
 1

Task Scheduling for Coarse-Grained Grid Application

Nithiapidary Muthuvelu, Junyang Liu and Nay Lin Soe

Grid Computing and,, Distributed Systems Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{nmu, junyangl, nsoe}@students.cs.mu.oz.au

Abstract
Grid Computing is a new, and inevitable technology in the fields of scientific, and engineering, and as well as
in commercial, and industrial enterprises. This growing technology facilitates the conduct of virtual
organization by bringing together appropriate, and effective human, information, and computing resources
for tackling highly complex, and multidisciplinary projects. This project focuses mainly on the scheduling
strategies for coarse-grained Grid application. Scheduling strategy plays an important role in the Grid
environment to schedule the user jobs, and dispatch them to appropriate Grid resources. A good task
scheduling method is needed to reduce the total time taken for job execution in the Grid. The main purpose of
this project is to use the GridSim Toolkit to model coarse-grained Grid application by developing an efficient,
and effective task scheduling method.

1.0 INTRODUCTION
GridSim is a Java-based toolkit for modeling, and simulation of Grid resources, and application scheduling

[1]. It supports primitives for application composition, information services for resource discovery, and

interfaces for assigning application tasks to resources, and managing their execution [2]. These features can

be used to simulate resource brokers (e.g. Nimrod-G) or Grid schedulers for evaluating performance of

scheduling algorithms or heuristics. Other than GridSim, there are few tools available for application

scheduling simulation in Grid computing environments, such as Bricks, MicroGrid and SimGrid toolkit.

GridSim entities are namely, user, broker, resource, information service, statistics, shutdown, and report

writer. Once GridSim starts, the resource entities register themselves with the Grid Information Service (GIS)

entity. The broker entity queries GIS entity for resource discovery, based on the user entity’s request. The GIS

entity returns a list of registered resources, and their contact details. The broker entity queries the resources

for resource configuration, and properties. They respond with dynamic information such as resources cost,

capability, availability, load, and other configuration parameters. Broker entity selects the appropriate

resources, and sends user jobs (Gridlets) to those resources fro execution. The resources send back the

processed Gridlets to the I/O queue of the broker entity. Finally, the user will collect the processed Gridlets

from the I/O queue.

 2

This paper is organized as follows: Section 2 presents problem statement of this project, which is followed by

project objective, and scope in Section 3, and 4 respectively. Section 5 describes the design of the scheduling

system, and the implementation of the design is presented in Section 6. Some experiments or testing are done

using the created program, and the results are presented in Section 7. Finally, Section 8 concludes the

developed scheduling system (program), and results from Section 7.

2.0 PROBLEM STATEMENT
In a Grid environment, the jobs are processed at the Grid resources in a fine-grained form. Each job is sent

one by one (one at a time) to the Grid resource(s), processed individually, and then sent back to the user.

Sending, processing, and receiving the jobs one at a time, increases the total amount of time needed to execute

all the jobs from a user. The total execution time encompasses the time for transmitting each jobs to the Grid

resource, and the overhead processing time for each job at the Grid resource. Moreover, in the case of Grid

resource which has a very high processing capabilities (processing effort), sending, and processing a small job

that requires very low processing capabilities will lead to poor utilization of that particular resource.

3.0 OBJECTIVE
The purpose of this project is to develop a scheduling strategy that optimizes the utilization of Grid resource

processing capabilities, and reduces total time taken to process user jobs. In particular, the project or system

should reduce the total time taken in transmitting the user jobs to/from the resources, and also to reduce the

overhead processing time of each jobs at the resource. In order to achieve these requirements, the jobs should

be sent to the resources in a coarse-grained form. In other words, the scheduling strategy should group a

number of user jobs (small jobs) together according to a particular Grid resource’s processing capabilities,

and send the grouped jobs to that resource. The scheduler also should submit, and receive all the job groups

to/from the Grid resources in parallel.

Another purpose of the project is to include the granularity time in the scheduling system to discover the total

user jobs that can be processed in a given time. Relationship between the total number of jobs, processing

requirements of those jobs, total number of available Grid resources, processing capabilities of those

resources, and the granularity time should be determined in order to achieve the minimum job execution time,

and optimum or maximum utilization of the Grid resources.

4.0 SCOPE
This project focuses on the scheduling part of the GridSim Toolkit. The GridSim simulation sends, and

receives the Gridlets to/from the Grid resources in sequential manner; the user or broker entity gets a Gridlet

from the Gridlet list, submits the Gridlet to the Grid resource, and receives the processed Gridlet from the

 3

resource. Then, the broker gets the second Gridlet from the Gridlet list, and performs the subsequent steps.

Sending, and receiving one Gridlet at one time increase the Gridlet transmitting time, and cost over the Grid

network as well as the overhead processing time, and cost of each Gridlet. Another point is that, if an

individual Gridlet with small length is sent to a Grid resource with large MIPS, the Gridlet processing effort

at the Grid resource would not utilize the maximum capability of that Grid resource. This will result in

wastage of network bandwidth in term of Gridlet transmitting cost and time.

The scheduling strategy of the GridSim simulation in this project is specifically designed for the Gridlets with

small size lengths. However, the resulting simulation program still accepts Gridlets with large length (MI).

The Grid resources in the system are of user choice, where user has to select the resources from an external

file. Finally, only one Grid user is used in the system to be assigned to the Gridlets before sending the Gridlets

to the resources.

5.0 DESIGN
This section presents the flowchart of the simulation program, and the architecture of the scheduling strategy.

Figure 1.0 depicts the flowchart of the GridSim simulation used in the proposed program or system. The

proposed system accepts total number of Gridlets, average Million Instructions (MI) of those Gridlets (Gridlet

length), allowed deviation percentage of the MI, granularity time of the simulation, overhead processing time

per Gridlet (Gridlet overhead processing time), and the Grid resources from the user. Then, it will initialize

the GridSim entities, and parameters. The system then creates the Grid resources as specified by the user for

processing the Gridlets. Details of the Grid resources are obtained from a file containing a list of resources

with their characteristics. Total PEs (processing elements), and MIPS of each PE are created based on the

details found in the file, and therefore, each resource is built with different MIPS. Resource creation followed

by the construction of ‘Test’ class object, where ‘Test’ is the name of the program. Here, the Grid user, and

the Gridlets are created for the simulation. The Gridlets are created based on user specified parameters (total

number of Gridlets, average MI of each Gridlet, and the deviation percentage of the MI). Then, the system

starts the GridSim simulation. It first gathers the characteristics of the available Grid resources created in the

resource creation section in the system. Then, it multiplies the MIPS of each resource with the granularity

time. Each resulting value indicates the total MI that a particular resource can process in the given granularity

time. Then, the scheduler selects a resource (one by one), and schedules the Gridlets. The scheduler groups

the Gridlets according to the calculated MI (processing capabilities) of a selected resource. All the Gridlets

created in the program are grouped into a number of groups, and each group is assigned to a particular grid

resource. Then, the system will submit all the Gridlet groups to their corresponding Grid resources. The Grid

resources process the received Gridlet groups, and send back the processed Gridlet groups to the Grid user.

 4

The system then gathers the processed Gridlets from simulated network through its I/O port or queue. Finally,

the system will display the processed Gridlet groups, and some of their characteristics to the user.

START

Get number of Gridlets, average MI, MI deviation percentage
granularity time, resource details & overhead time from the

user

Initialize GridSim package

Create ‘Test’ object & create a Grid user

Create Gridlets

Create Grid resources

Start GridSim simulation

Get Grid resources’ characteristics

Schedule the Gridlets & assign them to the Grid resources

Send the Gridlets to the Grid resources

Grid resources process the Gridlets

Grid resources send back the processed Gridlets to Grid user

Get the received Gridlets from I/O queue

Print the simulation output to the user

END

Figure 1.0 Process Flow of GridSim Simulation

 5

Figure 2.0 depicts the architecture of the Gridlet scheduler that will be used in the proposed system. The

scheduler receives the characteristics of Grid resources from the resource file specified by the user. An

alternative way is to collect the resource characteristics from the Grid Information Service entity that keeps

track of the resources available in the Grid environment. The resource MIPS, granularity time, and Gridlet

length are used for the Gridlet grouping task. Grouping task results in a list of Gridlet groups, and a list of

resource IDs (IDs of resources assigned to each Gridlet group). The scheduler then sends the Gridlet groups to

their assigned resources.

 Gridlet Scheduler

 User Input

Grid resources’ characteristics Gridlets

Total number of Gridlets

Average MI rate of Gridlets

MI deviation percentage Grid Resource

Granularity time Grid Resource File

Grid resource 0

Grid resource 1

Grid resource N

……

Figure 2.0 Architecture of Gridlet Scheduler

Gridlet MI Resource MIPS

Grid resource 0

Gridlet group 0

Grid resource 1

Gridlet group 1

Grid resource 2

Gridlet group 2

Gridlet groups Resource IDs

Grid resource 0

Gridlet group 3

Granularity Time

 6

Figure 3.0 shows an example of Gridlet grouping task. In this example 100 Gridlets with small lengths (MI)

are grouped into six groups according to the available resources, and the granularity time.

Gridlet 0 / 20

Gridlet 1 / 21

Gridlet 2 / 21

Gridlet 3 / 23

Gridlet 4 / 22

Gridlet 5 / 19

Gridlet 6 / 18

Gridlet 7 / 19

Gridlet 8 / 25

Gridlet 9 / 28

……….

Gridlet 50 / 29

Gridlet 51 / 30

Gridlet 52 / 29

Gridlet 97 / 22

Gridlet 98 / 30

Gridlet 99 / 24

……….

Gridlet 96 / 21

Granularity Time: 3 sec

Resource 11 / 33 Total supported MI: 99

Resource 15 / 35 Total supported MI: 105

Resource 11 / 70 Total supported MI: 210

GroupedGridlet 0 / 107

GroupedGridlet 1 / 109

GroupedGridlet 2 / 200

GroupedGridlet 3 / 88

GroupedGridlet 4 / 100

GroupedGridlet 5 / 97

Figure 3.0 Gridlet Grouping Task

Gridlet ID / Length GroupedGridlet ID /
Length

Resource ID/MIPS

 7

6.0 IMPLEMENTATION
6.1 Graphical User Interface

Figure 4.0 GUI for the GridSim Simulation System

Graphical User Interface (GUI) is used for better usability of the system. In order to facilitate software (class)

reuse, the GUI is solely implemented in a separate class. Another class is used for reading data (resource

information) from user specified resource file. This results in three-class design – first class is for GUI (GUI

class or main class), second class is for Gridsim simulation (Gridsim class or support class), and the third

class is for resource file. The purposes of the classes are exclusively demarcated as below:

 8

In this section, the aspects of GUI Class are discussed.

GUI Components (For Input and Output)

The components used in GUI class are from the Java swing package. The types of components used are

JFrame, JButton, JTextField, JTextArea, JComboBox, JCheckBox, JMenu and JLabel. The inputs for number

of Gridlets, their average size, and granularity time are implemented by JTextFields. The percentage of

deviation of the Gridlet length can be selected in a JComboBox. JCheckBoxes are used for selecting whether

Gridlet grouping should be done or not, and also for selecting the resources. The overall output is displayed in

JTextArea. Additionally, two JButtons are incorporated - one for starting Gridsim, and another one for exit.

There is also a menu (JMenu) in which the user can set the file name for reading the list of resources.

Listener (Event Handling)

For event handling, it is decided to handle only with an action listener. The action listener listens only to the

clicking of the JButtons. Therefore, in order for the user to invoke a function of the program, a button needs

to be clicked. Any other GUI actions are going to be ignored.

Validation

The validation of the user inputs are done by using regular expressions. In order for the inputs to be valid, first

of all, they all must be non-empty. Secondly, except the input for the average Gridlet length, all others must

be a combination of digits only. As for the one for the average Gridlet length any decimal number format is

valid. If the inputs conform to these rules, the validation is passed.

Main Method

In command-line single-class design, the initial preparation for Grid simulation (such as initiation) is put in

main method. In two-class GUI design, this preparatory part is separated from the Gridsim class, and

integrated into actionPerformed method of the GUI class. A few other absolutely essential initialization codes

Figure 5.0 Classes Involved in the System

User

• get input
• validate
• pass arguments • Simulate

• display output

GUI Class

GridSim Class

• Resource Data

Resource Class

 9

are also inserted in the GUI class. Otherwise, the purpose of the GUI class is merely for input, validation and

output.

Figure 6.0 depicts the input, and output of the system. The user must insert the number of Gridlets, average

Gridlet length (MI), MI deviation percentage, granularity time, Gridlet overhead processing time, and the

resource file to the system through the GUI. The user can choose to perform the simulation with or without

using the Gridlet grouping method. This facilitates the user to compare the output between a conventional

simulation, and simulation with Gridlet grouping method.

Figure 6.0 Input, output of the system

With or
without

grouping

Gridlet
processing
simulation

Output

Processed Gridlets
within the

granularity time

Total simulation
time

Total processing
cost

Details of each
processed Gridlet

Input

Number of Gridlets

Average MI

MI deviation percentage

Granularity time

Processing overhead time

Resource data

 10

6.2 Grid Resource Creation

Figure 7.0 shows how the Grid resources are created from a resource file. The resource file contains a list of

available resources on the Grid. Each resource has their characteristics specified in the file, namely, resource

name, architecture, operating system, number of machines, number of PEs, MIPS of each PE, time zone,

processing cost, communication speed, random seed, and resource load during peak hour, off-peak hour, and

holiday. The user can choose a resource file, and then select the resources that he wants to use to process his

Gridlets. Once the user selects the resources, the system will create those resources to be used for the Gridlet

processing task.

Figure 8.0 displays the code listing for creating the Grid resources.

Resource File
1. Resource 1, ID, Name, Machine, PE, MIPS, …
2. Resource 2, ID, Name, Machine, PE, MIPS, …
3. Resource 3, ID, Name, Machine, PE, MIPS, …
4. Resource 4, ID, Name, Machine, PE, MIPS, …
.
.
.
N. Resource N, ID, Name, Machine, PE, MIPS, …

Grid Resources

Figure 7.0 Creating Grid Resource

 11

/**
 The createGridResource method that creates Grid resources
 ***/
 private GridResource createGridResource(int index)
 {
 // get resource details from resource file
 String name = resourceFile.getNameOfResource(index); // resource name
 String architecture = resourceFile.getArchitectureOfResource(index); // system architecture
 String OS = resourceFile.getOSOfResource(index); // operating system
 int machines = resourceFile.getMachinesOfResource(index); // number of machines in the resource
 int PE = resourceFile.getPEOfResource(index); // number of PEs in the resource
 int MIPSofPE = resourceFile.getMIPSofPEOfResource(index); // MIPS of each PE
 long seed = resourceFile.getSeedOfResource(index);
 double timezone = resourceFile.getTimezoneOfResource(index); // time zone this resource located
 double cost = resourceFile.getCostOfResource(index); // the cost of using this resource
 double baudRate = resourceFile.getBaudRateOfResource(index); // communication speed
 double peakLoad = resourceFile.getPeakLoadOfResource(index); // the resource load during peak hour
 double offPeakLoad = resourceFile.getOffPeakLoadOfResource(index); // the resource load during off-peak hour
 double holidayLoad = resourceFile.getHolidayLoadOfResource(index); // the resource load during holiday

 MachineList mList = new MachineList(); // create machine list to store the PE lists
 PEList peList;
 for(int machineNum = 0; machineNum < machines; machineNum++)
 {
 peList = new PEList(); // create first PE list to store the PEs

 for(int PEnum = 0; PEnum < PE; PEnum++)
 {
 peList.add(new PE(PEnum, MIPSofPE)); // add create PEs
 }
 mList.add(new Machine(machineNum, peList)); // add PE list into machine list
 }

 // create a ResourceCharacteristics object to store the properties of a Grid resource: architecture, OS, list of
 // Machines, allocation policy: time- or space-shared, time zone and its price (G$/PE time unit).
 ResourceCharacteristics resConfig = new ResourceCharacteristics(architecture, OS, mList,

ResourceCharacteristics.TIME_SHARED,timezone, cost);

 // incorporates weekends so the grid resource is on 7 days a week
 LinkedList Weekends = new LinkedList();
 Weekends.add(new Integer(Calendar.SATURDAY));
 Weekends.add(new Integer(Calendar.SUNDAY));

 // incorporates holidays, but no holidays are set in this Test program
 LinkedList Holidays = new LinkedList();
 GridResource gridRes = null;

 try
 {
 gridRes = new GridResource(name, baudRate, seed, resConfig, peakLoad, offPeakLoad, holidayLoad, Weekends,Holidays)
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 return gridRes;
 }

Figure 8.0 Code Listing for Grid Resource Creation

 12

6.3 Gridlet Creation

Figure 9.0 shows how the Gridlets are created in the system. User inserts three parameters that affect the

Gridlet creation task, namely, the number of Gridlets, the everage MI of each Gridlet, and the MI deviation

percentage. The MI deviation percentage refers to the deviation percentage of average MI of each Gridlet. For

example, if the average MI is 20, and deviation percentage is 30%, than the Gridlet length falls between 14

MIPS to 26 MIPS. Other than that, the file size, and output size of each Gridlet varies within the range of 500

with +/- 10%. Each resulting Gridlet will be assigned to a Grid user, and then added into a Gridlet list.

Figure 10.0 displays the code listing for creating the Gridlets.

Number of Gridlets Average MI MI deviation percentage

Gridlets

Figure 9.0 Creating Gridlets

Gridlet Attributes
Gridlet ID
MI
File size
Output size

Grid User

Gridlet_List

 13

/***
 This createGridlet method creates Gridlets based on user specified MIPS
***/
private GridletList createGridlet(int userID)
{
 // creates a list to store Gridlets
 GridletList list = new GridletList();

 // variable declarations
 int__id = 0;
 double _length;
 long __file_size;
 long __output_size;
 double _rateDP;

 // create Gridlets by using the seed for the random function
 long__seed__= 11L*13*17*19*23+1;
 Random _random _= new Random(seed);

 // convert the deviate percentage from % form to point form
 rateDP = (double)deviatePercentage/100.0;

 for (int i = 0; i < numOfGridlets; i++)
 {
 // Gridlet length that varies within the range of user specified MIPS rating +/- deviation %
 length = (double) GridSimRandom.real(averageMI,rateDP,rateDP,random.nextDouble());
 // Gridlet file size that varies within the range 500 +/- 10%
 file_size = (long) GridSimRandom.real(500,0.1,0.1,random.nextDouble());
 // Gridlet output size that varies within the range 500 +/- 10%
 output_size = (long) GridSimRandom.real(500,0.1,0.1,random.nextDouble());
 // creates a new Gridlet object
 Gridlet gridlet = new Gridlet(id + i, length, file_size, output_size);
 // set user ID for the Gridlets
 gridlet.setUserID(userID);
 // add the Gridlet into a list
 list.add(gridlet);
 }
 return list;
 }

Figure 10.0 Code Listing for Gridlet Creation

 14

6.4 Gridlet Grouping and Scheduling

Y

N

N

N
N

N

N

Y

Y

Y

Y

Y

Figure 11.0 Process Flow of Gridlet Scheduling

Get Gridlet list_1, G[], i=0

Assign User ID to Group_Gridlet

Create new Group_Gridlet

Get length of G[i]: L

Get MIPS of R[n]: M

Get resource list, R[], n=0

L>=M?

Add Group_Gridlet to gridlet list_2

i++
Get length of G[i]: Li

Total length, L=L+Li

Total length, L=L

L<=M?

L-M>50?

Total length, L=L-Li

Total resource < n?
Total Gridlets < i?

Add resource ID of R[n] to resource ID
list

n++, i++

Total resource >= n?
Total Gridlets < i?

Send all the Group_Gridlets to assigned
resources

Receive all the processed
Group_Gridlets from resources

END

START

M=M*Granularity_Time

i++

Total Gridlets < i?

 Assign Group_Gridlet to R[n]

 15

/**
 The core method that handles communications among GridSim entities
***/
public void body()
{
 int i;
 int resourceID[] = new int[this.totalResource_];
 double resourceCost[] = new double[this.totalResource_];
 String resourceName[] = new String[this.totalResource_];
 double resourceMIPS[] = new double[this.totalResource_];

 LinkedList resList;
 ResourceCharacteristics resChar;

 // Waiting to get list of Grid resources
 while (true)
 {
 // pause for a while to wait for the Grid resources to finish registering to GIS
 super.gridSimHold(1.0); // hold by 1 second

 esList = getGridResourceList();
 if (resList.size() == this.totalResource_)
 break;
 else
 output += "\nWaiting to get list of resources \n";
 }

 output += "\n================ Receiving Characteristics of the Selected Grid Resources ================\n\n";
 // a loop to get all the available Grid resources
 for (i=0; i < this.totalResource_; i++)
 {

// resource list contains list of resource IDs
 resourceID[i] = ((Integer)resList.get(i)).intValue();
 // requests to resource entity to send its characteristics
 send(resourceID[i], GridSimTags.SCHEDULE_NOW,GridSimTags.RESOURCE_CHARACTERISTICS, this.ID_);
 // waiting to get a resource characteristics
 resChar = (ResourceCharacteristics) receiveEventObject();
 resourceName[i] = resChar.getResourceName();
 resourceCost[i] = resChar.getCostPerSec();
 resourceMIPS[i] = resChar.getMIPSRating();
 output += "Resource " + resourceName[i] + ", with id = " + resourceID[i]
 + ", cost = " + resourceCost[i] + ", MIPS = " + resourceMIPS[i] + "\n";
 // record this event into "stat.txt" file
 recordStatistics("\"Received ResourceCharacteristics from " + resourceName[i] + ", with id = " + resourceID[i]
 + ", cost = " + resourceCost[i] + ", MIPS = " + resourceMIPS[i] +"\"", "");
 }

 output += "\n=============================START SIMULATION================================\n";

 // variable declarations
 String info;
 int m=0, n=0, p=0, q=0;
 int id=0;
 int checkPoint=0, processedGridlet=0;
 double Time1, Time2, Total_Time;
 double total_length, MIPS_Rate_Machine;
 Gridlet gridlet, groupedGridlet;
 GridletList list2 = new GridletList();
 LinkedList TargetResource = new LinkedList();
 LinkedList FGridlet = new LinkedList();
 LinkedList LGridlet = new LinkedList();

 // start timer
 Time1 = clock();

 16

 // Gridlets are grouped together according to resource MIPS rating and sent to that resource
 if(grouping == true)
 {

// a loop to get a Grid resouce's MIPS rating and group the Gridlets according to that rating
for(i = 0; i < this.list_.size();) // loop to get the Gridlet

 {
// check point to detect whether all the gridlets are processed within the given granularity time
checkPoint++;
if(checkPoint == 2)

processedGridlet = i-1;

for(n=0; n < (this.totalResource_) && (i < this.list_.size()); n++, i++) // loop to get the resource

 {
 p = i;
 total_length = 0.0;
 MIPS_Rate_Machine = 0.0;
 id = n;

 // get MIPS of a resource and multiply it with the granularity time
 MIPS_Rate_Machine = resourceMIPS[id]*granTime;

 output += "\nThe supported MI for granularity time " + granTime + " second(s), by Resource "
 + resourceName[id] + " (ID:" + resourceID[id] + ")" + " is " + MIPS_Rate_Machine;

 // get one Gridlet
 gridlet = (Gridlet) this.list_.get(i);

 // if the resouce MIPS is less than Gridlet's MI, then assign the Gridlet to that resource
 if(MIPS_Rate_Machine <= gridlet.getGridletLength())
 {
 // assign the indidual Gridlet to the resource without any grouping process
 total_length = gridlet.getGridletLength();
 }

 // else, group the Gridlets based on resource MIPS
 else
 {
 while((total_length <= MIPS_Rate_Machine) && (i< this.list_.size()))
 {
 gridlet = (Gridlet) this.list_.get(i);
 total_length = total_length + gridlet.getGridletLength();
 i++;
 }

 i=i-1;

 // if the difference between total MI (total length) and resource MIPS is more than 50MI,
 // then deduct the last Gridlet from the group
 if((total_length - MIPS_Rate_Machine) > 50)
 {
 gridlet = (Gridlet) this.list_.get(i);
 output += "Deducting the last Gridlet's length from the total length \n";
 total_length = total_length - gridlet.getGridletLength();
 i = i-1;
 }
 }

 // create the GroupGridlets
 groupedGridlet = new Gridlet(m,total_length,1000,1000);
 // set Gridlet user for the GroupGridlets
 groupedGridlet.setUserID(this.ID_.intValue());

 17

 // add the GroupGridlets into a list
 list2.add(groupedGridlet);
 // set the resource ID for each GroupGridlets
 TargetResource.add(new Integer(id));

q =i-p+1;
 output +="\nGroupGridlet " + m + "; composed of " + q + " Gridlets, (Gridlet " + p + " to Gridlet " + i

+ "); Total Length: " + total_length + "; Resource ID: " + resourceID[id] + "\n";

 FGridlet.add(new Integer(p));
 LGridlet.add(new Integer(i));
 // record this event into "stat.txt" file
 recordStatistics("\"GroupGridlet " + m + ", Total Gridlet (" + p + " to " + i + "): " + q + ",

Total Length: " + total_length + ", Resource ID: " + resourceID[id] + "\"", "");
 m++;
 }
 }

 // send GroupGridlets to the Grid resources
 output += "\n=================== Sending Gridlets to Grid Resources ======================\n";
 i=0;
 while(i < list2.size())
 {
 // get the assigned resource ID
 id = ((Integer)TargetResource.get(i)).intValue();
 // get the GroupGridlet
 gridlet = (Gridlet) list2.get(i);
 info = "groupedGridlet " + gridlet.getGridletID();
 output +="Sending " + info + " to Resource " + resourceName[id] + ", ID: " + resourceID[id] + "\n";
 // send one GroupGridlet to the assigned Grid resource
 gridletSubmit(gridlet, resourceID[id], 0.0, false);
 // record this event into "stat.txt" file
 recordStatistics("\"Submit " + info + " to " + resourceName[id] + "\"", "");
 i++;
 }

 // receive the GroupGridlets from the I/O queue
 output += "\n======================== Receiving Processed Gridlets ========================\n";
 i=0;
 while(i < list2.size())
 {
 // waiting to receive a Gridlet back from resource entity
 gridlet = this.gridletReceive();
 // when a Grid resource finished processing the Gridlet, set the resource ID and its cost to perform the job
 gridlet.setResourceParameter(gridlet.getResourceID() , gridlet.getCostPerSec());
 info = "GroupedGridlet " + gridlet.getGridletID();
 output +="Receiving " + info + " from " + gridlet.getResourceName(gridlet.getResourceID())

+ ", ID: " + gridlet.getResourceID() + "\n";
 // recod this event into "stat.txt" file for statistical purposes
 recordStatistics("\"Received " + info + " from " + gridlet.getResourceName(gridlet.getResourceID())
 + "\"", gridlet.getProcessingCost());
 // store the received Gridlet into a new GridletList object
 this.receiveList_.add(gridlet);
 i++;
 }
 output += "\n==\n";

 // total overhead time
 overhead = overhead*list2.size();
 } // End of If

Figure 12.0 Code Listing for Gridlet Scheduling

 18

Figure 11.0 shows the process flow involved in scheduling (grouping) the Gridlets, and sending the Gridlets

to the appropriate resources. Figure 12.0 displays the code listing for Gridlet scheduling task. The following

scheduling algorithm describes in detail the steps involved in the scheduling process as depicted by Figure

9.0, and 10.0.

Gridlet Scheduling Algorithm

1. The scheduler receives the Gridlet_List created in the system.

2. The scheduler receives the Resources_List (resources selected by the user from resource file).

3. Set the Total_Length of Gridlet to zero.

4. Get MIPS of first resource.

5. Multiply the Resource_MIPS with Granularity_Time specified by the user.

6. Get length (MI) of the first Gridlet.

7. If Resource_MIPS is less than or equal to Gridlet_Length

BEGIN

- Set Total_Length to the current Gridlet_Length

- Proceed with step 9

END

8. If Resource_MIPS is more than Gridlet_Length

 BEGIN

8.1 While Total_Length is less than or equal to Resource_MIPS, and while there are

ungrouped Gridlets in the Gridlet_List

BEGIN

- Get the length of the next Gridlet

- Set Total_Length to the summation of previous Total_Length and current

Gridlet_Length

- Repeat step 8.1

END

8.2 If the difference between Resource_MIPS and Total_Length is more than 50

BEGIN

 - Deduct the length of the last Gridlet from the Total_Length

END

 END

9. Create a new Gridlet (Grouped_Gridlet) with the length equals to the Total _Length.

10. Set User ID for the Grouped_Gridlet.

11. Add the Grouped_Gridlet to a Gridlet_List_2 (a new Gridlet list).

12. Add the ID of the resource (whose MIPS is being used in the current comparison) into a linked list.

 19

13. Set the Total_Length of Gridlet to zero.

14. Get the MIPS of next resource. If all the resources from the resource list are assigned with

Grouped_Gridlets, continue the scheduling process by getting the MIPS of the first resource in the

list.

15. Multiply the Resource_MIPS with Granularity_Time specified by the user.

16. Get the length of next Gridlet.

17. Repeat step 7.

18. Perform the looping until all the Gridlets in the Gridlet_List are grouped into Grouped_Gridlet.

19. After all the Gridlets are scheduled into groups, and each Gouped_Gridlets are assigned with a

particular Grid resource, send all the Gouped_Gridlets to their corresponding resources.

20. After all the Gouped_Gridlets are processed by the Gris resources, and sent back to the I/O queue of

the scheduler/system, collect the Gouped_Gridlets from the I/O queue.

21. Set the resource ID, and job execution cost of each Gouped_Gridlets.

22. Store the collected Gouped_Gridlets into a new Gridlet_List_3.

23. Get the total simulation time.

24. Display the details of the processed Gouped_Gridlets to the user through GUI.

6.5 Simulation Time

The total simulation time is calculated in seconds based on the overhead time for processing Gridlets at the

Grid resources, and the time taken to perform the scheduling (grouping) task, sending Gridlets to the

resources, and receiving back the processed Gridlets. The overhead processing time is taken from the user.

This is shown in Figure 11.0.

 20

Figure 14.0 displays the code listing for calculating total simulation time.

+

+

+

Overhead processing time
for Grouped_Gridlet 0

Overhead processing time
for Grouped_Gridlet 1

Overhead processing time
for Grouped_Gridlet 2

Overhead processing time
for Grouped_Gridlet N

Total overhead processing
time

Gridlet Grouping Time

Time taken to submit all
the Gridlets to resources

Time taken to receive all
the processed Gridlets

Total simulation time

Figure 13.0 Calculating Total Simulation Time

// start timer
Time1 = clock();

…………………………. SIMULATION……………………..

// total overhead time
overhead = overhead*list2.size();

………………

Time2 = clock(); // get the finish time
Total_Time = Time2-Time1; // total simulation time
output += "\nTotal overhead time: " + overhead + " seconds";
output += "\nTotal Simulation Time: " + Total_Time + " seconds";
Total_Time = Total_Time + (double)overhead;
output += "\nTotal Time: " + Total_Time + " seconds\n";

Figure 14.0 Code Listing for Calculating Simulation Time

 21

7.0 EXPERIMENTS AND DISCUSSIONS
The system or the scheduling program is tested using different inputs (total number of Gridlet, average MI of

Gridlets, MI deviation percentage, granularity time, resource MIPS, and Gridlet overhead processing time),

and the results are given in the following sections. The tests are done using nine resources of different MIPS,

namely, R1: 20 MIPS, R2: 24 MIPS, R3: 39 MIPS, R4: 120 MIPS, R5: 60 MIPS, R6: 72 MIPS, R7: 66 MIPS,

R8: 40 MIPS, and R9: 50 MIPS.

7.1 Experiment 1.0: Gridlets with Various Lengths (MI)

In this section, the scheduler is tested using 100 Gridlets of different average MI. The resulting Gridlet

groups, total simulation time, and processing cost are given in the table.

A_MI Group SimTime Cost
10 4 54.25 16935.6
20 8 77.57 36183.7
30 11 100.06 59739.2
40 15 128.26 94418.5
50 18 152.04 133620.0
60 21 179.00 176889.9
70 24 202.01 238973.7
80 28 233.11 285047.6
90 33 267.38 364229.7
100 37 298.32 433678.0

Gridlets:100
D_%:10
G_Time:10
Resource: R1,R2,R3
R_MIPS:20,24,39
OH_Time:4

Table 1.0 100 Gridlets with Different Gridlet Lengths

A_MI : Average MI rating of Gridlet or Gridlet length in MI
G_Time : Granularity Time in seconds
R_MIPS : Resource processing capabilities in MIPS
D_% : MI Deviation Percentage
OH_Time : Overhead Processing Time of Gridlet in seconds
SimTime : Simulation Time in seconds
Group : Number of Gridlet groups, resulted from Gridlet grouping process
Cost : Processing cost of the Gridlets

 Processing Cost = actual CPU Time * cost per sec
G_Time : Granularity time in seconds

 22

Graph1: Gridlet Processing Cost based on
Gridlet Length (MI)

0
100000
200000
300000
400000
500000

10 20 30 40 50 60 70 80 90 100

Gridlet Length (MI)

C
os

t
Cost Line

(i)

Graph2: Simulation Time based on Gridlet
Length (MI)

0

100

200

300

400

10 20 30 40 50 60 70 80 90 100

Gridlet Length (MI)

T
im

e
(s

ec
)

Time Line

(ii)

Figure 15.0 Gridlet Processing Cost (i), and Simulation Time (ii) based on Different Gridlet Lengths for

100 Gridlets

 23

The scheduler is tested using 1000 Gridlets of different average MI. The resulting Gridlet groups, total

simulation time, and processing cost are given in the table.

A_MI Group SimTime Cost
50 6 1510.70 813802.6
100 12 1576.36 1711522.0
150 17 1634.27 2863629.0
200 23 1702.48 4464123.0
250 28 1761.43 6763464.0
300 34 1839.17 8999351.0

Gridlets:1000
D_%:30
G_Time:180
Resource: R1,R2,R3,R4,R5
R_MIPS:20,24,39,120,60
OH_Time:10

Table 2.0 1000 Gridlets with Different Gridlet Lengths

Graph3: Gridlet Processing Cost based on
Gridlet Length (MI)

0
2000000
4000000
6000000
8000000

10000000

50 100 150 200 250 300

Gridlet Length (MI)

C
os

t

Cost Line

(i)

Graph4: Simulation Time based on Gridlet
Length (MI)

0

1000

2000

50 100 150 200 250 300

Gridlet Length (MI)

T
im

e
(s

ec
)

Time Line

(ii)

Figure 16.0 Gridlet Processing Cost (i), and Simulation Time (ii) based on Different Gridlet Lengths for

1000 Gridlets

 24

The total simulation time, and cost increase as the average MI of Gridlets increases. This is because, once the

Gridlet length increases, the processing load of the resources will increase as well. The total number of

Gridlet groups rises as the Gridlet length increases since Gridlet grouping depends on the supported MIPS of

each resource.

7.2 Experiment 2.0: Simulation With and Without Gridlet Grouping

In this section, the scheduler is tested using different number of Gridlets, and granularity time with, and

without going through the Gridlet grouping task. The average Gridlet length is 20 MI; MI deviation

percentage is 10%; Gridlet overhead processing time is 5 seconds; and the Grid resources are R1, R2, R3, and

R4 with a total 203 MIPS.

Granularity time: 5 seconds

 With Grouping Without Grouping
Gridlets Group SimTime Cost SimTime Cost

100 8 93.17 31927.0 603.33 36115.7
200 16 147.23 63179.4 1203.54 70860.3
300 24 202.16 95296.8 1803.38 106955.3
400 32 260.00 127630.1 2403.28 142567.6
500 40 315.08 159297.2 3002.96 177143.2
600 47 366.56 190829.1 3603.75 213919.0
700 55 421.92 222346.8 4204.20 247909.6
800 63 478.50 253651.6 4803.90 282601.2
900 70 530.01 284828.9 5404.30 316905.7

1000 77 579.90 316730.2 6004.53 352676.6

A_MI:20 D_%:10% G_Time:5 R_MIPS: 20,24,39,120 OH_Time:5

Graph 1

0
1000
2000
3000
4000
5000
6000
7000

10
0

30
0

50
0

70
0

90
0

Gridlets

S
im

u
la

tio
n

 T
im

e
(s

ec
)

With Grouping Without Grouping

Table 3.0 Simulation With and Without Grouping for Granularity Time of 5 Seconds

Granularity time: 10 seconds

 With Grouping Without Grouping
Gridlets Group SimTime Cost SimTime Cost

100 4 105.02 31315.3 604.28 36630.0
200 8 130.28 62842.6 1205.12 73302.2
300 12 158.30 95792.8 1804.34 109680.0
400 16 186.14 132129.3 2405.10 145763.1
500 20 214.30 169957.4 3004.16 181779.3
600 24 243.15 209876.2 3603.35 217804.4
700 28 270.18 254819.2 4203.81 252717.9
800 32 299.34 301143.4 4803.50 288519.3
900 36 334.90 351894.4 5405.06 324481.7

1000 40 366.32 408494.5 6005.29 359661.9
A_MI:20 D_%:10% G_Time:10 R_MIPS: 20,24,39,120 OH_Time:5

Graph 2

0
1000
2000
3000
4000
5000
6000
7000

10
0

30
0

50
0

70
0

90
0

Gridlets

S
im

u
la

ti
o

n
 T

im
e

(s
ec

)

With Grouping Without Grouping

Table 4.0 Simulation With and Without Grouping for Granularity Time of 10 Seconds

 25

Granularity time: 15 seconds

 With Grouping Without Grouping
Gridlets Group SimTime Cost SimTime Cost

100 4 78.35 33569.3 604.64 39354.2
200 7 165.62 62323.5 1205.71 73848.4
300 8 170.62 94509.7 1804.63 109551.8
400 12 198.40 131966.1 2404.43 146207.8
500 15 222.22 172245.4 3004.10 178082.2
600 16 227.22 209989.5 3603.29 215397.0
700 20 254.84 267517.7 4203.74 251952.5
800 22 272.42 310808.1 4804.38 282676.3
900 24 282.42 360748.8 5404.78 321291.9

1000 28 310.56 440387.4 6005.01 360374.7

A_MI:20 D_%:10% G_Time:15 R_MIPS: 20,24,39,120 OH_Time:5

Graph 3

0
1000
2000
3000
4000
5000
6000
7000

10
0

30
0

50
0

70
0

90
0

Gridlets

S
im

u
la

ti
o

n
 T

im
e

(s
ec

)

With Grouping Without Grouping

Table 5.0 Simulation With and Without Grouping for Granularity Time of 15 Seconds

Granularity time: 20 seconds

 With Grouping Without Grouping
Gridlets Group SimTime Cost SimTime Cost

100 4 88.50 34822.8 604.65 41474.5
200 4 182.19 62583.7 1204.85 71740.8
300 8 210.33 97770.5 1804.34 112817.7
400 8 210.33 125571.8 2404.14 143705.1
500 12 239.40 168498.3 3003.20 182374.9
600 12 239.40 196577.0 3602.42 213197.9
700 15 261.75 261479.4 4204.01 251471.5
800 16 266.75 289732.3 4803.71 283471.1
900 19 289.68 360326.9 5404.11 321058.1

1000 20 294.68 388698.3 6004.34 353549.8
A_MI:20 D_%:10% G_Time:20 R_MIPS: 20,24,39,120 OH_Time:5

Graph 4

0
1000
2000
3000
4000
5000
6000
7000

10
0

30
0

50
0

70
0

90
0

Gridlets

S
im

u
la

ti
o

n
 T

im
e

(s
ec

)

With Grouping Without Grouping

Table 6.0 Simulation With and Without Grouping for Granularity Time of 20 Seconds

Granularity time: 25 seconds

 With Grouping Without Grouping
Gridlets Group SimTime Cost SimTime Cost

100 3 89.76 35373.9 604.66 44155.4
200 4 155.30 64419.7 1204.86 77652.9
300 6 241.16 91347.1 1807.11 113430.7
400 8 251.16 129165.2 2406.91 154999.8
500 8 251.16 156884.3 3005.97 185216.5
600 11 274.17 201115.3 3605.16 222575.0
700 12 279.17 231948.5 4205.61 258218.9
800 14 297.18 272476.9 4805.31 288741.9
900 16 307.18 340266.8 5405.71 333139.4

1000 16 307.18 368136.9 6005.94 363618.8
A_MI:20 D_%:10% G_Time:25 R_MIPS: 20,24,39,120 OH_Time:5

Graph 5

0
1000
2000
3000
4000
5000
6000
7000

10
0

30
0

50
0

70
0

90
0

Gridlets

S
im

u
la

ti
on

 T
im

e
(s

ec
)

With Grouping Without Grouping

Table 7.0 Simulation With and Without Grouping for Granularity Time of 25 Seconds

 26

The total simulation time, and cost increase gradually as the number of Gridlet increases if the simulation is

done without Gridlet grouping method. Simulation with Gridlet grouping method results in reduced total

simulation time. The total processing costs for the above experiments do not differ much between the two

types of simulation.

In simulation with Gridlet grouping method, the total transmitting time of Gridlets is decreased since a large

number of Gridlets are grouped into a few Gridlets, and sent to the Grid resources. In addition, the overhead

processing time of each Gridlet is cut down since only a small number Gridlets (grouped Gridlets) are

processed at the Grid resources. On the other hand, sending one Gridlet at one time (simulation without

Gridlet grouping method) takes into account the transmitting effort, and overhead processing time of each,

small Gridlets. The total processing cost depends on the MI, and total CPU time (per second) used for

processing the Gridlets.

Graph 6: Simulation Time based on Different
Granularity Time (with Grouping)

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900 1000

Gridlets

To
ta

l S
im

u
la

tio
n
 T

im
e

(s
ec

)

5
10
15
20
25

Figure 17.0 Simulation Time based on Different Granularity Time for Simulation With Grouping

Graph 6 shows the simulation time for different granularity time in simulation with Gridlet grouping. Higher

the granularity time, lesser the total simulation time. This is because, the given granularity time is multiplied

with the resource MIPS before the simulation starts. The resulting MIPS from multiplication depicts the total

MI that the resource can process within the given granularity time. Therefore, if the granularity time is high,

each resource can support more MI within that particular granularity time.

 27

7.3 Experiment 3.0: Processing Gridlets within the Granularity Time

In this section, the scheduler is tested using different number of Gridlets (with Gridlet grouping method),

resources, and granularity time to find out the total number of grouped Gridlets that can be processed

successfully within a particular granularity time. The average Gridlet length is 40 MI; MI deviation

percentage is 20%; and the Gridlet overhead processing time is 10 seconds.

Total Number of Gridlets is 100

 Granularity Time (sec)
Resource R_MIPS 10 20 30 40 50 60
R1 20 4 10 15 20 25 30
R1-R2 20,24 10 23 34 45 56 67
R1-R3 20,24,39 21 43 64 84 100 100
R1-R4 20,24,39,120 52 100 100 100
R1-R5 20,24,39,120, 60 68

R1-R6
20,24,39,120,60,
72 86

R1-R7
20,24,39,120,60,
72,66 100

Gridlet:100 OH_Time:10 A_MI:40 D_%:20%

Graph 1

0

20

40

60

80

100

120

R1 R1-R2 R1-R3 R1-R4 R1-R5 R1-R6 R1-R7

Resources

G
ri

d
le

ts
 P

ro
ce

ss
ed

 w
it

h
in

G

ra
n

u
la

ri
ty

 T
im

e 10

20

30

40

50

60

Table 8.0 Total number of Processed Gridlets (out of 100 Gridlets) for Different Granularity Time, and

Resources

Total Number of Gridlets is 200

 Granularity Time (sec)
Resource R_MIPS 10 20 30 40 50 60
R1 20 4 10 15 20 25 30
R1-R2 20,24 10 23 34 45 56 67
R1-R3 20,24,39 21 43 64 84 105 126
R1-R4 20,24,39,120 52 103 153 200 200 200
R1-R5 20,24,39,120, 60 68 133 200

R1-R6
20,24,39,120,60,
72 86 170

R1-R7
20,24,39,120,60,
72,66 103 200

R1-R8
20,24,39,120,60,
72,66,40 114

R1-R9
20,24,39,120,60,
72,66,40,50 127

Gridlet:200 OH_Time:10 A_MI:40 D_%:20%

Graph 2

0

50

100

150

200

250

R1 R1-
R2

R1-
R3

R1-
R4

R1-
R5

R1-
R6

R1-
R7

R1-
R8

R1-
R9

Resources

G
ri

d
le

ts
 P

ro
ce

ss
ed

 w
it

h
in

G

ra
n

u
la

ri
ty

 T
im

e

10

20

30

40

50

60

Table 9.0 Total number of Processed Gridlets (out of 200 Gridlets) for Different Granularity Time, and

Resources

 28

Total Number of Gridlets is 300

 Granularity Time (sec)
Resource R_MIPS 10 20 30 40 50 60
R1 20 4 10 15 20 25 30
R1-R2 20,24 10 23 34 45 56 67
R1-R3 20,24,39 21 43 64 84 105 126
R1-R4 20,24,39,120 52 103 153 206 256 300
R1-R5 20,24,39,120, 60 68 133 200 265 300

R1-R6
20,24,39,120,60,
72 86 170 253 300

R1-R7
20,24,39,120,60,
72,66 103 205 300

R1-R8
20,24,39,120,60,
72,66,40 114 225

R1-R9
20,24,39,120,60,
72,66,40,50 127 250

Gridlet:300 OH_Time:10 A_MI:40 D_%:20%

Graph 3

0

50

100
150
200
250

300

350

R1 R1-
R2

R1-
R3

R1-
R4

R1-
R5

R1-
R6

R1-
R7

R1-
R8

R1-
R9

Resources

G
ri

d
le

ts
 P

ro
ce

ss
ed

 w
it

h
in

G

ra
n

u
la

ri
ty

 T
im

e

10

20

30

40

50

60

Table 10.0 Total number of Processed Gridlets (out of 300 Gridlets) for Different Granularity Time, and

Resources

From the above tables, it is clear that when the granularity time is less, more resources are needed to process

the given Gridlets within that granularity time. If the granularity time is high, the total number of resources

used for processing the Gridlets can be reduced. As mentioned earlier, the given granularity time is multiplied

with the resource MIPS before the simulation starts, and therefore, the supported MI of each resource will

increase if the granularity time is high.

 29

 Granularity Time (sec)
Resource 10 20 30 40 50 60
R1:20 200 400 600 800 1000 1200
R2:24 240 480 720 960 1200 1440
R3:39 390 780 1170 1560 1950 2340
R4:120 1200 2400 3600 4800 6000 7200
R5:60 600 1200 1800 2400 3000 3600
R6:72 720 1440 2160 2880 3600 4320
R7:66 660 1320 1980 2640 3300 3960
R8:40 400 800 1200 1600 2000 2400
R9:50 500 1000 1500 2000 2500 3000

Table 11.0 Total Gridlet Lengths (MI) Supported by Each Resource

Graph 4: Gridlet File Length (MI) that can be
Processed within a given Granularity Time

0
1000
2000
3000
4000
5000
6000
7000
8000

R1:2
0

R2:2
4

R3:3
9

R4:1
20

R5:6
0

R6:7
2

R7:6
6

R8:4
0

R9:5
0

Resource MIPS

F
ile

 L
en

g
th

 (M
I) 10

20
30
40
50
60

Figure 18.0 Gridlet Length Supported by Each Resource at a Given Granularity Time

Table 11.0, and graph 4 show the total Gridlet Lengths (MI) that can be processed by each resource within

different granularity time. Higher the granularity time, higher the capability of each resource for processing

the Gridlets.

 30

8.0 CONCLUSION
From the experiments or tests in section 7.0, it is clear that the total simulation time highly depends number of

Gridlets, Gridlet length (MI), resource MIPS, and Gridlet overhead processing time. Higher the number of

Gridlets (or higher the Gridlet length), longer the simulation time. The simulation time can be decreased by

performing Gridlet grouping method where large number of Gridlets are grouped into a few Gridlet groups,

and sent to the Grid resources. Gridlet grouping reduces the transition time of each Gridlet to the resource,

and the overhead processing time of each Gridlet at the resource. In addition, Gridlet grouping method will

fully utilize the processing capabilities of the resources since the Gridlet grouping is done based on the

processing capability of each resource. Another way to reduce the simulation time is to increase the number

of resources used to execute the Gridlets. However, this will increase the cost of involving more processing

resources in the simulation.

Granularity time is used in the experiments to test the simulation effort in a slightly different way. The

purpose is to test how many Gridlets can be processed by a group of resources within a particular time.

Higher the granularity time, higher the number of Gridlets that can be completed within that granularity time.

However, the simulation still takes into account the Gridlet length, and resource MIPS.

In short, simulation time of a number of Gridlets can be reduced with higher granularity time, higher resource

MIPS, and Gridlet grouping method. In other words, coarse-grained Grid application will reduce the total

time taken to execute all the user jobs in a Grid environment compared to fine-grained Grid application.

 31

REFERENCE

[1] Mark Baker, Rajkumar Buyya, and Domenico Laforenza, Grids, and Grid Technologies for Wide-Area

Distributed Computing, International Journal of Software: Practice, and Experience (SPE), Volume

32, Issue 15, Pages: 1437-1466, Wiley Press, USA, December 2002.

[2] Rajkumar Buyya, and Manzur Murshed, GridSim: A Toolkit for the Modeling, and Simulation of

Distributed Resource Management, and Scheduling for Grid Computing, The Journal of

Concurrency, and Computation: Practice, and Experience (CCPE), Volume 14, Issue 13-15, Pages:

1175-1220, Wiley Press, USA, November - December 2002.

