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Abstract

Cloud computing is a model of acquiring and using preconfigured IT resources on de-
mand. Cloud providers build and maintain large data centres and lease their resources
to customers in a pay-as-you-go manner. This enables organisations to focus on their core
lines of business instead of building and managing in-house infrastructure. Such in-
house IT facilities can often be either under or over utilised given dynamic and unpre-
dictable workloads. The cloud model resolves this problem by allowing organisations to
flexibly resize/scale their rented infrastructure in response to the demand. The conflu-
ence of these incentives has caused the recent widespread adoption of cloud services.

However, cloud adoption has introduced challenges in terms of service unavailability,
regulatory compliance, low network latency to end users, and vendor lock-in. These fac-
tors are of special importance for large scale interactive web-facing applications, which
observe unpredictable workload spikes and need to serve users worldwide with low la-
tency. The utilisation of multiple cloud sites (i.e. a Multi-Cloud) has emerged as a promis-
ing solution. Multi-Cloud approaches also facilitate cost reduction by taking advantage
of the diverging prices in different cloud sites.

The 3-Tier architectural model is the de-facto standard approach to build interactive
web systems. It divides the application in three tiers: (i) presentation tier which im-
plements the user interfaces, (ii) domain tier implementing the core business logic, and
(iii) data tier managing the persistent storage. This logical division most often leads to
deployment separation as well.

This thesis investigates dynamic approaches for workload distribution and resource
provisioning (a.k.a. brokering) of 3-Tier applications in a Multi-Cloud environment. It
advances the field by making the following key contributions:

1. A performance model and a simulator for 3-Tier applications in one and multiple
clouds.

2. A system architecture for brokering 3-Tier applications across clouds, which con-
siders latency, availability, and regulatory requirements and minimises the overall
operational costs.

3. An approach for Virtual Machine (VM) type selection that reduces the total cost
within a cloud site. It uses online machine learning techniques to address the vari-
ability of both the application requirements and the capacity of the underlying re-
sources.

4. A rule-based domain specific model for regulatory requirements, which can be in-
terpreted by a rule inference engine.

5. Design and implementation of a workload redirection system that directs end users
to the individual cloud sites in a Multi-Cloud environment.
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Chapter 1

Introduction

CLOUD computing services offer access to third party resources and infrastructure

over the Internet. Cloud providers create and maintain large scale data centres to

lease IT resources in a pay-as-you-go manner, thus realising the long-held dream of util-

ity computing [44, 75]. From a business perspective, it is widely viewed as a disruptive

economical model for renting preconfigured technical resources [101]. Being able to rent

and use facilities on demand and to avoid upfront investments in hardware and licenses

proves to be very enticing for enterprises in a dynamic and unstable business environ-

ment. Cost efficiency has long been touted as the primary benefit of cloud adoption [99].

However, recent investigations have found that cloud computing has a much further-

reaching impact. It enables organisations to focus on their main lines of business and

decreases the cost of experimenting with technologies thus encouraging innovation [99].

Cloud services can be classified in three main categories with respect to the provided

IT resources [111], namely Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS). In the IaaS model, clouds provide computing resources

such as storage, networks, and processing. PaaS cloud providers offer tools and services

for application development and deployment. Finally, SaaS providers offer their clients

complete applications like web-based calendars and office suites.

The cloud model can be seen as an extension of Grid computing, which also envisions

access to a shared pool of computing resources. One major distinction between the two

is the type of applications they usually host. Grids are used for resource intensive batch

processing systems, while cloud applications are much more general purpose and can

also include interactive online applications [75], most of which follow the standard 3-Tier

architectural model and are divided into [2, 76, 142]:

1
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Figure 1.1: 3-Tier application in a single cloud data centre.

• Presentation Layer — represents the interface displayed to the user;

• Business/Domain Layer — implements the core application logic;

• Data Layer — handles access to the persistent storage.

This layering is logical. However, in the case of large scale applications it also be-

comes physical separation and each logical layer is deployed separately to increase the

overall performance, maintenance, and scalability.

Figure 1.1 depicts a typical 3-Tier application deployed in a single cloud. The presen-

tation layer is usually accessed through a web browser. The domain layer implements

the essential application logic — e.g. management of items in a shopping cart in an on-

line store, access to users’ personal data etc. Traditionally, the domain layer is executed

in one or several Application Servers (AS). They are deployed behind a Load Balancer

(LB), which redirects the incoming requests among them. Servers “behind” the load bal-

ancer can be dynamically added and removed in response to a dynamic workload. The

data layer facilitates access to the persistent storage. It is independent from the other two

layers and in some cases it can even serve more than one application.
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Figure 1.2: An interactive Multi-Cloud system.

The 3-Tier design in its different incarnations is a prevalent architectural model.

Cloud data centres are becoming the preferred deployment environment for such ap-

plications. Enterprises hosting 3-Tier applications in cloud environments range from e-

commerce businesses like ebay [67], which is hosted in a hybrid cloud [68], to government

agency web sites, including the US Department of Treasury, hosted in Amazon EC2 [13].

However, the cloud deployment of such applications also raises several challenges

for clients. A cloud service interruption may have a severe impact on clients who are

left without access to essential resources [26], as highlighted by several recent cloud out-

ages [15, 112]. Furthermore, for many applications the geographical location of the serv-

ing data centre is essential because of either legislative or network latency considerations.

Lastly, it is desirable to avoid vendor lock-in and to be able to dynamically move to com-

petitive providers to reduce the overall cost of the used resources.

To address such challenges, software engineers need to design for the cloud, not only

to deploy in the cloud. Software applications need to be more scalable and fault tolerant

so they can dynamically adapt to workload fluctuations and autonomously and timely

address infrastructure failures. The use of multiple clouds (i.e. a Multi-Cloud) has been

suggested as a potential approach to achieve this. In a Multi-Cloud environment, clients
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use resources from multiple clouds to host application components without relying on

any interoperability between the cloud providers. For interactive applications, usually

there is an intermediate Entry Point redirecting users or their requests to the components

in the individual clouds, as depicted in Figure 1.2.

Multi-Clouds hold the promise to facilitate interactive applications that are (i) legis-

lation compliant, (ii) more resilient and cost efficient, and (iii) offer suitable Quality of

Experience (QoE) to geographically dispersed end users. Despite some initial efforts in

the area, building 3-Tier applications that meet these goals remains an open challenge.

This is precisely the topic of this thesis. It investigates how a Multi-Cloud can be effi-

ciently used as a deployment environment for interactive 3-Tier applications.

1.1 Motivation and Scope

The standard cloud computing model, where a client uses a single cloud site, has sev-

eral limitations. A cloud service unavailability can leave thousands of customers relying

solely on it without access to essential and paid for resources. In fact, according to a

Berkeley’s analysis service unavailability is the greatest obstacle for cloud adoption [26].

Relying on a single cloud site makes it impossible to provide adequate responsiveness

and usability to clients distributed worldwide because of the network latency. Further-

more, many interactive applications have strict regulatory requirements as to where dif-

ferent users are served. For example, the Data Protection Directive of the European

Union (EU) forbids the transfer of personal data to non-member countries, unless an

adequate level of protection is ensured [70]. Similar laws exist in many other jurisdic-

tions as well [39]. Therefore, no single cloud site can facilitate the requirements of a large

scale interactive system serving customers worldwide and complying with various and

often conflicting regulations.

These factors preclude the usage of multiple clouds (i.e. a Multi-Cloud) to achieve

better Quality of Service (QoS), reliability, and flexibility. If there is a cloud site outage,

users can be redirected to alternative ones. The implications from the outage of one of

Amazon’s data centres were very serious for customers who relied on that location only.

In a post-mortem analysis Amazon advised their clients to design their applications to
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use multiple data centres for fault tolerance [14]. Furthermore, only by using multiple

clouds can an application provide low latency service to users worldwide and gain ac-

cess to resources in multiple legislative regions in order to meet regulatory requirements.

Besides, using multiple cloud sites and being able to freely transit workload among them

allows enterprises to avoid vendor lock-in and take advantage of the dynamically diverg-

ing cloud prices. In case a provider changes a policy or pricing that impact negatively its

clients, they could easily migrate elsewhere.

In order to work with multiple clouds, common industry standards and resource

management programming interfaces must be used. Otherwise, one would have to pro-

gram against the specific interfaces of each cloud provider, which would result in a brit-

tle and difficult to extend system. Standardising PaaS and SaaS solutions of different

providers has been an elusive goal because of the plethora of diverse functionalities they

offer. On the other hand, IaaS cloud providers offer virtualised infrastructure in the form

of a few abstractions like virtual machines, disk volumes, etc. Therefore, there are already

de facto standards and mature services providing unified access to multiple IaaS cloud

offerings. Hence, in this thesis we focus on IaaS Multi-Clouds, so we can take advantage

of these technological advances.

Significant work has been done in the area of scaling the data layer across servers and

data centres. Cattel [50] surveys more than 20 projects in the area of scalable distributed

databases that balance differently between the consistency, availability, and partition tol-

erance requirements as defined in the CAP theorem [40, 41]. Furthermore, Google has

revealed their database architecture which scales within and across geographically dis-

tributed data centres without violating transaction consistency [60]. Hence, persistent

data distribution across data centres is outside the scope of this thesis. We focus on load

balancing the incoming users across data centres given that the data is already appropri-

ately distributed across the cloud sites.

1.2 Research Problem and Objectives

This thesis explores multiple aspects of resource provisioning and workload manage-

ment (a.k.a. brokering) for 3-Tier applications in Multi-Clouds. More specifically it fo-
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cuses on the following research question:

How to broker 3-Tier applications in a Multi-Cloud environment, considering Qual-

ity of Service (QoS) requirements in terms of:

• Network Latency Awareness — end users should be served near their geo-

graphical location to experience better responsiveness.

• Pricing Awareness — the overall costs for hosting should be minimised.

• Legislation/Policy Awareness — legal and political considerations about

where individual users are served should be honoured.

• Code Re-usability — few changes to existing 3-Tier applications should be

made. The technical overhead of moving an existing 3-Tier system to a Multi-

Cloud should be minimal.

To answer this question, first we need a formal performance model of Multi-Cloud 3-

Tier applications. Such a model would be instrumental in the performance analysis and

the development of various optimisation techniques. The main challenges in this respect

are:

• Models are simplified representations of reality and almost always observe a certain

level of inaccuracy. How to develop a model which balances between generality,

ease of use, and accuracy?

• What stochastic processes to use when modelling the incoming workload?

• How to extract a model representation of an existing system or one under develop-

ment?

• How to develop a simulator based on the model, which can be used for perfor-

mance evaluations of different brokering techniques?

Secondly, we need a general architecture for brokering 3-Tier applications in Multi-

Clouds. Hence, the following challenges arise:

• What should be the architectural components and their interactions in order to

achieve the predefined goals?



1.3 Evaluation Methodology 7

• How to estimate the potential network latencies between users and all cloud sites,

so we can redirect load efficiently?

• How to ensure existing 3-Tier applications can be migrated to a Multi-Cloud intact

or with minimal changes?

• How to ensure acceptable overhead of the proposed architecture?

• How to automatically select the most suitable resource when autoscaling?

• How to conveniently model the regulatory requirements?

Based on these challenges, the following objectives can be outlined:

• Explore, analyse and systematise existing approaches for application brokering in

multiple clouds. Classify them with respect to the aforementioned requirements.

• Formulate a performance model for 3-Tier applications in one and multiple clouds

and implement a simulation environment based on it.

• Develop a flexible and general 3-Tier application brokering architecture.

• Propose an approach for network latency estimation between any incoming end

user and the employed clouds.

• Develop an approach for efficient Virtual Machine (VM) selection upon scaling up

within a cloud.

• Develop a flexible domain specific model for specifying regulatory rules for work-

load redirection.

1.3 Evaluation Methodology

The approaches proposed in this thesis were evaluated with realistic web application

benchmarks in cloud environments and using industry standards as baselines. We

used both the Rice University Bidding System (RUBiS) [16, 52, 149, 163] and Cloud-

Stone [59, 155] 3-Tier benchmarking applications. The RUBiS benchmark represents an

e-commerce website similar to ebay, while CloudStone, which is a part of the Cloud-

Suite benchmarking suite, is a social network website. We have extended the CloudStone

benchmark to accommodate a load balancer and multiple application servers, which was
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impossible with the original configuration. We have developed automated scripts and

detailed documentation for CloudStone deployment 1 to facilitate the reproducibility of

our test environment.

In some cases, executing repeated large scale experiments was not plausible and dis-

crete event simulations were used instead. Thus, we developed a set of extensions to the

CloudSim [46] simulator, which allow modelling and simulation of 3-Tier applications

in a Multi-Cloud environment. We had to ensure that our simulations are truthful rep-

resentations of the actual runtime behaviour. Thus, we conducted pairwise experiments

with a benchmark and its corresponding simulation and compared the observed perfor-

mances. Afterwards, we continue to use the newly developed simulator to perform large

scale experiments.

1.4 Thesis Contributions

Following the previously defined research question and objectives, the key contributions

of this thesis are:

1. A taxonomy and survey of the state-of-the-art cross-cloud application brokering

techniques and architectures.

2. A formal performance model and a simulator for 3-Tier applications in one and

multiple clouds:

• An I/O performance model for IaaS cloud environments, defining how per-

sistence storage access is shared among different applications and VMs on the

same physical host.

• Formal definition of a performance model of an end user session in an inter-

active 3-Tier application.

• A parameterised stochastic process for modelling the pattern of incoming

users.

• A CloudSim based simulator which uses the aforementioned models.

1http://nikolaygrozev.wordpress.com/2014/06/02/advanced-automated-cloudstone-setup-in-ubuntu-
vms-part-2/
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• Experimental evaluation of the proposed models, by comparing the predicted

(from the simulation) and the observed (from actual system execution) perfor-

mances and utilisations.

3. An architecture and policies for Multi-Cloud resource provisioning and load distri-

bution for 3-Tier applications:

• Architecture definition in terms of architectural components and their interac-

tions.

• A technique for estimating network latency between end users and potential

cloud sites using an Internet Performance Measurement (IEPM) service and a

geolocation database.

• An approach for estimating the cost for serving an end user within a given

cloud site.

• A workload redirection mechanism which heuristically optimises the cost and

response delays without violating legislative and regulatory requirements.

• Parameterised load balancing and autoscaling policies, which in conjunction

optimise cost and resource utilisation within a single cloud site.

• Evaluation through extensive discrete event simulations and comparison with

the standard industry practices.

4. A novel approach for dynamic selection of Virtual Machines (VM) for application

servers:

• A method for automated workload change detection using Hierarchical Tem-

poral Memory (HTM).

• A dynamic VM performance utilisation prediction method using an Artificial

Neural Network (ANN) and the aforementioned workload change informa-

tion.

• An approach for VM performance capacity estimation and normalisation.

• An algorithm for dynamic VM selection when autoscaling, which uses the

aforementioned techniques.
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• Evaluation through experiments with a prototype in AWS and comparison

with the standard industry practices.

5. A novel approach for regulations and latency aware load distribution across clouds:

• A domain specific approach for modelling regulatory requirements in a rule-

based format.

• An efficient system for checking regulatory compliance using a rule inference

engine.

• An improvement of the aforementioned network latency estimation approach.

It handles the case when a cloud provider can reuse the same IP address in

multiple cloud sites.

• An implementation of the system.

• Performance evaluation using 10 cloud sites of 2 cloud providers located on 5

continents.

1.5 Thesis Organisation

Figure 1.3 shows the thesis structure in terms of chapters and their logical dependencies.

Chapters 2 and 3 overview the related literature and propose a performance model and

simulator respectively. They serve as a basis for Chapter 4, which introduces an overall

architecture for 3-Tier application brokering across clouds. Chapters 5 and 6 are indepen-

dent of each other. They introduce extensions to the architecture from Chapter 4, which

improve the efficiency of the brokering mechanisms in a single cloud site and across

clouds respectively. More specifically, the remainder of the thesis is organised as follows:

• Chapter 2 presents a taxonomy and survey of contemporary approaches and archi-

tecture for application brokering across clouds. It is derived from:

– Nikolay Grozev and Rajkumar Buyya, “Inter-cloud Architectures and Appli-

cation Brokering: Taxonomy and Survey”, Software: Practice and Experience,

John Wiley & Sons, Ltd, vol. 44, no. 3, pp. 369–390, 2014.
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• Chapter 3 introduces a performance model and a simulator for 3-Tier applications

in one and multiple clouds. It is derived from:

– Nikolay Grozev and Rajkumar Buyya, “Performance Modelling and Simula-

tion of Three-Tier Applications in Cloud and Multi-Cloud Environments”, The

Computer Journal, Oxford University Press, vol. 58, no. 1, pp. 1–22, 2015.

• Chapter 4 proposes an architecture for Multi-Cloud resource provisioning and load

distribution for 3-Tier applications. It is derived from:

– Nikolay Grozev and Rajkumar Buyya, “Multi-Cloud Provisioning and Load

Distribution for Three-tier Applications”, ACM Transactions on Autonomous and

Adaptive Systems, vol. 9, no. 3, pp. 13:1–13:21, 2014.
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• Chapter 5 presents a method for dynamic selection of Virtual Machines for appli-

cation servers using a combination of machine learning techniques. It is derived

from:

– Nikolay Grozev and Rajkumar Buyya, “Dynamic Selection of Virtual Ma-

chines for Application Servers in Cloud Environments”, Technical Report

CLOUDS-TR-2016-1, Cloud Computing and Distributed Systems Laboratory, The

University of Melbourne, February 5, 2016.

• Chapter 6 presents an architecture for regulations and latency aware load distri-

bution of web applications in Multi-Clouds and presents its implementation. It is

derived from:

– Nikolay Grozev and Rajkumar Buyya, “Regulations and Latency Aware Load

Distribution of Web Applications in Multi-Clouds”, The Journal of Supercom-

puting, Springer (Under Review), 2015.

• Chapter 7 concludes the thesis, summarises its findings, and outlines directions for

future work.



Chapter 2

Inter-Cloud Architectures and
Brokering: Taxonomy and Survey

Although cloud computing itself has many open problems, researchers in the field have already

made the leap to envision Inter-Cloud computing. Their goal is to achieve better overall Quality of

Service (QoS), reliability, and cost efficiency by utilising multiple clouds. Inter-Cloud research is still

in its infancy and the body of knowledge in the area has not been well defined yet. In this chapter, we

propose and motivate taxonomies for Inter-Cloud architectures and application brokering mechanisms.

We present a detailed survey of the most prominent developments from both academia and industry

(23 projects) and we fit each project onto the proposed taxonomies. We discuss how the current Inter-

Cloud environments facilitate brokering of distributed applications across clouds considering their

non-functional requirements. Finally, we analyse the existing works and identify open challenges and

trends in the area of Inter-Cloud application brokering.

2.1 Introduction

THE first academic publications about Inter-Clouds appeared a couple of years after

the advent of cloud computing and include the following seminal works — [33,

43, 53, 94, 147]. The term Inter-Cloud has been described as a cloud of clouds [96] and

a formal definition is provided in Section 2.2. Essentially, an Inter-Cloud allows for the

dynamic coordination and distribution of load among a set of cloud data centres — see

Figure 2.1.

In essence, the main value of an Inter-Cloud environment for cloud customers is that

they can diversify their infrastructure portfolio in terms of both vendors and location.

This chapter is based on the following publication: Nikolay Grozev and Rajkumar Buyya, “Inter-cloud
Architectures and Application Brokering: Taxonomy and Survey”, Software: Practice and Experience, John Wiley &
Sons, Ltd, vol. 44, no. 3, pp. 369–390, 2014.

13
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Figure 2.1: An overview of Inter-Cloud approaches and use cases.

Thus, they could make their businesses more adaptable to vendors’ policy and availabil-

ity changes and easily expandable in new legislative regions.

Cloud service providers may also have significant incentives from participating into

an Inter-Cloud initiative. A paramount idea of cloud computing is that a cloud service

should deliver constant availability, elasticity and scalability to meet the agreed cus-

tomers’ requirements [101]. A cloud provider should ensure enough resources at all

times. But how much is enough? Workload spikes can come unexpectedly and thus

cloud providers need to overprovision resources to meet them. Another issue is the huge

amount of data centre power consumption [31, 44]. Keeping an excess of resources in a

ready to use state at all times for coping with unexpected load spikes leads to increased

power consumption and cost of operation. Cloud providers’ benefits can be summarised

as follows:

• Expand on demand. Being able to offload to other clouds, a provider can scale in

terms of resources like cloud-hosted applications do within a cloud. A cloud should

maintain in a ready to use state enough resources to meet its expected load and a

buffer for typical load deviations. If the workload increases beyond these limits,

resources from other clouds can be leased [43].
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• Better SLA to customers. Knowing that even in a worst case scenario of data centre

outage or resource shortage the incoming workload can be moved to another cloud,

a provider can offer better Service Level Agreements (SLA) to customers.

However, achieving all these benefits for both cloud providers and clients should be

done without violating applications’ requirements. Appropriate application brokering

(consisting of provisioning and scheduling) should honour the requirements in terms of

performance, responsiveness, and legal considerations. Existing approaches to achieve

this vary in terms of architecture, mechanisms and flexibility.

In this chapter, we investigate and classify Inter-Cloud environments and applica-

tion brokering mechanisms. We focus on identifying and analysing the coarse-grained

requirements and recent developments in Inter-Cloud brokering of distributed applica-

tions. With this, we perform analysis of the status quo and identify trends and open

issues in the area. To the best of our knowledge, this novel area of research has not been

systematically surveyed before.

Since the area of Inter-Clouds is novel and there is ambiguity about some terms, in

Section 2.2 we discuss and define the main ones. In Section 2.3, we motivate and intro-

duce an architectural taxonomy of existing Inter-Cloud developments. Section 2.4 classi-

fies the existing approaches for brokering applications across clouds. In Section 2.5, we

classify existing distributed applications, and for every major class of applications we

investigate what are the requirements for Inter-Cloud brokering. In Section 2.6, we re-

view 23 major developments in the area fitting them into the previous taxonomies and

discussing their capabilities to facilitate Inter-Cloud application brokering. Section 2.7

provides an analysis of the state of the art. The final Section 2.8 summarises the discus-

sion.

2.2 Definitions

Cloud computing is a novel area of research and still faces certain terminological ambi-

guity. The area of Inter-Clouds is even newer and many works use several terms inter-

changeably. In this section we elaborate on their meaning.

Inter-Cloud computing has been formally defined as [81]:
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“A cloud model that, for the purpose of guaranteeing service quality, such

as the performance and availability of each service, allows on-demand reas-

signment of resources and transfer of workload through a [sic] interworking

of cloud systems of different cloud providers based on coordination of each

consumer’s requirements for service quality with each provider’s SLA and

use of standard interfaces.”

In the rest of this chapter we will adhere to this definition. The seminal works on

Inter-Clouds by Buyya et al. [43] and Bernstein et al. [33] also implicitly express similar

definitions. Buyya et al. emphasise the just-in-time, opportunistic nature of the provi-

sioning within an Inter-Cloud that allows for achieving QoS and QoE (Quality of Expe-

rience) targets in a dynamic environment [43]. The term Cloud Fusion has been used by

Fujitsu Laboratories to denote a similar notion [150].

This definition is generic and does not specify who is initiating the Inter-Cloud en-

deavour — the cloud providers or the clients. Also, it does not specify whether cloud

providers collaborate voluntarily to form an Inter-Cloud or not. Two other terms are

used throughout the related literature to differentiate between these — Federation and

Multi-Cloud. A Federation is achieved when a set of cloud providers voluntarily inter-

connect their infrastructures to allow sharing of resources among each other [25, 73, 147].

The term Multi-Cloud denotes the usage of multiple, independent clouds by a client or

a service. Unlike a Federation, a Multi-Cloud environment does not imply volunteer in-

terconnection and sharing of providers’ infrastructures. Clients or their representatives

are directly responsible for managing resource provisioning and scheduling [73]. The

term Sky Computing has been used in several publications with similar meaning [94,137].

Both Federations and Multi-Clouds are types of Inter-Clouds. We discuss them further

in Section 2.3.

Another term used in the related literature is Hybrid Cloud. It has been defined as a

composition of two or more different cloud infrastructures — for example a private and

a public cloud [111]. Thus, a hybrid cloud is a Multi-Cloud that connects miscellaneous

clouds in terms of their deployment models. Hybrid clouds are often used for cloud

bursting — the usage of external cloud resources when local ones are insufficient.

Throughout the literature, the term Inter-Cloud broker has been used with different
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Figure 2.2: Classification of cloud infrastructures.

meanings. In most cases, it means a service that acts on behalf of the client to provision

resources and deploy application components [43,73,105]. We adhere to this general idea

and define an application broker as an automated entity with the following responsibilities:

• Automatic resource provisioning and management across multiple clouds for a

given application. Typically, this would include allocation and deallocation of re-

sources (e.g. VMs and storage).

• Automatic deployment of application components in the provisioned resources.

• Scheduling and load balancing of the incoming requests to the allocated resources.

2.3 Architectural Taxonomy

By definition, Inter-Cloud computing is an endeavour which implies interconnecting

multiple cloud providers’ infrastructures. The extent to which cloud providers would

voluntarily lend their infrastructure within an Inter-Cloud depends on the political and

financial incentives they have to do so. Figure 2.2 depicts how cloud infrastructures can

be classified based on their ownership.

On the first level, we differentiate between Governmental and Private cloud infrastruc-

tures. These can be described as:
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• Governmental — owned and utilised by a government or non-profit institution.

Examples for this are science community clouds like Australia’s National eResearch

Collaboration Tools and Resources (NeCTAR) [118] and Canada’s Cloud-Enabled

Space Weather Modelling and Data Assimilation Platform (CESWP) [54].

• Private — owned by a private organisation.

Private clouds can be further classified as:

• Cloud portfolio — when the cloud is a part of a portfolio of clouds belonging to

the same organisation. Examples for this are multiple private clouds belonging to

a corporation.

• Independent — separate cloud infrastructure that is not a part of a portfolio of

clouds.

Given this classification, we argue that Independent private clouds are less likely to

participate voluntarily in an Inter-Cloud initiative. Such cloud providers will be reluc-

tant to scale/transit their workload in the data centres of their competitors. Also, such

providers may not be willing to provide access through unified APIs to their services in

a federated market place because that would allow their customers to migrate easily and

dynamically to competitors. This can be achieved by using specialised third party ser-

vices and application programming interfaces (APIs), which will be discussed in details

later.

For example, despite their data centre outages leaving customers without access to

services for substantial periods of time, none of the leading commercial providers (like

Amazon, Google and Microsoft) has announced plans to utilise external cloud resources

to avoid future outages.

On the other hand, Governmental clouds are very likely to participate voluntarily

within an Inter-Cloud among each other since that could benefit the quality of the over-

all public service. Similarly, portfolio clouds are likely to form an Inter-Cloud initiative

among each other since they are not directly competing with each other and have clear

incentives to collaborate.

Based on this observation, we can broadly classify Inter-Clouds as:
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• Volunteer federation — when a group of cloud providers voluntarily collaborate

with each other to exchange resources. As identified, this type of Inter-cloud is

mostly viable for governmental clouds or private cloud portfolios.

• Independent — when multiple clouds are used in aggregation by an application or

its broker. This approach is essentially independent of the cloud provider and can

be used to utilise resources from both governmentally and private clouds. Another

term used for this is Multi-Cloud.

From architectural perspective Volunteer federations can be further classified as:

• Centralised — in every instance of this group of architectures, there is a central

entity that either performs or facilitates resource allocation. Usually, this central

entity acts as a repository where available cloud resources are registered, but may

also have other responsibilities like acting as a market place for resources.

• Peer-to-Peer — in the architectures from this group clouds communicate and nego-

tiate directly with each other without mediators.

Independent Inter-Cloud developments can be further classified as:

• Services — application provisioning is carried out by a service which can be hosted

either externally or in-house by the cloud clients. Most such services include broker

components in themselves. Typically, application developers specify an SLA or a

set of provisioning rules and the service performs the deployment and execution in

the background, in a way respecting these predefined attributes.

• Libraries — often custom application brokers that directly take care of provisioning

and scheduling application components across clouds are needed. Typically, such

approaches make use of inter-cloud libraries that facilitate the uniform usage of

multiple clouds.

The whole taxonomy of developments is depicted in Figure 2.3. Figure 2.4 depicts the

architectures from the taxonomy. In Section 2.6, we discuss in details many examples of

developments in all these areas. Note that the discussed herein classifications are orthog-

onal to the general classification of cloud computing services as Software as a Service
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Figure 2.3: Architectural classification of Inter-Clouds.

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) as defined by

NIST [111]. For example, cloud providers within a federation can exchange resources at

the infrastructure level (e.g. VMs), but at the same time provide PaaS to clients. Also, in

theory a multi-cloud service may access IaaS, PaaS, or SaaS cloud services on behalf of its

clients.

2.4 Taxonomy of Inter-Cloud Application Brokering Mecha-
nisms

There are several mechanisms for implementing application specific brokering as de-

picted in Figure 2.5. At the first level, we differentiate as to who is responsible to provide

implementation of the application broker. Brokers using Externally managed mechanisms

usually are not hosted in-house and are a part of the system entities that facilitate the

Inter-Cloud. In the case of Multi-Cloud Services, application brokers are often part of the

service providing access to the set of clouds. In the case of Volunteer Federations, applica-

tion brokering is implemented either in a centralised entity or by the cloud providers. In

essence, Externally managed brokers are transparent to the developers and provide some

“hooks” for application specific logic.

Based on the way application specific logic is specified, we can further classify Exter-

nally managed brokering mechanisms as:
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Figure 2.4: Inter-Cloud architectures.

• SLA based — application developers specify the brokering requirements in an SLA

in the form of constraints and objectives. The cloud provider or the Inter-Cloud

service acting on behalf of the client decides on brokering approach honouring the

specified SLA.

• Trigger-Action — the application developers specify a set of triggers and associate

one or more actions to each of them. A trigger becomes active when a predefined

condition considering the externally visible application performance indicators be-

comes true. An action is executed when a correspondent trigger becomes active.

Actions usually include scale up/down or other provisioning activities. For exam-

ple, a trigger may become active if the number of active TCP/IP sessions becomes

more than 50, or if the memory consumption of an allocated VM exceeds 512MB.

An associated action may be the allocation of a new VM.



22 Inter-Cloud Architectures and Brokering: Taxonomy and Survey

Brokering
mechanisms

Directly
managed

Indirectly
managed

SLA based Trigger-Action

Brokering
mechanisms

Externally
managed

Directly
managed

SLA  based Trigger-Action

JCloudsContrail RightScale

E
xa

m
p

le
pr

o
je

ct
s

C
la

ss
ifi

ca
tio

n

Figure 2.5: Application brokering mechanisms.

The main benefit of the SLA based brokering approaches is that they are completely

transparent to the application developers. The provider or the service takes care of the

provisioning behind the scenes. However, in SLA based brokering clients do not have di-

rect control on how their applications are provisioned across clouds. Thus, there needs to

be a certain level of trust between the two sides. Also, in order to specify the provision-

ing requirements of an application, one needs mature SLA specification formalisms and

services. In a report from The Cloud Standards Customer Council (CSCC), it was em-

phasised that SLA contracts offered by current cloud providers are immature [62]. Often

clients are offered only non-negotiable standard SLA contracts, thus limiting their ability

to define application specific clauses. Most such contracts only specify performance re-

lated clauses and do not allow for provisioning restrictions — e.g. which location to use

for data storage. Thus, the adoption of SLA based brokering approaches depends on the

advancements of providers’ and mediators’ SLA offerings.

The Trigger-Action approach is less transparent than the SLA based one, since applica-

tion developers need to specify the exact scalability and provisioning rules. This gives a

more fine grained control about how the application behaves.

The Directly managed brokering mechanisms are mostly used when there is no medi-

ator between the application and the set of utilised clouds. Directly managed brokers are

hosted separately and need to keep track of the performance characteristics of the appli-
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cation themselves. It is the responsibility of the application developers to develop such

brokers in a way that meets the availability and dependability requirements.

2.5 Application-Centric Perspective to Inter-Clouds

Clouds as a deployment environment are general purpose and cover the whole spec-

trum of distributed applications. Cloud providers have always delivered computing re-

sources to enterprises. Thus, many database centric enterprise applications are deployed

within clouds. Being an inherently distributed environment, clouds are also suitable for

standard Grid and Cluster job-based applications. Research community clouds like Aus-

tralia’s NeCTAR [118] and Canada’s CESWP [54] have made the use of clouds for re-

source intensive jobs apparent, although there are still concerns about the worse perfor-

mance of virtualised cloud clusters compared to physical ones as reported by Jackson et

al. [90]. Developments like EC2 Cluster Compute Instance [12] are supposed to mitigate

such issues. It is logical to expect that the same spectrum of applications will be targeted

for the Inter-Cloud.

In this section, we perform a taxonomic analysis to identify classes of distributed

applications with similar characteristics. Then, we continue to identify the common non-

functional requirements of these application classes with respect to the Inter-Cloud envi-

ronment in which they are deployed.

2.5.1 Taxonomy of Inter-Cloud Applications

Figure 2.6 depicts the taxonomy of typical distributed applications deployable in Inter-

Cloud environments that will be discussed from now on. At the first level, we differ-

entiate between Batch processing and Interactive applications. Batch processing applications

allow the users to submit and execute jobs, which then run to completion without further

user input. Thus, they can also be thought of as job-based applications. Batch processing

applications can be further classified as allowing Singular or Periodical jobs.

Singular jobs are executed only once, unless they are rerun by the users or automati-

cally rescheduled upon failure. This branch of the taxonomy represents typical Grid and

Cluster resource intensive applications. Such applications are used by research, industry,
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Figure 2.6: Classification of distributed applications.

and military organisations to solve optimisation models, build complex simulations, etc.

Most of the applications in this branch fall into the High Performance Computing (HPC),

High Throughput Computing (HTC) or Many-task Computing (MTC) categories. Raicu

et al. defines these three types of applications and discusses their differences and simi-

larities [141]. Scientific workflows (further discussed by Barker and Van Hemert [29]) are

also a kind of Singular jobs, although they are composed of multiple subjobs/tasks, since

they appear to the user as a single unified job.

Singular jobs typically require fast connection between the processing nodes and are

less likely to be deployed across clouds. Exceptions to this are HTC applications, where

independent long running tasks may be scheduled across clouds. Another reason for

scheduling a job in multiple clouds is fault tolerance — if a job fails in one cloud environ-

ment it may succeed in another.

Periodical jobs are repeatedly executed over a time period. Most of them are Data cen-

tric and perform long running tasks over huge enterprise databases. Periodic Extract

Transform Load (ETL) jobs in Data warehouses, reporting jobs, and Big Data analytical

jobs are examples of this. Data centric periodical jobs are of great significance for enter-

prises with large scale information systems. They are often scheduled to run at nights

or weekends to ensure smooth business operation during working hours. Administrative

periodical jobs are relatively simple and take care of maintaining the system in a healthy

and running state. Examples are scripts that periodically consolidate log files from all
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nodes or release unneeded resources across nodes.

Data Centric Periodical jobs typically need to be executed close to where the corre-

sponding data is stored. Thus, Inter-Cloud scheduling and provisioning are sensible

when the persistent data is dispersed in multiple clouds.

Interactive applications are also known as Online applications. Unlike the Batch pro-

cessing ones, they imply constant interaction and input from the user. Most interactive

distributed systems are Data centric. That is, their main goal is to facilitate user access to a

persistent storage (most often a relational database). Typical examples are Online Trans-

action Processing (OLTP) applications. Another group of Interactive applications are the

Compute Intensive ones. Examples for such are multilayer online games.

Unlike Batch processing applications, Interactive ones need to be constantly available

and thus would benefit the most from using multiple clouds. Also, many online applica-

tions serve users from around the world and thus would benefit from the geographical

diversity of an Inter-Cloud’s data centres.

2.5.2 Requirements for Inter-Cloud Environments

As discussed, the main benefit from the clients’ perspective of an Inter-Cloud environ-

ment is the diversification in terms of vendors and locations. It is however important that

this is done without violating the non-functional application requirements. Not all Inter-

Cloud environments allow for such control. Thus, in the rest of this section we define

several requirements for Inter-Cloud environments and discuss for which of the main

applications classes these are important. Table 2.1 summarises the discussion. We only

focus on requirements that are essential for the objectives of this thesis. For a more de-

tailed discussion of the open challenges in interconnected cloud environments, the reader

is referred to the work of Toosi et al. [161].

Data Location Awareness

Ideally, the persistent data and the processing units of an application should be in the

same data centre (even on the same rack) and should be connected with a high speed

network. If they reside on remote clouds, the performance penalty could be grave.
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This consideration is especially important for interactive applications and periodical

jobs using huge databases. Actually, in this case the database considerations are becom-

ing a driving factor in Inter-Cloud brokering. The database often becomes the perfor-

mance bottleneck of a distributed enterprise application. Additional approaches like dis-

tributed caching and sharding are often used to mitigate to some extent the performance

issues of traditional databases [61].

In recent years, there has been a trend to move away from standard relational

databases to the so-called NoSQL and NewSQL ones. There has been significant amount

of developments in these fields (Cattel reports on more than 20 projects [50]). The term

NoSQL denotes a broad range of non-relational database developments. In essence, the

NoSQL approach aims at balancing between consistency and partition tolerance follow-

ing the result of the famous CAP theorem [40, 41], while NewSQL approaches keep to

standard relational approaches but discourage or ban performing certain inefficient op-

erations [50].

Many enterprise systems will need to use several types of data sources simultane-

ously. For example, payment information may be stored in a transactional relational

database to ensure consistency, but other data like catalogues of products may be stored

in a NoSQL storage for better performance. This phenomenon has been termed Polyglot

persistence by several practitioners [77, 100].

But why is this important in terms of Inter-Cloud brokering? An inter-cloud broker

of a data-centric application is essentially responsible for allocating resources on multiple

clouds and scheduling incoming requests to these clouds appropriately. Developers need

the flexibility to implement brokering policies considering the structure and the location

of distributed persistent data and cache servers. Thus, a successful broker should be well

integrated with its application and should get feedback from it regarding the structure

and location of data.

Most Singular job-based applications are compute intensive programs and thus avoid

substantial I/O operations. Some of them, however, work on datasets that have been

extracted in advance for example by conducting experiments. In such cases, the data is

usually stored in standalone persistent storage — e.g. relational database or a data file.

Typically, either the data is replicated to the node running the job or the job is scheduled
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on a node near the data. The latter is preferred when the dataset has significant size.

There has been substantial work in the last decades on data aware scheduling of singular

jobs in Grids and it has been well summarised by Dong and Akl [65]. To apply these

approaches in an Inter-Cloud environment, the location of the data (or its replicas) needs

to be known.

Geo-location Awareness

Besides database considerations, the location of the incoming requests is also important

to consider when brokering interactive applications. Ideally, requests should be sched-

uled near the geographical location of their origin to achieve better performance. This

is not usually considered when brokering jobs, since the users submit the jobs only once

and do not interact with the system until they finish. In interactive systems, however,

network latency caused by geographical distances may significantly hurt the user expe-

rience.

Pricing Awareness

A common consideration for all types of applications deployed in multiple clouds is the

pricing. Different providers have different pricing policies and mechanisms and min-

imising the overall hosting price is a non-trivial task. An application broker would need

detailed and up to date information about providers’ prices and policies to perform fis-

cally efficient provisioning.

Legislation/Policy Awareness

For some applications, the application broker should take into account legislative and

political considerations upon provisioning and scheduling. For example, such a broker

could avoid placing part of the data outside a given country or can avoid using cloud

services of a specific vendor.

This is a typical requirement in both interactive and batch processing data centric

applications. In rare cases, this can be a requirement for singular job applications as well

— e.g. when performing research on a dataset of medical records.
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Table 2.1: Typical Inter-Cloud brokering requirements.

Awareness Job based Interactive applications
Singular Jobs Periodical Jobs Compute Intensive Data Centric

Data Location 3 3 3

Geo-location 3 3

Pricing 3 3 3 3

Legislation/
Policy

3 3 3

Local Resources 3 3 3 3

Local Resources Awareness

Another consideration that is common to all application types is the usage of local in-

house resources with higher priority than external ones. That is, cloud bursting should

be allowed only if the local resources are insufficient or unsuitable in terms of geograph-

ical location, proximity to data, or operational costs. Furthermore, some applications can

only be hosted in private infrastructure for security reasons. Deploying software compo-

nents and data in external infrastructure may not be allowed in some cases. In fact, local

resources awareness can be considered a special case of policy and pricing awareness.

We list it separately because it is an often recurrent characteristic.

2.6 State Of The Art in Inter-Clouds

In this section, we summarise several state-of-the-art Inter-Cloud developments. They

were identified after an extensive analysis of the related literature and include both aca-

demic an industry projects. Each of the following subsections discusses the projects that

fall into one of the architectural groups introduced in Section 2.3. Besides a technical

summary for each project, we also discuss where it fits within the introduced taxonomies

and how it addresses the requirements from Section 2.5.
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2.6.1 Centralised Federated Inter-Clouds

InterCloud

The InterCloud [43] project developed at the University of Melbourne is one of the first

initiatives in the field. It extends previous efforts form the InterGrid project to allow the

sharing of resources across cloud providers [64]. The proposed architecture is centralised

and is built around a central entity called Cloud Exchange (CEx). In essence, CEx acts

like a marketplace where clouds can sell resources. The buyers may be other clouds

or application brokers. Thus, the architecture is clearly market oriented and facilitates

pricing aware application brokering.

Each cloud data centre participating in an InterCloud federation needs to have an

agent called Cloud Coordinator (CC) installed. Cloud Coordinators manage the federation

memberships of the clouds by communicating with CEx on their behalf [43]. An architec-

ture of an extensible Cloud Coordinator has been further discussed by Calheiros et al. [45].

To serve as a federation wise marketplace, the Cloud Exchange (CEx) maintains an in-

formation registry of the clouds’ resources. The Cloud Coordinators of the participating

providers periodically update their details within this information registry [43]. Geo-

graphical location of resources can be maintained within CEx and thus location aware

brokering is possible. Brokering in InterCloud can be either SLA based, when a cloud

provider acts on behalf of the client, or Directly managed, when clients directly buy and

use resources from CEx.

Contrail

The architecture of the European project Contrail [49] is built around a centralised com-

posite entity that acts as a single entry point to a federation of cloud providers. It is

responsible for periodically observing the states of the cloud providers and facilitating

a federation wide SLA. It also provides single sign on, so that users need to authenti-

cate only once to work with the entire federation. A special architectural component

called Federation Runtime Manager (FRM) is dedicated to map users’ requests to cloud re-

sources. It implements cost and performance optimisation heuristics and ideally should

have access to the geographical location and other meta information about every cloud
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provider [49]. Application brokering is achieved by specifying a detailed application

SLA. It is the responsibility of the FRM module to provision in accordance with the SLA

and to minimise the costs. However, the documentation is not specific whether users are

allowed to specify geographical, legislative, and data location constraints in the SLA.

The Adapters Layer architectural component constitutes of adapters for every cloud

provider in the federation. The adapters facilitate the communication between the feder-

ation management components and the clouds. The adapters can be classified as:

• Internal adapters — for clouds running the Contrail software. These are called

Contrail clouds. Contrail clouds allow for the federation management components

to reserve and configure their resources [49].

• External adapters — for clouds that do not run the Contrail software.

When using External adapters, the cloud providers themselves are agnostic of the fed-

eration — they do not voluntarily participate in it. Thus, in terms of the presented ar-

chitectural taxonomy, a Contrail federation using External adapters is considered a Multi-

Cloud and will be discussed in a later section. On the other hand, a Contrail federation

using Internal adapters is considered a centralised federation. In other words, Contrail

supports both types of architectures. It even supports a hybrid architecture that utilises

both clouds participating voluntarily within a federation and federation agnostic clouds.

Dynamic Cloud Collaboration (DCC)

In the centralised federation architecture Dynamic Cloud Collaboration (DCC), the central

entity that facilitates the federation is one of the clouds called primary cloud provider (pCP).

This is the first cloud provider in the federation — the one that actually established

it [84, 85]. The other cloud providers are called collaborating clouds. The primary cloud

(pCP) maintains a registry of the services of the collaborating clouds. Application bro-

kering is done via SLA contract with pCP. Cloud clients submit requests to the pCP, which

based on the requests’ characteristics allocates resources within the federation. It has not

been specified whether clients are allowed to declare requirements about the geographi-

cal location of the allocated resources. However, there has been work on the facilitation

of a cloud market place where auctions for resources are held [85].
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Federated Cloud Management (FCM)

The Federated Cloud Management (FCM) architecture relies on a generic repository called

FCM Repository to store virtual appliances for all federated services [108]. It is replicated

to the native repositories of the different IaaS providers. Clients interact only with the

Generic Meta-Broker Service (GMBS) describing the requested service and, as far as they

are concerned, further provisioning and scheduling is transparent [108].

For every IaaS provider in the architecture, there is a correspondent broker called

CloudBroker managing the allocation and deallocation of VMs and dispatching incoming

application calls to appropriate VMs. GMBS has access to the FCM Repository and can

communicate with the CloudBroker components of the federated clouds. When GMBS re-

ceives a request from a user, it performs matchmaking between the request and an appro-

priate CloudBroker. The matchmaking is based on information from the FCM Repository

and runtime metrics provided by the CloudBrokers.

Each CloudBroker maintains an internal queue of incoming application calls and a sep-

arate priority queue for every virtual appliance. VM queues represent the resources that

can serve a virtual appliance related service call. The priority of each VM queue is based

on the currently available requests in the queue, their historical execution times, and the

number of running VMs. Based on the VM queues, the CloudBroker needs to perform ap-

propriate VM creation and destruction. A CloudBroker also handles the aforementioned

queue of incoming calls by redirecting them to the VMs created as a result of the man-

agement of the VM queues.

Application brokering in FCM is done transparently to the client. In the architec-

ture definition nothing has been said about user-level control over the location of the

used resources and how cost optimisation can be achieved [108]. We could speculate

that location specific requirements can become a part of the SLA between the clients and

GMBS. In a separate work, Kecskemeti et al. extend the FCM approach to facilitate self-

adaptable and autonomous management of the federation [95]. One of their goals is to

achieve resource optimisation (and consequently costs efficiency) without violating the

SLAs. However, this optimisation concerns the resource utilisation of the whole federa-

tion and does not necessarily lead to cost optimisations for all federation’s clients.
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Rafhyc

The Resilient Architecture of Federated Hybrid Clouds (Rafhyc) is a layered Inter-Cloud ar-

chitecture enabling the development of scientific PaaS and SaaS solutions [117]. It has a

Multi-Cloud layer that provides a unified access to multiple cloud sites. Individual clouds

must implement industry standards in order to work with the Multi-Cloud layer. Next

is the Federated Hybrid Cloud Services Layer, which provides service monitoring, an infor-

mation system with all available resources, and unified access point to the aggregated

resources in the form of web services. The Resilient Services Layer uses the lower lay-

ers to provide high level management services over the entire federation. These are the

functionalities that eScience PaaS and SaaS developers use to build their environments.

Rafhyc is essentially a centralised architecture. The aforementioned layers and the

components they are composed of govern how the underlying resources are managed.

Its target applications are scientific resource intensive batch processing jobs. Other ap-

plication domains have not been explored at this point. The Resilient Services Layer has

an Efficiency and Price Optimiser component, which uses cost minimisation resource se-

lection heuristics. In the initial Rafhyc specification, this component only accounts for

cost and various SLA characteristics and is not geo-location, policy, and local resources

aware. The Efficiency and Price Optimiser component can be considered to implement SLA

based brokering, as it incorporates certain SLA metrics and QoS estimations, although

its documentation does not specify if these can be provided as input parameters at this

point.

2.6.2 Peer-To-Peer Federated Inter-Clouds

RESERVOIR

The Resources and Services Virtualization without Barriers (RESERVOIR) project is a Euro-

pean project that extends previous research on interconnecting Grids. Its architecture

does not feature a central entity and is peer-to-peer — clouds communicate directly

with each other to negotiate resource leasing. The usage of multiple clouds is facili-

tated through Claudia — an abstract layer for service execution on top of a cloud federa-

tion [148].
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Custom application brokering in RESERVOIR can be achieved through elasticity rules

of the type Trigger-Action [146]. Developers can also decalratively specify how their ap-

plications scale. This is done by specifying the SLA of the application in terms of perfor-

mance objectives (e.g. response time) and a control strategy characteristic (e.g. number

of virtual machines). RESERVOIR then creates an approximate elasticity behavioural

model that optimises the control strategy characteristic without violating the SLA con-

straints [146].

RESERVOIR requires that all deployed applications should be agnostic of the hosting

data centre location, thus allowing for transparent deployment anywhere within the fed-

eration. Clients and their application brokers have no control over the selected hosting

cloud [146]. RESERVOIR can be considered pricing aware, since the price of the used

resources could be optimised if set as a control strategy characteristic.

Open Cirrus

Open Cirrus is a test bed for distributed systems research and federates several research

data centres across the globe. Open Cirrus is not an Inter-Cloud environment per se

because it allows users to work directly with the hosts besides utilising virtualised re-

sources [28,47]. Publications about the project do not give much details about the middle-

ware involved in it. It is known that the test bed runs the experimental cluster manage-

ment software Tashi [98], the Hadoop framework [20], and a custom physical resources

management system called Zoni [28].

The Open Cirrus environment has been designed to be data location aware. Tashi

and the location metadata provided by the Hadoop Distributed File System (HDFS) are

used to schedule computing tasks on the nodes where the correspondent persistent data

resides [28]. However, in the publications on the topic nothing has been said about lo-

cation awareness when using datasets other than HDFS files (e.g. relational database).

Also, it has not been stated if users can control the location of the used resources and if

they have access to pricing information if pricing is present in this research test bed at all.
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OPTIMIS

The OPTIMIS toolkit requires that OPTIMIS software agents are deployed within cloud

providers and application brokers. These agents communicate with each other to imple-

ment Inter-Cloud provisioning.

One of the agent components is the Deployment Engine (DE). It is responsible for the

discovery and negotiation with suitable clouds for hosting a particular service. Firstly, a

set of suitable clouds meeting some predefined conditions are identified and the service

manifest (an SLA template) is sent to each of them. Cloud providers answer either with

a rejection to accept the service or a deployment offer. DE selects the best offer based

on the quantitative (e.g. cost) and qualitative (e.g. some measurement of trust) aspects

of the offer. DE is also responsible for initiating the deployment of the service within

the selected cloud by providing the appropriate VM images that constitute the needed

service. After the deployment of the service, the Service Optimizer module is responsible

for continuously monitoring the service parameters for SLA violations [73].

In the cloud that is contacted by the DE, the Admission Controller (AC) is responsible

for either making an offer or rejecting the request. The decision is based on the current

workload of the cloud, the requested resources, and an evaluation of the potential profit.

Allocation of resources for the provided VMs is done by the Cloud Optimizer (CO) [73].

Application brokering can be implemented by configuring the DE components of the

application broker or the hosting cloud provider. During the selection process, DE con-

siders the prices of the deployment offers together with other metrics including trust,

risk, and energy impact numerical assessments. The exact algorithm for the selection

and how configurable it is have not been disclosed. Also, it has not been stated whether

DE considers the geographical location of the clouds and the persistent data the provi-

sioned service uses. It has only been mentioned that juridical and political restrictions

can be specified and then honoured by the respective DE [73].

The OPTIMIS toolkit supports peer-to-peer federation, when cloud providers com-

municate directly with each other transparently to their clients. It also supports Indepen-

dent Inter-Clouds (Multi-Clouds), which will be discussed in a successive section.
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Arjuna Agility

Arjuna Agility [24] is a commercial framework for establishing Inter-Cloud federations.

It is mostly tailored for federations of in-house data centres, but can also facilitate cloud

bursting (usage of public clouds) if the demand increases beyond in-house resource ca-

pabilities. Each federation site needs to install an Agility software agent that governs

the interaction with the other sites [23]. Each site has its own policy regarding resource

sharing and can define what resources in terms of hardware and software are shared.

Being targeted mostly at in-house cloud federations, Arjuna Agility addresses provider

specific problems like reducing the power consumption [109, 110]. To this point, it does

not feature cost optimisation. Priority usage of local resources is addressed as a data cen-

tre borrows resources only if it can not meet its own demands. Provisioning decisions are

governed by provisioning policies set by an administrator. They are federation specific,

not application specific [23].

Global Inter-Cloud

Bernstein et al. envision a worldwide federation of cloud providers, rather than separate

small scale federations [35]. They draw analogies from previous experience in integrating

separate systems into large scale utility services — e.g. electricity and phone systems and

the Internet. They propose a new Inter-Cloud architecture following some of the main

design principles of the public Internet.

In a global Inter-Cloud environment, it is important for cloud providers to discover

each other and to match their needs for resources. Bernstein et al. propose the usage of

a global resource catalogue called Cloud Computing Resource Catalogue. It contains infor-

mation about the shared resources within the federation and should be hosted by several

community governed Intercloud Root servers. They replicate the catalogue among each

other to provide better performance and availability.

Negotiation between providers is facilitated by Intercloud Exchanges — distributed

servers that allow cloud providers to discover suitable resources. Intercloud Exchanges

perform match making between cloud providers based on specified preferences and con-

straints. Intercloud Exchanges use the resource catalogue stored on the Intercloud Roots to
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provide a Distributed Hash Table (DHT) suitable for fast querying. After the negotiation

is done, cloud providers continue to communicate directly with each other.

The proposed architecture is not centralised because the Intercloud Roots and Ex-

changes are distributed and replicated. Thus, a failure of any of them can not cause a

failure of the federation as a whole.

To facilitate all phases of the described global Inter-Cloud system, each participant

should have an entity called Intercloud Gateway. These entities allow cloud providers,

Intercloud Roots, and Exchanges to communicate with each other using a set of Inter-Cloud

protocols and standards. To date, such interoperability protocols and standards have not

been widely utilised, although there are already ongoing works in the area [33,34,36,37,

166].

From the clients’ viewpoint, application brokering is achieved through specifying ap-

propriate constraints and preferences in the SLA with the cloud provider. The cloud

provider should then respect the SLA when submitting requests to an Intercloud Exchange.

Both private and public clouds can participate within the envisioned global federation.

Thus, private clouds can consider using local resources before utilising external clouds.

Bernstein et al. envision that cloud providers should be able to specify resource location

preferences and constraints on behalf of their clients when negotiating to meet legislative

and political requirements [35]. Cloud providers could also implement cost optimisa-

tion policies on behalf their clients, although this has not been discussed in the related

literature.

2.6.3 Multi-Cloud Services

OPTIMIS

Besides federation, OPTIMIS also supports Independent Inter-Clouds (Multi-

Clouds) [73]. In terms of the OPTIMIS architecture, a Multi-Cloud is achieved

when clients use their Deployment Engine (DE) and Service Optimizer (SO) directly to

launch and monitor services within multiple cloud providers.

A major drawback here is the need to work with cloud providers that have OPTI-

MIS agents deployed in their data centres. As discussed, often cloud providers would
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not wish to voluntarily participate in an Inter-Cloud and install such agents. The OPTI-

MIS vision is to allow for externally developed adapters for such clouds which should

facilitate the communication between OPTIMIS agents and OPTIMIS agnostic cloud

providers. Such adapters should be developed for every cloud service provider.

Contrail

Like OPTIMIS, the previously discussed Contrail project [49] also supports both federa-

tion and independent Inter-Clouds. Similar to OPTIMIS, a major drawback of Contrail

in terms of supporting independent Inter-Clouds is the need to develop and maintain

multiple vendor specific Contrail adapters.

mOSAIC

The mOSAIC open source API and platform allow for the development and deployment

of applications that use multiple clouds [137]. Unlike most other Inter-Cloud technolo-

gies, mOSAIC makes some assumptions about the architecture of the deployed applica-

tion. It is assumed that the application is divided into components with explicit depen-

dencies in terms of both communication and data between them. Also, the application

architecture must be service oriented (SOA) and must use only the mOSAIC API for

inter-component communication. Other types of communication (e.g. direct sockets)

are disallowed. For each component application, developers must specify the resource

requirements in terms of computing, storage, and communication. Some resource re-

quirements are specified for the whole application as well — e.g. overall budget [137].

The mOSAIC platform automatically provisions such applications across a set of pre-

defined clouds, without direct involvement from the user. Thus, the only way to control

the application brokering is through the predefined SLA on performance indicators at

component and application level.

Application brokering in mOSAIC is done by a component called Resource Broker (RB).

It is responsible for the mediation between clients and cloud providers. RB is further com-

posed of a Cloud Agency (CA) which is responsible for discovery and negotiation with

cloud providers and a Client Interface (CI) responsible for requesting additional resources
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from the Application Executor component. The Application Executor (AE) component man-

ages the deployment, execution and monitoring of the application within the reserved

resources [137]. In this architecture, pricing awareness is promoted through the Cloud

Agency component, which takes into consideration and negotiates on the pricing policies

of the cloud providers.

STRATOS

STRATOS is a cloud broker service [129]. The entry point of the system is the CloudMan-

ager. Clients describe the application topology and requirements in a Topology Descriptor

File (TDF) and submit it to the CloudManager. It contacts the Broker component, which

determines the optimal initial resource allocation across clouds. The Broker uses another

architectural component called Translation Layer to access miscellaneous clouds through

a uniform API. The CloudManager and the Broker continuously receive monitoring infor-

mation based on which they take further provisioning decisions.

Application specific brokering is achieved by specifying requirements and policies

within the TDF. STRATOS is obliged to honour the terms from the TDF. Thus, the TDF

can be considered as an SLA document between the client and the STRATOS service.

The TDF format is XML based and allows for the specification of deployment topology

configuration (in terms of VM images, middleware, storage, etc.), constraints, and objec-

tives. The goal of the Broker is to optimise the objectives without violating the constraints

or breaking the application topology. To build optimisation models, the Broker needs

adequate measurements of the performance characteristics of cloud providers. For this

purpose, STRATOS utilises the Service Measurement Index (SMI) [58] and the metrics

defined by Garg [79] and Zachos et al. [168].

The cost is a usual candidate for an objective and thus STRATOS can be pricing aware

[129]. We could speculate that Geo-location and Legislation/Policy awareness can be pro-

moted via TDF constraints, although this has not been discussed in the related literature.

Also, the mapping of incoming requests to nodes near the appropriate data persistence

storage has not been discussed.
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SALOON

The SALOON platform helps in the process of cloud resource selection and configura-

tion [140]. SALOON uses extended Feature Models (FMs) to represent meta information

about the resources within each cloud site. The FMs are afterwards mapped to an ontol-

ogy called OntoCloud, which models cloud resource concepts and relationships. A second

ontology, which is called OntoDim, models the required application characteristics and is

user defined. Based on OntoCloud and OntoDim, SALOON identifies potential deployment

configurations [139]. This process is not completely automated and application develop-

ers need to manually select among the offered deployment options [140].

The SALOON documentation does not specify if regulatory of data location con-

straints can be specified in the FMs, OntoCloud, and OntoDim. However, the overall cost

of deployment is considered [140]. OntoDim is generic and can describe applications with

different types. It can be considered as a detailed SLA specification that is honoured by

SALOON, and hence it can be classified as a SLA-based approach.

MODAClouds

The MOdel-Driven Approach for design and execution of applications on multiple Clouds

(MODAClouds) brings Model Driven Development (MDD) and cloud computing to-

gether [22, 134]. In MDD, software engineers initially define abstract application mod-

els and then gradually transform them (manually or automatically) into more concrete

models or the final application source code. One of the most popular MDD approaches

is the Model Driven Architecture (MDA), which dictates that an application should

be developed as a series of 4 types of models: (i) Computation Independent Models

(CIM), (ii) Platform Independent Models (PIM), (iii) Platform Specific Models (PSM),

and (iv) Implementation Specific Models (ISM) [124]. Hence, in MDA software engineers

gradually add computational, platform, and implementation details. This provides the

flexibility to change the computational model, platform, or implementation details with-

out propagating changes across the entire stack of models.

Similarly, in MODAClouds a system is designed using the following models:

• Cloud Computational Independent Model (CCIM) — generic description of the
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required functionality without specific technical details;

• Cloud Platform Independent Model (CPIM) — describes the application modules,

their interactions, and deployment environments without specifying the concrete

cloud platforms;

• Cloud Platform Specific Model (CPSM) — refined version of CPIM, which models

how the application components use specific cloud services.

The benefit is that individual cloud services can be replaced without having to re-

engineer the entire application. Unlike applications built using cloud agnostic APIs, sig-

nificant application changes may still be needed. However, cloud agnostic APIs allow

developers to use only the common features of the underlying cloud services, which can

be rather limiting. MODAClouds allows the advanced features of each individual cloud

offering to be used through its final CPSM models.

MDD approaches are typically enabled by sophisticated design tools that facilitate the

model development, management, and transformations. In MODAClouds, the tooling

is in the form of an Integrated Development Environment (IDE) that allows modelling

in a domain specific language called ModaCloudML. The IDE facilitates semi-automatic

model transformation and direct deployment on the used clouds. It also provides cost

analysis and information about the geographical location of the cloud sites to be consid-

ered. Whenever the models are changed, the IDE allows a new application version to be

redeployed.

The IDE interacts with the MODAClouds runtime environment, which is a Multi-

Cloud service for resource monitoring, utilisation reporting, and adaptation. It provides

feedback to the application developer through the IDE. In addition to the directly man-

aged resource provisioning through the IDE, the runtime also allows trigger-action rules

to be executed whenever certain performance thresholds are reached.

Commercial Cloud Management Systems

Several companies provide paid independent Multi-Cloud services. In essence, their fea-

tures are similar and they compete against each other on the basis of the performance



2.6 State Of The Art in Inter-Clouds 41

overhead they add and the variety of cloud providers they can integrate with. It is be-

yond the scope of this chapter to survey all players in this dynamic market niche and

here we only outline the features provided by some of the major companies.

RightScale offers a service for deploying and managing applications across clouds.

Users can manage virtual machines on multiple clouds through the RightScale con-

sole [144]. Application brokering is achieved through the alert-action mechanism, sim-

ilar to the Trigger-Action mechanism. All RightScale virtual machines have predefined

“hooks” that continuously send information back to the RightScale console. This facili-

tates the check of the alert conditions and the execution of the predefined actions. Actions

can define scale up/down policies but can also be administrative in nature (e.g. sending

email to the system administrator). As an action, a user is allowed to specify in which

cloud and location resources should be provisioned. Thus, scaling within RightScale can

be location aware. Users can add private clouds within the RightScale console to facilitate

local resources utilisation.

Generally speaking, the services of Enstratius (formerly enStratus) [69], Scalr [151],

and Kaavo [92] are comparable to those of RightScale. Naturally, there are differences in

the pricing, the set of supported cloud vendors and technologies, and some terminology.

Alike RightScale, they allow users to deploy virtual machines across different public and

private clouds. Application brokering is achieved through automated triggers, similar to

RightScale’s alerts, which can trigger scale up/down actions.

2.6.4 Inter-Cloud Libraries

Several Inter-Cloud libraries have been developed in recent years. Examples are the Java

library JClouds [21], the Python library Apache LibCloud [18], and the Ruby libraries

Fog [74] and Apache DeltaCloud [17]. Another library project at an early stage of devel-

opment is Apache Nuvem [19].

All these libraries are designed to abstract the programmers from the differences in

the management APIs of clouds and provide control over the provisioning of resources

across geographical locations. Such libraries can be used to ease the development of

cloud adapters for technologies like OPTIMIS and mOSAIC. By using such libraries, ap-

plication developers can program their own application specific brokers. Such brokers
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directly manage the underlying cloud infrastructures and thus can meet all previously

outlined requirements. A major issues with this approach is that developers need to de-

fine appropriate deployment and replication of the broker for availability reasons.

2.7 Discussion

There are fundamental technical, conceptual, and philosophical differences between

Inter-Cloud Federations and Multi-Clouds. Some argue that the Multi-Cloud approach

can not deliver the required level of transparent interoperability that will enable truly

scalable cross cloud applications. They envision that this could be achieved only through

Inter-Cloud Federations based on well established standards and communication proto-

cols [32]. Other researchers argue that Inter-Cloud Federations are often not feasible due

to the required complex multilateral agreements between competing parties [135, 136].

They see Multi-Clouds as a viable alternative, which moves the management of hetero-

geneous cloud resources to an external entity — a service or the end client.

In this chapter, we have discussed and classified 23 major Inter-Cloud developments,

identified after detailed analysis of the related work. These include both academic and

industry projects, which are summarised in Table 2.2. Figure 2.7 outlines how many of

them fall into each of the taxonomic groups discussed earlier. The sum of the counts is

greater than 23, since some projects support multiple Inter-Cloud topologies.

Most Multi-Cloud projects are industry driven. With a few exceptions, they are not

research projects supported by academic grants or developed in an academic environ-

ment. On the contrary, almost all Inter-Cloud Federation projects are visionary research

projects. The only exceptions is Arjuna Agility, used to build in-house Inter-Cloud feder-

ations.

This comes to show that currently there is a market demand for Multi-Clouds and

the technologies to facilitate them are available. As discussed, the predominant use

of Multi-Clouds is to provide cloud agnostic access to multiple competing Independently

owned clouds without their collaboration and knowledge. Such mediating services and

libraries are especially useful for small and medium sized businesses that want to deploy

applications in multiple public cloud environments for better availability, flexibility, and
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Figure 2.7: Inter-Cloud projects by architecture.

responsiveness. Thus, there is already competition between the providers in this market

niche.

On the contrary, almost all federation initiatives are research projects at an early stage

of development and adoption. This is because of the many open issues that need to be ad-

dressed with respect to provisioning resources and scheduling application components

on behalf of the clients.

The majority of the discussed developments take an SLA based approach to Inter-

Cloud application brokering. These projects try to make the Inter-Cloud transparent

to its clients, but as discussed, the SLA based approach meets series of shortcomings.

Thus, all of them are research projects at an early stage of development — see Figure 2.8.

The direct approach is the most flexible but is also the hardest to work with from the

clients’ perspective, since clients would need to program their own application brokers.

The Trigger-Action approach is used by both federations and Independent Inter-Cloud

services. It combines the declarative nature of the SLA approach and the provisioning

flexibility of the direct approach. All discussed industry projects take either direct or

trigger-action approach to application brokering.

Pricing awareness is the only brokering characteristic that can be facilitated by almost

all Inter-Cloud projects — see Table 2.2. Most federations do not support brokering con-
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Figure 2.8: Inter-Cloud projects by brokering mechanisms.

sidering any other of the predefined requirements. Few of them have limited awareness

of data location, legislation/policy, and local resources. On the contrary, all directly man-

aged Inter-Clouds cover the whole range of discussed requirements and thus provide

means for adequate brokering of miscellaneous applications.

As a consequence, most current federation projects are not tailored for Interactive ap-

plications, since they do not allow application brokering to consider such aspects. On

the contrary, Independent Inter-Cloud projects can facilitate all of these and thus are more

general purpose in nature.

Table 2.2: Summary of Inter-Cloud projects.

Project Type, Organisation Architecture Brokering

Approach

Application Type Awareness

InterCloud Research project,

University of Melbourne

Centralised

federation

SLA based

and Directly

managed

Singular Jobs Geo-location,

Pricing

Contrail Private and public

European research

organisations Funded by

EU

Centralised

federation

and

Independent

Service

SLA based Singular Jobs Pricing
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Project Type, Organisation Architecture Brokering

Approach

Application Type Awareness

Dynamic Cloud

Collaboration

(DCC)

Academic research

project supported by

South Korean research

funds.

Centralised

federation

SLA based Singular Jobs Pricing

Federated Cloud

Management

(FCM)

Academic research

project supported by EU

funds.

Centralised

federation

SLA based Singular Jobs Pricing

Rafhyc Academic research

project supported by EU

and Spanish government

funds

Centralised

federation

SLA based Singular Jobs Pricing

RESERVOIR Private and public

European research

organisations Funded by

EU

Peer-to-peer

federation

SLA based

and Trigger-

Action

Singular Jobs Pricing

Open Cirrus Research testbed by

academic and industry

partners. Partially

funded by US NSF.

Peer-to-peer

federation

Directly

managed

Singular Jobs Data location

OPTIMIS Private and public

European research

organisations Funded by

EU

Peer-to-peer

federation

and

Independent

service

SLA based Singular Jobs, Periodical

Jobs, Compute and Data

Intensive Interactive

application

Pricing

Arjuna Agility Commercially owned Peer-to-peer

federation

Trigger-

Action

Singular Jobs, Periodical

Jobs, Compute and Data

Intensive Interactive

application

Local resources

Global

Inter-Cloud

Publications are by

people from

miscellaneous companies

- CISCO, Huawei

Technologies, EMC

Corporation

Peer-to-peer

federation

SLA based Singular Jobs, Periodical

Jobs, Compute and Data

Intensive Interactive

application

Data location, Local

resources

mOSAIC Private and public

European research

organisations Funded by

EU

Independent

service

SLA based Singular Jobs, Periodical

Jobs, Compute and Data

Intensive Interactive

application

Pricing
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Project Type, Organisation Architecture Brokering

Approach

Application Type Awareness

STRATOS York University.

Supported by Canada’s

NSERC funds, Amazon

and CA Inc.

Independent

service

SLA based Singular Jobs, Periodical

Jobs, Compute and Data

Intensive Interactive

application

Geo-location, Pric-

ing, Legislation/

Policy and Local

resources

SALOON Academic research

project supported by EU

funds.

Independent

service

SLA based Singular Jobs, Periodical

Jobs, Compute and Data

Intensive Interactive

application

Pricing

MODAClouds Academic research

project supported by EU

funds.

Independent

service

Triger-Action

& Directly

managed

Singular Jobs, Periodical

Jobs, Compute and Data

Intensive Interactive

application

Geo-Location and

Pricing

Commercial Cloud

Management

Systems

(RightScale,

Enstratius, Scalr,

Kaavo)

Commercially owned Independent

service

Trigger-

Action

Singular Jobs Geo-location, Data

location, Pricing,

Legislation/ Policy

and Local resources

Libraries (JClouds,

LibCloud,

DeltaCloud,

SimpleCloud,

Apache Nuvem)

Open source projects Multi-Cloud

libraries

Directly

managed

Singular Jobs, Periodical

Jobs, Compute and Data

Intensive Interactive

application

Geo-location, Data

location, Pricing,

Legislation/ Policy

and Local resources

2.8 Summary

In this chapter, we have classified and analysed the state-of-the-art in Inter-Cloud devel-

opments. More specifically, we focused on how current Inter-Cloud projects facilitate the

brokering of different applications across multiple clouds.

We introduced classifications of Inter-Cloud architectures and brokering mechanisms.

Then, we classified Inter-Cloud applications and discussed their coarse-grained proper-

ties and brokering requirements. After an extensive analysis of the related literature, we

identified, discussed, and fit into the aforementioned classifications 23 major projects.

After that, we analysed the state of the art and the trends in the area.

We have identified that there is a major difference in the directions that early research

projects and industry projects are heading. While most research projects focus on de-



2.8 Summary 47

veloping Inter-Cloud federations, most industry projects provide services or libraries for

direct provisioning and scheduling across clouds. Also, most research projects focus on

SLA based brokering, while industry driven ones focus on trigger-action based or directly

managed brokering.

This evidences that the current Multi-Cloud technologies and environments are ma-

ture and can be used to address the outlined challenges. Therefore, in this thesis we take

a Multi-Cloud approach to using multiple clouds and introduce architecture, methods,

and algorithms for directly managed brokering of interactive 3-Tier applications. To fa-

cilitate our work, in the next chapter we introduce a performance model and a simulator

for 3-Tier applications in clouds. The newly introduced model is instrumental in the de-

velopment of some of the algorithms we present in the later chapters. The simulation

environment allows for their evaluation.





Chapter 3

Performance Modelling and
Simulation of 3-Tier Applications

The research in scheduling and provisioning 3-Tier applications in clouds and across clouds is still

in its infancy. To foster the research efforts in the area, we propose an analytical performance model of

3-Tier applications in cloud and Multi-Cloud environments. It takes into account the performance of

the persistent storage and the heterogeneity of cloud data centres in terms of Virtual Machine (VM)

performance. Furthermore, it allows for modelling of heterogeneous workloads directed to different

data centres. Based on our model, we have extended the CloudSim simulator, through which we

validate the plausibility of our approach. The conducted experiments with the RUBiS workload show

that the predicted performance characteristics by the simulation approximate well those of the modelled

system.

3.1 Introduction

THERE are significant differences between the characteristics of batch processing

and interactive 3-Tier applications. In essence, while batch processing programs

execute without continuous user interaction, interactive applications have to respond

to user interactions constantly and timely. This imposes substantially different require-

ments for application scheduling and provisioning. Foster et al. highlight that clouds,

unlike Grids, are especially suitable for interactive real-time applications [75]. Hence, the

development of provisioning and scheduling techniques for interactive applications is an

important research area.

This chapter is based on the following publication: Nikolay Grozev and Rajkumar Buyya, “Performance
Modelling and Simulation of Three-Tier Applications in Cloud and Multi-Cloud Environments”, The Computer Jour-
nal, Oxford University Press, vol. 58, no. 1, pp. 1–22, 2015.

49
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However, most research works in the area focus on resource intensive Grid-like batch

processing applications, leaving interactive ones beyond their scope. For example, Sotiri-

adis et al. present a literature review of meta-scheduling approaches in cloud environ-

ments and discuss their applicability in the area of cross-cloud scheduling [156]. They

overview 18 meta-scheduling approaches, all of which schedule batch processing appli-

cations and none of them schedules interactive ones. In addition, in Chapter 2 we have

outlined that most existing approaches for application brokering across clouds specialise

in batch processing applications only. This is not reflective of the more general nature of

Clouds, which in contrast to Grids tend to host a wider range of business applications,

many of which are interactive and follow the 3-Tier reference architecture.

There are many impediments to the research in interactive application provisioning

and scheduling in Clouds. Firstly, installing and configuring different middleware and

software components (e.g. application and database servers and load balancers) can be

complex and laborious. Another problem is the selection of appropriate workloads and

populating the database with suitable data in order to test different scenarios in practice.

Last but not least, the incurred financial costs for repeatedly performing multiple tests on

large scale applications can be significant.

Historically, similar problems have been encountered by researchers in the area of

batch processing applications in Grids and Clouds. These have been resolved by in-

troducing formal performance models and simulation environments that allow for the

evaluation of solutions without deploying and executing large scale systems. For ex-

ample, previous works on distributed systems simulation have significantly fostered the

research efforts and have been used in both academia and industry for quick evaluation

of new approaches. Unfortunately, existing simulators like GridSim [42], CloudSim [46],

and GreenCloud [97] can only be used to simulate batch processing and infrastructure

utilisation workloads and are not suitable for interactive 3-Tier applications.

With this work, we aim to fill this gap and make contributions that bring the benefits

of modelling and simulation to the area of 3-Tier application provisioning and scheduling

in Cloud and Multi-Cloud. More specifically we (i) propose a novel analytical model

for 3-Tier applications, (ii) define algorithms for implementing a simulator based on the

model, (iii) describe our enhancement of CloudSim supporting modelling and simulation
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of such applications, and (iv) validate our model through comparison with an actual

system. In this chapter we walk the entire path from defining an abstract, theoretical

performance model to implementing a full scale simulator based on the model, which

is used to validate its adequacy. We identify and address the shortcomings of existing

approaches and thus in our model we incorporate the following aspects, which are not

accounted for by most related works:

• Performance Variability — in a cloud environment, VMs’ performance can vary

depending on their placement among the physical hosts. VMs with equal charac-

teristics may observe significant performance differences [63].

• Disk I/O performance — many 3-Tier applications perform a huge amount of disk

operations, which often cause a performance bottleneck.

• Usage Patterns — applications’ workload change over time. We describe it analyt-

ically and implement utilities in the simulation environment to generate workload

based on an analytical description.

The rest of the chapter is organised as follows: In Section 3.2, we describe related

works and compare the present one to them. In Section 3.3, we provide a succinct de-

scription of the targeted class of applications, define the scope and assumptions of this

work and summarise our model. Section 3.4 formally defines the performance model.

Section 3.5 describes the design of a simulator following this model. Section 3.6 describes

several use cases of our model. Section 3.7 evidences the plausibility of our simulator

through experiments. Section 3.8 summarises the chapter.

3.2 Related Work

Urgaonkar et al. discuss a model for multi-tier web applications which represents how

web requests are processed at the different tiers [164]. This seminal work has been the

basis for many other efforts in the area. Their model is represented as a linear network of

queues — Q1, Q2...Qm. Each queue corresponds to an architectural tier. A request comes

to a tier’s queue Qi and after being served it is transferred to the queue of the next level

Qi+1 with probability p or to the queue of the previous tier Qi−1 with probability 1− p.
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Table 3.1: Summary of related work.

Work Analytical approach Application
type

Server concurrency Level of Granu-
larity

Server Type

Urgaonkar et al. [164] Closed network of queues Multi-tier Single Threaded Request Hardware

Zhang et al. [169] Closed network of queues Multi-tier Single Threaded Transaction Virtual Machine

Bi et al. [38] Hybrid queuing model Multi-tier Single Threaded Request Virtual Machine

Zhang and Fan [170] Queuing model Single tier Single Threaded Request Hardware

Kamra et al. [93] Queuing model, Control
Theory

Single tier Single Threaded Request Hardware

Chen et al. [55] Closed multi-station
queuing network

Multi-tier Multi-Threaded Request Virtual Machine

Our Work Performance model based
on step functions

Three-tier Multi-Threaded Session Virtual Machine

To model web sessions, a new queue Q0 is introduced which is linked to both Q1 and

Qm thus forming an infinite queuing system. For each active session a dedicated server

is assigned in Q0. Requests exiting from the last tier proceed to Q0 and from there they

re-enter the system. The time spent at the virtual server in Q0 models the idle user time.

In their model, Urgaonkar et al. do not account for the performance variability in a

virtualised cloud environment. They consider the service time of the servers in the dif-

ferent tiers to be a random variable which is independent of the number of concurrently

served sessions. In our model these are reflected. They represent sessions as a set of re-

quests while in our model they are represented as atomic entities continuously creating

performance load on the tiers’ servers.

A similar analytical model based on a network of queues has been proposed by Zhang

et al. [169]. Unlike Urgaonkar et al. they use statistical regression to estimate the CPU

cost of each server in the system. Also, the unit of work is transactions, not web requests.

They do not consider the inherent performance variability in a cloud environment and

the load on the servers in terms of used memory and disk I/O.

Several other approaches also use queuing theory for performance modelling. For ex-

ample, Bi et al. propose a hybrid queuing model for provisioning multi-tier applications

in cloud data centres [38]. They model the system at the level of incoming requests not

sessions. Zhang and Fan have developed a queuing model of a web system with one load

balancer and two web servers [170]. Their model does not represent a multi-tier system.

Kamra et al. model the entire application as a single queue [93]. That is, the different

layers are not modelled separately.
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In standard queuing theory, a server can not serve more than one request at a time.

This is an inherent problem when modelling multi-tier applications, since most appli-

cation servers are multi-threaded and can serve multiple requests simultaneously. This

issue has been identified by Chen et al. and thus they model the whole system as a

closed multi-station queuing network to capture this aspect [55]. Every server in the ap-

plication’s architecture is represented as N servers in the queuing model, where N is the

maximum number of concurrent sessions in a server. Also, in their work they assume a

virtualised environment. A major difference between our work and theirs is that alike

other queue-based models, they model the system behaviour at a lower level in terms of

requests. Another difference is that they do not reflect the performance variability of the

virtualised environment.

A major difference between all these works and ours is that our model is much more

coarse-grained — we model the workload in terms of sessions and do not represent each

and every request. This makes it much easier to define and experiment with different

workloads. Also, since we do not represent requests, our model is more general and

essentially agnostic of the underlying technologies. While other models are constrained

to a specific type of technology, our model can be used for standard web applications,

Rich Internet Applications (RIA), thick-client 3-Tier applications, etc. Lastly, unlike oth-

ers, our work takes into account the performance and workload heterogeneity of Cloud

and Multi-Cloud environments. Table 3.1 further summarises the related work.

In terms of simulation environments GridSim [42] and CloudSim [46] are the most

relevant related projects. They are suitable for simulating batch processing workloads,

and our present work extends CloudSim to support interactive 3-Tier applications as

well. Unlike our approach the GreenCloud [97] project focuses on simulating data cen-

tre energy consumption, rather than application performance. Similarly, MDCSim [102]

focuses on evaluating the overall energy consumption and latency, but does not facilitate

application performance modelling. The SPECI [157] simulator is designed to evaluate

the scalability and resilience of data centre infrastructure, and also can not be used for

application performance evaluation. The iCanCloud simulator [121] has similar capabili-

ties and design philosophy to CloudSim, but is designed to be faster for large workloads

and has a graphical user interface (GUI). However, It does not allow modelling 3-Tier
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Figure 3.1: 3-Tier reference architecture deployed in multiple clouds.

applications. In fact, we argue that our approach can be implemented as an extension of

iCanCloud, as we have done it for CloudSim.

3.3 Overview

3.3.1 Architectural Setting

Dividing a system architecture into layers is a fundamental approach for managing com-

plexity. In essence, a system is constructed as a sequence of layers/tiers, each of which

is independent of the successive ones and communicates only with the previous tier(s)

through well defined interfaces. This approach brings numerous benefits including in-

creased understandability and maintainability since the layers can be developed, under-

stood, and investigated relatively independently [76].

As to Martin Fowler, the main challenge when designing a multi-tier software sys-

tem is to decide what are the layers and their encapsulated functionalities [76]. A design

error at this stage could result in having hard to maintain coarse grained layers, which

contain too much functionality or too many small layers that communicate excessively.
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This has precluded the development of layered architectural patterns. Of these, the most

prominent is the 3-Tier software architectural pattern, which allows for building scalable

and adaptable information systems. As discussed, the 3-Tier architectural pattern dic-

tates that applications are divided into presentation, business/domain, and data layers.

Although not web specific, it has gained significant momentum with the advent of the

web as it allows quickly migrating traditional applications to the web by replacing only

the user interface layer [76].

The presentation layer implements the user interface which the end user interacts

with. It can be either a separate application (the so-called “fat client”) or web interface

accessed through a web browser. Either way, it is executed on the end user’s machine

and thus we do not take it into account in the servers’ performance. Traditionally, the

domain layer is executed in one or several Application servers (AS) which communicate

with the presentation and the data layers. In the case of Infrastructure as a Service (IaaS)

cloud offerings, AS servers are deployed in separate virtual machines (VMs).

The data layer facilitates access to the persistent storage. It is independent from the

other two layers because the persistent data often outlives the applications that use it and

in some cases it can even serve more than one application. The data layer is executed in

one or several database servers (DB).

Traditionally, the data layer has been the most architecturally challenging part of a

3-Tier application, since it is hard to scale horizontally as demand rises. For example,

this is the case when the data tier is implemented with traditional relational databases,

which are widespread in virtually every application domain. Several approaches like

master-slave replication, caching, NoSQL and NewSQL databases [50] have been used to

mitigate this issue and have been widely adopted in cloud environments as well.

This architectural pattern is very generic and there are a lot of possible adjustments

that can improve the overall system performance. For example, the number of AS servers

can be different and can increase or decrease dynamically in response to the demand. As

discussed, the data layer can be composed of both transactional relational databases,

caches and novel approaches like NoSQL and NewSQL databases. In this chapter, we

introduce a general modelling and simulation approach that encompasses all of them,

and can be used to evaluate different design alternatives — e.g. use of caching vs master-



56 Performance Modelling and Simulation of 3-Tier Applications

slave replication in the data layer.

We consider two main scenarios: (i) a 3-Tier application is deployed within a single

data centre and (ii) a 3-Tier application is deployed in multiple Clouds (i.e. a Multi-

Cloud) with additional redirection of users to appropriate data centres. Clouds A and

B on Figure 3.1 depict two possible deployments. For each application in a data centre,

requests arrive through a single load balancer, which can be implemented in different

ways. For example, it can be deployed in a VM or provided by the Cloud as a service.

Load balancers distribute the incoming workload to a set of application server VMs de-

ployed in the Cloud. Consequently, clients establish sessions with the assigned applica-

tion servers. The AS servers communicate with the servers from the data layer. Each DB

server has one or several hard disks attached, which are used to store persistent data.

In the Multi-Cloud scenario, client requests come to a global entry point, from where

they are distributed to data centres, each of which has the aforementioned software stack

deployed as depicted in Figure 3.1.

3.3.2 Assumptions and Scope

In this chapter, we consider stateful (i.e. maintaining session data) 3-Tier applications.

Examples of session data are user preferences, shopping carts, and history of user ac-

tions. Also, we assume that the DB servers are deployed in separate VMs. Alternatively,

persistent storage could be provided by a cloud provider as a service. There is a plethora

of vendor specific Database-as-a-Service (DBaaS) solutions and relying on them can eas-

ily lead to vendor lock-in. Hence, it is a best practice to use database servers deployed

in separate VMs [3]. Furthermore, many DBaaS solutions like Amazon RDS [7] actually

provide VM instances to customers, and thus they can be represented by our model as

well.

Very few cloud providers offer their clients non-virtualised physical servers which

are optimised for a specific purpose (e.g. running a database). This can be considered

an exception form the general practice of building cloud data centres from commodity

hardware and providing it to clients in the from of virtualised resources [26, 44]. Hence,

most cloud simulators do not represent application execution in non-virtualised envi-

ronments. An example of such cloud service is the Oracle Database Cloud, which offers
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database hosting on Oracle Exadata Database Servers [126, 127]. Such scenario can still be

represented by our approach by modelling a host with the desired characteristics and

allocating a single VM to it, which utilises all its resources. Since in the model we do not

consider virtualisation overhead, this will be equal to running the workload on the host

directly.

We consider that the load balancers implement “Sticky load balancing” policies. That

is, after a session between a client and an application server is established, all subse-

quent requests from this session are redirected to the same AS server. This is a reason-

able assumption, since session sharing among servers often leads to overall performance

degradation.

Clouds have enabled their clients to execute complex and time consuming analysis

over huge amounts of data (i.e. “Big Data”) [88]. Often there is a standard 3-Tier web

application serving as a front-end for accessing the data intensive analytical back end.

Thus, we can largely classify two types of data processing — synchronous (a.k.a online)

and asynchronous (a.k.a offline). The synchronous data processing is concerned with

performing data retrieval or manipulation in real time — e.g. extracting a list of items

from online shop and passing them to the AS server for display to the user. In this case,

the user interactions are blocked until the operations are complete. Asynchronous data

processing is concerned with running long batch processing jobs in the background. In

this case, user interactions are not blocked while the jobs are running. We address syn-

chronous data processing as it is in the standard 3-Tier reference model.

We have outlined modelling data centre heterogeneity as one of our goals. More

specifically, in this chapter we focus on the following aspects of heterogeneity:

• Workload heterogeneity — for a Multi-Cloud application, sessions arrive with dif-

ferent frequencies based on the cloud geographical location, time zone, etc.

• Cloud offerings heterogeneity — different cloud providers offer different VMs in

terms of their CPU, memory, and disk capacity.

• VM consolidation policies — different cloud providers have different policies for

placing VMs on physical hosts, which can affect CPU and disk performance.

• Performance Heterogeneity — differences in the hardware capacity of the used



58 Performance Modelling and Simulation of 3-Tier Applications

physical machines.

In this chapter, when multiple data centres are used we assume that the workload is

distributed among data centres based on its geographical origin and do not model the

work of the entry point. That is, clients directly submit their sessions to the nearby data

centre. In later chapters, we discuss complementary methods for user redirection across

clouds.

3.3.3 Essence of the Model

We propose a session based analytical approach for performance modelling. The work-

load is represented in terms of user sessions established between users and applica-

tion servers. Each session incurs performance load on the application and the database

servers. The workload of a given server at any point in time is defined as the sum of

the workloads of the served sessions. Sessions make use of CPU time and RAM on the

application servers and CPU, RAM, and disk I/O on the database servers. We assume

that the disk operations on the application server are negligible — e.g. logging, loading

configuration files, etc.

A key problem is how to represent the workloads (in terms of CPU, RAM, and I/O)

incurred by a session. Logically, they should be represented as continuous functions of

time so that workload changes over time can be modelled. Since we aim to implement a

discrete event simulator, we need to represent these continuous functions discretely. One

approach is to use stepwise functions. That way, by using a finite number of values one

can define a continuous function of time.

Figure 3.2 illustrates how a server’s RAM usage can be composed of the RAM usages

of three sessions and the underlying software stack — i.e. operating system and middle-

ware. The system’s RAM footprint can be defined as the used RAM, when no sessions

are being served. The RAM usage of the sessions is represented by stepwise functions

and the system’s RAM usage is considered to be constant. Similar diagrams could be

drawn for the CPU utilisations as well. The same approach can be used to represent the

I/O utilisation of a given hard disk on a DB server. That is, the utilisation of a hard disk

is defined by the I/O operations performed on it by the sessions using this disk from any
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Figure 3.2: RAM load represented as stacked sessions’ load.

of the DB servers. A minor difference is that the CPU and I/O capacity are not constant

and change over time, because as discussed VMs can observe performance variability.

The frequency of the establishment of sessions is another aspect to model. Typically,

such phenomena are modelled with Poisson distribution, representing that sessions ar-

rive with some predefined frequency λ [48, 145]. Furthermore, Paxson and Floyd have

found that events like user arrivals/logins are well modelled with a Poisson process for

fixed time intervals [130]. However, in the case of a large scale application it is not typical

to observe constant arrival rates at all times. Moreover, in a Multi-Cloud environment

the workload of the different data centres may be substantially different. For example,

a data centre in the US will have higher arrival rates during the working hours in the

US time zones and lower otherwise. Thus, we model session establishment rates for a

given data centre as a Poisson distribution of a frequency function of time λ(t), which is

also a stepwise function. If λ(t) is a constant function, the arrival rates remain with pure

Poisson distribution, and thus our approach is more general than the usual one. Our ap-

proach allows to model demand fluctuations and spikes over time and to evaluate how

the modelled system behaves in such cases.

If we have several types of sessions, in terms of the incurred performance, we can

model the arrival rate of each of these as a separate Poisson distribution over a different
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frequency function.

3.4 Analytical model

3.4.1 Session Model

We take a session based approach and instead of jobs or requests, the unit of workload

in our model is a session, which represents a series of consecutive user actions incur-

ring system load. Each session is assigned to an application server VM and can use the

available DB servers in the data centre for the application.

Unlike jobs, a session generates variable workload over time. For example, for the

first few minutes after its establishment a session may utilise heavily the processor of the

application server, for the next five minutes it may incur very low resource consumption,

and over the next five minutes it may incur significant disk I/O on a database server. In

contrast, a job is usually modelled in terms of the required resources (CPU, RAM, etc.)

and there are no requirements as to how these resources are provided over time. More

formally, a session is defined with the following variables and functions:

Ideal Session Duration

By τi we denote the ideal duration of a session si measured in seconds. It is the session

duration given that all resources for its execution are available. If there are more sessions

than a tier can handle, there will be some resource pre-emption and eventually the session

will be served in more than τi seconds or will fail. By ∆i we denote the time by which si

has exceeded τi and we consider it as a measure of application responsiveness.

Data Item

To model the locality of disk operations, we need to represent the data resident on the

disks. Thus, we introduce the notion of data item which represents an entity stored on a

disk. Examples of data items are files and portions of database records, which are often

accessed and stored together (e.g. a database shard). In the model, we consider that a

finite number of data items d1...dn is specified.
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Step Size

We define a common step size δ for all stepwise functions in our model. Generally, we

would aim for small value of δ, since that would make the simulation more refined.

CPU Load of the Application Server

By νas(t) we denote the CPU load on the application server caused by the session. It is

measured in millions instructions per second (MIPS) and represents the average num-

ber of CPU instructions required by the session over time. At a given point in time, the

required number of operations can be defined as n(t)
2ε where n(t) is the number of instruc-

tions required by a session in the time interval [t − ε, t + ε] after its start given a small

predefined ε > 0. The ε value is an input parameter to the model (e.g. ε = 0.001). Based

on that, we can formally define the values of the stepwise function νas for the j-the step

(i.e. t ∈ [(j− 1)δ, jδ)) as νas(t) = 1
δ

jδ∫
(j−1)δ

n(x)
2ε dx.

Memory Load of the Application Server

The stepwise function φas(t) denotes the RAM usage in the application server by the ses-

sion over time and is defined analogously to νas(t). φas(t) defines how many megabytes

of memory the session uses t seconds after its start.

CPU Load of the Database Servers

By νdb(t, dk) we denote the number of CPU operations needed for the processing of data

item dk by a database server. It is measured in MIPS and is defined analogously to νas(t).

Memory Load of the Database Servers

φdb(t, dk) defines the RAM usage needed for the processing of data item dk by a database

server and is formally defined analogously to φas(t).
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Disk I/O Load

By σdb(t, dk) we denote the number of required disk I/O operations on data item dk over

time. It is measured in Millions of Input/Output Operations Per Second (MIOPS). The

number of I/O operations with dk at time t can be defined as n(t,dk)
2ε where n(t, dk) is

the number of instructions with data item dk required by a session in the time interval

[t − ε, t + ε] and given the predefined ε > 0. Analogously to νas, we can define the

“averaged” step values of the σdb functions for the j-the step (i.e. t ∈ [(j − 1)δ, jδ)) as

σdb(t, dk) =
1
δ

jδ∫
(j−1)δ

n(x,dk)
2ε dx.

Network delay and “think times”

Within our architectural settings, we can largely classify two types of network: (i) the

internal data centre network, used to connect application tiers within a cloud and (ii) the

network between the end users and the serving data centre.

Nowadays the internal data centre network usually has sophisticated topology and

offers high speed and low latency [89]. Moreover, previous research in multi-tier appli-

cations shows that inter-tier network performance typically does not cause significant

performance penalty compared to CPU, RAM and I/O utilisation [91,106]. In fact, Lloyd

et al. have empirically shown that for a multi-tier application in a cloud environment,

the outgoing and incoming VM network transfer between tiers explain respectively only

0.75% and 0.74% of the overall performance variability. In contrast, they have found that

CPU load and disk reads and writes explain respectively over 71%, 37% and 14% of the

observed performance [103]. Hence, we will consider the effect of the internal network

to be negligible and will not present it in our model.

In contrast, the delays caused by the wide area network, connecting end users with

the serving data centre, can be significant. Similarly, users’ “think times” are typically

present and need to be modelled. From the perspective of the servers, both the external

network delays and “think times” result in idle periods, during which the servers are not

utilised by the session. More formally, if a session is idle (either because of a network

delay or user’s inactivity) during the time period [t1, t2], then the number of required

CPU instructions by the AS server will be n(t) = 0 for t ∈ [t1, t2]. Since νas(t) is dependent
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on n(t), its value for this time interval will be affected accordingly. The values of νdb and

σdb, representing the CPU and disk utilisation of a DB server, for an idle time period can

be defined analogously. The values of φas and φdb for an idle period can be defined as the

amount of session data kept in the memory by the respective AS and DB servers during

these periods.

3.4.2 Modelling Resource Contention

Resource contention appears when some of a server’s resources (e.g. CPU) are insuffi-

cient to serve all its sessions timely. Although clouds offer seemingly endless resource

pools, it is still possible for an application to experience resource shortage. Firstly, some

applications allocate resources statically and given a substantial workload their capacity

can be exceeded. Secondly, public online applications can experience a sudden and un-

expected demand peak. In some cases, resources can not be provisioned quickly enough

and thus the already provisioned servers experience contention. Thirdly, in many 3-Tier

deployment models, the data tier can not scale horizontally. For example, when a sin-

gle relational DB server is used without any replication or sharding. In such cases, the

DB servers can experience contention. To explore the system performance in such cases,

we need to be able to model and simulate contentions. Next, we describe how different

resource contentions are handled in our model.

CPU resource contention

When the CPU resources of a server are insufficient, standard process/thread scheduling

policies are used to assign processing time to each session. For the time periods that the

session is preempted in a tier, it is also considered preempted on the other application

tier. In other words, resource preemption in one tier is reflected by an overall slowdown

of the entire session, which is representative of synchronous data processing.

I/O resource contention

When the I/O throughput of the DB server is insufficient, standard I/O scheduling poli-

cies are used to assign I/O processing to each session. Alike with CPU, an I/O preemp-
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tion in one tier leads to a preemtion in the other tier as well.

RAM resource contention

RAM resource contention occurs when at a given point in time the sum of the sessions’

and the system’s memory usages exceed the amount of memory the server has. When

RAM resource contention appears the server stops, resulting in “out of memory” error.

Consequently, all sessions served on this server fail and it stops accepting new ones. The

work of the other servers however continues. For simplicity, in our model we do not

consider the usage of swapped disk space. The modelled behaviour is representative of

an operating system going out of memory and killing the process of the server.

3.4.3 Session Arrival Model

As discussed, we model the arrival rate of a session of a given type in a data centre as

a Poisson distribution of a frequency function — Po(λ(t)), where λ(t) is represented as

a stepwise function of time. In a Multi-Cloud scenario, the arrival rates in each Cloud

should be defined. Hence, frequency functions need to be specified per data centre. This

allows for modelling different workloads coming at different times within each data cen-

tre. Thus, we can represent workload influencing factors like time zone differences. For-

mally, for each session type sti and data centre dcj, the number of arrivals can be modelled

as Po(λij(t)), where λij(t) is a user specified function modelling the arrival rate.

3.4.4 Performance Variability across Clouds

The VM performance in a Multi-Cloud environment can vary significantly. The two main

factors for this are:

• VM setup — a typical VM configuration allows a VM to use additional (but still

limited) resources in terms of CPU and I/O if the host machine provides for that.

Thus, in the model it is important to specify what is the set-up of the VMs with

respect to sharing hardware resources.
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• VM consolidation — if the VM setup allows for opportunistic usage of host re-

sources, then it is important to note what the VM consolidation policy of each cloud

provider is.

In order to adequately model the variability of the VM performance in a Multi-Cloud

environment, we need to define both these characteristics for every data centre. In the

implementation section we discuss further how these policies can be specified.

3.5 Simulator Implementation

The previously described analytical model allows for coarse grained performance anal-

ysis of 3-Tier applications. In this section, we describe our implementation in terms of

algorithms and data structures which extend the CloudSim [46] environment to support

our model. CloudSim is a mature simulation environment and by extending it our ap-

proach can make use of all of its existing features like VM placement policies and energy

consumption evaluation.

3.5.1 Representation of Disk I/O Operations

To represent an application’s performance in terms of access to persistence storage, we

extended CloudSim to support disk operations. This was done at three levels:

• Host — we extended the base CloudSim Host (physical machine) entity by adding

hard disks to it. Each disk is represented as an extension of the Processing Element

(Pe) component. A Pe in CloudSim models a core of a processor.

• VM — similarly, we also extended the VMs to support disk operations. We also

extended the schedulers that distribute VM resources among the executing jobs to

distribute the available I/O operations.

• Cloudlet (Job) — each job (cloudlet in terms of CloudSim) has been extended to

define a number of required I/O operations. Also, each cloudlet is associated with

the data item it uses. Lastly, each cloudlet defines a boolean value, showing if it

modifies the data item or not.
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Users are allowed to specify the policies for sharing I/O operations among VMs in a

Host and cloudlets in a VM the same way they do it for CPU.

3.5.2 Provisioning of I/O Operations

Disk I/O operations need to be distributed at two levels. Firstly, a Host should distribute

the available disk operations among the VMs using the disks. Secondly, VMs should dis-

tribute their portion of the I/O operations among the jobs/cloudlets deployed in them.

There is clear analogy between distributing I/O and CPU operations among VMs and

cloudlets. Furthermore, as we represent hard disks as extended Processing Elements (Pe)

we could directly reuse the already existing CloudSim policies for CPU scheduling.

However, unlike CPU, I/O operations are localised. I/O operations on a data item

stored on one drive can not be executed on another, while CPU operations can be ex-

ecuted on every available CPU. Since CloudSim does not support such locality in the

assignment of CPU operations, directly reusing these policies will lead to erroneous sim-

ulation behaviour. To overcome this problem we assign a separate scheduler to each of

the hard disks of a Host. Thus disk operations can be provisioned per disk. This allows

for VMs to have access only to a portion of the available disks and to achieve locality. We

have also implemented locality in an extension to the job/cloudlet scheduling policies,

so that jobs utilise only the disks, where the corresponding data items reside.

3.5.3 Representing Sessions and Contention

In the analytical model, we represented a session as several stepwise functions defining

its resource demands on the servers. Within each step, a session has constant resource

requirements in terms of CPU, RAM, and I/O operations. To bring this concept to the

simulation environment, we represent the behaviour of each session within a step as one

cloudlet executed by the AS server and several cloudlets on the DB servers. Each of

the DB cloudlets is associated with the data item it uses. The breakdown of a session’s

behaviour for a given step into DB cloudlets is based on the data items it accesses during

this period. For example if a session accesses three data items during a given step, then

there will be three DB cloudlets for this step.
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ALGORITHM 1: Session Submission.
input : si - session, tcurr - current rime, σ - step size

1 submit sas
i1 to the assigned AS server;

2 submit {sdb
i11, ...sdb

i1li1
} to the DBCloudletScheduler;

// Sets the start times of the cloudlets at position 2 in the queues
3 setStartTime(si, 2, tcurr + σ)

In other words for each session and for each step in the simulation we have one

cloudlet assigned to the AS server and several cloudlets assigned to the DB servers. Thus,

in terms of implementation the step values of νas, φas, νdb, φdb, σdb define the correspond-

ing cloudlets’ resource requirements in terms of CPU, RAM and I/O.

The assignment of cloudlets to DB servers is based on the data items they use —

cloudlets are assigned to servers which have access to their data. This assignment is

done by a new simulation entity DBCloudletScheduler. The default implementation of this

entity assigns each DB cloudlet to the first server which has access to its data item. By

specifying a custom DBCloudletScheduler one can simulate different policies in the data

layer. For example, cloudlets performing read operations could be redirected to slave

database servers, or can be cancelled if the data they retrieve is in a cache.

Formally, for a given session the required amount of CPU operations in the AS

cloudlet corresponding to the step interval [ti, ti + δ] is
ti+δ∫
ti

νas(t)dt, which simply equals

δνas(ti) because νas(t) is a stepwise function, has a constant value within this interval.

The other resource requirements (CPU and RAM of a server and I/O on a disk) of the

cloudlets are defined analogously.

Each session is represented with two equal-sized queues — one for the AS server and

one for the DB servers. The elements of both queues correspond to the steps in the model.

The elements of the AS queue are single cloudlets, which are executed sequentially. The

elements of the DB queue are sets of cloudlets, whose members execute simultaneously.

Cloudlets from subsequent elements of the DB queue run sequentially. The cloudlets

from the corresponding elements of both queues are associated with the same start time,

and no cloudlet is submitted to the servers before its start time has passed.

This is depicted in Figure 3.3. For each session si on the diagram, the j-th element of

the AS queue is sas
ij and the j-th element of the DB queue is the set {sdb

ij1...sdb
ijlij
} where lij
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Figure 3.3: Session representation.

is the set size. Cloudlets associated with the j-th step are submitted only if all their start

times have passed and all cloudlets from the previous steps have finished execution.

After a session si is submitted, the cloudlets form the heads of both queues are set

the current simulation time tcur as start times. The head of the AS queue sas
i1 is directly

submitted to the assigned AS server. Cloudlets sdb
i11...sdb

i1li1
from the head of the DB queue

are sent to the DBCloudletScheduler, which submits them to the DB servers in accordance

with the DB layer architecture — e.g. Master-Slave, caching, etc. The cloudlets from the

next elements of the queues sas
i2 , sdb

i21...sdb
i2li2

are set starting time tcurr + σ. This procedure is

defined in Algorithm 1.

Upon the completion of every submitted cloudlet and the elapse of the start time of

every cloudlet, which has not been yet submitted, the heads of the two queues are in-

spected. If all cloudlets from the two heads have finished and the start times of the

cloudlets from the next queue elements have passed, then the following actions are taken:

1. The heads of the queues are removed;

2. The cloudlets from the new heads are submitted;

3. The cloudlets from the next elements (after the heads) of the queues are set to have

starting times σ seconds after the present moment.

Algorithm 2 defines formally the previously described procedure for updating a ses-

sion. The two key invariants of this algorithm are:
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ALGORITHM 2: Update Session Processing — executed when a cloudlet finishes, or the start
time of a cloudlet elapses.
input : si - session, tcurr - current rime, σ - step size

1 j← index of the heads of the queues;

2 if tcurr ≥ getStartTime(si, j + 1) then
3 submitNextStep← TRUE;
4 for c ∈ {sas

ij , sdb
ij1...sdb

ijlij
} do

5 if c is not finished then
6 submitNextStep← FALSE;
7 break;
8 end
9 end

10 if submitNextStep then
11 pop si’s queues;
12 j← j + 1;
13 submit sas

ij to the assigned AS server;

14 submit {sdb
ij1, ...sdb

ijlij
} to the DBCloudletScheduler;

15 setStartTime(si, j + 1, tcurr + σ);
16 end
17 end

• No cloudlet is submitted before its start time and the start time of its counterparts

from both queues have come. Formally, no cloudlet c ∈ {sas
ij , sdb

ij1...sdb
ijlij
} is submitted

before the start times for all sas
ij , sdb

ij1...sdb
ijlij

have elapsed. This ensures that even if one

of the servers is quick to finish its cloudlets, this will not lead to premature exhaus-

tion of the session’s cloudlets and the session will still take at least its predefined

ideal time.

• No cloudlet is submitted before all its predecessors and all predecessors of its coun-

terparts from both queues have finished. Thus, if there is contention/bottleneck in

any of the tiers this will result in an overall delay of the whole session.

As a consequence a bottleneck in a tier results in an overall delay of the served ses-

sions.

CloudSim is a discrete event simulator and one can associate custom logic with every

event. This allowed us to check throughout the simulation if the memory usage within

a server exceeds its capacity. In accordance with the described model, in such a case the

VM simulation entity is stopped and all of its running sessions are marked as failed.
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3.5.4 Performance Variability

CloudSim supports a special CPU provisioning policy called VmSchedulerTimeShare-

dOverSubscription. It allows setting the maximum CPU capacity of a VM. If there are

sufficient resources, this requested capacity is provided. Otherwise, a smaller share is

allocated. This allows us to implement the previously discussed VM performance vari-

ability with respect to their mapping to hosts. Since we represent hard disks as extended

processors, we reuse this policy to allocate I/O instructions among VMs.

When instantiating a physical machine in the simulation environment, two policies

need to be specified — one for sharing CPU time among VMs and one for sharing I/O

operations. By choosing the appropriate policy one can either take into account the per-

formance variability or assume that VMs use constant resources.

By using VmSchedulerTimeSharedOverSubscription and implementing different VM

consolidation logic in each data centre, the performance heterogeneity of a Multi-Cloud

environment can be represented.

3.5.5 Load Balancing

To distribute the incoming sessions among AS servers, we introduce a new entity called

LoadBalancer. It is responsible for assigning the incoming sessions to the AS servers within

a data centre. The load balancer is a separate entity and is not deployed within a VM. We

implemented a default load balancer that distributes the incoming sessions to the AS server

with the least percentage of CPU utilisation. However, one can implement different load

balancing policies and run simulations with them.

3.5.6 Workload Generation

In our implementation, workload is generated by a new entity called WorkloadGenerator.

It generates workload for a single data centre and application. Thus, each generator is as-

sociated with a single load balancer. At the start of every simulation step, each generator

is queried and returns a list of sessions that will be submitted to the load balancer during

the step.
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Figure 3.4: Workload generation.

To define the behaviour of a generator, two additional parameters are needed — a Fre-

quencyFunction and a SessionGenerator. The FrequencyFunction represents the λ(t) function

from the formal model. In our implementation, it has an additional property — the unit

which represents the time period the frequency is defined for. For example, if the unit is

60sec. and the frequency is λ(t) = 3 for every t, then sessions appear with frequency 3

per minute during the entire simulation. One can implement arbitrary frequency func-

tions that meet the requirements of their simulation.

The default implementation is PeriodicStochasticFrequencyFunction, which defines a

periodic frequency function. For example, it can be used to define the frequencies on

a daily or weekly basis. Using it, one can further define frequency values as samples of

a normal distribution. For example, one can specify that on a daily basis in the period

13h-15h the session occurrence frequency per hour has a mean of 20 and a standard devi-

ation of 2. At simulation time, the workload generator generates values that meet these

criteria. One can also specify the so-called null point of such a function. It represents the

moment at which a period starts. Null points represent an easy way to define workloads

originating in different time zones. That is, if we have a given workload generator, we

can “move” it through time zones by just setting the appropriate null value.

The SessionGenerator is responsible for creating sessions. The default implementation

is ConstSessionGenerator which generates equal sessions every time it is called. Alike fre-
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Figure 3.5: Main use case scenarios.

quency functions one can implement and plug their own session generation policies.

The work of a workload generator is depicted in Figure 3.4. At the beginning of ev-

ery step of the simulation, the WorkloadGenerator is requested to generate the sessions for

the step. Based on the step length, the frequency and the function’s unit the generator

computes how many sessions need to be submitted for the step and asks the SessionGener-

ator to create them. The resulting sessions’ submission times are uniformly distributed

throughout the step’s duration.

3.6 Use Cases

This section describes several typical use cases of the proposed modelling and simula-

tion environment. We envision that the proposed environment can be used by both re-

searchers in the field of distributed systems and system architects for performance evalu-

ation and comparison of different provisioning and scheduling approaches. The common

use cases are depicted in Figure 3.5.

During the early stages of designing a system, an architect often needs to predict how

the designed system would behave under different workloads and if it is going to meet

the stated non-functional requirements at all times. Key non-functional requirements

usually are the response time to users and the cost of the utilised Cloud resources. Hav-

ing multiple configurable Commercial Off-The-Shelf (COTS) and Open Source software
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components and middleware at their disposal, they need to compare the available ap-

proaches, to weight the architectural trade-offs and make an architecture wise decision.

This is usually achieved by developing small-scale Proof of Concept (POC) prototypes

that demonstrate the overall plausibility of an approach. The cost and efforts for de-

veloping multiple POCs to explore various architectural alternatives have been a major

inhibitor for system architects. Not to mention that small scale POCs can not be used to

test for workload peaks and scaling under extreme workload.

Hence, a simulation environment can be used during these early stages of system

development. An architect can perform simulations by “plugging” different policies for

load balancing, data replication, and caching by implementing the LoadBalancer and DB-

CloudletScheduler APIs. This would allow for evaluation and comparison of different ap-

proaches.

Similarly, the proposed modelling and simulation environment could be also of use

to researchers developing new provisioning and scheduling approaches for 3-Tier ap-

plications in Clouds and Multi-Clouds. New load balancing, data replication, and

caching strategies can be developed and evaluated through the LoadBalancer and DB-

CloudletScheduler APIs. New entry point policies can also be evaluated.

A key point in all these use cases is the definition of the workload directed to every

data centre. Firstly, one needs to define the resource consumption of the sessions that

make up the workload. One approach is to define one or several types of sessions, whose

performance characteristics over time (expressed in the step-wise functions) are averaged

from monitoring data from actual executions. For this, baseline benchmarks of applica-

tion executions are needed. They can be extracted from historical data from log files of a

system prototype. Alternatively, they can be extracted by performing experiments with

a prototype of the system or one with similar characteristics.

Once the characteristics of the session type(s) have been defined, the frequencies of

the session establishments need to be defined. One approach is to use historical work-

load — e.g. the times of session establishment can be taken from logs. However, it is often

the case that no historical information is available — e.g. if a new system is architected.

Moreover, one of the main benefits of performance modelling and simulation is that one

can test with a range of workloads including both high and low ones and with static or
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dynamic arrival frequencies over time. The aforementioned workload generation func-

tionality of the simulation environment can be used to generate synthetic workload. As

discussed, it allows for the generation of arbitrary time dependent workloads.

3.7 Validation

In this section, we model and simulate the behaviour of an actual 3-Tier system and

compare the performances of the simulation and the system itself. The goals are two-

fold: (i) to demonstrate how one can model a system’s behaviour and (ii) to show that

our model can predict a system’s performance with reasonable accuracy.

A simulator is a generic tool with a wide applicability scope. Testing and validating

our simulator against all possible middleware technologies, operating systems, configu-

rations, virtualisation environments, and workloads is an extremely laborious and time

consuming task. In this section, we demonstrate the plausibility of our approach with

two experiments with the established benchmarking environment Rice University Bid-

ding System (RUBiS) [16, 52, 149, 163]. It consists of an e-commerce website similar to

eBay.com and a client application that generates requests to the website.

RUBiS follows the standard 3-Tier architecture and has an application and a database

server. We use the PHP version of RUBiS with a MySql relational database. The user in-

terface consists of several web pages with dynamic content [52]. For each incoming HTTP

request for a page, the PHP server parses the HTTP parameters, queries or updates the

MySql database, and generates the dynamic content of the page, which is then returned

to the end user. Hence, each page request induces load to both servers. The MySql

server ensures the data is accessed in a transactional and consistent manner, which is

important for an e-commerce application. The database consists of 7 main tables, con-

taining information about items, categories, bids, comments, users, regions, and direct

purchases [149]. Figure 3.6 shows the relational model in more details. There is an addi-

tional table called “old-items” with the same schema as “items”, which contains historical

data about goods, which are no longer for sale. In the RUBiS workload, the database has

been populated with data in a manner similar to ebay. More specifically, at every moment

there are about 33 000 items classified in 20 categories and 1 million users in 62 regions.
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Figure 3.6: Relational model of the RUBiS workload.

In addition, there are half a million comments. The total size of the MySql database and

the accompanying indices is approximately 1.4GB [149].

In RUBiS, the workload consists of sessions, each of which comprises a sequence of

requests. The succession of requests is based on a transactions table/matrix specifying

the probabilities for a user visiting a given page to navigate to every other page or to

leave the website. RUBiS also emulates the “think times” between requests. By default,

the lengths of the “think times” follow a negative exponential distribution as advised by

the TPC-W specification [162]. The mean of this distribution and the number of sessions

are parameters of the workload. At run time, for each session the RUBiS client starts by

sending an initial request to the “Home” page. Then, based on the mean “think time”,

the last accessed page, and the transactions table it randomly generates a “think time”

period, waits for it to expire, and generates the next request. We have modified the client,

so that this process continues until a predefined number of requests have been served or

the user leaves the system.

RUBiS comes with two types of workload, defined in the provided transactions tables.



76 Performance Modelling and Simulation of 3-Tier Applications

The first one consists of browsing actions only that do not result in a modification of

the persistent data. Examples of such actions are browsing items and reviewing sellers’

information and ranking. The second workload consists of 85% browsing actions and

15% actions resulting in a modification of the database. It is a much more realistic auction

site’s workload [16,52]. This is the default RUBiS workload and it is the one we use in all

our experiments.

In RUBiS, performance utilisation data is gathered from both servers through the SAR

(System Activity Report) system monitor, provided by the SYSSTAT package [158]. At

execution time, it collects detailed information regarding CPU, RAM, I/O, and network

utilisation. Among these, the measurement of the actual RAM consumption is an elusive

goal, because (i) operating systems often keep huge caches of persistent data in mem-

ory to avoid some disk operations (ii) in many middleware technologies memory is not

automatically released until garbage collection. Consequently, deciding what part of the

allocated memory is actually used by the application is not trivial. To bypass this issue, in

our experiments we use the SAR metric for amount of “active memory”. As to the specifi-

cation it represents the amount of memory which has been used recently and is not likely

to be claimed for other purposes.

In all following experiments we set-up the RUBiS client to execute sessions consisting

of maximum 150 requests, and having 7 seconds average “think time”. We use the default

RUBiS transitions table to emulate users browsing through the website. In all simulations

we consider a step time δ = 60 seconds.

3.7.1 Session Performance Baseline

As discussed, one can extract a typical session’s performance characteristics either from

historical data or by benchmarking. Due to the unavailability of suitable performance

logs for RUBiS we use benchmarking, which is described in this section.

Firstly, we assume that all sessions have similar performance characteristics. For a

RUBiS workload’s sessions this is reasonable, since they all follow the same statistical

patterns. This is also typical in real life, where one can often find that “on average” users

follow similar usage patterns. In our simulation we will have one session type/proto-

type defining a session’s performance demands over time in terms of the νas, φas, νdb, φdb,
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σdb functions. The values of these functions are derived from benchmarks of the system’s

performance. Hence, when we emulate n sessions with the aforementioned statistical

properties in RUBiS, in the corresponding simulation we will simulate n sessions from

this type. Intuitively, as the session type is representative of a typical session the simu-

lation and the actual execution should have similar performance characteristics given a

sufficient number of sessions. We test this assumption in the later subsections.

For some applications, one can observe that different groups of users (e.g. merchants

and buyers in an online store) have diverse usage patterns, resulting in different resource

utilisation. In such case, different session types should be defined and simulated. How-

ever, in the RUBiS environment all users follow the same usage pattern, and thus we

consider only one type.

We conduct the benchmarking on a computer with an Intel(R) i7-2600 chipset, which

has 4 hyper-threading 3.4GHz cores, 8 GB RAM, and is running 64bit Ubuntu 12.10 op-

erating system. We have deployed the AS and DB servers in separate VirtualBox virtual

machines, each of which has 512 MB RAM, a dedicated CPU core from the host and is

running 32bit Ubuntu 12.4.

The RUBiS benchmark uses a single DB server and does not use any caching, replica-

tion or sharding. Thus, in the formal model we consider a single data item d1, which is

used by all disk operations. Also, in our model the νdb, φdb, σdb functions de facto become

functions of time only.

We perform two simple RUBiS benchmark tests to define the session type for the

simulation. For both tests we get the values of the resource utilisation in terms of CPU,

RAM and disk I/O from the SAR monitoring service. We take measurements for all

servers and for every second from the tests. First we test the system with only 1 session.

The goal is to measure the utilisation caused by the operating system, the middleware

and the monitoring service. Secondly, we test with 100 simultaneously started sessions.

We attribute the differences in system utilisation between the two tests to the increment

of 99 sessions in the workload and based on that we estimate the overhead of a single

session.

In the rest of the section, we describe how the AS server CPU utilisation caused by

a session can be represented in our model. The procedure for defining the model rep-



78 Performance Modelling and Simulation of 3-Tier Applications

resentation based on the benchmarks is not CPU specific and only uses the reported by

SAR utilisations in percentages. Thus, without loss of generality, the same approach can

be applied to model the incurred RAM utilisations of both servers and the CPU and disk

utilisations of the DB server.

Based on the two tests, we can define a session’s AS CPU utilisation ti ∈ N seconds

after its start as:

Fas
cpu(ti) =

Fas(100)
cpu (ti)− Fas(1)

cpu

99
(3.1)

where Fas(1)
cpu (ti) and Fas(100)

cpu (ti) are the measurements of the CPU utilisation of the AS

server for the experiments with 1 and 100 sessions respectively and Fas(1)
cpu denotes the

mean of all CPU measurements for the AS server from the test with 1 session. The ra-

tionale for Eq. (3.1) is that Fas(1)
cpu denotes the typical overhead utilisation caused by the

system components like middleware and OS. Thus, when we subtract it from the overall

utilisation and divide by the increment of sessions we get an estimation of the overhead

caused by a single session. We call the values Fas
cpu(ti) derived observations of the session’s

CPU utilisation on the AS server. Analogously, we can define the session’s derived obser-

vations on both servers in terms of CPU, I/O and RAM.

Next, we need to define the step values of the model step functions based on the

derived observations in terms of CPU, RAM and disk I/O. One approach is to use the

means of the derived observations falling within a step. However, we observe that the

monitoring values returned by SAR for the two experiments include many fluctuation-

s/spikes — see Figure 3.7. Thus, to overcome the effects of outliers, we use the medians

of the derived observations falling within a step. Recalling that we consider steps of size

60 seconds, and that we have derived observations for every second, the CPU utilisation

of the AS server for the j-th step (i.e. t ∈ [t60(j−1), t60j]), can be defined as follows:

νas(t) = median(Fas
cpu(t60(j−1))...F

as
cpu(t60j−1)) (3.2)

As discussed, we define the step values of φas, νdb, φdb, σdb analogously, which gives

us a complete session performance model.

Lastly, we need to define the ideal session duration τ of the sessions from the session
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Figure 3.7: CPU utilisation of the DB server with 1 and 100 simultaneous sessions for the
initial 5 minutes.

type. In the experiment with 100 sessions, the utilisation of all performance characteris-

tics (CPU, RAM and disk I/O) is much less than 100% at all times. Hence, there has not

been any resource contention during this test and thus we can define τ as the mean of the

execution times of all sessions from this experiment.

3.7.2 Experiment 1 — Static Workload

The goal of this experiment is to demonstrate that a simulation can be used to predict the

resource utilisation of the AS and DB servers and the delays in the sessions’ execution.

We execute several RUBiS benchmarks, and model and simulate each of them using our

approach. We use different workloads in terms of their intensity to test our simulation

in the presence of both low and high resource consumption and CPU and disk I/O con-

tention. Then, we compare the predicted by the simulations performance with the ones

from the actual execution.

For this experiment, we use the same environment as for the baseline measurement

we did previously. We execute workloads consisting of 50, 200, 300, 400, 500, and 600
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Figure 3.8: CPU and disk utilisations with 300 and 600 simultaneous sessions. The plotted
values are averaged for every 90 seconds.

simultaneously starting sessions and we record the delays and the utilisation over time.

The sessions are based on the default RUBiS transitions table, which defines regular trans-

actional load in an e-commerce website and which we used for the baselining.

From the monitoring data we can conclude that the used workloads are mostly trans-

actional and data intensive, since the DB disk utilisation dominates the CPU utilisations

of the two servers for the majority of the execution time. This is shown in Figure 3.8

which depicts the CPU and disk utilisations of the two servers at execution time given

workloads of 300 and 600 sessions. We have plotted the averaged utilisations for every 90

seconds. An interesting observation is that by the end of the execution, the disk utilisa-

tion decreases significantly. One reason for this is the suspension of some simultaneously

started sessions, whose lengths are generated by RUBiS as values of a random variable.

In fact, this is why all resource utilisations decrease in the latest stages of the experiment.

Another reason is the in-memory caching of disk operations by the operating systems

and the database server, whose effect gradually increases during the experiment. An-

other interesting observation is that, the CPU utilisation of the AS server increases, as the

disk utilisation decreases. This is because the throughput of the data tier is increased,

which allows the AS server to serve more user requests timely.

In our parallel simulation environment we define a single host, with two VMs with

parameters modelled after the real ones. Then we execute simulations with the same
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Figure 3.9: Execution delays (boxplots) and predicted delays (crossing horizontal lines)
in Experiment 1.

number of sessions as in the aforementioned RUBiS experiments and we record the re-

source utilisation of the two VMs. The step functions, defining a sessions’ behaviour, are

the ones extracted from the previous section.

First, we compare the accumulated session delays from the RUBiS execution (∆i) with

the ones from the simulation. Since in the simulation we have identical sessions, which

start simultaneously and whose performance utilisation does not depend on a random

variable, we get a single numeric value as a predictor of the delay. However, in the RU-

BiS benchmark the delays vary, as the “think times” and the succession of requests vary

based on random variables. Figure 3.9 depicts the estimated by the simulations execu-

tion delays and the actual ones and shows that the predicted delay is a good estimator

of the actual delays, always falling in the interquartile range, except for the case with

600 sessions, when the 3rd quartile is exceeded with about 40 seconds. We believe this

difference is caused by performance improvements like in-memory caching, which are

not represented in our model, and which can mitigate the consequences of contention

in case of high workload. Since the most utilised resource is the disk of the DB server

(see Figure 3.8) this has impact on the overall delay. It is worthwhile noting that some
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Figure 3.10: Predicted and actual CPU utilisation of the AS server with 300 simultaneous
sessions in Experiment 1.

execution delays are actually negative, which means that some sessions finish before the

ideal execution time has passed. This is because we defined the ideal execution time τ

as the mean of the execution times of a multitude of sessions that do not experience any

contention. Thus, by pure chance in the actual execution we have sessions, whose own

ideal duration will be shorter.

Next, we compare the utilisations over time in terms of CPU, RAM and I/O of the

servers in the execution and simulation experiments. Figure 3.10 shows how the pre-

dicted CPU utilisation of the AS server approximates the real one for a workload of 300

sessions. To make the diagram clearer we have plotted the averages of each 50 obser-

vations from the simulation, not of each single observation. Figure 3.11 depicts how the

predicted by the simulation disk I/O utilisations approximate the one observed at execu-

tion time for workloads of 50, 300 and 600 sessions. Again, we have shown the averages

of each 50 observations from the simulation. The figure shows that with the increase of

the workload, the actual disk I/O utilisation increases as well, and causes contention in

the benchmark with 600 sessions. This behaviour is well approximated by the predicted

by the simulation disk I/O utilisation.
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Figure 3.11: Predicted and actual disk I/O utilisation of the DB server with 50, 300 and
600 simultaneous sessions in Experiment 1.

Table 3.2: 95% Confidence Intervals (CIs) and estimates of the median of the utilisation
differences between simulation and execution. Measurements are in percentages.

Num. AS server, CPU AS server, RAM DB server, CPU DB server, RAM DB server, I/O
Sessions 95 % CI Est. 95 % CI Est. 95 % CI Est. 95 % CI Est. 95 % CI Est.

50 (-5.43, -4.93) -5.22 (-1.61, -1.58) -1.59 (-2.90, -2.39) -2.84 (-1.93, -1.91) -1.92 (-8.48, -4.64) -6.89

200 (-13.41, -12.51) -12.97 (-3.27, -3.22) -3.25 (-7.67, -6.15) -7.05 (-1.70, -1.69) -1.7 (-19.81, -15.05) -17.45

300 (-15.32, -12.82) -14.05 (-0.67, -0.56) -0.61 (-2.31, 14.14) -0.32 (-0.11, -0.09) -0.11 (-17.16, -11.01) -13.96

400 (-18.29, -14.04) -16.52 (-1.05, -0.91) -0.99 (22.92, 26.66) 24.97 (2.62, 2.70) 2.68 (-13.99, -6.92) -10.45

500 (-17.16, -5.29) -9.01 (-2.47, -2.11) -2.29 (24.21, 27.43) 25.86 (4.36, 4.38) 4.37 (-16.90, -9.65) -13.25

600 (-11.09, -7.06) -8.98 (-0.91, -0.25) -0.63 (27.46, 31.13) 29.34 (5.29, 5.38) 5.33 (-17.32, -9.84) -13.59

For every workload, server, and resource (i.e. CPU, RAM and I/O) we have two

matched time sequences of observations for every second of the execution — one from

the RUBiS benchmark and one from the simulation. Since in the simulation we can do

many monitoring operations without hurting the performance, for better precision we

perform 10 observations for each second and then we average them. In other words

we have paired samples of the utilisation from the executions and the simulations. All

utilisation measurements are in terms of percentage — e.g. 90% disk utilisation. Based

on the procedure of the Wilcoxon signed rank test with continuity correction we can

compute the 95% confidence intervals (CI) and an estimate (the pseudomedian) for the

median of the difference between the populations.

Table 3.2 lists the 95% CIs and the estimates for all experiments and utilisation char-

acteristics. For all experiments and characteristics, except for the CPU utilisation of the

DB server, the 95% CIs for median of the difference in utilisation contain values within
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20% range of the ideal case of 0%. The only exception is the CPU of the DB server, the

estimate of the deviation for which reaches nearly 30% for the case of 600 sessions. Once

again this difference can be explained by performance optimisations like caching, that we

do not account for. Such optimisations can mitigate contention and improve performance

given a significant workload, which is reflected by the increase of inaccuracies when the

number of sessions is increased.

3.7.3 Experiment 2 — Dynamic Workload

The goal of this experiment is to show that simulation can be used to predict the resource

utilisations given a dynamic workload in a heterogeneous Multi-Cloud environment. For

this purpose, we set up two installations of RUBiS. The first one is the environment we

used in the previous experiment and for the benchmarking. We call this environment

Data Centre 1 (DC1). The second one is in the Asia Pacific (Singapore) region of Ama-

zon EC2. It consists of two m1.small VM instance — one for the AS and one for the DB

server. We call this environment Data Centre 2 (DC2). The two environments have dif-

ferent underlying hardware, virtualisation technologies and provide VMs with different

capacities. Hence, with this experiment we demonstrate how we can model and simulate

application execution in heterogeneous cloud environments.

We modify the RUBiS client, so that it can dynamically generate sessions over a 24h

period, based on predefined frequencies for each hour. For example, we can specify

that between the second and third hour of the test the number of arriving sessions is

normally distributed with mean µ and standard deviation σ. Then at execution time,

at the beginning of the second hour of the test, the RUBiS client generates a random

number n, which is an instance of this distribution. Then n sessions are submitted at

equal intervals between the second and the third hour.

Table 3.3 lists the frequencies we use in this experiment. They are representative of

the daily workload of a small website. We use them to generate workload for DC1. To

demonstrate the effects of heterogeneous time zone dependent workloads, we assume

that DC2 is in a location with 12h time zone difference and has the same workload pat-

tern. Thus, for DC2 we “shift” the frequencies with 12 hours. Figure 3.12 depicts the

mean session arrivals for the two data centres.
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Table 3.3: Hourly frequencies of the workload for Experiment 2.

Time period Mean hourly
frequency

Standard deviation

0h-6h 10 1
6h-7h 30 2
7h-10h 50 3
10h-14h 100 4
14h-17h 50 3
17h-18h 30 2
18h-24h 10 1
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Figure 3.12: Average hourly frequencies of session arrivals for the two data centres in
Experiment 2.

In the simulation environment we use the data centre we used in the previous experi-

ment to represent DC1. In our simulation, DC2 has the same set-up as DC1. However, the

RAM, CPU, and I/O capacity of the VMs and the physical machines (hosts) are modelled

after those or AWS.

However, m1.small instances in Amazon EC2 do not have a dedicated processing

core, like the ones in our local environment (DC1). Hence, some of the CPU time may be

distributed to other VMs located in the same host. As discussed, the dynamism of VM

placement can result in significant performance variability. Amazon defines the metric

EC2 Compute Unit, to measure the amount of CPU capacity a m1.small VM has. How-

ever, often this is just a lower bound, and one can observe better performance if for ex-

ample the VM does not share the host with others. Typically, one should evaluate their
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scheduling and provisioning policies against the lower bound capacities of the provider’s

SLA. However, in this comparative study we aim to statistically compare simulation and

execution and thus we need as accurate VM performance data as possible.

To achieve this, firstly we examine the capacity of the host CPU, as defined in the

/proc/cpuinfo Linux kernel file of the two VMs. The SAR monitor defines the %steal met-

ric, which describes the percentage of “stolen” CPU operations by a hypervisor — e.g.

for serving other VMs. This metric is always zero for VMs with dedicated cores. At ex-

ecution time we account for the %steal value when we define the CPU utilisation. In the

simulation environment the CPU capacity of the VMs in DC2 is defined as the mean CPU

host capacity, which has not been “stolen” during execution. Similarly, Amazon does not

define (not even with a lower bound) how many disk I/O operations a VM with an In-

stance Store can perform for a second. They do so only for EBS backed instances. Hence,

we benchmark our instances to get an estimate for I/O performance. We use the afore-

mentioned VM characteristics to define the DC2 VMs in the simulation environment.

As a result of the aforementioned performance measurements, we have found that

there are significant differences in the VM capacities in DC1 and DC2. While the VMs in

the local environment DC1 have dedicated CPU cores, the ones in Amazon EC2 do not.

Our measurements show that on average the CPU capacities of the AS and DB VMs in

DC2 equal approximately 66% and 76% of the capacities of the respective servers in DC1.

Similarly, the disk capacity of the DB server in DC2 is approximately 75% of the disk ca-

pacity of the DB server in DC1. Furthermore, the VMs in DC2 are standard Amazon EC2

instances with 1.7GB of RAM, while our local VMs have only 512MB of RAM. Hence,

with this experiment we demonstrate application modelling and simulation in hetero-

geneous environments with respect to both the observed performance and the incoming

workload.

To simulate the workload, we use the previously defined workload functionalities

of the simulator. During the execution, we sample the performance utilisations every

minute. In the simulation, we take utilisation samples for every second and then define

the utilisation for every minute as the average of the samples for the included seconds.

Figure 3.13 displays the average VM utilisations of of the servers for every 5 minutes,

as predicted by the simulation. It shows that the predicted resource utilisations of the
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Figure 3.13: CPU and disk utilisations of the AS and DB servers in DC1 and DC2 at
simulation time in Experiment 2.

servers follow the patterns of the workloads shown in Figure 3.12. As a result of the

heterogeneity of the hardware and VM capacities in the two data centres, the utilisations

of the servers in the two data centres differ significantly. For example, the CPU utilisation

of the AS server in DC2 at the peak times of the workload exceeds almost twice the

utilisation of the DC1 server at its peak workload time. This is because the average CPU

capacity of the AS server in DC2 is about 66% of the one in DC1. Similarly, the disk

utilisation during the workload peak of the DB server in DC2 is much higher than the

one in DC1, as a result of having only 76% of the disk capacity of DC1. Given intensive

workloads, this performance heterogeneity can easily result in different contentions and

consequently application performance in the different data centres.

Table 3.4 lists the 95% CIs and the estimations of the medians of utilisation differences

of the servers in DC1 and DC2. As in the previous experiment we use the procedure of

the Wilcoxon signed rank test with continuity correction to compute the 95% confidence

intervals (CI) and the estimates. From the table we can see that the estimated error (the

pseudomedian of the differences) is less than 11% for all characteristics. The accumulated

delay for every simulated session in this experiment is 0. This shows that at execution

time there were no resource contentions with the given workload.
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Table 3.4: 95% Confidence Intervals (CIs) and estimates of the median of the utilisation
differences between simulation and execution in DC1 and DC2. Measurements are in
percentages.

Data centre AS server, CPU AS server, RAM DB server, CPU DB server, RAM DB server, I/O
95 % CI Est. 95 % CI Est. 95 % CI Est. 95 % CI Est. 95 % CI Est.

DC1 (-0.43, -0.37) -0.4 (-4.06, -3.97) -4.02 (-0.35, -0.31) -0.33 (-1.06, -0.89) -0.97 (-1.16, -0.97) -1.07
DC2 (0.65, 0.74) 0.7 (-10.46, -10.31) -10.39 (-2.78, -2.71) -2.75 (-7.12, -7.07) -7.1 (0.49, 0.58) 0.53

3.8 Summary

We have introduced a new approach for performance modelling of 3-Tier applications

and their workload in Cloud and Multi-Cloud environments. Unlike others, our model

is coarse grained, session based, and does not represent each and every user interaction.

Thus, it is suitable for quick prototyping and testing of scheduling, provisioning, and

load balancing approaches. We have implemented a CloudSim extension realising this

model, which can be used for performance evaluation without the need to deploy large

scale prototypes.

By definition a system model is a simplified description of the original system, and as

such our model makes some simplifying assumptions. To validate it, we have conducted

two experiments demonstrating the plausibility of our approach by comparing the sim-

ulation results with the results from an actual system execution. By using both public

Cloud and private in-house infrastructures with different virtualisation environments,

settings, and workload dynamism we demonstrated the plausibility of our approach in a

wide range of environments.

In the next chapter, we introduce an architecture and algorithms for load distribu-

tion and resource management for 3-Tier applications in multiple clouds. We use the

simulation environment, presented in this chapter, to evaluate the performance of our

approaches under varying workload.



Chapter 4

Multi-Cloud Provisioning and Load
Distribution for 3-Tier Applications

In this chapter, we introduce a general approach for deploying 3-Tier applications across multiple

clouds to satisfy their key non-functional requirements. We propose adaptive, dynamic, and reactive

resource provisioning and load distribution algorithms that heuristically optimise the overall cost and

the response delays, without violating essential legislative and regulatory requirements. Our approach

makes use of features common to all Infrastructure as a Service (IaaS) providers and does not rely

on any interoperability and portability capabilities of the used clouds. Thus, it bypasses the open

issues in these areas, which makes it viable right away without relying on further interoperability and

portability developments. Our simulation with realistic workload, network, and cloud characteristics

shows that our method improves the state of the art in terms of availability, regulatory compliance,

and Quality of Experience (QoE) with acceptable sacrifice in cost and latency.

4.1 Introduction

TRANSITIONING existing applications to clouds or Multi-Clouds is not straight-

forward. A cloud is not merely a deployment environment, where existing soft-

ware solutions can be transferred. It introduces novel characteristics not existing in tra-

ditional in-house deployment environments like seemingly endless resource pool and

the risk of an unpredictable outage in external infrastructure [165]. Hence, software ap-

plications need to be more scalable and fault tolerant so they can dynamically adapt to

workload fluctuations by adequately allocating and releasing computing resources and

autonomously and timely address infrastructure failures. Software engineers need to de-

This chapter is based on the following publication: Nikolay Grozev and Rajkumar Buyya, “Multi-Cloud
Provisioning and Load Distribution for Three-tier Applications”, ACM Transactions on Autonomous and Adaptive
Systems, vol. 9, no. 3, pp. 13:1–13:21, 2014.
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sign for the Cloud, not only to deploy in the Cloud. This is even more important when

using multiple data centres situated in different legislative domains, constructed with

different hardware, network and software components, and prone to different environ-

mental risks.

The key contributions of this chapter are (i) a design approach for interactive 3-

Tier Multi-Cloud applications and (ii) adaptive dynamic provisioning and autonomous

workload redirection algorithms ensuring imperative constraints are met with minimal

sacrifice in cost and QoE. Our approach does not modify the 3-Tier pattern itself, but

introduces additional components managing the cross-cloud resource provisioning and

workload distribution. This is essential because it allows the migration of existing ap-

plications to a Multi-Cloud environment. Also, new Multi-Cloud 3-Tier applications can

be developed using the plethora of existing architectural frameworks thus leveraging

proven technologies and existing know-how. The newly introduced components facili-

tate the implementation of 3-Tier systems which observe: (i) increased availability and

resilience to cloud infrastructure failure, (ii) legislation and regulation compliance, (iii)

high QoE, and (iv) cost efficiency.

The rest of the chapter is organised as follows: In Section 4.2, we provide an overview

of the related works and compare them to ours. Section 4.3 details the targeted class

of applications. Section 4.4 outlines our architecture. Section 4.5 motivates and details

our algorithms for load balancing, autoscaling and cloud selection. Our experimental

settings and results are discussed in Section 4.6. The final Section 4.7 summarises our

findings.

4.2 Related Work

There have been significant efforts in the development of Multi-Cloud open source li-

braries for different languages like JClouds [21], Apache LibCloud [18], Apache Delta-

Cloud [17], and Apache Nuvem [19]. All of them provide a unified API for the man-

agement of cloud resources (e.g. VMs and storage), so that software engineers do not

have to program against the specifics of each vendor’s API. While not providing appli-

cation brokering (consisting of provisioning and scheduling) themselves, these libraries
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can be instrumental in the development of new cross-cloud brokering components. Sim-

ilarly, services like RightScale [144], Enstratius (formerly enStratus) [69], Scalr [151], and

Kaavo [92] only provide unified user interface, APIs and tools for managing multiple

clouds and it is the clients’ responsibility to implement appropriate provisioning and

scheduling.

Apart from these Multi-Cloud libraries and services, the OPTIMIS [73], Contrail [49],

mOSAIC [137], MODAClouds [22], and STRATOS [129] projects also facilitate Multi-

Cloud application deployment. In all of these projects the geographical locations of the

serving data centres cannot be considered. Thus, often it is not possible to implement

legislation aware application brokering. In contrast, in our approach the Entry Points

and Data Centre Control layers enable legislation compliant user routing to eligible clouds

through a process called matchmaking broadcast. Secondly, all of these projects only man-

age resource allocation and software component deployment, and none of them facili-

tates the distribution of the incoming workload to the allocated resources. Their com-

ponents are only concerned with resource provisioning and set-up and do not deal with

the load distribution and autoscaling of the application once it is installed. In contrast,

in our work we manage the incoming workload and dynamically provision resources

accordingly through the components of the Entry Points and Data Centre Control layers.

Furthermore, these projects are SLA-based, which means the application brokering is

specified in a Service Level Agreement (SLA) using a declarative formalism. The Cloud

Standards Customer Council (CSCC) discusses in a technical report that SLAs currently

offered by cloud providers are immature [62]. Thus, to achieve flexible application bro-

kering these approaches rely on advances in the currently adopted SLA practices, or the

introduction of new brokering components that can interpret novel SLA formalisms. In

contrast, our approach directly manages the underlying provisioning and the mapping

of workload to resources, without relying on advances in SLA specifications, and thus it

is applicable right away.

Cloud services like Route 53 [8] and AWS Elastic Load Balancer (ELB) [11] can dis-

tribute incoming users to servers in multiple data centres using standard load balanc-

ing techniques. AWS ELB can distribute workload among servers located in a single or

multiple AWS availability zones, but cannot direct users to clouds of other providers.
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Route 53 is Amazon’s Domain Name System (DNS) web service. It supports Latency

Based Routing (LBR), which redirects incoming users to the AWS region with the lowest

latency. Both Route 53 and ELB do not consider applications’ regulatory requirements

when selecting a data centre site. Moreover, they do not consider the cost and the degree

of utilisation of the employed within a data centre resources. In contrast, our approach

for directing users to cloud sites accounts for all these aspects.

4.3 Preliminaries and Scope

In a Multi-Cloud environment, the standard 3-Tier software stack is replicated across

all used cloud sites. Clients arrive at one or several Entry Points, from where they are

redirected to the appropriate data centre to serve them.

The domain layer within a data centre can scale horizontally by adding more AS VMs.

For a given application, within a data centre there is a load balancer, which distributes

the incoming requests to the AS servers. Every request arrives at the load balancer, which

selects the AS to serve it. There are two types of 3-Tier applications in terms of the domain

layer design — stateful and stateless. Stateful applications keep session data (e.g. shopping

carts and user meta-data) in the memory of the assigned AS server. Hence, they require

sticky load balancing, which ensures all requests of a session are routed to the same server.

Stateless applications do not keep any state/data in memory and therefore their requests

can be routed to different AS servers.

The data layer often becomes the performance bottleneck because of requirements

for transactional access and atomicity. This makes it hard to scale horizontally. As to

the famous CAP theorem [40], [41] a distributed database architect should balance be-

tween persistent storage consistency, availability, and partition tolerance. The field of

distributed horizontally scaling databases has been well explored in recent years. For

example Cattell [50] surveyed over 20 novel NoSQL and NewSQL distributed database

projects. Traditional techniques like replication, caching and sharding also allow for some

level of horizontal scalability.

The eligible data caching and replication strategies are very much application spe-

cific and it is impossible to incorporate them within a general framework encompassing
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all 3-Tier applications. In other words the right balance between the CAP (consistency,

availability and partition tolerance) requirements is domain inherent. For example one

application may require that data is not replicated across legislative regions, while an-

other may allow it to achieve better availability. Therefore, in this chapter we do not

deal with the application specific data deployment. We investigate flexible provisioning

and load distribution provided the data is already deployed with respect to the applica-

tion specific CAP requirements. It is the system architect’s responsibility to design the

data layer in a scalable way obeying all domain specific legislation rules so that it can

be accessed quickly from the domain layer. This is a reasonable constraint, as database

design is usually the first step in a 3-Tier system design and it often serves other appli-

cations (e.g. reporting and analytics) as well. Our approach ensures that once the data

is deployed appropriately, users will be redirected accordingly and enough processing

capacities will be present in the AS layer.

4.4 Overall Architecture

4.4.1 Architectural Components

Figure 4.1 depicts the proposed architecture. We augment the traditional 3-Tier architec-

tural pattern with two additional layers of components:

• Entry Point Layer — responsible for redirecting incoming users to an appropriate

cloud data centre to serve them.

• Data Centre Control Layer — responsible for: (i) providing information to the En-

try Point Layer regarding the suitability of a data centre for a given user, (ii) monitor-

ing and scaling of the provisioned resources within a data centre, and (iii) directing

the incoming requests.

The Entry Point Layer consists of one or several VMs, which can be deployed in several

data centres for better resilience. When users come to the system, they are initially served

at an Entry Point VM. Based on the users’ location, identity, and information about each

data centre, the Entry Point selects an appropriate cloud and redirects the user to it. After

this, the user is served within the selected data centre and has no further interaction with
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Figure 4.1: Overall layered architecture. The Brokering components mange the system’s
provisioning and workload distribution, while a standard 3-Tier software stack serves
the end users.

the Entry Point. We emphasise that the cross-cloud interactions between Entry Points and

Admission Controllers happen only once, immediately after user arrival, and hence do not

result in further communication delay as the user is being served.

At first glance, an Entry Point can be likened to a standard load balancer, as it redi-

rects users to serving data centres. However, standard load balancers redirect each user

request, while Entry Points redirect users only upon arrival. Furthermore, Entry Points

collaborate with the Admission Controllers to implement cloud selection respecting leg-

islative, data location, cost, and QoE requirements, which is not implemented in standard

load balancers.

In each data centre the Data Centre Control Layer consists of three VMs:

• Admission Controller — decides whether a user can be served within this data

centre and provides an estimation of the potential cost for serving him/her. Upon

request, it provides feedback to the Entry Point VMs to facilitate their choice of a

data centre for a user.
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Figure 4.2: Component Interaction. Cloud site selection happens once, upon the user
arrival. Subsequent requests are handled within the selected data centre.

• Load Balancer — the standard Load Balancer component from the 3-Tier reference

architecture. We consider it as a logical part of the Data Centre Control Layer, since it

redirects requests to the application servers.

• DC Controller — responsible for observing the performance utilisation of the run-

ning AS servers, and reactively shutting down or starting AS VM instances to meet

resource demands at minimal cost.

In principle, the DC Controller and the Load Balancer VMs may be replaced by services

like Amazon Auto Scaling [5] and AWS Elastic Load Balancer (ELB) [11]. Nevertheless,

not all cloud providers have such services. Even if a provider offers auto scaling ser-

vices, it is often not possible to monitor custom performance metrics — e.g. number

of live application sessions. Moreover, in Section 4.5 we introduce novel algorithms for

load balancing and autoscaling which in conjunction reduce cost and the probability of

server overload. These are not implemented by current cloud providers and hence, for

generality, we will consider the usage of separate VMs for these purposes.
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4.4.2 Component Interaction

Figure 4.2 depicts the interaction between components upon user arrival. In the first

phase, the brokering components select an appropriate cloud site for the user, based on

his/her identity. As a first step, the user authenticates to one of the Entry Points. At this

point, the Entry Point has the user’s identity and geographical location (extracted from

the IP address). As a second step, the Entry Point broadcasts the user’s identifier to the

Admission Controllers of all data centres. We call this step matchmaking broadcast.

There are no restrictions on the location of the Entry Points. Ideally, they should be

positioned in a way which minimises the network latency effects during the matchmak-

ing broadcast. One reasonable approach is to deploy each entry point in one of the used

clouds, given that the clouds are already selected in a way which serves the expected

user base with adequate latency.

Within each data centre, the Admission Controller checks if the persistent data for this

user is present. Additionally, each Admission Controller implements application specific

logic to determine which users can be served in the data centre based on the regulatory

requirements. The Admission Controllers respond to the Entry Point whether the user’s

data is present and if they are allowed (in terms of legislation and regulations) to serve

the user. In the response, they also include information about the costs within the data

centre.

Based on the Admission Controllers’ responses, the Entry Point selects the data centre

to serve the user and redirects him/her to the Load Balancer deployed within it. The En-

try Point filters all clouds which have the user’s data and are eligible to serve him/her.

If there is more than one such cloud, the Entry Point selects the most suitable with re-

spect to network latency and pricing. If no cloud meets the data location and legislative

requirements the user is denied service.

After a data centre is selected, the user is served by the AS and DB servers within

the chosen cloud as prescribed by the standard 3-Tier architecture. He or she does not

have any further interaction with the brokering components. Hence, we consider that AS

servers deployed in a data centre can only access DB servers in the same data centre. This

is a reasonable constraint, as often there is no SLA about the network speed and latency

between data centres, and thus cross-cloud data access can lead to performance issues.
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Furthermore, transferring persistent data across the public Internet may be a breach of

the legislation and policy requirements of many applications.

4.5 Provisioning and Workload Management

4.5.1 Scalability Within a Cloud

At present, the practices for load balancing among a dynamic number of VMs in a cloud

environment and among a fixed number of physical servers are the same — e.g. round

robin or some of its adaptations. When using physical servers, one usually tries to dis-

tribute the load so that the servers are equally loaded and all sessions are served equally

well. In a cloud environment, if the number of AS VMs is insufficient, new ones can

be provisioned dynamically. Similarly, if there are more than enough allocated AS VMs,

some of them could be stopped to reduce costs. If the load of a stateful application is

equally distributed among underutilised VMs, then no VM can be stopped without fail-

ing the sessions served there.

This is not an impediment for stateless applications, as sessions are not bound to

servers and hence VMs can be stopped without causing service disruption. Thus, stan-

dard load balancing techniques like weighted round robin or “least connection” can be

effective. However, in the case of stateful sessions, in order to stop an AS VM one needs

to make sure it does not serve any sessions. One approach is to transfer all sessions from

an AS VM to another one before shut-down. However, this is not straightforward, as

active sessions together with their states need to be transferred without service interrup-

tion. A better approach is to balance the incoming workload in a way, which consolidates

the sessions in as few servers as possible without violating the QoS requirements. This

results in a maximum number of stoppable (i.e. not serving any sessions) servers. Intu-

itively, if the load balancer packs as many sessions as possible (without causing overload)

to a few servers, then the number of stoppable servers (not serving any sessions) will be

maximal.

This idea is implemented in Algorithm 3. It defines a sticky load balancing policy, and

thus after the first session’s request is assigned to a server, all successive ones are assigned

to it as well. It takes as input the newly arrived session si, the list of already deployed AS
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ALGORITHM 3: Load Balancing Algorithm.
input : si, thcpu, thram, VMas

1 sortDescendinglyByCPUUtilisation(VMas);
2 hostVM←− last element of VMas;
3 for vmi ∈ VMas do
4 vmcpu ←− CPU utilisation of vmi;
5 vmram ←− RAM utilisation of vmi;
6 if vmcpu < thcpu and vmram < thram and !networkBuffersOverloaded() then
7 hostVM←− vmi;
8 break;
9 end

10 end
11 assignSessionTo(s, hostVM)

servers VMas and two ratio numbers in the interval (0, 1) — the CPU and RAM thresh-

olds thcpu and thram. As a first step in the algorithm, we sort the available AS VMs in a

descending order with respect to their CPU utilisation. Then we assign the incoming ses-

sion to the first VM in the list, whose CPU and RAM utilisations are below thcpu and thram

respectively and whose input and output TCP network buffers/queues are not becoming

overloaded. These buffer sizes are denoted by the Recv-Q and Send-Q values returned

by the netstat command. To simplify the algorithm’s definition we have extracted this

logic in a new boolean function networkBu f f ersOverloaded(). It simply checks if there is

a TCP socket for which any of the ratios of the Recv-Q and Send-Q values to the maxi-

mum capacities of those queues is greater than 0.9. If there is no such server, the session

is assigned to the least utilised one (line 2). An obvious postcondition of the algorithm

is that a newly arrived session is assigned to the most utilised in terms of CPU server,

whose CPU and RAM utilisations are under the thresholds. If there is no such server —

the one with the least utilised CPU is used. By increasing the thresholds, we can achieve

better consolidation of sessions at the expense of a higher risk of CPU or RAM contention,

which may result in lower response time. On the contrary, when the thresholds are lower,

the overall number of underutilised VMs will be higher. Therefore reasonable values for

these thresholds are the autoscaling triggers (used by our autoscaling algorithm), which

define if a server is overloaded.

The DC controller is responsible for adjusting the number of AS VMs accordingly.

This implementation of the Load Balancer (Algorithm 3) allows the DC controller to stop

AS VMs which serve no sessions. The DC controller is also responsible for instantiating
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new AS VMs when needed. Algorithm 4 details how this can be done when using on-

demand VM instances. This algorithm is periodically executed every ∆ seconds to ensure

the provisioned resources match the demand at all times. The input parameters of the

algorithm are:

• tcur — the current time of the algorithm call;

• tgrcpu — CPU trigger ratio in the interval (0, 1);

• tgrram — RAM trigger ratio in the interval (0, 1);

• VMas — list of currently deployed AS VMs;

• n — number of over-provisioned AS VMs to cope with sudden peaks in demand;

• ∆ — time period between algorithm repetitions.

If an AS VM’s CPU or RAM utilisation exceeds respectively tgrcpu and tgrram or some

of its input/output TCP network buffers is becoming overloaded, we call this server

overloaded. In the beginning of Algorithm 4 (lines 1-11), we inspect the statuses of all

available AS VMs and note if they are overloaded or free (i.e. not serving any sessions).

In an online application, the resource demand can raise unexpectedly in the time peri-

ods between two subsequent executions of the scaling algorithm. Moreover, booting and

setting up new AS VMs is not instantaneous and can take up to a few minutes depend-

ing on the underlying infrastructure. Hence, resources cannot be provisioned instantly

in response to the increased workload. If the workload spike is significant, this can result

in server overload and performance degradation. One solution is to over-provision AS

VMs, so that unexpected workload spikes can be handled. The n input parameter of the

algorithm denotes exactly that — how many AS VMs should be over-provisioned to cope

with unexpected demand.

As a postcondition of the algorithm execution, there should be at least n + 1 free AS

VMs if all other AS VMs are overloaded, or n otherwise. For example, in the special case

when n = 0, one AS VM is provisioned only if all others are overloaded. This is ensured

by lines 16-24 of the algorithm.

Similarly, to avoid charges some over-provisioned VMs should be stopped whenever

their number exceeds n. However, it is not beneficial to terminate a running VM ahead of
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ALGORITHM 4: Scale Up/Down Algorithm.
input : tcur, tgrcpu, tgrram, VMas, n, ∆

1 nOverloaded←− 0;
2 listFreeVms←− empty list;

3 for vm ∈ VMas ; // Inspect the status of all AS VMs
4 do
5 vmcpu ←− CPU utilisation of vm;
6 vmram ←− RAM utilisation of vm;
7 if vmcpu ≥ tgrcpu or vmram ≥ tgrram or networkBuffersOverloaded() then
8 nOverloaded←− nOverloaded + 1;
9 else if vmi serves no sessions then

10 listFreeVms.add(vm);
11 end
12 end
13 nFree←− length of listFreeVms;
14 nAS←− length of VMas;
15 allOverloaded←− nOverloaded + nFree = nAS and nOverloaded > 0;

16 if nFree ≤ n ; // Provision more VMs
17 then
18 nVmsToStart←− 0;
19 if allOverloaded then
20 nVmsToStart←− n− nFree + 1;
21 else
22 nVmsToStart←− n− nFree
23 end
24 launch nVmsToStart AS VMs
25 else
26 nVmsToStop←− 0 ; // Release VMs
27 if allOverloaded then
28 nVmsToStop←− nFree− n;
29 else
30 nVmsToStop←− nFree− n + 1
31 end

32 sortAscendinglyByBillingTime(listFreeVms);
33 for i = 1 to nVmsToStop do
34 billTime←− billing time of listFreeVms[i];
35 if billTime− tcur < ∆ then
36 terminate listFreeVms[i];
37 else
38 break
39 end
40 end
41 end

its next billing time. It is better to keep it running until its billing time, in order to reuse

it if resources are needed again. This is ensured by lines 25-40 of the algorithm. Firstly,

we sort the free VMs in ascending order with respect to their next billing time. Next,
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we iterate through the excessively allocated VMs and terminate only those for which the

next billing time is earlier than the next algorithm execution time.

Lastly, in the previous discussion we assumed that the application is stateful — i.e.

it maintains contextual user information in the memory of the AS server. For scalability

reasons, many applications are stateless, or they store session state in an external in-

memory cache like Amazon ElastiCache [6]. Algorithm 4 can handle such applications as

well by considering each AS server to be assigned 0 sessions at all times. This is reflective

of the main characteristic of stateless applications that each request can be served on a

different server, as no session state is kept in the servers’ memory. Consequently, in the

algorithm all AS servers which are not overloaded will be considered free (lines 9-11)

and will be viable for termination. Therefore, our approach encompasses both stateful

and stateless applications.

4.5.2 Data Centre Selection

We can largely classify the requirements for data centre selection as constraints and ob-

jectives. Constraints should not be violated under any circumstances. In this chapter,

we consider the following constraints: (i) users should be served in data centres which

are compliant with the regulatory requirements and (ii) users should be served in data

centres containing their data in the application’s data layer. The system should prefer

to deny service than to violate these constraints. In contrast, the system can continue to

serve a user even if an objective is not optimised. We consider the following objectives:

(i) cost minimisation and (ii) latency minimisation. In other words, upon a user arrival

the Entry Point extracts the data centres which satisfy the constraints and selects the most

suitable among them in terms of latency and cost.

While cost minimisation is a natural goal of cloud clients, it should not be pursued at

the expense of end user Quality of Experience (QoE) and hence we must balance between

the two objectives. The maximum acceptable latency between users and the data centres

can be considered as a part of the application’s SLA. Thus, we can choose the optimal

data centre in terms of cost, whose network latency is less than the predefined in the SLA

one.

Algorithm 5 implements this idea and details the data centre selection procedure. The
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ALGORITHM 5: Cloud Site Selection Algorithm.
input : users, timeout, clouds, latencySLA

// Broadcast users’ data to admission controllers
1 for ci ∈ clouds do
2 aci ←− IP address of ci’s Admission Controller;
3 send to aci users’ identifier;
4 end

5 wait timeout seconds or until all clouds respond;

6 for ui ∈ users do
7 cloudsaccept ←− clouds eligible to serve ui;
8 sortAscendinglyByPrice(cloudsaccept);
9 selectedCloud←− null;

10 selectedLatency←− +∞ ;
11 for ci ∈ cloudsaccept do
12 latency←− latency between u and ci;
13 if latency < latencySLA then
14 selectedCloud←− ci;
15 break;
16 else if selectedLatency > latency then
17 selectedCloud←− ci;
18 selectedLatency←− latency;
19 end
20 end

21 if selectedCloud = null then
22 Deny Service;
23 else
24 lb←− IP of Load Balancer in selectedCloud;
25 redirect u to lb;
26 end
27 end

algorithm selects clouds for multiple users at once. Hence, users arriving at the system at

approximately the same time can be dispatched to serving clouds in batch thus avoiding

excessive cross cloud communication. The input parameters of the algorithm are:

• users — identifiers of the users, for which the entry point should select a cloud.

• timeout — period after which if a data centre’s admission controller has not re-

sponded it is discarded.

• clouds — a list of the used data centres. For each of them, we can obtain the IP

addresses of the Admission Controller and the load balancer.

• latencySLA — SLA for the network latency between a user and the serving data
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centre.

In the beginning of the algorithm (lines 1-4), the Entry Point asynchronously broad-

casts all users’ identifiers to the clouds’ Admission Controllers. After that, the Entry Point

waits until all contacted Admission Controllers respond or the timeout period elapses (line

5). At this stage, unresponsive clouds whose admissions controllers fail to respond within

the timeout are discarded.

For each user, the response of the clouds’ Admission Controllers includes: (i) a boolean

value, whether the cloud is eligible to serve the user and (ii) an estimation of the cost

for serving a user. Based on this input, for every user the Entry Point retains the clouds

eligible to serve him/her (line 7). If no eligible cloud is present the user is denied service.

Otherwise, the cloud which has the smallest cost and provides latency below the SLA

requirement is selected (lines 9-20). If there is no eligible cloud meeting the network

latency SLA — the one with the lowest network latency to the user is selected (lines 16-

19).

Note that the decision if a cloud site is eligible for a given user is application specific.

For some applications with no additional privacy, security and legislation requirements

all clouds may be eligible for all users. In others, certain users will have to be served

within a specific legislative domain or within certified data centres based on their na-

tionality. We assume that this application specific eligibility logic is implemented in the

Admission Controllers by application developers.

Algorithm 5 uses the network latency between the end user and the prospective serv-

ing data centres. Hence, the Entry Point needs to evaluate the latencies between them

based on their IP addresses. By latency we denote only the network latency. We do not

try to estimate the entire response time, consisting of network and server delays. We

argue this simplification does not reduce the generality of our approach, because for an

interactive 3-Tier application the server delays should be small and similar in all clouds

provided there is no significant resource contention. In this case, the variable part of the

overall delay is the network latency. In Algorithm 4 we make sure the domain layer scales

horizontally and enough resources are present at all times. If contention indeed occurs

within a cloud site, because of either non-scalable DB layer or inappropriate choice of

parameters for Algorithm 4, then we provide a back-off mechanism through the cost es-
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timation, as discussed below. Hence, we minimise the probability of resource contention

within the Multi-Cloud set-up and therefore servers’ delays should be small and similar

in all cloud sites.

An approximation of the network latency can be achieved in two steps. Firstly we

can identify the geographical locations (longitude and latitude) of the user and a given

cloud based on their IP addresses. For this we use the GeoLite [80] database, mapping IP

addresses to geospatial coordinates. As a second step, we compute the latency between

a user and a cloud based on the extracted coordinates by using the PingER [138] service.

PingER is an end-to-end Internet performance measurement (IEPM) project, which con-

stantly records the network metrics between more than 300 hosts positioned worldwide.

The geospatial coordinates of each host are provided. To approximate the latency be-

tween a user and a cloud, we select the 3 pairs of PingER hosts that are closest to the user

and the cloud respectively, and define the latency as a weighted sum of the 3 latencies be-

tween the hosts in these 3 pairs. The weights are defined proportionally to the proximity

of the hosts to the user and the cloud. To compute the distance between the geospatial

positions we use the well known Vincenty’s formulae. The data from both GeoLite and

PingER can be downloaded and used offline. If latest up-to-date Internet performance

data is needed it can be periodically downloaded and updated automatically.

The last missing piece of information is the cost evaluation for serving a user by a

cloud (used in line 8), performed by the Admission Controllers. The difficulty here is to

define a unified cost evaluation for different clouds, with different pricing policies and

different VM types and performance.

Firstly, if the application’s infrastructure within a data centre is overloaded and it

should not accept further users, it returns +∞ as a cost estimation. One reason for an

overload may be a lack of scalability in the DB layer. As discussed, it may not scale

horizontally and given significant workload can be easily overloaded. Another reason

may be a bottleneck in the data centre infrastructure — for example an internal network

congestion may threaten to slow down the application’s inter-tier communication. This

is a less likely case, as Lloyd et al. [103] have demonstrated that for multi-tier applica-

tions the impact of the VMs’ network traffic is typically negligible in comparison to the

servers’ performance. Internal network bottlenecks could be easily detected in the case
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of a private data centre. In a public data centre obtaining such information may be more

difficult, as the cloud provider would have to expose such internal performance data to

its clients. By returning +∞ cost to the Entry Point the Admission Controller ensures that

users are sent to this cloud only as a last resort. Hence, Admission Controllers use the cost

as a back-off mechanism.

As a first step in session cost estimation, we define p(vmi) to be the price per minute

of a virtual machine vmi. For cloud providers that charge for longer intervals (e.g. an

hour like Amazon AWS) we compute this value by dividing by the number of minutes

in a charge period. For each virtual machine vmi, based on its current utilisation and the

number of currently served sessions, we can approximate how many sessions f (vmi) it

will be able to serve if fully utilised — see Eq. 4.1.

f (vmi) =
numSessions(vmi)

max(utilcpu(vmi), utilram(vmi))
(4.1)

Therefore, the term p(vmi)/ f (vmi) is representative of the session cost per minute in

vmi. To achieve better estimation, we average the cost estimations of all AS servers V,

which currently serve sessions in the cloud. If no sessions are served in the cloud we use

the last successful estimation for this data centre, or 0 if there has not been such. Eq. 4.2

summarises the previous discussion:

session cost per minute =


+∞ if overloaded
previous estimation if V = ∅

∑
vmi∈V

p(vmi)/ f (vmi)

|V| otherwise

(4.2)

In the above discussion, for each VM vmi we used only the price per minute p(vmi),

number of sessions, and its CPU and memory utilisations. Therefore, our cost evaluation

can be used even if the types of the VMs are different, as long as we can evaluate these

characteristics. It is also worthwhile noting that the above cost estimation strategy is a

heuristic forecast of the future cost incurred by a user, as we can not know in advance

how long the user will use the system, what exactly will be his/her actions, etc.
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4.5.3 Fault Tolerance

Within the given architecture, a data centre outage can be seamlessly overcome by incor-

porating time-outs in the Entry Points. If an Admission Controller will not reply timely to

the matchmaking broadcast, the Entry Point does not consider its respective cloud.

Within a cloud, the DC controller manages how the AS VMs are instantiated and

stopped in order to meet QoS requirements with minimal costs. Doing so, it also mon-

itors the AS VMs in the data centre and restarts them upon failure. In this setting, it is

obvious that a failure of the DC Controller would disable the fault tolerance and scalability

of the architecture. Hence, the Admission Controller and the Load Balancer run background

threads that check the status of the DC controller and restart it upon failure.

VMs can take up to a few minutes to boot. A failure of the Load Balancer and the

Admission Controller would mean that no users can be served in this data centre during

such an outage. Thus, applications requiring high availability can have multiple Load

Balancers and Admission Controllers working in parallel to achieve resilience against such

failure.

4.6 Performance Evaluation

Our approach to application provisioning and workload distribution is generic and test-

ing it with all possible middleware technologies, workloads, cloud offerings, and data

centre locations is an extremely laborious task. In this section, we demonstrate how un-

der typical workload and set-up our approach meets imperative requirements like legis-

lation compliance with only minimal losses in terms of latency and cost.

To validate our work, we use the CloudSim discrete event simulator [46], which has

been used in both industry and academia for performance evaluation of cloud environ-

ments and applications. To represent 3-Tier applications in a Multi-Cloud, we use the

latest CloudSim extensions from Chapter 3.
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Table 4.1: Simulation parameters.

Parameter Value Component/Algorithm

thCPU 0.7 Load balancer (AS Server Selection)

thRAM 0.7 Load balancer (AS Server Selection)

tgrCPU 0.7 DC Controller (Auto Scaling)

tgrRAM 0.7 DC Controller (Auto Scaling)

n 1 DC Controller (Auto Scaling)

∆ 10 sec DC Controller (Auto Scaling)

latencySLA 30 ms Entry point (Cloud Selection)

4.6.1 Experiment Setting

In our experimental set-up, we simulate 4 cloud data centres. We model the first two of

them with the characteristics of Amazon EC2. We position one of them in Dublin, Ireland

and the other one in New York, US. Later, we call these data centres DC-EU-E and DC-US-

E respectively. We assign the VMs from these data centres IP address from Dublin and

New York respectively, which are extracted from GeoLite. All VMs we allocate in these

data centres have the performance characteristics and the price of EC2 m1.small instances

with Linux in the respective AWS regions. We model the VM start-up times based on the

empirical performance study by Mao and Humphrey [107]. Just like in Amazon EC2, the

on-demand VM billing in DC-EU-E and DC-US-E is done per hour.

To demonstrate the usage of heterogeneous cloud resources from multiple cloud

providers, we model the other two data centres after Google Compute Engine. We posi-

tion them in Hamina, Finland and Dalles, US as these are actual locations of Google data

centres and we assign all their VMs IP addresses from these locations. We call these data

centres DC-EU-G and DC-US-G. All VM characteristics and prices are modelled after the

n1-standard-1-d VM type in the respective locations. As Google Compute Engine is a new

cloud offering, there is no statistical analysis of its VM booting times. Thus in our simu-

lation we consider the start-up time of a n1-standard-1-d VM to be the same as the one of

an EC2 m1.small VM. Like in Google Compute Engine, VMs in DC-EU-G and DC-US-G

are billed in 1 minute increments and all VMs are charged for 10 minutes at least.

In our simulation, we deploy the aforementioned 3-Tier architecture and brokering

components, as described in the previous sections. We model one Entry Point VM in each

data centre. To demonstrate how our approach handles resource contention in the data
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Figure 4.3: User arrival frequencies per minute in the entry points of the EU data centres
(DC-EU-E, DC-EU-G) and the US ones (DC-US-E, DC-US-G).

layer, in the experiments we assume that in each cloud the DB layer is static (i.e. not

scalable) and consists of 2 DB servers, holding equal in size database shards. Table 4.1

summarises the values of the algorithms’ parameters that we use in the simulation.

4.6.2 Experimental Application and Workload

We base our experimental workload on the Rice University Bidding System (RUBiS)

benchmarking environment [149], [16]. RUBiS implements an e-commerce dynamic web-

site similar to eBay.com and follows the 3-Tier architectural pattern having AS and DB

servers.

The RUBiS workload consists of sessions, each of which consists of a string of user

requests. We have deployed in a local virtualised environment the PHP version of RUBiS

with a standard non-clustered MySql database in the backend and we run a test with

100 concurrent sessions. During the test we monitor how the performance utilisations

(in terms of CPU, RAM and disk) of the servers change over time as a result of the ex-

ecuted workload. Based on that, we define the performance utilisations over time of a

typical RUBiS session. We will not describe the exact procedure for extracting a session

performance model, as Chapter 3 already detailed it and demonstrated experimentally

the validity of the extracted model. We use this derived session performance model for

our simulation.

The number of incoming sessions over a short time period can be well modelled with



4.6 Performance Evaluation 109

Poisson distribution with a constant mean λ [48], [145]. However, over larger time pe-

riods the frequencies of user arrivals can change and are rarely constant. Hence, the

number of session arrivals over time can be represented as a Poisson distribution over

a frequency function of time λ(t), which represents the variations in session arrival fre-

quencies.

Our experiment has a duration of 24 hours with workload which is more intensive

during working hours and lower otherwise. We model the user arrival frequencies in the

Entry Points of the two European (EU) data centres to be the same. The arrival frequencies

in the US data centres are the same as those in the EU ones, only “shifted” with 12 hours

to represent the time zone difference. Figure 4.3 depicts how the arrival frequencies per

minute (i.e. λ(t)) in the entry points of the European and the US data centres change over

time.

In our simulation, each user/session is assigned an IP address, which as explained

previously can be used to approximate the user’s physical location and the latencies to

the candidate data centres. The GeoLite [80] database provides IP ranges for every coun-

try. In the simulation, whenever we model the arrival of a user in a US data centre, we

take a random US IP from GeoLite. Similarly, all users arriving in the EU data centres are

assigned random IP addresses from EU countries.

To demonstrate how our system handles regulatory requirements, we introduce an

additional legislative constraint. In the simulation, we assign a citizenship to each user

and impose the requirement that a user with US citizenship should be served in a US

data centre and a EU citizen should be served in the EU. As discussed, we implement this

logic in the Admission Controllers. We assign US citizenship to 10% of the users arriving

in the EU entry points, and EU citizenship to 10% of the users arriving in the US clouds.

Furthermore, in our simulation the data of all EU citizens is replicated in both EU data

centres, and the data of all US citizens is replicated in both US cloud sites. Therefore, a

EU or US citizen can be served in any EU or US data centre respectively.

4.6.3 Baseline Approach

We compare our approach to a baseline method which uses the standard industry prac-

tices. More specifically, we have implemented a baseline simulation, which distributes
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the incoming users to the data centres that can serve them with the lowest latency, sim-

ilarly to the Route 53 LBR service [8]. Following the design of the AWS Elastic Load

Balancer [11], within each data centre we implement sticky load balancing that assigns

new sessions to running AS servers following the Round-robin algorithm. Lastly, in our

baseline simulation we implement automatic autoscaling following the design of AWS

AustoSale [5]. More specifically, if all AS servers within a data centre reach CPU util-

isation of more than 80% — a new AS server is started. If an AS server reaches CPU

utilisation below 10% it is stopped. We have also implemented a cool down period of 2.5

minutes. Just like in AWS AustoSale, we do not allow for two consequent autoscaling

actions to happen within a period shorter than the cool down period.

4.6.4 Results

Figure 4.4 depicts the number of served sessions in each data centre over time. In the

diagram, a session is classified as failed if some server handling it failed (e.g. due to out of

memory error). A session is rejected if it is assigned to a data centre which is not eligible

to serve it. In our simulation, this happens if a US citizen is assigned to a European data

centre or vice versa. Otherwise, a session is considered served.

From Figure 4.4 we can see that the baseline approach redirects much fewer sessions

to data centres DC-EU-G and DC-US-G in comparison to the others. This is because of

the location of these data centres and the end users. As described, in our experiment all

IP addresses within EU and US are likely to be used as sources of sessions with the same

probability. As to the GeoLite database, and the PingER service, there are much more

IP addresses located nearby and with lower latency to Dublin, Ireland and New York,

US than to Hamina, Finland and Dalles, Oregon, US. Therefore, the baseline approach

redirects the majority of incoming sessions to these data centres. As the data layer cannot

scale up, this leads to resource contention during peak workload periods (10h-14h in

the EU data centres and 22h-24h, 0h-2h in the US). This in turn causes congestion in

the DB servers resulting in slowdown in session serving. As a result, the number of

concurrently served sessions is increased significantly, causing AS servers keeping in

memory the sessions’ states to fail with “out of memory” errors (in the case of DC-US-E)

or to degrade response time (in the case of DC-EU-E).
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Figure 4.4: Session outcome over time.

Another reason for session failure in the baseline approach is the autoscaling, which

terminates AS servers with low utilisation even if they serve sessions. This is visible

in the case of DC-EU-E during the 16h-24h period and in DC-US-E during the 0h-4h

period, when the scaling down causes several session failures, as sessions are stateful.

Our approach terminates servers only if they do not serve any sessions, and thus reduces

the number of session failures for stateful applications. Consequently, the overall rate of

session failures in the baseline is approximately 7%.

In contrast to the baseline approach, during the workload peak periods our method

redirects many sessions to DC-EU-G and DC-US-G, even though they may not be optimal

in terms of cost or latency. This is because the cost of a data centre is evaluated as +∞

if it is overloaded (see Eq. 4.2) and this is used by the cloud selection Algorithm 5. As a
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Figure 4.5: Session delays in seconds.

result, our approach minimises session failure by diverting users from overloaded data

centres to alternative ones. During off-peak hours, our approach also redirects most users

to DC-EU-E and DC-US-E, which as discussed is optimal in terms of latency.

Furthermore, the baseline approach does not consider the stated regulatory require-

ments during the cloud selection stage and only uses the latency as selection criteria.

Thus, about 10% of the incoming sessions are redirected to ineligible clouds and are re-

jected. In contrast, our approach takes this into consideration, and redirects users to

eligible data centres, even if this means sub-optimality in terms of latency and cost.

A session delay is defined as the sum of the latency delay and the execution delay. The

latency delay is the time lost in network transfer between a user and the cloud during a

session. Execution delay is the time lost due to resource contention (e.g. CPU preem-

tion) on the server side. The session delay is a measurement of the end user experience.
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The simulation environment allows us to measure execution delay, and we can compute

the latency delay based on the latency and the average number of interactions/requests

during a session.

Figure 4.5 depicts the session delays of the users served in the European and US data

centres. The delays in DC-EU-E and DC-US-E during the peak workload periods of the

baseline approach significantly exceed the ones of our approach. Similarly, to the session

failures, this is caused by the resource contention in the DB layer. In contrast, all delays in

DC-EU-G and DC-US-G are insignificant since the baseline approach redirects very few

users there and therefore resource contention is small. The delays in DC-US-E are smaller

than those in DC-EU-E as the failures there were much more and therefore fewer sessions

were actually measured (see Figure 4.4). In our approach, the DB layer contentions are

mitigated, as users are redirected to alternative data centres whenever the data layer in a

given cloud is overloaded. Moreover, the overall session delays in our approach are less

than 10s at all times in all data centres, showing that the effect of selecting a cloud with

less than optimal latency in some cases is small.

Figure 4.6 shows the distributions of the achieved latencies between clients and

clouds by the baseline and our approaches. The average baseline latency is lower with

approximately 10ms than the one in our approach because the baseline method greedily

selects the data centre with the lowest latency. Also, our approach honours the stated reg-

ulatory requirements and hence 10% of the users are served overseas, which contributes

to the increased average latency. Still, in our approach the mean, median, and the in-

terquartile range of the latencies are below the stated SLA of 30ms thus providing for

adequate QoE. End users experience the network latency through application response

delays. In our approach the average network delay is higher, but the execution delay is

much lower, resulting in lower overall delay (see Figure 4.5) and better QoE.

Lastly, the overall cost incurred by our approach is about 28% more than the cost

of the baseline. First, this can be attributed to the number of rejected and failed (approx.

17%) sessions in the baseline experiment. Since the baseline approach served much fewer

sessions, it needed fewer servers and therefore its cost is lower. Also in order to prevent

failure, our approach redirects many sessions to more expensive data centres thus result-

ing in increased overall cost.
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Figure 4.6: Network latency between users and serving data centres in milliseconds. The
mean is denoted with a rhombus.

4.7 Summary

In this chapter, we have introduced a novel approach for adaptive resource provision-

ing and workload distribution of 3-Tier applications across clouds. It encompasses all

aspects of resource management and workload redirection, including: (i) cloud selection,

(ii) load balancing, and (iii) autoscaling. We introduced new architectural components

and algorithms that ensure imperative requirements like regulation compliance and high

availability are not violated without sacrificing too much cost and end-user QoE. To val-

idate our approach, we have performed simulations with realistic cloud data centre set-

tings, VM types, costs, and network characteristics, derived from a real-life benchmark-

ing application, cloud providers and Internet monitoring service. We have compared

our approach to a baseline method which follows current industrial best practices. Re-

sults show that our approach is a significant improvement over the baseline in terms of

the achieved availability, accumulative session delay, and regulatory compliance, while

maintaining acceptably low cost and latency between users and serving data centres.

In this chapter, we considered that all VMs from the domain layer are of a predefined

type. Most cloud providers offer virtual machines of different types in terms of perfor-

mance capacity and cost. This opens an opportunity to further improve the cost and

performance efficiency of the system, by dynamically selecting appropriate VM types

when scaling up. This is precisely the goal of the next chapter, in which we propose a

method for automated VM type selection during autoscaling. It uses a set of machine

learning approaches and heuristics to “learn” in real time the application performance

utilisation patterns and to estimate the actual capacity of all VM types.



Chapter 5

Dynamic Selection of Virtual Machines
for Application Servers

Autoscaling is a hallmark of cloud computing because it allows flexible just-in-time allocation and

release of computational resources in response to dynamic and often unpredictable workloads. This is

especially important for 3-Tier web applications whose workload is time dependent and prone to flash

crowds. In this chapter, we focus on the application layer. Reactive autoscaling policies of the type

“Instantiate a new Virtual Machine (VM) when the average server CPU utilisation reaches X%” have

been used successfully since the dawn of cloud computing. But which VM type is the most suitable

for the specific application at the moment remains an open question. In this chapter, we propose an

approach for dynamic VM type selection. It uses a combination of online machine learning techniques,

works in real time, and adapts to changes in the users’ workload patterns, application changes as well

as middleware upgrades and reconfigurations. We have developed a prototype, which we tested with

the CloudStone benchmark deployed on AWS EC2. Results show that our method quickly adapts to

workload changes and reduces the total cost compared to the industry standard approach.

5.1 Introduction

ORGANISATIONS relying on fixed size private infrastructures often realise it

can not match their dynamic needs, thus frequently being either under or

overutilised. In contrast, in a cloud environment one can automatically acquire or re-

lease resources as they are needed — a distinctive characteristic known as autoscaling.

This is especially important for large scale web applications, since the number of users

fluctuates over time and is prone to flash crowds as a result of marketing campaigns and

This chapter is based on the following publication: Nikolay Grozev and Rajkumar Buyya, “Dynamic
Selection of Virtual Machines for Application Servers in Cloud Environments”, Technical Report CLOUDS-TR-2016-
1, Cloud Computing and Distributed Systems Laboratory, The University of Melbourne, February 5, 2016.
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product releases.

A user interacts with the presentation layer, which redirects the requests to an Ap-

plication Server (AS) which in turn can access the data layer. The presentation layer

is executed on the client’s side (e.g. in a browser) and thus scalability is not an is-

sue. Scaling the DB layer is a notorious challenge, since system architects have to bal-

ance between consistency, availability and partition tolerance following the results of

the CAP theorem [40, 41]. This field has already been well explored (Cattel surveys

more than 20 related projects [50]). Furthermore, Google has published about their new

database which scales within and across data centres without violating transaction con-

sistency [60]. Hence, data layer scaling is beyond the scope of our work.

In general, autoscaling the Application Servers (AS) is comparatively straightfor-

ward. In an Infrastructure as a Service (IaaS) cloud environment, the AS VMs are de-

ployed “behind” a load balancer which redirects the incoming requests among them.

Whenever the servers’ capacity is insufficient, one or several new AS VMs are provi-

sioned and associated with the load balancer and the DB layer — see Figure 5.1.

But what should be the type of the new AS VM? Most major cloud providers like Ama-

zon EC2 and Google Compute Engine offer a predefined set of VM types with different

performance capacities and prices. Currently, system engineers “hardcode” preselected

VM types in the autoscaling rules based on their intuition or at best on historical perfor-

mance observations. However, user workload characteristics vary over time leading to

constantly evolving AS capacity requirements. For example, the proportion of browsing,

bidding and buying requests in an e-commerce system can change significantly during a

holiday season, which can change the server utilisation patterns. Middleware and oper-

ating system updates and reconfigurations can lead to changes in the utilisation patterns

as well [56]. This can also happen as a result of releasing new application features or

updates.

Moreover, VM performance can vary significantly over time because of other VMs

collocated on the same physical host causing resource contentions [63, 152, 160]. Hence,

even VM instances of the same type can perform very differently. From the viewpoint of

the cloud’s client this can not be predicted.

To illustrate better, let us consider a large scale web application with hundreds of
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Figure 5.1: A 3-Tier application in Cloud. Whenever the autoscaling conditions are ac-
tivated, a new application server should be provisioned. In this cjapter we select the
optimal VM type for the purpose.

dedicated AS VMs. Its engineers can analyse historical performance data to specify the

most appropriate VM type in the autoscaling rules. However, they will have to reconsider

their choice every time a new feature or a system upgrade is deployed. They will also

have to constantly monitor for workload pattern changes and to react by adjusting the

austoscaling rules. Given that VM performance capacities also vary over time, the job of

selecting the most suitable VM type becomes practically unmanageable. This can result

in significant financial losses, because of using suboptimal VMs.

To address this, the key contributions of this chapter are (i) a machine learning ap-

proach which continuously learns the application’s resource requirements and (ii) a dy-

namic VM type selection (DVTS) algorithm, which selects a VM type for new AS VMs.

Since both workload specifics and VM performance vary over time, we propose an online

approach, which learns the application’s behaviour and the typical VM performance ca-

pacities in real time. It relieves system maintainers from having to manually reconfigure

the autoscaling rules.

The rest of the chapter is organised as follows: In Section 5.2, we describe the related

works. Section 5.3 provides a succinct overview of our approach. Section 5.4 discusses
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the machine learning approaches we employ to “learn” the application’s requirements

in real time. Section 5.5 describes how to select an optimal VM type. Section 5.6 details

the architecture of our prototype and the benchmark we use for evaluation. Section 5.7

describes our experiments and results. Finally, Section 5.8 summarises the findings.

5.2 Related Work

There have been significant efforts in developing horizontal autoscaling methods for

cloud enabled applications. Lorido-Botran et al. classify autoscaling policies as reac-

tive and predictive or proactive [104]. The most widely adopted reactive approaches are

based on threshold rules for performance metrics (e.g. CPU and RAM utilisation). For

each such characteristic the system administrator provides a lower and upper thresh-

old values. Resources are provisioned whenever an upper threshold is exceeded. Sim-

ilarly, if a lower threshold is reached resources are released. How much resources are

acquired or released when a threshold is reached is specified in user defined autoscal-

ing rules. There are different “flavours” of threshold based approaches. For example in

Amazon Auto Scaling [5] one would typically use the average metrics from the virtual

server farm, while RightScale [144] provides a voting scheme, where thresholds are con-

sidered per VM and an autoscaling action is taken if the majority of the VMs “agree” on

it. Combinations and extensions of both of these techniques have also been proposed

[51, 57, 153]. Predictive or proactive approaches try to predict demand changes in order to

allocate or deallocate resources. Multiple methods using approaches like reinforcement

learning [30, 66], queuing theory [4], and Kalman filters [78] to name a few have been

proposed.

Our work is complementary to all these approaches. They indicate at what time re-

sources should be provisioned, but do not select the resource type. Our approach selects

the best resource (i.e. VM type) once it has been decided that the system should scale up

horizontally.

Fernandez et al. propose a system for autoscaling web applications in clouds [72].

They monitor the performance of different VM types to infer their capacities. Our ap-

proach to this is different, as we inspect the available to each VM CPU capacity and
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measure the amount of “stolen” CPU instructions by the hypervisor from within the VM

itself. This allows us to normalise the VMs’ resource capacities to a common scale, which

we use to compare them and for further analysis. Furthermore, their approach relies on

a workload predictor, while ours is usable even in the case of purely reactive autoscaling.

Singh et al. use k-means clustering to analyse the workload mix (i.e. the different type

of sessions) and then use a queueing model to determine each server’s suitability [154].

However, they do not consider the performance variability of virtual machines, which

we take into account. Also, they do not select the type of resource (e.g. VM) to provision

and assume there is only one type, while this is precisely the focus of this chapter.

A part of our work is concerned with automated detection of application behaviour

changes through a Hierarchical Temporal Memory (HTM) model. Similar work has been

carried out by Cherkasova et al. [56], who propose a regression based anomaly detection

approach. However, they analyse only the CPU utilisation. Moreover, they consider that

a set of user transactions’ types is known beforehand. In contrast, our approach considers

RAM as well and does not require application specific information like transaction types.

Tan et al. propose the PREPARE performance anomaly detection system [159]. However,

their approach can not be used by a cloud client, as it is built on top of the Xen virtual

machine manager to which external clients have no access.

Another part of our method is concerned with automatic selection of the learning rate

and momentum of an Artificial Neural Network (ANN). There is a significant amount of

literature in this area as surveyed by Moreira and Fiesler [114]. However, the works they

overview are applicable for static data sets and have not been applied to learning from

streaming online data whose patterns can vary over time. Moreover, they only consider

how the intermediate parameters of the backpropagation algorithm vary and do not use

additional domain specific logic. Although our approach is inspired by the work of Vogl

et al. [167] as it modifies the learning rate and momentum based on the prediction error,

we go further and we modify them also based on the anomaly score as reported by the

Hierarchical Temporal Memory (HTM) models.
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Figure 5.2: System components and their interaction.

5.3 Method Overview

Figure 5.2 depicts an overview of our machine learning approach and how the system

components interact. Within each AS VM we install a monitoring program which peri-

odically records utilisation metrics. These measurements are transferred to an autoscaling

component, which can be hosted either in a cloud VM or on-premises. It is responsible

for (i) monitoring AS VMs’ performance (ii) updating machine learning models of the

application behaviour, and (iii) autoscaling.

Within each AS VM the utilisation monitors report statistics about the CPU, RAM, disk

and network card utilisations and the number of currently served users. These records

are transferred every 5 seconds to the autoscaling component, where they are normalised,

as different VMs have different de facto resource capacities. In the machine learning

approaches, we only consider the CPU and RAM utilisations, as disk and network utili-

sations of AS VMs are typically small [103].

For each AS VM the autoscaler maintains a separate single-region Hierarchical Tem-

poral Memory (HTM) model [86], which is discussed in a later section. In essence, we

use HTMs to detect changes in the application behaviour of each AS VM. We prefer HTM

to other regression based anomaly detection approaches, as it can detect anomalies on a

stream of multiple parameters (e.g. CPU and RAM). Whenever monitoring data is re-

trieved from an AS VM, the autoscaler trains its HTM with the received number of users,
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CPU and RAM utilisations and outputs an anomaly score defining how “unexpected” the

data is.

As a next step, we use these utilisation measurements to train a 3-Tier artificial neu-

ral network (ANN) about the relationship between the number of served users and re-

source consumptions. We choose to use an ANN because of its suitability for online data

streams. Other simpler “sliding window” approaches operate only on a portion of the

data stream. As a system’s utilisation patterns can remain the same for long time inter-

vals, these approaches’ accuracies can be very limited. On the contrary, an ANN does

not operate on a fixed time window and is more adept with changes in the incoming

data stream, as we will detail in a later section.

There is only one ANN and training samples from all AS VMs are used to train it. In

essence, the ANN represents a continuously updated regression model, which given a

number of users predicts the needed resources to serve them within a single VM with-

out causing resource contentions. Thus, we need to filter all training samples, which

were taken during anomalous conditions (e.g. insufficient CPU or RAM capacity causing

intensive context switching or disk swapping respectively). Such samples are not indica-

tive of the relationship between number of users and the resource requirements in the

absence of resource contentions. Furthermore, we use the anomaly score of each training

sample (extracted from HTM) to determine the respective learning speed and momentum

parameters of the back propagation algorithm so that the ANN adapts quickly to changes

in the utilisation patterns.

Training the ANN and the HTMs happens online from the stream of VM measure-

ments in parallel with the running application. Simultaneously, we also maintain a VM

capacity repository of the latest VM capacity measurements. When a new VM is needed

by the autoscaling component, we use this repository to infer the potential performance

capacity of all VM types. At that time the ANN is already trained adequately and given

the predicted performance capacities can be used to infer how many users each VM type

could serve simultaneously. Based on that we select the VM type, with minimal cost to

number of users ratio.
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5.4 Learning Application Behaviour

5.4.1 Resource Monitoring

To measure VM performance utilisation, we use the SAR, mpstat, vmstat, and netstat Linux

monitoring tools. We use the mpstat %idle metric to measure the percentage of time

during which the CPU was idle. The %steal metric describes the percentage of “stolen”

CPU cycles by a hypervisor (i.e. the proportion of time the CPU was not available to the

VM) and can be used to evaluate the actual VM CPU capacity. Similarly, SAR provides

the %util and %ifutil metrics as indicative of the disk’s and network card’s utilisations.

Measuring the RAM utilisation is more complex as (i) operating systems keep in

memory cached copies of recently accessed disk sectors in order to reduce disk access

and (ii) many middleware technologies do not release memory until garbage collection,

as discussed in Chapter 3. Hence, using the vmstat RAM utilisation metrics can be an

overestimation of the actual memory consumption. Thus, we use the “active memory” vm-

stat metric to measure memory consumption instead. It denotes the amount of recently

used memory, which is unlikely to be claimed for other purposes.

Lastly, we need to evaluate the number of concurrently served users in an AS VM.

This could be extracted from the AS middleware, but that would mean writing specific

code for each type of middleware. Moreover, some proprietary solutions may not expose

this information. Therefore, we use the number of distinct IP addresses with which the

server has an active TCP socket, which can be obtained through the netstat command.

Typically, the AS VM is dedicated to running the AS and does not have other outgoing

connections except for the connection to the persistence layer. Therefore, the number of

addresses with active TCP sockets is a good measure of the number of currently served

users.

5.4.2 Normalisation and Capacity Estimation

Before proceeding to train the machine learning approaches, we need to normalise the

measurements which have different “scales”, as the VMs have different RAM sizes and

CPUs with different frequencies. Moreover, the actual CPU capacities within a single VM
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vary over time as a result of the dynamic collocation of other VMs on the same host.

As a first step in normalising the CPU load, we need to evaluate the actual CPU

capacity available to each VM. This can be extracted from the /proc/cpuinfo Linux kernel

file. If the VM has n cores, /proc/cpuinfo will list meta information about the physical CPU

cores serving the VM including their frequencies f r1, ... f rn. The sum of these frequencies

is the maximal processing capacity the VM can get, provided the hypervisor does not

“steal” any processing time. Using the %steal mpstat parameter we can actually see what

percentage of CPU operations have been taken away by the hypervisor. Subtracting this

percentage from the sum of frequencies gives us the actual VM CPU capacity at the time

of measurement. To normalise we further divide by the maximal CPU core frequency

f rmax multiplied by the maximal number of cores nmax cores of all considered VMs in the

cloud provider. This is a measure of the maximal VM CPU capacity one can obtain from

the considered VM types. As clouds are made of commodity hardware, we will consider

f rmax = 3.5GHZ. This is formalised in Eq. 5.1.

cpuCapacityNorm =

(100−%steal)
n
∑

i=0
f ri

100 nmax cores f rmax
(5.1)

Having computed the VM CPU capacity, we store it into the VM capacity repository,

so we can use it later on to infer the capacities of future VMs. Each repository record has

the following fields:

• time — a time stamp of the capacity estimation;

• vm-type — an identifier of the VM type - e.g. “m1.small”;

• vm-id — a unique identifier of the VM instance - e.g. its IP or elastic DNS address;

• cpuCapacityNorm — the computed CPU capacity.

If we further subtract the %idle percentage from the capacity we will get the actual

CPU load given in Eq. 5.2.

cpuLoadNorm =

(100−%idle−%steal)
n
∑

i=0
f ri

100 nmax cores f rmax
(5.2)
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Normalising the RAM load and capacity is easier, as they do not fluctuate like the

CPU capacity. We divide the active memory by the maximal amount of memory RAMmax

in all considered virtual machine types in the cloud — see Eq. 5.3.

ramLoadNorm =
active memory

RAMmax
(5.3)

Whenever a new AS VM is needed, we have to estimate the CPU and RAM capacities

of all available VM types based on the capacity repository and their performance defini-

tions provided by the provider. The normalised RAM capacity of a VM type is straight-

forward to estimate as we just need to divide the capacity in the provider’s specification

by RAMmax. To estimate the CPU capacity of a VM type we use the mean of the last 10

entries’ capacities for this type in the capacity repository. If there are no entries for this VM

type in the repository (i.e. no VM of this type has been instantiated) we can heuristically

extrapolate the CPU capacity from the capacities of the other VM types. Typically, IaaS

providers specify an estimation of each VM type’s CPU capacity — e.g. Google Com-

pute Engine Units (GCEU) in Google Compute Engine or Elastic Compute Units (ECU)

in AWS. Hence, given an unknown VM type vmt we can extrapolate its normalised CPU

capacity as:

cpuCapacity(vmt) =
1
|V| ∑

vmti∈V

cpuCapacity(vmti)× cpuSpec(vmti)

cpuSpec(vmt)
(5.4)

where V is the set of VM types present in the capacity repository and whose CPU capac-

ity can be determined from previous measurements. cpuSpec(vmti) defines the cloud

provider’s estimation of a VM type’s capacity — e.g. number of GCEUs or ECUs.

5.4.3 Anomaly Detection Through HTM

The Hierarchical Temporal Memory (HTM) model is inspired by the structure and or-

ganisation of the neocortex. It has been developed and commercialised by the Grok com-

pany [83] (formerly Numenta [119]), following the concepts from Jeff Hawkins’ book “On

Intelligence” [87]. Hawkins builds upon the seminal work of Mountcastle [115] that the

neocortex is predominantly uniform in structure and function even in regions handling

different sensory inputs — e.g. visual, auditory, and touch. The HTM model tries to
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mimic this structure in a computational model. There are several differences compared

to the biological structure of the neocortex in order to be computationally viable as de-

scribed in the implementation white paper [86]. Grok’s implementation is available as an

open source project called NuPIC [119]. In this section, we provide only a brief overview

of HTM to introduce the reader to this concept. The interested reader is referred to the

official documentation [86].

HTMs consist of one or several stacked regions. During inference, input arrives into

the lowest region, whose output serves as input to the successive one and so forth until

the topmost region outputs the final result. The purpose of a region is to convert noisy

input sequences to more stable abstract representations. In this chapter, we use single-

region HTMs and we will focus on them in the rest of the section.
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A HTM region consists of columns of cells, which are most often arranged in a three

dimensional grid — see Figure 5.3. Each cell can be in one of three possible states: (i)

active form feed forward input, (ii) active from lateral input (i.e. predicted), or (iii) in-

active. Conceptually, active cells represent the state of the last input and predicted cells

represent the likely state after future inputs. A HTM region receives as input a number

of bits. Special encoders are used to convert input objects into bitwise representations, so

that objects which are “close” in the sense of the target domain have similar bit repre-

sentations. Upon receiving new binary input the HTM changes the states of the columns

based on several rules summarised below.

As a first step, the HTM has to decide which columns’ cells will be activated for a

given input — an algorithm known as Spatial Pooling. It nullifies most of the 1 bits, so that

only a small percentage (by default 2%) are active. Each column is connected with a fixed

sized (by default 50% of the input length) random subset of input bits called the potential

pool. Each column’s connection to an input bit has a ratio number in the range [0,1]

associated with it known as the permanence. HTM automatically adjusts the permanence

value of a connection after a new input record arrives, so that input positions whose value

have been 0 or 1 and are members of the potential pool of a selected column are decreased

or increased respectively. Connections with permanences above a predefined thresholds

are considered active. Given an input, for each column the HTM defines its overlap score

as the number of active bits with active connections. Having computed this for every

column, HTM selects a fixed sized (by default 2%) set of columns with the highest overlap

score, so that no two columns within a predefined radius are active.

As a second step, HTM decides which cells within these columns to activate. This is

called Temporal Pooling. Within each of the selected columns the HTM activates only the

cells which are in predicted state. If there are no cells in predicted state within a column,

then all of its cells are activated, which is also known as bursting.

Next, the HTM makes a prediction of what its future state will be — i.e. which cells

should be in predicted state. The main idea is that when a cell activates it establishes

connections to the cells which were previously active. Each such connection is assigned

a weight number. Over time, if the two nodes of a connection become active in sequence

again, this connection is strengthened, i.e. the weight is increased. Otherwise, the con-
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nection slowly decays, i.e. the weight is gradually decreased. Once a cell becomes active,

all non-active cells having connections to it with weights above a certain threshold are

assigned the predicted state. This is analogous to how synapses form and decay between

neurons’ dendrites in the neocortex in response to learning patterns.

The presence of predicted cell columns allows a HTM to predict what will be its likely

state in terms of active cells after the next input. Moreover, it also allows for the detection

of anomalies. For example, if just a few predicted states become active this is a sign

that the current input has not been expected. Thus, the anomaly score is defined as the

proportion of active spatial pooler columns that were incorrectly predicted and is in the

range [0, 1].

In our environment, every 5 seconds we feed each HTM with a time stamp, the num-

ber of users and the CPU and RAM utilisations of the respective VM. We use the standard

NuPIC scalar and date encoders to convert the input to binary input. As a result we get an

anomaly score denoting how expected the input is, in the light of the previously described

algorithms.

5.4.4 ANN Training

Figure 5.4 depicts the topology of the artificial neural network (ANN). It has one input

— the number of users. The hidden layer has 250 neurons with the sigmoid activation

function. The output layer has two output nodes with linear activation functions, which
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predict the normalised CPU and RAM utilisations within an AS VM.

Once a VM’s measurements are received and normalised and the anomaly score is com-

puted by the respective HTM region, the ANN can be trained. As discussed, we need to

filter out the VM measurements which are not representative of normal, contention free

application execution, in order to model the relationship between number of users and

resource utilisations. We filter all VM measurements in which the CPU, RAM, hard disk,

or network card utilisations are above a certain threshold (e.g. 70%). Similarly, we filter

measurements with negligible load — i.e. less than 25 users or less than 10% CPU util-

isation. We also ignore measurements from periods during which the number of users

has changed significantly — e.g. in the beginning of the period there were 100 users

and at the end there were 200. Such performance observations are not indicative of an

actual relationship between number of users and resource utilisations. Thus, we ignore

measurements for which the number of users is less than 50% or more than 150% of the

average of the previous 3 measured numbers of users from the same VM.

Since we are training the ANN with streaming data, we need to make sure it is not

overfitted to the latest training samples. For example, if we have constant workload for

a few hours we will be receiving very similar training samples in the ANN during this

period. Hence, the ANN can become overfitted for such samples and lose its fitness for

the previous ones. To avoid this problem, we filter out measurements/training samples,

which are already well predicted. More specifically, if a VM measurement is already

predicted with a root mean square error (RMSE) less than 0.01 it is filtered out and the ANN

is not trained with it. We call this value rmsepre because it is obtained for each training

sample before the ANN is trained with it. It is computed as per Eq. 5.5, where outputi

and expectedi are the values of the output neurons and the expected values respectively.

rmsepre =
√

∑(outputi − expectedi)2 (5.5)

With each measurement, which is not filtered out, we perform one or several itera-

tions/epochs of the back-propagation algorithm with the number of users as input and

the normalised CPU and RAM utilisations as expected output. The back-propagation al-

gorithm has two important parameters — the learning rate and the momentum. In essence,

the learning rate is a ratio number in the interval (0, 1) which defines the amount of weight
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update in the direction of the gradient descent for each training sample [114]. For each

weight update, the momentum term defines what proportion of the previous weight up-

date should be added to it. It is also a ratio number in the interval (0, 1). Using a mo-

mentum the neural network becomes more resilient to oscillations in the training data by

“damping” the optimisation procedure [114].

For our training environment, we need a low learning rate and a high momentum, as

there are many oscillations in the incoming VM measurements. We select the learning rate

to be lr = 0.001 and the momentum m = 0.9. We call these values the ideal parameters, as

these are the values we would like to use once the ANN is close to convergence. However,

the low learning rate and high momentum result in slow convergence in the initial stages,

meaning that the ANN may not be well trained before it is used. Furthermore, if the

workload pattern changes, the ANN may need a large number of training samples and

thus time until it is tuned appropriately. Hence, the actual learning rate and momentum

must be defined dynamically.

One approach to resolve this is to start with a high learning rate and low momentum

and then respectively decrease/increase them to the desired values [114,167]. This allows

the back-propagation algorithm to converge more rapidly during the initial steps of the

training. We define these parameters in the initial stages using the asymptotic properties

of the sigmoid function, given in Eq. 5.6.

s(x) =
1

1− e−x (5.6)

As we need to start with a high learning rate and then decrease it gradually to lr, we

could define the learning rate lrk for the k-th training sample as s(−k). However, the

sigmoid function decreases too steeply for negative integer parameters and as a result

the learning rate is higher than lr for just a few training samples. To solve this, we use

the square root of k instead and thus our first approximation of the learning rate is:

lr(1)k = max(lr, s(−
√

k)) (5.7)

As a result lr(1)k gradually decreases as more training samples arrive. Figure 5.5 de-

picts how it changes over time.
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We also need to ensure that it increases in case unusual training data signalling a

workload change arrives and thus we need to elaborate lr(1)k . For this we keep a record of

the last 10 samples’ anomaly scores and errors (i.e. rmsepre). The higher the latest anomaly

scores, the more “unexpected” the samples are and therefore the learning rate must be

increased. Similarly, the higher the sample’s rmsepre compared to the previous errors, the

less fit for it the ANN is and thus the learning rate must be increased as well. Thus, our

second elaborated approximation of the learning rate is:

lr(2)k = lr(1)k max(1,
rmsepre

k
rmse

)
9

∏
i=0

2s(ank−i) (5.8)

where ank and rmsepre
k are the anomaly score and the error of the k-th sample and rmse is

the average error of the last 10 samples. Note that we use the sigmoid function for the

anomaly scores to diminish the effect of low values.

In some cases the learning rate can become too big in the initial training iterations,

which will in fact hamper the convergence. To overcome this problem, for each sample

k we run a training iteration with lr(2)k , compute its RMSE rmsepost
k and then revert the

results of this iteration. By comparing rmsepre
k and rmsepost

k we can see if training with

this lr(2)k will contribute to the convergence [167]. If not, we use the ideal parameter lr

instead. Thus we finally define the learning rate parameter lrk in Eq. 5.9:

lrk =

{
lr(2)k if rmsepre

k > rmsepost
k

lr otherwise
(5.9)

Similarly, we have to gradually increase the momentum as we decrease the learning rate

until the ideal momentum is reached. If a workload change is present we need to decrease

the momentum in order to increase the learning speed. Hence, we can just use the ratio of

the ideal learning rate lr to the current one as shown in Eq. 5.10.

mk = min(m,
lr

lr(2)k

) (5.10)

Figure 5.5 depicts how the learning rate and momentum change during the initial train-

ing stages, given there are no anomalies, accuracy losses and ∀k : rmsepre
k > rmsepost

k —

i.e. when ∀k : lr(1)k = lr(2)k = lrk. Figure 5.7 shows the actual lrk given realistic workload.
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Figure 5.5: The lr(1)k approximation of the learning rate and the respective momentum
during the initial ANN training stages.

Furthermore, to speed up convergence it is beneficial to run multiple epochs (i.e. re-

peated training iterations) with the first incoming samples and with samples taken after

a workload change. The ideal learning rate lr and its approximation lr(2)k already embody

this information and we could simply use their ratio. However, lr(2)k
lr can easily exceed 300

given lr = 0.001, resulting in over-training with particular samples. Hence, we take the

logarithm of it as in Eq. 5.11:

ek =

⌊
1 + ln(

lr(2)k
lr

)

⌋
(5.11)

5.5 Virtual Machine Type Selection

When a new VM has to be provisioned the ANN should be already trained so that we

can estimate the relationship between number of users and CPU and RAM requirements.

The procedure is formalised in Algorithm 6. We loop over all VM types VT (line 3) and

for each one we estimate its normalised CPU and RAM capacity based on the capacity

repository as explained earlier (lines 5-6). The VM cost per time unit (e.g. hour in AWS or

minute in Google Compute Engine) is obtained from the provider’s specification (line 7).

Next, we approximate the number of users that a VM of this type is expected to be

able to serve (lines 10-18). We iteratively increase n by ∆ starting from minU, which is the

minimal number of users we have encountered while training the neural network. We

use the procedure predict (defined separately in Algorithm 7) to estimate the normalised
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ALGORITHM 6: Dynamic VM Type Selection (DVTS).
input : VT, ann, ∆, minU, maxU

1 bestVmt←− null;
2 bestCost←− 0;

3 for vmt ∈ VT ; // Inspect all VM types
4 do
5 cpuCapacity←− vmt’s norm. CPU capacity ;
6 ramCapacity←− vmt’s norm. RAM capacity;
7 vmtCost←− vmt’s cost per time unit;

8 userCapacity←− 0;
9 n←− minU;

10 while True ; // Find how many users it can take
11 do
12 cpu, ram←− predict(ann, n, minU, maxU);
13 if cpu < cpuCapacity and ram < ramCapacity then
14 userCapacity←− n;
15 else
16 break;
17 end
18 n←− n + ∆;
19 end

// Approximate the cost for a user per time unit
20 userCost←− vmtCost

userCapacity ;

// Find the cheapest VM type
21 if userCost < bestCost then
22 bestCost←− userCost;
23 bestVmt←− vmt;
24 end
25 end
26 return bestVmt;

CPU and RAM demands that each of these values of n would cause. We do so until the

CPU or RAM demands exceed the capacity of the inspected VM type. Hence, we use

the previous value of n as an estimation of the number of users a VM of that type can

accommodate. Finally, we select the VM type with the lowest cost to number of users

ratio (lines 20-23).

Algorithm 7 describes how to predict the normalised utilisations caused by n concur-

rent users. If n is less than the maximum number of users maxU we trained the ANN

with, then we can just use the ANN’s prediction (line 5). However, if n is greater than

maxU the ANN may not predict accurately. For example, if we have used a single small

VM to train the ANN, and then we try to predict the capacity of a large VM, n can become

much larger than the entries of the training data and the regression model may be inac-
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ALGORITHM 7: Resource Utilisation Estimation.
input : ann, n, minU, maxU

1 cpu←− 0;
2 ram←− 0;

3 if n < maxUsers ; // If within range - use ANN
4 then
5 cpu, ram←− ann.run(n);
6 else

// If outside range - extrapolate

7 minRam, minCPU ←− ann.run(minU);
8 maxRam, maxCPU ←− ann.run(maxU);

9 cpuPerUser ←− (maxCPU−minCPU)
(maxU−minU)

;

10 ramPerUser ←− (maxRam−minRam)
(maxU−minU)

;

11 cpu←− maxCPU + cpuPerUser(n−maxU);
12 ram←− maxCPU + ramPerUser(n−maxU);
13 end
14 return cpu, ram;

curate. Thus, we extrapolate the CPU and RAM requirements (lines 7-11) based on the

range of values we trained the ANN with and the performance model we have proposed

in Chapter 3.

5.6 Benchmark and Prototype

There are two main approaches for experimental validation of a distributed system’s

performance — through a simulation or a prototype. Discrete event simulators like

CloudSim [46] have been used throughout industry and academia to quickly evaluate

scheduling and provisioning approaches for large scale cloud infrastructure without hav-

ing to pay for expensive test beds. Unfortunately, such simulators work on a simpli-

fied cloud performance model and do not represent realistic VM performance variability,

which is essential for testing our system. Moreover, simulations can be quite inaccu-

rate when the simulated system serves resource demanding workloads, as they do not

consider aspects like CPU caching, disk data caching in RAM and garbage collection, as

we discussed in Chapter 3. Therefore, we test our method through a prototype and a

standard benchmark deployed in a public cloud environment.

We validate our approach with the CloudStone [59, 155] web benchmark deployed

in Amazon AWS. It follows the standard 3-Tier architecture. By default, CloudStone



134 Dynamic Selection of Virtual Machines for Application Servers

Client VM

App. Server VM
DB Server VM

         Faban 
         Driver

        Nginx Server    MySql: Olio 
   Database

     Tomcat: 
     GeoCoder

        NFS Storage: 
     media files

NFS Server VM

      Disk Storage:
    media files

Load Balancer VM

   HAProxy

    Faban 
    Agent

HTTP

SQL

N
FS

SSH, Java RMI

SSH, Java RMI

SSH, Java RMI

HTT
P

App. Server VM

       Nginx Server 

        NFS Storage: 
     media files

...

NFS

HTTP

SQL

    Faban 
    Agent

    Faban 
    Agent

Figure 5.6: CloudStone benchmark’s extended topology.

is not scalable, meaning that it can only use a single AS. Thus, we had to extend it to

accommodate multiple servers. Our installation scripts and configurations are available

as open source code. The interested readers can refer to our online documentation and

installation instructions.1

The benchmark deployment topology is depicted in Figure 5.6. CloudStone uses the

Faban harness to manage the runs and to emulate users. The faban driver, which is de-

ployed in the client VM communicates with the faban agents deployed in other VMs to

start or stop tests. It also emulates the incoming user requests to the application. These

requests arrive at a HAProxy load balancer which distributes them across one or many ap-

plication servers (AS). CloudStone is based on the Olio application, which is a PHP social

network website deployed in a Nginx server. In the beginning we start with a single AS

“behind” the load balancer. When a new AS VM is provisioned we associate it with the

load balancer. We update its weighted round robin policy, so that incoming request are

distributed among the AS VMs proportionally to their declared CPU capacity (i.e. ECU).

The persistent layer is hosted in a MySql server deployed within a separate DB VM.

CloudStone has two additional components — (i) a geocoding service called GeoCoder,

hosted in an Apache Tomcat server, and (ii) a shared file storage hosting media files. They

are both required by all application servers. We have deployed the geocoding service

in the DB VM. The file storage is deployed in a Network File System (NFS) server on a

1http://nikolaygrozev.wordpress.com/2014/06/02/advanced-automated-cloudstone-setup-in-ubuntu-
vms-part-2/
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separate VM with 1TB EBS storage, which is mounted from each AS VM.

We use “m3.medium” VMs for the client, load balancer and DB server and “m1.small”

for the NFS server. The types of the AS VMs are defined differently for each experiment.

All VMs run 64bit Ubuntu Linux 14.04.

Our prototype of an autoscaling component is hosted on an on-premises physical ma-

chine and implements the previously discussed algorithms and approaches. It uses the

JClouds [21] multi-cloud library to provision resources, and thus can be used in other

clouds as well. We use the NuPIC [120] and FANN [71] libraries to implement HTM and

ANN respectively. We ignore the first 110 anomaly scores reported from the HTM, as we

observed that these results are inaccurate (i.e. always 1 or 0) until it receives initial train-

ing. Whenever a new AS VM is provisioned we initialise it with a deep copy of the HTM

of the first AS VM, which is the most trained one. The monitoring programs deployed

within each VM are implemented as bash scripts, and are accessed by the autoscaling

component through SSH. Our implementation of Algorithm 7 uses ∆ = 5.

Previously we discussed that the number of current users could be approximated by

counting the distinct IP addresses to which there is an active TCP session. However,

in CloudStone all users are emulated from the same client VM and thus have the same

source IP address. Thus, we use the number of recently modified web server session files

instead.

Our autoscaling component implementation follows the Amazon Auto Scaling [5]

approach and provisions a new AS VM once the average CPU or RAM utilisations of

the server farm reaches 70% for more than 10 seconds. Hence, we ensure that in all

experiments the AS VMs are not overloaded. Thus, even if there are SLA violations, they

are caused either by the network or the DB layer, and the AS layer does not contribute to

them. We also implement a cool down period of 10 minutes.

5.7 Validation

In our experiments, we consider three VM types: m1.small, m1.medium, and m3.medium.

Table 5.1 summarises their cost and declared capacities in the Sydney AWS region which

we use.



136 Dynamic Selection of Virtual Machines for Application Servers

Table 5.1: AWS VM type definitions.

VM type ECU RAM Cost per hour

m1.small 1 1.7GB $0.058

m1.medium 2 3.75GB $0.117

m3.medium 3 3.75GB $0.098

In all experiments, we use the same workload. We start by emulating 30 users and

each 6 minutes we increase the total number of users with 10 until 400 users are reached.

To achieve this we run a sequence of CloudStone benchmarks, each having 1 minute

ramp-up and 5 minutes steady state execution time. Given CloudStone’s start-up and

shut-down times, this amounts to more than 5 hours per experiment. The goal is to

gradually increase the number of users, thus causing the system to scale up multiple

times.

To test our approach when a workload characteristic changes, we “inject” a change

3.5 hours after each experiment’s start. To do so, we manipulate the utilisation monitors to

report higher values. More specifically they increase the reported CPU utilisations with

10% and the reported RAM utilisation with 1GB plus 2MB for every currently served

user.

We implement one experiment, which is initialised with a m1.small AS VM and each

new VM’s type is chosen based on our method (DVTS). We also execute 3 baseline exper-

iments, each of which statically selects the same VM type whenever a new VM is needed,

analogously to the standard AWS Auto Scaling rules.

First, we investigate the behaviour of DVTS before the workload change. It contin-

uously trains one HTM for the first AS VM and the ANN. In the initial stages the ANN

learning rate and momentum decrease and increase respectively to facilitate faster training.

For example, the learning rate lrk (defined in Eq. 5.9) during the initial stages is depicted in

Fig 5.7. It shows how lrk drastically reduces as the ANN improves its accuracy after only

a few tens of training samples. Once the AS VM gets overloaded we select a new VM

type. At this point we only have information about m1.small in the capacity repository and

therefore we infer the other CPU capacities based on Eq. 5.4. Finally, using Algorithm 6

we select m3.medium as the type for the second VM.

After the new VM is instantiated, the autoscaling component starts its monitoring.
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Figure 5.7: Learning rate lrk during initial stages of training the ANN.

It trains the ANN and a new dedicated HTM with its measurements. It also updates

the capacity repository with the CPU capacity of the new VM. Surprisingly, we observe

that on average its CPU capacity is about 35% better than the one of the m1.small VM,

even though according to the specification m3.medium has 3 ECUs and m1.small has 1.

Therefore, the previous extrapolation of m3.medium’s capacity has been an overestima-

tion. Hence, when a new VM is needed again, the algorithm selects m1.small again.

3.5 hours after the start of the experiment the workload change is injected. This is

reflected in the HTMs’ anomaly scores ank and the ANN’s errors. Consequently, the

learning rate lrk, the momentum mk and the epochs ek also change to speed up the learning

process as per equations 5.9, 5.10, and 5.11 and as a result the ANN adapts quickly to

the workload change. As discussed, for each sample we compute its error (RMSE-pre)

before updating the ANN. Figure 5.8 depicts how these errors increase when the change

is injected and decrease afterwards as the ANN adapts timely.

Eventually the load increases enough so the system needs to scale up again. Due to

the injected change, the workload has become much more memory intensive, which is

reflected in the ANN’s prediction. Hence, m1.small can serve just a few users, given it

has only 1.7GB RAM. At that point the CPU capacity of m1.medium is inferred from the

capacities of m1.small and m3.medium as per Eq. 5.4, since it has not been used before.

Consequently, Algorithm 6 selects m1.medium for the 4th VM just before the experiment
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Figure 5.8: RMSE-pre in the presence of a workload change. The 0 index corresponds to
the first sample after the workload change.

completes.

For each experiment, Figure 5.9 depicts the timelines of the allocated VMs and the

total experiment costs. For each VM the type and cost are specified to the right. Our

selection policy is listed as DVTS. The baseline policy which statically selects m1.small

allocates 8 new VMs after the workload change as m1.small can serve just a few users

under the new workload. In fact, if there was no cool down period in the autoscaling,

this baseline would have exceeded the AWS limit of allowed number of VM instances

before the end of the experiment. The baselines which select m1.medium and m3.medium

fail to make use of m1.small instances before the change injection, which offers better

performance for money.

Admittedly, in the beginning DVTS did a misstep with the selection of m3.medium,

because it started with an empty capacity repository and had to populate it and infer CPU

capacities “on the go”. This could have been avoided by prepopulating the capacity repos-

itory with test or historical data. We could expect that such inaccuracies are avoided at

later stages, once more capacity and training data is present. Still, our approach out-

performed all baselines in terms of incurred costs with more than 20% even though its

effectiveness was hampered by the lack of contextual data in the initial stages.

Our experiments tested DVTS and the baselines with a workload, which is lower than

what is observed in some applications. While our tests did not allocate more than 12 VMs
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Figure 5.9: Timelines and costs of all VMs grouped by experiments. DVTS is our ap-
proach. The AWS-style policies are the baselines, which statically select a predefined VM
type.

(in the baseline experiment, which statically allocates m1.small) many real world systems

allocate hundreds or even thousands of servers. We argue that in such cases, DVTS will

perform better than demonstrated, as there will be much more training data and thus

the VM types’ capacity estimations will be determined more accurately and the machine

learning approaches will converge faster. As discussed, this would allow some initial

missteps of DVTS to be avoided. Moreover, as the number of AS VMs grows, so does the

cost inefficiency caused by the wastage of allocated resources, which can be reduced by

DVTS.

Finally, the response times in the DVTS experiment and all baseline experiments were

equivalent. All experiments scale up once the AS VMs’ utilisations exceed the prede-

fined thresholds, and thus never become overloaded enough to cause response delays.

The load balancer is equally utilised in all experiments, as it serves the same number of
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users, although it redirects them differently among the AS VMs. Similarly, the DB layer

is equally utilised, as it always serves all users from all AS VMs.

5.8 Summary

In this chapter, we have introduced an approach for VM type selection when autoscal-

ing application servers. It uses a combination of heuristics and machine learning ap-

proaches to “learn” the application’s performance characteristics and to adapt to work-

load changes in real time. To validate our work, we have developed a prototype, ex-

tended the CloudStone benchmark, and executed experiments in AWS EC2. We have

made improvements to ensure our machine learning techniques train quickly and are

usable in real time. Also, we have introduced heuristics to approximate VM resource

capacities and workload resource requirements even if there is no readily usable data,

thus making our approach useful given only partial knowledge. Results show that our

approach can adapt timely to workload changes and can decrease the cost compared to

typical static selection policies.

In the next chapter, we consider the problem of workload redirection across clouds

in more details. We introduce a framework that redirects incoming users to cloud sites

considering the potential network latencies and the stated regulatory constraints.



Chapter 6

Regulations and Latency Aware Load
Distribution

In this chapter, we introduce a flexible framework that allows interactive web applications to utilise

a Multi-Cloud environment. It redirects users to suitable cloud sites considering jurisdictional and

latency constraints. Regulatory requirements are specified via a flexible and simple domain specific

model, which is then interpreted by a rule inference engine. We conducted an experimental evaluation

of the proposed system using services of 10 cloud sites/data centres located in 5 continents and offered

by two cloud providers, namely Amazon and NeCTAR. The results show that our approach min-

imises network latency, is fault tolerant, and meets all stated regulatory requirements with negligible

performance overhead.

6.1 Introduction

ENTERPRISES that operate across national borders have to consider a plethora of

legislative and regulatory constraints with respect to privacy, data access control,

security, etc. Government and academic reports have outlined the complexities of build-

ing regulatory compliant cloud services and emphasised the need for engineering ap-

proaches enabling such compliance [27, 39, 132, 133]. As an example, the Data Protec-

tion Directive of the European Union (EU) forbids the transfer of personal data to non-

member countries, unless an adequate level of protection is ensured [70]. Similar laws

exist in many other jurisdictions as well [39]. Other legislations, like the Regulation of In-

vestigatory Powers Act (RIPA) [128] in the UK, allow governments to access or monitor

cloud clients data and operations thus raising privacy concerns for some cloud services.

This chapter is based on the following publication: Nikolay Grozev and Rajkumar Buyya, “Regulations and
Latency Aware Load Distribution of Web Applications in Multi-Clouds”, The Journal of Supercomputing, Springer
(Under Review), 2015.

141
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Businesses operating in multiple legislative domains have to consider many and often

conflicting regulatory requirements and thus no single cloud site will suffice.

To address these problems, the usage of multiple cloud sites (i.e. a Multi-Cloud) has

gained significant interest. If an application has specific requirements as to where (e.g.

in which jurisdiction) a user is served, this user can be redirected accordingly to one of

the employed sites. As discussed previously, Multi-Clouds facilitate the development of

more responsive web based interactive applications. Multiple geographically distributed

cloud sites can serve users worldwide with low network latency and thus provide ade-

quate QoE. Naturally, this raises the question of how these two objectives can be achieved

in conjunction, without adding significant overhead to the system.

Chapter 4 already proposed mechanisms for efficient 3-Tier application brokering in

multiple clouds, which consider these aspects among others. However, the discussion of

these characteristics was mostly conceptual and we evaluated the system performance

through discrete event simulations. This chapter is much more technical in nature and

demonstrates how these ideas can be implemented with modern distributed comput-

ing and rule inference technologies. We develop a prototype, which we use for evalua-

tion and detail the technical aspects of our implementation and optimisation techniques,

which allow our approach to scale adequately under heavy load. Also, we explore in

details how regulatory requirements can be flexibly specified with minimal efforts in a

domain specific model and efficiently interpreted at runtime. Finally, we have extended

our network latency estimation approach to achieve better accuracy and scalability.

In this chapter, we propose a system for load distribution of web facing interactive

cloud applications. We detail its underlying design and algorithms, describe the tech-

nical aspects of our prototype, and experiment with it in real life cloud environments.

More specifically, our key contributions are: (i) design and implementation of architec-

tural components for regulations and latency aware user redirection in a Multi-Cloud

environment and (ii) a domain specific approach for defining regulatory constrains.

The rest of the chapter is organised as follows: In Section 6.2 we provide an overview

of the related works and compare them to ours. In Section 6.3 we outline the architec-

tural components and their interaction model. Section 6.4 presents a detailed description

of all system components’ implementation in terms of used technologies, algorithms, and
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configurations. It also proposes a domain specific approach for defining regulatory con-

strains. Our experimental settings and results are discussed in Section 6.5. In the final

Section 6.6, we summarise our findings.

6.2 Related Work

Our approach encompasses load distribution and resource selection in a Mult-Cloud and

considers the regulatory requirements. We have already reviewed the related works in

these areas in Chapters 2 and 4. In essence, while Multi-Cloud projects like OPTIMIS [73],

Contrail [49], mOSAIC [137], and MODAClouds [22] can dynamically select and provi-

sion resources in multiple clouds, we also address the problem of workload redirection.

Furthermore, they do not consider the geographical locations of the cloud sites they se-

lect from, while we do in order to implement regulations aware load distribution. At

present, load distribution technologies like AWS Route 53 [8] and AWS Elastic Load Bal-

ancer (ELB) [11] only consider the network latency or the utilisation of the underlying

infrastructure. We also consider the regulatory requirements and the end user’s identity.

Content Delivery Networks (CDN) have some resemblance with Route 53 and our

approach because they efficiently deliver web content hosted in multiple data centres to

users distributed worldwide. However, a CDN only delivers static web content, while we

direct users to cloud sites where they are interactively served with dynamic web content.

Mont et al. proposed an approach allowing end users to specify their own data protec-

tion rules [113]. They also introduced a method for service providers to enforce such rules

by using sticky policies. Their work was later prototyped by Mowbray et al. [116]. This

model is not applicable when a cloud provider does not collaborate to enforce the stated

requirements, while our approach is cloud agnostic. Furthermore, our method works in

a Multi-Cloud environment, while theirs is applicable only within a single cloud site.

Several formalisms for specifying access policies have been proposed. Two notable

examples are OASIS XACML [122] and EPAL [1]. Our approach uses a rule based in-

ference engine to infer the suitability of a cloud site for a user. Therefore, we found it

convenient to express the access policies directly in the declarative language of the rule

engine. As a future work we are planning to investigate how XACML and EPAL specifi-
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cations can be transformed to such engine rules.

To dispatch a user to an appropriate cloud site, we first need to authenticate him/her,

which can be done in several ways. The OpenID protocol [125] allows a service provider

to authenticate an end user through an external service. The OAuth [123] protocol allows

a service provider to gain authorised access to protected user resources hosted on an-

other service without explicitly providing credentials (e.g. user name/password). Alike

OpenID, OAuth can be used for authentication as well, if the accessed resources are only

user metadata (e.g. user name). More and more web services are adopting OpenID and

OAuth. However, many others still rely on custom authentication (e.g. user name/pass-

word). Since we aim for generality, we decided not to couple our approach with any of

these specifications. Instead, our approach works with user tokens, which are unique ids

and can be extracted from OpenID, OAuth or via custom authentication.

6.3 System Architecture

Our approach to cloud site selection (depicted on Figure 6.1) extends the aforementioned

industry standard approach by replacing the DNS service with an Entry Point component.

Similarly, it redirects users among a set of cloud locations. Furthermore, within each

target cloud site we deploy an additional Admission Controller component. Entry Points

communicate with the Admission Controllers to determine the suitability of the respective

cloud sites and then redirect the user accordingly. Apart from these two new components,

there are no other changes to the industry standard approach. Therefore, in each cloud

the system can be implemented in accordance with the reference 3-Tier approach. In

other words, what we propose is a layer “on top” of the standard 3-Tier architecture,

which performs the user redirection to the individual cloud sites.

An end user arrives at an Entry Point. There may be one or more Entry Points whose

purpose is to redirect each user to an appropriate cloud site. Before doing so, the user

must authenticate so the regulatory requirements can be considered. Authentication is

application specific and is provided by the application developers. It could be OAuth or

OpenID authentication with an external service, or a custom username/password imple-

mentation. Once the authentication is complete, the Authentication Server passes a unique
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Figure 6.1: Overall Architecture: Entry Point and Admission Controller components replace
the DNS based cloud site selection.

user identifier (e.g. retrieved from an OAuth server or just a user name) to the Entry

Point.

The Entry Point can be called in two ways. Since it is developed in Java, it can be put

on the java classpath of the Authentication Server. It can also be accessed as a RESTful

web service in case the Authentication Server is not developed in Java. An Entry Point is

deployed in a separate VM. Depending on its implementation, the authentication service

could be deployed within the same VM or separately.

In each target cloud site there is an Admission Controller which exposes a RESTful web

service API and is deployed in a standalone web server. The Entry Point sends a request

to each cloud site’s Admission Controller to determine which sites are eligible in terms

of regulations to serve the incoming users. We have developed a domain specific rule

based model (detailed in Section 6.4.2) allowing for succinct regulations requirements

specification. Based on this information and estimations of the network latency between

the end user and each cloud site, the Entry Point decides where to redirect the user to.
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Figure 6.2 depicts this flow.

Once the user is redirected to a cloud site, he/she is served there and has no further

interaction with the Entry Points and the Admission Controllers. In other words, the delay

resulting from the interactions between the Entry Point and the Admission Controller is

tangible to the user only during the initial redirection process and does not impede the

overall QoE. We argue that existing web-facing systems, which use OAuth 2.0 authen-

tication with external services (e.g. Google, Facebook or LinkedIn) already serve users

with one-off initial delays, and thus this is acceptable.

Although placing the Admission Controllers in all cloud sites contributes to the one-off

delay, it allows them to closely monitor the resource performance and utilisation within

each cloud site. This information can be fed back to the Entry Points to implement sophis-

ticated redirection policies. We are planning to investigate this in our future work and

thus we aim for a flexible architecture.

6.4 Design and Implementation

6.4.1 Entry Points

The function of each Entry Point is to redirect each incoming user to an appropriate cloud

site. After a user is redirected, he/she has no further interaction with the Entry Point.

Thus, it introduces a one-off delay upon user arrival and does not affect the subsequent

user interactions.

Each Entry Point is developed in Java and is deployed into a single Java archive (i.e.

jar) file. It can be used from another Java application by adding the jar file to its classpath.

To simplify the integration with the Authentication Service, the jar exposes a singleton

façade class called EntryPoint, which for a given user determines the serving cloud site.

The Entry Point can be executed separately as a standalone application as well. In

this case, an embedded jetty web server is started, which uses the Jersey RESTful Web

Services framework to expose a REST web service. This is useful when the client code is

not easily integrated with Java. Details on how this is achieved can be found in our online
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documentation 1. Client code can call this service by providing the user identification

token and IP address and receive as a result the address of the Load Balancer in the selected

cloud site. Behind the scenes, the RESTful web service simply calls the aforementioned

Entry Point façade.

Figure 6.2 illustrates the interactions between the Entry Point, the users, and the Ad-

mission Controllers which is discussed hereafter. For brevity it omits the user authentica-

tion.

To avoid excessive network communication, the Entry Point sends the incoming user

requests to the Admission Controllers in batch rather than one by one. The Entry Point

aggregates the user requests over a time period (typically a few seconds) and sends them

to the Admission Controllers at once. This is transparent from the caller’s perspective, as

the procedure call is blocked until the result for the respective user request is complete.

Furthermore, requests are broadcasted to the Admission Controllers asynchronously. A

separate thread from a cached thread pool is used for each Admission Controller in order

1https://nikolaygrozev.wordpress.com/2014/10/16/rest-with-embedded-jetty-and-jersey-in-a-single-
jar-step-by-step/
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to reduce the overall response time.

We emphasise that the delays during the initial end user redirection are one-off. After

the user is redirected to a cloud site, they only communicate with its load balancer. There

are no additional delays in the user’s interaction with the application. Furthermore, in

Section 6.5 we demonstrate experimentally that these initial delays are negligible.

In the case of a cloud site failure, the respective Admission Controller will not respond

to the Entry Point requests. Hence, the Entry Points are preconfigured with deadlines and

if a cloud site does not respond within the deadline it is not considered. If however, this

Admission Controller “reappears” online — the Entry Point will start considering it again.

For this purpose, each Entry Point is configured with a time period parameter, so that it

can check if failed Admission Controllers have reappeared online. Once the responses from

the Admission Controllers have been received, the Entry Point selects the eligible cloud site,

which offers the lowest network latency.

We developed a utility which estimates the network latency between an end user and

a cloud site. Given two arbitrary IP address (e.g. of the user and the load balancer in a

cloud site) it estimates the expected network latency between them. We approach this

problem in two steps. Firstly, we use the MaxMind’s GeoLite [80] database to determine

the location (i.e. longitude and latitude) of each IP address. The latest GeoLite database is

freely available and can be downloaded in a proprietary format. MaxMind also provides

an open source Java library to read and query the proprietary database, which we use.

MaxMind’s GeoLite is updated once every few months and thus it may not resolve

some IP addresses’ respective locations correctly. This can often happen for IP addresses

of cloud VMs, as a cloud provider can dynamically reassign IPs from the same range to

machines in different data locations. Experimenting with GeoLite we found that while

end users’ IP addresses are mostly resolved accurately, the estimated location of AWS

EC2 VMs based on their public IP address can be very incorrect. For example, a VM in the

Tokyo AWS region can be resolved as located in the US. Fortunately, cloud providers like

Amazon AWS provide up to date information about their IP ranges and the respective

geographical locations [9]. In case an IP address falls within any of these ranges we can

use it to override the respective value of GeoLite.

Secondly, once the coordinates are established, we use PingER which is an Internet
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Performance Monitoring Service (IEPM) [138]. It records network characteristics (e.g.

round trip time) between hundreds of nodes distributed worldwide which periodically

ping each other. The reported performance metrics can be averaged per time interval

(e.g. year, month, day or hour) and can be downloaded in tab separated values (TSV) files

through a public web service. The coordinates (longitude and latitude) of each node are

provided as well. We use Vincenty’s formulae to compute the distance between any two

geospatial positions. To estimate the latency between two IP addresses, whose positions

have already been resolved, we use the network latencies between the 3 pairs of PingER

nodes that are geometrically closest to them.

More formally, for each pair of PingER nodes (ni1, ni2) we define its distance to the

locations of the target pair of IP addresses (t1, t2) as:

distance(ni1, ni2, t1, t2) = min{v(ni1, t1) + v(ni2, t2), v(ni1, t2) + v(ni2, t1)} (6.1)

where v is the well known Vincenty’s function for computing the distance between two

geographical locations specified by their coordinates. Then we choose the 3 pairs of nodes

(n11, n12), (n21, n22), (n31, n32), which minimise the distance function for the targeted t1

and t2. Hence, we can approximate the Internet latency between t1 and t2 as the following

weighted sum:

latency(t1, t2) = (∑
dmin.li

di
)/(∑

dmin

di
) (6.2)

where di is a shorthand for distance(ni1, ni2, t1, t2), dmin is the smallest distance among

d1, d2, d3 and li is the PingER latency between ni1 and ni2. Eq. 6.2 essentially defines

a weighted sum of the network latencies between the 3 geometrically closest pairs of

nodes. The weights are defined proportionally to each pair’s nodes combined distance

to the target locations.

To improve the performance of the network latency estimation we keep in-memory

least-recently-used (LRU) caches of (i) the mappings between IP addresses and coordinates,

(ii) the distances between geospatial locations, and (iii) the already resolved latencies. To

improve the cache-hit probability, we round all coordinates (latitude and latency) to 2

digits after the decimal sign when comparing with or inserting into the caches. This en-

sures the network latency estimation for users coming from the same region (e.g. the
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same city) will not be recomputed every time. We use the Google Guava [82] cache im-

plementation as it is thread safe, and limit all cache sizes to 10 000 entries.

Finally, in the previous discussion we mentioned several configuration parameters

used by the Entry Point. These are provided in two configuration files. The first one is

a coma separated values (CSV) file which lists all cloud sites and the addresses of their

Admission Controllers and Load Balancers, from which the load balancer chooses when a

user arrives. The second file is a property file, and provides (i) the time between the batch

requests to the Admission Controllers and (ii) the deadline length to wait for response from

the Admission Controllers. These files must be provided before the Entry Point Service is

used, but can also be updated and reloaded dynamically to change its behaviour — e.g.

to add a new cloud site.

6.4.2 Admission Controllers

Each Admission Controller is deployed in a single jar file and is executed within an em-

bedded jetty server hosting a RESTful web service. The service takes as input a list of

user identifiers, and returns the responses as a list of JSON formatted objects. The Entry

Points communicate with the Admission Controllers through this web service, even if they

are deployed in the same VM.

The Admission Controller must determine the eligibility of the cloud site for each of

the users. To achieve this, first we must resolve the user’s metadata — e.g. data about

their citizenships and privacy requirements. Obviously this resolution is application spe-

cific. For example, one application would use OAuth to retrieve such data, while another

would just execute a query within its database. Since we aim for generality, our Admission

Controller component provides a “hook” for resolving user metadata. We define a simple

interface called IUserResolver, which has a single method for resolving a user’s metadata.

Application developers should implement this interface and provide the name of their

class as an input parameter to the Admission controller.

We also define two simple classes representing a user and a cloud site. The User class

has just 3 fields: (i) user id, (ii) set of citizenships, and (iii) tags. The tags field can aggre-

gate miscellaneous additional meta-information for the user — e.g. if he/she is a gov-

ernment employee. Admission Controllers uses the previously discussed user resolver to
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CloudSite
locationCode : String
providerCode : String
tags : String [0..*] 

User
userId : String
citizenships : String [0..*] 
tags : String [0..*]

«Interface»
IUserResolver

resolve(userId: String): User

Figure 6.3: Domain model classes used for cloud site to user matching.

instantiate this class based on a user id. The CloudSite class represents meta-information

about the present cloud site. It has fields representing: (i) the geographical location (e.g.

country or state code) (ii) the cloud provider (e.g. AWS), and (iii) a set of tags. As before,

we use tags to represent miscellaneous additional information — e.g. if the cloud is certi-

fied to serve US government agencies. A JSON file containing the respective marshalled

CloudSite instance is given as a parameter to every Admission Controller.

The User, IUserResolver, and CloudSite types (depicted on Figure 6.3) define the simple

interface, which we expose to application programmers.

Given a user and a cloud site, the Admission Controller must infer if the user can be

served there. An example might help picture what the reasoning logic should be. Let us

consider an application which needs to ensure that EU citizens are served within the EU,

and that government officials must be served in specifically certified cloud sites. Given a

user id, we can resolve the user’s meta-information with the provided IUserResolver. Let

us assume this returns a user with French citizenship, who is also a government official

(denoted by a tag in the User instances). Let us also assume the corresponding cloud site

(represented with a CloudSite instance) is located in Germany and the provider is AWS.

We may also know that all AWS cloud sites comply with the government certification in

question. In this case we should be able to infer that the cloud site is eligible to serve the

client.

This type of automated reasoning based on predefined facts and rules is a hallmark

application of rule based engines and this is exactly how we approach this problem. In

our implementation of the Admission Controller we use the Drools rules management sys-
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Harbour signatories, etc.
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Application specific rules.

Figure 6.4: Layers of DRL rules. Each layer can use the rules from the underneath layers.

tem [143]. Drools uses the ReteOO algorithm, which implements well known perfor-

mance enhancements of the famous Rete algorithm. Drools uses a domain specific lan-

guage called Drools Rule Language (DRL) to define rules and facts. It integrates well

with existing Java code and facts in DRL are just Java objects. This allows the declarative

programming approach prescribed by DRL to also make use of the polymorphic features

of Java. For example, if a rule is activated for any fact of a specific Java type, it will also

be activated for any instance of its subtypes. We will make use of this feature to allow

more flexible specification of regulatory rules.

Specifying compliance rules in a declarative DRL form rather than procedurally is

beneficial in terms of maintainability and flexibility. However, this still needs to be done

on a per-application basis. Many applications would share common rules and facts —

e.g. about which countries participate in the U.S.-EU Safe Harbour agreement. It would

be beneficial if we specify such common rules so they can be reused by applications.

Hence, we divide the rules in 3 layers/modules depicted in Figure 6.4. The rules from

each layer can only use the ones from the layers below.

In Layer 1, we model the concepts of reflexive, symmetric, and transitive binary rela-

tions. We introduce 3 Java interfaces to represent these concepts. They all extend from a

common IRelation interface which has a left and a right hand side (lhs and rhs) objects —

see Figure 6.5. Layer 1 includes DRL rules, which produce new IRelation instances in the

Drools working memory based on the reflexive, symmetric and transitive algebraic rules.

For example, if we have an instance of ISymmetricRelation, whose lhs = a and rhs = b, the
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Figure 6.5: Interfaces for the relations from Layer 1 and the ContainsJurisdiction relation
from Layer 2.

respective rule in Layer 1 will be activated and will insert in working memory a relation

of the same type, whose lhs = b and rhs = a.

To illustrate how this is useful, let us consider how we can implement a relation of

jurisdictional containment. We can define a relation ContainsJurisdiction, which imple-

ments IReflexiveRelation and ITransitiveRelation. Then we can use it to specify the facts

that Germany is within the Eurozone, which in turn is in the EU. The rules in Layer 1

will automatically fire and populate the Drools working memory with the appropriate

ContainsJurisdiction instances denoting that Germany is in the EU and itself. This sim-

plifies significantly the development of rules using jurisdictions. Figure 6.5 depicts the

aforementioned interfaces and class.

Layer 2 specifies common facts and rules about the regulatory domain and cloud

providers. In fact, the aforementioned ContainsJurisdiction relation is defined and ex-

tensively used in Layer 2, to specify which countries are in the Eurozone, EU and The

European Economic Area (EEA), which countries have signed the US-EU Safe Harbour

agreement and so on. In essence, this layer contains the expert knowledge about the

regulatory domain in the form of DRL rules.

Finally, using the domain rules from Layer 2 we can implement the actual admission
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control policies in Layer 3, which are application specific. We define a class Admission-

Denied, which has a single property — the unique user id. When the Admission Controller

starts the DRL rules, it inserts into the working memory the meta-information of one or

more users and the cloud site as instances of the aforementioned types. Based on this,

the rules from Layer 3, should insert an AdmissionDenied instance in working memory for

every user who is not eligible for the specified cloud site.

1 r u l e ”US government o f f i c i a l s − in US only ”

2 when

3 User ( $id : userId , tags conta ins ”US−GOV”)

4 CloudSite ( $ l c : locationCode )

5 not ( C o n t a i n s J u r i s d i c t i o n ( l h s == ”USA” , rhs == $ l c ) )

6 then

7 i n s e r t (new AdmissionDenied ( $id ) ) ;

8 end

Listing 6.1: Sample Layer 3 admission control rule.

As an example, Listing 6.1 demonstrates how we can restrict the redirection of US

government officials to cloud sites outside of the US. Government officials are recognised

by a tag in the respective User instance.

In Drools, one can specify the salience of each rule. This is an integer used by the

Drools engine when deciding the order of rule execution. The rules in Layer 1 are given

highest salience (200) and the rules from Layer 2 are given lower salience (100). The rules

in Layer 3 get the lowest salience of 0. This causes the rules from the lower layers to

execute with higher priority (i.e. earlier if possible). Thus, when the higher layer rules

are run the underlying knowledge base is already populated.

The logical separation of rules into layers helps in the change management as well.

The base rules from Layer 1 should not change for any applications. Rules from Layer

2 should rarely change — for example, when a new country joins the EU, or when new

regulation is enforced. The rules from Layer 3 may change frequently and are application

specific. Drools allows developers to specify rules in separate files. We use this feature to

separate the layers in 3 different files. Application developers need to provide only the

file for Layer 3.
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6.5 Performance Evaluation

To evaluate our approach we perform two experiments in a heterogeneous Multi-Cloud

environment. We employ the following cloud sites:

• AWS Region in Oregon, US;

• AWS Region in Northern California, US;

• AWS Region in Northern Virginia, US;

• AWS Region in São Paulo, Brasil;

• AWS Region in Dublin, Ireland;

• AWS Region in Frankfurt, Germany;

• AWS Region in Tokyo, Japan;

• AWS Region in Singapore;

• NeCTAR data centre in Perth, Australia;

• NeCTAR data centre in Melbourne, Australia.

In both experiments we deploy Admission Controllers and Entry Points in multiple

cloud sites around the world. Then we use other geographically distributed cloud sites to

emulate incoming users. We record multiple performance characteristics to demonstrate

the viability of our approach under strenuous load.

6.5.1 Experiment 1 — Large Scale Deployment

The goal of our first experiment is to show that our workload distribution system (i) adds

negligible delay when users access the system, (ii) honours all regulatory requirements,

and (iii) can handle significant workloads without requiring a lot of resources.

In each of 4 different cloud sites we deploy an Entry Point and an Admission Controller

in a shared VM. We use m3.medium instances in the N. Virginia, Frankfurt, and Tokyo

AWS regions and a m2.medium instance in the Melbourne data centre of the NeCTAR

Research Cloud. To emulate users from across the globe we use m3.medium instances



156 Regulations and Latency Aware Load Distribution

NeCTAR Cloud,
Melbourne, AU

AWS Region,
Frankfurt, DE

AWS Region,
Tokyo, JP

AWS Region,
N. Virginia, US

Oregon, US

N. California, US

São Paulo, BR
Perth, AU

Singapore

Dublin, IE

Figure 6.6: Experiment 1 — 4 cloud sites host the Entry Points and Admission Controllers;
6 cloud sites are used to emulate incoming users.

provisioned in the Oregon, N. California, São Paulo, Dublin, and Singapore AWS regions

and a m2.medium instance in the Western Australian site of NeCTAR near Perth. Fig-

ure 6.6 depicts the locations we use for Experiment 1. All VMs run Ubuntu 14.04 and we

have increased their maximal open files and socket connection limits, so they can handle

more connections.

The first experiment has been conducted for the duration of 24 hours. We emulate 2

users per second from each of the 6 cloud sites we use to represent clients. This amounts

to more than 1 million emulated users during the experiment altogether. Each emulated

user connects randomly to one of the 4 Entry Points and provides a random user id. In the

Entry Points, we need to resolve this id to a User instance. We do so by implementing a

custom IUserResolver instance. Given a user id it creates a User instance by randomly as-

signing his/her citizenship to one of the following countries: Germany, USA, Australia,

and Canada. To every third user with US citizenship, we assign the tag “US-GOV” denot-

ing that they are government officials. To every second user we assign the “PCI-DSS” tag.

The Payment Card Industry Data Security Standard (PCI DSS) formalises procedures for

reducing credit card frauds [131]. Tagging users with “PCI-DSS” means they are allowed

to work with credit cards data within the system.

We configure each Admission Controller with the geographical location and the
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Figure 6.7: Dispatch times of users to their serving cloud sites, grouped by location of the
emulated users. Mean values are denoted with a rhombus.

provider name of the respective cloud site. All AWS cloud sites are marked with the

“PCI-DSS” tag, as AWS is PCI DSS compliant [10]. The NeCTAR cloud sites are not

tagged as “PCI-DSS”, as it is lacking official compliance.

We configure the Admission Controllers with the following regulatory requirements

expressed as Layer 3 DRL rules:

• Users having access to credit card data (i.e. tagged with “PCI-DSS”) should be

served in PCI DSS compliant cloud sites.

• EU citizens should be served within the EU.

• US government officials should be served within the US.

Figure 6.7 shows the distributions of dispatch times of the emulated end users

grouped by their location. By “dispatch time” we denote the time from the user emit-

ting a request to an Entry Point until he/she is redirected to an appropriate cloud site —

i.e. the duration of the procedure depicted in Figure 6.2. This delay is experienced just

once, before the user is redirected to the destination cloud site. Regardless of the user
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Figure 6.8: Number of users redirected to each cloud site grouped by location.

Table 6.1: Network latencies between clients and cloud sites in milliseconds.

N.Virginia Frankfurt Melbourne Tokyo
Perth 137.0 180.0 20.0 124.0
Singapore 121.0 131.0 69.0 44.0
São Paulo 61.0 106.0 224.0 140.0
Oregon 38.0 73.0 88.0 45.0
N.Cal. 41.0 84.0 84.0 52.0
Dublin 39.0 11.0 159.0 108.0

location the mean and median dispatch times are around 2 seconds and the majority of

values are less than 3 seconds. The mean and median for the users from São Paulo are

slightly higher (with approximately 0.18 seconds) because of the higher latencies to all

other cloud sites.

Table 6.1 lists the actual network latencies between the emulated clients and the cloud

sites. The best latencies are highlighted. These values are obtained by performing 50

measurements between each pair and then taking the median. Ideally, for a given user

our approach should prefer the cloud site with the lowest latency unless there are specific

regulatory requirements for him/her.

Figure 6.8 shows the proportion of clients from each location dispatched to the differ-

ent cloud sites. As per Table 6.1, the cloud site in North Virginia offers the best latency
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to the clients in São Paulo, Oregon and California, and thus 75% of the users from these

locations are redirected there. The other 25% are redirected to Frankfurt in accordance

with the regulatory requirements, as they are German citizens. Most users from Dublin

are redirected to the Frankfurt site, except for those (approx. 8.3%) who are tagged with

“US-GOV” and must be served in the US. Likewise, most users from Singapore were

redirected to Tokyo, except for EU citizens and US government officials.

Similarly, 25% of the users from Perth were directed to Frankfurt, and 8.3% to N.

Virginia in order to meet the aforementioned requirements. However, only half of the

rest were directed to the Melbourne site, although it offers the lowest latency. This is

because the NeCTAR cloud is not PCI DSS compliant and thus users working with credit

cards have to be served elsewhere. Such users are directed to the Tokyo AWS cloud site,

as it offers the lowest latency from all PCI DSS compliant sites.

6.5.2 Experiment 2 — Fault Tolerance

The goal of our second experiment is to show how the system behaves when a cloud site

fails. In this experiment we deploy a single Entry Point in a separate m3.medium VM in the

São Paulo AWS site. Also, we deploy two Admission Controllers in m3.medium instances

in the N. Virginia and Frankfurt sites. Alike the previous experiment we emulate users

from VMs in the Dublin and Oregon data centres. The frequencies with which users are

started is the same as in Experiment 1. However, in this experiment we do not configure

any regulatory rules — our goal is to test failure tolerance. The length of Experiment 2 is

3 hours.

To simulate failure, every 20 minutes we switch off one of the Admission Controllers

for 10 minutes, after which we start it again. We switch off the two Admission Controllers

in turns. Figure 6.9 shows the proportion of the overall clients directed to each cloud site

during the 10 minute periods. As per Table 6.1 the Frankfurt site offers better latency

for users in Dublin and the N.Virginia site for those in Oregon. Hence, during the 10

minute periods when both Admission Controllers were present, the two cloud sites receive

about equal number of users, as we emulate equal number of users from Oregon and

Dublin. During the periods when one of the Admission Controllers is not present, all users

are directed to the other one.



160 Regulations and Latency Aware Load Distribution

0
m

-1
0

m

1
0

m
-2

0
m

2
0

m
-3

0
m

3
0

m
-4

0
m

4
0

m
-5

0
m

5
0

m
-1

h

1
h
-1

h
:1

0
m

1
h
:1

0
m

-1
h
:2

0
m

1
h
:2

0
m

-1
h
:3

0
m

1
h
:3

0
m

-1
h
:4

0
m

1
h
:4

0
m

-1
h
:5

0
m

1
h
:5

0
m

-2
h

2
h
-2

h
:1

0
m

2
h
:1

0
m

-2
h
:2

0
m

2
h
:2

0
m

-2
h
:3

0
m

2
h
:3

0
m

-2
h
:4

0
m

2
h
:4

0
m

-2
h
:5

0
m

2
h
:5

0
m

-3
h

Time After Experiment 2 Start

0

500

1000

1500

2000

2500

3000

3500

N
u
m

b
e
r 

o
f 

u
se

rs
Frankfurt

N. Virginia

Figure 6.9: Experiment 2 — Number of users directed to each cloud site.

From Figure 6.9 we can see that during the 10 minute periods after an Admission Con-

troller is started again it can receive slightly less than the expected 50% of users. In our

experiments we have configured the Entry Points to check if disconnected Admission Con-

trollers have come back online every 1 minute — this is a configurable parameter. Hence,

the Entry Point can be oblivious that an Admission Controller is back online for up to 1

minute, causing all incoming users to be redirected to the alternative cloud site.

Figure 6.10 depicts the dispatch time during each 30 minutes of Experiment 2. It

shows that during the experiment the mean and median dispatch times remain below 3

seconds. We have configured the Entry Point to connect to the Admission Controllers with

a timeout of 10 seconds. This parameter is configurable as well. If the connection fails,

the respective cloud site is marked as failed and is not used again until it reappears back

online, as explained previously. Hence, users arriving at the Entry Point immediately

after an Admission Controller has been shut down can experience a dispatch delay of up

to 14 seconds, which is nearly 10 seconds more than the 3rd quartile. This is represented

by the outliers in Figure 6.10.
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Figure 6.10: Experiment 2 — Dispatch times over time.

6.6 Summary

In this chapter, we have introduced an approach for distributing end users of an inter-

active web application across multiple cloud sites. We described a rule based domain

specific model, which allows regulatory requirements to be specified with minimal ef-

forts. Our system ensures that these requirements are honoured. We provide extension

points or “hooks” that allow developers to use their custom authentication and user de-

tails resolution mechanisms. Furthermore, our approach estimates the potential network

latencies to each cloud sites and chooses accordingly. We deployed our prototype in mul-

tiple cloud sites worldwide and carried extensive experiments showing that indeed it is

fault tolerant, has negligible performance overhead, minimises latency, and meets the

stated regulatory requirements.





Chapter 7

Conclusions and Future Directions

This chapter summarises the research work on Multi-Cloud 3-Tier application brokering presented

in this thesis. It highlights the main contributions and outlines a number of promising avenues for

future work in the area.

7.1 Summary and Discussion

CLOUD computing is a disruptive model of renting and using IT resources on

demand. The advent of cloud services, which are widely accessible on demand

through the Internet, has brought us closer than ever to the long held dream of comput-

ing as a utility. Renting a dynamic pool of preconfigured IT resources as a service, instead

of maintaining dedicated in-house infrastructure, proves to be attractive for many organ-

isations. It allows them to focus on their core businesses and to respond to dynamic and

unpredictable workloads.

Using services hosted in a single cloud site poses several challenges like service un-

availability, regulatory compliance, network latency between end users and cloud sites,

and vendor lock-in, to name a few. These issues are of special importance for large scale

web-facing applications serving users worldwide. The 3-Tier architectural pattern is the

predominant design approach for building such applications. The use of a Multi-Cloud

is seen as a viable approach for resolving the aforementioned issues. This thesis aims to

fill the void in the related literature in this field by proposing and investigating novel re-

source provisioning and workload management techniques (a.k.a. brokering) for 3-Tier

applications in a Multi-Cloud. In particular, Chapter 1 described the thesis objectives

in more details and outlined how they are addressed in the individual chapters. It also

presented a synopsis of the research area, the thesis topic, and motivation.
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To position the thesis contributions with respect to the existing body of knowledge,

Chapter 2 surveyed the related work in the area of application brokering across clouds.

It reviewed, compared, and classified more than 20 academic and industry projects. We

identified that most projects do not allow location aware resource provisioning, and thus

can not guarantee that the application regulatory requirements will be met. While most

projects provide resource provisioning capabilities, none of them manages or balances

the incoming workload. The approaches proposed in this thesis encompassed both re-

source provisioning and workload distribution in conjunction.

Chapter 2 also dealt with the terminological ambiguity in the area, as some terms in

this emerging research field are used interchangeably in parts of the literature. In this

chapter, we clearly defined and delineated these terms to set the stage for the follow-

ing chapters. For example, the distinction between Inter-Cloud federations and Multi-

Clouds is pivotal for positioning our work in the related literature. An Inter-Cloud feder-

ation is achieved when a number of cloud providers voluntarily interconnect their cloud

sites to share resources among each other. Federations require that cloud providers co-

operate, which is often not the case as they compete with each other, and thus very

few industry developments exist. The term Multi-Cloud denotes the usage of multi-

ple clouds by clients or services acting on their behalf without relying on any underlying

cooperation between the cloud providers. Presently, this is a much more realistic sce-

nario and consequently there are a number of readily available Multi-Cloud offerings.

However, current Multi-Cloud services and libraries do not even provide transparent

resource provisioning — they only define unified interfaces for managing resources in

multiple clouds. Nevertheless, presently they are the most mature and widely adopted

Multi-Cloud technologies and are instrumental in the development of flexible and effi-

cient Multi-Cloud systems.

To facilitate the performance analysis and the development of new brokering tech-

niques, Chapter 3 proposed a performance model for 3-Tier applications in one and mul-

tiple clouds. It also introduced a probabilistic approach for modelling time-varying in-

coming workloads. Based on these models, we have also developed a discrete event

performance simulator, which can be used to evaluate systems’ behaviour without con-

ducting long running experiments on expensive infrastructure. To evaluate our work, we
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modelled the RUBiS benchmarking application and executed simulations with it in one

and multiple clouds. Then, we performed actual runs of RUBiS using the same workload

and deployment environment as the ones from the simulations and compared the results.

We showed that our model approximates well the observed performance when no major

resource contention is observed.

Chapter 4 proposed an overall architecture for Multi-Cloud resource provisioning

and load distribution for 3-Tier applications. It is generic and can accommodate different

policies. In this chapter, we also described provisioning and workload redirection poli-

cies, which in combination heuristically optimise the cost and response delays without

violating the predefined legislative and regulatory requirements. For this purpose, we

developed a method for approximating the potential network latency between any two

public IP addresses by using publicly available geolocation and Internet performance

monitoring data sets and services. We evaluated our architecture and policies with the

simulation environment proposed in Chapter 3. We showed that our approach meets

all regulatory requirements, and achieves better fault tolerance and cost efficiency with

minimal penalty in terms of network latency compared to the industry best practices.

Chapter 5 presented a policy for VM selection, which can be “plugged” within the

aforementioned architecture. We proposed a heuristic approach to dynamically estimate

the actual CPU and memory capacities of all available VM types based on real time per-

formance measurements. Our method uses these estimations and a combination of ma-

chine learning techniques to dynamically select the appropriate VM type when the do-

main layer needs to scale up. It works in real time, detects and adapts to performance

changes. We performed experiments with the CloudStone benchmarking application in

AWS comparing our approach to the industry standard as a baseline. Our method ob-

served more than 20% improvement in the incurred cost than the baseline while the re-

sponse times of the two remained similar.

Chapter 6 proposed a framework for user redirection across clouds and is also “plug-

gable” within the aforementioned architecture. It introduced a domain specific rule based

model for flexibly defining regulatory requirements. These rules are thereafter inter-

preted by a rule inference engine at runtime. We also implemented the framework and

detailed the architectural design and how different web and concurrent programming
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technologies are used. Lastly, we extended our previous network latency estimation util-

ity for the case when the same public IP address has been used in multiple cloud sites at

different times.

To evaluate our approach, we deployed our system in several cloud sites in different

legislative domains and belonging to 2 cloud providers and performed extensive exper-

iments by emulating incoming users with various characteristics. Our results showed

that the framework offers failure transparency to the end user, always honours the stated

regulatory requirements, and chooses the optimal cloud site locations for users in terms

of network latency.

7.2 Future Directions

This thesis encompassed all aspects of Multi-Cloud 3-Tier application brokering — from

workload distribution across clouds to efficient resource management in a single cloud.

Nevertheless, in each of the considered subfields there are promising unexplored path-

ways for future work.

7.2.1 Models for Asynchronous I/O Bound Applications

Chapter 3 introduced a performance model allowing the representation of I/O opera-

tions alongside CPU instructions. We also extended the CloudSim simulator accordingly.

In this thesis, we used this basic functionality only to model synchronous access to the

data layer of a 3-Tier system. However, the presented performance model and simulator

are not coupled with the 3-Tier architectural pattern. They can be used as building blocks

for simulators representing asynchronous batch data processing applications, which can

not be modelled with current simulation environments. Such simulators can foster the

research in workload scheduling and resource provisioning of I/O bound applications,

just as current discrete event performance simulators have furthered the work on com-

putationally intensive applications.
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7.2.2 Provisioning Techniques Using A Mixture of VM Pricing Models

Cloud providers offer resources like Virtual Machines (VMs) via different purchasing

models. For example, clients can buy on demand VMs and pay for them on a fixed rate,

or they can purchase reserved instances for long term use on discounted prices. Using re-

served VMs can be beneficial when clients know the expected workloads well in advance.

Since this is rarely true for dynamic web-facing 3-Tier applications, for generality in this

thesis we considered on demand VMs only. Nevertheless, if clients have an approximate

application specific knowledge of the expected incoming workload, they could allocate a

pool of reserved instances and compensate any additional demand with on demand VMs.

This can result in significant savings for cloud clients. The idea could be further extended

by developing methods for approximate estimation of the future demand and size of the

pool of reserved resources based on historical data.

Another interesting approach would be to use spot instances to reduce the cost even

further. Spot VMs are usually much cheaper than reserved and on demand instances, but

can be forcefully terminated by the cloud provider at any time. Therefore, interactive

applications using spot instances must be fault tolerant and completely stateless, so that

nothing is lost if VMs are forcefully stopped. Furthermore, losing spot VMs can dramat-

ically reduce the overall computational power dedicated to the application, thus deteri-

orating the response times. New monitoring and autoscaling approaches that can timely

and transparently replace terminated spot VMs with on demand instances are needed to

ensure adequate end user experience at all times. New algorithms using a mixture of

reserved, on demand, and spot instances and dynamically deciding on the spot price to bid

hold the potential to significantly reduce cloud clients’ costs.

7.2.3 Dynamic Replacement of Application Server VMs

In Chapter 5, we discussed how to select a suitable VM when the domain layer needs

more resources. It detects changes in the incurred performance utilisation patterns and

the capacities of the underlying resources in real time and adapts the VM type selection

accordingly. The efficiency of the approach can be increased by periodically replacing

all running VMs with more suitable ones in terms of cost and performance. However,
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replacing all VMs and migrating their state may be an expensive operation. Most cloud

providers charge for VMs per a predefined time unit (e.g. an hour). Switching off a VM

before its charge period has expired would not be beneficial. Furthermore, VMs have

different expected “boot times”, which depend on the VM type, operating system, and

image size among other factors. This should also be accounted for when planning the

VM replacement. New methods for deciding when it is beneficial to migrate, considering

all the above factors, are needed.

7.2.4 VM Type Selection In Private Clouds

The goal of the VM selection method proposed in Chapter 5 was to reduce the cost for

serving end users. This is a typical objective when using public cloud offerings. However,

in private or community clouds, where clients do not pay for the used resources, other

objective like energy efficiency or resource waste minimisation are more suitable. Hence,

combining our algorithms and machine learning techniques with energy consumption

and performance models is viable future work.

7.2.5 Regulatory Requirements Specification Using Industry Standards

In Chapter 6, we proposed an approach for specifying regulatory requirements in the

Drools Rule Language (DRL). This was useful, as DRL rules can be directly interpreted

by the Drools rule inference engine. However, standards like OASIS XACM and EPAL

have gained significant attention, as they are specifically tailored for security and access

policies. Investigating how to automatically translate security policies expressed in such

standards to DRL rules is essential.

7.2.6 Generalisation to Multi-Tier Applications

This thesis focuses on interactive applications following the 3-Tier architectural pattern.

This approach is indeed the prevalent way to build interactive systems. Nevertheless,

several architectural approaches have extended the standard 3-Tier model by further

splitting the domain layer in multiple parts. When these sublayers are deployed sep-

arately, the resulting system becomes Multi-Tier. Investigating how the brokering meth-
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ods from this thesis can be generalised to encompass interactive Multi-Tier applications

is an important and promising future direction. Furthermore, the performance model

and simulator from Chapter 3 could be extended for a Multi-Tier scenario to foster the

research efforts in the area.

7.3 Final Remarks

Cloud computing has become a widely adopted model for dynamically provisioning and

using IT resources for interactive web-facing applications. The use of a Multi-Cloud en-

vironment for such applications, which is explored in this thesis, holds the potential to re-

solve many of the challenges observed when a single cloud is used. Research work, such

as the presented in this thesis, is pivotal for the technical advancement in this novel area.

It is instrumental in the development of the next generation middleware technologies,

which will make viable the development of efficient and regulatory compliant Multi-

Cloud interactive applications.
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