduce investment cost 

for content providers. 

To break through these barriers, one approach is to exploit the recent emergence 

of “Cloud Computing" [35], which moves computing and data away from desktop 

and portable PCs into computational resources such as large Data Centers (“Com-

puting”) and make them accessible as scalable, on-demand services over a network 

(the “Cloud”). The main technical underpinnings of Cloud Computing infrastructure 

and services include virtualization, service-orientation, elasticity, multi-tenancy, 

power efficiency, and economics of scale. The client perceived advantages for 

cloud-services include the ability to add more capacity at peak demand, reduced cost, 

experiment with new services, and to remove unneeded capacity. 

By harnessing resources from multiple storage cloud providers, the MetaCDN 

overlay system creates a Content Delivery Cloud [60, 157]. It provides an efficient 

content delivery solution by forming a high performance, reliable and redundant 

geographically distributed CDN. 

7.2 Motivation and Scope 
Extending the traditional CDN model to use clouds for content delivery, i.e. a Con-

tent Delivery Cloud, is highly appealing as storage cloud providers, e.g. Amazon 
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Simple Storage Service (S3), Amazon CloudFront, Mosso Cloud Files, and Nirvanix 

Storage Delivery Network (SDN), charge customers for their utilization of storage 

and transfer of content (pay-as-you-go), typically in order of cents per gigabyte. They 

also offer SLA-backed performance and uptime guarantees for their services. More-

over, they can rapidly and cheaply scale-out during flash crowds [14] and anticipated 

increases in demand. However, unlike a fully-featured CDN, not all the storage cloud 

providers offer capabilities for intelligent replica placement, automatic replication, 

fail-over, geographical load redirection and load balancing. 

MetaCDN provides the required features for high performance content delivery 

via an on-demand cloud service, eliminating costly capital expenditures or infra-

structure upgrades. MetaCDN can be deployed as a fully outsourced, end-to-end 

services platform or as a complement to a CDN provider’s existing infrastructure. 

Thus, it provides flexibility to CDN providers and their customers (content providers) 

to tailor a solution to meet their unique needs. 

A vital component for MetaCDN is a request-redirection technique for directing 

end-user requests to optimal replica servers according to performance requirements. 

A suitable redirection mechanism extends the system’s reach and scale and can alle-

viate the problems with overloaded servers and congested networks to maintain high 

accessibility [19]. Therefore, it is desired to devise a request-redirection mechanism 

that exhibit the following properties―scalability, transparency, geographic load 

sharing, cost-effectiveness, and high user perceived performance, to name a few. 

MetaCDN utilizes intelligent request-redirection to choose an optimal replica for 

content delivery, thereby ensuring satisfactory end-user perceived performance. 

Given the responsibility to ensure high performance advanced content delivery ser-

vices, a crucial goal for MetaCDN should be to improve the quantitative measure of 

utility for its services. While the notion of utility is enticing in relation to content de-

livery, from Chapter 6, we have seen that only a few previous work [39, 92, 141, 204, 

207] have considered it. Thus, we focus on developing a redirection policy for 

MetaCDN based on the measured utility to ensure high content delivery perform-

ance, and implementing it in the existing MetaCDN system as a proof-of-concept. 
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Figure 7.1: Components of the MetaCDN overlay system. 

7.3 The MetaCDN Overlay 
MetaCDN is developed as a simple, general purpose, and reusable overlay network 

in the face of daunting challenges faced by content providers to exploit the resources 

of multiple storage clouds. It provides a platform to harness content delivery services, 

by hiding the complexity of using unique Web services or programmer APIs coupled 

with each cloud provider. End-users experience little of the complex technologies 

associated with MetaCDN. Content providers interact with the service in a limited 

number of ways, such as enabling their content to be served, viewing traffic reports, 

and receiving usage-based billing. In this section, we provide an overview of the 

MetaCDN system focusing on its existing capabilities, high level system characteris-

tics and perform a comparative analysis to related systems. 

7.3.1 Overview 
MetaCDN has opened up opportunities for the content providers and end-users to 

reap rewards through low-cost, high performance and easy to use distributed CDN. 

Figure 7.1 provides an illustration of the MetaCDN system. It is coupled with each 
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storage cloud via connectors, which provide an abstraction to conceal different access 

methodologies to heterogeneous providers. These connectors (cloud provider specific; 

and FTP, SSH/SCP or WebDAV for shared or private hosts) provide basic operations 

for creation, deletion, rename, and listing of replicated content. End-users can access 

the MetaCDN overlay either through a Web portal or via RESTful Web services. In 

the first case, the Web portal acts as an entry point to the system and performs appli-

cation level load balancing for end-users who intend to download content that has 

been deployed through MetaCDN. Content providers can sign up for an account on 

the MetaCDN system and enter credentials for any storage cloud providers that have 

an account with. Upon authentication, they can utilize MetaCDN functionalities to 

intelligently deploy content over geographically spanned replicas from multiple 

storage clouds, according to their performance requirements and budget limitations. 

A distributed MetaCDN gateway (middleware entity) provides the logic and 

management required to encapsulate the functionality of upstream storage cloud 

providers with a number of core components. The MetaCDN Allocator performs op-

timal provider selection and physical content deployment using four options, namely, 

maximize-coverage, geolocation-based, cost-optimized, and QoS-optimized deployment. 

The MetaCDN QoS Monitor tracks the current and historical performance of partici-

pating storage providers. The MetaCDN Manager has the authority on each content 

provider’s current deployment and performs various housekeeping tasks. The 

MetaCDN Database stores crucial information, such as user accounts and deployments, 

and the capabilities, pricing, and historical performance of providers. Finally, the 

MetaCDN Load Redirector is charged with different redirection policies and is respon-

sible for directing users to the most appropriate replica according to performance 

requirements. We refer to a prior work [29] for details on critical MetaCDN function-

alities along with a full architectural description and the development methodology. 

7.3.2 System Characteristics 
MetaCDN is a smart, agile and flexible approach for content delivery that is willing 

to break with tradition. Specifically, the following set of attributes can be used to 

characterize it: 
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• Multi-tenancy. MetaCDN provides content delivery services for many content 

providers and end-users on the same distributed infrastructure for different 

content types. With a cloud-based model, all resources and costs are shared 

among a large pool of users, enabling genuine savings and economics of scale. 

• Elasticity. It is able to support diverse range of performance requirements 

from content providers and end-users. This characteristic allows it to quickly 

and gracefully respond to high request rates at reasonable response time. 

• Scalability. MetaCDN resources are dynamically scalable to handle workload 

variations with growing number of content providers and end-users, thus ena-

bling optimum resource utilization. 

• Load sharing. It offers automatic and totally transparent load balancing on 

end-user requests. It enables faster absorption of load spikes with the aid of 

different load balancing and redirection policies.  

• Global availability and reliability. MetaCDN is a truely on-demand service to 

provide content delivery functionalities to all authorized users from anywhere 

on the Internet natively. It has the ability to automatically avoid failed replicas 

or replicas without desired content. In particular, its tolerance to high failure 

rate ensures that end-users suffer from little to no outages (i.e. rare infrequent 

downtime), such as server or network failures. 

• Ease of use/operability. It can be accessed through a simple Web interface that 

mimics the look and feel of familiar consumer Web applications, making it ex-

tremely intuitive and easy to operate. 

• Reusability and cost of development. The low development cost of using stor-

age clouds for MetaCDN ensures significantly reduced upfront costs. It is 

implemented by means of reusable simple APIs exposed by the storage cloud 

providers, while avoiding too many parameters that must be tuned in order to 

perceive good performance for diverse content providers and their end-users. 

• Metered services. By using the third-party content delivery services of the 

MetaCDN system, content providers have to pay only for the capacity that 
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they use from upstream cloud providers. Usage information for each replica 

(e.g. download count and last access) is recorded in order to track the cost in-

curred for specific content from a content provider. 

• Security. It addresses crucial security concerns, as content providers use their 

own credentials for any cloud storage or other provider they have an account 

with. Thus, it allows content providers to entrust their content to MetaCDN for 

processing, rest assuring that it will be protected from theft, loss or corruption. 

7.3.3 A Comparative Analysis 
MetaCDN complements CDN peering by providing an end-to-end cloud-based solu-

tion, coupled with on-demand intelligent request-redirection. In this section, we first 

ascertain MetaCDN’s feasibility and position it as a distributed CDN by presenting a 

comparative study with related systems. Then we study existing redirection mecha-

nisms available in literature and used in practice. While some of these systems and 

techniques have been mentioned previously (Chapter 3), we briefly revisit them to 

endorse MetaCDN’s novelty and uniqueness. 

MetaCDN and related Systems. The Content Distribution Internetworking (CDI) 

[72] model lays the foundation for interconnecting providers. Following the footsteps 

of the CDI initiative, several research efforts explore the benefits of internetwork-

ing/peering of CDN providers, content providers, Peer-to-Peer (P2P) networks, and 

overlays with main focus on offering increased capacity, intelligent server selection, 

reduced cost, and improved fault tolerance. Examples include CDI protocol archi-

tecture [209, 210], multi-provider peering [10], Synergy overlay internetworking [119], 

peer-assisted content delivery [208], group-based content delivery [129], provisioning 

content delivery over shared infrastructure [142], use of emerging technologies for 

the development of enhanced content delivery service [84], resource management in 

a Grid-based CDN [74], capacity provisioning networks [93], open CDN implemen-

tation [139], and our work, i.e. CDN peering [161, 162]. In contrast, MetaCDN 

assumes no cooperation or peering. Rather it follows a brokering-based approach 

(Chapter 3: Section 3.4.1) as in CDN brokering [24], which is a content delivery bro-
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kerage system deployed on the Internet on a provisional basis. MetaCDN differs in 

that it functions as a Content Delivery Cloud [60, 154, 157], replicating content over 

its distributed infrastructure spanning multiple continents, and providing content 

delivery services to far flung end-users. It has demonstrated improved content deliv-

ery performance, and enumerate its content-serving utility and content provider’s 

benefits from using it [29, 157]. While MetaCDN is comparable to the collaborative 

CDNs, such as CoDeeN [223], CoralCDN [87], and Globule [167, 168], it is signifi-

cantly different as it integrates storage cloud resources spanning the globe to provide 

content delivery services. 

Many Websites have utilized individual storage clouds to deliver some or all of 

their content [78], most notably the New York Times [95] and SmugMug [131]. On 

the contrary, MetaCDN provides general purpose reusable content delivery services 

by interacting and leveraging multiple cloud providers. MetaCDN is positioned as a 

logical fit in the industry initiatives to couple content delivery capabilities with ex-

isting cloud deployments, such as Amazon S3 and CloudFront; Silverlining and 

VoxCAST CDN; Mosso Cloud Files; Nirvanix SDN, which partners with CDNet-

works for content delivery; TinyCDN, which leverages Amazon Web services and 

cloud computing; and Edge Content Network (ECN) from Microsoft, which is re-

ported to partner with Limelight Networks for content delivery [135]. However, as 

these systems use centralized or a small number of datacenters, they may suffer from 

deteriorated end-user experience due to network congestions, peering point conges-

tion, routing inefficiencies, and other bottlenecks of the Internet middle mile [124]. 

On the contrary, MetaCDN is attributed with a distributed CDN infrastructure to 

overcome the challenges posed by the Internet’s middle mile and ensure that 

end-user performance does not fall short of expectations. The MetaCDN approach is 

analogous to the Akamai cloud computing initiative [124], which provides cloud op-

timization services for its highly distributed EdgePlatform. However, unlike Akamai 

it endeavors to achieve true economics of scale by exploiting the pay-as-you-go model 

of upstream cloud providers. 

Recent innovations such as P4P [226] and its companion traffic engineering mod-
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els [103] enable P2P to communicate with network providers through a portal for 

cooperative content delivery. Such proactive network provider participation opti-

mizes global peer-to-peer connections as it saves significant user costs, and by using 

local connections also speeds up download times for P2P downloaders by 45%. 

MetaCDN endorses them in the sense that it assists toward a systematic understand-

ing and practical realization of the interactions between storage clouds, which 

provide an operational storage network and content delivery resources, and content 

providers, who generate and distribute content. 

Request-redirection techniques. Request-redirection is generally used to direct 

end-user requests to replica servers based on various policies and a possible set of 

metrics, such as network proximity, user perceived latency, bandwidth, content 

availability and replica server load. There exist multiple request-redirection mecha-

nisms, which can be categorized in a number of ways according to different 

performance objectives. 

Barbir et al. [19] categorize the known request-redirection techniques in CDNs 

into DNS-based, transport-layer and application-layer redirection. In DNS-based tech-

niques, a specialized DNS server is augmented in the name resolution process to 

return different server addresses to end-users. They are the most common due to the 

ubiquity of the DNS system as a directory service. The performance and effectiveness 

of DNS-based redirection techniques have been studied in a number of recent studies 

[24, 133, 192]. Despite its wide usage, DNS-based approaches are found to suffer 

from the following drawbacks: (a) actual end-user request is not redirected, rather its 

Local DNS (LDNS), assuming that end-users are near to their LDNS; (b) browser’s 

request is cached due to the hierarchical organization of the DNS service; (c) the DNS 

system is not designed for very dynamic changes in the mapping between hostnames 

and IP addresses; and (d) most significantly DNS can not be relied upon as it can 

have control over as little as 5% of incoming requests in many instances [41]. In 

transport-layer redirection, the information available in the first packet of the 

end-user request, in combination with user-defined policies and other metrics are 

used to take redirection decision. Several research [128, 150, 227] report using this 
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approach for redirection. In general, this approach is used in combination with 

DNS-based techniques. While this approach is suitable for steering end-users away 

from overloaded replica servers, the associated overhead limits its usage for 

long-lived sessions such as FTP and RTSP. Finally, application-layer redirection in-

volves deeper examination of end-user request packet to provide fine-grain 

redirection. However, this approach may suffer from the lack of transparency and 

additional latency. URL rewriting and HTTP 302 redirection are the examples of 

techniques using this approach. In the context of MetaCDN, the system exploits a 

combination of DNS-based and application-layer techniques for request-redirection. 

Specifically, name resolution for the base MetaCDN URL is performed using 

DNS-redirection and end-user request for specific content (Web object) is serviced 

using application-layer redirection. This aspect is elaborated in Section 7.5.2.  

With the objective to minimize Web access latency, request-redirection can be 

partitioned into client and server-side techniques. Client-side redirections in CDNs 

[64, 109, 181, 222] are based on the premise that the network is the primary bottleneck. 

They tend not to rely on any centralization as redirections occur independently. 

Server-side techniques perform URL redirection using HTTP status code. They direct 

all incoming requests to a set of clustered hosts based on load characteristics. These 

techniques are mainly application specific and more suited for clustered servers. 

There also exist significant research [45, 46, 110, 177] combining client and server-side 

redirection. This hybrid approach works well when the bottleneck is not clearly iden-

tified or varying over time. According to this categorization, MetaCDN complements 

the hybrid request-redirection technique; by performing server-side gateway redirec-

tion and client-side HTTP 302 redirection for content requests. 

In terms of content retrieval, request-redirection techniques can be divided into 

full and selective (or partial) redirection. In full redirection, the DNS server is modified 

in such a way that all end-user requests are directed to a replica server. This scheme 

requires that either replica servers hold all the content from the origin server, or that 

they act as surrogate proxies for the origin server. On the other hand, in selective re-

direction, a content provider modifies its content so that links to specific embedded 



 

 155 
 

Web objects have host names in a domain for which the CDN provider is authorita-

tive. Thus, the base HTML page is retrieved from the origin server, while embedded 

objects are retrieved from CDN replica servers. While full replication has dynamic 

adaptability to new hot-spots, it is not feasible considering the on-going increase in 

Web objects size. A selective redirection works better in the sense that it reduces load 

on the origin server and on the Web site’s content generation infrastructure. More-

over, if the embedded content changes infrequently, it exhibits better performance. 

While it is possible to use the MetaCDN replica infrastructure to enable full redirec-

tion, we limit our work for selective redirection by storing only embedded Web 

content into replicas and directing end-user requests to them.  

Request-redirection mechanisms are governed by policies that outline the actual 

redirection algorithm on how to perform server selection in response to an end-user 

request. These policies can be either adaptive or non-adaptive. Adaptive policies con-

sider the current system condition, whereas non-adaptive policies use some 

heuristics in order to perform target server selection. The literature on re-

quest-redirection policies is too vast to cite here (see the survey by Sivasubramanian 

et al. [198] and the references therein for initial pointers for redirection policies in 

CDN context). MetaCDN deploys adaptive redirection with the ability to cope with 

degenerated load situations. In particular, it strives to demonstrate high system ro-

bustness in the face of unanticipated events, e.g. flash crowds.  

There exist significant research efforts [9, 79, 173, 182] that model request-redirection 

as a mathematical problem. They attempt to find a solution from an operations research 

perspective by modeling redirection as a graph theory, optimization, delay constrained 

routing, or server assignment problem. Most of these work use simulations to evaluate 

the performance of their approach. On the contrary, the MetaCDN redirection is evalu-

ated through a proof-of-concept implementation on its distributed infrastructure. 

We also draw similarity with the request-redirection techniques used in the col-

laborative CDNs, e.g. CoDeeN [223], CoralCDN [87], Globule [167, 168], and PRSync 

[191], which perform overlay redirection by exploiting request locality, network 

measurement, topology, and AS-based proximity. Our work is in line with them as 
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MetaCDN request-redirection is based on metrics such as geographic proximity, cost, 

request traffic, and QoS metrics (response time, throughput, HTTP response code). 

Our uniqueness lies in adding the capability for quantifying traffic activities using a 

network utility metric within MetaCDN while intelligently redirecting user requests. 

7.4 Maximizing MetaCDN Utility 
To ensure high performance content delivery via MetaCDN, we aim at improving its 

content-serving utility. To achieve this, similar to the utility of CDN peering (Chapter 

6), we quantify MetaCDN utility based on its traffic activities and represent the use-

fuleness of its replica infrastructure in terms of data circulation in its distributed 

testbed. We first formulate the utility maximization problem with quantitative ex-

pressions. Then in Section 7.5, we devise a utility-based request-redirection policy. 

7.4.1 Problem Formulation 
We use R = {ri}, i∈{1, 2, …, M} to denote the set of end-user requests, with ri being the 

i-th arriving request to the MetaCDN overlay system, comprising a set of N replicas. 

Utility maximization in MetaCDN can be achieved from two perspectives. The first 

aspect is the profit maximization of MetaCDN, which is formulated as: 

maximize ∑
∈∈ NjRr

ijmcdn
i

xU
,

 (Profit) (7.1)

where Umcdn is content-serving utility of the system; indicator variable xij=1 if 

MetaCDN replica j serves request ri within service requirements; and xij=0 otherwise. 

The second aspect examines the general welfare of the content provider for using 

the MetaCDN infrastructure to maximize its own benefit (surplus). Each content 

provider obtains a perceived utility UCP (benefits) for QoS-constrained content deliv-

ery to its end-users via MetaCDN. The measured utility is expressed as the fraction of 

processed requests (throughput) or the total valuation (weighted throughput). It can 

be formulated either by maximizing the following one or two measurements: 

maximize ∑
∈∈ NjRr
ij

i

x
,

 (Throughput) (7.2)
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maximize ∑
∈∈ NjRr

ijCP
i

xU
,

 (Weighted throughput) (7.3)

where UCP is the content provider’s perceived utility. 

7.4.2 Quantitative Expressions 
We now derive the quantitative measure for MetaCDN utility Umcdn and content pro-

viders perceived utility UCP. Ideally for the MetaCDN overlay system, the most 

useful replicas are those exhibiting the highest utility. We follow a similar approach 

as in Chapter 6 to quantify utility. However, we redefine the utility metric as we are 

working with a practical system where it is possible to capture the true traffic activi-

ties, in terms of the number of bytes transferred during content replication and 

servicing. Hence, utility in MetaCDN is expressed with a value in [0, 1] that reflects 

the relation between the number of bytes of the served content against the number of 

bytes of the replicated content. Formally, utility of a MetaCDN replica i is: 

)arctan()/2( ξπ ×=iu  (7.4)

The main idea behind this metric is that a replica is considered to be useful (high 

utility) if it serves content more than it replicates, and vice versa. The parameter ξ is 

the ratio of the serviced bytes to the replicated bytes, i.e. 

ξ = No of bytes serviced / No of bytes replicated (7.5)

The resulting utility from (7.4) ranges in [0, 1]. The value ui=1 is achieved if the 

replica only serves content, without replicating (ξ=infinity). It results when a replica 

already has the content, and does not replicate a new copy of the content for serving 

successive requests. On the contrary, the value ui=0 is achieved if the replica has the 

content, however fails to serve (ξ=0) due to service over-provisioning and/or net-

work perturbations under heavy traffic surges. The content-serving utility Umcdn of 

MetaCDN can be expressed as a mean value of the individual replica utilities, i.e. 

NuU N

n imcdn ∑ =
=

1  (7.6)

MetaCDN outsources customer’s (content provider) content to the replicas and it 

is charged by the cloud providers based on usage. Since the utility measure captures 
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the usage of storage cloud resources, the measured value can be easily translated into 

a price of the offered services. The resulting price can be used to derive a content 

provider’s benefits or perceived utility. We draw inspiration from Hosanagar et al. 

[99], who show that the benefits of a content provider depends on its revenue, benefit 

from content delivery to its end-users through a CDN, replication cost, and us-

age-based charges. We adopt this approach by using performance measures of 

end-users that belong to a content provider. We gauge the throughput for serving 

content requests and the response time improvement by using MetaCDN over direct 

replica access. We also measure the replication cost and interpret the pricing of stor-

age clouds according to the MetaCDN utility. We express a content provider’s 

perceived utility as: 

)()()( uPbXRRXTU dCP −−×−+= ψ  (7.7)

where T() is the weighted throughput for the traffic volume of X requests; R and Rd 

respectively are the perceived response times from direct replica access and via 

MetaCDN; ψ is the unit replication cost; b is the content size; and P(u) is the util-

ity-based pricing function. 

7.5 Request-Redirection Design 
An efficient request-redirection technique is vital to extend the reach and scale of 

MetaCDN. In this section, we analyze the design space of a competent redirection tech-

nique and describe the proposed utility-based request-redirection technique. 

7.5.1 Design Space 
Designing a request-redirection strategy that does not sacrifice the scalability, trans-

parency, availability and performance benefits of cloud-based distributed content 

delivery service, i.e. MetaCDN, is a challenging task. A candidate redirection tech-

nique should have the following properties: 

• Scalability. It should be responsive to changing circumstances. It should aid 

the system with the ability to gracefully scale and expand its network reach in 
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order to handle new and large number of data, end-user requests, and transac-

tions without any significant decline in performance.  

• Load balancing. With the aid of the redirection technique, MetaCDN as a ser-

vice provider should be able to effectively react to overload conditions by 

selecting least loaded optimal server(s) for serving content requests. The load 

balancing decisions should ensure that end-users experience reasonable con-

tent delivery performance. 

• Distributed redirection. It should not rely on any centralization and all redi-

rectors (i.e. MetaCDN gateway) should operate independently. It should also 

accommodate any dynamic changes in network performance and incoming 

request traffic. 

• Transparent name resolution. DNS mapping during redirection should be 

transparent to end-users. In order to transparently contact a replica server for 

desired content, redirection should ensure a one-to-many mapping from the 

hostname to one of the IP addresses of distributed replicas. 

• Fault transparency. It should ensure that unresponsive replicas are detected, 

bypassed and end-users are unaware of the redirection to other replicas. 

Moreover, previously failed replicas that become available again should be in-

corporated quickly.  

• Flexibility. There should be provision to accommodate different request-redir- 

ection techniques to provide options to content providers and its users with 

varied objectives. In addition, a candidate request-redirection technique should 

improve the usefulness of distributed replicas. 

• Server decoupling. The redirection logic should be implemented without any 

change of the existing client or server code, conforming to existing standards. It 

should also be possible to deploy the devised redirection scheme easily, 

preferrably as a plug-in to the server, with minimum effort. Thus, it should be 

ensured that the implementation overhead of a given request-redirection tech-

nique is minimal. 
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Figure 7.2: Utility-based request-redirection in MetaCDN. 

7.5.2 Utility-based Request-Redirection 
Request-redirection in MetaCDN takes place under the governance of the MetaCDN 

gateways, which resemble distributed request-redirectors to forward end-user con-

tent requests to appropriate replica server. The MetaCDN gateway is capable of 

utilizing any request-redirection technique that is plugged into the MetaCDN Load 

Redirection module. Integrating a new request-redirection scheme does not require 

any changes to the server or client-side. 

To choose the optimal server for an end-user request, the MetaCDN Load Redi-

rector module evaluates the utility metric reflecting the state of its replicas and the 

network conditions between end-users and replica sites. The measured utility is used 

for a utility-based request-redirection policy (Figure 7.2) for MetaCDN to serve 

data-rich content, thus improving the content delivery performance by relieving 

network congestions. 

As shown in Figure 7.2, the sequence of steps for an end-user in the East Coast of 

the USA to retrieve content through MetaCDN is as follows: 

1) The end-user issues an HTTP request for a content that has been deployed by 

the MetaCDN Allocator using one of the content deployment options avail-
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able (Section 7.3.1). The browser attempts to resolve the base hostname 

(www.metacdn.org) for the MetaCDN URL http://www.metacdn.org/FileMapper? 

itemid=XX, where XX in the URL format is a unique key associated with the 

deployed content. 

2) The Local DNS (LDNS) of the end-user contacts the authoritative DNS 

(ADNS) for that domain to resolve this request to the IP address of the closest 

MetaCDN gateway, e.g. http://us.metacdn.org. 

3) The end-user (or its browser) then makes an HTTP GET request for the de-

sired content on the MetaCDN gateway. 

4) In the case of utility-based request-redirection, the MetaCDN Load Redirector 

is triggered to select the highest-utility optimal replica that conforms to the 

specified service requirements. At this point, the MetaCDN gateway returns 

an HTTP redirect request with the URL of the selected replica. The following 

tests are performed to determine the best replica for serving user requests: 

• Is there a content replica available within required response time threshold? 

• Is the throughput of the target replica within tolerance? 

• Is the end-user located in the same geographical region as the target replica? 

• Is one of the target replicas preferred, according to user requirements or any 

administrative settings? 

• Is the replica utility the highest among all target sites? 

• If there is more than one replica with the same highest utility, which replica 

site provides the fastest response time to be the selected replica? 

5) Upon receiving the URL of the selected replica, the DNS resolves its domain 

name and returns the associated IP address to the end-user. 

6) The user sends request for the content to the selected replica. 

7) The selected replica satisfies the user request by serving the desired content. 

If it is assumed that all candidate replicas are available and have capacity, i.e. re-

sponse time and throughput thresholds are met, the MetaCDN system checks for the 
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continent/geographic location and administrative preference (an indicative flag used 

by MetaCDN manager to manually prefer or avoid a replica). 

MetaCDN achieves transparency as end-user browsers automatically access the 

redirection service, being redirected by the MetaCDN gateway. End-users have least 

possible to do to take benefit of request-redirection. They see only MetaCDN URL 

and they have no way for discovering the address of a replica when using the redi-

rection service and accessing the replica server directly. Thus, we prevent an 

end-user to keep an explicit reference to a replica, which may cause dangling point-

ers during the downtime of the replica. 

While MetaCDN Load Redirector ensures directing users to the best responding 

replica, an extra feature is realized through its ability to automatically avoid failed 

replicas or replicas without the desired content. Bypassing occurs in the following 

two ways. Firstly, if a replica has the desired content, but shows limited serving ca-

pacity due to network congestions, it is reflected in its measured network utility 

metric, exhibiting a low value. As a consequence, the replica is not considered as a 

candidate for redirection. Secondly, if the replica does not have the desired content, it 

can not serve end-user requests and thus leads to an insignificant utility value. Hence, 

it is automatically discarded to be considered as a candidate replica. In addition, a 

secondary level of internal redirection enabled by an individual cloud provider en-

sures that request-redirection does not overload any particular replica. 

7.6 Evaluation Methodology 
We conduct a proof-of-concept testbed experiment to determine the content delivery 

utility of MetaCDN, evaluate the performance of the utility-based request-redirection 

policy, and measure the user perceived response time and throughput. Figure 7.3 

provides a schematic representation of the experimental testbed and Table 2.1 pro-

vides a summary of the conducted experiment. The global MetaCDN testbed spans 

six continents with distributed clients at different institutions; replicas from multiple 

storage cloud providers; and MetaCDN gateways, hosted on the Amazon Elastic 

Computing Cloud (EC2) and a cluster at the University of Melbourne, Australia.  
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Figure 7.3: Experiment testbed. 

Table 7.1: Summary of the experiment. 

Category Value Provider Locations 
Number of 
MetaCDN gateways 3 Amazon EC2 and 

own cluster 
Asia/Australia, Europe, 
and North America 

Number of replicas 40 Amazon, Mosso 
and Nirvanix 

Asia, Australia, Europe, 
and North America 

Experiment 
Testbed 

Number of clients  
(end-user nodes) 26 Voluntary 

Asia, Australia, Europe, 
North and South America, 
and Africa 

 

Category Description 
Total experiment time 48 hours 
Duration of an epoch 2 hours 
Maximum user requests/epoch 30 requests from each client 
Service timeout for each request 30 seconds 
Test file size 1 KB and 5 MB 
Content Deployment Maximize-coverage deployment 

Experiment 
Details 

Request-redirection policies Random, Geo, and Utility 
 

Category Distribution PMF Parameters 
Session inter-arrival time [81] Exponential xe λλ −  λ = 0.05 

Content requests per session 
[14] 

Inverse 
Gaussian 

x
x

e
x

2

2

2
)(

32
µ

µλ

π
λ

−−

 µ = 3.86 
λ = 9.46 

End-user 
Request 
Modeling 

User think time [21] Pareto 1−−ααα xk  α = 1.4, k = 1 

All client locations, except in Africa, South America and South Asia, have high 

speed connectivity to major Internet backbones to minimize the client being the bot-

tleneck during experiments. We used test files of size 1KB and 5MB, deployed by the 
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MetaCDN Allocator module, which was instructed to maximize coverage and per-

formance, and consequently the test files were deployed in all available replica 

locations of the storage cloud providers integrated to MetaCDN. While these file 

sizes are appropriate for our experiments, a few constraints restrict us to use varied 

and/or even larger sized files. Firstly, the experiments generate heavy network traffic 

consuming significant network bandwidth, thus larger file trafficking would impose 

more strain and network congestions on the voluntary clients, which some clients 

may not be able to handle. Moreover, at some client locations, e.g. India and South 

Africa, Internet is at a premium and there are checks regarding Internet traffic so that 

other users in the client domain accessing the Internet are not affected. 

The experiment was run simultaneously at each client location over a period of 48 

hours, during the middle of the week in May 2009. As it spans two days, localized 

peak times (time-of-day) is experienced in each geographical region. The workload to 

drive the experiment incorporates recent results on Web characterization [14, 21, 81]. 

The high variability and self-similar nature of Web access load is modeled through 

heavy-tailed distributions. The experiment time comprises epochs of 2 hours, with 

each epoch consisting of a set of user sessions. Each session opens a persistent HTTP 

connection to MetaCDN and each client generates requests to it to download each 

test files, with a timeout of 30 seconds. Between two requests, a user waits for a think 

time before the next request is generated. The mean think time, together with number 

of users defines the mean request arrival rate to MetaCDN. For statistical significance, 

each client is bounded to generate a maximum number of 30 requests in each epoch. 

The files are downloaded using the UNIX utility, wget, with the --no-cache and 

--no-dns-cache options to ensure that a fresh copy of the content is downloaded each 

time (not from any intermediary cache) and that the DNS lookup is not cached either. 

7.6.1 Schemes and Metrics for Comparison 
The primary objectives are to measure MetaCDN utility, evaluate performance of the 

proposed utility-based request-redirection policy, and provide observations on how 

MetaCDN’s content serving ability is varied during the experiment. For performance 

comparison, we experiment with two other request-redirection policies that are pre-
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sent inside the MetaCDN system, as described in the following: 

• Random redirection. It is a simple baseline policy where each content request is 

sent to a randomly picked replica. We use this scheme for comparison purpose 

to determine a reasonable level of performance, since we expect our approach 

to scale with the increasing number of clients and MetaCDN replicas, and to 

not exhibit any pathological behavior due to the assignment patterns. The 

drawback of this approach is to often increase latency by not picking up the 

most appropriate replica. Moreover, adding more servers does not reduce the 

working set of each server. 

• Geolocation-based redirection. It exploits the request locality by taking into 

account end-user preferences and directing the user to the closest physical rep-

lica in the specified region(s). For this purpose, a geolocation service is utilized 

that finds the geographic location (latitude and longitude) of the end-user and 

measures their distance from each matching replica using a simple spherical 

law of cosines, or a more accurate approach such as the Vincenty formula for 

distance between two latitude/longitude points [220], to find the closest rep-

lica. Although there exists a strong correlation between the performance 

experienced by end-users and their locality to replicas [29], there is no guaran-

tee that the closest replica is always the best choice, due to cyclical and 

transient load fluctuations in the network path. 

We measure the response time and throughput obtained from each client location. 

The first performance metric captures the end-to-end performance for end-users 

when downloading a 1 KB test file from MetaCDN. Due to the negligible file size, the 

response time is dominated by DNS lookup and HTTP connection establishment 

time. Lower value of response time indicates fast serviced content. The latter metric 

shows the transfer speed obtained when the 5 MB test file is downloaded by the us-

ers from the MetaCDN replica infrastructure. It provides an indication of consistency 

and variability of throughput over time. 

The utility of MetaCDN is measured according to the quantitative expressions in 

Section 7.4. A high utility value shows the content-serving ability of the system, and 



  166 
 

signifies its durability under highly variable traffic activities. To emphasize the im-

pact of request-redirection on the measured utility, we use the probability that 

MetaCDN achieves a given level of utility as the performance metric. Finally, based 

on the measured observations, we determine the benefits of a content provider (sur-

plus) from using the MetaCDN system. Table 7.2 summarizes the performance 

indices used in the experimental evaluation. 

Table 7.2: List of performance indices. 

Performance Index Description 
Response time The time experienced by an end-user to get serviced 
Throughput Transfer speed to download a test file by an end-user 
Utility Content-serving ability, ranges in [0, 1] 
Prob(Utility 
achieved) 

The probability or the fraction of time that the system 
achieves the given utility 

Content provider’s 
benefit (Surplus) 

Surplus from using MetaCDN, expressed as a 
percentage 

7.7 Empirical Results 
To avoid redundancy, we present results from the following eight representative cli-

ent locations in five continents―Paris (France), Innsbruck (Austria), and Poznan 

(Poland) in Europe; Beijing (China) and Melbourne (Australia) in Asia/Australia; 

Atlanta, GA, and Irvine, CA (USA) in North America, and Rio de Janeiro (Brazil) in 

South America. 

7.7.1 Response Time Observations 
Figure 7.5 shows the end-to-end response time experienced by end-users when 

downloading the 1 KB test file over a period of 48 hours. The measure of the re-

sponse time depends on the network proximity, congestions in network path and 

traffic load on the target replica server. It provides an indication of the responsive-

ness of the replica infrastructure and the network conditions in the path between the 

client and the target replica which serves the end-user. We observe a general trend 

that the clients experience mostly consistent end-to-end response time. For all the 

request-redirection policies, the average response time in all the client locations ex-

cept Beijing is just over 1 second, with a few exceptions. Notably the users in Beijing 
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experience close to 4 seconds average response time from the MetaCDN infrastruc-

ture. This exception originates as a consequence of firewall policies applied by the 

Chinese government. Similar observations have been reported in a previous meas-

urement study [179], which demonstrates that the failure characteristics on the 

Internet path to the edge nodes in China are remarkably different than the Internet 

paths to the edge nodes in other part of the world. 

At several time instances during the experiment, end-users experience increased 

response time. The resulting spikes are due to the sudden increases in request traffic, 

imposing strain on the MetaCDN replicas. Under traffic surges, the MetaCDN Load 

Redirector module activates to handle peak loads. As a consequence, end-user re-

quests are often redirected to a target replica outside its authoritative domain and/or 

are served from an optimal distant proximity server, thereby, contributing to the in-

creased response time. However, MetaCDN handles peak loads well to provide 

satisfactory service responsiveness to end-users. This phenomenon of increased re-

sponse time is more visible for random-redirection. As it makes a random choice, 

often the target replica selection is not optimized, thus leading to highly variable re-

sponse time. Especially, at several occasions, users observe more than 30 seconds 

response time, thus leading to service timeout. Geo-redirection directs user requests 

to the closest proximity server, understandably producing low response time. On the 

contrary, utility-redirection chooses the highest utility replica, which may not be in 

close proximity to an individual client location. Nevertheless, we do not find a clear 

winner between them in terms of response time, as they exhibit changeable per-

formance at different client locations. Utility-redirection performs as well as 

geo-redirection as we observe similar performance in all clients except Paris and 

Melbourne. End-users in Paris enjoy better average response time (0.77 seconds) with 

geo-redirection, due to their close proximity to the Amazon, Mosso and Nirvanix 

nodes in Frankfurt (Germany), Dublin (Ireland), and London (UK). For Melbourne, 

the reason behind better performance of geo-redirection is the existence of the Mosso 

node in Sydney. For both of these two clients, utility-redirection policy directs re-

quests to a distant replica than the closest one and results in increased response time. 
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(e) Melbourne (f) Atlanta 
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Figure 7.4: Response time obtained in each client location. 
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Figure 7.5: Average throughput obtained in each client location. 
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7.7.2 Throughput Observations 
Figure 7.5 shows the average throughput obtained per two hours, when download-

ing content (5MB file) via MetaCDN. As expected, we observe that in almost all the 

client locations, geo-redirection results in highest throughput as the users get ser-

viced from the closest proximity replica. However, it performs worse than 

random-redirection for the Irvine client. The reason is that random-redirection deci-

sion in this location most of the time selects close proximity Amazon replica(s) with 

better network path than that of geo-redirection, which chooses Mosso replica. 

Moreover, the service capability from these two replicas and the network path be-

tween the replica and client also contribute to the observed throughput variations. 

For most of the clients, except Rio de Janeiro, utility redirection performs much 

worse than geo-redirection. The reason is understandable, as utility-redirection em-

phasizes maximizing MetaCDN’s utility rather than serving an individual user, thus 

sacrificing end-user perceived performance. For Rio de Janeiro, geo-redirection leads 

to the closest Mosso node in the USA, whereas utility-redirection results in more util-

ity-aware replica, which is the Amazon node(s) in the USA. It could be presumed 

that Amazon node supersedes the Mosso node in terms of its service capability, bet-

ter network path, internal overlay routing, and less request traffic strain. 

It is observed that users in Poznan enjoy the best average throughput, which is 

9MB/s for geo-redirection. The reason is that the client machine is in a MAN network, 

which is connected to the country-wide Polish optical network PIONEER with high 

capacity channels dedicated to the content delivery traffic. Another client location 

with high throughput is Atlanta, which achieves speeds of approximately 6.2 MB/s 

for geo-redirection and 3.3 MB/s for utility-redirection, due to the existence of better 

network path between the client and the MetaCDN replica infrastructure. This rea-

soning is deemed valid, since there are Mosso nodes in the same location. 

Alike response time, end-users in China achieves the lowest throughput among 

all the client locations. The underlying reason is again checks on the request traffic 

and bandwidth constraints due to firewall policies. We put more emphasis on the 

results from Melbourne, which is of interest as Australia is not as highly connected as 
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Europe or North America, depending on a small number of expensive international 

links to major data centers in Europe and the USA. We observe that due to the exis-

tence of a nearby Mosso node in Sydney, the users in Melbourne experience 6.5 MB/s 

of throughput with geo-redirection and 3.6 MB/s for random-redirection. However, 

for utility-redirection the replica selections result in the Amazon node(s) in the USA, 

thus leading to a lower but consistent average throughput of 410 KB/s. 

From these observations, we come to the following decisive conclusions. Although 

utility-redirection outcomes sensible replica selection in terms of response time, it may 

not provide a high throughput performance to end-users. Nevertheless, being focused 

on maximizing the utility of the MetaCDN system; it results in high utility for content 

delivery. We provide sufficient results to support this claim in the next section. 
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Figure 7.6: MetaCDN utility over time. 

7.7.3 MetaCDN Utility 
Figure 7.6 shows how MetaCDN utility is varied during the testbed experiment upon 

replica selection for incoming content requests. Here we have used the utility values 

averaged over three deployed MetaCDN gateways in Asia/Australia, Europe and 

North America. We observe that utility-redirection produces the highest utility in the 

system by selecting the most active replicas to serve users. It also improves the traffic 

activities and contributes to uplifting MetaCDN’s content-serving ability. It should be 

noted that there is a warm-up phase at the beginning of the 48 hours experiment 

during which the replicas are populated with content requests, resulting in low util-

ity values. This is visible during the initial hours for utility and geo-redirection. 
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Figure 7.7: Probability of achieving specified utility. 

To emphasize the content-serving ability of MetaCDN, we now present the 

probability that the system can achieve required minimum utility. The intention is to 

show to what extent the system can maximize its own profit. Figure 7.7 presents the 

probability (or the fraction of time) that the system observes a utility above a certain 

utility level during the experiment. The higher the probability, the more likely it is 

that the specified utility level could be achieved. From the figure, it is noticeable that 

utility-redirection outperforms other alternatives, as it often produces over 0.95 util-

ity for MetaCDN with a 0.85 probability. Geo-redirection performs well as it has a 

0.77 probability that it can achieve 0.9 utility. Finally, random-redirection performs 

the worst and it can only achieve close to 0.56 utility for MetaCDN with a probability 

of 0.23. Therefore, a MetaCDN administrator may utilize a request-redirection policy 

apart from random, in order to maximize the system’s content-serving ability. 

7.7.4 Content Provider’s Perceived Utility 
We now shed light on the content provider’s perceived utility (surplus) or benefits 

(Section 7.4.2) from using MetaCDN, as reported in Table 7.3. For this purpose, we 

consider a scenario with 8 client locations belonging to 8 content providers. We use 

weighted throughput and normalized values of perceived response times from the 

client locations of respective content providers using the utility-redirection policy. 

We also measure the direct replica access time from each of the client locations. Fi-

nally, we make use of pricing information of Amazon S3, as reported by Broberg et al. 

[29]. The perceived utilities stated in Table 7.3 are to be considered representative, as 
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they may vary depending on the heterogeneous pricing structure of different storage 

cloud providers. In addition, different request-redirection policy leads to different 

perceived utility for a content provider. 

Table 7.3: Content providers’ benefits on user perceived performance. 

Content 
Provider 

End-user 
Location 

Average Re-
sponse Time (s) 

Average Direct Rep-
lica Access Time (s) Throughput Perceived 

Utility (%) 
1 Paris 0.99 0.747 475.39 KB/s 13.31 
2 Innsbruck 1.03 0.955 518.67 KB/s 29.29 
3 Poznan 1.52 0.667 1.80 MB/s 68.99 
4 Beijing 4.17 1.337 176.54 KB/s 58.14 
5 Melbourne 1.72 0.75 413.15 KB/s 25.32 
6 Atlanta 1.09 0.605 3.35 MB/s 66.47 
7 Irvine 1.06 0.391 504.74 KB/s 25.38 
8 Rio de Janeiro 1.81 1.17 1.14 MB/s 34.02 

We observe that a content provider’s perceived utility is heavily dependent on 

the throughput that its end-users receive. Therefore, content providers whose 

end-users benefit from high throughput also realize high quantitative benefit from 

using the MetaCDN system. As the clients in Poznan and Atlanta experience highest 

throughputs, the content provider’s surplus for this locations are also highest. Using 

utility-redirection, the average throughput experienced in Paris is the lowest, thus 

leading to the least content provider’s surplus. Nevertheless, the utility-based re-

quest-redirection policy, being antagonistic to content provider’s utility, can still 

assists in resulting reasonable perceived utility for the content providers. Thus, the 

above results show that the MetaCDN system is helpful for content providers, even 

at times when it uses a request-redirection technique to maximize its own utility. 

7.8 Summary and Conclusion 
MetaCDN, a type of Content Delivery Cloud, provides a cost-effective solution for 

responsive, scalable, and transparent content delivery services by harnessing the re-

sources of multiple storage cloud providers. It provides sensible performance and 

availability benefits without requiring the content providers to build or manage 

complex content delivery infrastructure themselves. In this chapter, we have pre-

sented an approach to maximize the utility for content delivery via MetaCDN, 



  174 
 

achieved by implementing a utility-aware request-redirection policy in the system. 

The utility metric reflects the traffic activities in the MetaCDN overlay system and 

exhibit the usefulness of its replica infrastructure. We have used the measured utility 

to devise the implemented request-redirection policy and quantify the benefits of a 

content provider for using MetaCDN. We have conducted proof-of-concept experi-

ments on a global testbed to evaluate the performance of our approach. From the 

results obtained, we conclude that the utility of MetaCDN is maximized by using 

utility-based request-redirection to provide sensible replica selection and consistent 

average response time; however, with the cost of lower throughput in comparison to 

other candidate request-redirection policies. In contrast, a content provider’s benefit 

is enhanced with improvement of the perceived throughput through MetaCDN. 

Therefore, a MetaCDN administrator should use a redirection policy based on the 

objective of either maximizing system utility or a content provider’s utility. 

We aim at conducting a set of future developments in MetaCDN, which are out-

side the scope of this thesis. Our list of future investigations includes the 

development of advanced request-redirection techniques and pricing policies to 

benefit both the MetaCDN overlay system and content providers; and on-demand 

autonomic management (expansion/contraction) of replica and gateway deployment. 

In the next chapter, we conclude the thesis with the elaboration of the future research 

directions. 
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Chapter 8  

Conclusion and 
Future Directions 
The purpose of this thesis is to develop solutions to enable internetworking of multi-

ple content delivery services to ensure Quality of Service (QoS)-constrained content 

delivery, by combating against resource over-provisioning, Service Level Agreement 

(SLA) violation, and excessive operational cost for a CDN provider. Throughout the 

thesis, we introduce landmark achievements towards realizing this aim. In this 

chapter, we first summarize the contributions and findings to perform a reality check 

for the thesis objectives in order to ascertain whether our achievements are in line 

with them. Then we lay out a list of research issues for future investigations. 

8.1 Summary 
Present trends in content networks and content networking capabilities give rise to 

the interest in interconnecting CDNs, thus allowing providers to revel on increased 

scale and reach than that is achievable individually. Real world case studies show the 

significance of such cooperation. In this thesis, the technology for interconnection 

and interoperation between CDNs is termed as “peering” and we call the resultant 

system as “CDN peering”. In this context, we have identified the fundamental re-

search issues and challenges to address the core problems of load index 

measurement and dissemination, resource discovery, request-redirection, load dis-

tribution, and network utility measurement. We set forth our goals to address these 

key issues to achieve significant gains in cost effectiveness, performance, scalability, 
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and coverage through the CDN peering framework. In addition to highlighting the 

implications of our work in research domain, we also target demonstrating its appli-

cability in the practical context through a proof-of-concept implementation. 

This thesis investigates the state of the art in CDNs in terms of common trends, 

solutions, applications, features and implementation techniques by capturing a 

snapshot of the current CDN landscape. Our investigation has revealed the lack of a 

taxonomy to perform a complete categorization of CDNs in terms of functional and 

non-functional attributes. To address this need, a comprehensive taxonomy is de-

veloped to categorize the related solutions and systems. The taxonomy is also 

mapped to representative CDNs to demonstrate its applicability. A glimpse of the 

CDN technologies covered in our study and the developed taxonomy is helpful to 

analyze this thriving field. This investigation also serves as the basis for our innova-

tions related to the internetworking of multi-provider content delivery services, 

realized through CDN peering. 

Our analysis of the research initiatives in relation to CDN peering unveils only a 

modest progress on the framework, policies and enabling technologies to support 

peering. Moreover, there are a number of technical and non-technical challenges, 

ranging from the technological complexity to the legal and commercial operational 

issues, that may hinder the growth of CDN peering. These challenges can be ad-

dressed by either following an integrated overlay or a brokering approach. These 

lessons led to the development of an architecture, which follows an overlay approach, 

to assist the formation of CDN peering. The proposed architecture endeavors to at-

tain economics of scale, extended scalability and resource sharing with other CDNs. 

Based on this architecture, CDN peering can be short-term wherein CDNs operate to 

handle flash crowds, or long-term in which they explore the delivery of specialized 

services. The description of SLA negotiation and policy management in this context 

ascertain the feasibility and position the proposed architecture as a policy-driven 

framework to enable peering. In addition, the introduction of two complementary 

models to assist CDN peering, following a brokering approach, provides us flexibil-

ity to follow alternative approaches. Notably, one of these models has been used to 
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develop the MetaCDN system [29, 157] by harnessing resources from multiple stor-

age cloud providers to ensure high performance content delivery. Thus, the 

applicability of this thesis in practical context is validated and our reasoning to pro-

pose alternative models to enable peering is justified. 

Analytical modeling is helpful to represent a system’s behavioral performance by 

characterizing its key features. This thesis utilizes the fundamentals of queuing the-

ory to develop QoS-oriented models that provide a foundation for performing 

effective peering between CDNs. The delineated claims are backed up with sufficient 

results to demonstrate that CDN peering achieves QoS in service delivery to 

end-users. The model-based approach seeks to achieve scalability for a CDN in a user 

transparent manner. With the findings based on these models, this thesis opens up to 

devise enabling technologies for CDN peering. Furthermore, it leads towards a 

simulation-based advanced system analysis for the developed mechanisms. 

To ensure the success of peering and the effectiveness of operations for content 

delivery in a CDN peering system, this thesis presents novel schemes to perform re-

source discovery, server selection, and request-redirection to handle high load skews, 

such as during flash crowds. These techniques are interleaved to collectively perform 

load sharing in the CDN peering system. The proposed resource discovery algorithm, 

reminiscent of the publish/subscribe paradigm, strives for scalability and system 

decoupling via an offline approach. In addition, this thesis introduces a dynamic re-

quest-redirection technique that reacts to overloaded server conditions by steering 

excessive end-user requests to the least loaded servers, so as to minimize redirection 

cost in terms of traffic load and network proximity. Extensive simulation analysis, 

considering practical constraints and critical system parameters, reveals the novelty 

of the proposed techniques. This thesis positions the proposed request-redirection 

technique to be used as a complementary scheme to the commonly used DNS-based 

request-routing. Through the presented strategies this thesis also seeks to overcome 

the shortcomings of DNS-dispatching policy by ensuring fine-grained optimal server 

selections even under high load situations. 

The notion of utility is quite enticing in relation to content delivery. In our context, 
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utility refers to the quantification of traffic activities in the distributed network of the 

CDN peering system. While only few previous research [39, 92, 141, 204, 207] have 

considered utility in their work, this thesis sets out to introduce a utility model that 

provides a customer view of the CDN peering system health for different traffic 

types. The utility model has been evaluated through simulations, which reveals 

many interesting observations on the impact of critical system parameters on the 

perceived utility. Experiment results demonstrate that the system’s utility is essen-

tially tailored to the participating CDN providers’ service capacity, geographical 

proximity, network conditions and incoming request traffic. With this study, this 

thesis takes a further step forward to provide incentives for a better system design. 

Furthermore, this utility analysis serves as the building block for the development of 

a utility-based request-redirection strategy and a proof-of-concept implementation in 

the MetaCDN [29, 157] system. 

This thesis provides an implementation perspective by presenting a measurement 

study on the global MetaCDN testbed spanning six continents. As a type of Content 

Delivery Cloud [60, 154], MetaCDN embraces the mainstream adoption of Cloud 

Computing [35] to build a poor man’s CDN. While MetaCDN ensures high per-

formance content delivery services to Internet end-users, its ultimate goal is to 

improve its own utility, in terms of network traffic, and uplift the usefulness of its 

replica infrastructure. With this goal, this thesis describes the implementation of the 

previously introduced utility model to plug in a utility-based request-redirection 

technique within MetaCDN. This thesis then demonstrates empirical results based on 

an evaluation study that has been conducted over a period of 48 hours. Performance 

results reveal that with the proposed redirection scheme, MetaCDN ensures sensible 

performance in terms of response time and throughput, while resulting in high sys-

tem utility. Notably, it also assists in perceiving reasonable utility for the content 

providers, thus exhibiting MetaCDN’s benefit for content providers. 

To summarize, this thesis has laid the foundation for CDN peering with a novel 

suite of architectural models, innovative techniques, and practical tools that are effi-

cient for leveraging and organizing multi-provider resources, delivering content, 
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characterizing system performance, sharing loads, and improving network utility. 

With these novel contributions, this thesis opens up avenues for future research in 

relation to multi-provider content delivery services and Content Delivery Clouds. 

8.2 Future Directions 
A number of future research directions in relation to this thesis can be devised. In 

this section, we populate an indicative list, realizing the awaited technological inno-

vations in this area in the coming years. This listing also includes some of the 

research issues related to CDN peering that have been mentioned in Chapter 3 (Sec-

tion 3.6); however, have not been explicitly addressed in this thesis. While 

elaborating on the future research topics, we provide pointers to existing literature so 

as to lay out a comprehensive research roadmap to the CDN community. 

8.2.1 Content Replication in Cooperative Domain 
The issue of effective replication and caching of content is significant for CDN peer-

ing. The concept of caching “hot” content is not new, but in the context of 

cooperative content delivery, there will be significant competing considerations. We 

foresee future research to lead to the outcome of dynamic, scalable, and efficient rep-

lication mechanisms that cache content on demand with respect to the locality of 

requests, focusing on regions where specific content is needed most. Innovative solu-

tions integrating replication and caching is expected in the management of dynamic 

and personalized content in the cooperative domain. In this context, cooperative 

caching techniques [84, 143, 168] can be useful. To further improve CDN perform-

ance, adaptive replication techniques can be developed that will involve distributed 

caching [25], inter-CDN surrogate clustering [82], and content clustering [52].  

For content management based on user preferences, a comprehensive model is 

required for the CDN peering system. Alike Web personalization [137], user prefer-

ences can be automatically learned from content request and usage data by using 

data mining techniques [152]. Data mining over the CDN peering system can exploit 

significant performance improvement through dealing with proper management of 

traffic, pricing and accounting/billing in the cooperative domain. Researchers can 
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refer to previous work [49, 51, 52, 108] and the references therein for more informa-

tion on innovative content replication techniques. Detailed information on the 

integrated use of caching and replication as well as cache consistency mechanisms is 

available in existing literature [38, 201-203]. 

8.2.2 Active Content 
The rapid growth of Peer-to-Peer (P2P) techniques and the improvement of digital 

content production and retrieval tools may lead to the proliferation of user-generated 

active content. This type of content will be generated with a great deal of autonomy 

to give it the self-awareness feature. Subject to autonomic replication, it can be 

wrapped with an incentive-based lightweight cooperative agent with forecasting 

logic to predict end-user demand. Active content assures to retain its face-value, 

however, can have different context-dependent meaning and interpretations. It can 

be represented with latent meta-data where context-oriented properties can be added 

or removed during replication. However, it is necessary to maintain the provenience 

information along with the production and transformation of active content so that 

the master copy can always be retrieved from the origin. Research in this context may 

draw inspiration from several technological paradigms such as Web crawling, agent 

systems, economic principals, and social science. For this purpose, research related to 

autonomic content delivery, such as autonomic replication of Web applications [195] 

and policy-based content delivery in an active network [132] can be useful. 

8.2.3 On the Economics of Cooperation 
In the thesis we mostly focus on developing efficient and scalable enabling technolo-

gies for CDN peering. What we have not directly addressed, however, is the 

mechanism to incentivize peering to keep the providers motivated to contribute re-

sources. To ensure sustained resource sharing, sufficient incentives should be 

provided to all participating entities. Use of economic models in this context can 

represent a dynamic scenario and make the system more manageable through regu-

lating and analyzing the emergent marketplace behavior. Our initial work in this 

context has been reported previously [158], and is briefly covered in Chapter 3. 
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In the market models for CDN peering, a CDN is considered as an independent 

economic agent for buying and selling content. These models are useful to emphasize 

the QoS-oriented aspects of peer selection and result in tractable analytical solutions 

of the underlying games. They are also used to analyze the sensitivity of different 

performance metrics such as the cost, net benefit, value and popularity of the content, 

and transport cost. In this regard, economic models [54-56, 74, 113] and CDN pricing 

models [13, 86, 99] can be referred to develop advanced pricing models. 

8.2.4 Scalability of Dynamic Content Delivery 
The CDN peering system can be coupled with the capability to deliver dynamic con-

tent in a scalable manner. Dynamic content, e.g. scripts, animations, DHTML or XML 

pages, are generated on-demand using Web applications based on user requests. 

Such content generation is customized depending on a given user profile and char-

acteristics, with the use of scalable Web application hosting techniques such as edge 

computing [178], context-aware data caching [32, 197], data replication [197], and 

content blind data caching [197]. Instead of replicating the dynamic pages generated 

by a Web server, these techniques aim at replicating the means of generating content 

over multiple edge servers. Existing literature also includes a suite of algorithms for 

jointly optimizing the performance of dynamic content delivery by reducing 

end-user response time, while minimizing the resource utilization [183]. Industry ef-

forts such as EdgeSuite content distribution from Akamai and IBM WebSphere edge 

services have emerged to provide usage-based application and dynamic content de-

livery. However, the effectiveness of the proposed solutions is still highly dependent 

on the access patterns of applications [38]. The risk of creating bottleneck in the 

back-end layer of the Web system is still one of the main issues that hinder the scal-

ability of dynamic content delivery. Moreover, the shifting of Web 2.0 [146] towards 

personalized content, the presence of user profile information, and the convergence 

of Web 2.0 with user mobility would disrupt content delivery services due to user 

migration among edge nodes. Therefore, research initiatives are to be directed to find 

solutions addressing these issues. 
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8.2.5 Integration of Media Streaming 
Hosting of on-demand media streaming service is challenging because of the enor-

mous network bandwidth required to simultaneously deliver large amount of 

content to end-users. To avoid network congestions and to improve performance, 

P2P techniques can be used to extend the CDN peering system as an adaptive CDN. 

In such a system, content storage and workload from streaming server, network and 

storage resources are offloaded to the end-users workstations. The fundamental idea 

is to allow multiple subscribing peers to serve streams of the same video content si-

multaneously to a consuming peer rather than the traditional single server-to-client 

streaming model, while allowing each peer to store only a small portion of the con-

tent. In this regard, prior solutions such as cost-effective media streaming [221] and 

adaptive streaming CDN [83, 85] can be useful. 

8.2.6 Mobility for Content Delivery 
Mobile networks are increasingly becoming popular for distributing information to a 

large number of highly dynamic users. In comparison to wired networks, mobile 

networks are distinguished by potentially much higher variability in demand due to 

the user mobility. Content delivery in CDN peering can take into account this mobil-

ity notion, by potentially considering very high spatial and temporal demand 

variations to dynamically reconfigure the system, and to minimize the total traffic 

over the network backbone. A mobility model in this context can be designed to al-

low the access of accurate and up-to-date information and enterprise applications. 

We point to a few research initiatives [4, 130] regarding the models on mobile CDNs. 

8.2.7 Applicability of Anycasting 
Although examined early in the CDN evolution process, IP anycasting [153] was not 

considered as a viable approach for request-redirection in CDNs. This is due to the 

lack of load awareness and unwanted side effects of Internet routing changes on the 

IP anycasting mechanism. Nevertheless, the emergence of route control mechanisms 

coupled with external intelligence to allow dynamic route selections [212, 214] and a 

recent study on anycast-based measurement [17] shed light on the possibility to real-



 

 183 
 

ize CDN redirection using IP anycast. Lately, researchers have presented the archi-

tecture of an anycast CDN with proximal routing [8], along with a method to  

handle connection disruptions due to routing changes [7]. These findings can arouse 

interest in the CDN community to explore the usage of anycast-based redirection for 

CDN peering, by conducting operational experiment in real CDN deployments. 

8.2.8 Energy-Aware Content Delivery 
The CDN peering system characterizes a large-scale distributed system comprising 

geographically spanned server clusters. Such a system consumes huge amount of 

electricity, thus leading to high energy cost. Conventionally, the approach to reduce 

energy cost is to decrease the amount of the consumed energy. Novel techniques can 

be developed which reduce the energy cost through cost-aware routing strategies 

[175]. An energy-aware request-routing technique should consider end-user’s geo-

graphical proximity, energy usage and cost, and incoming traffic load for directing 

end-users to the most cost-effective replica. By enabling energy-efficient content de-

livery through the CDN peering system, participating providers can reduce their 

collective energy cost. While energy-aware content delivery and request-redirection 

techniques are economically beneficial for commercial CDNs, a third-party provider 

(e.g. MetaCDN) may be interested in attaining social welfare by reducing the envi-

ronmental impact of energy consumption. Therefore, intelligent request-redirection 

techniques can be developed that reduces the carbon footprint (CO2 emission) of 

providers. In this context, researchers can refer to existing literature [48, 50, 80, 175]. 

8.2.9 Enhancement for Content Delivery Clouds 
Extension of traditional CDNs model to Content Delivery Clouds enhance capabili-

ties to deliver services that are not only limited to Web applications, but also include 

storage, raw computing or access to any number of specialized services. The rising of 

Content Delivery Clouds call for a systematic understanding and practical realization 

of the fundamental issues in current network management and control. In addition, it 

initiates potential research that focuses on identifying necessary application require-

ments, enhancing scalability, system robustness, usability and access performance, 
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low cost, data durability, and support for security and privacy. 

The MetaCDN overlay system [29, 157] (Chapter 7) is a step towards providing 

flexible and adaptable content delivery services by harnessing the state-of-the-art 

availability and reliability features, and security measures of upstream storage cloud 

providers with little overhead due to load redirection. Future investigations on the 

MetaCDN system include active measurement approaches (as in the WhyHigh Sys-

tem [117]) for QoS-based or probabilistic request-redirection, automatic scaling of 

MetaCDN gateway and replica infrastructure, and dynamic pricing. 

An extension to the MetaCDN QoS Monitor and its integration to the MetaCDN 

system are in progress to gather active measurement data from probes or agents de-

ployed across the Internet to improve end-user performance. These agents operate at 

different locations and track the performance (response time, throughput, and reli-

ability) that they experience in their locality when accessing content via MetaCDN. 

The recorded QoS measurement data is passed to the closest MetaCDN gateway that 

can make use of this information for advanced request-redirection.  

Finally, a dynamic pricing policy for MetaCDN should be in place to ensure sys-

tem profit as well as benefits and social welfare for the subscribing content providers 

and their end-users. For this purpose, dynamic pricing models for clouds [11, 174] 

can be useful.
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