Chapter 3: PARAM 9000 Operating Environment 1

3
PARAM 9000 Operating Environment

3.1 Introduction

C-DAC initiated its PARAM supercomputer and PARAS operating environment project around 1989.
C-DAC’s decision to implement its own operating system for PARAM family of supercomputers was
essential since, existing systems such as UNIX were not suitable for MPP systems. A new operating
system kernel called PARAS microkernel splits the traditional kernel into two distinct parts; that would
interact in a client-server model:

+ PARAS Microkernel
« Operating System Servers

These two components put together are popularly called as the PARAS Operating Environment. The
PARAS microkernel operates the underlying architecture and the operating system servers interacts
both with users and the microkernel through which it accesses hardware resources such as disks, I/O
devices, network connectivity, etc.

The PARAM 9000 Operating Environment seamlessly blends industry standards with parallel pro-
gramming enhancements to provide both ease-of-use and high performance. It supports the Solaris 2.x
operating system and custom built PARAS Parallel Programming Environment, with an optimized
microkernel.

The PARAM 9000 can be configured to have one of two fundamental logical personalities; first the
cluster personality and second the MPP personality. In the cluster personality all nodes of the system
are configured with the industry standard Solaris OS from SunSoft. In the alternate personality, few
nodes of the system run Solaris OS while the others are configured with PARAS microkernel and system
servers. The use of a custom microkernel provides the required flexibility to extract maximum perfor-
mance from the system.

The PARAM 9000 hardware architecture allows the nodes to be configured as compute nodes or
service nodes. The compute nodes can only execute user jobs, while the service nodes in addition
provide various services required to support the execution of user jobs. The services provided include
file services, gateway services for external connectivity, etc. The service nodes provide gateway ser-
vices (gateway nodes) to support external connectivity through LAN(Ethernet, FDDI, token ring).

3.2 PARAM 9000 as a Cluster

The system exports the Solaris 2.x operating system on all the nodes (Figure 3.1) and the PARAM
network supports a Data Link Provider Interface (DLPI) driver which implements ISO Data Link Stan-
dard Definition (ISO 8886) and Logical Link Service Definition (ISO 8802.2). The DLPI support allows
mapping of common network protocols such as TCP/IP [1]. With the support for Solaris and TCP/IP
over the Param network the system provides an environment which is functionally equivalent to a

1

2 The Design of PARAS Microkernel

cluster of Solaris workstations over a LAN. Much of the software support available under a distributed
Solaris environment becomes readily available on PARAM also. It includes system management, job
management, storage management, databases, and message-passing libraries. Also, with PARAM 9000
providing workstation environments at the underlying node level, shrink-wrapped Solaris SPARC bina-
ries run straightaway on PARAM 9000 nodes.

Work Station Work Station

LAN

Compute Node

Compute Node

Solaris

DLPI Driver

Solaris

DLPI Driver

Gateway Server

Solaris

DLPI Driver

Gateway Server

Solaris

DLPI Driver

N Sl
e —
K3

DLPI Driver

DLPI Driver;
Solaris Solaris
File Server File Server

Figure 3.1: PARAM 9000 as a Cluster

3.2.1 Solaris

The Solaris Operating System version 2.x on PARAM 9000 is from SunSoft. This System V-style Unix
provides a familiar development environment to the users. It has (Figure 3.2) robust networking support
including a full and fast TCP/IP protocol stack and layered features such as RPCs (remote procedure
calls), and the NFS (Network File System) distributed file system. It has an advanced programming
environment, with ANSI-compliant optimizing C and C++ compilers, and tools to profile execution, and
debug multithreaded programs. It also conforms to the following standards: SPARC ABI (Application
Binary Interface), System V Release 4 (SVR 4), X/Open Portability Guide (XPG3), POSIX P1003.1, and
X11RS.

Chapter 3: PARAM 9000 Operating Environment 3

Applications

Open Look

Open Windows

SunOS 5.0 (SVR) & ONC

| xe6 | | sParc |

Figure 3.2: Solaris Components

The Solaris kernel supports multithreading and multiprocessing (Figure 3.3). It supports real-time
scheduling features which are critical for multimedia. The kernel is dynamically loading and sizing. The
kernel scheduler supports three classes of scheduling : real-time, kernel, and time-sharing. The priori-
ties of threads in real-time and kernel classes do not change over time, but the priorities of threads in the
time-sharing class do. The soft real-time support provided by the kernel ensures that real-time threads
are given priority over other threads for the entire time they execute.

Cneon
%%

LD, D

Yl

Better Response Timesin Higher Throughput for
Multiple Application Parallelizeable
Environments Applications

Figure 3.3: Multi-Tasking and Multi-Threading

The multithreading feature of the kernel includes support for two kinds of threads: LWPs(lightweight
processes) and user level threads. The threads are intended to be sufficiently lightweight so that there
can be thousands present and that synchronization and context-switching can be accomplished rapidly
without entering the kernel. Threads are implemented using LWPs by the library. The LWPs are the
kernel supported threads of control, scheduled by the kernel and, therefore consume kernel resources.

4 The Design of PARAS Microkernel

This two-level architecture allows the programmer to separate logical (program) concurrency from the
required real concurrency, which is relatively costly, and to control both within a single programming
model.

Solaris, in addition to BSD file system, also supports several types of non-BSD file systems to
increase performance and ease of use. For performance there are three new file system types: CacheFS,
AutoClient and TmpFS. The CacheFS caching file system allows a local disk to be used as an operating
system managed cache of either remote NFS disk or CD-ROM file systems. With AutoClient and
CacheFS, an entire local disk can be used as cache. The TmpFS temporary file system uses main memory
to contain a file system. In addition there are other file systems like Proc file system and Volume file
system to improve system usability.

Solaris supports distributed computing with support for storing and retrieving distributed informa-
tion to describe the system and users through the NIS (Network Information Service) and NIS+ data-
bases.

The Solaris GUI, OpenWindows, is a combination of X11R5 and the Adobe Post-script system
which allows applications to be run on remote systems with the display shown along with local appli-
cations.

3.2.2 Job Management

Since PARAM 9000 can be used in a variety of environments it supports different job types: serial,
parallel, interactive and batch. It can be configured to provide throughput or response time depending
on the requirements of the job. PARAM 9000 supports job management through the CODINE job
scheduling software.

CODINE (Computing in Distributed Networked Environments)

CODINE helps in optimal usage of compute resources of networked environments like PARAM 9000. It
supports a convenient and easy to use graphical user interface. It provides dynamic and static load
balancing, check-pointing and supports batch, interactive and parallel jobs. The GUI is based on user
friendly motif interface. The following are the key features of CODINE:

« Support for different types of jobs
« Intelligent load balancing

« User defined check-pointing

« Detailed Statistics

+ OSF/Motif GUI

« POSIX compliance

« Support for DCE

Job Scheduling in CODINE

The jobs are dispatched in accordance to their resource requirements. When required they are spooled
and maintained in job queues. The jobs in the queue are scheduled based on the following algorithms:
The queue, which is hosted by the least loaded host at the particular time is chosen. Queues are
selected according to a given order defined by administrator. However overriding rules are provided for
the administrator.

Chapter 3: PARAM 9000 Operating Environment 5

Parallel Job Execution

In order to execute a parallel job CODINE performs a selection of an appropriate sub-cluster. The user
specifies the number of required queues via a generic request. Based on this information CODINE
selects an appropriate set of queues from the currently available ones using the load level or the fixed
ordered selection scheme. CODINE then starts up tasks and sets up other requirements of the respec-
tive parallel environments. In the context of the execution of parallel jobs the term “queue” is almost
equivalent to machines or nodes, as it not efficient to run multiple tasks of a parallel program on queues
hosted on the same machine.

User Interface (MOTIF GUI)

An OSF/Motif interface provides full interactive access to all user and administrative commands of
CODINE which includes operations like queue configuration and management, job submission and
their management. The statistical screen can be restricted to arbitrary time intervals, queue architec-
tures and groups, including wall clock and CPU time utilization.

3.2.3 Communication Software

The main parallel programming model supported on PARAM 9000 is message-passing. In message-
passing, the processes in a parallel application have their own private address space. They share data
through messages and achieve synchronization implicitly through the act of sending and receiving
messages. The programs are generally written with a Single-Program, Multiple-Data (SPMD) structure,
where the same basic code executes against partitioned data. The processes exchange data through a
message-passing library callable from standard languages. On PARAM 9000 both Parallel Virtual Ma-
chine (PVM) and Message Passing Interface (MPI) are supported (Figure 3.4). MPI is the emerging
standard for message-passing while PVM is a popular interface for cluster environment. Both PVM and
MPI are public domain implementations layered over the TCP/IP network protocol. The required inter-
face for IP is provided by the DLPI driver for PARAM network.

PVM J

MPI
UDP TCP
IP
DLPI Driver

Figure 3.4: Communication Subsystem in Cluster mode

Parallel Virtual Machine (PVM)

PVM is a software system that enables a collection of heterogeneous computers to be used as a
coherent and flexible concurrent computational resource. User programs written in C or Fortran, are
provided access to PVM through the use of calls to PVM library routines for functions such as process

6 The Design of PARAS Microkernel

initiation, message transmission and reception, and synchronization via barriers or rendezvous. Users
may optionally control the execution location of specific application components; the PVM system
transparently handles the message routing, data conversion for incompatible architectures, and other
tasks that are necessary for operation in a heterogeneous, network environment. PVM is ideally suited
for concurrent applications composed of many interrelated parts. PVM supports heterogeneity at the
application, machine, and network level. In other words, PVM allows application tasks to exploit the
architecture best suited to their solution.

The PVM system has been used for a number of applications such as molecular dynamics simula-
tions, superconductivity studies, and in the classroom as the basis for teaching concurrent computing.
Xab and HeNCE are popular tools available with PVM. Xab generates traces of PVM messages, which
can interface with the popular Paragraph tool for generating graphic displays. HeNCE allows applica-
tions to be developed at task-graph level.

Message Passing Interface (MPI)

MPI is the proposed standard for message passing for MIMD distributed memory concurrent comput-
ers. This standard is the result of meetings, extensive email discussions, and drafts, with participation
from over 40 computer vendors and research organizations. MPI has adapted features from current
message passing systems such as PVM, NX/2, PARMACS, Express, and P4. Aimed towards portability
and efficiency, this interface provides the general as well as advanced user with rich functionality to
write message passing parallel programs. With explicit support for the application programmer, library
developer and tool developer, MPI is gaining wide acceptance amongst the parallel programming com-
munity.

The salient features of MPI include: unique system supplied tag for complete message security,
functions to define groups and subgroups of tasks, point to point communication functions, blocking
as well as non-blocking communication, collective communication, and application oriented process
topologies. MPI has the required bindings for both FORTRAN 77 and C.

3.3 PARAM 9000 as a MPP

The PARAM 9000 OS architecture allows an optimized microkernel to be loaded on the compute nodes
instead of Solaris (Figure 3.5). The communication subsystem over the microkernel has been highly
optimized providing an order of magnitude improvement in performance.

3.3.1 The PARAS Microkernel

The PARAS Microkernel is a message based operating system kernel designed for massively parallel
systems. It supports multiple tasks with a paged virtual memory space, multiple threads of execution
within each task and message based inter-process communication (Figure 3.6). The basic abstractions
implemented and managed by the microkernel are:

« task is the unit of resource allocation and memory address space

« thread is the unit of sequential execution

« message is a stream of bytes used as the unit of communication

« port is the unit of addressing for point-to-point communication of messages

« port group is the unit of addressing for one-to-many communication of messages
« region which is the unit of virtual memory usage

Compute Node

Chapter 3: PARAM 9000 Operating Environment

Microkernel

Compute Node

Microkernel

LAN

Work Station

Work Station

Gateway Server

Solaris

DLPI Driver

Gateway Server

Solaris

DLPI Driver

T ¢
Lt
¢ ¢

DLPI Driver| DLPI Driver|
Solaris . .] . Solaris
File Server File Server
Figure 3.5: PARAM 9000 as MPP

Message passing is the primary means of communication both among tasks, and to some extent
between tasks and the kernel itself. Location independent inter-process communication is supported
through the port abstraction with support for both synchronous and asynchronous modes of commu-
nication.

Tasks Virtual
and IPC Ireual
Threads Memory
. Machine
Supervisor Dependent
[I
Micro Super ! Ultra I
SPARC SPARC : SPARC :

Figure 3.6: PARAS Microkernel

8 The Design of PARAS Microkernel

The microkernel integrates the following essential services:

+ An executive - derived from the Mach microkernel developed at Carnegie Mellon University - which
preemptively schedules priority-based threads.

+ A location transparent interprocess communication mechanism.

+ A simple virtual memory model.

+ A low-level hardware supervisor which dispatches interrupts and traps.

« Standard message passing interfaces like PVM, MPI have been efficiently layered over the microkernel.
CORE, a custom messag passing interface is also available over the microkernel.

3.3.2 Servers

The power of PARAM 9000 in MPP mode is provided to the user with the help of two sets of servers;
one running on the Service Partition (SP) and the other running on the Compute Partition (CP) (Figure
3.7). The operating environment includes the microkernel running on compute nodes and Solaris 2.x
running on service nodes.

Application(s)

Servers

PVM MPI CORE

PARAS Microkernel

Figure 3.7: Microkernel and Servers

Service Partition Servers

The PARAM 9000 is a multi-user, networked parallel supercomputer with a vast amount of computing
and I/O resource at its disposal. A software environment on PARAM 9000 allows the user and system
administrator to use and monitor the system effectively. Since the compute partition runs the microkernel,
a front-end server running on the service partition allows downloading of user tasks onto the compute
partition and service its I/O requests. Param Resource Manager (PRM) is the front-end server which
does the above job.

The term PARAM Resource Manager (PRM) is broadly applied to refer to a collection of servers and
client tools/utilities that manage, monitor and avail the resources of the PARAM. The PRM runs on the
service partition and is in-charge of allocating resources on user requests, provide system administra-
tion capabilities (including adding, deleting and retiring user accounts), offer Accounting and Quota
Management services. It takes care of loading user tasks and service I/O requests, queue user jobs for
batch processing. A system monitoring tool is also provided to deliver on-line information about the
system such as system load, partition usage, the list of current users and the status of their jobs etc. The
system monitoring tool also provides off-line services like system configuration, user accounts and
quota management, and batch processing configuration and management, etc.

8

Chapter 3: PARAM 9000 Operating Environment 9

The following are the different servers supported by PRM:

Resource Server (RS)
Database Server (DBS)
Pload Server (PLOAD)
Batch Server (BS)

Quota Server (QS)
Accounting server (ACS)
Monitoring server (MS)

Resource Server: It is responsible for resource allocations on the system and works in cooperation
with PM (which exists on compute partition) to allocate resources.

Database Server: It is responsible to perform the following operations:

+ Maintaining databases recording
+ Accounting information

« Batch processing jobs

« Resource allocation

« Partition usage

PLOAD Server: It is front-end tool with which user interacts. That is, it provides user interface to the
PARAM user. When user submits applications, it downloads the same to the nodes for execution in
coordination with processor server. It also services the I/O requests of the executing application in
coordination with the MKFS.

Batch Server: It is responsible for queuing and scheduling of user applications for later execution.

Quota Server: It keeps track of quotas against each user, quotas per partition, and quotas per node.
Accounting Server: It maintains user accounting information.

Monitoring Server: It is responsible for providing on-line information about the following:

+ System load

« List of users who have logged onto the system
« Partition usage

+ Resource allocated

Compute Partition Servers

The collection of servers running on the compute partition include the Partition Manager(PM), Process
Server (PS), Name Server (NS) and MicroKernel Filesystem Server (MKFS).

Partition Manager serves as a global resource manager for a partition and is responsible for manage-
ment of that partition’s resources. It maintains information about the user tasks, system servers, memory
usage on each of the nodes in the Partition. In addition to this it also maintains the system configuration
information. PM runs on any one of the compute nodes of a partition.

Each compute node has a file system server and a process server running on it. The filesystem
server services the Solaris file system requests on behalf of the user tasks on the compute nodes. The
process server provides the required functionality for the user to spawn tasks on a node and also to
operate upon them. It also provides a remote system call interface using which user can access the
microkernel facilities, from the service partition itself. In addition to these system servers other servers
specific to the programming model under execution are also loaded.

10 The Design of PARAS Microkernel

Job Execution

The servers on service and compute partitions and their interaction is shown in Figure 3.8. The main
servers under the PRM are Resource Server (RS) and Database Server (DBS). All PRM servers run on
every node in the SP except the DBS which runs on a designated node. The primary interface of the user
is through the set of client utilities which interacts with PRM servers. Pload is a client utility which user
executes to run his application programs on PARAM 9000. The user submits the list of tasks and the
associated configuration information to Pload, which then contacts the RS for resource allocation. RS
in turn contacts Partition Manager (PM) after validating the request. The PM allocates requisite number
of nodes which is returned to Pload via RS. Pload then contacts the corresponding Process Server (PS)
and downloads the application tasks. Pload then waits to service all I/O requests from the executing
tasks until all of them exit.

Service
Partition

\

Conpu /. \

s s,
(xs)

FILE

&7 | & e

Figiure 3.8: System Servers in MPP mode

3.3.3 Communication Subsystems

PVM and MPI message passing libraries callable from FORTRAN and C are supported on PARAM 9000
MPP (Figure 3.9). Both the protocols are layered over the microkernel with support from necessary
PARAS servers to launch PVM and MPI applications. Any of the PVM or MPI processes can access

10

Chapter 3: PARAM 9000 Operating Environment 11

files on service nodes through a UNIX like filesystem interface. In addition to PVM and MPI, CORE a
custom message interface is also supported.

PVM MPI CORE

Servers

Figure 3.9: Communication Subsystem (MPP)

COncurrent Runtime Environment (CORE)

CORE is an efficient software layer which provides a simple and powerful interface to all system ser-
vices. User programs can make appropriate system calls to get the necessary services. Through CORE,
software developed on earlier versions of PARAM, migrate seamlessly to PARAM 9000. CORE in-
cludes support for thread management, semaphore operations, interprocess communication, asynchro-
nous/synchronous I/0 and other facilities to access system resources. All these facilities are provided
in the form of functions callable from C or Fortran programs.

The message communication takes place via ports, a queue of yet-to-be delivered messages. In
addition to both synchronous and asynchronous modes of communications, blocking and non-block-
ing modes of communication are also supported. Other communication function supported are multicast,
barrier synchronization and global operations. CORE also provides a UNIX like interface to file system.

CORE is modular, distributed and highly optimized to reduce the system overheads to a minimum. It
makes the programs easy to modify, portable and in many cases more efficient.

3.4 Microkernel Emulator

On PARAM, application tasks are distributed across service and compute partitions; application con-
sists of a collection of cooperative tasks. It is necessary to have a uniform and consistent model for
interprocess communication both on a service and compute partition. On compute partition, IPC model
is supported by the PARAS microkernel itself whereas, on service partition, [PC model is made available
by a microkernel emulator (MKE) with a set of user level library functions.

The MKE is a streams upper multiplexer. It supports both the point-to-point (and group) communi-
cation using ports. The following are the system calls emulated by the microkernel emulator:
o M7
o M1 1]
o [[MTTTITITITTI
o [[MTTITTTTITT]
o M T TIITT11]

11

12 The Design of PARAS Microkernel

These calls are supported by a user-level library which translates them by using standard UNIX
system calls such as getmsg(), putmsg(), etc. into appropriate streams messages. These messages in
turn send downstream into the MKE. The MKE interacts with the CCP (C-DAC Communication Proces-
sor) driver on the lower side which passes messages over the communication network.

3.5 Utilities

The following are the client-side utilities available on the PARAM 9000 supercomputer for the manage-
ment of tasks:

Application Loader (CTTTTY]

Process Kill ((IITDOO

Process Status ([T

Process Suspend ([TTTTTTTY]

Process Resume ([TTTTTIY]

3.5.1 Process Loader: pload - Load the tasks on compute partition
Syntax:

Description:
The command [TTTTTdads the tasks on Compute Partition nodes (Microkernel nodes) in the MPP
mode. To run this command, the PRM servers must be running. The user tasks are spawned on the

PARAM 9000 compute nodes running PARAS microkernel (CP) nodes through the command “pload”
from the host machine (solaris side, SP).

Options:

The following types of options can be submitted to pload from the command line:

CITTITTITITTITTTITTTIThe pload loads the tasks on the partition specified in partition name.

[ITIMTITITITT T IThe pload loads the tasks on the specified node type. For example, node type may
be SPARC or ALPHA, etc.

[T Debug option.

Remarks:

The task can be submitted for execution either by directly specifying at the command line or through the
configuration file. The pload can be invoked in the following two ways:
(i) By submitting task list at the command line:
Ex: (IO T OO0 I T OO T O T
(ii) By submitting tasks through configuration file:
Ex: [TITTTIMITITTIT]
The configuration file must have [TTTh$ an extension.

The option [T used to debug the tasks using C-DAC’s AIDE (Advanced Integrated Debugging
Environment). AIDE uses X-windows as a Graphical User Interface. The pload loads debug kernel and
debug servers along with the other user tasks. This option may be used only to debug the tasks on
Compute Partition.

12

Chapter 3: PARAM 9000 Operating Environment 13

Note the environment variable [TTTTTTIITTITTIshould be set when -g option is supplied to the
111111

Configuration File Format:
The configuration file allows the user to define the following:

+ Task file names
+ Mode of execution (Exclusive or Shared)
« Stack size and Heap size

Ifthe mode is defined as EXCLUSIVE, then that particular task (only one task) will run on that specified
node and hence, no other tasks are allowed to run on that particular node.

The values of stack size and heap size are to be given in terms of kilo bytes (KB). The user can load
any task on any of the nodes. The maximum number of tasks that can be loaded on each node should
not exceed 6. The configuration file can have comments embedded into it and they follow the comment-
ing style of C language.

In the configuration file user can specify arguments for the task followed by the task name.
The [TTTTill take the environment variable from the current shell.
If the -g option is specified with pload command, all the tasks of that pload can be debugged.

Example configuration file:

[T T T T T T I I T T T IO I T I I T I T I

(NN EEEEEEEEINEENE N NEEEEEININNNEEE|

(HEE NN NN NN NN NN NN NN EEN I NEENEEEE NN N ENNENEEN]
[TTTITMOT I T I I I T I I I I T I I T I I IIrrIaT i

11

[TITTTTIMIT I I IIIraTQi
[ITITIMMMITIIIITIT]
11T

13

14 The Design of PARAS Microkernel

[N I T I T T I I T T I T T T T T T I IO T T I T T T T T T T I I I I T T I IrroTi
1M

[TTTTIMIITITITITIT]

[IITTTTTTITTIMImIIT Tl

[IITTTTITIMImnII Tl

11

[CTITTTU T AT IO TTIONTTIINNT]

3.5.2 Process Kill: pkill - kill the tasks running on MPP mode
Syntax:

Description:

The command [TTTTIKills the tasks running on MPP mode. It runs only when PRM servers are
running. It sends a signal to the specified task running on the Compute Partition side and kills that
tasks.

To kill the tasks that are owned by other users, the user need to have supervisor permission. If the
-u option is specified, pkill deletes the tasks owned by that particular user.

Options:

The following options can be submitted to the pkill from the command line:

CITTITTTITTTTTTHill the tasks owned by the users in the userlist.
CITTITTITTITTTITIKill the tasks in the tasklist.

CITTITTITTITTITIRII the tasks spawned by the pload in the ploadlist.
CITTTITITTITITTITTIMill the tasks that are loaded on the partition in the Partitionlist.

3.5.3 PARAM Process Status: pps - display the status of tasks running on MPP mode.

Syntax:
OO T O OO I O O T T OO OO O T OO I i

Description:

The command [TTHisplays information about tasks running in MPP mode. It runs only when PRM
servers are running. Normally, only those tasks that are running with your effective user ID and are
attached to a controlling terminal are shown. Additional categories of tasks can be added to the display
using various options. In particular, the -a option allows you to include tasks that are not owned by you.
The -r option restricts the list of tasks printed to running tasks on MPP mode.

The pps displays the taskID, under TID; ploadID, under PLOADID; the state of the process under
STAT; and finally, the name of the task under TASKNAME.

The state is given by a following letters :

Running tasks
Sleeping tasks

Tasks with ready state
Tasks that are idle
Tasks waiting for I/O
Exited tasks

mébﬁ"i]

14

Chapter 3: PARAM 9000 Operating Environment 15

T Terminated tasks
U Abnormally terminated tasks
A Active tasks

Options:

The following options can be submitted to the [T T ¥dom the command line:

-a: Include information about tasks owned by others.

-e: Display the arguments as well as the environment variables

-1: Display more information about the tasks. It displays the partition name, parent process ID, etc.
-r: Restrict the display to the running tasks.

-u <userlist>: Displays the tasks owned by the users in the userlist.

-t<tasklist>: Displays the status of the tasks in the tasklist.

-p <ploadlist>: Displays the tasks spawned by the pload in the ploadlist.

-P <Partitionlist>: Displays the tasks that are loaded on the partition in the Partitionlist.

Note: The state of task can change while pps is running; the picture it gives is only a close approxima-
tion to the current state.

3.5.4 Process Suspend: psuspend - suspend the tasks running on MPP mode.
Syntax:

[CITTTTTINOTITIINT]
(EEEEEEENE IR NN NN NN NN NN NI NN IR NN NN ENEEEERN N

Description:
The command [TTTTTTT Edspends the tasks running on MPP mode. It runs only when PRM servers

are running. The [TTTTTTT kdnds a signal to the specified task running on the compute partition and
suspends that tasks.

To suspend the tasks that are owned by other users, supervisors permission is needed. If the -u
option is specified, psuspend suspend the tasks owned by that particular user.
Options:
The following options can be submitted to the psuspend from the command line:

-u <userlist>: suspend the tasks owned by the users in the userlist.

-t <tasklist>: suspend the tasks in the tasklist.

-p <ploadlist>: suspend the tasks spawned by the pload in the ploadlist.

-P <Partitionlist>: suspend the tasks that are loaded on the partition in the Partitionlist.

3.5.5 Process Resume: presume - resume the tasks running on MPP mode.
Syntax:

Description:

The command [TTTTTT Fdsumes the tasks running on MPP mode. It runs only when PRM servers are
running. It sends a signal to the specified task running on the compute partition and resumes that tasks.

To resume the tasks that are owned by other users need to be supervisor permission. If the -u option
is specified, presume resume the tasks owned by that particular user.

15

16 The Design of PARAS Microkernel

Options:
The following options can be submitted to the [LLTTTTT Flom the command line:

[ITTITTITTITTITTdesume the tasks owned by the users in the userlist.

[ITTITTITTITT T Irksume the tasks in the tasklist.

[ITTTITITTITITTTdesume the tasks spawned by the pload in the ploadlist.
CITTTITTITTITITTITT T Irksume the tasks that are loaded on the partition in the Partitionlist.

3.8 PRM Library Functions

The library functions supported by PRM are discussed below:

[ITTTTTTTIO®pen connections with PRM database and with Micro-kernel servers.

[ITTTTTTTTIGet task information from the PRM database.
I TIT T T T I T I T LI N T T I T ITIIIKGT suspend/resumethetasksrunningontheCP.
[ITTTTTTTTIClose connections with PRM database and with Micro-kernel servers.

Syntax:

Header File: [TTITTTIINOITITITTT]

Description:

The [TITTTITTTIahd prmclose() have to be invoked before invoking any of the prmlib calls. It
initializes connections with PRM servers. The [TTTTTTTTT Islused to query the process information
Database. The structure [TTTTTTTTTT kbntains the following fields:

OO

(EEEEEEEEE RN ENNENENINNNNNENNENENENNEEE|

OO OO O OO O O O

MO O O O I 11

[ITTTTITITITTIT]

and [TTTTTTTTT Edntains the following fields:

[IITTTTIMNIITIImI]
(HENEEEEEE NN NN NN NNNENENNEEENEEEEE]
(IR NN EENENEEENENEENENENEEENEEEEEEE]

Chapter 3: PARAM 9000 Operating Environment 17

OO T OO T O T O O O OO O T O I O 1
OO T O OO OO O OO

11

The fields pkey and skey of the [TITTTTTTTTT Kructure are to be filled with a constant values
specified in the header file ptask.h and the values of primary and secondary key are to be filled in
[ITTTT T T T T Istructure. The [TTTTITIT T Iréturns as many number of records that matches the
primary and secondary key values; gettinfo returns number of records fetched from the database. If the
flag value is BLOCK, gettinfo call will wait for constant time to get the record only if the record is not
found at the time of the call is made and the flag value is NOBLOCK then [TTTTTTTT T réturns
immediately without waiting for that matching record, if the record is not found.

The [TTTTTTKills the task on the PARAS microkernel with the task id tid and node_id nid.

The [ITTITITTTTIahd presume are used to suspend and resume respectively the task on the
PARAS microkernel with the specified task id tid and the node_id nid.

Returns:

On success, these functions except [TTTTTTTTT Fdturns 0. On failure, it returns -1 and sets [TTTTTT]
to indicate the error. On success gettinfo returns the number of matching records found in the database.

Errors:

These functions fail if any of the following are true:

[ITTTTTIWnable to connect with DataBase server.

[ITTTTTTTIReer Connection Closed.

[ITTTTTImproper key value or Key value not found for searching record in the PRM database.
[ITTTTTTTINo such record in the PRM database.

[TTTTTTT T IThsufficient memory or Improper pointer value passed to these functions.
[TTTTTTINo such task in the PRM database.

[ITTTTTIThe effective user of the calling process does not match the real user and is not super-user.
PMKE*: MKE call failure. for more details see [ITTTTTTITT]

Note that before calling these functions, [TTTTITTT hhd [TTTTITTT Hinctions should be called.

17

