
Autonomic Workflow Management System for Grid Computing

by

Mustafizur Rahman

Submitted in total fulfilment of

the requirements for the degree of

Doctor of Philosophy

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

August 2010

Autonomic Workflow Management System for Grid Computing

Mustafizur Rahman

Supervisor: Professor Rajkumar Buyya

Abstract

As many of the large-scale scientific applications executed on Grids are expressed
as complex scientific workflows, workflow management has emerged as one of the most
important Grid services in past few years. Scientific workflows can be defined as the ag-
gregation of Grid application services, which are executed on distributed Grid resources
in a well defined order to satisfy the specific requirements of users. A workflow man-
agement system is generally employed to define, manage and execute these workflows
in world-wide Grid environment. However, the increasing scale complexity, heterogene-
ity and dynamism of Grid environment that includes networks, resources and applica-
tions have made such workflow management systems brittle, unmanageable and insecure.
Autonomic computing provides a holistic approach for the design and development of
systems/applications that can adapt themselves to meet the requirements of performance,
fault tolerance, reliability, security, etc., without manual intervention.

Therefore, we aim to develop algorithms (i.e. workflow scheduling strategy, resource
coordination scheme) that aid the workflow management systems to incorporate the prop-
erties of autonomic computing and exhibit the ability to reconfigure itself to the changes in
Grid environment, discover, diagnose and react to the disruptions of workflow execution
as well as monitor and optimize its performance automatically. To this end, we leverage
a distributed hash table based Peer-to-Peer (P2P) overlay to build a logical structure for
the resource organization. The scalable and self-organizing nature of the P2P overlay pro-
vides a seamless framework for Grid resources to automatically self-configure themselves
in the event of unavoidable situations, such as resource join, leave or failure. Further, we
develop a reputation based dependable scheduling algorithm that improves the reliability
of workflow execution through proactive resource provisioning by taking into account the
prior performance and behaviour of Grid resources.

Thus, this thesis makes several contributions towards improving the state-of-the-art of
autonomic workflow management systems for Grid computing environment and particu-
larly, towards advancing the area of Grid workflow scheduling. The major contributions
are: (i) proposed a taxonomy of autonomic application management for Grid computing
and surveyed existing Grid systems; (ii) developed a dynamic critical path based work-
flow scheduling algorithm that can adapt to changing Grid environment; (iii) designed
an architecture for autonomic workflow management system in Grids according to the
requirements identified in proposed taxonomy; (iv) devised a decentralized and cooper-
ative workflow scheduling algorithm, utilizing a self-configuring P2P overlay structure
with regards to resource discovery, coordination and overall system decentralization; and
(v) leveraging the proposed autonomic workflow management architecture, developed a
reputation-based dependable workflow scheduling technique to enable self-healing be-
havior in Grid workflow management system.

This is to certify that

(i) the thesis comprises only my original work,

(ii) due acknowledgement has been made in the text to all other material used,

(iii) the thesis is less than 100,000 words in length, exclusive of table, maps, bibliogra-

phies, appendices and footnotes.

Signature

Date

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Professor Rajkumar Buyya for his systematic
guidance as well as constant persuasion and encouragement throughout my PhD candi-
dature. His profound knowledge and expertise in this field and generosity have given me
the audacity to explore new research directions and successfully complete this thesis. In
particular, I appreciate his enthusiasm and endless amount of energy that inspired me to
put maximum effort into research. I am also grateful to him for providing me with the
opportunity to work in an excellent research group at Cloud Computing and Distributed
Systems (CLOUDS) Laboratory.

I wish to express my gratitude to Srikumar Venugopal for being my Ph.D committee
member and guiding me at the early stage of my research studies, Rajiv Ranjan for sharing
his expertise in decentralized Grid systems and helping me with regards to simulations
and experimentation, and Md Rafiul Hassan for sharing his knowledge and participating
in many fruitful discussions with me.

I would also like to thank Manish Parashar (Professor of Electrical and Computer En-
gineering, Rutgers University, USA), Boualem Benatallah (Professor, Computer Science
and Engineering, University of New South Wales, Australia), and Henry Bal (Professor,
Faculty of Sciences, Vrije University, The Netherlands) for their valuable feedbacks on
some of the works presented in this thesis. I thank Shawkat Ali (Senior Lecturer, School
of Computing Sciences, Central Queensland University, Australia) for his advices regard-
ing general research guidelines.

I have been privileged to visit few research labs during my PhD candidature, which
indeed inspired and helped me to keep myself motivated for conducting research. Thus, I
wish to acknowledge Software Engineering and Technology Lab of Infosys Technologies
Limited (Bangalore, India), Computer Systems Group (Department of Computer Science,
Vrije University, The Netherlands), and Service Oriented Computing Research Group
(Department of Computer Science and Engineering, University of New South Wales, Aus-
tralia) for hosting me on several occasions. I also thank Melbourne School of Graduate
Research (the University of Melbourne, Australia) for giving me the opportunity to par-
ticipate in many UpSkills seminars and workshops that really facilitated to develop new
skills, expand my networks, and get directions for career building.

I am thankful to all the past and present members of the CLOUDS Lab. In particular,
I thank Jia Yu, Chee Shin Yeo, Anthony Sulistio, Hussein Gibbins, Krishna Nadiminti,
Marcos Dias de Assuno, Marco Netto, James Andrew Broberg, Christian Vecchiola, Ro-
drigo Calheiros, Suraj Pandey, Saurabh Garg, William Voorsluys, Mohsen Amini, Anton
Beloglazov, and Michael Mattess for their help and comments on my work. Regular feed-
backs provided during weekly group meetings of CLOUDS Lab have also contributed
significantly towards enhancement of the ideas presented in this thesis. Special thanks to
Mukaddim Pathan for proof-reading parts of my thesis work and giving valuable sugges-
tions on many occasions.

v

I always loved to be engaged in various outdoor and sporting activities during my
candidature. In this regard, I would like to thank my friends from the University of Mel-
bourne: Jubaer Arif, Lenin Mehedy, Andreas Schutt, Sarana Nutanong, Adeel Zafar, and
Atif Mehmood. I have had great time with them outside the research activities and en-
joyed a number of barbeques, picnics, outdoor and sporting events. In addition, I also
appreciate the support from my team mates at Melbourne University Hockey Club (Metro
4 West), while playing in Victorian Hockey League.

I acknowledge Australian Government and the University of Melbourne for providing
me with the scholarship to pursue my doctoral studies. I am grateful to Department of
Computer Science and Software Engineering (CSSE), Melbourne School of Engineering,
IEEE Technical Committee for Scalable Computing (TCSC), and CLOUDS Lab for giv-
ing travel support to attend international conferences. This work was partially supported
by Australian Research Council (ARC) discovery project grant. I also thank the adminis-
trative and technical staff members in the CSSE department and School of Engineering,
specially Pinoo Bharucha, Julien Reid, and Rosanna Parissi for being very helpful at all
times.

Finally, I am deeply thankful to my family and friends, specially my father, mother,
brother, sister and sister-in-law for their inspiration and support during my research stud-
ies. Above all, I am indebted to the All Mighty for His divine blessings that has made it
possible to complete this thesis successfully.

Mustafizur Rahman
Melbourne, Australia
August 2010.

CONTENTS

1 Introduction 1
1.1 Background . 1

1.1.1 Grid Computing . 1
1.1.2 Workflow Management . 3
1.1.3 Autonomic Computing . 3

1.2 Motivation for Autonomic Workflow Management System 5
1.3 Problem Description . 6

1.3.1 Research Hypothesis . 6
1.3.2 Research Issues . 6
1.3.3 Proposed Solution . 7

1.4 Contributions . 10
1.5 Thesis Organization . 12
1.6 Publication Record . 12

2 An Overview of Autonomic Management of Grid Applications 17
2.1 Introduction . 17
2.2 History of Autonomic Computing . 18

2.2.1 Integrating Biology and Information Technology 18
2.2.2 Evolution of Autonomic Computing 19

2.3 Overview of Autonomic Computing Systems 21
2.3.1 Properties of Autonomic Computing Systems 24
2.3.2 IBM Tivoli: A Case Study in Autonomic Computing 25

2.4 Autonomic Management of Applications in Grids 27
2.5 Taxonomy . 29

2.5.1 Application Composition . 29
2.5.2 Application Scheduling . 32
2.5.3 Coordination . 35
2.5.4 Monitoring . 38
2.5.5 Self-* Property . 40
2.5.6 System Characteristics . 43

2.6 Survey of Grid Systems . 45
2.6.1 Aneka Federation . 48
2.6.2 Askalon . 49
2.6.3 AutoMate . 50
2.6.4 Condor-G . 51
2.6.5 GWMS . 52
2.6.6 Nimrod-G . 53
2.6.7 Pegasus . 54
2.6.8 Taverna . 55
2.6.9 Triana . 56

vii

2.7 Thesis Scope and Positioning . 57
2.8 Conclusion . 58

3 DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids 59
3.1 Introduction . 59
3.2 Background of Workflow Scheduling . 60

3.2.1 Workflow Scheduling Problem 60
3.2.2 Existing Workflow Scheduling Algorithms 61
3.2.3 Heuristics . 62
3.2.4 Meta-heuristics . 64

3.3 DCP-G Algorithm for Workflow Scheduling 64
3.3.1 Calculation of AEST and ALST in DCP-G 66
3.3.2 Task Selection . 67
3.3.3 Resource Selection . 68
3.3.4 Methodology . 68
3.3.5 DCP-G Example . 71

3.4 Performance Evaluation . 71
3.4.1 Simulation methodology . 72
3.4.2 Simulation setup . 74
3.4.3 Results and Observations . 75
3.4.4 Discussion . 81

3.5 Conclusions . 82

4 Autonomic Workflow Management System Architecture 83
4.1 Architectural Framework . 84

4.1.1 Grid Model . 84
4.1.2 Coordination Model . 86
4.1.3 Application Model . 94

4.2 Implementation . 96
4.2.1 Aneka Federation: An Overview 96
4.2.2 Workflow Management in Aneka Federation 100

4.3 Conclusion . 104

5 Decentralized and Cooperative Workflow Scheduling 107
5.1 Introduction . 107
5.2 System Models . 110
5.3 Proposed Algorithms . 110

5.3.1 Scheduling and Provisioning Algorithm 110
5.3.2 Coordination Algorithm . 113
5.3.3 Time Complexity . 116
5.3.4 Example . 116

5.4 Performance Evaluation . 117
5.4.1 Network Model . 117
5.4.2 Simulation Setup . 119
5.4.3 Results and Observations . 121
5.4.4 Comparison . 131

5.5 Related Work . 137

5.5.1 Scheduling Infrastructure . 137
5.5.2 Coordination Mechanism . 138

5.6 Conclusion . 139

6 Reputation-based Dependable Workflow Scheduling 141
6.1 Introduction . 141
6.2 System Models . 142

6.2.1 Grid Model . 142
6.2.2 Application Model . 143
6.2.3 Failure Model . 146

6.3 Proposed Methodology . 146
6.3.1 Distributed Reputation Management 146
6.3.2 Distributed Workflow Management 152
6.3.3 Scheduling Example . 156

6.4 Performance Evaluation . 158
6.4.1 Simulation Setup . 158
6.4.2 Performance Metrics . 160
6.4.3 Results and Observations . 161
6.4.4 Discussion and Summary . 171

6.5 Related Work . 174
6.5.1 Dependable Scheduling . 174
6.5.2 Distributed Reputation Models 174
6.5.3 Grid Workflow Management . 175

6.6 Conclusion . 175

7 Conclusions and Future Directions 177
7.1 Summary . 177
7.2 Future Directions . 180

7.2.1 Workflow Management for Data-intensive Applications 181
7.2.2 Enhancing Reliability of Critical Tasks 182
7.2.3 Self-protection . 184
7.2.4 Autonomic Workflow Management in Clouds 184
7.2.5 Data Analytics Workflow Scheduling in Hybrid Clouds 185
7.2.6 Energy-aware Autonomic Resource Allocation 186

References 189

LIST OF FIGURES

1.1 Heterogeneous and dynamic Grid computing environment. 2
1.2 Typical scientific workflow applications management scenario in distributed

computing environment. 4
1.3 Proposed solution for autonomic workflow management. 9
1.4 Organization of thesis chapters. 13

2.1 Autonomic Nervous System of human body. 19
2.2 Architecture of an autonomic element. 23
2.3 Self-* properties of autonomic computing system. 25
2.4 Components of IBM Tivoli enterprise management software toolkit. . . . 28
2.5 Elements of autonomic application management. 29
2.6 Application composition taxonomy. 30
2.7 Application scheduling taxonomy. 33
2.8 Coordination taxonomy. 36
2.9 Monitoring taxonomy. 38
2.10 Self-* properties taxonomy. 41
2.11 System characteristics taxonomy. 43

3.1 Example of workflow scheduling using DCP-G algorithm. 69
3.2 Three sample workflows: (a) Parallel workflow; (b) Fork-join workflow;

(c) Random workflow. 72
3.3 Execution time of different type of workflows for static environment. . . . 77
3.4 Execution time of different type of workflows for dynamic environment. . 78
3.5 Scheduling time of different scheduling approaches for various type of

workflows. 80

4.1 Grid Federation. 84
4.2 Layerd design of autonomic workflow management system architecture . 86
4.3 Layered design of the core services. 87
4.4 Resource allocation and application scheduling coordination across Grid

sites. 89
4.5 Spatial resource claims {W ,X ,Y ,Z}, cell control points {A,B,C,D‘},

point resource tickets {M ,N} and some of the spacial hashings (dotted
lines) to the Chord, i.e., the d-dimensional coordinate values of a cell’s
control point is used as the DHT key and hashed on to the Chord ring. For
this figure, fmin = 2, dim=2. 93

xi

4.6 Overlay creation, data indexing, object mapping and routing: (1) a Grid
site publishes ticket; (2) Grid peer 8 service computes the index cell,
C(x3,y3), to which the ticket maps by using mapping function IMap(ticket);
(3) Next, distributed hashing function, DHash(x3, y3), is applied on the
cell’s coordinate values, which yields a overlay key, K14; (4) Grid peer
8 based on its finger table entry forwards the request to peer 12; (5) Sim-
ilarly, peer 12 on the overlay forwards the request to peer 14; (6) a GAS
service submits a resource claim; (7) Grid peer 2 computes the index cell,
C(x1, y1), to which the claim maps; (8) DHash(x1, y1) is applied that
yields an overlay key, K10; (9) Grid peer 2 based on its finger table entry
forwards the mapping request to peer 12. 95

4.7 Aneka container. 97
4.8 Aneka Federation network with the coordinator services. 98
4.9 Mandelbrot application. 99
4.10 Mandelbrot application development and execution environment. 101
4.11 Various services hosted by Aneka Coordinator and Aneka Execution nodes.103
4.12 Sequence diagram of the interaction among different Aneka components

for the lifecycle of a workflow execution. 103
4.13 Workflow execution scenario in Aneka Federation. 105

5.1 Interaction between various entities in the system during resource coordi-
nation. 115

5.2 Example of the process of task scheduling, resource provisioning, and
coordination. 117

5.3 Network message queueing model at a Grid peer. 118
5.4 A fork-join workflow. 120
5.5 Effect of workflow size and resource information update interval on coor-

dination delay and response time (scheduling perspective). 123
5.6 Effect of workflow size and resource information update interval on makespan

and number of notifications (scheduling perspective). 124
5.7 Effect of workflow size and resource information update interval on num-

ber of claims and tickets (coordination perspective). 128
5.8 Effect of workflow size and resource information update interval on num-

ber of hops and messages (coordination perspective). 129
5.9 Performance comparison of cooperative approach against non-cooperative

approach with varying workflow size. 132
5.10 Distribution of number of tasks (per processor) executed by Grid resources. 135
5.11 Makespan for decentralized and centralized coordination service 137

6.1 The architecture and components of Grid Autonomic Scheduler 143
6.2 Distribution of task execution time. 145
6.3 Determination of tasks likely-to-fail based on the distribution of experi-

mental and Weibull task execution time. 147
6.4 The growth of αtβ over the number of transactions, t for different values

of β. Here, α = 0.5. 149
6.5 Reputation matrix for three Grid sites (S1, S2, S3). 151

6.6 Interaction among different Grid entities in reputation based dependable
workflow scheduling approach. 152

6.7 Reputation-based dependable scheduling example. Grid sites p, l, s, and
u are managed by their respective Grid Autonomic Scheduler services. . . 157

6.8 Resource configuration and Ticket data distribution. 159
6.9 Effect of failure distribution on the total number of task failures in the

system. 162
6.10 Effect of failure distribution on the makespan of workflow in the system. . 163
6.11 Effect of workflow size on Ftotal and Maverage in the system (failure dis-

tribution 50 0.5). 166
6.12 Total number of tasks scheduled by the GAS in the system (GAS1 -

GAS16) for failure distribution 50 0.5. 167
6.13 Effect of considering reputation on pruning failure-prone resources (fail-

ure distribution 50 0.5). 168
6.14 Effect of reputation threshold (Rth) on Ftotal and Maverage in the system

for Failure with Reputation (failure distribution 50 0.5). 170
6.15 Significance of exponential feedback function on Ftotal and Maverage in

the system for Failure with Reputation (failure distribution 50 Y). 171
6.16 Correlation between Ftotal and Maverage in the system. 172

7.1 Enhancing reliability of execution for critical tasks in workflow by redun-
dancy. 183

7.2 Autonomic workflow management in Aneka Enterprise Cloud platform
by leveraging public and private Cloud services. 183

7.3 An example of data analytics workflow execution in Cloud. 187
7.4 Layered architecture for workflow execution in hybrid Cloud. 188

LIST OF TABLES

2.1 Timeline of Autonomic computing evolution 22
2.2 Summary of self-* properties . 25
2.3 Summary of Grid projects . 45
2.4 Application composition taxonomy . 46
2.5 Application scheduling taxonomy . 46
2.6 Coordination taxonomy . 46
2.7 Monitoring taxonomy . 47
2.8 Self-* properties taxonomy . 47
2.9 System characteristics taxonomy . 47
2.10 Positioning of thesis with respect to taxonomy 58

3.1 Summary of workflow scheduling algorithms 63
3.2 Symbols and Their Meanings . 65
3.3 Resources used for performance evaluation 74
3.4 Parameters of Genetic Algorithm . 75
3.5 Average scheduling time per task . 81

4.1 Notations: resource, workflow, and coordination models 85
4.2 Claims stored with the coordination service at time τ 91
4.3 Resource configuration required for workflow tasks 91
4.4 Ticket published to the coordiation service at time τ 91

5.1 Notations: resource, workflow, and coordination models 109
5.2 Notations: scheduling and network models 109
5.3 Summary statistics of number of tasks (per processor) executed by Grid

resources for different workflow size . 134

6.1 Feedbacks sent by different Grid sites to the coordination service 143
6.2 Notations: Grid, reputation, failure models, and metrics 144
6.3 Reputation parameters . 159
6.4 Example failure distributions (25 Y) . 160
6.5 Example failure distributions (50 Y) . 160
6.6 Configuration for different experiments 169
6.7 Pearson’s correlation coefficient: Maverage vs. Ftotal 173

xv

Chapter 1

Introduction

This chapter introduces the context of the research presented in this thesis. It starts with

a high-level overview of the key concepts related to the research problem addressed in

the thesis. Then the fundamental motivations behind this research are stated and the pro-

posed solution to address the research challenges is briefly presented. The chapter finally

ends with a discussion on the principal research contributions and the organization of this

thesis.

1.1 Background

This section provides a brief discussion on the key technologies including Grid comput-

ing, workflow management and autonomic computing that form the foundation of this

thesis.

1.1.1 Grid Computing

Over the last two decades, Grid computing [43] has emerged as one of the most promising

technologies to build high performance distributed computing infrastructures. Computa-

tional Grids enable the sharing, selection, and aggregation of geographically distributed

heterogeneous resources, such as computational clusters, supercomputers, storage de-

vices, and scientific instruments. These resources are under control of different Grid

organizations, offer huge computational power, and being utilized to solve many impor-

1

2 Chapter 1. Introduction

Workstation

High BW Link

Supercomputer

Distributed Data
Scientific Instruments

High BW Link

Low BW
Link

Link Failure

Resource
Failure

Cluster

Dynamic
Utilization

Programming
Framework

DNA sequencing
workflow

Application
Portal

Climate modeling
Application

User

Scientist

Application
Software

Scheduler

T1

T3

T4

T2

Workflow Mapping

T1

T3

T4T2

User

Internet

Grid Domain

`

Join

Leave

Figure 1.1: Heterogeneous and dynamic Grid computing environment.

tant scientific, engineering and business problems, such as protein folding, drug discovery,

weather forecasting, earthquake engineering, financial modeling, and multi-player gam-

ing. In general, Grid infrastructures are distributed, large, heterogeneous, uncertain, and

highly dynamic.

Computational Grids can be categorized into different types, such as organization

Grids, enterprise Grids, and global Grids depending on the scope of resource sharing.

global Grids provide means to connect the Internet-wide distributed Grid resources, ad-

ministered by multiple Grid sites with the aim of creating a collaborative computing en-

vironment. A sample scenario of resource sharing and application management in such

a global Grid environment is shown in Fig. 1.1, where application scientists and users

from different Grid sites/domains share various types of resources distributed over the

world. The applications executed in such environment are generally computation or data

intensive and composed of multiple tasks, where a task is a set of instructions that can

be executed on a single processing element of a computing resource. Based on the de-

pendency or relationship among these tasks, Grid applications can be divided into three

1.1. Background 3

types: bag-of-task, tightly coupled message passing, and workflow applications. This the-

sis presents a framework to facilitate efficient scheduling and management of workflow

applications in global Grids.

1.1.2 Workflow Management

Many of the large-scale scientific applications executed on the present-day Grids are ex-

pressed as complex e-Science workflow [73] [18], which is a set of ordered tasks that

are linked by data dependencies (refer to Fig. 1.2(a)). A Workflow Management System

(WMS) [133] is generally employed to define, manage, and execute these workflow appli-

cations on Grid resources. Due to the continuous demand of leveraging high performance

computing infrastructure for the execution of workflow applications by the scientist and

research community, WMS has emerged as one of the most important Grid services in

past few years. Fig. 1.2(b) illustrates the execution of the workflow shown in Fig. 1.2(a)

on a traditional distributed computing environment.

A WMS uses a specific scheduling strategy for mapping the tasks in a workflow to

suitable Grid resources in order to satisfy user requirements. Realizing a WMS in global

Grids requires a number of challenges to be overcome, which include workflow applica-

tion modeling, resource discovery, task scheduling, information services, data manage-

ment, and failure handling. However, the increasing scale complexity, heterogeneity, and

dynamism of Grid environment have made such WMS brittle, unmanageable, and inse-

cure. This thesis presents a framework for effectively managing workflow applications by

devising a set of scheduling algorithms addressing these requirements.

1.1.3 Autonomic Computing

Autonomic Computing (AC) [89] is an emerging area of research for developing large-

scale, self-managing, complex distributed system. The vision of AC is to apply the prin-

ciples of self-regulation and complexity hiding for designing complex computer-based

systems. Thus, AC provides a holistic approach for the development of systems that can

adapt themselves to meet requirements of performance, fault tolerance, reliability, secu-

rity, Quality of Service (QoS) etc. without manual intervention.

4 Chapter 1. Introduction

Data
Collection

Calculate
Cloudiness

Calculate
Moisture

Convergence

Calculate
Visibility

Calculate
Turbulence

Numerical
Weather

Prediction
Model

Visualize
Weather

Information

Task 1

Task 2
Task 4

Task 5Task 3

Task 7

Task 6

Task 8

Radar Data

Satellite

Image Data

Dynamic
Modeling

(a) Example of workflow: weather prediction application

User Researcher

Data
node

Data Catalogue

Resource

Catalogue

Execution

Monitor

Scheduler

Resource

Discovery

Application

Composition

Visualization

Workflow

Management System

D
e

v
e

lo
p

m
e

n
t

E
n

v
ir
o

n
m

e
n

t

G
ri
d

 I
n

fo
rm

a
ti
o

n

S
e

rv
ic

e

Resource Pool

(b) Workflow management system

Figure 1.2: Typical scientific workflow applications management scenario in distributed
computing environment.

1.2. Motivation for Autonomic Workflow Management System 5

An autonomic workflow management system leverages the concept of AC and is able

to efficiently define, manage, and execute workflow applications in heterogeneous and dy-

namic Grid environment by continuously adapting itself to the current state of the system.

Therefore, this thesis aims to design and develop algorithms and policies for building an

autonomic workflow management system.

1.2 Motivation for Autonomic Workflow Management Sys-

tem

Generally, the users and application scientists are not much aware of the low level Grid

infrastructure, such as programming environment, core middleware services, and runtime

systems; but still opt for high confidence level in composition and deployment of their

scientific applications, such as workflow. Thus, they rely on the third party workflow

brokering or scheduling services, which abstract the underlying complexity of the system

and facilitates efficient execution of the applications in Grid resources.

However, one of the major drawbacks involved with these workflow schedulers is

that they rely on the centralized or semi-centralized hierarchical resource information ser-

vices, such as Monitoring and Discovering Service (MDS) [41]. Current studies [139]

have shown that the existing centralized model for information services do not scale well

as the number of users and resource providers increase in the system. Moreover, if the

centralized links leading to these services fail then no scheduler in the system can under-

take scheduling related activities due to the lack of up-to-date resource information.

Further, Grids are heterogeneous and dynamic environments consisting of computing,

storage and network resources with different capability and availability. As a result, any

scheduling decision that is based on the static resource information, would lead to gen-

erating inefficient schedule (mapping of tasks to resources) and degrade application per-

formance. Thus, workflow schedulers should incorporate dynamic scheduling approaches

that adapt to the changing resource conditions of Grids through just-in-time scheduling.

In addition, the workflow schedulers adopting these dynamic scheduling algorithms are

also required to cooperate with each other in order to avoid load balancing problem and

6 Chapter 1. Introduction

generate efficient schedules globally.

Next, uncertainty and unreliability are facts in a large scale heterogeneous Grid envi-

ronment, which are triggered by multiple factors, including: (i) software and hardware

failures as the system and application scale that lead to severe performance degrada-

tion and critical information loss; (ii) dynamism that results from temporal resource be-

haviours, which should be detected and resolved at runtime to cope with changing condi-

tions; and (iii) lack of complete global knowledge that hampers efficient decision making

as regards to composition and deployment of the application elements.

Autonomic computing has been emerged to cope with the aforementioned challenges

by being context aware, adaptive, and resilient as well as providing agent based mecha-

nisms for efficient decentralized cooperation and coordination. Thus, this thesis endeavors

to explore autonomic management of workflow applications in global Grids, which im-

plies the utilization of autonomic computing principles for the composition, deployment,

and management of workflows in Grid computing environment.

1.3 Problem Description

This section presents the research problem and outlines the research questions to be ad-

dressed in this thesis. It also briefly describes the proposed methodology to solve the

problem of Grid workflow management and answer these questions.

1.3.1 Research Hypothesis

The research hypothesis investigated in this thesis is:

Autonomic computing principles and algorithms for workflow management can effec-

tively overcome the limitations of inherent uncertainty and dynamism of Grid environment

as well as significantly improve the performance of workflow execution in global Grids.

1.3.2 Research Issues

The key research challenges that are required to be addressed in various aspects of auto-

nomic workflow management are as follows.

1.3. Problem Description 7

Coordination of Workflow Schedulers:

• What kind of coordination mechanisms are required to be adopted to ensure effec-

tive interaction among the workflow schedulers, while maintaining scalability and

flexibility?

• How can the workflow schedulers reconfigure themselves when policies and com-

ponents are added or removed from the system due to changes in the environment?

System monitoring:

• How can the autonomic element in a Grid site identifies itself, discovers, and verifies

the identities of other entities of interest dynamically, and establishes relationships

with these entities to interact in a secure manner?

Failure management:

• How can workflow management systems diagnose and react to any disruptions,

such as resource or task failure occurred during the execution of workflows?

• How can the system automatically anticipates, detects, identifies and protects against

malicious attacks or cascading failures to maintain overall system security and in-

tegrity?

Runtime optimization:

• How can changes to the workflows at run time be identified, accommodated and the

execution to be optimized accordingly?

1.3.3 Proposed Solution

In order to facilitate autonomic workflow management, we propose to develop algorithms

(i.e. workflow scheduling strategy, resource coordination scheme) that aid the workflow

schedulers to incorporate the autonomic computing features and exhibit the ability to re-

configure itself to the changes in the Grid environment, discover/diagnose and react to

the disruptions of workflow execution as well as monitor and optimize its performance

8 Chapter 1. Introduction

automatically. To this end, we leverage a Distributed Hash Table (DHT) based Peer-to-

Peer (P2P) overlay to build a logical structure for the resource organization. The scalable

and self-organizing nature of the P2P overlay provides a seamless framework for Grid re-

sources to automatically self-configure themselves in the event of unavoidable situations,

such as resource join, leave or failure.

The proposed workflow scheduling approaches utilize the Grid-Federation [101] model

in regards to resource organization and Grid networking. Grid-Federation aggregates the

distributed application scheduling and resource provisioning services as part of a cooper-

ative resource sharing environment. At every site in the federation, there is a Grid Federa-

tion Agent (GFA) that is responsible for managing the execution of applications submitted

by the users (see Fig. 1.3). We extend the GFA to develop an autonomic element [61],

called Grid Autonomic Scheduler (GAS). Every contributing Grid site maintains its own

GAS service. A GAS service is composed of a software components, Grid Autonomic

Manager (GAM) that is responsible for continuous monitoring and performance opti-

mization through adapting.

In the proposed approach, workflow schedulers (GASs) post their resource demands

by submitting a Resource Claim object to the DHT-based decentralized coordination

space, while resource providers update the resource information by submitting a Resource

Ticket object. These objects are mapped to the coordination space using a spatial hashing

technique [116]. Once a resource ticket matches with one or more resource claims, the

coordination space sends notification messages to the resource claimers in such a way

that the corresponding resource ticket issuer is not overloaded. Thus, this mechanism

enables the workflow schedulers to distribute the workload efficiently and optimize their

scheduling efficiency through cooperative decision making using a virtual global shared

space.

Further, we develop a reputation-based workflow scheduling technique based on the

aforementioned P2P overlay to counter the effect of inherent unreliability and temporal

characteristics of Grid resources. The scheduling algorithm considers reliability of a Grid

resource as a statistical property, which is globally computed in the coordination space

using dynamic feedbacks or reputation scores assigned by individual Grid service con-

sumers. As a result, it facilitates Grid schedulers to achieve self-healing capability by

1.3. Problem Description 9

taking into account the Grid resources’ prior performance and behaviour for facilitating

opportunistic and reliable placement of workflow tasks.

Peer-to-Peer
Network

Peer-to-Peer Overlay

on Internet

Workflow

Application

Scientist

Application

Portal

User

Application

Software

Grid Resource

Grid Resource

Grid Resource

Grid Resource

Autonomic

Element
(Scheduling,

Resource discovery)

Autonomic

Element

Autonomic

Element

Autonomic

Element

Figure 1.3: Proposed solution for autonomic workflow management.

For shared computing environments such as global Grids, simulation based techniques

are suitable to do performance evaluation of self-managing algorithms and policies in a

repeatable and controllable manner as users, resources, and application components are

distributed across multiple organizations. Therefore, to appraise the proposed autonomic

workflow management techniques with respect to different system and application sce-

narios, we perform experiments on a simulated global Grid environment, where the con-

figuration of resources is modeled from existing real-world Grids including NorduGrid,

AuverGrid, Grid5000 and LCG [62].

The simulation environment is modeled by combining two well known Java-based

discrete event simulators: GridSim [22] and PlanetSim [49]. GridSim is a toolkit for

10 Chapter 1. Introduction

modeling and simulation of heterogeneous Grid systems. It provides a comprehensive

facility for simulation of different types of resources, users, applications, scheduling poli-

cies, and fault management scenarios. On the other hand, PlanetSim is an event-based

overlay network simulator. It can simulate both unstructured and structured P2P overlay

networks. We also implement a prototype workflow management system utilizing the

functionalities offered by Aneka Federation [99].

1.4 Contributions

This thesis makes several contributions towards improving the understanding of auto-

nomic workflow management systems for Grid computing environment, particularly to-

wards advancing the area of Grid workflow scheduling. The major contributions are as

follows:

(i) This thesis provides a comprehensive taxonomy of autonomic application manage-

ment in Grids that covers various aspects of application composition, application schedul-

ing, coordination, monitoring as well as system characteristics and self-* properties. The

proposed taxonomy is also mapped to various present-day Grid systems (specially, work-

flow management systems) not only to provide a basis for differentiating these systems

but also to identify strengths and weaknesses of the state-of-art in Grid application (i.e.

workflow) management. Thus, this thesis presents a roadmap for the researchers to inter-

pret key concepts and to perform a comparative analysis of the related technologies in this

domain.

(ii) This thesis discusses the workflow scheduling problem and describe the existing

heuristic and meta-heuristic based workflow scheduling strategies in Grids. In addition,

it also presents a dynamic critical path based workflow scheduling algorithm, which de-

termines efficient mapping of workflow tasks to Grid resources by calculating the critical

path in the workflow task graph at every step. The performance of the proposed algo-

rithm, called DCP-G (Dynamic Critical Path for Grids) is evaluated against the existing

approaches for different types and sizes of workflows through discrete-event simulations.

The results demonstrate that DCP-G can naturally adapt to temporal resource behavior

and avoid performance degradation in dynamically changing Grid environments.

1.4. Contributions 11

(iii) This thesis introduces an architecture for autonomic workflow management sys-

tem for Grids according to the requirements identified in proposed taxonomy. It also

describes the system models, such as Grid model and coordination model to realize this

architecture. To address the research problem in a practical context, this thesis provides

the design and implementation of a prototype workflow management system utilizing the

functions offered by Aneka Federation. The capabilities of the prototype system have

been demonstrated using sample scientific workflow application.

(iv) This thesis proposes a decentralized and cooperative workflow scheduling tech-

nique utilizing a self-configuring P2P overlay structure with regards to resource discovery,

coordination, and overall system decentralization. It also presents a decentralized resource

provisioning algorithm for mapping the tasks to resources leveraging a DHT-based coor-

dination space. Through extensive simulations, a sensitivity analysis of our scheduling

technique is performed for the critical performance metrics, such as scheduling message

complexity and makespan of the workflow. Further, this thesis also measures the effec-

tiveness of the proposed approach along two dimensions (load balancing and coordination

efficiency) as compared to non-cooperative scheduling and centralized coordination ap-

proaches.

(v) This thesis investigates the methods to enable self-healing behavior in Grid work-

flow management system. For this purpose, it presents a dependable workflow scheduling

technique that aids the workflow scheduling entities in Grids to gain significant perfor-

mance gains as compared to traditional approaches in the event of unsuccessful job exe-

cution or resource failure through reputation-based intelligent resource provisioning. The

effectiveness of this contribution is appraised through a comprehensive simulation-driven

analysis of the proposed approach based on realistic and well-known application failure

model in order to capture the transient behaviours that prevail in existing Grid-based e-

Science workflow execution environments. This thesis also performs a comparative eval-

uation that demonstrates the self-adaptability of the proposed approach in comparison to

Grid environments, where: 1) resource behaviours do not change (i.e. no failure occurs),

therefore no self-management is required; and 2) transient conditions exist but runtime

systems and application elements have no capability to self-adapt.

12 Chapter 1. Introduction

1.5 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 presents an overview of autonomic

computing system along with its properties. Then it provides a taxonomy of autonomic

application management in Grids and a detailed survey of several representative Grid sys-

tems (specially, workflow management systems) to demonstrate the comprehensiveness

of the taxonomy. The positioning of this thesis with respect to this taxonomy is also

summarized at the end of this chapter.

Chapter 3 discusses the workflow scheduling problem and describes the existing

heuristic and meta-heuristic based workflow scheduling strategies in Grids. In addition,

this chapter also proposes a dynamic critical path based workflow scheduling heuristic

that takes into account the dynamic behavior of Grid resources.

The thesis then concentrates on developing the design and architecture of an auto-

nomic workflow management system in Chapter 4 according to the requirements iden-

tified in the taxonomy, presented in Chapter 2. The prototype implementation of the

proposed system is also discussed in this chapter.

Chapter 5 and 6 are derived based on the dynamic workflow scheduling heuristics

discussed in Chapter 3 and the autonomic workflow management architecture presented

in Chapter 4. In particular, Chapter 5 proposes a decentralized and cooperative workflow

scheduling approach that leverages a DHT-based self-configuring overlay for resource

coordination and a cooperative decision making strategy to achieve runtime optimization.

Furthermore, Chapter 6 introduces a reputation based dependable workflow scheduling

technique to enable self-healing property for the workflow management system.

Finally, Chapter 7 concludes the thesis with a discussion of the main findings and a

comprehensive future research roadmap. The relationship among the chapters is shown in

Fig. 1.4.

1.6 Publication Record

Portions of the work presented in this thesis have been partially or completely derived

from the following set of research papers published during the course of the PhD candi-

1.6. Publication Record 13

Chapter 2
Taxonomy and survey of autonomic

application management

Chapter 3
Grid workflow scheduling

heuristics

Chapter 4
Autonomic workflow management

system architecture and prototype

implementation

Chapter 5
Decentralized and cooperative

scheduling model for self-

configuration & self-optimization

Chapter 6
Dependable scheduling

model for self-healing

Chapter 7
Conclusion and future directions

Chapter 1
Introduction

Figure 1.4: Organization of thesis chapters.

14 Chapter 1. Introduction

dature.

Chapter 1 is partially derived from the following publication.

• Mustafizur Rahman and Rajkumar Buyya, An Autonomic Workflow Management

System for Global Grids, In Proceedings of 2nd IEEE TCSC Doctoral Symposium,

in conjunction with 8th IEEE International Symposium on Cluster Computing and

the Grid (CCGrid 2008), Lyon, France, May 2008.

Chapter 2 is partially derived from the following publications.

• Mustafizur Rahman, Rajiv Ranjan, and Rajkumar Buyya, Decentralized Man-

agement in Grid and Cloud Computing Systems: Challenges, Technologies and

Opportunities, Advancements in Distributed Computing and Internet Technologies:

Trends and Issues, S. Pathan et al. (eds.), IGI Global, USA, 2011.

• Mustafizur Rahman, Rajiv Ranjan, and Rajkumar Buyya, A Taxonomy of Au-

tonomic Application Management in Grids, In Proceedings of 16th IEEE Interna-

tional Conference on Parallel and Distributed Systems (ICPADS 2010), Shanghai,

China, December 2010.

• Mustafizur Rahman, Rajiv Ranjan, Rajkumar Buyya, and Boualem Benatallah, A

Taxonomy and Survey on Autonomic Management of Applications in Grid Com-

puting Environments, Concurrency and Computation: Practice and Experience

(CCPE), DOI: 10.1002/cpe.1734, Wiley Press, New York, USA, 2011.

Chapter 3 is partially derived from the following publications.

• Mustafizur Rahman, Srikumar Venugopaol, and Rajkumar Buyya, Dynamic Criti-

cal Path based Algorithm for Scheduling Scientific Workflow Applications on Global

Grids, In Proceedings of 3rd IEEE International Conference on e-Science and Grid

Computing (e-Science 2007), Bangalore, India, December 2007.

Chapter 5 is partially derived from the following publications.

• Rajiv Ranjan, Mustafizur Rahman, and Rajkumar Buyya, A Decentralized and

Cooperative Workflow Scheduling Algorithm, In Proceedings of 8th IEEE Inter-

national Symposium on Cluster Computing and the Grid (CCGrid 2008), Lyon,

France, May 2008.

1.6. Publication Record 15

• Mustafizur Rahman, Rajiv Ranjan, and Rajkumar Buyya, Cooperative and Decen-

tralized Workflow Scheduling in Global Grids, Future Generation Computer Sys-

tems (FGCS), Volume 26, Number 5, Pages: 753-768, Elsevier Press, Amsterdam,

The Netherlands, May 2010.

Chapter 6 is partially derived from the following publications.

• Mustafizur Rahman, Rajiv Ranjan, and Rajkumar Buyya, Dependable Workflow

Scheduling in Global Grids, In Proceedings of 10th IEEE/ACM International Con-

ference on Grid Computing (Grid 2009), Alberta, Canada, October 2009.

• Mustafizur Rahman, Rajiv Ranjan, and Rajkumar Buyya, Reputation based De-

pendable Scheduling of Workflow Applications in Peer-to-Peer Grids, Computer

Networks (COMNET), Volume 54, Number 18, Pages: 3341-3359, Elsevier Press,

Amsterdam, The Netherlands, December 2010.

Chapter 2

An Overview of Autonomic

Management of Grid Applications

In this chapter, we propose a taxonomy that characterizes and classifies different compo-

nents of autonomic application management in Grids. We also survey several represen-

tative Grid systems developed by various projects world-wide to demonstrate the com-

prehensiveness of the taxonomy. The taxonomy not only highlights the similarities and

differences of state-of-the-art technologies utilized in autonomic application management

from the perspective of Grid computing, but also identifies the areas that require further

research initiatives.

2.1 Introduction

Application management has emerged as one of the most important Grid services in past

few years. An Application Management System (AMS) is generally employed to define,

manage, and execute these scientific applications in Grid resources. However, the increas-

ing scale complexity, heterogeneity, and dynamism of Grid environment that includes

networks, resources, and applications have made such application management systems

brittle, unmanageable, and insecure. Thus, leveraging the principles of autonomic com-

puting [89] can help to efficiently manage applications in Grids by continuously adapting

the system to the current state of the environment.

17

18 Chapter 2. An Overview of Autonomic Management of Grid Applications

This chapter aims to survey the existing Grid systems that support autonomic appli-

cation management. We classify these systems with respect to different aspects of auto-

nomic application management, such as application composition, scheduling, monitoring,

coordinating, and failure handling as well as how the self-management properties (self-

configuring, self-optimizing, self-healing, and self-protecting) have been implemented or

incorporated in these systems.

2.2 History of Autonomic Computing

Autonomic Computing (AC) is a self-managing computing model, and the word auto-

nomic is derived from its biological origins. The control in human body works in a fash-

ion (self-regulating) that usually no humans’ interference and consciousness are required.

Likewise, the goal of AC is to create systems that run themselves and are capable of high-

level functioning, while keeping the system’s complexity invisible to the user. In this

section, we briefly illustrate the introduction of AC in the field of Information Technology

and describe its evolution along the path of twenty first century’s technological revolution.

2.2.1 Integrating Biology and Information Technology

The term Autonomic Computing is named after and patterned on the human body’s Au-

tonomic Nervous System (ANS) [89]. ANS is the cornerstone to our ability to perceive,

adapt to and interact with the world around us; thus helping human beings to manage

dynamically changing and unpredictable circumstances. It acts as a control system func-

tioning largely below the level of consciousness and handles human body’s management

of breathing, digestion, salivation, fending off germs and viruses etc. as shown in Fig. 2.1.

Inspired by the functionalities of ANS, AC has emerged to equip computing systems

with the self-managing mechanisms of human body achieved through ANS. An Auto-

nomic Computing System (ACS) would manage and control the functioning of comput-

ing systems and applications without any user input or intervention, in the same way

ANS regulates human body systems without conscious input from the individual. Simi-

lar to ANS, ACS constantly checks and monitors its external and internal environment as

2.2. History of Autonomic Computing 19

Brain

Stimulates/Inhibits

peristalsis & secretion

Secretion of adrenaline

& noradrenaline

Stimulates release

of bile

Contracts/Relaxes bladder

Stimulates tear glands
Constricts/Dilates pupil

Stimulates salivary flow

Slows/Accelerates

heartbeat

Constricts/Dilates bronchi

Spinal Cord

Nerves

Stimulates/Inhibits

intestinal motility

Chain of

sympathetic

ganglia

Figure 2.1: Autonomic Nervous System of human body.

well as automatically adapts to changing conditions in order to manage, optimize, repair,

and protect itself.

2.2.2 Evolution of Autonomic Computing

In order to address the growing heterogeneity, complexity, and demand of computer sys-

tems, researchers of several organizations took initiatives to develop autonomous and self-

managing systems in early 1990s, and it continued throughout the whole decade. These

research initiatives gradually became matured and eventually facilitated autonomic com-

puting to be emerged as an area of research.

Similar to the birth of Internet, one of the notable preliminary self-managing projects

has been initiated by Defense Advanced Research Projects Agency (DARPA) in 1997 for

a military application [6]. The project was called Situational Awareness System (SAS),

and its aim was to create personal communication and location devices for soldiers in

battlefield. As an outcome, soldiers had been able to enter status report (i.e. discovery

of enemy tanks) into their personal device. This information would automatically spread

20 Chapter 2. An Overview of Autonomic Management of Grid Applications

over to all other soldiers based on a decentralized peer-to-peer mobile adaptive routing.

The latest status report could then be called up accordingly, while entering an enemy area.

Further, DARPA initiated another project related to self-management, named Dy-

namic Assembly for Systems Adaptability, Dependability and Assurance (DASADA) [3].

The objective of the DASADA program was to research and develop technology that

would enable mission critical systems to meet high assurance, dependability, and adapt-

ability requirements. Essentially, it dealt with the complexity of large distributed software

systems and pioneered the architecture-driven approach to self-management [59].

NASA utilized the features of autonomous systems in late 1990s for its space projects,

such as DS1 (Deep Space 1) and Mars Pathfinder [82]. In particular, NASA’s interest was

to make its deep-space probes more autonomous so that the probes could quickly adapt

to extraordinary situations. To address this challenge, NASA designed a Remote Agent

architecture, where the Remote Agent integrated constraint-based temporal planning and

scheduling, robust multi-threaded execution, and model-based mode identification and

reconfiguration. Thus, spacecrafts were able to carry out autonomous operations for long

periods of time with no human intervention.

IBM started the autonomic computing initiative in 2001 with the ultimate aim to

develop computing systems capable of self-management so that it could overcome the

rapidly growing complexity of computing systems management [48]. On March 8, 2001,

IBM Senior Vice President and Director of Research Dr. Paul Horn presented the im-

portance and direction of autonomic computing during a keynote speech in the National

Academy of Engineering conference at Harvard University [58]. He suggested that com-

plex computing systems should be able to independently take care of the regular mainte-

nance and optimization tasks; thus reducing the workload on the system administrators.

Shortly after, IBM Server Group introduced the Server’s Group project with codename

eLiza. Eventually, Project eLiza became known as the autonomic computing project.

In 2003, IBM introduced architectural blueprint to build Autonomic Computing Sys-

tem [61]. In that blueprint, IBM proposed the architectural concept of autonomic comput-

ing and described five building blocks for an autonomic system. It also outlined the four

properties of an autonomic (i.e. self-managing) system namely, self-configuring, self-

optimizing, self-healing, and self-protecting. These properties are described in detail in

2.3. Overview of Autonomic Computing Systems 21

Section 2.3.1.

Gradually, IBM became the leader in the autonomic computing space and offered

many effective self-managing software toolkits, such as Tivoli. In 2005, IBM launched

a set of new development tools for Autonomic Computing with the hope that these will

help pave the way for increased mainstream adoption of autonomic computing. The re-

lease included an autonomic management tool called, Policy Management for Autonomic

Computing (PMAC) that makes decisions based on policies or business rules created by

the developers when embedded within software applications.

In 2005, Parashar et al. [90] addressed the constant growth and increasing scale com-

plexity of dynamic and heterogeneous components in computational Grids, and proposed

to utilize the autonomic computing features for the composition, deployment, and man-

agement of complex applications in such environment. As part of this initiative, they

introduced project Automate [91], which provides a framework for enabling autonomic

application management in Grids.

Recently, the world has seen a paradigm shift in the consumption and delivery of IT

services with the emergence of Cloud Computing. The computational Clouds address the

explosive growth of Internet-wide computational/storage devices, and provides a superior

user experience through scalability, reliability, and utility. The principles of autonomic

computing have also been utilized in computational Clouds [68].

The emergence and evolution of autonomic computing from its origin, autonomous

systems can be realized in brief by Table 2.1.

2.3 Overview of Autonomic Computing Systems

An autonomic computing system makes decisions on its own using high-level policies in

order to achieve a set of goals. It constantly checks, monitors, and optimizes its status, and

automatically adapt itself to the changing conditions. As widely reported in literature [61],

an ACS is composed of Autonomic Elements (AE) interacting with each other. AE is

the basic building block of ACS, and it can be considered as a software agent. An AE

consists of one Autonomic Manager (AM) and one or more Managed Element (ME). The

core component of AE is a control loop that integrates AM with ME (refer to Fig. 2.2).

22 Chapter 2. An Overview of Autonomic Management of Grid Applications

Table 2.1: Timeline of Autonomic computing evolution

Year Term Description
1997 Situational Awareness System

(SAS)
DARPA initiated SAS project to provide the sol-
diers real-time situational awareness information.

1998 Autonomous Agent NASA made its deep-space probes more au-
tonomous.

2000 DASADA DARPA introduced gauges and probes in the ar-
chitecture of software systems for monitoring the
system.

2001 Autonomic Computing IBM pushed Autonomic Computing.
2003 AC Blueprint IBM introduced architectural blueprint to build

autonomic computing system.
2005 AC Development Tools IBM offered new development tools for autonomic

computing.
2005 Autonomic Grid Computing The concept of autonomic Grid computing was

proposed.
2009 Autonomic Cloud Computing Principles of autonomic computing was utilized in

computational Clouds.

The functionality of this control loop is similar to the generic agent model proposed by

Russell and Norvig [108], in which an intelligent agent perceives its environment through

sensors and uses these percepts to determine actions to execute on the environment.

The Managed Element is a software or hardware component from the system, which

is given autonomic behavior by coupling it with an AM. Thus, ME can be a web server

or database, a specific software component in an application (e.g., the query optimizer in

a database), the operating system, a cluster of machines in a Grid environment, a stack of

hard drives, a wired or wireless network, a CPU or printer etc.

The autonomic manager is a software component that can be configured by system

administrators using high level goals. It uses the monitored data from sensors and internal

knowledge (i.e., rules) of the system to plan and execute the low level actions that are

necessary to achieve these goals. The goals are usually expressed by event-condition-

action policies (e.g., when 95% of Web servers’ response time exceeds 2 seconds, and

there are available resources, then increasing number of active Web servers) or utility

function policies (e.g., increasing and distributing available resources among different

servers so that the utility is maximized).

AM uses a manageability interface (i.e., sensors and effectors) to monitor and control

MEs as well as a five component analysis and planning engine, MAPE-K (comprised of

2.3. Overview of Autonomic Computing Systems 23

Monitor, Analysis, Plan, Execute, and Knowledge base) to manage self-managing activi-

ties. Sensors retrieve information regarding the current state of ME, and effectors execute

the required actions set up by AM. Thus, sensors and effectors are linked together to create

the control loop.

The Monitor observes the sensors, filters the data or system information collected by

them (e.g. network/storage usage or CPU/memory utilization), and stores the relevant

data in the Knowledge base. The Analysis engine compares the gathered data against

the desired or expected values stored in Knowledge base. The Planning engine devises

strategies to correct or adjust the trends identified by Analysis engine. Finally, the Exe-

cution engine carries out changes (e.g. adding/removing servers to a Web server cluster

or changing configuration parameters in a Web server) to the ME through effectors and

stores the affected values in the Knowledge base.

Manageability Interface

Autonomic Manager

Sensors Effectors

Managed Elements

Server Middleware DB ApplicationNetwork

Figure 2.2: Architecture of an autonomic element.

24 Chapter 2. An Overview of Autonomic Management of Grid Applications

2.3.1 Properties of Autonomic Computing Systems

Autonomic computing systems are generally composed of autonomic elements and capa-

ble of managing their behaviors and relationships with other systems in accordance with

high-level policies. An autonomic system should possess at least eight key properties or

characteristics. The primary four properties (refer to Fig. 2.3) of an autonomic system are

called self-* properties, which are:

1. Self-configuring: An autonomic system must be able to automatically configure

(i.e. setup) and reconfigure itself under dynamic and changing conditions.

2. Self-optimizing: An autonomic system must be able to optimize its working by

monitoring the status quo and taking appropriate actions.

3. Self-healing: An autonomic system must be capable of identifying potential prob-

lems/failures and recovering from unexpected events that might lead the system to

malfunction.

4. Self-protecting: An autonomic system must be capable of detecting and protecting

itself from malicious attacks so as to maintain overall system security and integrity.

The secondary properties of autonomic systems are:

1. Self-awareness: An autonomic system requires to know itself, which can be achieved

by having a detailed knowledge of its components and connections with other sys-

tems.

2. Context-awareness: An autonomic system should be aware of its execution envi-

ronment by exposing itself and discovering other autonomic elements or systems in

the environment.

3. Openness: An autonomic system should be able to function in a heterogeneous

environment and be implemented on open standards and protocols.

4. Anticipatory: One critical property from the perspective of the users is that an auto-

nomic system should be able to anticipate its needs and behaviours and act accord-

ingly, while keeping its complexity hidden.

2.3. Overview of Autonomic Computing Systems 25

The description and example of the primary four properties of an autonomic system is

presented in Table 2.2.

Self-
Healing

Self-
Protecting

Self-
Optimizing

Self-
Configuring

Figure 2.3: Self-* properties of autonomic computing system.

Table 2.2: Summary of self-* properties

Self-*
Property

Description Example

Self-
configuring

Ability to adapt to changes in the system. Installing software when it detects that
some prerequisite software components
are missing.

Self-optimizing Ability to improve performance of the
system.

Adjusting the current workload when it ob-
serves an increase or decrease in capacity.

Self-healing Ability to discover, diagnose, and recover
from faults.

Automatically re-indexing the files if a
database index fails.

Self-protecting Ability to anticipate, detect, identify, and
protect against threats/intrusions.

Taking resources offline if it detects an in-
trusion attempt.

2.3.2 IBM Tivoli: A Case Study in Autonomic Computing

Tivoli [60] is a Systems Management Software toolkit provided by IBM that enables au-

tomation of routine management tasks for individual resource elements. It is designed

based on CORBA-based architecture, which allows Tivoli to manage large number of

26 Chapter 2. An Overview of Autonomic Management of Grid Applications

remote locations. Tivoli software tools are focused on various aspects of system man-

agement (e.g. security, storage, performance, availability, configuration, and operations)

and facilitate provisioning of wide range of resources including systems, applications,

middleware, networks, and storage devices.

The purpose of Tivoli platform is to bring self-managing c-apabilities into the IT in-

frastructure. The Tivoli software availability management portfolio provides tools to help

customers monitor the health and performance of their IT infrastructure. Tivoli storage

management tools help users to automatically and efficiently back up and protect data.

The workload management tools use self-optimizing technology to optimize hardware

and software use and verify if SLA goals are met successfully. Monitoring and event

correlation tools help to determine when changes in the IT infrastructure require recon-

figuration actions. These tools allow users to reconfigure their IT environment within

minutes or hours rather than in days or weeks. The self-managing capabilities of Tivoli

software toolkit are discussed in the following.

Self-configuring capabilities

In order to implement a self-configuring environment, Tivoli uses three software compo-

nents: Configuration Manager, Storage Manager and Identity Manager. Tivoli Configura-

tion Manager automatically configures to rapidly changing environments. It provides an

inventory scanning engine and a state management engine that senses and detects when

software on a target machine is out-of-synchronization with respect to a reference model

for that class of machine. Tivoli Storage Manager provides self-configuring capabilities

by automatically identifying and loading the appropriate drivers for the storage devices

connected to the server. Tivoli Identity Manager uses automated role-based provisioning

for dynamic account creation for users.

Self-optimizing capabilities

Tivoli Service Level Advisor performs self-optimizing activity by preventing Service

Level Agreement (SLA) breaches with predictive capabilities. Based on the analysis of

historical performance data from Tivoli Enterprise Data Warehouse, it predicts when crit-

ical SLA thresholds could be exceeded in the future. Tivoli Workload Scheduler monitors

2.4. Autonomic Management of Applications in Grids 27

and controls the flow of work through the IT infrastructure, and it uses sophisticated al-

gorithms to maximize throughput and optimize resource usage. Tivoli Storage Manager

supports Adaptive Differencing technology that facilitates the backup archive client to

dynamically determine efficient approaches for creating backup copies of just changed

bytes, blocks or files, and delivering improved backup performance. Tivoli Business Sys-

tems Manager enables optimization of IT problem repairs based on business impact of

outages.

Self-healing capabilities

Tivoli utilizes several tools for implementing self-healing environment. Tivoli Enterprise

Console collects and compares error reports, derives root cause, and initiates corrective

actions. Tivoli Switch Analyzer correlates network device (Layer 2 switch) errors to the

root cause without user intervention. Tivoli NetView enables self-healing by discovering

TCP/IP networks, displaying network topologies, monitoring network health, and gather-

ing performance data. Tivoli Storage Resource Manager automatically identifies potential

problems through scanning and executes policy-based actions to resolve allocation of stor-

age quotas or space and provide application availability.

Self-protecting capabilities

Tivoli Storage Manager self-protects by automating backup and archival of enterprise

data across heterogeneous storage environments. On the other hand, Tivoli Access Man-

age self-protects by preventing unauthorized access and using a single security policy

server to enforce security across multiple file types, applications, devices, operating sys-

tems, and protocols. Tivoli Risk Manager enables self-protecting by assessing potential

security threats and automating responses, such as server reconfiguration, security patch

deployment and account revocation.

2.4 Autonomic Management of Applications in Grids

Computational Grids enable the sharing, selection, and aggregation of geographically dis-

tributed heterogeneous resources, such as computational clusters, supercomputers, stor-

28 Chapter 2. An Overview of Autonomic Management of Grid Applications

Self-configuring
Capability

Configuration
Manager

Identity
Manager

Storage
Manager

Self-optimizing
Capability

Enterprise
Console

Switch Analyzer

NetView

Business
Systems
Manager

Risk Manager

Storage
Resource
Manager

Self-healing
Capability

Service Level
Advisor

Workload
Scheduler

Business
Systems
Manager

Storage
Manager

Transaction
Performance

Monitor

Self-protecting
Capability

Access Manager

Identity Manager

Risk Manager

Privacy Manager

Storage
Manager

Figure 2.4: Components of IBM Tivoli enterprise management software toolkit.

age devices, and scientific instruments. These resources are under control of different

Grid sites and being utilized to solve many important scientific, engineering, and business

problems. In general, Grid infrastructures are distributed, large, heterogeneous, uncertain,

and highly dynamic. A sample scenario of scientific application composition and man-

agement in such Grid environment is shown in Fig. 1.1, where application scientists and

users from different Grid sites/domain share various types of resources distributed world

wide.

Application scientists/users are not much concerned about the low level Grid infras-

tructure, such as runtime systems, programming environment and core middleware ser-

vices, but still want high confidence level in composition and deployment of their scien-

tific applications. They rely on the third party brokering or scheduling services, which

abstract the underlying complexity of the system and facilitates efficient execution of the

applications in Grid resources. However, many important applications in bioinformatics,

medical imaging, and data mining require very accurate and reliable tools for conducting

distributed experiments and analysis. The traditional Grid management methods, tools,

and application composition techniques are inadequate to handle the dynamic interaction

between the components and the sheer scale, complexity, uncertainty, and heterogeneity

2.5. Taxonomy 29

of the Grid infrastructures as shown in Fig. 1.1.

Autonomic computing has been emerged to cope with the aforementioned challenges

by being decentralized, context aware, adaptive, and resilient. Thus autonomic manage-

ment of applications in Grids implies the utilization of autonomic computing features for

the composition, deployment, and management of complex applications in Grids.

2.5 Taxonomy

In this section, we propose a taxonomy that categorizes and classifies the approaches of

autonomic application management in the context of computational Grids with respect to

the key features of AC. As shown in Fig. 2.5, it consists of six elements of autonomic

application management: (1) application composition, (2) application scheduling, (3) co-

ordination, (4) monitoring, (5) self-* property, and (6) system characteristics. In this

section, we discuss each element and its classification in detail.

Autonomic

Application

Management

Application
Composition

Application
Scheduling

Coordination
Self-*

Property
System

Characteristics
Monitoring

Figure 2.5: Elements of autonomic application management.

2.5.1 Application Composition

The applications executed in a distributed computing environment, such as Grids are gen-

erally computation or data intensive and users can experience better performance if they

are able to execute these applications in parallel. In order to facilitate autonomic applica-

tion management, the applications need to be composed dynamically based on the system

configuration and users’ requirements [30]. As shown in Fig. 2.6, application compo-

30 Chapter 2. An Overview of Autonomic Management of Grid Applications

sition in a computational Grid is characterized by four factors: (a) application type, (b)

application domain, (c) application definition, and (d) data requirement.

Application

Composition

Application
Type

Application
Domain

Application
Definition

Data
Requirement

Workflow MPI Bag-of-Tasks Scientific Business Social Language
based

Tool
based

Light Heavy

Standard Custom

Figure 2.6: Application composition taxonomy.

Application Type

An application is composed of multiple tasks, where a task is a set of instructions that

are executed on a single processing element of a computing resource. Based on the de-

pendency or relationship among these tasks, Grid applications can be divided into three

types: Bag-of-task (BOT), Message Passing Interface (MPI) and Workflow.

A BOT application [31] consists of multiple independent tasks with no communication

among each other. The final result or output of executing the BOT application is achieved

once all these tasks are completed. On the other hand, MPI applications [84] are composed

of multiple tasks, where inter-task communication is developed with the Message Passing

Interface (MPI) libraries. Since the tasks in most MPI applications need to communicate

with each other during execution, the necessary processing elements are required to be

available at the same time to minimize application completion time.

Finally, a workflow application can be modeled as a Directed Acyclic Graph (DAG),

where the tasks in the workflow are represented as nodes in the graph and the depen-

2.5. Taxonomy 31

dencies among the tasks are represented as the directed arcs among the nodes [97]. In a

workflow, a task that does not have any parent task is called entry task and a task that does

not have any child task is called exit task. A child task cannot be executed until all of its

parent tasks are completed. The output of a workflow application is achieved when the

exit tasks finish execution.

Application Domain

Grids offer a way to solve challenging problems by providing a massive computational

resource sharing environment of large-scale, heterogeneous and distributed IT resources.

With the advent of Grid technologies, scientists and engineers are building more and more

complex applications to manage and process large scale experiments. These applications

are spanned across three domains: scientific, business and social.

Many scientific (also known as e-Science and e-Research) applications, such as Bioin-

formatics, Drug discovery, Data mining, High-energy physics, Astronomy, and Neuro-

science have been benefited with the emergence of Grids. Enabling Grids for E-sciencE

(EGEE) [74] is considered as one of the biggest initiatives taken by European Union to

utilize Grid technologies for scientific applications. Likewise, Business Experiments in

GRID (BEinGRID) [1] is also the largest project for facilitating business applications,

such as Business process modeling, Financial modeling and forecasting using Grid solu-

tions. Recently, the emergence and upward growth of various social applications, such as

Social networking have been widely recognized and the scalability of distributed comput-

ing environment is being leveraged for the better performance of these type of applica-

tions.

Application Definition

In general, users can define applications using definition languages or tools. In terms of

definition language, markup language, such as Extensible Markup Language (XML) [4]

is widely used specially for workflow specification as it facilitates information description

in a nested structure. Therefore, many XML-based application definition languages have

been adopted in Grids. Some of these languages, such as WSDL [7] and BPEL [64]

have been standardized by the industry and research community (i.e. W3C [8]), whereas

32 Chapter 2. An Overview of Autonomic Management of Grid Applications

some of them, such as xWFL [134] and AGWL [40] are customized according to the

requirements of the system.

Although language-based definition of applications is convenient for expert users, it

requires users to learn a lot of language-specific syntax. Thus, the general users prefer

to use Graphical User Interface (GUI) based tools, such as Petri Nets [92] for application

definition, where the application composition is better visualized. However, this graphical

representation is later converted into other forms for further manipulation.

Data Requirements

Managing applications in Grids also needs to handle different types of data, such as input

data, backend databases, intermediate data products, and output data. Many Bioinfor-

matics applications often have small input and output data but rely on massive backend

databases that are queried as part of task execution. On the other hand, some Astronomy

applications generate huge output data that are feed into other applications for further

processing. Some applications also need the data to be streamed between the tasks for

efficient execution.

Thus, the data requirements of an application can be categorized into two types: light

and heavy. If an application needs huge amount of data as input or generates massive

intermediate or output data products then its data requirement is considered as heavy.

These applications are generally known as data-intensive applications. Whereas, if the

application is computation-intensive, it does not need much data to be handled and its

data requirement is considered as light.

2.5.2 Application Scheduling

Effective scheduling is a key concern for the execution of performance driven Grid ap-

plications. Scheduling is a process of finding the efficient mapping of tasks in an appli-

cation to the suitable resources so that the execution is completed with the satisfaction

of objective functions, such as execution time minimization, as specified by Grid users.

In this section, we discuss application scheduling taxonomy from the perspective of (a)

scheduling architecture, (b) scheduling objective, (c) scheduling decision, and (d) sched-

2.5. Taxonomy 33

uler integration, as shown in Fig. 2.7.

Application

Scheduling

Scheduling
Architecture

Scheduling
Objective

Scheduling
Decision

Scheduler
Integration

Centralized DecentralizedHierarchical Utility Reputation Optimization Load
balancing

Static Dynamic Combined Separated

Figure 2.7: Application scheduling taxonomy.

Scheduling Architecture

The architecture of scheduling infrastructure is very important with regards to scalability,

autonomy and performance of the system [57]. It can be divided into three categories:

centralized, hierarchical and decentralized.

In centralized scheduling architecture [134], scheduling decisions are made by a cen-

tral controller for all the tasks in an application. The scheduler maintains all information

about the applications and keeps track of all available resources in the system. Centralized

scheduling organization is simple to implement, easy to deploy and presents few manage-

ment hassles. However, it is not scalable with respect to the number of tasks and Grid

resources.

For hierarchical scheduling, there is a central manager and multiple lower-level sched-

ulers. This central manager is responsible for handling the complete execution of an ap-

plication and assigning the individual tasks of this application to the low-level schedulers.

Whereas, each lower-level scheduler is responsible for mapping the individual tasks onto

Grid resources. The main advantage of using hierarchical architecture is that different

scheduling policies can be deployed at central manager and lower-level schedulers [57].

However, the failure of the central manager results in entire system failure.

34 Chapter 2. An Overview of Autonomic Management of Grid Applications

In contrast, decentralized scheduler organization [104] negates the limitations of cen-

tralized or hierarchical organization with respect to fault-tolerance, scalability and auton-

omy (facilitating domain specific resource allocation policies). This approach scales well

since it limits the number of tasks managed by one scheduler. However, this approach

raises some challenges in the domain of distributed information management, system-

wide coordination, security, and resource provider’s policy heterogeneity.

Scheduling Objective

The application schedulers generate the mapping of tasks to resources based on some

particular objectives. Usually, the schedulers employ an objective function that takes

into account the necessary objectives and endeavour to maximize the output. The most

commonly used scheduling objectives in a Grid environment are utility, reputation, opti-

mization and load balancing.

Utility is a measure of relative satisfaction. In a utility driven approach, the users or

service consumers prefer to execute their applications within certain budget and dead-

line, whereas the resource providers tend to maximize their profits. Reputation refers to

the performance of computing resources in terms of successful task execution and trust-

worthiness. Optimization is related to the improvement of performance with regards to

application completion time or resource utilization. Load balancing is also a measure of

performance, where the workload on the resources is distributed in such a way so that any

specific resource is not overloaded.

Scheduling Decision

An application scheduler uses a specific scheduling strategy for mapping the tasks in an

application to suitable Grid resources in order to satisfy user requirements. However, the

majority of these scheduling strategies are static in nature [121]. They produce a good

schedule given the current state of Grid resources and do not take into account changes in

resource availability.

On the other hand, dynamic scheduling [95] is done on-the-fly considering the cur-

rent state of the system. It is adaptive in nature and able to generate efficient schedules,

2.5. Taxonomy 35

which eventually minimizes the application completion time as well as improves the per-

formance of the system.

Scheduler Integration

The scheduler component in a Grid system provides the service of generating execution

schedules that map the tasks in an application onto distributed computing resources con-

sidering their availability and user’s requirements. It also keeps track of the status of the

tasks being executed on these Grid resources.

The application scheduler can be deployed in a Grid environment as a scheduling

or brokering service to be consumed by the Grid users utilizing the principles of Service-

oriented Architecture (SOA). In this case, the scheduler component is deployed separately

in a server and the users submit their applications to this service [126], where the indi-

vidual task scheduling and submission are managed by the scheduler. On the other hand,

scheduler can also be combined or integrated into the system at user’s side so that the

users are not required to connect another service for scheduling purposes.

2.5.3 Coordination

The effectiveness of autonomic application management in a distributed computing envi-

ronment also depends on the level of coordination among the autonomic elements, such

as application scheduler or resource broker, local resource management system and re-

source information service. Lack of coordination among these components may result

in communication overhead, which eventually degrades performance of the system. In

general, the process of coordination with respect to application scheduling and resource

management in Grids involves dynamic information exchange between various entities in

the system. In this section, we discuss the coordination taxonomy from the view of (a)

decision making, (b) component integration, and (c) negotiation policy as illustrated in

Fig. 2.8.

36 Chapter 2. An Overview of Autonomic Management of Grid Applications

Coordination

Decision
Making

Coordination
Mechanism

Communication
Protocol

Cooperative Non-cooperative Market
based

Coordination
space based

Group
based

One-to-one One-to-many

Figure 2.8: Coordination taxonomy.

Decision Making

In a distributed computing environment, the autonomic components communicate or in-

teract with each other for the purpose of individual or system-wide decision making (e.g.

overlay construction, task scheduling and load balancing). The process of decision mak-

ing can be divided into two categories: cooperative and non-cooperative.

In the non-cooperative decision making scheme, application schedulers perform schedul-

ing related activities independent of the other schedulers in the system. For example,

Condor-G [47] resource brokering system performs non-cooperative scheduling by di-

rectly submitting jobs to the condor pools without taking into account their load and uti-

lization status. This approach exacerbates the performance of the system due to load

balancing and utilization problems.

In contrast, cooperative decision making approach [94] negotiates resource conditions

first with the local site managers in the system, and if it fails, then negotiates with the

other application level schedulers. Thus, it is able to not only avoid the potential resource

contention problem but also distribute the workload evenly over the entire system.

Coordination Mechanism

Realizing effective coordination among the dynamic and distributed autonomous entities

requires robust coordination mechanism and negotiation policies. Three types of coordi-

nation mechanisms are well adopted in Grids: market based coordination, group based

2.5. Taxonomy 37

coordination and coordination space based coordination.

Market based mechanism views computational Grids as virtual marketplace in which

economic entities interact with each other through buying and selling computing or stor-

age resources. Typically, this coordination mechanism is used to facilitate efficient re-

source allocation. One of the common approaches to achieve market based coordination

is to establish agreements between the participating entities through negotiations. Nego-

tiation among all the participants can be done based on well-known agent coordination

mechanism called contract net protocol [112]. In such mechanism, the resource provider

works as a manager that exports its local resources to the outside contractors or resource

brokers and is responsible for decision regarding admission control based on negotiated

Service Level Agreements (SLA).

In collaborative Grid environment, resource sharing is often coordinated by the com-

position of groups (e.g. Virtual Organization (VO) [45]) of participating entities with sim-

ilar interests. In Grids, VO refers to a dynamic set of individuals and institutions defined

around a set of resource-sharing rules and conditions. The users and resource providers in

a VO share some commonality among them, including common concerns, requirements

and goals. However, the VOs may vary in size, scope, duration, sociology, and structure.

Thus, inter-VO resource sharing in Grids is achieved through the establishment of SLA

among the participating VOs.

Decentralized coordination space [75] provides a global virtual shared space for the

autonomic elements in Grids. This space is concurrently and associatively accessed by all

participants in the system, and the access is independent of the actual physical or topo-

logical proximity of the hosts. New generation DHT-based routing algorithms [115][107]

form the basis for organizing the coordination space. The application schedulers post their

resource demands by submitting a Resource Claim object into the coordination space,

while resource providers update the resource information by submitting a Resource Ticket

object. If there is a match between these objects, then the corresponding entities commu-

nicate with each other in order to satisfy their interests.

38 Chapter 2. An Overview of Autonomic Management of Grid Applications

Communication Protocol

The interaction among the autonomic components is coordinated by the utilization of

some particular communication protocols that can be divided into two types: One-to-one

and One-to-many. Communication protocols based on One-to-many broadcast is sim-

ple but very expensive in terms of number of messages and network bandwidth usage.

This overhead can be drastically reduced by adopting One-to-one negotiation among the

resource providers and consumers through establishment of SLA.

2.5.4 Monitoring

Monitoring in Grids involves capturing information regarding the environment (e.g. num-

ber of active resources, queue size, processor load) that are significant to maintain the

self-* properties of the system. This information or monitoring data is utilized by the

MAPE-K autonomic loop and the necessary changes are accordingly executed by the au-

tonomic manager through effectors. The sensing components of an autonomic element in

Grids require appropriate monitoring data to recognize failure or suboptimal performance

of any resource or service. As shown in Fig. 2.9, monitoring can be done in three levels:

(a) execution monitoring, (b) status monitoring, and (c) directory service.

Monitoring

Execution
Monitoring

Status
Monitoring

Directory
Service

Active Passive System
health

Performance
parameter

Centralized Decentralized

Figure 2.9: Monitoring taxonomy.

2.5. Taxonomy 39

Execution Monitoring

Once an application is scheduled and the tasks in that application are submitted to cor-

responding Grid resources for execution, the scheduler needs to periodically monitor the

execution status (e.g. queued, started, finished and failed) of these tasks so that it can

efficiently manage unexpected events, such as failure. We identify two types of execution

monitoring in Grids: active and passive.

The concept of active and passive monitoring of task execution in Grids is derived

from the push-pull protocol [109], widely used in the research area of computer network.

In active monitoring, information related to task execution is created by engineering the

software at some levels, for example, modifying and adding code to implementation of

the application or the operating system to capture functions or system calls so that the

application itself can report monitoring data periodically (pulling). Moreover, the request

for transferring status information is often initiated by the receiver or client in active

monitoring strategy. For instance, the application scheduler can send an isAlive probe

to the Grid resources currently executing its application for detecting the availability (e.g.

online) of these resources at that time.

In contrast, passive monitoring technique captures status information at the resource

or server side by the local monitoring service and reports monitoring data to the user or

scheduler side periodically (pushing). For example, a resource provider in Grids can peri-

odically inform the status of its system, such as current load to the interested application

schedulers according to the requirements specified in the agreement between them.

Status Monitoring

The autonomic elements in Grids need to monitor the relevant system properties (i.e.

system health) to optimize its operating condition and facilitate efficient decision making.

System health data relates to runtime system information, such as memory consumption,

CPU utilization, and network usage. The process of collecting system related information

is straightforward and most of the operating systems provide a set of commands (e.g. top,

vmstat in Linux) or tools to perform this operation.

In addition, the autonomic element also needs to monitor the performance parameters

40 Chapter 2. An Overview of Autonomic Management of Grid Applications

of its operation, such as SLA violation if it incorporates market based mechanisms to

interact with other autonomic elements in the system. To this end, it periodically measures

the performance metrics (e.g. service uptime) with regards to the SLA and takes necessary

steps to prevent the violation of agreement.

However, the monitoring service often suffers from the dilemma of deciding on how

frequently and how much monitoring data should be collected to facilitate efficient deci-

sion making. Thus, dynamic and proactive monitoring approaches are essential in order

to achieve autonomicity. For example, QMON [12] is an autonomic monitoring service

that adapts its monitoring frequency and data volumes for minimizing the overhead of

continuous monitoring, while maximizing the utility of the performance data.

Directory Service

The directory service provides information about the available resources in the Grid and

their status, such as host name, memory size and processor load. The application sched-

ulers or resource brokers rely on this information for efficient mapping of tasks in an

application to the available resources. Based on the underlying structure, two types of

directory services are available in Grids: centralized and decentralized.

In a centralized directory service (e.g. Grid Market Directory (GMD) [138]),monitoring

data is stored in a centralized repository. Current studies [139] have shown that existing

centralized models for resource directory services do not scale well as the number of users,

brokers, and resource providers are increased in the system and are vulnerable to single

point of failure. Whereas, decentralized information service distributes the process of re-

source discovery and indexing over the participating Grid sites so that load is balanced

and if one site is failed, another site can take over its responsibility autonomously.

2.5.5 Self-* Property

In this section, we discuss the self-* properties taxonomy from the perspective of four

primary properties: (a) self-configuring, (b) self-optimizing, (c) self-healing, and (d) self-

protecting (refer to Fig. 2.10). As illustrated in Section 2.3.1, the evaluation of an au-

tonomic system depends on to what extent it adopts or implements the self-* properties.

2.5. Taxonomy 41

Further, its very difficult for a system to fully implement all the self-* properties and in

many cases it becomes redundant. Thus most of the autonomic systems focus on some

particular properties based on their requirements and goals.

Self-*

Property

Self-
configuring

Self-
optimizing

Self-healing
Self-

protecting

Automatic
installation

Reconfiguration Dynamic
scheduling

Adaptive
streaming

Failure
prediction

Check-
pointing

Security
policy

Intrusion
detection

Trust
management

Figure 2.10: Self-* properties taxonomy.

Self-configuring

Self-configuration refers to the ability to adapt to changes in the system. In regards to

autonomic application management, the system demonstrates self-configuration property

by automatically installing the software components when it detects that some prerequi-

site components are outdated or missing. This ensures the timely update of the system

without human intervention. In addition, the system also reconfigures itself in the event

of dynamic and changing condition.

Self-optimizing

Self-optimization refers to the ability to improve performance of the system through con-

tinuous optimization. In Grids, the application management systems can use dynamic

scheduling techniques for mapping application tasks to Grid resources in order to imple-

ment the self-optimizing property. The dynamic scheduling approach proactively moni-

tors the status of the Grid resources and schedules tasks according to the current condition

of the computational environment by dynamic policies, such as rescheduling. Another

42 Chapter 2. An Overview of Autonomic Management of Grid Applications

continuous optimization strategy is utilization of adaptive streaming technique for data

intensive applications [17].

Self-healing

Self-healing refers to the ability to discover, diagnose and recover from faults. Thus, the

self-healing property enables a distributed computing system to be fault-tolerant by avoid-

ing or minimizing the effects of execution failures. In a Grid environment, task execution

failure can happen for various reasons: (i) sudden changes in the execution environment

configuration, (ii) unavailability of required services or software components, (iii) over-

loaded resource conditions, (iv) system running out of memory, and (v) network failures.

In order to efficiently handle these failures an autonomic system can adopt some preemp-

tive policies, such as Failure prediction, Check-pointing, and Replication.

Failure prediction techniques [93] are used to predict the availability of the Grid re-

sources continuously over certain period of time. Using these predictions, application

schedulers plan the mapping of tasks to the resources considering their future availability

in order to avoid possible task failures. The check-pointing technique [2] transfers the

failed tasks transparently to other resources, so that the task continues its execution from

the point of failure. The replication technique [10] executes the same task simultaneously

on multiple Grid resources to increase the probability of successful task execution.

Self-protecting

Self-protecting refers to the ability to anticipate and protect against threats or intrusions.

This property makes an autonomic system capable of detecting and protecting itself from

malicious attacks so as to maintain overall system security and integrity.

Self-protecting application management can be achieved by implementing some proac-

tive policies (i.e. dynamic access control) at both resource and user sides, such as provid-

ing accurate warning about potential malicious attack, taking networked resources offline

if any anomaly is detected, and shutting down the system if any hazardous event occurs.

One technique for enabling self-protection is utilization of distributed trust manage-

ment systems. A relevant distributed trust mechanism is PeerReview [38]. These dis-

tributed trust management systems determine malicious participants through behavioral

2.5. Taxonomy 43

auditing. An auditor node A checks if it agrees with the past actions of an auditee node

B. In case of disagreement, A broadcasts an accusation of B. Interested third party nodes

verify evidence, and take punitive action against the auditor or the auditee.

Another approach to protect the system from malicious attacks is to leverage intrusion

detection techniques [56], where the system performs online monitoring and analyzes the

attacks/intrusions. Then a model is devised and trained using the past data that is used to

successfully and efficiently detect future attacks.

2.5.6 System Characteristics

Due to its inherent nature, a distributed system possesses some characteristics, such as

decentralization, heterogeneity, complexity, and reliability. These characteristics not only

enforce challenges for designing the system but also make the system useful to the users.

As indicated in Fig. 2.11, there are three characteristics of a distributed system that are re-

lated to autonomic application management: (a) complexity, (b)scalability, and (c) volatil-

ity. The more a system becomes complex or volatile, the more it needs to incorporate

autonomic computing principles in order to avoid performance degradation and user dis-

satisfaction. Whereas, increasing the scalability of a system facilitates the adoption of

autonomic features.

System

Characteristics

Scalability Complexity Volatility

High Low High Low High LowMedium Medium Medium

Figure 2.11: System characteristics taxonomy.

44 Chapter 2. An Overview of Autonomic Management of Grid Applications

Complexity

According to the definition of Buyya et al. [23], a Grid is a type of parallel and distributed

system that enables the sharing, selection, and aggregation of geographically distributed

autonomous resources dynamically at runtime depending on their availability, capability,

performance, cost, and users’ quality-of-service requirements. The resources are hetero-

geneous and fault-prone as well as may be administered by different organizations. Thus

Grid systems are complex by their characteristics.

However, as the complexity of a system increases, it becomes brittle and unmanage-

able. In that case, the system needs to be more autonomous so that it can handle the

consequences of complexity without human intervention. For instance, the complexity of

a decentralized Grid system is much higher than that of a centralized Grid system because

of the interaction and coordination of the large number of decentralized components.

Scalability

Scalability of a distributed system is the ability for the system to easily expand or contract

its resource pool to accommodate heavier or lighter loads. In other words, scalability is

the ease with which a system can be modified, added or removed in order to accommodate

varying workload.

If a system is highly scalable, its performance should not dramatically deteriorate as

the system size increases. In general, decentralized or peer-to-peer Grid systems [99] are

scalable in nature, whereas the centralized Grid systems [13] are least scalable as there

exists a single point of control.

Volatility

Volatile refers to changing or changeable. Thus, volatility of a distributed system can be

defined as the likelihood that the status of the system or its components to be altered due

to the heterogeneous and dynamic behaviour of the environment, such as configuration

change, resource failure, and load variation. If the condition of the system changes fre-

quently over short period of time, it has high volatility. If the system status almost never

changes, it has low volatility. In general, Grid systems are volatile in nature due to the

2.6. Survey of Grid Systems 45

Table 2.3: Summary of Grid projects

Name Organization Status/ Availability Application focus
Aneka Federa-
tion

The University of Mel-
bourne, Australia

Free Evaluation version Compute-intensive Bag-
of-task

http://www.gridbus.org
Askalon University of Innsbruck,

Austria
Under Askalon Soft-
ware License

Performance-oriented
scientific Workflow

http://dps.uibk.ac.at/askalon
AutoMate Rutgers University, USA N/A Data-intensive Bag-of-

task
http://www.caip.rutgers.edu/TASSL/Projects/AutoMate/

Condor-G University of Wisconsin,
USA

Source code under
Apache License

Compute-intensive Bag-
of-task

http://www.cs.wisc.edu/condor/condorg/
GWMS The University of Mel-

bourne, Australia
Open source under
GPL

Computational and data-
intensive Workflow

http://www.gridbus.org
Nimrod-G Monash University, Aus-

tralia
Source code under
DSTC license

Computational and data-
intensive Bag-of-task

http://messagelab.monash.edu.au/NimrodG
Pegasus University of Southern Cali-

fornia, USA
Open source under At-
lassian Confluence

Data-intensive Workflow

http://pegasus.isi.edu
Taverna Collaboration between sev-

eral European institutes and
industries

Source code under
LGPL license

Bioinformatics Work-
flow

http://taverna.sourceforge.net/
Triana Cardiff University, UK Source code under

Apache License
Compute-intensive
Workflow

http://www.trianacode.org/

underlying characteristics.

2.6 Survey of Grid Systems

This section provides a detailed survey of selected existing Grid systems and mapping of

the taxonomy proposed in the previous section onto these systems. Table 2.3 shows the

summary of selected Grid workflow management projects. A comparison of various Grid

systems and their categorization based on the taxonomy is shown in Table 2.4 to Table 2.9.

46 Chapter 2. An Overview of Autonomic Management of Grid Applications

Table 2.4: Application composition taxonomy

Project Application type Application
domain

Application definition Data require-
ment

Aneka Federa-
tion

Bag-of-task Business/Scientific XML-based custom Light

Askalon Workflow Scientific AGWL-based custom Light/Heavy
AutoMate Bag-of-task Business/Scientific XML-based custom Heavy
Condor-G Bag-of-task/MPI Scientific ClassAd-based custom Light
GWMS Workflow Scientific xWFL-based custom Heavy
Nimrod-G Bag-of-task/MPI Business/Scientific DPML-based custom Heavy
Pegasus Workflow Scientific VDL-based custom Heavy
Taverna Workflow Scientific Scufl-based custom Heavy
Triana Workflow Scientific Tool-based Light

Table 2.5: Application scheduling taxonomy

Project Scheduling architec-
ture

Scheduling objec-
tive

Scheduling deci-
sion

Scheduler inte-
gration

Aneka Federa-
tion

Decentralized Load balancing Dynamic Combined

Askalon Centralized Utility/Optimization Static/Dynamic Separated/Combined
AutoMate Decentralized Load balancing Dynamic Combined
Condor-G Centralized Load balancing Dynamic Combined
GWMS Centralized Utility/Optimization Dynamic Separated
Nimrod-G Centralized Utility/Optimization Dynamic Separated/Combined
Pegasus Centralized Optimization Static/Dynamic Separated
Taverna Centralized Optimization Dynamic Separated/Combined
Triana Centralized/Decentralized Optimization Dynamic Separated/Combined

Table 2.6: Coordination taxonomy

Project Decision making Coordination Mechanism Communication
Protocol

Aneka Federa-
tion

Cooperative Coordination space based One-to-many

Askalon Non-cooperative Market/Group based One-to-one
AutoMate Cooperative Coordination space based One-to-many
Condor-G Non-cooperative Group based One-to-one
GWMS Non-cooperative Market/Group based One-to-one
Nimrod-G Non-cooperative Market/Group based One-to-one
Pegasus Non-cooperative Group based One-to-one
Taverna Non-cooperative Group based One-to-one
Triana Cooperative Group based One-to-many (all)

2.6. Survey of Grid Systems 47

Table 2.7: Monitoring taxonomy

Project Execution moni-
toring

Status monitoring Directory Service

Aneka Federa-
tion

Passive System health Decentralized

Askalon Passive System health Centralized
AutoMate Passive System health/Performance parameter Decentralized
Condor-G Active System health Centralized
GWMS Passive System health/Performance parameter Centralized
Nimrod-G Passive System health/Performance parameter Centralized
Pegasus Active System health Centralized
Taverna Passive System health Centralized
Triana Passive System health Decentralized

Table 2.8: Self-* properties taxonomy

Project Self-configuring Self-optimizing Self-healing Self-protecting

Aneka Federa-
tion

Reconfiguration Dynamic rescheduling Failure detection N.A.

Askalon N.A. Dynamic rescheduling/
Performance prediction

Failure detection/
Check-pointing

Authentication
detection

AutoMate Reconfiguration Adaptive streaming N.A. Security policy
Condor-G N.A. Dynamic rescheduling Failure detection N.A.
GWMS N.A. Dynamic rescheduling Failure detection N.A.
Nimrod-G N.A. Dynamic rescheduling Failure detection N.A.
Pegasus N.A. Dynamic rescheduling Failure detection/

Check-pointing
Authentication
detection

Taverna N.A. Dynamic rescheduling Failure detection N.A.
Triana Reconfiguration Dynamic rescheduling Failure detection/

Check-pointing
N.A.

Table 2.9: System characteristics taxonomy

Project Scalability Complexity Volatility
Aneka Federation High High High
Askalon Medium Medium Medium
AutoMate High High High
Condor-G Low Low Medium
GWMS Low Medium Medium
Nimrod-G Low Medium Medium
Pegasus Low Medium Medium
Taverna Low Medium Medium
Triana High High High

48 Chapter 2. An Overview of Autonomic Management of Grid Applications

2.6.1 Aneka Federation

Aneka Federation system [99] logically connects topologically and administratively dis-

tributed Aneka Enterprise Grids as part of a single cooperative system. It uses a Dis-

tributed Hash Table (DHT), such as Pastry [107] and Chord [115] based self-configuring

Peer-to-Peer (P2P) network model for discovering and coordinating the provisioning of

distributed resources in Aneka Grids. It also employs a novel resource provisioning tech-

nique that assigns the best possible resource sets for the execution of applications, based

on their current utilization and availability in the system.

The application scheduling and resource discovery in Aneka-Federation is facilitated

by a specialized Grid Resource Management System, known as Aneka Coordinator (AC).

AC is composed of three software entities: Grid Resource Manager (GRM), Local Re-

source Management System (LRMS), and Grid Peer. The GRM component of AC exports

a Grid site to the federation and is responsible for coordinating federation wide applica-

tion scheduling and resource allocation. GRM is also responsible for scheduling locally

submitted jobs in the federation using LRMS.

Grid peer implements a DHT based P2P overlay for enabling decentralized and dis-

tributed resource discovery supporting resources status lookups and updates across the

federation. It also enables decentralized inter-AC collaboration for optimizing load-balancing

and distributed resource provisioning. The employment of DHT improves system scala-

bility by enabling the ability to perform deterministic discovery of resources and produces

controllable number of messages (by using selective broadcast approach) in comparison to

using other One-to-All broadcast techniques, such as JXTA [54] that is a set of protocols

for decentralized P2P applications.

Distributed trust mechanism is utilized in Aneka Federation to ensure secured resource

management across the federation. Furthermore, the Aneka Container component of AC

provides the base infrastructure that consists of services for persistence and security (au-

thorization, authentication and auditing).

2.6. Survey of Grid Systems 49

2.6.2 Askalon

Askalon [39] is a Grid application development and execution environment. The goal of

Askalon is to simplify the development and optimization of scientific workflow applica-

tions that can harness the power of computational Grids (i.e. Austrian Grid). Askalon is

comprised of four tools (Scalea, Zenturio, Aksum, and PerformanceProphet), coherently

integrated into a service-oriented architecture. Scalea is a performance measurement and

analysis tool for parallel and distributed high performance applications. Zenturio is a gen-

eral purpose experiment management tool with the support for multi-experiment perfor-

mance analysis and parameter studies. Through a special-purpose performance property

specification language, Aksum provides semi-automatic high level performance bottle-

neck detection. The PerformanceProphet facilitates the users in terms of modeling and

predicting the performance of parallel applications at the early stages of development.

Askalon uses the XML-based Abstract Grid Workflow Language (AGWL) [40] for

composing workflow applications. The Scheduler service processes the workflow specifi-

cation described in AGWL, converts it to executable form and maps it onto the available

Grid resources. Resource Manager is utilized to retrieve the current status and availabil-

ity of Grid resources. Furthermore, the Enactment Engine coordinates the execution of

workflow tasks according to the control flows and data dependencies specified by the

application developers.

Askalon employs a hybrid approach for scheduling workflow applications on the Grid

through dynamic monitoring and steering, combined with static optimization. Static op-

timization maps entire workflow onto the Grid resources using Genetic Algorithm based

on user-defined Quality of Service (QoS) parameters. A dynamic scheduling algorithm

then takes into consideration the dynamic nature of the Grid resources, such as machine

crashes or external CPU and network load. Askalon also employs self-healing mechanism

through checkpointing and migration techniques that support reliable workflow execution

in presence of resource failures as well as when the Enactment Engine itself crashes.

In order to establish authentication mechanism across Askalon user portals and Grid

services, Grid Security Infrastructure (GSI) [44] has been employed based on single sign-

on, credential delegation, and web services security (through XML digital signature and

50 Chapter 2. An Overview of Autonomic Management of Grid Applications

XML encryption).

2.6.3 AutoMate

The main objective of AutoMate [91] is to develop conceptual models and implementation

architectures that enable the development and execution of self-managing Grid applica-

tions. The major components of AutoMate are: Accord programming framework, Rudder

coordination middleware, Meteor content-based middleware and Sesame access control

engine. In AutoMate, application composition plan is generated by Accord, element dis-

covery is performed by Meteor and plan execution is achieved by Rudder. AutoMate

portals provide users with secure, pervasive and collaborative access to different compo-

nents and entities.

The Accord programming framework extends existing distributed programming mod-

els and frameworks to addresses the definition, execution and runtime management of

autonomic elements. In particular, it extends the entities and composition rules defined by

the underlying programming model to enable computational and composition/interaction

behaviors to be defined at runtime using high level rules. In Accord, composition plans

are generated using the Accord Composition Engine and are expressed in XML.

The Rudder coordination middleware provides the core capabilities for supporting au-

tonomic composition, adaptation, and optimization. It builds upon two concepts: Context-

aware agent framework and Decentralized tuple space. A context-aware agent is a pro-

cessing unit that performs tasks to automate the control and coordination of the autonomic

elements. The decentralized tuple space scalably and reliably supports the distributed

agent-based system coordination.

The Meteor content-based middleware provides support for content-based routing, de-

centralized information discovery and messaging service through Squid and Pawn. Squid

is a Distributed Hash Table (DHT) [106] based P2P system that enables efficient and scal-

able information discovery, while supporting complex queries. Pawn is a P2P messaging

substrate that builds on JXTA [54] to support P2P interactions in the Grid. Pawn pro-

vides a stateful and guaranteed messaging to enable key application-level interactions,

such as synchronous/asynchronous communication, dynamic data injection, and remote

2.6. Survey of Grid Systems 51

procedure calls.

In AutoMate, secure interaction among the participating entities is managed by Au-

toMate Access Control Engine, Sesame. It is composed of access control agents and

provides dynamic role based access control to users, applications, services, and resources.

2.6.4 Condor-G

Condor-G [47] is the combination of technologies from the Condor project and the Globus

project [42]. It combines the inter-domain resource management protocols of the Globus

Toolkit and the intra-domain resource and job management mechanisms of Condor. In

particular, Condor-G leverages security and resource access in multi-domain environ-

ments, as supported by the Globus Toolkit as well as management of computation and

harnessing of resources within a single administrative domain, embodied by the Condor

system. Its flexible and intuitive commands are appropriate for use directly by end-users,

or for interfacing with higher-level task brokers and web portals.

The computation management service of Condor-G is called Condor-G agent. It al-

lows users to treat the Grid as an entirely local resource, with an API and command line

tools that facilitate them to perform several job management operations: (1) submit jobs

by indicating an executable name, input/output files, and arguments; (2) query a job’s

status or cancel the job; (3) be informed of job termination/problems via callbacks or

asynchronous mechanisms, such as email; (4) obtain access to detailed log that provides

a complete history of the jobs’ execution.

Condor-G comprises of a powerful, full-featured task broker/scheduler that can man-

age thousands of jobs destined to run at distributed sites. It supports job scheduling,

monitoring, policy enforcement, fault tolerance, and credential management and handles

complex job-interdependencies. Specifically, the job-interdependencies are handled by

the associated meta-scheduler, Directed Acyclic Graph Manager (DAGMan) [2]. While

Condor-G aims to discover available machines for the execution of jobs, DAGMan han-

dles the dependencies between the jobs. The resource brokering is done through a match-

making algorithm.

The Condor-G scheduler responds to a user request of submitting jobs to be run on

52 Chapter 2. An Overview of Autonomic Management of Grid Applications

Grids by creating a new Condor-G GridManager daemon. One GridManager process

handles all jobs for a single user and terminates once all jobs are completed. The job

submission request of each GridManager results in the creation of one Globus JobMan-

ager [42] daemon. The GridManager detects remote failures by periodically probing the

JobManagers of all the jobs it manages and resubmits the failed jobs once detected.

2.6.5 GWMS

Gridbus Workflow Management System (GWMS) [134] facilitates users to execute their

workflow applications on Grids. The two main components of GWMS are workflow

portal and workflow engine. The primary user interface for the users to access GWMS

is a web portal that comprises an editor and a monitor component. The workflow editor

provides a Graphical User Interface (GUI) and allows users to create new and modify

existing workflows utilizing the drag and drop facilities. Workflow monitor provides a

GUI for viewing the status of each task in the workflow. Users can also view the site of

execution for each task, the number of tasks being executed, and the failure history of

each task.

Workflow engine is designed to support an XML-based WorkFlow Language (xWFL).

This facilitates user level planning at the submission time. The workflow language parser

converts workflow description from XML format to Tasks, Parameters and Data Con-

straints (workflow dependency), which are accessed by workflow scheduler. The resource

discovery component of the engine sends query to Grid Information Services, such as

Globus MDS [41], directory service, and replica catalogues to locate suitable resources

for execution of the tasks in the workflow. It also uses Gridbus Broker [126] for dispatch-

ing and managing task executions on different Grid sites comprising various middlewares.

Execution of workflow tasks on different Grid middlewares is achieved by the creation of

specific dispatchers for corresponding middleware.

Workflow engine also employs a just-in-time scheduling system using tuple space,

where every task has its own scheduler called Task Manager (TM), which implements

a scheduling algorithm and handles the processing of tasks. The TMs are controlled

by a Workflow Coordinator. Although these TMs work in a distributed fashion, they

2.6. Survey of Grid Systems 53

communicate with each other through the tuple space that is designed based on a client-

server based centralized technology. However, the just-in-time scheduling system allows

resource allocation decision to be made at the time of task execution, and hence adapts to

the changing Grid environments. Task failures are handled in GWMS by resubmitting the

failed tasks to resources that do not have failure history for these tasks.

2.6.6 Nimrod-G

Nimrod/G [21] is a widely adopted Grid middleware environment for building and man-

aging large computational experiments over distributed resources. It uses the Globus [42]

middleware services for dynamic resource discovery and job dispatching in computational

Grids. The main components of Nimrod/G are: Client or User Station, Parametric Engine,

Scheduler, Dispatcher, and Job-Wrapper. In addition, it provides a web based interface

that allows users to create and manage experiments without installing Nimrod/G client

locally.

Client or User Station acts as a user-interface for controlling and supervising an ex-

periment under consideration. The user can vary parameters related to execution time and

cost, which influence the scheduling decision while selecting resources. It also serves as

a monitoring console for users and lists status of all jobs.

The Parametric Engine is the core component of Nimrod/G and acts as a persistent job

control agent that handles the whole experiment. It is responsible for parameterization of

the experiment, creation of jobs, maintenance of job status, and interaction with Nimrod

scheduler and clients. The engine takes the experiment plan, described using a Declarative

Parametric Modeling Language (DPML) as input and manages the experiment under the

direction of scheduler.

The Scheduler is responsible for resource discovery, resource selection, and job as-

signment. The resource discovery process interacts with a Grid information service di-

rectory (MDS in Globus), identifies the list of authorized machines, and keeps track of

resource status information. As Nimrod/G incorporates computational economy based

job scheduling approach, the resource selection process selects the resources that meet

the execution completion deadline set by the user as well as minimize the cost of compu-

54 Chapter 2. An Overview of Autonomic Management of Grid Applications

tation.

The Dispatcher primarily initiates the execution of tasks in a job on the selected re-

sources according to scheduler’s instruction. The Job-wrapper is responsible for staging

the application data, starting execution of the tasks on assigned resources, and sending

results back to the Parametric Engine through Dispatcher. The architecture of Nimrod/G

is extensible enough to support job execution in several Grid middleware services, such

as Legion [27] and Condor [117] by implementing specific job dispatcher for the corre-

sponding middleware.

2.6.7 Pegasus

Pegasus Workflow Management System (PWMS) [37] has been developed as part of the

GriPhyN project [5] that aims to support large-scale data management in physics ex-

periments, such as high-energy physics and astronomy. It maps and executes complex

scientific workflows on the Grid. PWMS is composed of two major components: Pegasus

workflow mapping engine and DAGMan workflow executor for Condor.

Pegasus workflow mapping engine receives an abstract workflow description expressed

in Chimera’s [46] Virtual Data Language (VDL) and generates an optimized concrete

workflow by mapping workflow tasks to a set of available Grid resources. The abstract

workflow describes the tasks and data in terms of their logical names and indicates their

dependencies in the form of DAG, whereas concrete workflow specifies the location of

the data and the task execution platforms. Pegasus uses the centralized meta-scheduler,

DAGMan [2] as enactment engine with the enhancement of data derivation techniques

that simplify the workflow at run-time based on data availability. Thus, combined with

DAGMan, Pegasus is able to map and execute workflows on a variety of platforms, such

as Condor pools, Cluster managed by LSF or PBS, TeraGrid hosts and individual hosts.

In order to locate the replicas of the required data and find the location of logical

application components, Pegasus uses Replica Location Service (RLS) and Transforma-

tion Catalog (TC) respectively. It also queries Globus Monitoring and Discovery Service

(MDS) to find out available resources and their characteristics. Recently Pegasus is in-

tegrated with a workflow creation system named Wings [52], which utilizes semantic

2.6. Survey of Grid Systems 55

representations to manage workflows that process large data and computation steps [83].

These are represented using a subset of OWL-DL (description logic-based language) in

the form of file and component ontologies.

Pegasus uses two methods for resource selection: random allocation and performance

prediction. In the later approach, Pegasus interacts with Prophesy [129] that is used to

predict the best site to execute an application component by using performance histori-

cal data. It adopts the strategy of dynamically adjusting resource allocation decisions in

response to feedback on the performance of workflow execution. This adaptive strategy

is structured around the MAPE functional decomposition, which partitions the adaptive

functionalities into four areas: Monitoring, Analysis, Planning, and Execution. In case of

job failure, Pegasus incorporates Retry policy and generates a rescue DAG by DAGMan,

which is modified and resubmitted at a later time.

2.6.8 Taverna

Taverna [85] is a workflow management tool of the myGrid project [114], which aims to

exploit Grid technology to develop high-level middleware for supporting data-intensive in

silico bioinformatics experiments using distributed resources. The tool includes a work-

bench application, called Scufl Workbench that provides a graphical user interface for the

composition of workflows and an enactment engine, called Freefluo enactor that facilitates

transfer of intermediate data and invocation of web services.

In Taverna, a workflow is considered as a graph of processors, each of which trans-

forms a set of data inputs into a set of data outputs. These workflows are written in a

language, called Simple Conceptual Unified Flow Language (SCUFL), where each pro-

cessor within a workflow represents one atomic task.

The Scufl Workbench enables bioinformaticians to compose workflows without hav-

ing to learn SCUFL. It acts as a container for a number of user interface components and

provides a user-friendly multi-window environment for users to manipulate workflows,

validate and select available resources as well as execute and monitor these workflows.

Scufl language parser is used to parse Scufl workflow definitions into a form that is en-

acted by the Freefluo enactor.

56 Chapter 2. An Overview of Autonomic Management of Grid Applications

Workflows are executed on the Scufl workbench using the enactor launch panel. This

panel allows inputs to be specified for the workflow and launches a local instance of

the Freefluo enactment engine. Freefluo is a Java based workflow orchestration tool. It

supports invoking different types of services, such as WSDL-based [7] single operation

web services, Soaplab bio-services, Talisman and local applications. The enactment status

panel of Taverna shows the current progress of a workflow invocation and allows users to

browse the intermediate and final results.

Fault tolerance in Taverna is achieved by setting configuration (e.g. number of retries,

time delay, and alternative processor) for each processor in the workflow. It also allows

users to specify the critical level for faults on each processor. If a processor is set as

Critical, when all retries and alternatives are failed, entire workflow execution is termi-

nated; otherwise the execution of workflow is continued, but children nodes of the failed

processor are never invoked.

2.6.9 Triana

Triana [118] is a workflow composition and management environment that consists of an

intuitive Graphical User Interface (GUI) for application composition and an underlying

subsystem, which allows integration of Triana with multiple Grid services and interfaces.

The GUI consists of two main components: Tool browser and Work surface. Tool browser

employs a conventional file browser interface and Work surface is used to graphically

connect the tools to form a dataflow diagram. Thus, users create applications by dragging

the desired tools (or services) from the Tool browser onto the Work surface, and then

wiring them together to create a workflow or dataflow for specific behavior.

The underlying subsystem consists of a collection of interfaces, consisting of various

middlewares and services, including the Grid Application Toolkit (GAT) that integrates

Triana into the Grid. GAT defines a high level API for access to core Grid services using

JXTA [54], web services, and OGSA (Open Grid Services Architecture). Triana sup-

ports two types of application components for distributed execution: Grid-oriented and

Service-oriented. Grid-oriented components refer to applications that are executed on the

Grid using Grid resource manager, such as Grid Resource Management System (GRMS).

2.7. Thesis Scope and Positioning 57

Service-oriented components are remote applications that are invoked through network

interfaces, such as Web services and JXTA services.

An important feature of Triana is that it enables users to distribute sections of a work-

flow to remote machines for execution. The distribution of workflow requires the exis-

tence of Triana launcher services running on the remote machines. A launcher service

provides the contact point for Triana on the remote machine and facilitates the creation of

actual Triana services executing workflow subsections. Moreover, Triana connects input

and output pipes to nodes of the remote service for enabling the data to be passed from

the local workflow to the remote service, and the results to be passed back to the user.

The distribution mechanism is facilitated by the GAT interface that is not bound to

any specific middleware. Currently, Triana workflow environment supports two types of

GAT bindings, one for JXTA and another for P2PS, a simple socket based P2P toolkit.

2.7 Thesis Scope and Positioning

From the taxonomy and survey, we identify that most of the existing Grid workflow

management systems in Grids are centralized and do not support cooperative application

scheduling. In addition, as these Grid systems are highly complex and volatile, most of

them incorporate self-optimizing and self-healing properties of an autonomic computing

system. However, in order to cope up with the increasing-scale complexity and volatility

of Grid environment, these systems are also required to address the self-configuring and

self-protecting policies to some extent. In the thesis, we have limited focus on enabling

the self-protecting property. Nevertheless, we address the other self-* properties, such as

self-configuring, self-optimizing, and self-healing in our proposed autonomic workflow

management system. We also propose a decentralized coordination space based coordi-

nation policy for enabling cooperative scheduling of scientific workflow applications as

well as utilize active monitoring technique for continuous adaptation and optimization

with regards to the dynamic Grid environment. The scope of this thesis with respect to the

autonomic computing features covered within the taxonomy is presented in Table 2.10.

58 Chapter 2. An Overview of Autonomic Management of Grid Applications

Table 2.10: Positioning of thesis with respect to taxonomy

Features of AC Scope of thesis
Application Composition scientific workflows
Application Scheduling decentralized, dynamic, and optimization/load balancing
Coordination Coordination space based and cooperative
Monitoring active, decentralized, and system health
Self-* Property self-configuring, self-optimizing, and self-healing
System Characteristics highly scalable, complex, and volatile

2.8 Conclusion

This chapter presents an overview and state-of-the-art of Autonomic Application Man-

agement (AAM) in Grid computing environment. After analyzing the AAM landscape,

we categorize the process of facilitating AAM according to various aspects of application

management and propose a comprehensive taxonomy based on six different perspectives:

(i) application composition, (ii) application scheduling, (iii) coordination, (iv) monitor-

ing, (v) self-* property, and (vi) system characteristics. Further, we develop taxonomies

for each of these perspectives to classify the common trends, solutions, and techniques

in application management. Hereby, we provide pointers to related research work in this

context. Next, a survey is also conducted, where the taxonomy is mapped to the selected

Grid systems mostly focused on scientific workflow management. The survey helps to

analyze the gap between what autonomic application management policies and method-

ologies are already available in existing Grid systems and what are still required to be

addressed so that some outstanding research issues can be identified.

This chapter also discusses positioning of the thesis with respect to the proposed tax-

onomy in terms of AAM. The main research direction of this thesis in relation to the tax-

onomy is focused on developing self-optimizing and self-healing scheduling strategy for

managing workflow applications in a cooperative, but complex and volatile Grid environ-

ment. The next chapters describe in detail our contributions towards this research direc-

tion, starting with understanding the concepts and methodologies for workflow scheduling

in dynamic and heterogeneous Grid computing environment.

Chapter 3

DCP-G: A Dynamic Workflow

Scheduling Algorithm for Grids

Effective scheduling is a key concern for the execution of performance driven Grid ap-

plications such as workflows. In this chapter, we first define the workflow scheduling

problem and describe the existing heuristic and meta-heuristic based workflow schedul-

ing strategies in Grids. Then we propose a dynamic critical path based workflow schedul-

ing algorithm for Grids, which determines efficient mapping of workflow tasks to Grid

resources by calculating the critical path in the workflow task graph at every step. Us-

ing simulation, the performance of the proposed approach is compared with the existing

approaches, discussed in this chapter for different type and size of workflows. The re-

sults demonstrate that the heuristic based scheduling techniques can adapt to the dynamic

nature of resource and avoid performance degradation in dynamically changing Grid en-

vironments.

3.1 Introduction

Many of the large-scale scientific applications executed on present-day Grids are ex-

pressed as complex e-Science workflow [73] [18], which is a set of ordered tasks that are

linked by data dependencies. A Workflow Management System (WMS) [133] is generally

employed to define, manage and execute these workflow applications on Grid resources.

59

60 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

A WMS uses a specific scheduling strategy for mapping the tasks in a workflow to suit-

able Grid resources in order to satisfy user requirements. Numerous workflow scheduling

strategies have been proposed in literature for different objective functions [137].

However, the majority of these scheduling strategies are static in nature. They pro-

duce a good schedule given the current state of Grid resources and do not take into ac-

count changes in resource availability. On the other hand, dynamic scheduling is done

on-the-fly considering the current state of the system and adaptive in nature. Thus, in

this chapter, we present a dynamic workflow scheduling technique that not only dynam-

ically minimizes the workflow execution time but also reduces the scheduling overhead

constituting a significant amount of time used by scheduler to generate schedule.

Critical path heuristics [71] have been used extensively for scheduling interdependent

tasks in multiprocessor systems. These heuristics aim to determine the longest of all ex-

ecution paths from the beginning to the end (or the critical path) in a task graph, and

schedule them earliest so as to minimize the execution time for the entire graph. Kwok

and Ahmad [72] introduced the Dynamic Critical Path (DCP) algorithm in which the crit-

ical path is dynamically determined after each task is scheduled. However, this algorithm

is designed for mapping tasks on to homogeneous processors, and is static, in the sense

that the schedule is only computed once for a task graph. We extend the DCP algorithm

to map and schedule tasks in a workflow on to heterogeneous resources in a dynamic

Grid environment. In order to evaluate the performance of our proposed algorithm, called

DCP-G (Dynamic Critical Path for Grids), we have compared it against the existing ap-

proaches, discussed in this chapter for different types and sizes of workflows. The results

demonstrate that DCP-G can adapt to temporal resource behavior and avoid performance

degradation in dynamically changing Grid environments.

3.2 Background of Workflow Scheduling

3.2.1 Workflow Scheduling Problem

In General, a workflow application is represented as a Directed Acyclic Graph (DAG) in

which graph nodes represent tasks and graph edges represent data dependencies among

3.2. Background of Workflow Scheduling 61

the tasks with weights on the nodes representing computation complexity and weights on

the edges representing communication volume. Therefore, workflow scheduling problem

is usually considered as a special case of the DAG scheduling problem, which is in an NP-

complete problem [50]. Thus, even though the DAG scheduling problem can be solved

by using exhaustive search methods, the complexity of generating the schedule becomes

very high.

The overall finish/completion time of an application is usually called the schedule

length or makespan. So the objective of workflow scheduling techniques is to minimize

the makespan of a parallel application by proper allocation of the tasks to the proces-

sors/resources and arrangement of task execution sequences.

Let us assume, workflow W (T,E) consists of a set of tasks, T = {T1, T2, . . . , Tx, ..

, Ty, Tn} and a set of dependencies among the tasks, E = {< Ta, Tb >, ..., < Tx, Ty >},

where Tx is the parent task of Ty. R = {R1, R2, . . . , Rx, . . . , Ry, Rm} is the set of avail-

able resources in the computational Grid. Therefore, the workflow scheduling problem is

the mapping of workflow tasks to Grid resources (T → R) so that the makespan, M is

minimized.

Generally, a workflow task is a set of instructions that can be executed on a single

processing element of a computing resource. In a workflow, an entry task does not have

any parent task and an exit task does not have any child task. In addition, a child task can

not be executed until all of its parent tasks are completed. At any time of scheduling, the

task that has all of its parent tasks finished, is called a ready task.

3.2.2 Existing Workflow Scheduling Algorithms

As workflow scheduling is an NP-complete problem, we rely on heuristic and meta-

heuristic based scheduling strategies to achieve near optimal solutions within polynomial

time. In the following, we present some of the well known heuristics and meta-heuristics

for workflow scheduling in Grid systems.

62 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

3.2.3 Heuristics

Myopic

Myopic is an individual task scheduling heuristic that is considered as the simplest schedul-

ing method for scheduling workflow applications because it makes scheduling decisions

based on only one individual task. The Myopic algorithm presented in [128] has been

implemented in some Grid systems such as Condor DAGMan [2]. It schedules an un-

mapped ready task, in arbitrary order to the resource, which is expected to complete that

task earliest, until all tasks have been scheduled.

Min-Min

A list scheduling heuristic prioritizes workflow tasks and schedules the tasks based on

their priorities. Min-Min is a list scheduling heuristic that assigns the task priority based

on its Expected Completion Time (ECT) on a resource. This heuristic organizes the work-

flow tasks into several independent task groups and schedules each group of independent

tasks iteratively. In every iteration, it takes the set of all unmapped independent tasks T

and generates the Minimum Expected Completion Times (MCT) for each task t in T .

whereMCTt = minrεRECT (t, r) ;R is the set of resources available; andECT (t, r)

is the amount of time resource r takes to execute task t.

Then, the task having minimum MCT value over all tasks is selected to be scheduled

first at this iteration to the corresponding resource for this MCT (hence the name is Min-

Min). In this way, Min-Min schedules other independent tasks in T and moves to next

iteration until T is empty.

The intuition behind Min-Min is to consider all unmapped independent tasks during

each mapping decision, whereas Myopic only considers one task at a time. Min-Min was

proposed by Maheswaran et al. [80] and has been employed for scheduling workflow tasks

in Grid projects such as vGrADS [19] and Pegasus [81].

Max-Min

The Max-Min heuristic is very similar to Min-Min. The only difference is the Max-Min

heuristic sets the priority to the task that requires the longest execution time rather than

3.2. Background of Workflow Scheduling 63

Table 3.1: Summary of workflow scheduling algorithms

Scheduling method Scheduling type Project Organization
Myopic Heuristic Condor DAGMan University of Wisconsin-Madesion, USA

Min-Min Heuristic vGrADS Rice University, USA
Max-Min Heuristic vGrADS Rice University, USA

HEFT Heuristic ASKALON University of Innsbruck, Austria
GRASP Meta-heuristic Pegasus University of Southern California

GA Meta-heuristic ASKALON University of Innsbruck, Austria

the shortest execution time. In each iterative step, after obtaining the set of MCT values

for all unmapped independent tasks, a task having the maximum MCT is chosen to be

scheduled on the resource, which is expected to complete the task at the earliest time.

Intuitively, Max-Min attempts to minimize the total workflow execution time by as-

signing longer tasks to comparatively best resources. Max-Min was also proposed by

Maheswaran et al. [80] and has been used for scheduling workflow tasks in Pegasus [81].

HEFT

Heterogeneous Earliest Finish Time (HEFT) [121] is a well established list scheduling

algorithm, which gives higher priority to the workflow task having higher rank value.

This rank value is calculated by utilizing average execution time for each task and average

communication time between resources of two successive tasks, where the tasks in Critical

Path get comparatively higher rank values. Then it sorts the tasks by decreasing order of

their rank values and the task with higher rank value is given higher priority. In the

resource selection phase, tasks are scheduled in the order of their priorities and each task

is assigned to the resource that can complete the task at the earliest time.

The advantage of using this technique over Min-Min or Max-Min is that while as-

signing priorities to the tasks it considers the entire workflow rather than focusing on only

unmapped independent tasks at each step. HEFT algorithm was proposed by Topcuoglu et

al. [121] and it has been used in the ASKALON workflow manager [128] [39] to provide

scheduling for a quantum chemistry application WIEN2K [18].

64 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

3.2.4 Meta-heuristics

GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) [19] is an iterative randomized

search technique. In GRASP, a number of iterations are conducted to search a possible

optimal solution for mapping tasks on resources. A solution is generated at each iterative

step and the best solution is kept as the final schedule. This searching procedure terminates

when the specified termination criterion, such as the completion of a certain number of

iterations, is satisfied. GRASP can generate better schedules than the other scheduling

techniques stated previously as it searches the whole solution space considering entire

workflow and available resources.

GA

Likewise GRASP, Genetic Algorithm (GA) [53] is also a meta-heuristic based scheduling

technique that allows a high quality solution to be derived from a large search space in

polynomial time by applying the principles of evolution. A genetic algorithm combines

exploitation of best solution from past searches with the exploration of new regions of

solution space. Instead of creating a new solution by randomized search as in GRASP, GA

generates new solutions at each step by randomly modifying the good solutions generated

in previous steps, which results in a better schedule within less time. Jia et al. [135] have

employed GA based approach to schedule workflows in Grids.

3.3 DCP-G Algorithm for Workflow Scheduling

For a task graph, the lower and upper bounds of starting time for a task are denoted

as the Absolute Earliest Start Time (AEST) and the Absolute Latest Start Time (ALST)

respectively. In the DCP algorithm [72], the tasks on the critical path have equal AEST

and ALST values as delaying these tasks affects the overall execution time for the task

graph. The first task on the critical path is mapped to the processor identified for it. This

process is repeated until all the tasks in the graph are mapped.

However, this algorithm is designed for scheduling all the tasks in a task graph with

3.3. DCP-G Algorithm for Workflow Scheduling 65

Table 3.2: Symbols and Their Meanings

Symbol Meaning
AET (t) Absolute execution time of task t
ADTT (t) Absolute data transfer time for task t
AEST (t, R) Absolute earliest start time of task t on resource R
ALST (t, R) Absolute latest start time of task t on resource R
Ct,tk

(Rt, Rtk
) Data transfer time between task t and tk that are scheduled to resources

Rt and Rtk
respectively

PC(R) Processing capacity of resource R
BW (R) Bandwidth of the network link that connects resource R to Global Grid
DCPL Length of a dynamic critical path in a workflow

arbitrary computation and communication times to a multiprocessor system with unlim-

ited number of fully connected identical processors. But, Grids [43] are heterogeneous

and dynamic environments consisting of computing, storage and network resources with

different capabilities and availability. Therefore, to work on Grids, the DCP algorithm

needs to be extended in the following manner:

• For a task, the initial AEST and ALST values are calculated for the resource, which

provides the minimum execution time for the task. The overall objective is to reduce

the length of the critical path at every pass. We follow the intuition of the Min-Min

heuristic in which a task is assigned to the resource that executes it fastest.

• For mapping a task on the critical path, all the available resources are considered

by DCP-G, as opposed to the DCP algorithm, which considers only the resources

(processors) occupied by the parent and child tasks. This is because, in the latter

case, the execution time is not varied for different processors, and only the com-

munication time between the tasks could be reduced by assigning tasks to the same

resource. However, in Grids, the communication and computation times are both

liable to change because of resource heterogeneity.

• When a task is mapped to a resource, its execution time and data transfer time from

the parent node are updated accordingly. This changes the AEST and ALST of

succeeding tasks.

In the following, we discuss some of the principle features of the algorithm. In the first

part of the discussion, we describe the techniques used to calculate AEST and ALST that

66 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

are necessary for task selection. Then we discuss the task selection methodology followed

by the resource selection strategy. The DCP-G scheduling algorithm is formalized and

illustrated with an example at the end of this section. Table 3.2 provides some terms and

their meanings that are used in the subsequent discussion.

3.3.1 Calculation of AEST and ALST in DCP-G

In DCP-G, the start time of a task is not finalized until it is mapped to a resource. Here, we

also introduce two more attributes: the Absolute Execution Time (AET) of a task, which

is the minimum execution time of the task, and Absolute Data Transfer Time (ADTT),

which is the minimum time required to transfer the output of the task given its current

placement. Initially, AET and ADTT are calculated as,

AET (t) = Task size(t)
MAXkεResourceList{PC(Rk)}

ADTT (t) = Task output size(t)
MAXkεResourceList{BW (Rk)}

where PC(Rk) and BW (Rk) are processing capability and transfer capacity (i.e.

bandwidth) of resource Rk respectively.

Whenever a task t is scheduled to a resource, the values of AET (t) and ADTT (t)

are updated accordingly. Therefore, the AEST of a task t on resource R, denoted by

AEST (t, R) is recursively defined as:

AEST (t, R) = MAX1≤k≤p{AEST (tk, Rtk) + AET (tk) + Ct,tk(Rt, Rtk)}

where t has p parent tasks, tk is the kth parent task and,

AEST (t, R) = 0 ; if t is an entry task.

Ct,tk(Rt, Rtk) = 0 ; if Rt = Rtk .

Ct,tk(Rt, Rtk) = ADTT (tk) ; if t and tk are not scheduled.

Here, the communication time between two tasks is considered to be zero if they are

3.3. DCP-G Algorithm for Workflow Scheduling 67

mapped to the same resource and equal to the ADTT of the parent task if the child is not

mapped yet. Using this definition, the AEST values can be computed by traversing the

task graph in a breadth-first manner beginning from the entry tasks.

Once AESTs of all the tasks are computed, it is possible to calculate Dynamic Criti-

cal Path Length (DCPL), which is the schedule length of the partially mapped workflow.

DCPL can be defined as:

DCPL = MAX1≤i≤n{AEST (ti, Rti) + AET (ti)}

where n is the total number of tasks in the workflow.

After computing the DCPL, the values of ALST can be calculated by traversing the

task graph in a breadth first manner but in the reverse direction. Thus, the ALST of a task

t in resource R, denoted as ALST(t,R) can be recursively defined as,

ALST (t, R) = MIN1≤k≤c{ALST (tk, Rtk)− AET (t)− Ct,tk(Rt, Rtk)}

where t has c child tasks, tk is the kth child task and

ALST (t, R) = DCPL− AET (t) ; if t is an exit task.

Ct,tk(Rt, Rtk) = 0 ; if Rt = Rtk .

Ct,tk(Rt, Rtk) = ADTT (tk) ; if t and tk are not mapped.

3.3.2 Task Selection

During the scheduling process, the Critical Path (CP) in the task graph determines the

schedule length of the partially scheduled workflow. Thus, while scheduling, it is nec-

essary to give priority to the tasks in CP. However, as the scheduling process progresses,

the CP can be changed dynamically i.e. a task on a CP at one step may not be on CP at

the next step because of the dynamically changing resource behaviour. This is why, in

dynamic environment such as Grids, CP in the workflow is called Dynamic Critical Path

since it is likely to be changed at every step of scheduling.

68 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

The tasks on DCP have the same upper and lower bound of start time. Therefore, a

task in DCP-G is considered to be on the critical path if its AEST and ALST values are

equal. In order to reduce the value of DCPL at every step, the task selected for scheduling

is the one that is on CP and has no unmapped parent tasks.

3.3.3 Resource Selection

After identifying a critical task, we need to select an appropriate resource for that task.

We select the resource that provides the minimum execution time for that task. This is

discovered by checking all the available resources for one that minimizes the potential

start time of the critical child task on the same resource, where the critical child task is

the one with the least difference of AEST and ALST among all the child tasks of the

critical task. Finally, the critical task is mapped to the resource that provides the earliest

combined start time.

3.3.4 Methodology

First, the DCP-G algorithm (refer to Algorithm 1) computes initial AET, ADTT, AEST

and ALST of all the tasks. Then it selects the task with the smallest difference between

its AEST and ALST, where ties are broken by choosing the one with smaller AEST.

According to the discussion in Section 3.3.2, this task is on DCP and called Critical Task

(CT). The critical child task of CT is also determined in the same manner. The algorithm

then computes the start time of CT for all available resources considering the finish time of

all of its parent tasks and searches for a slot starting with this start time with the duration

of its execution time. The resource that gives the earliest start time for both tct, and its

critical child task is selected.

After selecting the suitable resourceR, the algorithm calculates start timeAEST (tct, R)

and duration AET (tct) for tct on this resource, and updates the actual start and execution

times for tct accordingly. The AEST and ALST values of other tasks are updated at the

end of each scheduling step in order to determine next critical task. This process continues

until all the tasks in the workflow are scheduled.

3.3. DCP-G Algorithm for Workflow Scheduling 69

T1 T2

T0

150,000 MI

100 / 40

600,000 MI

400 / 20

1 GB

T3

300,000 MI

200 / 80

T4

75,000 MI

50 / 0

2 GB

2 GB

0.5 GB

300,000 MI

200 / 80 T1 T2

T0

0 \ 0

T3

T4

R1

140 \ 560 140 \ 140

420 \ 420

840 \ 840

T1 T2

T0

0 \ 0

T3

T4

140 \ 560 140 \ 140

420 \ 420

840 \ 840

DCPL = 890

T0 R1T
Task size

AET / ADTT

DCPL = 890

T2 R1

T1 T2

T0

0 \ 0

T3

T4

R1

140 \ 440 100 \ 100

300 \ 300

720 \ 720

T1 T2

T0

0 \ 0

T3

T4

180 \ 310 100 \ 100

300 \ 300

720 \ 720

DCPL = 770

T2 R2

DCPL = 770

T4 R1

T1 T2

T0

0 \ 0

T3

T4

140 \ 520 100 \ 100

380 \ 380

800 \ 800

DCPL = 850

T3 R1

R1

R1

R1

R1

R1

R2

R1

R1

(a) (b) (c)

(d) (e) (f)

R1

T1 T2

T0

0 \ 0

T3

T4

180 \ 310 100 \ 100

300 \ 300

700 \ 700

DCPL = 750

R2
R1

R1

R1

Task Resource Start time End time

T0 R1 0 100

T1 R2 180 430

T2 R1 100 300

T3 R1 300 700

T4 R1 700 750

(g) (h)

T R
T T T

Scheduled TaskCritical Task

AEST \ ALST
PC = 1500 MIPS

BW = 100 Mbps
Task T is assigned

to Resource R

R2R1

PC = 1200 MIPS

BW = 200 Mbps

Figure 3.1: Example of workflow scheduling using DCP-G algorithm.

70 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

Algorithm 1 DCP scheduling algorithm
1: PROCEDURE: DCP
2: Input: Workflow W (T,E), TaskDependencyList, Resource Set R
3: begin
4: for all t ∈ T of workflow W
5: Calculate AET and ADTT for t according to Section 3.3.1
6: end for
7: for all t ∈ T of workflow W
8: Calculate AEST for t running BFS according to Section 3.3.1
9: end for

10: Calculate DCPL
11: for all t ∈ T of workflow W
12: Calculate ALST for t running BFS following reverse task dependency

according to Section 3.3.1
13: end for
14: while all tasks in T are not completed do
15: TaskList← Get unscheduled Ready tasks from workflow W
16: Schedule Task (TaskList, R)
17: Update TaskDependencyList
18: end while
19: end
20: PROCEDURE: Schedule Task
21: Input: TaskList, Resource Set R
22: begin
23: while TaskList is not empty do
24: Tct ← Get Critical Task from all tasks of TaskList according to Section 3.3.2
25: Tctc ← Get Critical Child Task from all child tasks of Tct according to

Section 3.3.3
26: r ← Get a resource from R that can provide earliest start time for both Tct and

Tctc
27: Schedule Tct on r
28: Update status of r
29: Remove Tct from TaskList
30: for all t ∈ T of workflow W
31: Calculate AEST for t running BFS
32: end for
33: Calculate DCPL
34: for all t ∈ T of workflow W
35: Calculate ALST for t running BFS following reverse task dependency
36: end for
37: end while
38: end

3.4. Performance Evaluation 71

3.3.5 DCP-G Example

Fig. 3.1 illustrates the DCP-G algorithm with a step-by-step explanation of the mapping

of tasks in a sample workflow. The sample workflow consists of five tasks denoted as T0,

T1, T2, T3, and T4 with different execution and data transfer requirements. The length and

size of the output of each task shown in Fig. 3.1(a) are measured in Million Instructions

(MI) and GigaBytes (GB) respectively. The tasks are to be mapped to two Grid resources

R1 and R2 with processing capability (PC) and transfer capacity, i.e. Bandwidth (BW) as

indicated at the bottom of Fig. 3.1.

First, the AET and ADTT values for each task are calculated as shown in Fig. 3.1(a).

Then using these values, AEST and ALST of all the tasks are calculated according to

Section 3.3.1 (see Fig. 3.1(b)). Since T0, T2, T3, and T4 have equal AEST and ALST ,

they are on critical path with T0 as the highest task. Hence, T0 is selected as the critical

task and mapped to resource R1, which gives T0 the minimum combined start time. At

the end of this step, the schedule length of the workflow (i.e. DCPL) is 890. Similarly,

in Fig. 3.1(c), T2 is selected as the critical task and mapped to R1. As both T0 and T1 are

mapped to R1 and the data transfer time of T0 is now zero, the AEST and ALST of all

the tasks are changed and the schedule length becomes 850 (Fig. 3.1(d)). In the next step,

T3 is mapped to R1 as well and the DCPL is reduced to 770 as the data transfer time for

T2 is zero.

Now T4 is the only task remaining on the critical path (Fig. 3.1(e)). However, one of

its parent tasks, T1, is not mapped yet and therefore T1 is selected as the critical task. As

T2 and T3 are already mapped to R1, the start time of T1 on R1 is 700. Therefore, T1 is

mapped to R2 as its start and end times on R2 are 180 and 430 respectively. Finally, when

T4 is mapped to R1 (Fig. 3.1(g)), all the tasks have been mapped, the schedule length can

not be improved any further, and a schedule length of 750 is obtained. The final schedule

generated by DCP-G is shown in a table in Fig. 3.1(h).

3.4 Performance Evaluation

We evaluate DCP-G by comparing the schedules produced by it against those produced by

the other algorithms described previously for a variety of workflows in a simulated Grid

72 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

environment. In this section, first we describe our simulation methodology and setup, and

then present the results of experiments.

3.4.1 Simulation methodology

We use GridSim [22] toolkit to simulate the application and Grid environment for our

simulation. The GridSim toolkit allows modeling and simulation of various entities in

parallel and distributed computing environment, such as systems-users, applications, re-

sources, and resource brokers (schedulers) for design and evaluation of scheduling algo-

rithms. It provides a comprehensive facility for creating different types of heterogeneous

resources for executing compute and data intensive applications. A resource can be a sin-

gle processor or multi-processor with shared or distributed memory and managed by time

or space shared schedulers. The processing nodes within a resource can be homogeneous

or heterogeneous in terms of processing capability, configuration, and availability. We

model different entities of GridSim in the following manner.

Workflow model

(a)

1

2

4

3

5

6

8

7

0

1

4

6

3

7

9

2

5

8

2

6

0

54 3

1

9

87

9

(b) (c)

0

Figure 3.2: Three sample workflows: (a) Parallel workflow; (b) Fork-join workflow; (c)
Random workflow.

We implement a workflow generator that can generate various formats of weighted

pseudo-application workflows. The following input parameters are used to create a work-

flow.

3.4. Performance Evaluation 73

• N , the total number of tasks in the workflow.

• α, the shape parameter represents the ratio of the total number of tasks to the width

(i.e. maximum number of nodes in a level). Thus, width W = dN
α
e.

• Type of workflow: Our workflow generator can generate three types of workflow

namely parallel workflow, fork-join workflow, and random workflow.

Parallel workflow: In parallel workflows [120], a group of tasks creates a chain of

tasks with one entry and one exit task; there can be several such chains in one workflow.

Here, one task is dependent on only one task, although the tasks at the head of chains

are dependant on the entry task, and the exit task is dependant on the tasks at the tail of

chains. Number of levels in a parallel workflow can be specified as:

Number of levels = bN−2
W
c

Fork-join workflow: In fork-join workflows [18], forks of tasks are created and then

joined. So, in this kind of workflows, there can be only one entry task and one exit task,

but the number of tasks in each level depends on the total number of tasks and width of

that level, W. Number of levels in a fork-join workflow can be specified as,

Number of levels = b N
W+1
c

Random workflow: In random workflows, the dependency and number of parent

tasks of a task, which equals to the indegree of a node in DAG representation of the work-

flow, is generated randomly. Here, the task dependency and the indegree are calculated as,

Maximum Indegree (Ti) = bW
2
c

Minimum Indegree (Ti) = 1

Parent (Ti) = {Tx|Txε[T0....Ti−1]} ; if Ti is not a root task.

where x is a random number and 0 <= x <= bW
2
c.

Parent (Ti) = {φ} ; if Ti is a root task.

74 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

Table 3.3: Resources used for performance evaluation

Resource name/site Location Number of nodes Single PE rating (MIPS) Mean load
RAL UK 41 1140 0.9

NorduGrid Norway 17 1176 0.9
NIKHEF Netherlands 18 1166 0.9
Milano Italy 7 1000 0.5
Torino Italy 4 1330 0.5
Catania Italy 5 1200 0.6
Padova Italy 13 1000 0.4
Bologna Italy 20 1140 0.8

In Fig. 3.2, a sample of each type of workflow is illustrated, whereN = 10 and α = 5.

In simulation, we use MI (Million Instruction) to denote the length of tasks and MB (Mega

Byte) to denote the output data size of each task.

Resource model

As the execution environment for tasks in scientific workflows is heterogeneous, we use

heterogeneous resources with different processing capabilities. Here, we choose 8 re-

sources (refer to Table 3.3) from the European Data Grid (EDG) 1 test bed [16] used

for simulation in [125]. The processing capability of the resources is measured in MIPS

(Million Instructions per Second) and the bandwidth in Mbps (Megabits per second).

3.4.2 Simulation setup

The workflows for evaluation are generated using the following parameters:

• Type = parallel, fork-join, random

• N = {50, 100, 200, 300}

• α = {10}

Here, size of each task in the workflow is generated from a uniform distribution be-

tween 100, 000 MI to 500000 MI, while the output data size of each task is also generated

from a uniform distribution between 1 GB and 5 GB.

For GRASP, we run 600 iterations to map tasks to resources, and then we select the

best schedule out of the generated schedules. For GA, parameters for various genetic op-

erators, such as selection, crossover, and mutation are set using those applied in previous

3.4. Performance Evaluation 75

Table 3.4: Parameters of Genetic Algorithm

Parameter Value/Type
Population size 60

Crossover probability 0.7
Swapping mutation probability 0.5
Replacing mutation probability 0.8

Fitness function Makespan of workflow
Selection scheme Elitism-Roulette Wheel

Stopping condition 300 iterations
Initial individuals Randomly generated

studies [135]. Table 3.4 shows the values of different parameters used for simulating GA.

3.4.3 Results and Observations

We evaluate the scheduling heuristics based on the total makespan produced and the time

required for scheduling workflows. Makespan or workflow completion time is the total

time required for executing all the tasks of a workflow, where the completion time of a

task is the difference between the time when a task has been submitted by the scheduler

to a resource and the time when the output of that task has been achieved.

Two sets of experiments were carried out. In the first set, we consider an ideal case,

where the availability and load of Grid resources remain static over time. For this envi-

ronment, we statically map tasks to resources according to different strategies and execute

tasks accordingly. In the next set, we evaluate the strategies in a more realistic scenario,

where the availability and load of Grid resources vary over time. In this case, the instan-

taneous load (i.e. number of PEs occupied) for each resource during the simulation is

derived from a Gaussian distribution, as performed in [125].

Execution time (Makespan) in static environment

The graph in Fig. 3.3 plots the execution time of parallel, fork-join, and random workflows

of 50, 100, 200, and 300 tasks for seven workflow scheduling strategies namely, Myopic,

Min-Min, Max-Min, HEFT, DCP-G, GRASP, and GA in static environment.

For random workflow (refer to Fig. 3.3(c)), DCP-G can generate schedules with up to

13% less makespan than HEFT, which generates better schedule than Myopic, Min-min,

76 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

and Max-min. Since from any task in the random workflow, there can be multiple paths

to an exit node, dynamically assigning priorities to tasks helps DCP-G to generate better

schedules. As GRASP and GA search the entire solution space for the best schedule, they

generate 20− 30% better schedule than DCP-G.

However, the execution time of fork-join workflows (refer to Fig. 3.3(b)) shows a

significant difference between heuristic and meta-heuristic based approaches. During the

process of task selection for mapping, heuristic-based approaches do not consider the

impact of mapping child tasks. Thus, all the heuristic based techniques generate similar

schedule with DCP-G being marginally better. However, in a fork-join workflow, a join

task depends on the output of all the forked independent tasks that precede it. If this join

task is assigned to a resource with low bandwidths to other resources, increase in data

transfer time impacts the makespan adversely. However, meta-heuristics (GA, GRASP)

consider the impact of mapping not only the parent fork tasks but also the child join tasks,

and are therefore able to generate 40 − 50% better schedule than DCP, which is the best

among heuristic-based methods.

According to Fig. 3.3(a), the execution time of parallel workflow exhibits a slow ex-

ponential growth with the increase in workflow size. The reason is that, unlike fork-join

workflows, the number of unmapped ready tasks at every step of scheduling in a parallel

workflow is always equal to W, and a task becomes ready as soon as its parent finishes.

Thus, when the available resources are less than unmapped ready tasks, the time spent by

some of these tasks in waiting to be scheduled results in an increase in the total execution

time. In case of parallel workflows, DCP-G and GA generate better schedules than others,

and the makespan is reduced by at least 20%. Here, the execution time of GRASP rises

beyond that of DCP-G as the number of candidate solutions for task mapping increases

exponentially with the workflow size.

Execution time (Makespan) in dynamic environment

As the resource availability changes over time in dynamic environment, the resource avail-

ability information needs to be continuously updated after a certain period of time, and

the tasks have to be remapped if necessary, depending on the updated availability of re-

sources. Here, we compare the performance of rescheduling using DCP-G and other

3.4. Performance Evaluation 77

2000

3200

4400

5600

6800

8000

9200

50 100 200 300

Ti
m

e
 (

se
c)

No of Tasks in the workflow

MinMin Max-Min HEFT DCP-G

Myopic GRASP GA

(a) Parallel workflow

5000

7200

9400

11600

13800

16000

18200

50 100 200 300

Ti
m

e
 (

se
c)

No of Tasks in the workflow

MinMin Max-Min HEFT DCP-G

Myopic GRASP GA

(b) Fork-join workflow

1000

3500

6000

8500

11000

13500

16000

50 100 200 300

Ti
m

e
 (

se
c)

No of Tasks in the workflow

MinMin Max-Min HEFT DCP-G

Myopic GRASP GA

(c) Random workflow

Figure 3.3: Execution time of different type of workflows for static environment.

78 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

2000

3500

5000

6500

8000

9500

11000

50 100 200 300

Ti
m

e
 (

se
c)

No of Tasks in the workflow

MinMin Max-Min HEFT DCP-G

Myopic GRASP GA

(a) Parallel workflow

9000

10600

12200

13800

15400

17000

18600

50 100 200 300

Ti
m

e
 (

se
c)

No of Tasks in the workflow

MinMin Max-Min HEFT DCP-G

Myopic GRASP GA

(b) Fork-join workflow

1000

3800

6600

9400

12200

15000

17800

50 100 200 300

Ti
m

e
 (

se
c)

No of Tasks in the workflow

MinMin Max-Min HEFT DCP-G

Myopic GRASP GA

(c) Random workflow

Figure 3.4: Execution time of different type of workflows for dynamic environment.

3.4. Performance Evaluation 79

heuristic-based approaches against the static schedules generated by the meta-heuristics.

Fig. 3.4 shows the execution time of different scheduling techniques in dynamic envi-

ronment, where resource information is updated every 50 seconds. The number of avail-

able processing elements, and hence the number of tasks that can start execution in a

resource varies with the load on the resource. However, for GA and GRASP, if a re-

source is heavily-loaded and unavailable, the tasks mapped to that resource have to wait

to be executed. This waiting time consequently impacts the start time of other dependent

tasks and increases the makespan. This is reflected in the poor performance of GA and

GRASP in the graphs in Fig. 3.4, where heuristic-based approaches generate up to 30%

better schedules than these two meta-heuristic based approaches. Among the heuristics,

DCP-G is able to achieve up to 6% better makespan than the others. This is because, in

DCP-G, tasks on the critical path waiting to be executed on a heavily-loaded resource are

rescheduled to resources with available PEs. This reduces the critical path length; thus,

the makespan for workflow execution is also reduced.

It can also be seen that heuristic-based approaches perform better in dynamic than

static environments for the same workflows and experimental setup. This can be attributed

to the fact that not only the load but the resource availability in dynamic environments is

updated regularly. This means that the heuristics are able to adapt to resources that are

more frequently available and therefore, produce better schedules.

Scheduling time

Fig. 3.5 shows the total scheduling time of a workflow for different scheduling techniques

in case of three types of workflow. Scheduling time is considered as scheduling overhead,

which constitutes a significant amount of time used by scheduler to generate schedule.

For the convenience of discussion, the average scheduling time (in milliseconds) for

one task of parallel, fork-join, and random workflows to generate a single schedule for

different scheduling techniques is presented in Table 3.5. To generate a single schedule,

Myopic, Min-Min, Max-Min, and HEFT require nearly 1 millisecond for each task irre-

spective of the workflow size and type, whereas the average scheduling time of one task

for DCP-G is 16 to 17 milliseconds, and does not vary with the workflow type as the task

selection procedure is independent of workflow structure.

80 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

0

350

700

1050

1400

1750

2100

50 100 200 300

Ti
m

e
 (

se
c)

No of Tasks in a workflow

MinMin Max-Min HEFT DCP-G

Myopic GRASP GA

(a) Parallel workflow

0

350

700

1050

1400

1750

2100

50 100 200 300

Ti
m

e
 (

se
c)

No of Tasks in a workflow

MinMin Max-Min HEFT DCP-G

Myopic GRASP GA

(b) Fork-join workflow

0

350

700

1050

1400

1750

2100

50 100 200 300

Ti
m

e
 (

se
c)

No of Tasks in a workflow

MinMin Max-Min HEFT DCP-G

Myopic GRASP GA

(c) Random workflow

Figure 3.5: Scheduling time of different scheduling approaches for various type of work-
flows.

3.4. Performance Evaluation 81

Table 3.5: Average scheduling time per task

Scheduling strategy Random workflow(ms) Fork-join workflow(ms) Parallel workflow(ms)
Myopic 1 1 1

Min-Min 1 1 1
Max-Min 1 1 1

HEFT 1 1 1
DCP-G 17 16 16
GRASP 1180 2840 5720

GA 1940 1780 1750

Scheduling time using GRASP increases exponentially not only with the increase of

tasks in a workflow but also with change in workflow structure. In each iteration, GRASP

creates Restricted Candidate List (RCL) for each unmapped ready task and then selects

a resource for the task randomly. When number of tasks increases, RCL increases expo-

nentially resulting in increased scheduling time. But the size of RCL is also dependent

on workflow structure. For example, when a workflow consists of 300 tasks, parallel and

fork-join structures contain 30 tasks in each level, whereas the random structure contains

random number of levels as well as random number of tasks in each level. Thus, at every

step a parallel workflow has 30 ready tasks, fork-join workflow has maximum 30 ready

tasks, and average number of ready tasks in each level of random workflow is less than 30.

Therefore, the scheduling time for random workflow is the lowest, and parallel workflow

is the highest in this case.

However, scheduling time for GA does not change much with the workflow type be-

cause it executes the same number of genetic operations irrespective of workflow struc-

ture. But the size of each individual in the solution space is equal to number of tasks in

workflow. Thus, scheduling time increases with the increase in the size of workflow.

While it is possible to reschedule at regular intervals in GA and GRASP, Table 3.5

shows that the scheduling times for these are at least 100 times as high as DCP-G and

increase with the size of workflow as well. Hence, we did not incorporate rescheduling

for GA and GRASP in the experiments for the dynamic environment.

3.4.4 Discussion

From Fig. 3.3, it is evident that among the heuristic-based scheduling techniques, DCP-G

can generate better schedule by up to 20% in static environment, especially for random

82 Chapter 3. DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids

and parallel workflows, irrespective of workflow size. GA and GRASP can generate more

effective schedule than DCP-G for random and fork-join workflow, but they suffer from

the problem of higher scheduling time. In our simulation, for parallel workflow of 300

tasks, DCP-G takes 6 seconds to map the tasks to resources, whereas GA and GRASP

take 580 and 2076 seconds respectively.

In dynamic environment, heuristics based techniques adapt to the dynamic nature of

resources and can avoid performance degradation. But meta-heuristic based techniques

perform worse in this situation due to the unavailability of mapped resources at certain

intervals. However, in dynamic environment, DCP-G can generate better schedule than

other approaches, irrespective of workflow type and size.

3.5 Conclusions

In this chapter, we have defined the workflow scheduling problem in Grid computing en-

vironment and discussed the existing well known workflow scheduling techniques. Nev-

ertheless, these techniques are static in nature and do not take into account dynamic re-

source behavior. Therefore, we have proposed a dynamic scheduling approach, named

DCP-G for scheduling Grid workflows. DCP-G determines an efficient mapping of work-

flow tasks to Grid resources by calculating the critical path in the workflow task graph at

every step and assigns priority to a task in the critical path that is estimated to complete

earlier. We have compared the performance of DCP-G with other existing heuristic and

meta-heuristic based scheduling strategies for different types and sizes of workflows. The

results show that DCP-G can generate better schedule for most of the workflow types,

irrespective their sizes particularly when the resource availability changes frequently.

In summary, this chapter identifies that dynamic scheduling approaches can adapt to

temporal behaviour of heterogeneous Grid resources and are able to avoid performance

degradation by generating efficient schedules. Thus, in the next chapters, we use dy-

namic scheduling heuristics to achieve self-adapting environment for facilitating auto-

nomic workflow management.

Chapter 4

Autonomic Workflow Management

System Architecture

In this chapter, we present the architectural framework for autonomic workflow manage-

ment system in Grids. First, we describe the system models, such as Grid model, coordi-

nation model, and application model that form the basis of this architectural framework.

We utilize the Grid Federation model for developing our Grid model, which essentially

specifies the policies and protocols for resource organization and Grid networking. Then,

we present the coordination model that outlines the communication, coordination, and

indexing protocols to form the basis for coordinated application scheduling among the

distributed Grid sites. Next, The application model is provided that specifies how the

workflow application is modeled and integrated into the proposed workflow management

system.

Furthermore, the prototype implementation of the proposed architecture is also dis-

cussed in this chapter. The prototype wokflow management system is developed by lever-

aging Aneka enterprise Grid platform that enables the creation of Aneka Federation, a

decentralized Grid resource sharing model. Aneka Federation realizes the theoretical

Grid resource sharing model, Grid Federation. The main component of Aneka Federa-

tion that enables the transparent resource sharing among Aneka enterprise Grids is called

Aneka Coordinator. The Grid Autonomic Manager (GAM), discussed in Section 4.1.1 is

implemented in the prototype system by Aneka Coordinator, which manages the resource

83

84 Chapter 4. Autonomic Workflow Management System Architecture

Peer-to-Peer
Network

User
User

Resource

Resource

GAS

GAS

Grid Autonomic Scheduler

Grid Autonomic Manager

Local Resource Manager
(PBS, SGE) Grid Peer

Coordinate

Search Route

Schedule Local Jobs

Manage Execution of
Remote Jobs

Figure 4.1: Grid Federation.

discovery and cooperative task scheduling using a DHT-based decentralized P2P over-

lay. In addition, the required components and services of the prototype system, such as

application development, resource discovery, coordination, and task scheduling are also

illustrated with the direction for deployment of the system.

4.1 Architectural Framework

4.1.1 Grid Model

The proposed architecture for autonomic workflow management system in Grids utilizes

the Grid Federation (GF) [101] model in regards to resource organization and Grid net-

working. Grid Federation aggregates distributed resource brokering and allocation ser-

vices as part of a cooperative resource sharing environment. Table 4.1 shows the notations

for resource, workflow, and coordination models.

Definition 4.1 (Grid Federation): The Grid Federation, GF = {S1, S2, ..., Sn} con-

sists of a number of sites n, with each site contributing its resource to the Grid. Every site

in Grid Federation has its own resource description Di, which contains definition of the

resource that it is willing to contribute. Di includes information about the CPU architec-

ture, number of processors, memory size, secondary storage size, operating system type,

etc.

In this work, Di = (pi, ai, si, oi), which includes the number of processors pi, proces-

4.1. Architectural Framework 85

Table 4.1: Notations: resource, workflow, and coordination models

Symbol Meaning
Resource

r number of resources or GASs in the Grid system.
Di configuration of the i-th resource in the system.
Ri i-th Resource in the system.
Gi i-th GAS in the system.
Si processor speed at GAS i.
Pi number of processors for resource at GAS i.
Ai processor architecture for resource at GAS i.
Oi operating system type for resource at GAS i.

Workflow
Wi,j,k i-th workflow from the j-th user of k-th GAS in the system.
Txi,j,k

x-th task of the workflow, Wi,j,k.
sxi,j,k

processor speed required by the task Txi,j,k
.

pxi,j,k
number of processors required by the task Txi,j,k

.
axi,j,k

processor architecture required by the task Txi,j,k
.

oxi,j,k
operating system required by the task Txi,j,k

.
Coordination

rxi,j,k
a claim posted for task Txi,j,k

.
ui a ticket issued by the i-th GAS/broker.
dim dimensionality or number of attributes in the Cartesian space.
fmin minimum division level of d-dimensional index tree.

sor architecture ai, their speed si, and installed operating system type oi.

The application scheduling and resource discovery in GF are facilitated by a special-

ized Grid Resource Management System (GRMS), known as Grid Autonomic Sched-

uler (GAS). Fig. 4.1 shows an example GF resource sharing model consisting of Internet-

wide distributed Grid sites. Every contributing Grid site in GF maintains its own GAS

service. A GAS service is composed of three software components: Grid Autonomic

Manager (GAM), Local Resource Management System (LRMS), and Grid Peer.

The GAM component of GAS exports a Grid site to the outside world and is respon-

sible for scheduling locally submitted jobs (workflows, parallel applications) in the Grid.

Further, it also manages the execution of remote jobs (workflows) in conjunction with

LRMS. The LRMS software module can be realized by leveraging systems, such as SGE

(Sun Grid Engine) [51] and PBS [20]. Additionally, LRMS performs other activities for

facilitating Grid wide job submission and migration process, such as answering the GAM

queries related to local job queue length, expected response time, and current resource

utilization status.

Grid Federation requires supporting technologies to enable scalable collaboration and

86 Chapter 4. Autonomic Workflow Management System Architecture

Infrastructure
layer

Programming
layer

Scheduling, Fault-Management, Monitoring, Allocation, Access

Control, Publish/Subscribe

Grid programming: runtime environments and tools

Brokers, Workflow Engine, Grid Autonomic Manager S
e

lf -
M

a
n

a
g

e
m

e
n

t

A
u

to
n

o
m

ic
 F

e
a
tu

r
e
s

Apps Composition Platforms

Data organization techniques, Replication, Load balancing

Discovery, Coordination, Messaging

layer
(Grid Peer)

Resource

layer

Grid resources

Virtual Machine (VM), Local Resource Manager

A
u

to
n

o
m

ic
 F

e
a
tu

r
e
s

Self-Organizing Routing Structure (DHT)

Data organization techniques, Replication, Load balancing

Figure 4.2: Layerd design of autonomic workflow management system architecture

communication between resources and services across multiple Grid sites. For supporting

the aforementioned functions, it is mandatory to build some kind of overlay network (as

implemented in CometCloud [67]) on top of the physical routing network. To this end,

the Grid peer (see Fig. 4.2) implements an overlay (infrastructure level core services) for

enabling decentralized and distributed resource discovery that supports efficient resource

status lookups and updates across the federation. It also enables decentralized inter-GAM

collaboration for optimizing load-balancing and distributed resource provisioning. Simi-

lar to CometCloud, these core services are divided into a number of sub-layers (refer to

Fig. 4.2): (i) higher level services for discovery, coordination, and messaging; (ii) low

level distributed indexing and data organization techniques; and (iii) self-organizing over-

lay that builds over Distributed Hash Table (DHT) [115] [105] routing structure.

4.1.2 Coordination Model

In this section, we first describe the communication, coordination and indexing models

that are utilized to facilitate the P2P coordination space. Then, we present the composition

of objects, access primitives that form the basis for coordinating application schedules

4.1. Architectural Framework 87

among distributed GASs/brokers.

Layered Design of the Coordination service

A
p

p
li

c
a

ti
o

n

L
a

y
e

r

C
o

re
 S

e
rv

ic
e
s

L
a

y
e

r

C
o

o
rd

in
a

ti
o

n

S
e

rv
ic

eInsertion and deletion of Claim or

Ticket Objects

Ticket Claim

R
e

s
o

u
rc

e
 D

is
c
o

v
e

ry

S
e

rv
ic

e

Logical index space management

Publish(Ticket) Subscribe(Claim)

G
ri

d
 P

e
e

r

C
o

n
n

e
c
ti

v
it

y

L
a

y
e

r

Key-based message routing, Replica

management

put(Ticket Key)

Match message

get(Claim Key)

Ticket to Claim

match

Notification

Scheduling, Monitoring, Access

Control, Resource update

Figure 4.3: Layered design of the core services.

We design and architect the coordination service based on a layered approach. The

architecture consists of three layers: the Application layer, Core Services layer and Con-

nectivity layer. Grid Services, such as workflow brokers/schedulers work at the Applica-

tion layer and insert objects (claims/tickets) via the Core Services layer. In the context of

a GAS, the GAM software module operates at the Application layer.

We use the coordination service as a sub-layer of the Core Services layer. The coor-

dination service accepts the application objects, such as claims and tickets. These objects

are similar to Condor classified advertisements (ClassAds) [98] and encapsulate the co-

88 Chapter 4. Autonomic Workflow Management System Architecture

ordination logic, which in this case is the resource provisioning logic. These objects are

managed by the coordination service. The calls between the coordination service and

resource discovery service are made through the standard publish/subscribe technique.

The resource discovery service is responsible for managing the logical index space and

communicating with the Connectivity layer. The calls between Core Services layer and

Connectivity layer are made through standard DHT primitives, such as put() and get() that

are defined in the P2P Common Application Programming Interface specification [35].

As shown in Fig. 4.3, Core Services layer is managed by the Grid peer module of a GAS

service.

The Connectivity layer is responsible for undertaking key-Based routing in the DHT

space, such as Chord, CAN, Pastry etc. In this chapter, for simulation, we model the Chord

substrate at the Connectivity layer. Chord hashes the peers and objects (such as fileIds,

logical indices, etc) to the circular identifier space and the average lookup complexity

is O(log r) steps with high probability. Each peer in the Chord network is required to

maintain routing table state of O(log r) other peers, where r is the total number of Grid

peers in the system.

Coordination Objects

This section gives details about the resource claim and ticket objects that form the basis

for enabling decentralized coordination mechanism among the GASs in Grid Federation

system. These coordination objects include Resource Claim and Resource Ticket.

Every GAS in the federation posts its resource ticket through the local coordination

service. A resource ticket object ui or update query consists of a resource description Ri,

for a resource i.

Example 4.2 (Resource Ticket): Total-Processors = 100 && Processor-Arch= Pen-

tium && Processor-Speed= 2 GHz && Operating-System = Linux && Utilization=0.80.

A resource claim or lookup object encapsulates the resource configuration require-

ments of a task in the workflow submitted by users. In this work, we focus on the

workflows for which the requirements are confined to a computational Grid or Planet-

Lab resources. Users submit their workflow application’s resource requirements to the

local GAS. The corresponding Grid peer service of GAS is responsible for searching the

4.1. Architectural Framework 89

T1

T2 T3

T4

GAS

Grid site l

GAS

Grid site s

GAS

Grid site p

GAS

Grid site uChord Overlay

Resource Ticket Coordinator
for index cell i

Index cell i

T1

T2 T3

T4

2-dimensional attribute space

A

C D

B

Resource Claim s
Resource Ticket l

Resource Claim l

Spatial Hash (index cell i)

Resource Claim p

Resource Ticket u

Resource Ticket s

Resource
Claim l

Resource Claim l

T2

T3

Figure 4.4: Resource allocation and application scheduling coordination across Grid sites.

90 Chapter 4. Autonomic Workflow Management System Architecture

suitable resources in the federated system. The GAS aggregates characteristics of a task

including the number of processors, processor architecture, and installed operating system

with constraint on maximum speed and resource utilization into a resource claim object,

ri,j,k.

Example 4.3 (Resource Claim): Total-Processors ≥ 70 && Processor-Arch= Pen-

tium && 2 GHz ≤ Processor-Speed ≤ 5GHz && Operating-System = Solaris && 0.0 ≤

Utilization ≤ 0.90.

The GAM module of a GAS passes the resource ticket and claim object to the co-

ordination service operating at the Core Services layer. Recall that, the Core Services

layer is managed by the Grid peer module, which interacts with the DHT based overlay

network. The operation between Grid peer module and DHT based overlay is transparent

to GAM. In other words, a GAM is not aware of how the Grid peer module is routing,

searching, and matching the objects in the system. It is the responsibility of a Grid peer

module to implement specific communication and data organization methods, which can

provide desired functionality to the Application layer services, such as a GAM. In order

to efficiently route, search, and match the d-dimensional claim and ticket objects, the Grid

peer module embeds a logical spatial data-structure over the DHT overlay space.

The resource ticket and claim objects are spatially hashed to an index cell i in the

d-dimensional coordination space. Similarly, the coordination services of the resource

sites in the Grid network hash themselves into this coordination space using the overlay

hashing function (SHA-1 in case of Chord and Pastry). In Fig. 4.4, resource claim objects

issued by site p and l are mapped to the index cell i and these claim objects are currently

hashed to the site s. Thus, site s is responsible for coordinating the resource sharing

among all the resource claims that are mapped to the cell i. Subsequently, site u issues

a resource ticket (shown as small dark circles in Fig. 4.4) that falls under a region of the

space currently required by users at site p and l. In this case, the coordination service

of site s has to decide, which of the sites (i.e. either l or p or both) will be allowed to

claim the ticket issued by site u. This load-distribution decision is based on the fact that

it should not lead to over-provisioning of resources at site u.

In Table 4.2, we show an example list of claim objects generated by scheduler for

the corresponding workflow tasks listed in Table 4.3 that are stored with a coordination

4.1. Architectural Framework 91

Table 4.2: Claims stored with the coordination service at time τ

Time Claim ID Sxi,j,k
Pxi,j,k

Axi,j,k
Oxi,j,k

Rank
200 Claim 1 > 800 1 Intel Linux 0.2
350 Claim 2 > 1200 1 Intel Linux 0.3
500 Claim 3 > 700 1 Sparc Solaris 0.1
700 Claim 4 > 1500 1 Intel Windows XP 0.4

Table 4.3: Resource configuration required for workflow tasks

Task No Claim ID Sxi,j,k Pxi,j,k Axi,j,k Oxi,j,k

1 Claim 1 > 800 1 Intel Linux
2 Claim 2 > 1200 1 Intel Linux
3 Claim 3 > 700 1 Sparc Solaris
4 Claim 4 > 1500 1 Intel Windows XP

Table 4.4: Ticket published to the coordiation service at time τ

Time GAS ID µi pi pi avail xi φi

900 GAS-8 1400 3 2 Intel Linux

service at time t = 900 seconds. Essentially, the claims in the list arrived at a time ≤

900 and are waiting for a suitable ticket object that can meet its resource configuration

requirements. Whereas, Table 4.4 depicts the list of ticket objects that have arrived at

t = 900 seconds. Following the ticket arrival event, the coordination service undertakes a

procedure that divides this ticket object among the list of claims. Based on the resource

attribute specification and availability, only Claim 1 and Claim 2 matches the ticket’s

resource configuration. As specified in the ticket object, there are currently 2 processors

are available with the GFA 8, which is equal to the sum of processors required by Claim

1 and 2 (i.e., 2). Hence in this case the coordination service, based on the priority of the

task (rank), first notifies the GFA that has posted Claim 2 and follows it with the GFA

responsible for Claim 1. However, Claims 3 and 4 have to wait for the arrival of tickets

that can match their required resource configuration.

Once a resource ticket matches with one or more resource claims, a coordination ser-

vice sends notification messages to the resource claimers such that it does not lead to

92 Chapter 4. Autonomic Workflow Management System Architecture

the overloading of the concerned resource ticket issuer. Thus, this mechanism prevents

the workflow brokers from overloading the same resource. As a result, the problem of

conflicting schedules is overcome.

D-dimensional Coordination Object Mapping and Routing

one-dimensional hashing, provided by current implementation of DHTs are insufficient

to manage complex objects, such as resource tickets and claims. DHTs generally hash

a given unique value/identifier (e.g. a file name) to a 1-dimensional DHT key space and

hence they cannot support mapping and lookups for complex objects. Management of

these objects whose extents lie in the d-dimensional space requires embedding of a logical

index structure over the 1-dimensional DHT key space [103].

We now describe the features of the P2P-based spatial index that we utilize for map-

ping the d-dimensional claim and ticket objects over the DHT space. Providing the back-

ground and details on this topic is beyond the scope of this thesis; here we only give a

high level view. The spatial index that we consider in this work, assigns regions of space

to the Grid peers in the Grid Federation system. If a Grid peer is assigned a region of d-

dimensional space, then it is responsible for handling query computation associated with

the claim and ticket objects that intersect this region, as well as storing the objects that are

associated with the region. Fig. 4.5 presents a 2-dimensional Grid resource attribute space

for mapping claim and ticket objects. The attribute space has a grid-like structure due to

its recursive division process. The index cells, resulted from this process, remain constant

throughout the life of the d-dimensional attribute space and serve as the entry points for

subsequent mapping of claim and ticket objects. The number of index cells produced at

the minimum division level, fmin is always equal to (fmin)dim, where dim is the dimen-

sionality of the Cartesian space. These index cells are called base index cells and they

are computed when the Grid peers bootstrap to the coordination network. Finer details on

recursive sub-division technique can be found in [116]. Every Grid peer in the network

has the basic information about the Cartesian space coordinate values, dimensions and

minimum division level.

Every cell at the fmin level is uniquely identified by its centroid, termed as a control

point. Fig. 4.5 depicts four control points A, B, C and D. A DHT hashing method such

4.1. Architectural Framework 93

Claim Z

0

hyperplane
Diagonal

Grid peer v

Grid peer s

Claim Y

Claim X

Ticket N

Claim W

Grid peer u

Control point CTicket M

Chord Ring2 dimensional Cordination Space

2 −1
t

Grid peer t

A

DC

O

B

1

Figure 4.5: Spatial resource claims {W ,X ,Y ,Z}, cell control points {A,B,C,D‘}, point
resource tickets {M ,N} and some of the spacial hashings (dotted lines) to the Chord, i.e.,
the d-dimensional coordinate values of a cell’s control point is used as the DHT key and
hashed on to the Chord ring. For this figure, fmin = 2, dim=2.

as the Chord method is utilized to hash these control points. So the responsibility for

managing an index cell is associated with a Grid peer in the system. In Fig. 4.5, control

pointC is hashed to the Grid peer t, which is responsible for managing all claim and ticket

objects that are stored with that control point (Claim X, Z and Ticket M).

For mapping claim objects, the process of mapping index cells to the Grid peers de-

pends on whether it is a DPQ or DRQ. For a DPQ type query, the mapping is simple since

every point is mapped to only one cell in the Cartesian space. For a DRQ type query,

mapping is not always singular because a range lookup can cross more than one cell. To

avoid mapping a DRQ to all the cells that it crosses (which can create many unnecessary

duplicates), a mapping strategy based on diagonal hyperplane [55] of the Cartesian space

is utilized. This mapping involves feeding a DRQ candidate index cell as an input into a

mapping function, Fmap. This function returns the IDs of index cells to which the given

DRQ should be mapped. Spatial hashing is performed on these IDs (which returns keys

for Chord space) to identify the current Grid peers responsible for managing the given

keys. A Grid peer service uses the index cell(s) currently assigned to it and a set of known

base index cells obtained at initialization as the candidate index cells.

Similarly, the mapping process of a ticket also involves the identification of the cell in

94 Chapter 4. Autonomic Workflow Management System Architecture

the Cartesian space. A ticket is always associated with a region [55] and all cells that fall

fully or partially within that region will be selected to receive the corresponding ticket.

The calculation of the region is based upon the diagonal hyperplane of the Cartesian space.

As discussed earlier in this section, a resource ticket encapsulates the number of pro-

cessors available for a particular resource at a certain time. In this thesis, we assume that

a claim object encapsulates the computational requirement for one processing unit. Thus,

a resource ticket can match with one or more resource claim objects and in that case, all

tasks corresponding to the matched claim objects are executed on the resource that issued

the ticket object. Further, a claim object can also match with one or more ticket objects.

In that case, the task corresponding to matched claim object is executed on the resource

that issued the ticket object, which is at the head of ticket queue.

DHT Configured at Initialization

Similar to any P2P system (e.g. Gnutella [28]), we consider a Bootstrap Peer that com-

putes the initial division (set of index cells that forms the basis for storing RUQs and

RLQs) of indexing space based on configuration values, such as number of resource di-

mensions, maximum height of the distributed tree (fmax) and minimum division level

(fmin). We assume that every other Grid Peer joining the overlay has access to IP ad-

dress/DNS name of the Bootstrap peer. At initialization phase, a Grid Peer contacts the

Bootstrap peer to obtain the list of index cells that it may be responsible for. The transfer

of ownership of index cells (keys) is done based on DHT key management algorithm (e.g.

Chord). To summarize, a Grid Peer is assigned those index cells whos ids lies between the

Grid Peer’s id and its predecessor’s id. An example of Overlay creation, data indexing,

object mapping and routing is illustrated in Fig. 4.6.

4.1.3 Application Model

We model scientific workflow application as Directed Acyclic Graph (DAG), where the

tasks in the workflow are represented as nodes in the graph and the dependencies among

the tasks are represented as the directed arcs among the nodes (see workflow model of

Section 3.4 in Chapter 3). In general, a task in a workflow is a set of instructions that can

4.1. Architectural Framework 95

Figure 4.6: Overlay creation, data indexing, object mapping and routing: (1) a Grid site
publishes ticket; (2) Grid peer 8 service computes the index cell, C(x3,y3), to which
the ticket maps by using mapping function IMap(ticket); (3) Next, distributed hashing
function, DHash(x3, y3), is applied on the cell’s coordinate values, which yields a overlay
key, K14; (4) Grid peer 8 based on its finger table entry forwards the request to peer 12;
(5) Similarly, peer 12 on the overlay forwards the request to peer 14; (6) a GAS service
submits a resource claim; (7) Grid peer 2 computes the index cell, C(x1, y1), to which the
claim maps; (8) DHash(x1, y1) is applied that yields an overlay key, K10; (9) Grid peer
2 based on its finger table entry forwards the mapping request to peer 12.

96 Chapter 4. Autonomic Workflow Management System Architecture

be executed on a single processing element of a computing resource [24]. Examples of

such workflow applications are [18], [120], [110], [32], and [96].

Definition 4.2 (Scientific Workflows): Scientific workflows describe a series of large

number of structured activities and computations that arise in scientific problem solving.

Usually, scientific workflows are data or computation intensive and the activities in the

workflow have data or control dependencies among them.

Example 4.1: Let Vi,j,k be the finite set of tasks { T1, T2,...,Tx,...,Ty,Tm } for the i-th

submitted workflow from the j-th user of k-th workflow broker (GAS) and Ei,j,k be the set

of dependencies of the form {Txi,j,k , Tyi,j,k}, where Txi,j,k is the parent task of Tyi,j,k . Thus,

the i-th submitted workflow from the j-th user of k-th workflow broker in the system can

be represented as,

Wi,j,k = {Vi,j,k, Ei,j,k}

In a workflow, we call a task that does not have any parent task, an entry task and a

task that does not have any child task, an exit task. We also assume that a child task can

not be executed until all of its parent tasks are completed. At any time of scheduling, the

task that has all of its parent tasks finished is called a ready task.

4.2 Implementation

The architectural framework for autonomic workflow management system, presented in

the previous section has been implemented by leveraging Aneka enterprise Grid plat-

form [124] and following Grid Federation model. This section provides the implementa-

tion details (i.e. application environment, software components, and deployment scenario)

of the proposed architecture.

4.2.1 Aneka Federation: An Overview

Aneka is a .NET-based service-oriented platform for constructing enterprise Grids. It is

designed to support multiple application models, persistence and security solutions, and

communication protocols such that the preferred selection of services can be changed at

4.2. Implementation 97

M
e

s
s
a
g

e
 H

a
n
d

le
r/

D
is

p
a
tc

h
e
r

C
o
m

m
u

n
ic

a
ti
o

n
 L

a
y
e

r

Persistence

SecurityServices

Container

Remote

interactions

Membership

Catalog

Application

Catalog

Data

Catalog

Information & indexing Scheduling

Dataflow

Scheduler

Execution Storage Others

File

Server

Banking

Service

…..

Thread

Scheduler

Task

Scheduler
MPI

Scheduler

MPI

Executor

Dataflow

Executor

Thread

Executor

Authorization

Authentication

Auditing

Task

Executor

Figure 4.7: Aneka container.

anytime without affecting an existing Aneka ecosystem. To create an enterprise Grid,

the resource provider only needs to start an instance of the configurable Aneka container

(see Fig. 4.7) on each selected Grid node to host required services. The purpose of the

Aneka container is to initialize services and act as a point for interaction with rest of the

enterprise Grids.

The Aneka container can host any number of optional services that can be added to

augment the capabilities of an enterprise Grid node. Examples of these optional services

are indexing, scheduling, execution, and storage services. This provides a flexible and ex-

tensible framework for orchestrating different kinds of enterprise Grid application models.

However, the Aneka container must host a MembershipCatalogue service that maintains

the resource discovery indices (i.e. a .NET remoting address) of the services currently

active in the system.

The Aneka Federation system logically connects topologically and administratively

distributed Aneka enterprise Grid sites as part of a global resource sharing system. The

components of Aneka Federation (computing resources and service providers) self-organize

98 Chapter 4. Autonomic Workflow Management System Architecture

Aneka

Coordinator

Peer-to-Peer
Network

User

Aneka

Coordinator

Aneka

Coordinator
Aneka Coordinator

ThreadScheduler

ThreadExecutor

Aneka Services

TaskScheduler

TaskExecutor

Discovery

Coordination

Messaging

Aneka Peer

User

User

Resource

Resource

Resource

Figure 4.8: Aneka Federation network with the coordinator services.

themselves based on a DHT-based P2P routing methodology to create a scalable overlay

of enterprise Grids. Each Grid site in the Aneka Federation instantiates a software ser-

vice, called Aneka Coordinator. Depending on the scalability requirements and system

size, an enterprise Grid can instantiate multiple Aneka Coordinator services. The Aneka

Coordinator basically implements the functionalities for resource management and spec-

ifications for resource discovery protocol. The software design of the Aneka-Federation

system decouples the fundamental decentralized interaction of participants from the re-

source allocation policies and the details of managing a specific Aneka Grid service. The

Aneka Federation software sysbvtem utilizes the decentralized Grid services as regards to

efficient distributed resource discovery and coordinated scheduling.

Components of Aneka Coordinator

Aneka Coordinator software service is mainly composed of two components: Aneka ser-

vices and Aneka peer.

Aneka Services: Aneka Coordinator is responsible for managing a number of ser-

4.2. Implementation 99

Figure 4.9: Mandelbrot application.

vices that include the core services for P2P scheduling (i.e. Thread Scheduler and Task

Scheduler) and P2P execution (i.e. Thread Executor and Task Executor) provided by

the Aneka framework. These services work independently in the container and have the

ability to interact with other services, such as P2PMembershipCatalogue service through

MessageDispatcher service deployed within each container.

Aneka Peer: It loosely joins the core Aneka services together with the decentralized

Grid services (i.e. resource discovery, coordination, and messaging). Thus, the main

functionality of Aneka peer is to provide services for content-based routing of lookup and

update messages as well as facilitating decentralized coordination for efficient resource

sharing and load-balancing among the distributed Aneka enterprise Grids.

Fig. 4.8 shows a distributed workflow management scenario, where an Aneka Coor-

dinator is deployed at each enterprise Grid site and connected through a P2P overlay to

create Aneka Federation.

100 Chapter 4. Autonomic Workflow Management System Architecture

4.2.2 Workflow Management in Aneka Federation

Application Development Environment

Application Model: Aneka supports composition and execution of applications based on

two programming models: Task model and Thread model. The Task model defines an

application as a collection of one or more tasks, where each task represents a unit of

execution. Whereas, Thread model defines an application as a collection of one or more

threads. To demonstrate the feasibility of implementing workflow management in Aneka

Federation, we use Mandelbrot as an application.

Mathematically, the Mandelbrot set is an ordered collection of points in the complex

plane, the boundary of which forms a fractal. We enable the Mandelbrot fractal calcu-

lation in Grids using Task programming model. The application submission interface of

Aneka platform allows the user to configure the number of horizontal and vertical parti-

tions into which the fractal computation can be divided (see Fig. 4.10(c)). The number

of tasks created is equal to horizontal x vertical partitions. For the demonstration pur-

pose, This Mandelbrot application (see Fig. 4.9) is converted into a workflow as shown in

Fig. 4.10(a). The representation of this workflow is then drawn in workflow editor (see

Fig. 4.10(b)), which converts it into XML representation (see Fig. 4.10(d)). The Aneka

application environment for Mandelbrot takes this XML definition of workflow as input

and executes the tasks on Grid resources.

Workflow Editor: The workflow editor provides a Graphical User Interface (GUI) that

enables users to create and modify existing workflows. The workflows are defined based

on XML-based workflow language (xWFL), which has been used to model wide range

of scientific workflow applications, such as Brain Image Analysis Workflow [86]. Using

the editor, users design and create the workflows for complex scientific procedures by

dragging and dropping boxes and arrows, connecting them, and defining their properties

(input/output files, parameters etc.). Boxes and directed arrows represent workflow tasks

and data dependencies between them, respectively.

The GUI isolates users from the complexity of composing and editing XML entries

in the files. However, for advance users, editor provides direct access to the XML details

of the workflow design. Common editing operations, such as cut, copy, and paste can be

4.2. Implementation 101

JOIN

JOIN

FINISH

(a) Workflow application (b) Visual representation of application in Workflow
Editor

(c) Application execution interface (d) XML representation of application in Work-
flow Editor

Figure 4.10: Mandelbrot application development and execution environment.

102 Chapter 4. Autonomic Workflow Management System Architecture

concurrently performed on multiple workflows. The workflow editor component is inte-

grated with the Aneka application submission interface for facilitating users with regards

to workflow composition and management.

Resource Discovery and Coordinated Scheduling

The resource discovery service is developed utilizing FreePastry P2P framework. FreeP-

astry is an open source implementation of well-known Pastry routing substrate [107].

Pastry protocol was proposed by Microsoft’s System Research Group, Cambridge, UK

and Distributed System Group of Rice University. Pastry offers a scalable and efficient

routing substrate for the development of P2P applications. The Aneka Coordinators create

a Pastry overlay that collectively maintains a d-dimensional publish/subscribe index over

the network of distributed coordinators as shown in Fig. 4.8 and facilitates decentralized

resource discovery process.

The coordinated interaction among the resource providers and consumers in Aneka

Federation is achieved through implementation of decentralized resource provisioning

method. This method is engineered over a P2P routing and indexing system that has

the ability to route, search, and manage complex coordination objects (i.e. claim and

ticket) in the system. For scheduling tasks in a workflow, P2PScheduling service that

extends Aneka’s IndependentScheduling service implements the methods for (i) accept-

ing workflow submission from client nodes; (ii) handling the task dependencies; (iii)

sending search queries to P2PMembershipCatalogue service; (iv) dispatching tasks to

P2PExecution services after mapping; and (v) collecting the execution output. The inter-

action between P2PScheduling and P2PExecution services is facilitated by the Member-

shipCatalogue service as it accepts resource ticket objects from P2PExecution service and

resource claim objects from P2PScheduling service through MessageDispatcher.

Deployment

To realize Aneka Coordinator software service, Aneka peer component is implemented

using C#.Net, while the publish/subscribe indexing component is implemented using Java.

Thus, in order to facilitate inter-operation between these two components, web service in-

terfaces are implemented for both components. The P2PMembershipCatalogue of Aneka

4.2. Implementation 103

P2PScheduling service

Message dispatcher

Workflow submission

handler

P2PExecution service

Message dispatcherP2PMembership

Catalogue

SOAP-based

web service

ASP.Net

web service

Indexing service

(Pastry Framework)

Aneka Peer

Aneka Coordinator

Aneka Node

Figure 4.11: Various services hosted by Aneka Coordinator and Aneka Execution nodes.

Define workflow
in XML

User:

Client API

Aneka Coordinator:

Submission handler

Aneka Coordinator:

P2PScheduling

service

Aneka Coordinator:

P2PMembershipCa

talogue

Aneka Coordinator:

Indexing &

coordination service

Aneka Node:

P2PExecution

service

XML Parsing
Create Task and
Dependency Lists

Submit workflow

Submit Task and
Dependency Lists Submit Resource claim for tasks

through Message Dispatcher

Execute task

SOAP-based web service
(DFPastryManager)

Post Ticket Find
match

Submit Resource
update through
Message Dispatcher

SOAP-based web service
(DFPastryManager)

Post Claim

If match
occurs

ASP.Net web service
(AnekaDHTCallbackService)

Send notification
Send notification

Task output

Task
execution

Final result
Final result

Final result
generation

Iteration

Figure 4.12: Sequence diagram of the interaction among different Aneka components for
the lifecycle of a workflow execution.

104 Chapter 4. Autonomic Workflow Management System Architecture

peer service interacts with the publish/subscribe indexing service hosted in Apache Tom-

cat container in order to post the resource tickets and claims, which is achieved using

Simple Object Access Protocol (SOAP) based web service. On the other hand, to receive

query responses from the publish/subscribe indexing component, a .Net web service is im-

plemented using ASP.Net and hosted by Microsoft Internet Information Service 6.0 (IIS)

container. The communication messages are specified in XML and parsed by utilizing the

Apache Axis 1.4 SOAP engine. Similarly, workflow definition is also specified in XML

and parsed by the P2PScheduling service of Aneka Coordinator for mapping the tasks to

resources and taking scheduling decisions. The services hosted by Aneka Coordinator and

Aneka Execution nodes in order to facilitate execution of workflows in Aneka Federation

are presented in Fig. 4.11. In addition, Fig. 4.12 illustrates the interaction among these

services throughout the lifecycle of a workflow execution.

A sample deployment scenario of autonomic workflow management system in Aneka

Federation is depicted in Fig. 4.13, where four Aneka enterprise/desktop Grids are con-

nected to form an Aneka Federation. In this deployment scenario, one node of each

Grid site instantiates the Aneka Coordinator services including P2PScheduling service

and is responsible for discovering and coordinating the provisioning of distributed re-

sources in Aneka Federation, whereas the other nodes instantiate only the P2PExecution

service. Scientists and users utilize the Aneka application submission interface for sub-

mitting workflow applications to the local Aneka Coordinator service. The P2PExecution

services periodically update their availability and usage status to the Aneka Coordinators

and the P2PScheduling services of these coordinators perform decentralized task schedul-

ing and resource provisioning on the self-managing P2P overlay.

4.3 Conclusion

This chapter presents an architectural framework for autonomic workflow management

system for Grid computing environment. In particular, we describe the system models,

such as Grid model, coordination model, and application model that form the basis of

this architectural framework. Moreover, the prototype implementation of the proposed

architecture is also discussed in this chapter. The prototype wokflow management system

4.3. Conclusion 105

Aneka

Coordinator

`

Aneka

Coordinator

Aneka

Coordinator

`

Aneka

Desktop Grid 1

Aneka

Coordinator

Business

application

scientist

computational

application

biologist

Biological

application

Aneka

Desktop Grid 2

Aneka

Desktop Grid 4
Aneka

Desktop Grid 3

Peer-to-Peer
Network

Scientific

application

user user

Aneka

NodeAneka

Node Aneka

Node

Figure 4.13: Workflow execution scenario in Aneka Federation.

is developed by leveraging Aneka enterprise Grid platform that enables the creation of

Aneka Federation, a model for decentralized resource sharing and application schedul-

ing. In addition, the required components and services of the prototype system, such as

application development, resource discovery, coordination, and task scheduling are also

illustrated with the direction for deployment of the system. The workflow management ar-

chitecture presented in this chapter is self-configuring in nature and further utilized in the

next two chapters for developing self-optimizing and self-healing workflow management

policies for Grids.

Chapter 5

Decentralized and Cooperative

Workflow Scheduling

This chapter presents a decentralized and cooperative scheduling technique utilizing a

self-configuring P2P overlay for workflow applications in global Grids based on the work-

flow management system architecture discussed in Chapter 4. Using simulation, the per-

formance of this scheduling approach is measured with respect to scheduling and coordi-

nation perspectives. The results show that our approach is scalable in terms of scheduling

message complexity and able to optimize the execution completion time. As we lever-

age the DHT-based coordination space for scheduling decision making, it can also avoid

the limitation of single point of failure with regards to resource information service in

centralized scheduling techniques.

5.1 Introduction

Workflow scheduling is a process of finding the efficient mapping of tasks in a work-

flow to the suitable resources so that the execution can be completed with the satisfaction

of objective functions, such as execution time minimization as specified by Grid users.

Therefore, the efficiency of the workflow scheduling algorithm directly affects the perfor-

mance of Grid systems with respect to delivered Quality of Service (QoS) and resource

utilization. Majority of the existing workflow scheduling approaches are non-coordinated

107

108 Chapter 5. Decentralized and Cooperative Workflow Scheduling

(refer to Section 5.5), where workflow schedulers perform scheduling related activities in-

dependent of the other schedulers in the system. They directly submit their applications to

the underlying Grid resources without taking into account the current load, priorities, and

utilization scenarios of other application level schedulers, which leads to over-utilization

or a bottleneck on some valuable resources, while leaving others largely under-utilized.

Further, these brokers do not have a coordination mechanism, and this exacerbates the

load sharing and utilization problems of distributed Grid resources.

Moreover, current brokering systems have evolved around centralized client/server

or hierarchical models, where the responsibilities of key functionalities, such as resource

discovery are delegated to the centralized server machines. Centralized models have well-

known drawbacks regarding scalability, single point of failure, and network congestion at

links leading to the server.

To overcome these problems, this chapter proposes a novel approach for decentralized

and cooperative workflow scheduling in a dynamic and distributed Grid resource sharing

environment. The proposed approach derives from a Distributed Hash Table (DHT)-based

coordination space that provides a global virtual shared with regards to resource discovery,

coordination and overall system decentralization. New generation DHT-based routing

algorithms, such as Chord [115] form the basis for organizing the coordination space and

creating the structured P2P overlay to arrange the Grid resources. The self-organizing

and decentralized nature of P2P overlay facilitates automatic and seamless configuration

of the resource organization in the event of resource failure, join, or leave. Furthermore,

the process of cooperative decision making for scheduling ensures the optimization of

workflow execution considering the dynamic resource behaviour.

In a nutshell, in this chapter, we present a task scheduling algorithm for determining

task dependency and priority, a resource provisioning algorithm for mapping these tasks

to suitable Grid resources, and a resource coordination algorithm for coordinating inter-

actions among the distributed entities in the system. Next, we perform a comprehensive

simulation based study of the proposed scheduling approach and analyze different perfor-

mance metrics to demonstrate its performance and efficiency. Moreover, we also evaluate

our approach against non-cooperative scheduling and centralized coordination techniques

with respect to two performance dimensions, load balancing and coordination efficiency.

5.1. Introduction 109

Table 5.1: Notations: resource, workflow, and coordination models

Symbol Meaning
Resource

r number of resources or GASs in the Grid system
Ri i-th Resource in the system
Gi i-th GAS in the system
tp number of task executions per processor

Workflow
t number of tasks in a workflow.
T total number of tasks in the system.
e total number of inter-task dependencies in a workflow.
l number of levels in a workflow.
w width of a fork-join workflow.
α number of tasks in a level that can be executed concurrently.

Wi,j,k i-th workflow from the j-th user of k-th GAS in the system.
Txi,j,k

x-th task of the workflow, Wi,j,k.
Coordination

rxi,j,k
a claim posted for task Txi,j,k

.
ui a ticket issued by the i-th GAS/broker.
dim dimensionality or number of attributes in the Cartesian space.
fmin minimum division level of d-dimensional index tree.

Table 5.2: Notations: scheduling and network models

Symbol Meaning
Scheduling

CD average coordination delay per task in the system.
RT average response time per task.
MS average makespan per workflow.
NT total number of notifications for all tasks.
HP average number of routing hops per claim/ticket.
CL total number of claims in the system.

E(Txi,j,k
) execution time for task Txi,j,k

.
D(T(xy)i,j,k

) data transfer time from task Txi,j,k
to Tyi,j,k

.
rank(Txi,j,k

) rank value of task Txi,j,k
.

Network
λin total incoming rate a Chord service from the network queue.
λout outgoing claim/ticket rate at a network queue.
µn average network queue service rate at a Grid peer.
µr average query reply rate for index service at GFA.
λin

t incoming ticket rate at a index service.
λin

c incoming claim rate at a index service.
λin

a incoming query rate at a DHT routing service from the local index service.
λin

index incoming index query rate at a index service from its local DHT routing service.
K network queue size .

With the implementation of this approach, not only the performance bottlenecks are elim-

inated but also efficient scheduling with enhanced scalability is achieved.

110 Chapter 5. Decentralized and Cooperative Workflow Scheduling

5.2 System Models

The proposed scheduling algorithm utilizes the Grid Federation [101] model discussed in

Chapter 4 with regards to distributed resource organization and Grid networking.

We also consider the Scientific workflow applications as the case study for the pro-

posed scheduling approach. The modeling of this kind of applications is described in

Section 4.1.3 of Chapter 4.

5.3 Proposed Algorithms

In this section, we provide description of the algorithms that have been developed for: (i)

task scheduling; (ii) resource provisioning; and (iii) resource coordination. In Table 5.2,

we show the model parameters related to scheduling and P2P coordination network.

5.3.1 Scheduling and Provisioning Algorithm

Task Scheduling

Here, we discuss about the task scheduling algorithm (refer to Algorithm 2) that is

undertaken by a GAS in the Grid Federation system on the arrival of a job or workflow.

When a user submits a workflow application, Wi,j,k to a GAS, the GAS calculates the

priority of each task (line 12-15). Earliest Finish Time (EFT) heuristic is used to calculate

task priorities. This heuristic first computes the execution time for each task and commu-

nication time between resources of two successive tasks in the workflow (line 1-9). The

execution time of a task on a computing resource is calculated by dividing the size of task

(e.g. Million Instructions) by CPU capability of the corresponding resource (e.g. Million

Instructions Per Second). Let |Txi,j,k | be the size of task Txi,j,k , submitted to Gi and Ri be

the local resource with the processing power, |Ri|. Thus, the execution time of the task is

defined as,

E(Txi,j,k) =
|Txi,j,k |
|Ri|

(5.1)

Let T (xy)i,j,k be the size of data to be transferred between task Txi,j,k and Tyi,j,k , sub-

mitted to Gi and Ri be the local resource with the data processing capacity, Ri. Thus, the

5.3. Proposed Algorithms 111

data transfer time for the task is defined as,

D(Txyi,j,k) =
T (xy)i,j,k

Ri

(5.2)

E(Txi,j,k) and D(T(xy)i,j,k) are used to calculate the rank of a task. For an exit task, the

rank value is,

rank(Txi,j,k) = E(Txi,j,k) (5.3)

Now, the rank value of other tasks in the workflow can be computed recursively based

on equations (5.1), (5.2), and (5.3) and is represented as,

Algorithm 2 TASK SCHEDULING AT GAS
1: PROCEDURE: Initialize Task Priority
2: Input: Workflow Wijk

3: begin
4: for all t ∈ TaskList of workflow Wijk

5: Calculate execution time for t according to (5.1)
6: end for
7: for all e ∈ EdgeList of workflow Wijk

8: Calculate data transfer time for e according to (5.2)
9: end for

10: Run BFS following reverse task dependency and calculate rank value for each
task according to (5.3) (5.4)

11: end
12: PROCEDURE: Event User Workflow Submit
13: Input: Workflow Wijk

14: begin
15: Initialize Task Priority (Wijk)
16: Generate Ready TaskList for Wijk

17: Submit Ready tasks for execution
18: end
19: PROCEDURE: Event Task Finish Notification
20: Input: Task Txijk
21: begin
22: Update dependency list of each task in TaskList
23: Generate Ready TaskList for Wijk

24: Submit Ready tasks for execution
25: end

112 Chapter 5. Decentralized and Cooperative Workflow Scheduling

rank(Txi,j,k) = max
Tyi,j,k∈succ(Txi,j,k)

(D(T(xy)i,j,k) + rank(Tyi,j,k)) + E(Txi,j,k) (5.4)

Since a workflow is represented as a DAG, the rank values of the tasks are calculated

(line 10) by traversing the task graph in a Breadth First Search (BFS) manner in the reverse

direction of task dependencies (i.e. starting from the exit tasks).

Once the rank values are calculated, the GAS generates the ’ready’ tasks in the TaskList

based on the dependency of each task and put them into the ReadyTaskList (line 16).

Finally, the GAS submits the ’ready’ tasks for execution (line 17). Further, when the GAS

receives a notification message stating task, Txi,j,k has finished execution, it first updates

the dependency lists of the tasks that are dependant on Txi,j,k (line 19-22); then it computes

the ’ready’ tasks at that moment and submits them for execution (line 23-24).

Resource Provisioning

The details of the decentralized resource provisioning algorithm (refer to Algorithm 3)

that is undertaken by the P2P coordination space is presented here. When a resource

claim object, rxijk arrives at the coordination service, it is added to the existing claim

list, ClaimList by the coordination service (line 16-20). When a resource ticket object, ui

arrives at the coordination service, the list of resource claims that overlap or match with

the submitted resource ticket object in the d-dimensional space is computed (line 21-25).

The overlap signifies that the task associated with the given claim object can be executed

on the ticket issuer’s resource subject to its availability.

In order to get the matches, the coordination service first, sorts the claim objects in

the ClaimList in descending order according to their rank value (line 4-5); then from this

list, the number of claims that overlap with the ticket are selected to the ClaimListm

(line 6-13). From the ClaimListm, the resource claimers are selected one by one based

on their rank value(higher rank first) and the resource claimers are notified about the

resource ticket match until the ticket issuer is not over-provisioned (line 25-30). The

coordination procedure can utilize the dynamic resource parameters, such as the number

of available processors, queue length etc. as the over-provision indicator. These over-

provision indicators are encapsulated with the resource ticket object by the GASs.

5.3. Proposed Algorithms 113

5.3.2 Coordination Algorithm

This section provides the description of the algorithm (refer to Algorithm 4) for coor-

dinating the interactions among different entities in the system. When a GAS, Gj intends

to submit a task, Txijk for execution, it compiles a resource claim object, rxijk for the task

and posts it to the P2P coordination space (line 1-6). On the other hand, the GAS, Gi

compiles the resource ticket object, ui for resource, Ri and publishes it to the P2P coor-

dination space periodically depending on the ticket injection rate (refer to Section 5.4.2).

Algorithm 3 RESOURCE PROVISIONING AT COORDINATION SPACE

1: PROCEDURE: Match
2: Input: Ticket ui from Resource Ri

3: begin
4: Obtain rank value of each task in the ClaimList
5: Sort ClaimList in descending order of task’s rank value
6: index← 0
7: ClaimListm ← Φ
8: while ClaimList[index] 6= null do
9: rxijk ← ClaimList[index]

10: if rxijk ∩ ui 6= null then
11: ClaimListm ← ClaimListm ∪ rxijk
12: end if
13: index← index+ 1
14: end
15: return ClaimListm
16: end
17: PROCEDURE: Event Resource Claim Submit
18: Input: Claim rxijk
19: begin
20: ClaimList← ClaimList ∪ rxijk
21: end
22: PROCEDURE: Event Resource Ticket Submit
23: Input: Ticket ui from Resource Ri

24: begin
25: ClaimListm←Match(ui)
26: index← 0
27: while Ri is not over-provisioned do
28: Send notification of match event to resource claimer ClaimListm[index]
29: Remove ClaimListm[index]
30: index← index+ 1
31: end
32: end

114 Chapter 5. Decentralized and Cooperative Workflow Scheduling

Besides, whenever the resource condition changes, such as a task completion event hap-

pens, the GAS also posts a ticket object for the corresponding resource immediately (line

7-12).

Once there is a match between a ticket object, ui and a claim object, rxijk , the coor-

Algorithm 4 RESOURCE COORDINATION

1: PROCEDURE: Event Task Submit
2: Input: Task Tijk
3: begin
4: Encapsulate claim object rxijk for task Txijk
5: Subscribe rxijk to coordination space
6: end
7: PROCEDURE: Event Resource Status Changed
8: Input: Resource Ri

9: begin
10: Encapsulate ticket object ui for resource Ri

11: Publish ui to coordination space
12: end
13: PROCEDURE: Event Ticket Redeemption Request
14: Input: Task Txijk , GAS Gi

15: begin
16: Send ticket redeemption Request for task Txijk to

GAS Gi; Request message implies Gj

17: end
18: PROCEDURE: Event Ticket Redeemption Reply
19: Input: Task Txijk , GAS Gj

20: begin
21: if Txijk can be executed on local resource then
22: Send Reply ”accept” to GAS Gj

23: else
24: Send Reply ”reject” to GAS Gj

25: endif
26: end
27: PROCEDURE: Event Ticket Redeemption Reply Action
28: Input: Task Txijk , GAS Gi, Reply
29: begin
30: if Reply is ”accept” then
31: Send Txijk to accepting GAS Gi for execution
32: Unsubscribes the claim object for Txijk
33: else
34: Subscribe claim object rxijk to coordination space
35: endif
36: end

5.3. Proposed Algorithms 115

dination service sends a ticket redeemption request for task, Txijk to ticket issuer GAS,

Gi (line 13-17). The request message contains the information that task, Txijk is sub-

mitted by GAS, Gj . After notifying the resource claimer GAS, the coordination service

unsubscribes the resource claim for that task from the P2P coordination space.

When the ticket issuer GAS, Gi receives the notification of match from the coordina-

tion service, it sends a Reply to the resource claimer GAS,Gj . If the task can be executed

on the local resource at that time, it sends a positive reply; otherwise it sends a negetive

reply to the claimer GAS (line 18-26). If the Reply is ’accept’, then the claimer GAS, Gj

transfers the locally submitted task, Txijk to the ticket issuer GAS and unsubscribes the

claim object from the coordination space to remove duplicates (line 27-32). However, if

the ticket issuer GAS fails to grant access due to local resource sharing policy (i.e. Reply

is ’reject’), then the claimer GAS reposts the resource claim object for that task to the

coordination space for future notifications (line 33-34). The interaction between different

entities in the system is depicted in Fig. 5.1.

GAS j

T1

T2 T3

T4

GAS i GAS k
Coordination

Space

Claim (Task x)

{Event: Task Submit}

Ticket (R i)

{Event: Resource
Status Changed}

Ticket (R k)

{Event: Resource
Status Changed}

Request (Task x, GAS j)

Event: Ticket
Redemption Request}

Reply (accept/reject)

{Event: Ticket
Redemption Reply}

[rejected] Claim (Task x)

[accepted] Tx

{Event: Ticket Redemption
Reply Action}

{Event: Ticket Redemption
Reply Action}

Figure 5.1: Interaction between various entities in the system during resource coordina-
tion.

116 Chapter 5. Decentralized and Cooperative Workflow Scheduling

5.3.3 Time Complexity

Let us consider r number of Grid resources. Thus, there are r number of GASs in the

system. Let each user associated with a GAS submits a workflow consisting of t number

of tasks and e number of dependencies among the tasks. Then the complexity of calcu-

lating execution times of the tasks in the workflow is O(t) and data transfer times for the

dependencies in the workflow is O(e). Further, the complexity of running BFS to com-

pute the rank values of all the tasks is O(e + t) and if an adjacency list is used to handle

the dependencies, then the complexity of generating ’ready’ tasks is O(e). Therefore, the

overall time complexity of Algorithm 2 is O(e+ t).

In worst case, ClaimList in the Algorithm 3 can contain r.t number of tasks. So the

complexity of sorting the ClaimList is O((r.t) log(r.t)) and finding out the total number

of matches is O(r.t). Calculating the number of resource claimers to be notified about the

matches also requiresO(r.t) steps in worst case. Thus, the overall complexity of Resource

Provisioning algorithm is O((r.t) log(r.t)).

The time complexity of resource coordination algorithm is O(1).

5.3.4 Example

An example scenario of the process of task scheduling, resource provisioning and coor-

dination according to the proposed approach is illustrated in Fig. 5.2. The steps are as

follows:

1. user1 submits the workflow, W1 to the local broker, GAS1.

2. GAS1 ranks the tasks in the workflow using EFT heuristic.

3. GAS1 picks the ready task with higher rank (T1) and posts or subscribes a resource

claim to the coordinatin space.

4. All theGASs in the system sends or publish the resource ticket or Resource Update

Query (RUQ) to the P2P coordination space.

5. In the P2P coordination space, resource ticket of GAS3 matches with the resource

claim of GAS1.

5.4. Performance Evaluation 117

GAS 1

Resource site 1

user 1

Resource 1
GAS 2

Resource site 2

user 2

Resource 2

GAS 4

Resource site 4

user 4

Resource 4

GAS 3

Resource site 3

user 3

Resource 3

P2P Coordination
Space

match()

Ticket (resource 3)

Spatial Hash

Ticket (resource 1)

Ticket (resource 2)

Ticket (resource 4)

Claim (Task T1)

Notify
(GAS 3)

Submit Task T1

T1

T1

T2 T3

T4

T1

T2 T3

T4

Notify
(finished T1)

4

4

41

4

7

2

3

5

6

8

W 1

Figure 5.2: Example of the process of task scheduling, resource provisioning, and coor-
dination.

6. GAS1 receives the notification message of resource matching (GAS3) from the

coordination space.

7. GAS1 submits task T1 to GAS3.

8. T1 is executed on Resource3 and GAS3 notifies GAS1 of task completion; steps

4-8 continues until all the tasks in W1 have been finished execution.

5.4 Performance Evaluation

5.4.1 Network Model

The network model, considered for the simulation study is an interconnected network of

r Grid peers, where a Grid peer node (through its Chord routing service) is connected to

an network message queue and an incoming link from the Internet (as shown in Fig. 5.3).

The network message queue accepts the following two types of incoming messages from:

118 Chapter 5. Decentralized and Cooperative Workflow Scheduling

Broker
Service

Chord
Service

Index
Service

λin
c

λin
t

from other
Grid peers
(Internet)

Grid peer 1

Grid peer 2

Grid peer r

Network

Network

Network
queue

queue

queue

Network
messages

M/M/1/K

Index queue

Internet

µn

λout

λin
index λin

a

µr

λin

1

Figure 5.3: Network message queueing model at a Grid peer.

(i) other Grid peers on the Chord overlay; and (ii) the local Chord service. The Chord

service receives messages from local publish/subscribe index service (at rate λina) and the

network message queue (at rate λin). These messages are processed as soon as they arrive

at the Chord routing service. After processing, Chord routing service queues the messages

in the local network message queue at a rate, λout. We denote the message processing rate

of network message queue by µn. Basically, this queue models the network latencies

that a message encounters as it is transferred from one Chord routing service to another

on the Grid Federation overlay. The distributions for the delays (including queuing and

processing) encountered in a network message queue are given by the M/M/1/K queue

steady state probabilities.

We denote the rates for claim and ticket object by λinc and λint respectively. The queries

are directly sent to the local index service, which first processes them and then forwards

them to the local Chord routing service. Although, we consider a message queue for the

index service but we do not take into account the queuing and processing delays as it is in

microseconds. Index service also receives messages from the Chord routing service at a

rate λinindex. The index messages include the claims and tickets that map to the control area

currently owned by the Grid peer, and the notification messages arriving from the network.

The local index service sends message to its Chord service at a rate, λina . The index service

sends notification messages (claim-ticket match message) to its broker service at a rate,

µr.

5.4. Performance Evaluation 119

5.4.2 Simulation Setup

Our simulation infrastructure is created by combining two discrete event simulators namely

GridSim [22], and PlanetSim [49]. GridSim offers a concrete base framework for simula-

tion of different kinds of heterogeneous resources, services and application types. Planet-

Sim is an event-based overlay network simulator that can simulate both unstructured and

structured P2P overlay networks.

Workload Configuration

We utilize the workflow generator discussed in Chapter 3 for creating various formats

of weighted pseudo-application workflows. The following input parameters are used to

create a workflow.

• t, the total number of tasks in the workflow.

• l, the total number of levels in the workflow. l represents the ratio of the total

number of tasks to the width (i.e. maximum number of tasks in a level). Hence,

width: w= t−1− l−1
2

l−1
2

.

In this study, we consider fork-join workflow (refer to Fig. 5.4) and an example of

such workflow is WIEN2K [18], which is a quantum chemistry application developed at

Vienna University of Technology. In this kind of workflow, forks of tasks are created

and then joined, such that there can be only one entry task and one exit task. But the

number of tasks at each level depends on total number of tasks and the width of that level,

w. We vary the number of tasks in a workflow over the interval [50, 500] and the size of

each task is randomly generated form a uniform distribution between 50000 MI (Million

Instruction) to 500000 MI. Further, we assume that workflows are computation intensive.

Thus, the data dependency among the tasks in the workflow is negligible.

Network Configuration

The experiments run a Chord overlay with 32 bit configuration, i.e. number of bits utilized

to generate node and key ids. The GAS/broker network size r is fixed to 100. Further,

120 Chapter 5. Decentralized and Cooperative Workflow Scheduling

T1

T2 T3 T4 T5

T6

T11

T7 T8 T9 T10

of tasks = 11

Level 1

Level 2

Level 3

Level 4

Level 5

Width = 4 # of levels = 5

Figure 5.4: A fork-join workflow.

network queue message processing rate, µn, is fixed at 4000 messages per second and

message queue size, K is fixed at 104.

Resource Claim and Ticket Injection Rate

The GASs inject the ticket objects based on the exponential inter-arrival time distribution.

The injection rate (i.e. RUQ rate), λint , for the resource tickets is distributed over the in-

terval [100, 300] in step of 100 secs. Note that, the inter-arrival delay between injecting

the ticket objects is modeled to be the same for all the GASs in the system. At the be-

ginning of the simulation, the resource claims for the entry tasks of all the workflows in

the system are injected. Subsequently, when these tasks finish, then the resource claims

for the successive tasks in the workflow are posted. This process is repeated until all the

tasks in the workflow are successfully completed. Spatial extent of both resource claims

and ticket objects lie in a 4-dimensional attribute space. These attribute dimensions in-

clude the number of processors, their speed, their architecture, and operating system type.

The distribution for these resource dimensions is generated by utilizing the configura-

tion of resources that are deployed in the various Grids including NorduGrid, AuverGrid,

Grid5000, NaregiGrid, and SHARCNET [63].

5.4. Performance Evaluation 121

Spatial Index Configuration

In this simulation, the fmin of logical d-dimensional spatial index is set to 4. The index

space resembles a Grid-like structure, where each index cell is randomly hashed to a

Grid peer based on its control point value. With dim = 4, total of 256 index cells were

produced at the fmin level. Hence in a network that consisted of 100 GASs, on an average

the responsibility of managing 2.5 index cells were assigned to each GAS.

Resource Load Indicator

The GASs/brokers encode the metric “number of available processors” at time τ with the

resource ticket object, ui. A coordination service utilizes this metric as the indicator for

the current load on a resource,Ri. In other words, a coordination service stops sending the

notifications as the number of processors available with a ticket issuer approaches zero.

5.4.3 Results and Observations

In our simulation, we vary the resource ticket update (RUQ) inter-arrival delay over the

interval [100, 300] in steps of 100 seconds and the size of the workflow from 50 to 500

tasks. The graphs in Fig. 5.5 to Fig. 5.8 show the performance of the proposed scheduling

algorithm in terms of scheduling and coordination perspective, respectively.

Scheduling perspective

As a measurement of the scheduling performance, we use the following metrics:

1. average makespan

2. average coordination delay

3. average response time

4. average number of notifications

The metric coordination delay sums up the latencies for: (i) resource claim to reach

the index cell, (ii) waiting time till a resource ticket matches with the claim, and (iii)

122 Chapter 5. Decentralized and Cooperative Workflow Scheduling

notification delay from coordination service to the relevant GAS. CPU time for a task is

defined as the time, a task takes to actually execute on a processor.

Response time for a task is the delay between the submission time and the arrival time

of execution output. Effectively, the response time includes the latencies for coordination

and the CPU time. Note that, these measurements (except makespan) are collected by

averaging the values obtained for each task in the system.

Definition 5.1 (Makespan): Makespan is calculated as the response time of a whole

workflow, which is equal to the difference between the submission time of the entry task in

the workflow and the output arrival time of the exit task in that workflow.

Example 5.2: Let us consider that a user at Grid site Si wants to execute a fork-join

workflow illustrated in Fig. 5.4, consisting of 11 tasks. If GASi submits a claim object for

task T1 to the overlay at time t1 = 20 sec and the output of task T11 is delivered to the

user at time t2 = 1220 sec, then the makespan of this workflow is t2 − t1 = 1200 sec.

The measurement of makespan is taken by averaging over all the workflows in the

system, where the completion time of a task is the difference between the time when a

task has been submitted by the scheduler to a resource and the time when the output of

that task has been achieved.

Fig. 5.5(a) presents the results of average coordination delay for a task with respect

to the increase of the number of tasks in a workflow for different inter-arrival delays of

resource information update (ticket posting frequency). The results show that at higher

inter-arrival delay of tickets, the tasks in a workflow experience increased coordination

delay. This happens due to the reason that in this case, the resource claim objects of the

corresponding tasks have to wait for longer period of time before they are hit by ticket

objects. As the task processing time (CPU time) is not affected by the ticket posting fre-

quency, the average response time for a task shows (refer to Fig. 5.5(b)) the similar trend

as coordination delay with the changes of resource information update delay. However,

when the number of tasks in the workflow increases, the resource claim to ticket ratio in

the system also increases. This leads to increased coordination delay for each task due

to longer waiting period. Therefore, the response time of a task in the workflow is also

increased, while the size of workflow increases.

5.4. Performance Evaluation 123

0

50

100

150

200

250

50 100 150 200 250 300 350 400 450 500

RUQ 300 RUQ 200 RUQ 100

no. of tasks

a
v

g
.

co
o

rd
in

a
ti

o
n

 d
e

la
y

p
e

r
ta

sk
 (

se
c)

(a) Number of tasks vs. Coordination delay

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500

RUQ 300 RUQ 200 RUQ 100

no. of tasks

a
v

g
.

re
sp

o
n

se
 t

im
e

p
e

r
ta

sk
 (

se
c)

(b) Number of tasks vs. Response time

Figure 5.5: Effect of workflow size and resource information update interval on coordi-
nation delay and response time (scheduling perspective).

124 Chapter 5. Decentralized and Cooperative Workflow Scheduling

4000

5000

6000

7000

8000

9000

50 100 150 200 250 300 350 400 450 500

RUQ 300 RUQ 200 RUQ 100

no. of tasks

a
v

g
.

m
a

k
e

sp
a

n
 p

e
r

w
o

rk
fl

o
w

 (
se

c)

(a) Number of tasks vs. Makespan

0.95

0.97

0.99

1.01

1.03

1.05

50 100 150 200 250 300 350 400 450 500

RUQ 300 RUQ 200 RUQ 100

no. of tasks

a
v

g
.n

o
.

o
f

n
o

ti
fi

ca
ti

o
n

s
p

e
r

ta
sk

 (
se

c)

(b) Number of tasks vs. Number of notifications

Figure 5.6: Effect of workflow size and resource information update interval on makespan
and number of notifications (scheduling perspective).

5.4. Performance Evaluation 125

The average makespan of the workflows also shows (see Fig. 5.6(a)) similar growth

over number of tasks and ticket inter-arrival delay as reflected in coordination delay or

response time. Thus, in our proposed scheduling environment, if the resources update

their availability information frequently, then the workflows submitted by the users will

be completed early.

The proposed scheduling approach is also highly successful in reducing the number of

negotiations undertaken for the successful submission of a task (see Fig. 5.6(b)). In a cen-

tralized scheduling technique, it requires few negotiation iterations to successfully submit

a task, while in this case, the average number of negotiations (notification messages) per

task is about one.

Discussion: Let us consider, r number of Grid resources. Therefore, there are r

number of GASs in the system. Now if each user associated with the GAS submits a

workflow that consists of t number of tasks, then the total number of tasks executed on

the system are,

T = r.t (5.5)

Let CDij is the coordination delay of i-th task, submitted by j-th GAS in the system.

Then the avg. coordination delay per task is,

CD =

∑
1≤i≤r
1≤j≤t

CDij

r.t
(5.6)

The latency for the claim object of a task, to reach the index cell (refer to Section 4.1.2)

and the notification delay for that task are negligible. Thus, the coordination delay of a

task mainly depends on the waiting time (in the ClaimList queue) for the claim object

of that task to be matched with a ticket object. In worst case, the length of the ClaimList

queue equals to the total number of tasks in the system. Therefore, for a fixed resource

information update interval (RUQ), the waiting time of a task depends on T and we can

write,

CD = O(r.t)

126 Chapter 5. Decentralized and Cooperative Workflow Scheduling

= O(t) (5.7)

In Fig. 5.5(a), for a particular RUQ, it is also evident that the avg. coordination delay

of a task in the system is bounded by the number of task in the workflow.

The response time of a task is the summation of coordination delay and execution time

of that task. Thus, the avg. response time of a task is,

RT = CD + Avg. CPU time

= CD +
Avg. task size

Avg. processing power of resources

= CD + c1 ; c1 is a constant

= O(CD)

= O(t) ; as CD = O(t) (5.8)

Therefore, the avg. response time of a task in the system is also linearly dependant on

the number of tasks in that workflow, which is shown in Fig. 5.5(b)

The average makespan of a fork-join workflow (see Fig. 5.4) consisting of t tasks and

l levels, can be represented as,

MS = l.α.RT (5.9)

where the value of α depends on the number of tasks in a level (known as width, w),

which can be concurrently executed depending on the availability of resources and

α =


1 in best case

w/2 in average cases

w in worst case

As α = O(t), RT = O(t) and in our experiments, l = 10, so we can write,

MS = O(t) (5.10)

5.4. Performance Evaluation 127

Therefore, the average makespan of a fork-join workflow in the system linearly de-

pends on the number of tasks in that workflow, which is also depicted in Fig. 5.6(a)

Moreover, for most of the tasks, the GASs/brokers in the system receive 1 notification

message from the coordination service. Thus, total number of notifications for all the

tasks in the system are,

NT = r.t+ β ; β is a constant and β ≤ t

Avg. number of notifications per task,

NT =
r.t

r.t
+

β

r.t

= 1 + c3 ; c3 is a constant

= O(1) (5.11)

This suggests that the negotiation or notification complexity involved with this schedul-

ing technique is O(1), which we can also see in Fig. 5.6(b).

Coordination perspective

Here, we analyze the performance overhead of the DHT-based coordination space in re-

gards to facilitating coordinated scheduling among the distributed GASs. For that, we

measure the following metrics:

1. number of routing hops, undertaken per task to map claim and ticket objects to

index cells;

2. total number of tickets or claims, produced in the system;

3. total number of messages, generated for the successfully mapping the coordina-

tion objects (tickets and claims) and receiving notifications.

Fig. 5.8(a) shows the number of routing hops, undertaken at different ticket injection

rates for ticket and claim object across the GASs in the system for different sizes of

workflow. From the figure, it is evident that the number of routing hops is not changed

128 Chapter 5. Decentralized and Cooperative Workflow Scheduling

5000

14000

23000

32000

41000

50000

50 100 150 200 250 300 350 400 450 500

RUQ 300 RUQ 200 RUQ 100

no. of tasks

to
ta

l n
o

.
o

f
cl

a
im

s

(a) Number of tasks vs. Number of claims

6000

19000

32000

45000

58000

71000

50 100 150 200 250 300 350 400 450 500

RUQ 300 RUQ 200 RUQ 100

no. of tasks

to
ta

l n
o

.
o

f
ti

ck
e

ts

(b) Number of tasks vs. Number of tickets

Figure 5.7: Effect of workflow size and resource information update interval on number
of claims and tickets (coordination perspective).

5.4. Performance Evaluation 129

3.4

3.5

3.6

3.7

3.8

3.9

50 100 150 200 250 300 350 400 450 500

RLQ 300 ticket RLQ 200 ticket RUQ 100 ticket

RLQ 300 claim RLQ 200 claim RLQ 100 claim

no. of tasks

a
v

g
.

n
o

.
o

f
ro

u
ti

n
g

h
o

p
s

p
e

r
cl

a
im

/p
e

r
ti

ck
e

t

(a) Number of tasks vs. Number of hops

250000

800000

1350000

1900000

2450000

3000000

50 100 150 200 250 300 350 400 450 500

RUQ 300 RUQ 200 RUQ 100

no. of tasks

to
ta

l n
o

.
o

f
m

e
ss

a
g

e
s

(b) Number of tasks vs. Number of messages

Figure 5.8: Effect of workflow size and resource information update interval on number
of hops and messages (coordination perspective).

130 Chapter 5. Decentralized and Cooperative Workflow Scheduling

significantly with the increase of the ticket injection rate or the size of the workflow. Here,

the average number of routing hops for mapping ticket or claim objects is around 3.62.

However, the number of claims, generated during the simulation, remains the same

with the variation of ticket inter-arrival delay (refer to Fig. 5.7(a)). But it shows a linear

growth over the increase in number of tasks in the workflow.

In Fig. 5.7(b) and 5.8(b), we show the message overhead, involved with the inter-

arrival delay of ticket objects. Fig. 5.7(b) depicts the total number of ticket objects, posted

by all GASs in the system with respect to increasing workflow size and ticket inter-arrival

delay. In Fig. 5.8(b), we can see that as ticket inter-arrival delay and size of the workflow

increase, the number of messages generated during simulation period increases. For in-

stance, when ticket inter-arrival delay is 100 seconds and each workflow consists of 500

tasks, 72754 tickets as well as 2904113 messages are generated in the system. Thus, if

the GASs publish tickets at relatively faster rate, the message overhead of the system in-

creases substantially. But in this case, average coordination delays per task also decreases

moderately (see Fig. 5.5(a)). Therefore, the ticket inter-arrival delay should be chosen in

such a way that a balance between coordination delay and message overhead can exist in

the system. In addition, from Fig. 5.8(b), it is evident that our system is scalable since

the total number of messages is increased linearly with respect to number of tasks in the

workflow.

Discussion: In our experiment, the avg. number of routing hops per claim or per

ticket is,

HP = 3.62 ; refer to Fig. 5.8(a)

= 6.64− 3.02

= log 100− c4 ; c4 is a constant

= O(log r) ; here, r = 100 (5.12)

This shows that the number of routing hops for mapping claim/ticket object is as

expected in a Chord based routing space, i.e. bounded by the function O(log r).

5.4. Performance Evaluation 131

The GASs in the system post one claim object for each task in the workflow. Thus,

the total number of claim objects generated in the system is,

CL = r.t

= O(t) (5.13)

Fig. 5.7(a) shows that the total number of claims generated in the system is linearly

dependant on the number of tasks in the workflow.

According to Ranjan et al. [102], in a federation of r heterogeneous resources, on

average, a task requires HP (see Eq. 5.12) messages to be sent in the network in order to

map a task to a resource. Hence given r worflows each having t tasks, the total number

of messages generated to map all tasks to resources is bounded by O((r.t) log r). Further

if GASs posts 1
λint

tickets over a time period, then the average-case message complexity

involved with mapping the ticket objects to Grid peers in the federation is bounded by

the function O(E[query paths] . 1
λint

. logr), where E[query paths] denotes the mean

number of disjoint query paths taken to map a ticket object to a Grid peer. Thus, the total

number of messages generated in the system as a result of successfully scheduling all

tasks of workflows in the system is,

O((r.t) log r) +O(E[query paths] .
1

λint
. log r)

5.4.4 Comparison

Cooperative vs. Non-cooperative Load Balancing

In this section, we present the details and simulation results related to how our proposed

decentralized and cooperative scheduling approach is effective in solving load-balancing

problem in mapping workflow tasks to distributed Grid resources. The effectiveness of

the proposed approach as regards to load-balancing is proven by conducting a comparative

evaluation against a traditional non-cooperative workflow task mapping approach. In non-

cooperative approach, workflow brokers operate in an independent and non-cooperative

132 Chapter 5. Decentralized and Cooperative Workflow Scheduling

100

150

200

250

300

350

400

100 200 300 400 500

Cooperative Non-cooperative

a
v

g
.

w
a

it
in

g
 t

im
e

 p
e

r
ta

sk
 (

se
c)

no. of tasks

(a) Task waiting time vs. Number of tasks

5000

6000

7000

8000

9000

10000

11000

12000

100 200 300 400 500

Cooperative Non-cooperative

a
v

g
.

m
a

k
e

sp
a

n
 p

e
r

w
o

rk
fl

o
w

 (
se

c)

no. of tasks

(b) Makespan vs. Number of tasks

Figure 5.9: Performance comparison of cooperative approach against non-cooperative
approach with varying workflow size.

5.4. Performance Evaluation 133

manner by submitting all the matched tasks to the first matched Grid resource, suggested

by the decentralized resource discovery service in response to a resource lookup request.

Further, unlike the proposed approach, the non-cooperative scheduler does not take into

account the dynamic resource conditions (utilization, queue length) and priorities of other

workflow brokers in the environment.

To show the performance gain achieved by applying proposed approach for mapping

workflow tasks in the Grid environment, we conduct experiments by varying the size of

the workflow from 100 to 500 tasks and fixing the RUQ inter-arrival delay at 300 seconds.

As a measurement of the load balancing efficiency, we use the following metrics: (i)

average makespan per workflow (see Section 5.4.3), an efficient workflow task mapping

approach should be able to minimize the makespan for workflow applications across the

environment; (ii) average task waiting time per task in the system; and (iii) number of

task executions per processor for different Grid resources.

The metric, task waiting time is measured as the total queuing time of a single task

in the system, which is equal to the difference between the submission time of a task and

its execution starting time on a Grid resource. Number of task executions per proces-

sor, tp, indicates how the task processing load is balanced across Grid resources in the

environment. tp, for a particular Grid Resource, ri is calculated as,

tp(ri) =
total number of tasks executed by ri

pi

Fig. 5.9(a) presents the results related to the average waiting time for a task with

increase in workflow size for both the cooperative and non-cooperative scheduling ap-

proaches. The results show that if workflow brokers undertake cooperative scheduling, the

tasks across the Grid environment experience relatively smaller waiting time as compared

to non-cooperative scheduling. Furthermore, with the increase in workflow size (number

of tasks) across the system, the performance gain achieved by applying the proposed ap-

proach is more evident. For instance, when the number of tasks in a workflow is 100, the

difference between the task waiting times for cooperative and non-cooperative approaches

is 7 seconds, whereas the difference increases to 142 seconds when each workflow con-

sists of 500 tasks. Accordingly, the average makespan of the workflow also shows sim-

134 Chapter 5. Decentralized and Cooperative Workflow Scheduling

ilar improvement for cooperative scheduling approach in comparison to non-cooperative

scheduling (refer to Fig. 5.9(b)). For example, when workflow size is 100, makespan is

reduced by 5%, whereas makespan is decreased by 25% when the workflow consists of

500 tasks.

As the non-cooperative scheduling technique applied by the workflow brokers does

not not take into account the resource behaviors (utilization, queue length) that dynam-

ically change across the environment, resources are often overloaded and the amount of

time, a task has to wait in a queue before being assigned to a processor increases. This sit-

uation is further aggravated as the workflow size scales. However, the proposed approach

is able to dynamically monitor status of the resources and coordinated the distribution of

load across available resources uniformly in the Grid environment, thereby minimizing

task waiting time and makespan.

In Fig. 5.10 we show histograms of the distribution of the number of task executions

per processor for different Grid resources. The distribution for non-cooperative approach

shows more variability as it is more spread out and the values differ more from the center

(mean value) as it is skewed. This happens because some resources are allocated more

tasks to execute, while other resources are underutilized. On the contrary, the distribution

for cooperative scheduling approach is bell shaped and more densely clustered around the

mean. Therefore, from Fig. 5.10, it is evident that the load balancing technique employed

by the cooperative scheduler is effective in terms of uniformly distributing workflow tasks

accross the resources in the Grid environment. The summary statistics of these two distri-

butions for different workflow sizes are presented in Table 5.3.

Table 5.3: Summary statistics of number of tasks (per processor) executed by Grid re-
sources for different workflow size

Tasks Approach Min Q1 Median Q3 Max
100 Cooperative 0.11 0.90 2.07 3.70 26.75
100 Non-cooperative 0.09 1.06 1.80 3.53 45.75
500 Cooperative 0.25 5.65 7.97 10.78 126.00
500 Non-cooperative 0.12 4.70 9.06 15.95 213.00

5.4. Performance Evaluation 135

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

2

4

6

8

10

12

14

16

18

no. of task executions per processor

co
u

n
t

Mean

(a) Cooperative scheduling (workflow size = 500)

0 20 40 60 80 100 120 140 160 180 200 220
0

2

4

6

8

10

12

14

16

no. of task executions per processor

co
u

n
t

Mean

(b) Non-cooperative scheduling (workflow size = 500)

Figure 5.10: Distribution of number of tasks (per processor) executed by Grid resources.

136 Chapter 5. Decentralized and Cooperative Workflow Scheduling

Decentralized vs. Centralized Coordination

In order to compare the effectiveness of our proposed decentralized and cooperative schedul-

ing technique, we compare it against the scheduling technique with centralized coordina-

tion service. The simulation system, developed for evaluating a centrally coordinated

Grid Federation for this study assumes that the coordination service is hosted on a ma-

chine, which is known to all the workflow brokers (GASs) in the system. In this setup,

every workflow broker is required to submit its resource claim objects to the centralized

coordination service. Similarly, all resources in the Grid Federation periodically update

their usage information to the coordination service.

In case of decentralized setting (i.e. P2P spatial index), a claim object can be mapped

to more than one control points based on its spatial extent or query window size. If the

control points are assigned to different Grid peers in the network then the problem of

duplicate or conflicting notification can arise for a given claim (i.e. a claim is hit by

more than one ticket object at more than one Grid peer at the same time). This problem

is quite evident in case of decentralized spatial index [26]. On the other hand, under

the centralized setting, the coordination space (see Fig. 4.5) is hosted and managed by

a single machine in the system and all the control points, claims and tickets are stored

with it. Therefore, the problem of duplicate or conflicting notifications does not occur

here and the notification complexity involved with the centralized approach is bounded

by the function O(1). In addition, the centralized coordination service generates schedule

that can efficiently distribute the workload among all the Grid peers as it receives all the

claims and tickets in the system.

The objective of the discussion of this section is to show that (i) our decentralized and

cooperative scheduling technique is as efficient as the centralized coordination technique

at solving the duplicate or conflicting notification problem; and (ii) the final makespan

achieved per workflow as a result of decentralized coordination service is comparable to

the centralized approach.

As shown in the previous section (refer to Section 5.4.3), the simulation results for

our proposed approach show that the notification complexity is bounded by the function

O(1) (similar to the centralized approach). This is achieved due to unsubscribing the

5.5. Related Work 137

claim object of a task from the coordination space as soon as the match notification ar-

rives. Moreover, in Fig. 5.11, we show the average makespan, achieved per workflow in

case of decentralized and centralized approaches for different sizes of workflow. From the

figure, it is evident that our proposed decentralized technique is also successful in gener-

ating schedules, which are as efficient as the centralized approach. This proves that our

decentralized coordination service is able to efficiently schedule the workload among the

Grid peers in the system.

5500

6000

6500

7000

7500

8000

8500

9000

9500

50 100 150 200 250 300 350 400 450 500

Decentralized Centralized

av
g.

m
ak

e
sp

an
 p

e
r

w
o

rk
fl

o
w

 (
se

c)

no. of tasks

Figure 5.11: Makespan for decentralized and centralized coordination service

5.5 Related Work

The main focus of this section is to compare the novelty of the proposed work with respect

to existing systems. We classify the related research in two main areas:

5.5.1 Scheduling Infrastructure

With the increasing interest in Grid workflows, many Grid workflow systems, such as Pe-

gasus [36], Triana [118][119], Taverna [85], Condor DAGMan [76], Kepler [79], SwinDeW-

G [131], Gridbus [136] and Askalon [39] have been developed in recent years. Among

these systems, in terms of workflow scheduling infrastructure, SwinDeW-G and Tri-

ana utilize decentralized P2P based technique. However, the P2P communication in

138 Chapter 5. Decentralized and Cooperative Workflow Scheduling

SwinDeW-G and Triana is implemented by JXTA [54] protocol, which uses a broadcast

technique. In this work, we use a DHT (such as Chord) based P2P system for handling

resource discovery and scheduling coordination. The employment of DHT gives the sys-

tem the ability to perform deterministic discovery of resources and produce controllable

number of messages in comparison to using JXTA.

5.5.2 Coordination Mechanism

Jia et al. [136] proposed a workflow enactment engine, with a just-in-time scheduling sys-

tem using tuple space to manage the execution of scientific workflow applications. In this

system, every task has its own scheduler called Task Manager (TM), which implements

a scheduling algorithm and handles the processing of tasks. The TMs are controlled by

a Workflow Coordinator (WC). Besides, an event-driven mechanism with subscription-

notification methods supported by the tuple space model is used to control and manage

scheduling activities. In this work, although the task managers are working in a distributed

fashion, they communicate with each other through the tuple space, which is implemented

based on a client-server based centralized technology. Further, the WC in this system does

not communicate with other WCs, managing workflow applications in the Grid. In con-

trast to this work, we propose a completely decentralized workflow coordinator based on

a scalable P2P network model.

Yao et al. [132] have extended the aforementioned architecture with an additive Re-

inforcement Learning Agent (RLA) to perform the Decentralized Dynamic Workflow

Scheduling using Reinforcement Learning (DDWS-RL) algorithm. DDWS-RL-enabled

TMs query information from the RLA and make decision on resource selection at the time

of task execution. Thus, RLA is used in the tuple space to facilitate the scheduling algo-

rithm to be more efficient. However, this approach also involves the same architecture as

the other approach, stated above, which is based on centralized client-server model with

respect to resource discovery and coordination space management. In contrast, with our

approach there is no central component that can prove to be a bottleneck.

Chen et al. [29] proposed a policy based coordination mechanism to manage the ser-

vices provided by the peers in the Federated Service Providing (FSP) system. Peers in

5.6. Conclusion 139

FSP system share the computation resources for offering domain specific services. When

a peer receives a service request that cannot be processed by itself (because either it is

busy or the service type is different), it tries to find other peer in the system capable of

processing the request. In order to regulate the interactions among the peers, they have

proposed a recruiting protocol and a policy-driven architecture is also introduced to con-

trol the decision-making process of each peer. On the other hand, all the peers in our Grid

federation system offer similar services and the coordination among the peers is managed

by utilizing a DHT-based coordination service.

5.6 Conclusion

In this chapter, we have presented a decentralized and cooperative scheduling technique

for workflow applications in global Grids. It leverages a DHT-based self-configuring

overlay for resource coordination and a cooperative decision making strategy to achieve

runtime optimization. In order to show the performance of the proposed approach against

non-cooperative scheduling approach, we have conducted experiment for different sizes

of workflow and the results show that our scheduling technique can reduce the makespan

up to 25% by decreasing the task waiting time up to 37% and is able to balance the load

among the available Grid resources significantly.

We have also compared the effectiveness of our proposed scheduling technique against

the scheduling technique with centralized coordination service. According to the results

obtained, our decentralized and cooperative scheduling technique is as efficient as the

centralized approach at generating O(1) notifications per task and the makespan achieved

per workflow by our approach is also comparable to the centralized approach.

In the next chapter, we utilize the self-configuring and self-optimizing nature of this

decentralized and cooperative scheduling technique to propose a reputation based depend-

able workflow scheduling technique in order to enable self-healing property for the work-

flow management system.

Chapter 6

Reputation-based Dependable

Workflow Scheduling

In this chapter, a reputation-based Grid scheduling algorithm is presented to counter the

effect of inherent unreliability and temporal characteristics of computing resources in

large scale, decentralized Grid systems discussed in Chapter 4 and Chapter 5. The pro-

posed algorithm can schedule workflows by dynamically adapting to changing resource

conditions and offer significant performance gains as compared to traditional approaches

in the event of unsuccessful job execution or resource failure. The results evaluated

through an extensive trace driven simulation show that this scheduling technique can sig-

nificantly reduce the makespan and successfully isolate the failure-prone resources from

the system.

6.1 Introduction

In a large scale heterogeneous Grid environment, uncertainty and unreliability are facts,

which are triggered by multiple factors, including: (i) software and hardware failures as

the system and application scale that lead to severe performance degradation and criti-

cal information loss; (ii) dynamism (unexpected failure) that occurs due to temporal be-

haviours, which should be detected and resolved at runtime to cope with changing condi-

tions; and (iii) lack of complete global knowledge that hampers efficient decision making

141

142 Chapter 6. Reputation-based Dependable Workflow Scheduling

as regards to composition and deployment of the application elements. This chapter ad-

dresses these challenges by developing a novel self-managing [11] scheduling algorithm

that aids the Grid schedulers in achieving self-healing capability by taking into account

the Grid site’s prior performance and behaviour for facilitating opportunistic and reliable

placement of application components.

The proposed algorithm enables dependable scheduling as it is capable of dynamically

monitoring and measuring reliability (i.e. availability, failure) of Grid sites and mapping

workflow tasks to resources accordingly. The dependability of a Grid site is quantified us-

ing a decentralized reputation model, which computes local and global reputation scores

for a Grid site based on the feedbacks provided by the scheduling services that have pre-

viously submitted their applications to that site.

The effectiveness of the proposed algorithm is appraised through a comprehensive

simulation-driven analysis based on realistic and well-known application failure models to

capture the transient behaviours that prevails in existing Grid-based scientific application

execution environments. Further, we present a comparative evaluation that demonstrates

the self-healing capability (through adaptation) of the proposed approach in comparison

to Grid environments, where: (1) resource/application behaviours do not change (i.e. no

failure occurs); therefore no self-management is required, and (2) transient conditions

exist but runtime systems and application elements have no capability to self-adapt.

6.2 System Models

6.2.1 Grid Model

The proposed scheduling algorithm utilizes the Grid Federation [101] model discussed in

Chapter 4 with regards to distributed resource organization and Grid networking. How-

ever, in order to accommodate the reputation of a Grid site for dependable scheduling, we

introduce another coordination object, named feedback. A feedback is an object, sent by

a GAM regarding the reputation of a Grid site in the system upon the output arrival of a

previously submitted task. It contains the reputation score assigned by a Grid site for an-

other site after a particular task execution by that site. In Table 6.1, we show an example

6.2. System Models 143

list of feedback objects that are sent to the coordination service by individual Grid service

consumers.

Table 6.1: Feedbacks sent by different Grid sites to the coordination service

Feedback ID From For User ID Workflow ID Task ID Score
002 S3 S1 1 1 4 1.0
040 S2 S9 1 2 6 0.5
100 S2 S9 1 2 9 0.42
251 S5 S10 1 3 89 0.5

Grid site p

Grid site u

Application

Subscribe
Reply

Application

P
u
b
li
sh

R
ep

ly

Fe
ed

b
a
ck

Grid Autonomic
Scheduler

S
u
b
sc

ri
b
e User

User

Grid
Autonomic
Scheduler

Grid Autonomic
Scheduler

User

Grid site s

Publish

Feedback

Submit
1

2 7

4

P
u
b
lis

h

Subsc
rib

e

Fe
ed

bac
k

Rep
ly

5

6
Heart beat

Result

Task

Job queue

3

T2T1

DHT-based Overlay

of Grid Peers

Grid Autonomic Manager

Local Resource Manager

Grid Peer

Grid Autonomic Scheduler

Feedback

Subscribe
(claim)

Publish
(ticket)

Monitor

Plan

Schedule

Analyze Reputation

Verification

output input

•Discovery
•Coordination
•Messaging

Core Services

Figure 6.1: The architecture and components of Grid Autonomic Scheduler

6.2.2 Application Model

We consider the Scientific workflow applications as the case study for the proposed schedul-

ing approach. The modeling of these kind of applications is described in Section 4.1.3 of

Chapter 4.

144 Chapter 6. Reputation-based Dependable Workflow Scheduling

Table 6.2: Notations: Grid, reputation, failure models, and metrics

Symbol Meaning
Grid
n number of sites or GASs in the Grid system
Si i-th Grid site in the system

GASi i-th GAS in the system
Reputation
succ(i, j, k) output of result verification function for task Tk of Sj executed by Si.
feed(i, j, k)t feedback score of task Tk from Sj for Si after t transactions.

NFi total number of negetive feedbacks given by other sites for Si.
TF t

i transaction feedback value for Si after t transactions by Si.
TF t

i,j transaction feedback value from Sj for Si after t transactions.
GRt

i global reputation of Si after t transactions.
LRt

i,j local reputation of Si according to Sj after t transactions.
MLR local reputation matrix.
MGR global reputation matrix.

LRinitial initial local reputation value of each site.
GRinitial initial global reputation value of each site.
Rth reputation threshold of a site for a task to be mapped by scheduler.

τrefresh time interval after which initial value is assigned to reputation score of a site.
Failure
fpi task failing probability of Grid site Si.
X Y failure distribution, where X% sites fail task with probability between Y and Y + 0.1.

Metrics
Mi,j,k makespan of k-th workflow submitted by j-th user of i-th Grid site.

Maverage average makespan per workflow in the system.
Fi number of tasks failed by site Si.

Ftotal total number of tasks failed in the system.
SCHi number of tasks scheduled by GASi.

SCHtotal total number of tasks scheduled in the system.
ρMaverage,Ftotal

Pearson’s correlation coefficient between Maverage and Ftotal.

6.2. System Models 145

0 1 2 3 4 5 6 7 8 9 10

x 102

0

200

400

600

800

1000

1200

Actual execution time (sec)

C
ou

nt

(a) Histogram of task execution time based on experiments (Average execution
time = 141 sec).

0 1 2 3 4 5 6 7 8 9 10

x 102

0

200

400

600

800

1000

1200

Weibull execution time (sec)

C
o

u
n

t

(b) Histogram of task execution time based on weibull distribution (β = 1.2,
η = 141).

Figure 6.2: Distribution of task execution time.

146 Chapter 6. Reputation-based Dependable Workflow Scheduling

6.2.3 Failure Model

The Weibull distribution [66] is one of the most commonly used distributions in relia-

bility engineering and has become a standard in reliability textbook for modeling time-

dependant failure data. Therefore, in this work, we use a 2-parameter weibull distribution

to determine whether a task execution is subject to failure or success in the system. The

2-parameter weibull distribution is generally characterized by two parameters: shape pa-

rameter β and scale parameter η. Fig. 6.2 shows the actual and weibull distribution of the

task execution time in the system.

After a task has finished its execution on a resource, the execution time or the com-

putational cost of that task is measured. If it falls within a certain range of the weibull

distribution, then the task is considered as likely-to-fail. A task execution may fail for var-

ious reasons (e.g. the resource does not have appropriate libraries installed, executables

are outdated or the resource has been restarted before sending all the output files). Thus,

whether a task is likely to be failed is derived from weibull distribution and the logic for

determining this is illustrated in Fig. 6.3. Next, if a task is likely-to-fail, then whether it

will be considered as a failed task further depends on the failure probability fpi of the

resource at site Si that has been assigned to execute the task. For this, we generate a

uniform random number between 0 and 1. If the value of this random number is less than

fpi, then the task is failed, otherwise it is successful.

Definition 6.1 (Failure Probability): Failure Probability, fpi is defined as the likeli-

hood or chance that the resource at Grid site Si will fail the execution of a workflow task

that is likely-to-fail in the system.

Example 6.1: Let us consider that failure probability of the resource at Grid site S2 is

0.57. Hence, S2 will fail 57 of the 100 likely-to-fail tasks assigned to it for execution.

6.3 Proposed Methodology

6.3.1 Distributed Reputation Management

In this section, we propose the key methods related to the distributed reputation manage-

ment and its application to dependable scheduling.

6.3. Proposed Methodology 147

E
xe

cu
ti

o
n

 t
im

e
 o

f
e

a
ch

 t
a

sk
 i

n
 t

h
e

 s
y

st
e

m
 (

se
c)

600000

800000

1000000

Actual Execution Time Weibull Execution Time

X+α

X-α

X+α

X-α

Not failNot fail

Subject to failure
Subject to failure

E
xe

cu
ti

o
n

 t
im

e
 o

f
e

a
ch

 t
a

sk
 i

n
 t

h
e

 s
y

st
e

m
 (

se
c)

0

200000

400000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Task Number

Figure 6.3: Determination of tasks likely-to-fail based on the distribution of experimental
and Weibull task execution time.

In a fully decentralized and distributed Grid overlay, the P2P reputation system cal-

culates the reputation score for a Grid site Si by considering the opinions (i.e. feed-

backs) [65, 140] from all the Grid sites ∈ {S1, S2, . . . , Sn}, who have previously inter-

acted with Si. After a Grid site Sj completes a transaction with another Grid site Si,

Sj provides its feedback for Si to the overlay, which is utilized to compute the reputa-

tion of Si. This reputation value drives future application scheduling decision making in

choosing Si for task execution. A Grid site, which accumulates higher reputation in the

system is expected to be popular in the overlay. Over the period of time, the distributed

scheduling services (GASs) in the system are more likely to prefer that site in the future

for placement of tasks. On the other hand, a Grid site that performs badly over a period of

time would accumulate comparatively lower reputation and will eventually be shunted out

of the system, i.e. would receive none or very few job submissions from the schedulers

(GAS).

In the proposed approach, the overlay maintains two reputation scores for each Grid

site: (i) Global Reputation (GR) and (ii) Local Reputation (LR). Here, the GAS service

(on behalf of local Grid site and users) rates the Grid sites, to which it submits a task,

148 Chapter 6. Reputation-based Dependable Workflow Scheduling

after every successful transaction (task completion) or unsuccessful transaction (task fail-

ure) based on a feedback function, feed(i, j, k). The local and global reputation scores

for Grid sites are stored within the distributed overlay in the form of local and global

reputation matrix. These values are recursively aggregated from the feedback scores af-

ter each transaction and utilized by the scheduling algorithm to dynamically quantify the

reliability of the sites.

Feedback Generation

GAS services can use a variety of rating functions based on system consensus for com-

puting the feedback value. Some of the example functions can include the model used

by eBay system. The reputation scheme in eBay is simple: +1 for a good or successful

transaction, −1 for a poor or failed feedback, and 0 for a neutral or don’t-care feedback.

In this model, the feedback score has three discrete values, which evaluate the result of

a transaction. However, this model does not incorporate different types of behaviour of

the participating entities (e.g. an entity is failing transactions of only a particular entity,

an entity is failing transactions only at the beginning or an entity is generating successful

and unsuccessful transactions alternately) into the feedback score, which is required to be

considered in case of heterogeneous and dynamic resource sharing Grid environments.

In our feedback model, the GAS service at site Sj computes the feedback, feed(i, j, k)

for a Grid site Si dynamically after each transaction (i.e. Si completes execution of a task

Tk submitted by Sj), and we assume that the generated feedbacks are always correct.

First, Sj verifies the output of a task returned by Si using the result verification function

success(i, j, k) that assigns a value ∈ {0,1}, where 0 represents an unsuccessful/failed

task execution and 1 represents a successful task execution. A task execution may fail for

various reasons (e.g. the resource does not have appropriate libraries installed, executables

are outdated or resource has been restarted before sending all the output files). The result

verification function is represented as,

success(i, j, k) =
{1 if task execution is sucessful

0 if task execution is failed
(6.1)

Then Sj generates the feedback score based on the value assigned by result verification

6.3. Proposed Methodology 149

function. If the assigned value is 1, feedback score is 1; on the other hand, if the assigned

valued is 0 then the feedback score is calculated from an exponential distribution. The

output given by the exponential function (refer to Fig. 6.4) is varied over the number

of failed transactions between the corresponding two Grid sites. The objective of using

this exponential function is to give a Grid site greater opportunity to execute tasks at the

beginning so that it is not shunted out of the system after only few failed transactions.

However, if a site continues to fail more transactions, the value for exponential function

approaches 0. Thus, if Fi,j is the number of unsuccessful task executions by Si with Sj ,

the feedback score for task Tk, after t transactions by Si with Sj can be represented as,

feed(i, j, k)t =
{1 if success(i,j,k) = 1

α
F

1
βf
i,j
f if success(i,j,k) = 0

(6.2)

where 0 < αf ≤ 0.5 and βf ∈ {1, 2, 3}.

If the feedback score given by a Grid site Sj is 1, we consider it as Positive Feedback

(PF), whereas a Negative Feedback (NF) is attained if feedback score is less than 1.

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100

V
al

u
e

 o
f
α

t

Number of transactions (t)

b = 1 b = 2 b = 3 b = 4 b = 5 b = 6

β

β β β β β β

Figure 6.4: The growth of αtβ over the number of transactions, t for different values of β.
Here, α = 0.5.

150 Chapter 6. Reputation-based Dependable Workflow Scheduling

Global Reputation Calculation

The Global Reputation (GR) of a site is a statistical reputation that is calculated by av-

eraging all the feedbacks given by the GAS services of other Grid sites for their tasks

executed at that site. Once the overlay receives a feedback, it computes the Transaction

Feedback (TF) for that feedback. The value of TF depends on whether the feedback is

positive or negative. If negetive feedback is received, TF is same as the feedback value.

However, if feedback is positive, the value of TF is computed from an exponential distri-

bution (refer to Fig. 6.4), where the output value is varied over the total number of negative

feedbacks received by the corresponding Grid site. The purpose of using this distribution

is to allow a Grid site to accrue a higher value of GR only if it executes more successful

tasks than failed tasks. So, if it fails very few transactions, the output of the exponential

function reaches 1 accordingly. Thus, if NFi is the total number of negative feedbacks

given by other sites for Si, the transaction feedback value after t transactions by Si can be

calculated as,

TF t
i =

{feed(i,j,k)t if (negative feedback) or (positive feedback and NFi is 0)

{(1−αp)+α
NF

1
βp
i

p }×feed(i,j,k)t if (positive feedback) and (NFi > 0)

(6.3)

where 0.5 ≤ αp < 1.0 and βp ∈ {4, 5, 6}.

The GR of a particular Grid site is calculated by taking the average of aggregated TFs

form other sites. Initially GR is assigned a value GRinitial that is greater than or equal

to the reputation threshold Rth. Afterwards, it is dynamically changed based on the TF

computed after every transaction. Thus, GR of a Grid site, Si after total t number of

transactions with other sites is represented as,

GRt
i =

{GRinitial if t = 0

GRt−1
i

×t+TFt
i

(t+1)
if t > 0

(6.4)

The GR value of each Grid site is stored in a matrix. At any instance of time, the

DHT-based distributed overlay maintains n × 1 global reputation matrix MGR (refer to

Fig. 6.5(a)) for all the Grid sites Si ∈ {1,2,. . . ,n} that is updated dynamically after every

transaction in the system. This MGR is utilized by the distributed scheduler for mapping

tasks to the Grid sites based on their reputation values.

6.3. Proposed Methodology 151

S1

S2

S3

MGR =

0.85

0.90

0.70

S1

S2

S3

MLR =

0.75

0.82

0.76

S2 S2 S2

0.82

0.98

0.56

0.95

0.75

0.88

(a) Global reputation matrix

S1

S2

S3

MGR =

0.85

0.90

0.70

S1

S2

S3

MLR =

0.75

0.82

0.76

S2 S2 S2

0.82

0.98

0.56

0.95

0.75

0.88

(b) Local reputation matrix

Figure 6.5: Reputation matrix for three Grid sites (S1, S2, S3).

Local Reputation Calculation

Sometime, considering only GR of a Grid site for mapping tasks, can not guarantee de-

pendable scheduling. For example, the resource at a site Si may fail tasks submitted by

only a particular Grid site Sj . In this case, as Sj successfully executes tasks submitted by

other Grid sites, its GR is high. So, the scheduler may still map the tasks submitted by Sj

to Si. Therefore, we introduce another reputation score, Local Reputation (LR) for a Grid

site.

Similar to GR, LR is calculated as an average of the feedback values except it consid-

ers feedbcks from only one Grid site. TF for computing LR also follows the same function

as generating TF for GR. Therefore, if NFi,j is the number of negative feedbacks given

by Sj for Si after t transactions with Si, the transaction feedback value can be calculated

as,

TF t
i,j =

{feed(i,j,k)t if (negative feedback) or (positive feedback and NFi is 0)

{(1−αp)+α
NF

1
βp
i,j

p }×feed(i,j,k)t if (positive feedback) and (NFi > 0)

(6.5)

where 0.5 ≤ αp < 1.0 and βp ∈ {4, 5, 6}.

Now, the LR of a Grid site, Si according to Sj , after t number of transactions with Sj

is represented as,

LRt
i,j =

{LRinitial if t = 0

LRt−1
i,j

×t+TFt
i,j

(t+1)
if t > 0

(6.6)

The LR values of each Grid site in regards to other sites are kept in a n × n local

152 Chapter 6. Reputation-based Dependable Workflow Scheduling

reputation matrix MLR (refer to Fig. 6.5(b)), which is stored in the overlay and updated

dynamically after every transaction between the corresponding sites. Similar to MGR,

MLR is also utilized by the distributed scheduler for mapping tasks to the Grid sites based

on their reputation values.

An example scenario of local and global reputation calculation in the distributed co-

ordination space is depicted in Fig. 6.6.

T1

T2 T3

T4

Sj
Coordination

SpaceSi

Claim (T1)

{Event: Submit Task}

Ticket (Si)

{Event: Resource Status Changed}

[Result: T1]

{Event: Send Notification (Si)}

T1

Find match and
check reputation

GRi= 0.8
LRi,j= 0.8
Rth = 0.8

Claim (T1)

{Event: Task Submit}

{Event: Send Notification (Sn)}

T1

Find match and
check reputation

{Event: Execute Task}

Sn

{Event: Resource
Status Changed}

Ticket (Sn)

[Result: T1]

{Event: Execute Task}

{Event: Send Feedback(Sn)}

{Event: Send Feedback(Si)} Reputation
calculation

Feedback
generation

Feedback
generation

Reputation
calculation

feed(i,j,1)1=0.5

feed(n,j,1)1=1.0

fail

success

GRi= 0.65, GRn=0.8
LRi,j= 0.65, LRn,j=0.8
Rth = 0.8

TFi
1=0.5, GRi

1=0.65
TFi,j

1=0.5, LRi,j
1=0.65

TFn
1=1.0, GRn

1=0.9
TFn,j

1=1.0, LRn,j
1=0.9

Figure 6.6: Interaction among different Grid entities in reputation based dependable work-
flow scheduling approach.

6.3.2 Distributed Workflow Management

In this section, we provide the description of the algorithms that have been devised for

task scheduling and resource provisioning in order to achieve reputation-based workflow

management.

6.3. Proposed Methodology 153

Algorithm 5 TASK SCHEDULING AT GAS
1: PROCEDURE: Event- User Workflow Submit
2: Input: Workflow W
3: begin
4: Calculate rank value for each task using EFT heuristic
5: Generate Ready TaskList for W
6: Submit Ready tasks for execution
7: end
8: PROCEDURE: Event- Task Finish Notification
9: Input: Task Tk, Workflow W

10: begin
11: Update dependency list of each task in TaskList
12: Generate Ready TaskList for W
13: Submit Ready tasks for execution
14: end
15: PROCEDURE: Generate Feedback
16: Input: Task Tk, Site Si
17: begin
18: Verify output of Tk by (6.1)
19: if success(i, j, k) = 0 then
20: Fi,j ← Fi,j + 1
21: end if
22: Calculate feedback score for Tk by (6.2)
23: end

Task Scheduling

Here, we discuss about the task scheduling algorithm (refer to Algorithm 5) that is under-

taken by a GAS in Grids on arrival of a job or workflow. When a user submits a workflow

application W , the GAS calculates the priority of each task (line 4). Earliest Finish Time

(EFT) [122] heuristic is used to calculate task priorities by traversing the task graph in

Breadth First Search (BFS) manner. Once the rank values are calculated, the GAS gener-

ates Ready tasks in the TaskList based on the dependency of each task and put them into

the Ready TaskList (line 5). Finally, GAS submits the Ready tasks for execution (line 6).

Further, when the GAS receives a notification message from site Si stating task Tk

has finished execution, it first updates the dependency lists of the tasks that are dependant

on Tk (line 11); then it computes the Ready tasks at that moment and submits those for

execution (line 12-13). Next, it generates feedback for the transaction with Si (line 15).

In order to do that it first verifies the output of Tk using the result verification function

154 Chapter 6. Reputation-based Dependable Workflow Scheduling

represented by Eq. (6.1) (line 18). If output of the function is 0, Fi,j is incremented by

one (line 20). Then it calculates the feedback score for this transaction by Eq. (6.2) (line

22).

Resource Provisioning

Algorithm 6 RESOURCE PROVISIONING AT COORDINATION SPACE

1: PROCEDURE: Event- Claim Submit
2: Input: Claim rk
3: begin
4: ClaimList← ClaimList ∪ rk
5: end
6: PROCEDURE: Event- Ticket Submit
7: Input: Ticket ui from Resource Ri

8: begin
9: if GRi ≥ Rth then

10: ClaimListm← list of claims in ClaimList that are matched with ui
11: Sort ClaimListm in descending order of task’s rank
12: index← 0
13: while Ri is not over-provisioned do
14: if LRi,j ≥ Rth then
15: Send notification of match event to resource claimer ClaimListm[index]
16: Remove ClaimListm[index]
17: index← index+ 1
18: end if
19: end
20: end if
21: end
22: PROCEDURE: Event- Feedback submit
23: Input: Feedback from site Sj
24: begin
25: if feedback is negetive then
26: NFi ← NFi + 1
27: NFi,j ← NFi,j + 1
28: end if
29: Calculate TFi and TFi,j by (6.3) and (6.5)
30: Calculate GRi and LRi,j by (6.4) and (6.6)
31: Update MGR and MLR

32: end

The details of the decentralized resource provisioning algorithm (refer to Algorithm 6)

that is undertaken by the P2P coordination space is presented here. When a resource

6.3. Proposed Methodology 155

claim object rk arrives at the coordination service, it is added to the existing claim list,

ClaimList by the coordination service (line 1-5). When a resource ticket object ui arrives

at coordination service, the list of resource claims (ClaimListm) that overlap or match

with the submitted resource ticket object is computed (line 6-10) if global reputation of

that resource is greater than or equal to the reputation threshold Rth. The overlap signifies

that the task associated with the given claim object can be executed on the ticket issuer’s

resource subject to its availability.

Then the coordination service sorts the claim objects in ClaimListm in descending

order according to their rank value (line 11). From theClaimListm, the resource claimers

are selected one by one based on their rank value (higher rank first) and notified about the

resource ticket match if local reputation of ticket issuer against the resource claimer is

greater than or equal to Rth and until the ticket issuer is not over-provisioned (line 13-19).

When a feedback object is arrived at coordination service, first it is decided whether

the feedback is negetive or positive. If feedback is negetive, NFi and NFi,j are incre-

mented by one (line 25-27). Then local and global reputation scores are calculated con-

sequently (line 29-30). Finally, the local and global reputation matrices that are stored in

coordination space are updated by the coordination service (line 31).

Time Complexity

This section analyses the computational tractability of the approach by deriving several

time complexity bounds to measure the computational quality. Using the example for

Grid workflow application model, we analyse the complexity of calculating task rank,

feedback generation, and reputation scores (see Algorithm 5). These complexities are

further aggregated to model a composite function that represents the overall complexity.

We consider a Grid infrastructure consisting of n number of Grid sites. Every Grid site

Si instantiates a serviceGASi. This implies that there are total n number of GAS services

in the infrastructure that are continuously injecting task to resource mapping requests in

form of Claim Objects (refer to line 1 in Algorithm 6). We assume every user submits

a workflow application consisting of T number of tasks and E number of dependencies

among the tasks to its local GAS service. Then the complexity of calculating rank values

of all the tasks using EFT heuristic through BFS isO(E+T) [33]. Further, if an adjacency

156 Chapter 6. Reputation-based Dependable Workflow Scheduling

list is used to handle the dependencies, then the complexity of generating Ready tasks and

updating dependency list is O(E) [33].

Next, we derive the time complexity of generating feedback in Algorithm 5 (lines

15-23). After a GAS service receives the output of a submitted task, it has to compute a

feedback score, which is required to be reported to coordination service. The feedback

score calculation involves few mathematical computation (see Eq. 6.2); thus, it involves

constant complexity of O(1). Therefore, the overall time complexity of Algorithm 5 is

O(E + T).

In worst case, ClaimList in the Algorithm 6 can contain n.T number of enteries. So

the complexity of sorting the ClaimList is O((n.T) log(n.T)) (through the implemen-

tation of merge sort algorithm) and finding out the total number of matches is O(n.T).

Calculating the number of resource claimers that has to be notified about the matches also

requires O(n.T) steps in worst case.

Every new feedback score submitted by GAS services needs to be aggregated into

global reputation score (using Eq. 6.4). Similar to feedback computation, updating global

reputation score also involves series of mathematical steps. Hence, the overall complexity

of computing or updating global reputation score is constant, O(1).

Finally, the adjacency matrix also handles the reputation matrices. Here, updating

MGR and MLR is bounded by O(1) . Thus, the overall complexity of Resource Provision-

ing algorithm is O((n.T) log(n.T)).

6.3.3 Scheduling Example

This section provides an example scenario of the process of task scheduling and dis-

tributed reputation management. The key steps involved with the proposed scheduling

approach (see Fig. 6.7) are as follows:

1. A user submits his task to the local GAS service at site Su.

2. Following this, the GAS inserts a claim object to the DHT-based overlay to locate a

dependable and available Grid site (resource) that has reasonable reputation rating

(above reputation threshold) in the system.

6.3. Proposed Methodology 157

Grid site p

Grid site u

Application

Subscribe
Reply

Application

P
u
b
li
sh

R
ep

ly

Fe
ed

b
a
ck

Grid Autonomic
Scheduler

S
u
b
sc

ri
b
e User

User

Grid
Autonomic
Scheduler

Grid Autonomic
Scheduler

User

Grid site s

Publish

Feedback

Submit
1

2 7

4

P
u
b
lis

h

Subsc
rib

e

Fe
ed

bac
k

Rep
ly

5

6
Heart beat

Result

Task

Job queue

3

T2T1

DHT-based Overlay

of Grid Peers

Grid Autonomic Manager

Local Resource Manager

Grid Peer

Grid Autonomic Scheduler

Feedback

Subscribe
(claim)

Publish
(ticket)

Monitor

Plan

Schedule

Analyze Reputation

Verification

output input

•Discovery
•Coordination
•Messaging

Core Services

Figure 6.7: Reputation-based dependable scheduling example. Grid sites p, l, s, and u are
managed by their respective Grid Autonomic Scheduler services.

3. The GAS, GASs at site Ss submits a ticket object to the overlay encapsulating the

information about status (availability) of the local resource.

4. The overlay undertakes the decentralized matchmaking mechanism and discovers

that the resource ticket issued by Grid site Ss matches with the resource description

and reputation rating currently specified by claim object inserted by site Su. Thus,

a match notification message is sent to Su.

5. Next, GASu sends the task to site Ss. While the application is being processed,

GASu periodically monitors the execution progress by sending IsAlive messages to

Ss. IsAlive messages allow the GAS services to detect the hardware and network

link failure related to the site Ss.

6. Once the execution of the task is finished, Ss returns the output to GASu.

7. Finally, GASu performs the result verification for the received output, computes the

feedback score for Ss and reports to the overlay. The feedback score is aggregated

to the local and global reputation scores for Ss using the proposed decentralized and

distributed reputation model, described in Section 6.3.1.

158 Chapter 6. Reputation-based Dependable Workflow Scheduling

6.4 Performance Evaluation

6.4.1 Simulation Setup

Similar to Chapter 5, our simulation infrastructure is created by combining two discrete

event simulators namely GridSim [22], and PlanetSim [49].

Workload Configuration

In this study, we also consider fork-join workflow (see Fig. 5.4) and an example of such

workflow is WIEN2K [18], which is a quantum chemistry application developed at Vienna

University of Technology. We vary the number of tasks in a workflow from 100 to 500

during the experiments and the size of each task is randomly generated from a uniform

distribution between 50000 MI (Million Instructions) to 500000 MI. Further, we assume

that workflows are computation intensive. Thus, the data dependency among the tasks in

the workflow is negligible. In the Grid federation, each site has one user and each submits

one workflow for execution.

Network Configuration

The experiments run a Chord overlay with 32 bit configuration (number of bits utilized to

generate node and key ids). The total number of GAS/broker in the system is 64. Further,

network queue message processing rate is fixed at 4000 messages per second and message

queue size is fixed at 104.

Resource Claim and Ticket Injection Rate

In this work, the injection rate for the resource tickets is every 200 seconds [104]. Spatial

extent of both resource claims and ticket objects lie in a 4-dimensional attribute space.

These attribute dimensions include the number of processors, their speed, architecture

and operating system type. The distribution for these resource dimensions is generated

by utilizing the configuration of resources that are deployed in various Grids including

NorduGrid, AuverGrid, Grid5000, NaregiGrid, and SHARCNET [63].

6.4. Performance Evaluation 159

0

5

10

15

20

25

500

1000

1500

2000

2500

3000

3500
0

50

100

150

200

Processor TypeSpeed

N
um

be
r

of
 P

ro
ce

ss
or

s

Figure 6.8: Resource configuration and Ticket data distribution.

Reputation Configuration

The values of the parameters for configuring reputation based scheduling in our experi-

ment are listed in Table 6.3.

Table 6.3: Reputation parameters

Parameter Value Parameter Value
αf 0.5 LRinitial 0.8
βf 2.0 GRinitial 0.8
αp 0.5 Rth 0.8
βp 5.0 τrefresh 1000 sec

Failure Configuration

In our experiments, the values of weibull shape and scale parameters β and η are 1.2 and

141 respectively, where the mean execution time of a task in the system is equal to 141

sec.

Along with this Weibull distribution, we also generate a set of resource failure distri-

butions, X Y by incorporating resource failure probability fp, where X represents the

percentage of resources likely to fail tasks in the system and Y represents the probability

160 Chapter 6. Reputation-based Dependable Workflow Scheduling

of failure. For instance, if X is 20 and Y is 0.4, then 20% of resources in the system may

fail tasks with the probability (fp) between 0.4 and 0.5. The resource failure distributions,

we use in the experiment are as follows:

X 0.1: 0.1 ≤ fp < 0.2 ;X 0.3: 0.3 ≤ fp < 0.4

X 0.5: 0.5 ≤ fp < 0.6 ;X 0.7: 0.7 ≤ fp < 0.8

X 0.9: 0.9 ≤ fp < 1.0

Some example failure distributions are presented in Table 6.4 and Table 6.5.

Table 6.4: Example failure distributions (25 Y)

ResourceID 25 0.1 25 0.3 25 0.5 25 0.7 25 0.9
1 0 0 0 0 0
2 0 0 0 0 0
3 0.1542 0.3390 0.5013 0.7864 0.9662
4 0 0 0 0 0

Table 6.5: Example failure distributions (50 Y)

ResourceID 50 0.1 50 0.3 50 0.5 50 0.7 50 0.9
1 0 0 0 0 0
2 0.1787 0.3655 0.5352 0.7573 0.9614
3 0.1135 0.3719 0.5884 0.7117 0.9418
4 0 0 0 0 0

6.4.2 Performance Metrics

As a measurement of scheduling performance, we evaluate the following performance

metrics:

Scheduling Efficiency: In order to determine the scheduling efficiency, we measure

two values of the system: (i) average makespan per workflow and (ii) total number of

tasks failed by all the Grid sites in the system.

The measurement of makespan is taken by averaging over all the workflows in the

system. If there are n number of Grid sites and each site has u number of users with

each user submitting w number of workflows, then average makespan per workflow in

6.4. Performance Evaluation 161

the system can be defined as,

Maverage =

∑
1≤i≤n
1≤j≤u
1≤k≤w

Mi,j,k

n× u× w

whereMi,j,k is the makespan for workflow,Wi,j,k.

If there are n number of Grid sites and site Si fails Fi number of tasks, then the total

number of tasks failed in the system can be defined as,

Ftotal =
∑

1≤i≤n

Fi

Scheduling complexity: It is measured as the total number of task scheduled by all

GASs in the system. If there are n number of Grid sites and GASi schedules SCHi

number of tasks, then total number of task scheduled in the system can be expressed as,

SCHtotal =
∑

1≤i≤n

SCHi

Pruning Efficiency: We consider pruning efficiency as the degree to which the failure-

prone resource are shunted out of the system. We have measured total number of tasks

successfully executed and failed by the resource at each Grid site in order to show the

pruning efficiency.

6.4.3 Results and Observations

In this section, we present the experimental results obtained by simulating our reputation

based dependable workflow scheduling approach and compare these with that of other

approaches. The experiments are conducted with the aim at characterizing:

(i) the performance of proposed reputation based dependable scheduling approach

(Failure with Reputation), compared to its alternatives, No Failure (resources do not fail

any task) and Failure without Self-adaptation (some resources fail tasks and scheduler

uses a simple rescheduling technique) with respect to various performance metrics;

(ii) the impact of different resource failure distributions and sizes of workflow on the

performance of our approach and of its alternatives;

162 Chapter 6. Reputation-based Dependable Workflow Scheduling

0

400

800

1200

1600

2000

2400

25_0.1 25_0.3 25_0.5 25_0.7 25_0.9

No Failure Failure Failure with Reputation

Failure distribution

T
o

ta
l n

u
m

b
e

r
o

f
fa

il
e

d
ta

sk
s

(a) Total task failures for failure distributions 25 Y

0

1000

2000

3000

4000

5000

6000

50_0.1 50_0.3 50_0.5 50_0.7 50_0.9

No Failure Failure Failure with Reputation

Failure distribution

T
o

ta
l n

u
m

b
e

r
o

f
fa

il
e

d
ta

sk
s

(b) Total task failures for failure distributions 50 Y

Figure 6.9: Effect of failure distribution on the total number of task failures in the system.

(iii) the significance of reputation threshold (Rth) on the performance of proposed

reputation based scheduling approach.

The configuration of different parameters for all the experiments are listed in Table 6.6.

Experiment 1: Measuring Scheduling Efficiency

Experiment 1.1 (Impact of failure distribution): Fig. 6.9 and Fig. 6.10 presents the

results of scheduling efficiency of the proposed reputation based scheduling approach

6.4. Performance Evaluation 163

4000

4500

5000

5500

6000

6500

7000

25_0.1 25_0.3 25_0.5 25_0.7 25_0.9

No Failure Failure Failure with Reputation

Failure distribution

a
v

g
.

m
a

k
e

sp
a

n
 p

e
r

w
o

rk
fl

o
w

 (
se

c)

(a) Makespan for failure distributions 25 Y

4000

5000

6000

7000

8000

9000

10000

50_0.1 50_0.3 50_0.5 50_0.7 50_0.9

No Failure Failure Failure with Reputation

Failure distribution

a
v

g
.

m
a

k
e

sp
a

n
 p

e
r

w
o

rk
fl

o
w

 (
se

c)

(b) Makespan for failure distributions 50 Y

Figure 6.10: Effect of failure distribution on the makespan of workflow in the system.

164 Chapter 6. Reputation-based Dependable Workflow Scheduling

against the other approaches, Failure without Self-adaptation and No Failure. The to-

tal number of tasks failed by all Grid sites, Ftotal for each of the three approaches are

depicted in Fig. 6.9(a) and Fig. 6.9(b) for different failure distributions. As we can see

from Fig. 6.9(a) that when the failure probability of the resources is increased (for ex-

ample, from 0.1 to 0.9), Ftotal in Failure without Self-adaptation is heavily increased

accordingly.

This situation is further aggravated for 50 Y (refer to Fig. 6.9(b)) since more re-

sources are likely to fail tasks. In contrast, our approach, Failure with Reputation can

strongly reduce the number of task failures in the system irrespective of failure distribu-

tions. This happens due to the reason that in this case, the resources with higher fail-

ure probability are not assigned any task by the schedulers as their reputation scores are

decreased beyond the threshold Rth after few task failures. Therefore, Ftotal in Failure

with Reputation is not increased with the increase in failure probability since those failure-

prone resources are always shunted out of the system after few failures. For instance, total

number of tasks failed by all sites in Failure with Reputation is upto 96.8% and 96.5%

less than that in Failure without Self-adaptation for 25 Y and 50 Y respectively.

The average makespan per workflow, Maverage also shows (see Fig. 6.10(a) and

Fig. 6.10(b)) similar trend (upto 28% and 50% makespan reduction for 25 Y and 50 Y

respectively) as reflected in total number of task failures since if one task is failed, its child

tasks can not be scheduled and eventually the completion time of the whole workflow is

increased.

Experiment 1.2 (Impact of number of tasks in workflow): Fig. 6.11 presents

the results of scheduling efficiency of the proposed reputation based dependable schedul-

ing approach against the other approaches, Failure without Self-adaptation and Failure

for different sizes of workflow. The results show that if the number of tasks in a work-

flow increases, Maverage also increases for all the three approaches since the overall

workload on the system is increased. But the impact is more evident for Failure without

Self-adaptation.

As we can see from Fig.6.11(a) and Fig.6.11(b), in case of Failure without Self-

adaptation, both Ftotal and Maverage are increased rapidly with the increase in work-

flow size (number of tasks). This happens due to the reason that when the workflow size

6.4. Performance Evaluation 165

is increased, average number of tasks scheduled per resource in the system is also in-

creased linearly as the number of Grid sites is not changed over time in this experiment.

This results in allowing the failure-prone resources to fail more tasks. Thus, Ftotal and

Maverage in Failure without Self-adaptation show a piecewise linear growth over the size

of workflow.

However, in case of Failure with Reputation, when the workload on the system is in-

creased, resources with higher reputation score get more tasks leaving the failure-prone

resources isolate. This results in less number of task failures in the system even in higher

workload. Therefore, with the increase in workflow size across the system, the perfor-

mance gain achieved in terms of Ftotal andMaverage by applying the proposed approach

is more evident. For example, when the workflow consists of 500 tasks, Ftotal in Fail-

ure with Reputation is 88.4% less than that in Failure without Self-adaptation and the

makespan reduction is 38.1% accordingly.

Experiment 2: Measuring Scheduling Complexity

Fig. 6.12 shows the total number of tasks scheduled by GAS1 to GAS16 in the system

for the failure distribution, 50 0.5. From the figure, it is evident that in case of Failure

without Self-adaptation, each GAS needs to schedule more tasks than No Failure (where,

GAS is not required to schedule any extra task than the size of workflow), which increases

the load on the GAS accordingly. On the contrary, in case of Failure with Reputation, the

number of tasks scheduled by each GAS in the system is almost equal to that of No Failure

as very few tasks are failed in this approach. For example, GAS14 schedules 100 tasks

in No Failure, 102 in Failure with Reputation, whereas in case of Failure without Self-

adaptation, it needs to schedule 216 tasks, which is 112% greater than that in Failure

with Reputation since 116 tasks, scheduled by GAS14 are failed by the Grid sites.

As the other GASs in the system also show the similar trend, the total number of tasks

scheduled in the system, SCHtotal for Failure with Reputation (6569) is much smaller

than that for Failure without Self-adaptation (8075).

166 Chapter 6. Reputation-based Dependable Workflow Scheduling

0

2000

4000

6000

8000

10000

100 200 300 400 500

No Failure Failure Failure with Reputation

Workflow size

To
ta

l n
u

m
b

e
r

o
f

fa
ile

d
ta

sk
s

(a) Total task failures vs. Number of tasks in workflow

4000

5500

7000

8500

10000

11500

100 200 300 400 500

No Failure Failure Failure with Reputation

Workflow size

av
g.

m
ak

e
sp

an
 p

e
r

w
o

rk
fl

o
w

 (s
e

c)

(b) Makespan vs. Number of tasks in workflow

Figure 6.11: Effect of workflow size on Ftotal and Maverage in the system (failure dis-
tribution 50 0.5).

6.4. Performance Evaluation 167

0

40

80

120

160

200

240

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

No Failure Failure Failure with Reputation

Resource ID

To
ta

l s
ch

e
d

u
le

d
 t

as
ks

Figure 6.12: Total number of tasks scheduled by the GAS in the system (GAS1 - GAS16)
for failure distribution 50 0.5.

Experiment 3: Measuring Pruning Efficiency

Fig. 6.13 illustrates the pruning efficiency of the proposed scheduling technique. Fig. 6.13(a)

and Fig. 6.13(b) show the total number of tasks successfully executed and failed by the

resources in Grid site 1 to Grid site 16 respectively for 50 0.5. From the figures, we can

realize that in Failure without Self-adaptation, if a Grid site can execute task faster, it is

assigned more tasks. Thus, the number of successful and failed tasks by that site is high

if it’s failure probability is low and high respectively.

On the other hand, in case of Failure with Reputation, number of successful tasks by

a Grid site is high if it is faster and does not fail any task. If it fails task, although it

can execute task faster, it is not assigned any task further. Therefore, total failed tasks

by that resource becomes very low. For instance, total failed tasks by resource R2 (with

0.59 failure probability and 3600 MIPS rating) is 152 in Failure without Self-adaptation,

whereas it is only 11 in Failure with Reputation. Fig. 6.13(c) shows how failure-prone

resource R2 is shunted out of the system over the period of time in our proposed reputation

based scheduling approach.

Experiment 4: Impact of Reputation Threshold

Fig. 6.14 shows the impact of reputation threshold (Rth) on Ftotal and Maverage in the

system for Failure with Reputation when failure distribution is 50 0.5. From the figure, it

168 Chapter 6. Reputation-based Dependable Workflow Scheduling

0

60

120

180

240

300

360

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

No Failure Failure Failure with Reputation

Resource ID

To
ta

l s
u

cc
e

ss
fu

l t
as

ks

(a) Total number of tasks successfully executed by each resource (R1 - R16)

0

45

90

135

180

225

270

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

No Failure Failure Failure with Reputation

Resource ID

To
ta

l f
ai

le
d

 t
as

ks

(b) Total number of tasks failed by each resource (R1 - R16)

0

30

60

90

120

150

180

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

No Failure Failure Failure with Reputation

Time (sec)

To
ta

l f
ai

le
d

 t
as

ks

(c) Total number of tasks failed by Resource 2 over time

Figure 6.13: Effect of considering reputation on pruning failure-prone resources (failure
distribution 50 0.5).

6.4. Performance Evaluation 169

Table 6.6: Configuration for different experiments

Parameter Exp 1.1 Exp 1.2 Exp 2 Exp 3 Exp 4 Exp 5
n 64 64 64 64 64 64

No. of tasks 100 100 to 500 100 100 100 100
Task size 50000 to 50000 to 50000 to 50000 to 50000 to 50000 to

(MI) 500000 500000 500000 500000 500000 500000
Failure 25 0.1 to 25 0.9, 50 0.5 50 0.5 50 0.5 50 0.5 50 0.5

distribution 50 0.1 to 50 0.9
Rth 0.8 0.8 0.8 0.8 0.0 to 0.99 0.8

Feedback exponential exponential exponential exponential exponential simple,
function exponential

is evident that When Rth is slightly higher than 0, Ftotal and Maverage for Failure with

Reputation are almost equal to that for Failure without Self-adaptation. This happens due

to the reason that if Rth is very low then the reputation based scheduling scheme is not

able to isolate the failure-prone resources with lower reputation score. Hence a consider-

able amount of tasks are assigned to those resources and Ftotal is increased eventually.

However, when the value of Rth is set a little bit higher than 0, performance of the

proposed reputation based scheduling approach in terms of scheduling efficiency is im-

proved rapidly. Furthermore, with the increase of the value ofRth, average makespan and

total task failures for Failure with Reputation gradually become almost equal to that for

No Failure. For example, whenRth is set to 0.2, 0.6 and 0.9, Ftotal for Failure with Rep-

utation is 58.4%, 85.1% and 92.6% less than that for Failure without Self-adaptation

respectively. Similarly, Maverage is also reduced by 15.8%, 23.0% and 26.6% if Rth

is set to 0.2, 0.6 and 0.9 respectively.

Experiment 5: Performance of Exponential Feedback Function

Fig. 6.15 shows the significance of using exponential feedback functions on Ftotal and

Maverage in the system when the proposed approach, Failure with Reputation is em-

ployed. In order to measure the performance, we compare our proposed feedback func-

tion against a simple linear feedback function available in the literature. From Fig. 6.15(a)

and Fig. 6.15(b), it is evident that using an exponential function for calculating feedback

results in reduced makespan and less number of total task failures in compare to using a

simple linear feedback function. Although Maverage is not much varied, we can see a

170 Chapter 6. Reputation-based Dependable Workflow Scheduling

0

300

600

900

1200

1500

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

No Failure Failure Failure with Reputation

Reputation threshold

To
ta

l n
u

m
b

e
r

o
f

fa
ile

d
ta

sk
s

(a) Total task failures vs. Reputation threshold

4000

4500

5000

5500

6000

6500

7000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

No Failure Failure Failure with Reputation

Reputation threshold

av
g.

m
ak

e
sp

an
 p

e
r

w
o

rk
fl

o
w

 (s
e

c)

(b) Makespan vs. Reputation threshold

Figure 6.14: Effect of reputation threshold (Rth) on Ftotal and Maverage in the system
for Failure with Reputation (failure distribution 50 0.5).

6.4. Performance Evaluation 171

significant improvement in terms of Ftotal. For instance, in case of failure distribution

50 0.5, when simple feedback function is used, 20% more tasks are failed than using

exponential feedback function.

100

130

160

190

220

250

280

50_0.1 50_0.3 50_0.5 50_0.7 50_0.9

Exponential Feedback Simple Feedback

Failure distribution

To
ta

l n
u

m
b

e
r

o
f

fa
ile

d
ta

sk
s

(a) Total task failures

4600

4660

4720

4780

4840

4900

4960

50_0.1 50_0.3 50_0.5 50_0.7 50_0.9

Exponential Feedback Simple Feedback

Failure distribution

av
g.

m
ak

e
sp

an
 p

e
r

w
o

rk
fl

o
w

 (s
e

c)

(b) Makespan

Figure 6.15: Significance of exponential feedback function on Ftotal and Maverage in
the system for Failure with Reputation (failure distribution 50 Y).

6.4.4 Discussion and Summary

The results from the experiments show that there is a similarity of trend between the

two performance metrics Maverage and Ftotal. Thus, we have calculated the Pearson’s

correlation coefficient [15] and plotted the relationship between these metrics in Fig. 6.16.

172 Chapter 6. Reputation-based Dependable Workflow Scheduling

4600

4660

4720

4780

4840

4900

50 80 110 140 170 200

25_Y 50_Y

Total number of failed tasks

a
v

g
.

m
a

k
e

sp
a

n
 p

e
r

w
o

rk
fl

o
w

 (
se

c)

(a) Makespan vs. Total task failures for Failure
with Reputation

4000

5200

6400

7600

8800

10000

0 1200 2400 3600 4800 6000

25_Y 50_Y

Total number of failed tasks

a
v

g
.

m
a

k
e

sp
a

n
 p

e
r

w
o

rk
fl

o
w

 (
se

c)

(b) Makespan vs. Total task failures for Failure
without Self-adaptation

4500

6000

7500

9000

10500

12000

0 2000 4000 6000 8000 10000

Failure with Reputation Failure

Total number of failed tasks

a
v

g
.

m
a

k
e

sp
a

n
 p

e
r

w
o

rk
fl

o
w

 (
se

c)

(c) Makespan vs. Total task failures for varying
workflow size (failure distribution 50. 0.5)

4500

5000

5500

6000

6500

7000

0 400 800 1200 1600 2000

Total number of failed tasks

a
v

g
.

m
a

k
e

sp
a

n
 p

e
r

w
o

rk
fl

o
w

 (
se

c)

(d) Makespan vs. Total task failures for varying
Rth (failure distribution 50. 0.5)

Figure 6.16: Correlation between Ftotal andMaverage in the system.

Definition 6.2 (Pearson’s correlation coefficient): Pearson’s correlation coefficient

ρP,Q between two random variables P , Q with means µP , µQ and standard deviations

σP , σQ is used to measure the linear relationship between them. It is defined as a quotient

of the covariance of the two variables and the product of their standard deviations:

ρP,Q =
cov(P,Q)

σPσQ

=
E((P − µP)(Q− µQ))

σPσQ

where, µP = E(P) and σP
2 = E(P 2) − E2(P).

The correlation is 1 when there is a positive linear dependence and −1 in case of

negative linear dependence. Zero indicates that there is absolutely no linear relationship

between the variables.

The Pearson’s correlation coefficient, ρMaverage,Ftotal
between Maverage and Ftotal

in the system for different experiments conducted is listed in Table 6.7. From the table

6.4. Performance Evaluation 173

it can be observed that except for Failure with Reputation in Experiment 1, the values of

ρMaverage,Ftotal
for both Failure with Reputation and Failure without Self-adaptation are

greater than 0.9 in all other experiments. This indicates that there is a high degree of pos-

itive correlation or linear dependence between Maverage and Ftotal in the system. This

happens due to the reason that when a task is failed, the task that depends on it’s output

needs to wait for longer period of time to be scheduled and executed. Therefore, the com-

pletion time of exit task is delayed and makespan of the workflow is increased, which in-

dicates a linear relationship betweenMaverage and Ftotal (see Fig.6.16(b) - Fig.6.16(d)).

However, in case of Failure with Reputation in Experiment 1, workload is not heavy,

Ftotal is small and failure-prone resources are isolated quickly. Thus makespan of the

workflow is not increased over the resource failure probability although Ftotal is increase

by a small margin. This means that there is no clear relationship or correlation between

Maverage and Ftotal in such situation, which is reflected in Fig. 6.16(a).

Table 6.7: Pearson’s correlation coefficient: Maverage vs. Ftotal

Approach Exp 1.1 (25 Y) Exp 1.1 (50 Y) Exp 1.2 Exp 3
Failure with Reputation 0.2073 -0.4202 0.9904 0.9382

Failure 0.9673 0.9973 0.9971 -

In summary, the above experimental and analytical studies indicate the following:

(i) considering reputation of Grid sites/resources for scheduling can increase the reli-

ability of application scheduling in Grids and improve the efficiency of distributed sched-

ulers.

(ii) compared to Failure without Self-adaptation, Failure with Reputation can effec-

tively reduce application completion time by avoiding potential task failures through in-

telligent scheduling irrespective of failure pattern of resources or workload on the system.

(iii) prunning efficiency of reputation based scheduling approach can be improved by

increasing the reputation threshold in the system.

(iv) there is a high degree of positive correlation between makespan of workflow and

total task failures in the system.

174 Chapter 6. Reputation-based Dependable Workflow Scheduling

6.5 Related Work

The main focus of this section is to compare the novelty of the proposed work with respect

to existing approaches. We classify the related research into three main areas:

6.5.1 Dependable Scheduling

A recent work by Jik-Soo et al. [69] that advocates Content Addressable Network [105],

DHT based dynamic propagation and load-balancing in desktop Grids, suffer from per-

formance uncertainty and unreliability due to the lack of context awareness in scheduling.

A most recent proposal on reputation-driven scheduling in the context of voluntary com-

puting environments (desktop grids) has been put forward by Jason et al. [113]. They

consider a centralized system model, where a central server is assigned responsibility for

maintaining reliability ratings that form the basis for assigning tasks to group of volun-

tary nodes. Such centralized models for scheduling and reputation management [14][141]

present serious bottleneck as regards to scalability of the system and autonomy of Grid

sites. Moreover, these approaches are targeted on bag of tasks type of application model,

whereas our approach considers scheduling of workflow applications. Currently, Grid in-

formation services [34], on which Grid schedulers [47] depend for resource selection, do

not provide information regarding how the resources have performed in the recent past

(performance history) or at what level they are rated by other schedulers in the system as

regards to QoS satisfaction.

6.5.2 Distributed Reputation Models

There has been considerable amount of research work done in P2P reputation systems to

evaluate the trustworthiness of participating peers. These reputation systems are targeted

towards P2P file sharing networks that focus on sharing and distribution of information

in Internet-based environments. The PowerTrust model proposed by Zhou et al. [140],

utilizes single dimensional Overlay Hashing Functions (OHFs) for: (i) aassigning score

managers for peers in the system and (ii) aggregating/computing the global reputation

score. These kinds of OHFs are adequate if the search for peers/resources is based on sin-

gle keyword (such as file name) or where there is single ordering in search values. How-

6.6. Conclusion 175

ever, OHFs are unable to support (or support with massive overhead) searches containing

multiple keywords, range queries (such as search for a Grid site that has: Linux operat-

ing system, 100 processors, Intel architecture, and reputation ≥ 0.5). The EigentTrust

model [65] suggested by Kamvar et al. also suffers from the shortcomings mentioned

above. To overcome these limitations, in the proposed approach a d-dimensional data

distribution technique [100] is applied on the overlay of peers for managing the informa-

tion related to complex searches and reputation values.

6.5.3 Grid Workflow Management

With the increasing interest in Grid workflows, many Grid workflow systems, such as

Pegasus [36], Triana [118], Taverna [85], Condor DAGMan [76], Kepler [79], SwinDeW-

G [131], Gridbus [136] and Askalon [39] have been developed in recent years. Among

these systems, in terms of workflow scheduling infrastructure, SwinDeW-G and Tri-

ana utilize decentralized P2P based technique. However, the P2P communication in

SwinDeW-G and Triana is implemented by JXTA protocol, which uses a broadcast tech-

nique. In this work, we use a DHT (such as Chord) based P2P system for handling re-

source discovery and scheduling coordination. The employment of DHT gives the system

the ability to perform deterministic discovery of resources and produce controllable num-

ber of messages in comparison to using JXTA.

6.6 Conclusion

In this chapter, we have presented a reputation based dependable scheduling technique

that enables self-healing capability for managing workflow applications in global Grids.

It proposes a novel algorithm that continuously monitors and calculates the performance

(i.e. reliability) of Grid resources based on feedbacks given by individual Grid service

consumers and hence is capable of dynamically mapping workflow tasks to the resources

that have less likelihood of failure. We have measured the performance of the proposed

scheduling technique against two cases: Failure without Self-adaptation and No Failure.

The results show that our scheduling technique can reduce the makespan up to 50% and

successfully isolate the failure-prone resources from the system.

176 Chapter 6. Reputation-based Dependable Workflow Scheduling

Thus, by applying the proposed reputation based scheduling technique, not only op-

portunistic and dependable placement of workflow tasks is possible but also significant

performance gains are achievable by avoiding potential resource failures. The practical

importance of these results is: they highlight the fact that the schedulers, which do not

have the ability to self-adapt in dynamic Grid conditions deliver degraded performance to

application workflows.

Chapter 7

Conclusions and Future Directions

This thesis addresses the problem of enabling autonomic workflow management for Grid

computing to effectively overcome the limitations of inherent uncertainty and dynamism

of Grid environment. Autonomic policy based workflow management considers the abil-

ity to self-reconfigure to the changes in the Grid environment; discover, diagnose and

react to the disruptions of workflow execution as well as monitor and optimize runtime

performance automatically. By incorporating the self-* properties of autonomic systems

into the workflow management system, we demonstrated that it can effectively overcome

the limitations of inherent uncertainty and dynamism of Grid environment as well as sig-

nificantly improve the performance of workflow execution in global Grids. In this chapter,

we first summarize the contributions and findings of this thesis, and then present a list of

research issues for future investigations related to this work.

7.1 Summary

Computational Grids provide a global infrastructure for solving large-scale problems in

science, engineering, and business. They enable the sharing, selection, and aggregation

of geographically distributed heterogeneous resources, such as computational clusters,

supercomputers, storage devices, and scientific instruments. Recently, scientific work-

flows have emerged as important applications for Grid systems; and these workflows are

defined, managed, and executed on Grid resources by a specialized middleware, called

Workflow Management System (WMS). However, the increasing scale complexity, het-

177

178 Chapter 7. Conclusions and Future Directions

erogeneity, and dynamism of Grid environment have made such WMS brittle, unman-

ageable, and insecure. This thesis have presented a framework for effectively managing

workflow applications in global Grids considering this problem by the following key con-

tributions:

• proposed a taxonomy of autonomic application management for Grid computing

and surveyed existing Grid system (specially, workflow management systems).

• developed a dynamic critical path based workflow scheduling algorithm that can

adapt to changing Grid environment.

• designed an architecture for autonomic workflow management system in Grids ac-

cording to the requirements identified in proposed taxonomy.

• devised a decentralized and cooperative workflow scheduling algorithm utilizing a

self-configuring P2P overlay structure with regards to resource discovery, coordi-

nation, and overall system decentralization.

• leveraging the proposed autonomic workflow management architecture, developed

a reputation-based dependable workflow scheduling technique to enable self-healing

behavior in Grid workflow management system.

Next, we discuss the key findings of this thesis. In Chapter 2, we provided a taxonomy

of autonomic application management in Grids and a detailed survey of several represen-

tative Grid systems (specially, workflow management systems) to demonstrate the com-

prehensiveness of the taxonomy. From the taxonomy and survey, we identified that most

of the existing Grid workflow management systems are centralized and do not support

cooperative application scheduling. In addition, as these Grid systems are highly complex

and volatile, most of them incorporates self-optimizing and self-healing properties of an

autonomic computing system. However, in order to cope up with the increasing-scale

complexity and volatility of Grid environment, these systems are also required to address

the self-configuring and self-protecting policies to some extent.

In Chapter 3, we proposed a dynamic critical path based workflow scheduling heuris-

tic (DCP-G) that takes into account the dynamic behavior of Grid resources. This chapter

7.1. Summary 179

identified that dynamic scheduling approaches can adapt to temporal behaviour of het-

erogeneous Grid resources and are able to avoid performance degradation by generating

efficient schedules. The main findings of this chapter are: (i) scheduling time for meta-

heuristic based workflow scheduling techniques increases with the size of the workflow

and is much higher than that of heuristic based techniques; (ii) meta-heuristic based tech-

niques can generate more effective schedule than heuristic based techniques only in static

environment, but they suffer from the problem of higher scheduling time overhead; and

(iii) in dynamic environment, where resource availability changes frequently, DCP-G can

generate better schedule than that of other approaches irrespective of workflow type and

size.

In Chapter 4, we described the architecture of an autonomic workflow management

system, designed according to the requirements identified in the taxonomy presented in

Chapter 2. In particular, we discussed the system models, such as Grid model, coordi-

nation model, and application model that form the basis of this architectural framework.

Moreover, the prototype implementation of the proposed architecture is also provided

in this chapter. The prototype wokflow management system is developed by leveraging

Aneka enterprise Grid platform. Further, the required components and services of the

prototype system, such as application development, resource discovery, coordination, and

task scheduling are also illustrated with directions for deployment of the system.

In Chapter 5, we proposed a decentralized and cooperative workflow scheduling ap-

proach that leverages a DHT-based self-configuring overlay for resource coordination

and a cooperative decision making strategy to achieve runtime optimization. This chap-

ter identified that decentralization of resource organization through self-configuring P2P

overlay can facilitate to enable autonomic management of workflow applications in Grids

with respect to resource configuration and information management. The main findings of

this chapter are: (i) proposed scheduling technique is scalable with respect to scheduling

message complexity; (ii) for decentralized and cooperative workflow scheduling, average

response time of a task and makespan of the fork-join workflows in the system are linearly

dependant on the number of tasks in a workflow; (iii) cooperative scheduling technique

can not only reduce the makespan of workflow by decreasing the task waiting time but

also balance the load among the available Grid resources significantly; and (iv) decentral-

180 Chapter 7. Conclusions and Future Directions

ized coordination technique is successful in generating schedules, which are as efficient

as the centralized coordination approach that has global knowledge of the system.

Finally, in Chapter 6, we utilized the self-configuring and self-optimizing nature

of this decentralized and cooperative scheduling technique, presented in Chapter 5 to

propose a reputation based dependable workflow scheduling technique that enables self-

healing property for the workflow management system to exhibit autonomic behaviour.

The key findings are: (i) considering reputation of Grid sites/resources for scheduling

can increase the reliability of application scheduling in Grids and improve the efficiency

of distributed schedulers; (ii) proposed scheduling approach can effectively reduce appli-

cation completion time by avoiding potential task failures through intelligent scheduling

irrespective of the failure pattern of resources or workload on the system; (iii) proposed

approach can successfully isolate failure-prone resources form the system; and (iv) for

reputation based workflow scheduling, there is a high degree of positive correlation be-

tween makespan of workflow and total task failures in the system.

To summarize, this thesis has laid the foundation for autonomic workflow manage-

ment system for Grids with a novel suit of architectural framework and scheduling al-

gorithms in order to facilitate the workflow scheduler to incorporate the autonomic com-

puting properties and features so that it can adapt to the changes in Grid environment

efficiently and optimize its performance. With these novel contributions, this thesis opens

up opportunities for future research in relation to managing the uncertainty and dynamism

in distributed computing systems and computational Clouds.

7.2 Future Directions

This thesis improves the understanding of autonomic management of workflow applica-

tions in Grid computing environment and advances the state-of-the-art through its contri-

butions. The investigations conducted in this thesis reveal several areas in Grid workflow

management, where much work is remained to be done. Moreover, the contributions of

this thesis have led to new challenges that are required to be addressed through further

research. This section briefly describes some of these challenges within the scope of the

thesis.

7.2. Future Directions 181

7.2.1 Workflow Management for Data-intensive Applications

Workflow applications in present-day Grids are usually divided into two categories with

regards to the dependencies among the tasks: compute-intensive and data-intensive. In

a compute-intensive workflow, the tasks in a workflow are ordered based on the control

dependency among them. Thus, the data flow among the tasks is generally in the range

of few KiloBytes (KB) to MegaBytes (MB). In contrast, the data flow among the tasks in

a data-intensive workflow is in the range of hundreds of MegaBytes to PetaBytes (PB).

In other words, the requirements of resource inter-connection bandwidth for transferring

data in a data-intensive workflow outweigh the computational requirements for processing

tasks. This, as a consequence, demands more time to transfer and store data as compared

to execute tasks of a workflow.

Moreover, managing data-intensive workflow applications in Grids also needs to han-

dle different types of data, such as input data, backend databases, intermediate data prod-

ucts, and output data. Many Bioinformatics applications [87] often have small input and

output data but rely on massive backend databases that are queried as part of task execu-

tion. On the other hand, some Astronomy applications [73] generate huge output data that

are feed into other applications for further processing. Some applications also need the

data to be streamed between the tasks for efficient execution.

In this thesis, we model scientific applications as compute-intensive workflows, where

data dependency among the tasks in workflow is negligible. Thus, research initiatives are

needed to be directed towards autonomic management of data-intensive workflow appli-

cations in Grids, addressing the challenges with regards to handling huge data, such as

parallel data transfer, streaming, replica management, and optimal utilization of available

network capacity. In Chapter 4, we propose a coordination model to manage the coordina-

tion objects (i.e. resource claim and resource ticket) for coordinated resource provision-

ing. These coordination objects support provisioning of computational resources with a

view to schedule compute-intensive workflows. Therefore, an immediate follow-up work

would be to extend this framework to support provisioning of storage resources with the

focus of scheduling data-intensive workflow applications in Grids.

182 Chapter 7. Conclusions and Future Directions

7.2.2 Enhancing Reliability of Critical Tasks

In Grid environment, execution of a task in workflow is generally failed for various rea-

sons, such as changes in execution environment configuration, non-availability of required

services or software components, and faults in computational and network fabric compo-

nents. A number of techniques (i.e. retry, check-pointing, and redundant task-allocation)

have been proposed to achieve fault-tolerance in workflow management [10] as discussed

in Chapter 2. The redundant task-allocation technique [10] executes the same task simul-

taneously on different Grid resources to guarantee fault-tolerant execution of that task in

the event of task failure, provided that one of the resources does not fail.

Due to the scarcity of computational resources and robustness of workflow applica-

tions, its not efficient to apply redundant task-allocation technique for each task in a work-

flow, rather it can be applied for the critical tasks. A task in a workflow is called critical

task if the execution of multiple tasks depend on the output or the execution completion

of that task. The critical task replication mechanism replicates a critical task execution on

more than one resource. The result, produced earliest from these tasks is then used for the

rest of the workflow. For example, the workflow submitted by user1 in Fig. 7.1 has two

critical tasks, T1 and T4. Thus, GAS1 submits two resource claim requests for T1 so

that T1 can be executed on multiple resources, and if one resource fails, the result/output

generated in other resource can be used to start execution of its child tasks, T2 and T3.

Therefore, in addition to utilizing the reputation based scheduling technique proposed

in Chapter 6, redundant task-allocation technique can also be leveraged to further explore

the research theme endeavoured in this thesis, i.e. improving reliability of workflow ex-

ecution in case of temporal resource behaviour in Grid environment. The challenges to

be tackled along this research direction include developing algorithms for identifying the

critical tasks and determining the level of redundancy based on the reliability requirement.

Furthermore, once output of the successfully executed critical task is transferred as input

for the execution of its child tasks, the redundant execution requests for this critical task

that are already queued or under processing are required to be terminated for preventing

unnecessary consumption of computing power in the system. Efficient Algorithms should

be developed to effectively resolve this issue and optimize resource consumption.

7.2. Future Directions 183

GAS 1

Grid site 1

user 1

Resource 1

Grid site 3

Grid site 2

GAS 2

user 2

Resource 2

GAS 3

user 3

Resource 3

1

2

W

Resource
mapping

Resource Claim List

P2P Coordination Space

Resource Update List5

Task
Prioritization

Submit
4 4

3

4

T1

T2 T3

T4

T5 T6

T7

Submit claim

Submit ticket

T2 T3T1T1

T1

T2 T3

T4

T5 T6

T7

Figure 7.1: Enhancing reliability of execution for critical tasks in workflow by redun-
dancy.

Aneka

Coordinator

Public Cloud - Amazon

Aneka

Coordinator

Public Cloud - Azure

Aneka

Coordinator

`

Private Cloud - CSE

Aneka

Coordinator

Private Cloud - Biomedical

biologist

Biological

application

scientist

computational

application

Overlay

VM VMVM VM VM VM

Figure 7.2: Autonomic workflow management in Aneka Enterprise Cloud platform by
leveraging public and private Cloud services.

184 Chapter 7. Conclusions and Future Directions

7.2.3 Self-protection

Self-protecting refers to the ability to anticipate and protect against threats or intrusions.

This property makes an autonomic system capable of detecting and protecting itself from

malicious attacks so as to maintain overall system security and integrity. Self-protecting

system management can be achieved by implementing some proactive policies (i.e. dy-

namic access control) at both resource and user sides, such as providing accurate warning

about potential malicious attack, taking networked resources offline if any anomaly is

detected, and shutting down the system if any hazardous event occurs that can possibly

damage the system.

The focus of this thesis is to enhance the performance or reliability of workflow ex-

ecution in dynamic Grid environment by designing an autonomic workflow management

system with the incorporation of fundamental aspects of an autonomic system: four self-*

properties. However, in this thesis, we mainly discuss on enabling self-configuring, self-

optimizing, and self-healing properties. Thus, to further improve the proposed framework

for autonomic workflow management system, algorithms and policies for self-protection

are required to be developed. In this regard, one research direction would be to explore

the utilization of dynamic key management scheme, where keys are pre-distributed and

dynamically updated by periodic or ten re-keying operations. Detailed information on key

pre-distribution, revocation, and dynamic updating schemes for active key management is

available in existing literature [25] [77].

Another interesting approach to protect the system from malicious attacks is to lever-

age intrusion detection techniques [56], where the system performs online monitoring and

analyzes the attacks/intrusions. Then a model is devised and trained using the past data

that is used to successfully and efficiently detect future attacks. The research challenges

in this direction are: (i) developing a intrusion detection model for Grid resources; (ii) dy-

namically updating or training the model with online monitoring data; and (iii) integrating

the model into GAS for realtime detection and prevention.

7.2. Future Directions 185

7.2.4 Autonomic Workflow Management in Clouds

Cloud Computing [23] has emerged as the next generation platform for hosting business

and scientific applications. It offers infrastructure, platform, and software as services

that are made available as on-demand and subscription-based services in a pay-as-you-go

model to users. The key characteristics of Cloud include scalability and reliability, which

ensure the consumers of Cloud services that the Cloud infrastructure is very robust and

will always be available at any time.

With regards to deployment, there are mainly two types of Clouds: (i) public Cloud

(e.g. Amazon EC2 [123]), where resources are dynamically provisioned on a fine-grained

self-service basis over the Internet via web services; and (ii) private Cloud, where re-

sources are made available to a limited number of service consumers within the organi-

zation behind a firewall with more control over their data. Now, in order to inter-connect

or combine these private and public Clouds for creating hybrid Cloud environment, uti-

lization of P2P routing and information dissemination structure is essential to avoid the

problems of provisioning efficiency bottleneck and single point of failure that are predom-

inantly associated with traditional centralized or hierarchical approaches.

Thus, the DHT-based self-configuring P2P overlay, proposed in this thesis for auto-

nomic management of workflow applications can be utilized to support scalable and self-

managing service discovery and load-balancing in Cloud computing environments. In

Chapter 4, we discuss prototype implementation of the self-managing workflow manage-

ment system utilizing Aneka Enterprise Grid platform. This work can be further extended

to develop Cloud application management and resource provisioning system using Aneka

Enterprise Cloud platform. As shown in Fig. 7.2, the Aneka Coordinator can be deployed

for each Cloud site (private or public) containing multiple resources (i.e. VMs) and hosted

a Cloud peer service that essentially glues different Cloud services to the sefl-configuring

P2P overlay.

7.2.5 Data Analytics Workflow Scheduling in Hybrid Clouds

Cloud computing environments are not only dynamic but also heterogeneous with mul-

tiple types of services (e.g. infrastructure, platform, and software) offered by various

186 Chapter 7. Conclusions and Future Directions

service providers (e.g. Amazon). Scheduling data analytics workflow applications in

such environment (refer to Fig. 7.3 and Fig. 7.4) requires to address a number of is-

sues, including minimizing cost and time of execution, satisfying user’s QoS constraints,

and considering the temporal behavior of the environment. The majority of scheduling

techniques [88][130] proposed to solve these issues are based on meta-heuristics, which

produce a good schedule given the current state of Cloud services and reserve the services

in advance accordingly.

On the other hand, the existing heuristic based scheduling techniques [78][95] as dis-

cussed in Chapter 3 are dynamic in nature and map the workflow tasks to services on-the-

fly, but lack the ability of generating schedule considering workflow-level optimization

and user QoS constraints, such as deadline and budget. Moreover, most of these tech-

niques do not consider the data placement constraints imposed by the Cloud users, while

scheduling the data-analytics workflows.

Thus, it is necessary to develop a hybrid heuristic that can effectively integrate most

of the benefits of existing approaches to optimize execution cost and time as well as meet

the user’s requirements through an adaptive fashion in order to efficiently manage the

dynamism and heterogeneity of the hybrid Cloud environment.

7.2.6 Energy-aware Autonomic Resource Allocation

The growing demand for computational power from industry and academia to execute sci-

entific, business and web applications has lead to excessive electrical power consumption.

Although a number of initiatives have been taken recently that resulted in development

of energy-efficient hardware solutions, the overall energy consumption continues to grow

due to the overwhelming requirements for computing resources and data centers. For ex-

ample, the cost of energy consumption by IT infrastructure in USA was estimated as 4.5

billion dollars in 2006, which is likely to be doubled by 2011 [9]. This phenomena of high

power consumption is eventually leading to some critical problems (e.g. insufficient or

malfunctioning cooling system may result in overheating of the resources reducing sys-

tem reliability and devices lifetime). Moreover, this high power consuming infrastructure

is generating substantial amount of carbon dioxide (CO2) emissions that is contributing

7.2. Future Directions 187

Supply

Chain data

Satellite

data

Protein

data

CERN

data

Financial

data

Data warehouse Data center

Report

generation

Database

ServiceService Service Service Service Service

Data mining

Analysis

Enterprise

Customer

Compute cloudCompute cluster

Scientist

User

Storage

cloud

Security

Computation

Download data

Data

storing

Data

source

ConsumerCompute-

intensive task

Data-intensive

task

Computation

Upload

data

Upload

data

Upload

data

Upload

data

Upload

data

Dataset

Pre-processingFiltering

Computation

Data

output

Data replication

Data

searching

Validation

Data

searching

Upload dataIntermediate

data

Download data

Visualization

Upload data

Download data

Figure 7.3: An example of data analytics workflow execution in Cloud.

to the greenhouse effect.

As Grids consist of distributed heterogeneous resources, such as computational clus-

ters and supercomputers, energy efficient resource allocation and application management

in Grids has been emerged as a prominent area of research nowadays. Many techniques

have already been applied to reduce power usage within the resource site: switching off

parts of the cluster that are not utilized [127] or Dynamic Voltage Scaling (DVS) to slow

down the speed of CPU processing [111]. Another approach to reduce system-wide en-

ergy consumption is to distribute the compute-intensive parallel applications considering

the energy status of Grid resources [70].

In Chapter 4, we propose an architectural framework for autonomic management of

workflow applications. One of the key component of this framework is Grid Autonomic

Manager (GAM) that is responsible for scheduling jobs (workflows) submitted by the

users in the system. The proposed GAM does not take into account power consumption

188 Chapter 7. Conclusions and Future Directions

T2

T4

T3 T5

T6

T8

T7 T9T1

S

S
D

Workflow

Level

Service

Level

Internet

storage

service

compute

service

mapReduce

service

software

service

storage

service

storage

service

compute

service

platform

service

compute

service

C2

C4

C3C1

S

S

D D

D

D

C5

d1

d2

d3

d7

d6

d8

d4

d5

u1

u2

u3

u4

u5

C6

C8

C7D D

D

D

C9

d9

d13

d12

d14

d10

d11

u6

u7

u9

u9

Task

Level

Figure 7.4: Layered architecture for workflow execution in hybrid Cloud.

for making scheduling decisions. Thus, one further direction of the research work pre-

sented in this thesis would be to extend this GAM with energy-aware resource allocation

algorithms that take into account both consolidation (to switch off nodes) and smart task

mapping techniques with a view to lower the total energy consumed to run an application.

It can be achieved by two ways: firstly, allocating the tasks in a workflow to resources,

where it induces lower power consumption; secondly, allocating the tasks in such a way

that the number of switched on hosts is reduced, considering the fact that most of the

power of an host is consumed when it is switched on.

REFERENCES

[1] Better business using grid solutions, bingrid. http://www.beingrid.eu [au-
gust 2010].

[2] The directed acyclic graph manager, condor project. http://www.cs.wisc.
edu/condor/dagman/ [august 2010].

[3] Dynamic assembly for system adaptability, dependability, and assurance. http:
//web.cs.wpi.edu/˜heineman/dasada/ [august 2010].

[4] Extensible markup language (xml) 1.0 (third edition). http://www.w3.org/
TR/REC-xml/ [august 2010].

[5] Griphyn: Grid physics network project. http://www.griphyn.org. [August
2010].

[6] Situational awareness system. http://www.darpa.mil/sto/
strategic/suosas.html [august 2010].

[7] Web services description language (wsdl) version 1.2. http://www.w3.org/
TR/wsdl12 [august 2010].

[8] World wide web consortium (w3c). http://www.w3.org/ [august 2010].

[9] Epa report to congress on server and data center energy efficiency: Public law 109-
431, u.s. environmental protection agency energy star program. Technical report,
Lawrence Berkeley National Laboratory, USA, August, 2007.

[10] J. H. Abawajy. Fault-tolerant scheduling policy for grid computing systems. In
Proceedings of the 18th International Parallel and Distributed Processing Sympo-
sium (IPDPS04), USA, April, 2004.

[11] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang,
L. Zhen, M. Parashar, B. Khargharia, and S. Hariri. Automate: Enabling autonomic
applications on the grid. In Proceedings of the Autonomic Computing Workshop,
USA, June, 2003.

[12] S. Agarwala, Y. Chen, D. S. Milojicic, and K. Schwan. Qmon: Qos- and utility-
aware monitoring in enterprise systems. In Proceedings of the 3rd IEEE Interna-
tional Conference on Autonomic Computing (ICAC’06), Ireland, June, 2006.

[13] A. Auyoung, B. Chun, A. Snoeren, and A. Vahdat. Resource allocation in feder-
ated distributed computing infrastructures. In Proceedings of the 1st Workshop on
Operating System and Architectural Support for the On-demand IT Infrastructure
(OASIS’04), USA, October, 2004.

189

http://www.beingrid.eu
http://www.cs.wisc.edu/condor/dagman/
http://www.cs.wisc.edu/condor/dagman/
http://web.cs.wpi.edu/~heineman/dasada/
http://web.cs.wpi.edu/~heineman/dasada/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.griphyn.org.
http://www.darpa.mil/sto/strategic/suosas.html
http://www.darpa.mil/sto/strategic/suosas.html
http://www.w3.org/TR/wsdl12
http://www.w3.org/TR/wsdl12
http://www.w3.org/

190 REFERENCES

[14] F. Azzedin and M. Maheswaran. Integrating trust into grid resource management
systems. In Proceedings of the 31st International Conference on Parallel Process-
ing (ICPP’02), Canada, August, 2002.

[15] N. Balakrishnan and C. R. Rao. Order statistics: Applications. Handbook of Statis-
tics, vol. 17, Elsevier Science Pub Co, 1998.

[16] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger, and F. Zini.
Simulation of dynamic grid replication strategies in optorsim. In Proceedings of
the 3rd IEEE/ACM International Workshop on Grid Computing (Grid’02), USA,
November, 2002.

[17] V. Bhat, V. Matossian, M. Parashar, M. Peszynska, M. K. Sen, P. L. Stoffa, and
M. F. Wheeler. Autonomic oil reservoir optimization on the grid. Concurrency and
Computation: Practice and Experience, vol. 17, no. 1, pp. 1-26, 2005.

[18] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz. Wien2k - an aug-
mented plane wave plus local orbitals program for calculating crystal properties.
Technical report, Vienna University of Technology, Austria, 2001.

[19] J. Blythe, S. Jain, E. Deelman, A. Gil, and K. Vahi. Task scheduling strategies for
workflow-based applications in grids. In Proceedings of the 5th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid’05), UK, May, 2005.

[20] B. Bode, D. Halstead, R. Kendall, and D. Jackson. Pbs: The portable batch sched-
uler and the maui scheduler on linux clusters. Proceedings of the 4th Linux Show-
case and Conference, USA, October, 2000.

[21] R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An architecture for a resource
management and scheduling system in a global computational grid. In Proceed-
ings of the 4th International Conference on High Performance Computing in Asia-
Pacific Region (HPC-ASIA’00), China, May, 2000.

[22] R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing. Concurrency
and Computation: Practice and Experience, vol. 14, no. 13-15, pp. 1175-1220,
2002.

[23] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems, vol. 25, no. 6, pp. 599-616,
2009.

[24] E. Byun, Y. Kee, E. Deelman, K. Vahi, G. Mehta, and J. Kim. Estimating resource
needs for time-constrained workflows. In Proceedings of the 4th IEEE Interna-
tional Conference on eScience (eScience’08), USA, December, 2008.

[25] H. Chan, V. D. Gligor, A. Perrig, and G. Muralidharan. On the distribution and
revocation of cryptographic keys in sensor networks. IEEE Transactions on De-
pendable and Secure Computing, vol. 2, no. 3, pp. 233-247, 2005.

REFERENCES 191

[26] L. Chan and S. Karunasekera. Designing configurable publish-subscribe scheme
for decentralised overlay networks. In Proceedings of the 21st IEEE International
Conference on Advanced Information Networking and Applications (AINA’07),
Canada, May, 2007.

[27] S. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw. The legion resource
management system. In Proceedings of the 5th Workshop on Job Scheduling Strate-
gies for Parallel Processing (JSSPP’99) in conjunction with the International Par-
allel and Distributed Processing Symposium (IPDPS’99), Puerto Rico, April, 1999.

[28] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making
gnutella-like p2p systems scalable. In Proceedings of the ACM SIGCOMM 2003
Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, Germany, August, 2003.

[29] G. Chen, C. P. Low, and Z. Yang. Coordinated service provisioning in peer-to-peer
environments. IEEE Transactions on Parallel and Distributed Systems, vol. 19, no.
4, pp. 433-446, 2008.

[30] D. Chiu, S. Deshpande, G. Agrawal, and R. Li. Cost and accuracy sensitive
dynamic workflow composition over grid environments. In Proceedings of the
9th IEEE/ACM International Conference on Grid Computing (Grid’08), Japan,
September, 2008.

[31] W. Cirne, F. Brasileiro, J. Sauve, N. Andrade, D. Paranhos, E. Santos-Neto, and
R. Medeiros. Grid computing for bag of tasks applications. In Proceedings of
the 3rd IFIP Conference on E-Commerce, E-Business and E-Government, Brazil,
September, 2003.

[32] L. Clementi, S. Krishnan, W. Goodman, J. Ren, W. W. Li, P. W. Arzberger,
G. Vareille, S. Dallakyan, and M. F. Sanner. Services oriented architecture for
managing workflows of avian flu grid. In Proceedings of the 4th IEEE Interna-
tional Conference on eScience (eScience’08), USA, December, 2008.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, USA, 2nd edition, 2001.

[34] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information ser-
vices for distributed resource sharing. In Proceedings of the 10th IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC’01), USA,
June, 2001.

[35] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common
api for structured peer-to-peer overlays. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS’03), USA, February, 2003.

[36] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. H. Su, K. Vahi,
and M. Livny. Pegasus: Mapping scientific workflow onto the grid. In Proceed-
ings of the 2nd European Across Grids Conference (AxGrids’04), Cyprus, January,
2004.

192 REFERENCES

[37] E. Deelman, G. Singh, M. Su, J. Blythe, A. Gil, C. Kesselman, G. Mehta, K. Vahi,
G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz. Pegasus: a frame-
work for mapping complex scientific workflows onto distributed systems. Scientific
Programming, vol. 13, no. 3, pp. 219-237, 2005.

[38] P. Durschel. The renaissance of decentralized systems. In Proceedings of the
15th IEEE International Symposium on High Performance Distributed Computing
(HPDC’06), France, June, 2006.

[39] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, and H. L. Truong.
Askalon: A tool set for cluster and grid computing. Concurrency and Computation:
Practice and Experience, vol. 17, no. 2-4, pp. 143-169, 2005.

[40] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid workflow applica-
tions with agwl: An abstract grid workflow language. In Proceedings of the 5th
IEEE/ACM International Symposium on Cluster Computing and the Grid (CC-
Grid’05), UK, May, 2005.

[41] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.
A directory service for configuring high-performance distributed computations. In
Proceedings of the 6th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC’97), USA, August, 1997.

[42] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. In-
ternational Journal of Supercomputer Applications, vol. 11, no. 2, pp. 115-128,
1997.

[43] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, USA, 1999.

[44] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for
computational grids. In Proceedings of the 5th ACM Conference on Computer and
Communications Security (CCS’98), USA, November, 1998.

[45] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of Supercomputer Applications, vol.
15, no. 3, pp. 200222, 2001.

[46] I. Foster, J. Vckler, M. Wilde, and Y. Zhao. Chimera: A virtural data system
for representing, querying, and automating data derivation. In Proceedings of the
14th International Conference on Scientific and Statistical Database Management
(SSDBM’02),Scotland, July, 2002.

[47] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-g: A com-
putation management agent for multi-institutional grids. In Proceedings of the
10th IEEE International Symposium on High Performance Distributed Computing
(HPDC’01), USA, June, 2001.

[48] A. Ganek and T. Corbi. The drawing of the autonomic computing era. IBM Systems
Journal, Special Issue on Autonomic Computing, vol. 24, no. 1, pp. 5-18, 2003.

REFERENCES 193

[49] P. Garca, C. Pairot, R. Mondjar, J. Pujol, H. Tejedor, and R. Rallo. Planetsim:
A new overlay network simulation framework. In Proceedings of the 4th Inter-
national Workshop on Software Engineering and Middleware (SEM’04), Austria,
September, 2004.

[50] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.

[51] W. Gentzsch. Sun grid engine: Towards creating a compute power grid. In Pro-
ceedings of the 1st IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’01), Australia, May, 2001.

[52] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim. Wings for pegasus: Cre-
ating large-scale scientific applications using semantic representations of compu-
tational workflows. In Proceedings of the 19th National Conference on Innovative
Applications of Artificial Intelligence (IAAI07), Canada, July, 2007.

[53] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, USA, 1989.

[54] L. Gong. JXTA: A network programming environment. IEEE Internet Computing,
vol. 5, no. 3, pp. 88-95, 2001.

[55] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: Content-based
publish/subscribe over p2p networks. In Proceedings of the 5th ACM/IFIP/USENIX
International Conference on Middleware (Middleware’04), Canada, October,
2004.

[56] K. K. Gupta, B. Nath, and K. Ramamohanarao. Layered approach using condi-
tional random fields for intrusion detection. IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 1, pp. 35-49, 2010.

[57] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of job-
scheduling strategies for grid computing. In Proceedings of the 1st IEEE/ACM
International Workshop on Grid Computing (Grid’00), India, December, 2000.

[58] P. Horn. Autonomic computing: Ibm’s perspective on the state of information
technology. Technical report, IBM Corporation, October, 2001.

[59] M. C. Huebscher and J. A. McCann. A survey of autonomic computing degrees,
models, and applications. ACM Computing Surveys, vol. 40, no. 3, pp. 1-28, 2008.

[60] IBM-Corporation. A technical view of autonomic computing. Software Group,
IBM USA, 2002.

[61] IBM-Corporation. An architectural blueprint for autonomic computing. Technical
report, 2003.

[62] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. Epema. The
grid workloads archive. Future Generation Computer Systems, vol. 24, no. 7, pp.
672-686, 2008.

194 REFERENCES

[63] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. Epema. The
grid workloads archive. Future Generation Computing Systems, 2009.

[64] M. B. Juric, B. Mathew, and P. Sarang. Business Process Execution Language for
Web Services. Packt Publishing, UK, 2004.

[65] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for
reputation management in p2p networks. In Proceedings of the 12th International
Conference on World Wide Web (WWW’03), Hungary, May, 2003.

[66] D. Kececioglu. Reliability Engineering Handbook, vol. 1. Prentice Hall, USA,
1991.

[67] H. Kim and M. Parashar. CometCloud: An autonomic cloud engine, Cloud Com-
puting: Principles and Paradigms, R. Buyya et al. (eds.). Wiley Press, USA, 2011.

[68] H. Kim, M. Parashar, D. J. Foran, and L. Yang. Investigating the use of autonomic
cloudbursts for high-throughput medical image registration. In Proceedings of the
10th IEEE/ACM International Conference on Grid Computing (Grid’09), Canada,
October, 2009.

[69] J. Kim, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman. Using content-
addressable networks for load balancing in desktop grids. In Proceedings of the
16th IEEE International Symposium on High Performance Distributed Computing
(HPDC’07), USA, June, 2007.

[70] K. Kim, R. Buyya, and J. Kim. Power aware scheduling of bag-of-tasks applica-
tions with deadline constraints on dvs-enabled clusters. In Proceedings of the 7th
IEEE International Symposium on Cluster Computing and the Grid (CCGrid’07),
Brazil, May, 2007.

[71] S. Kim and J. Browne. A general approach to mapping of parallel computation
upon multiprocessor architectures. In Proceedings of the 27th IEEE International
Conference on Parallel Processing (ICPP’98), USA, August, 1988.

[72] Y. Kwok and I. Ahmad. Dynamic critical-path scheduling: An effective technique
for allocating task graphs to multiprocessors. IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no. 7, pp. 506-521, 1996.

[73] A. C. Laity, N. Anagnostou, G. B. Berriman, J. C. Good, J. C. Jacob, D. S. Katz,
and T. Prince. Montage: An astronomical image mosaic service for the nvo. In Pro-
ceedings of the 14th Annual Conference on Astronomical Data Analysis Software
and Systems (ADASS’XIV), USA, October, 2004.

[74] E. Laure and B. Jones. Enabling grids for e-science: The egee project. Technical
Report EGEE-PUB-2009-001, CERN, Switzerland, 2009.

[75] Z. Li and M. Parashar. Comet: A scalable coordination space for decentralized
distributed environments. In Proceedings of the 2nd International Workshop on
Hot Topics in Peer-to-Peer Systems (HOT-P2P’05), USA, July, 2005.

REFERENCES 195

[76] M. Litzkow, M. Livny, and M. Mutka. Condor-a hunter of idle workstations. In
Proceedings of the 8th International Conference of Distributed Computing Systems
(ICDCS’88), USA, June, 1988.

[77] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks.
In Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS’03), USA, October, 2003.

[78] K. Liu. Scheduling Algorithms for Instance-Intensive Cloud Workflows. PhD The-
sis, Swinburne University of Technology, Australia, 2009.

[79] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the kepler system. Con-
currency and Computation: Practice and Experience, Special Issue on Scientific
Workflows, vol. 18, no. 10, pp. 1039-1065, 2006.

[80] M. Maheswaran, S. Ali, H.J.Siegel, D. Hensgen, and R. Freund. Dynamic matching
and scheduling of a class of independent tasks onto heterogeneous computng sys-
tems. In Proceedings of the 8th Heterogeneous Computing Workshop (HCW’99),
Puerto Rico, April, 1999.

[81] A. Mandal and et al. Scheduling strategies for mapping application workflows
onto the grid. In Proceedings of the 14th IEEE International Symposium on High
Performance Distributed Computing (HPDC’05), USA, July, 2005.

[82] N. Muscettolay, P. Nayakz, B. Pellz, and B. Williams. Remote agent: To boldly go
where no ai system has gone before. Artificial Intelligence, vol. 103, no. 1-2, pp.
5-47, 1998.

[83] G. Nadarajan. Semantics and Planning based Workflow Composition for Video
Processing. University of Edinburgh, United Kingdom, 2010.

[84] P. Nascimento, C. Sena, J. da Silva, D. Vianna, C. Boeres, and V. Rebello. Manag-
ing the execution of large scale mpi applications on computational grids. In Pro-
ceedings of the 17th International Symposium on Computer Architecture on High
Performance Computing (SBAC-PAD’05), Brazil, October, 2005.

[85] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. Pocock, A. Wipat, and P. Li. Taverna: A tool for the composition
and enactment of bioinformatics workflows. Bioinformatics, vol. 20, no. 17, pp.
3045-3054, 2004.

[86] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. Dobson, and K. Chiu. A grid
workflow environment for brain imaging analysis on distributed systems. Con-
currency and Computation: Practice and Experience (CCPE), vol. 21, no. 16, pp.
2118-2139, 2009.

[87] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. Dobson, and K. Chiu. Brain
image registration analysis workflow for fmri study in global grids. In Proceedings
of the 23th IEEE International Conference on Advanced Information Networking
and Application (AINA’09), UK, May, 2009.

196 REFERENCES

[88] S. Pandey, L. Wu, S. Guru, and R. Buyya. A particle swarm optimization (pso)-
based heuristic for scheduling workflow applications in cloud computing environ-
ments. In Proceedings of the 24th IEEE International Conference on Advanced
Information Networking and Applications (AINA’10), Australia, April, 2010.

[89] M. Parashar and S. Hariri. Autonomic Computing: An Overview, Unconventional
Programming Paradigms, J.-P. Banatre et al. (eds.). LNCS, Springer Verlag, Ger-
manay, 2005.

[90] M. Parashar and S. Hariri. Autonomic grid computing. In Proceedings of the 2nd
International Conference on Autonomic Computing (ICAC’05), USA, June, 2005.

[91] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang, and S. Hariri.
Automate: Enabling autonomic applications on the grid. Cluster Computing: The
Journal of Networks, Software Tools, and Applications, Special Issue on Autonomic
Computing, vol. 9, no. 1, pp. 161-174, 2006.

[92] J. L. Peterson. Petri nets. ACM Computing Surveys, vol. 9, no. 3, pp. 223-252,
1977.

[93] M. Rahman, M. R. Hassan, and R. Buyya. Jaccard based availability prediction for
enterprise grids. In Proceedings of the 10th International Conference on Compu-
tational Science (ICCS’10), The Netherlands, May, 2010.

[94] M. Rahman, R. Ranjan, and R. Buyya. Cooperative and decentralized workflow
scheduling in global grids. In Future Generation Computer Systems, vol. 26, no. 5,
pp. 753-768. Elsevier Press, Amsterdam, The Netherlands, 2010.

[95] M. Rahman, S. Venugopal, and R. Buyya. A dynamic critical path algorithm
for scheduling scientific workflow applications on global grids. In Proceed-
ings of the 3rd IEEE International Conference on e-Science and Grid Computing
(eScience’07), India, December, 2007.

[96] L. Ramakrishnan, M. S. C, R. Jeffrey, L. Tilson, and D. A. Reed. Grid portals
for bioinformatics. In Proceedings of the 2nd International Workshop on Grid
Computing Environments (GCE), in conjunction with ACM/IEEE Conference for
High Performance Computing, Networking, Storage and Analysis (SC’06), USA,
November, 2006.

[97] L. Ramakrishnan and D. Gannon. A survey of distributed workflow characteristics
and resource requirements. Technical Report TR671, Indiana University, USA,
September, 2008.

[98] R. Raman, M. Livny, and M. Solomon. Resource management through multilateral
matchmaking. In Proceedings of the 9th IEEE International Symposium on High-
Performance Distributed Computing (HPDC00), USA, August, 2000.

[99] R. Ranjan and R. Buyya. Decentralized Overlay for Federation of Enterprise
Clouds, Handbook of Research on Scalable Computing Technologies, K. Li et al.
(eds.). IGI Global, USA, 2009.

REFERENCES 197

[100] R. Ranjan, L. Chan, A. Harwood, S. Karunasekera, and R. Buyya. Decentralised
resource discovery service for large scale federated grids. In Proceedings of the 3rd
IEEE International Conference on e-Science and Grid Computing (eScience’07),
India, December, 2007.

[101] R. Ranjan, A. Harwood, and R. Buyya. A case for cooperative and incentive-based
federation of distributed clusters. Future Generation Computer Systems, vol. 24,
no. 4, pp. 280-295, 2008.

[102] R. Ranjan, A. Harwood, and R. Buyya. Coordinated load management in peer-to-
peer coupled federated grid systems. Technical Report GRIDS-TR-2008-2, Grid
Computing and Distributed Systems Laboratory, The University of Melbourne,
Australia, 2008.

[103] R. Ranjan, A. Harwood, and R. Buyya. Peer-to-peer resource discovery in global
grids: A tutorial. IEEE Communications Surveys and Tutorials, vol. 10, no. 2, pp.
6-33, 2008.

[104] R. Ranjan, M. Rahman, and R. Buyya. A decentralized and cooperative workflow
scheduling algorithm. In Proceedings of the 8th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid’08), France, May, 2008.

[105] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Proceedings of the ACM SIGCOMM 2001 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, USA, August, 2001.

[106] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica,
and H. Yu. Opendht: A public dht service and its uses. In Proceedings of the
ACM SIGCOMM 2005 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, USA, August, 2005.

[107] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware’01), Germany,
November, 2001.

[108] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, Englewood Cliffs, USA, 2003.

[109] A. Russo and R. L. Cigno. Push/pull protocols for streaming in p2p systems. In
Proceedings of the 28th IEEE International conference on Computer Communica-
tions (INFOCOM’09) Workshops, Brazil, April, 2009.

[110] F. Schuller and J. Qin. Towards a workflow model for meteorological simulations
on the austriangrid. In Proceedings of the 1st Austrian Grid Symposium, Austria,
December, 2005.

198 REFERENCES

[111] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,
and M. L. Scott. Energy-efficient processor design using multiple clock domains
with dynamic voltage and frequency scaling. In Proceedings of the 8th Interna-
tional Symposium on High-Performance Computer Architecture (HPCA-8), USA,
February, 2002.

[112] R. G. Smith. The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Transactions on Computers, vol. C-29, no. 12,
pp. 1104-1113, 1980.

[113] J. Sonnek, A. Chandra, and J. Weissman. Adaptive reputation-based scheduling
on unreliable distributed infrastructures. IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 18, no. 11, pp. 1551-1564, 2007.

[114] R. Stevens, A. Robinson, and C. Goble. mygrid: Personalised bioinformatics on
the information grid. In Proceedings of the 11th International Conference on In-
telligent Systems for Molecular Biology, Australia, July, 2003.

[115] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In Proceedings of the
ACM SIGCOMM 2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, USA, August, 2001.

[116] E. Tanin, A. Harwood, and H. Samet. Using a distributed quadtree index in peer-
to-peer networks. VLDB Journal, vol. 16, no. 2, pp. 165-178, 2007.

[117] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor - A Distributed Job
Scheduler, Beowulf Cluster Computing with Linux, W. Groop et al. (eds.). The MIT
Press, USA, 2002.

[118] I. Taylor, M. Shields, and I. Wang. Resource Management for the Triana Peer-
to-Peer Services, pages 451–462. Grid Resource Management, J. Nabrzyski et al.
(eds.). Kluwer Academic Publishers, The Netherlands, 2004.

[119] I. J. Taylor, M. S. Shields, I. Wang, and R. Philp. Distributed P2P Computing within
Triana: A Galaxy Visualization Test Case. In Proceedings of the 17th International
Parallel and Distributed Processing Symposium (IPDPS’03), France, April, 2003.

[120] D. Theiner and P. Rutschmann. An inverse modelling approach for the estimation
of hydrological model parameters. Journal of Hydroinformatics, 2005.

[121] H. Topcuoglu, S. Hariri, and M. Y. Wu. Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 3, pp. 260-274, 2002.

[122] H. Topcuouglu, S. Hariri, and M. Wu. Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 3, pp. 260-274, 2002.

[123] J. Varia. Architecting Applications for the Amazon Cloud, Cloud Computing: Prin-
ciples and Paradigms, R. Buyya et al. (eds.). Wiley Press, New York, USA, 2010.

REFERENCES 199

[124] C. Vecchiola, X. Chu, and R. Buyya. Aneka: A Software Platform for .NET-based
Cloud Computing, High Speed and Large Scale Scientific Computing, W. Gentzsch
et al. (eds.). IOS Press, The Netherlands, 2009.

[125] S. Venugopal and R. Buyya. A set coverage-based mapping heuristic for schedul-
ing distributed data-intensive applications on global grids. In Proceedings of the
7th IEEE/ACM International Conference on Grid Computing (Grid’06), Spain,
September, 2006.

[126] S. Venugopal, R. Buyya, and L. Winton. A grid service broker for scheduling e-
science applications on global data grids. Concurrency and Computation: Practice
and Experience, vol. 18, no. 6, pp. 685-699, 2006.

[127] L. Wang and Y. Lu. Efficient power management of heterogeneous soft real-
time clusters. In Proceedings of the 29th IEEE Real-Time Systems Symposium
(RTSS’08), Spain, December, 2008.

[128] M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of scientific workflows in
the askalon grid enviornment. ACM SIGMOD Record, vol. 34, no. 3, pp. 56-62,
2005.

[129] X. F. Wu, V. Taylor, and R. Stevens. Design and implementation of prophesy
automatic instrumentation and data entry system. In Proceedings of the 13th
IASTED International Conference on Parallel and Distributed Computing and Sys-
tems (PDCS’01), USA, August, 2001.

[130] Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang. A market-oriented hierarchical
scheduling strategy in cloud workflow systems. Journal of Supercomputing, 2011.

[131] Y. Yang, J. Chen, J. Lignier, and H. Jin. Peer-to-peer based grid workflow runtime
environment of swindew-g. In Proceedings of the 3rd IEEE International Confer-
ence on e-Science and Grid Computing (eScience’07), India, December, 2007.

[132] J. Yao, C. K. Tham, and K. Y. Ng. Decentralized dynamic workflow scheduling
for grid computing using reinforcement learning. In Proceedings of the 14th IEEE
International Conference on Networks (ICON’06), Singapore, September, 2006.

[133] J. Yu and R. Buyya. Taxonomy of workflow management systems for grid com-
puting. Journal of Grid Computing, vol. 3, no. 3-4, pp. 171-200, 2005.

[134] J. Yu and R. Buyya. Gridbus Workflow Enactment Engine, Grid Computing: In-
frastructure, Service, and Applications, L. Wang et al. (eds.). CRC Press, USA,
2009.

[135] J. Yu and R. Buyya. A budget constrained scheduling of workflow applications
on utility grids using genetic algorithms. In Proceedings of the 15th IEEE In-
ternational Symposium on High Performance Distributed Computing (HPDC’06),
France, June, 2006.

200 REFERENCES

[136] J. Yu and R. Buyya. A novel architecture for realizing grid workflow using tu-
ple spaces. In Proceedings of the 5th IEEE/ACM Workshop on Grid Computing
(Grid’04), USA, November, 2004.

[137] J. Yu, R. Buyya, and K. Ramamohanarao. Workflow Scheduling Algorithms for
Grid Computing. Metaheuristics for Scheduling in Distributed Computing Envi-
ronments, F. Xhafa and A. Abraham (eds.). Springer, Germany, 2008.

[138] J. Yu, S. Venugopal, and R. Buyya. A market-oriented grid directory service for
publication and discovery of grid service providers and their services. The Journal
of Supercomputing, vol. 36, no. 1, pp. 17-31, 2006.

[139] X. Zhang, J. L. Freschl, and J. M. Schopf. A performance study of monitoring and
information services for distributed systems. In Proceedings of the 12th IEEE In-
ternational Symposium on High Performance Distributed Computing (HPDC’03),
USA, June, 2003.

[140] R. Zhou and K. Hwang. Powertrust: A robust and scalable reputation system for
trusted peer-to-peer computing. IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 4, pp. 460-473, 2007.

[141] Q. Zhu and G. Agrawal. Supporting fault-tolerance for time-critical events in
distributed environments. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC’09), USA,
November, 2009.

	Introduction
	Background
	Grid Computing
	Workflow Management
	Autonomic Computing

	Motivation for Autonomic Workflow Management System
	Problem Description
	Research Hypothesis
	Research Issues
	Proposed Solution

	Contributions
	Thesis Organization
	Publication Record

	An Overview of Autonomic Management of Grid Applications
	Introduction
	History of Autonomic Computing
	Integrating Biology and Information Technology
	Evolution of Autonomic Computing

	Overview of Autonomic Computing Systems
	Properties of Autonomic Computing Systems
	IBM Tivoli: A Case Study in Autonomic Computing

	Autonomic Management of Applications in Grids
	Taxonomy
	Application Composition
	Application Scheduling
	Coordination
	Monitoring
	Self-* Property
	System Characteristics

	Survey of Grid Systems
	Aneka Federation
	Askalon
	AutoMate
	Condor-G
	GWMS
	Nimrod-G
	Pegasus
	Taverna
	Triana

	Thesis Scope and Positioning
	Conclusion

	DCP-G: A Dynamic Workflow Scheduling Algorithm for Grids
	Introduction
	Background of Workflow Scheduling
	Workflow Scheduling Problem
	Existing Workflow Scheduling Algorithms
	Heuristics
	Meta-heuristics

	DCP-G Algorithm for Workflow Scheduling
	Calculation of AEST and ALST in DCP-G
	Task Selection
	Resource Selection
	Methodology
	DCP-G Example

	Performance Evaluation
	Simulation methodology
	Simulation setup
	Results and Observations
	Discussion

	Conclusions

	Autonomic Workflow Management System Architecture
	Architectural Framework
	Grid Model
	Coordination Model
	Application Model

	Implementation
	Aneka Federation: An Overview
	Workflow Management in Aneka Federation

	Conclusion

	Decentralized and Cooperative Workflow Scheduling
	Introduction
	System Models
	Proposed Algorithms
	Scheduling and Provisioning Algorithm
	Coordination Algorithm
	Time Complexity
	Example

	Performance Evaluation
	Network Model
	Simulation Setup
	Results and Observations
	Comparison

	Related Work
	Scheduling Infrastructure
	Coordination Mechanism

	Conclusion

	Reputation-based Dependable Workflow Scheduling
	Introduction
	System Models
	Grid Model
	Application Model
	Failure Model

	Proposed Methodology
	Distributed Reputation Management
	Distributed Workflow Management
	Scheduling Example

	Performance Evaluation
	Simulation Setup
	Performance Metrics
	Results and Observations
	Discussion and Summary

	Related Work
	Dependable Scheduling
	Distributed Reputation Models
	Grid Workflow Management

	Conclusion

	Conclusions and Future Directions
	Summary
	Future Directions
	Workflow Management for Data-intensive Applications
	Enhancing Reliability of Critical Tasks
	Self-protection
	Autonomic Workflow Management in Clouds
	Data Analytics Workflow Scheduling in Hybrid Clouds
	Energy-aware Autonomic Resource Allocation

	References

