Chapter 5: Virtual Memory Management 1

6

Virtual Memory Management

6.1 Introduction

Memory is central to the operation of modern computer systems such as PARAM. In order to execute
aprogram (or collection of parallel tasks), it must be stored in main memory. Once the program is loaded
in memory, program execution is initiated by supplying its starting address to the CPU (or to nodes in
the multiprocessor system). The CPU then, sends address of instruction or data to be accessed to the
memory unit. This source of this address is completely unknown to the memory unit and it does not
distinguish CPU requests whether it is for accessing instruction or data. The source of these address
may be PC (programmer counter) for instruction request, index (for array access), literal address (for
fixed location such as a well know port address), and so on. To manage all these issues, operating
system must provide a unit called memory manager. It is responsible for managing memory requests
associated right from the end-user request for program execution to the program termination including
dynamic memory requests generated by the program during its execution.

Modern computer systems demand execution of multiple programs at the same time. Hence, it is
necessary to have multiple in the main memory in ready-to-run state and this concept is popularly called
multiprogramming. Multiprogramming concept to work, it is necessary that program must be able to
execute successful irrespective of memory location where it is loaded in main memory for execution.
From this it can be inferred that, the memory access quests (address) generated by the program (logical-
or virtual address— LLA) is not the same as the one to be used to access (physical address— PA)
information from the main memory. That is, program generates logical address whereas, memory unit
request physical address. This view differences is managed by the virtual memory manager which maps
logical memory to physical memory as shown in Figure 6.1.

Each program (hereafter called task) has an associated address map (maintained by kernel, hereafter
known as microkernel) which control the translation of virtual addressees in the task’s address space
into physical addresses. As is true virtual memory systems, the contents of the entire address space of
any given task is most likely not completely resident in physical memory at any given time. There must
exist mechanisms to use physical memory as a cache for virtual address spaces of tasks. Unlike tradi-
tional virtual memory designs, the PARAS kernel does not implement all of the elements of this caching
itself; it encourages to allow user mode tasks the ability to participate in these mechanism. These
mechanisms will be supported through users mode task’s what is popularly known as subsystems.
However, such subsystems are not available under PARAS (and future PARAS might have this sup-
port. Note that, the MACH microkernel support virtual memory mechanisms through memory objects.)

This chapter discusses memory management supported by the PARAS microkernel. It includes
regions, memory model, organization, data structures, interactions. The empbhasis is laid on both ma-
chine dependent portion and machine-independent portion of memory manager. Hence, the discussion

2 The Design of the PARAS Microkernel

on implementation of true virtual memory subsystems is beyond the scope and it is a subject of user
mode services. Note that virtual memory can be much larger than physical memory and this can be
realized only when supporting subsystem are available under PARAS operating environment.

byte

0
1 Byte Page 0
% Pagel
Page N
0 byte
1 byte
2
) 3
Logical Virtual .
addresses Manager
Physical Memory

Figure 6.1: Mapping of Logical Address to Physical Memory Address

6.2 Regions

Each task has a large virtual address space within which its threads execute. The virtual address range
may be sparse, with ranges of addresses which are not allocated, followed by ranges of addresses
which are allocated. Address space is organized as collection of region. A “region” of an address space
is that memory associated with a continuous range of addresses; that is, a start address and an end
address. Regions consist of pages which may have different protection attributes, enabling a task to
protect pages in its address space to allow/prevent access to that memory.

6.3 Memory model

Regions are not swapped, which means that tasks have to be resident in memory to run. This extremely
simple memory model has been chosen for reasons of performance and simplicity. Having a task resi-
dent in memory allows faster interprocess communication. Also, a simple design without swapping
makes the kernel simpler, smaller and more manageable.

Chapter 5: Virtual Memory Management 3

6.4 User Virtual Memory Interface

The Microkernel virtual memory interface can be thought of as being divided into these functional
groups (see Table 6.1):

+ Address space manipulation including the allocation and deallocation of virtual memory

+ Memory protection allowing flexible use of memory protection hardware

+ Miscellaneous functions to access other tasks’ virtual memory

Functional group Primitives

Address space manipulation I T T I T hdd TIITITTIITITTIITIT]
Protection [IITITTITTIITTIT11
Miscellaneous [ITITITITTIThhd CITTTIIITITT]

Table 6.1: Virtual Memory Interfaces

Virtual memory is allocated using the primitives [TTTTTITIITIIIIIIand deallocated using
ITTTTTITTTTTTTT T IRreshly allocated memory is returned zero-filled.

Virtual memory protection is supported at the page level. Each allocated page in an address space
has a protection attribute. This is a combination of read, write, and execute permissions. Protection
codes are set using RegionProtect.

Reading/Writing to another task’s address space is supported by the RegionRead and RegionWrite
calls. These may be used by tasks (for example, the debugger) which want to examine and modify the
address space of another task (the task being debugged).

Virtual Memory Operations

The virtual memory management operations that can be accessed by the microkernel user are discussed
below:

(CITTTTITTTTTTTTTMMANocate Virtual Memory

Syntax:
ENEEEEEEEEEEEINIINEEEEEEEEEEEEEEEEEEEEEEEEI NI EEEEENE N INENI N INEEEEEEE]
(HEEEEEERNENENNENNNNNNENNNNEEN|
(HEEEEEEEEEEN IR NENEEEEEEEENENNNNNNNENEENEEEN

[TTTTTTTTTONTOOOITITTITD]

[TITITTITTINInmII I I IIIITITIT]

Description:

[TITTTTTTTT T T TTallocates a region of virtual memory in the specified task’s address space. If
[TTITTTTTId false, an attempt is made to allocate virtual memory at [LTTTTTIIf [TTTTTTEd not at
the beginning of a page, it will be rounded down to one. If there is not enough space, no memory will be
allocated. If [TTTTTTTHY true, the input value of this address will be ignored, and the space will be
allocated wherever it is available. In either case, the address at which the memory was actually allocated
will be returned in [TTTTTTT]

4 The Design of the PARAS Microkernel

Physical memory is immediately mapped for the allocated virtual memory. Initially, the pages of
allocated memory will be protected to allow all forms of access. Subsequently, ‘RegionProtect’ may be
used to change the protection attribute. The allocated region is zero-filled.

[ITITITITITITITITITIMNéallocate Virtual Memory

Syntax:

OO T OO I O O O O O I O i
(HEEEEEERNENENNENNNNNNENNNNEEN|

MO OO T T

[TTTTTTTTTONOOOITITTITTD]

Description:

[IITTTTTITTTTTT T Ideallocates a region of a task’s address space, causing further access to that
memory to fail. This address range will be available for reallocation. Note that because of the rounding
to page boundaries, more than [TTT bjtes may be deallocated.

[ITITITITITITIMWEkiting Virtual Memory

Syntax:

T T OO T T O T O O T OO T OO T OO T T Il
ENEEEEEREENEEENENENEEENEENENE|

T IO T I T

[TITITTITITIII I I]

[TITITTITITIII I I]

[ENEEEEEEEE NN NN RN EEEEEEEEEEEEEENENENEENEEE]

Description:
[IITTTTTTITTallows a task’s virtual memory to be written by another task. If either [TTTThlytes
starting at [TTTTTT1Hd not allocated, or if a portion of the address space is protected against writing,

a partial write would have succeeded. The number of bytes of data actually written is returned in
[TTTTTTTTITTI1

[ITITTITITITITRdading Virtual Memory

Syntax:

T O T T O T O O T O T O T O T
ENEEEEEREENEEENENENEEENEENENE|

T IO T I T

[TITITTITITIII I I]

[TITITTITITIII I I]

[ENEEEEEEE NN NN RN EEEEEEEEEEEEEENENENEENEEE]

Description:
[IITTTTTT T Tallows one task’s virtual memory to be read by another task. If either [TTTThytes
starting at [TTTTTT1Ed not allocated, or if a portion of the address space is protected against reading,

a partial read would have succeeded. The number of bytes of data actually read is returned in
[TTTTTTTTITTI1

Chapter 5: Virtual Memory Management 5

ITITITITITTITT I T MArotect Virtual Memory

Syntax:

T T O T O T T T O OO T T T LTI Tl
ENEEEEEREENEEENENENEEENEENENE|

T IO T I T

[TITITTITITIII I I]

T T I T T

Description:

[ITTTTTTTTTTTIsets the virtual memory access privileges for a range of allocated addresses in a
task’s virtual address space. The protection argument describes a combination of read, write, and
execute accesses that should be permitted. The protection attributes are a set of:
REGION READ ACCESS, REGION WRITE ACCESS, REGION EXEC ACCESS, and
REGION_NO_ACCESS. On failure, protection attributes for pages in the specified address range would
not have been modified.

The knowledge of processor support is very much essential for understanding and implementing
memory manager.

6.5 Hardware Overview

This section is discusses machine dependent portion of memory manager. It discusses Memory Man-
agement Unit (MMU) of SUN’s SPARC processor.

Overview of SPARC Reference MM U

The SPARC Reference MMU (SRMMU) provides translations from a 32-bit virtual address space to a
36-bit physical address space. All address translation information required by the SRMMU resides in
physically addressed data structures in main memory. Mapping a virtual address is performed by using
upto 3 levels of page tables, the first and second levels usually contain Page Table descriptors (PTP)
which point to the next level page tables as shown in Figure 6.2. The third level entry is always a Page
Table Entry (PTE) which points to a physical page.

The Root Pointer Page Table descriptor is unique to each process and is found in the context table
discussed in the next (sub)section. The Root pointer is used to point to the root of the level 1 page table.

The Translation Lookaside Buffers (TLBs) of the MMU controller keep recently used translations
cached close to the processor.

Contexts

The SRMMU can retain translations for several process address spaces at the same time, speeding up
context switching between processes. Each address space is identified by a context number, which is
used to index into the context table in main memory to find the root pointer of the page table hierarchy.

Caches

SuperSPARC has two large multi-way associative caches to speed up memory access (and provide high
performance):

16K-Byte data cache
20K-byte instruction cache

6 The Design of the PARAS Microkernel

The instruction cache is a physically addressed cache and is non-writable but is kept consistent
with the data cache and external memory through extensive cache-coherence support.

The data cache is a physically addressed cache, and can be operated in either the write-back or
write-through modes.

The MultiCache Controller (MXCC), the external cache controller implements a 1 MB, directly
mapped, physically addressed external cache.

INDEX 1 INDEX 2 INDEX 3 OFFSET
31 23 17 11 0
Context Table
g‘?ﬂ;}; Table o Level 1 table
Register g
Root pointer Level 2 table
| 5| PTP >
o prp ‘Level 3 table
PTE
PHYSICAL ADDRESS
Physical Page Number OFFSET
35 11 0

Figure 6.2: Address Translation Utilizing Four Levels of Page Tables

DVMA

The SBus is the primary I/O bus for machines conforming to the Sun4M system architecture - a system
definition for a number of platforms including the SS-10 line of products, the class to which the PARAM
node card falls into. Data transfers on the SBus are done through DVMA (Direct Virtual Memory
Access). The advantage of DVMA is that pages need not be physically contiguous for DMA to take
place; it is enough if they are virtually contiguous.

I/O Memory Management Unit (IOMMU)

The Sun4M IOMMU is used to perform address translations when Sbus masters request the bus. The
IOMMU is a one-level memory based MMU which is similar to the SRMMU, but provides reduced
functionality appropriate for DVMA needs.

There is a base pointer that points to a table in memory, and part of the DVMA virtual address is
used to index into this table to access an IOPTE (Page Table Entry). Each IOPTE maps one 4KB page.

Chapter 5: Virtual Memory Management 7

The table size and the corresponding DVMA virtual address range are configurable.

The IOMMU maps (of DVMA range) virtual address space for DVMA activity. DVMA addresses
are always at the high end of the virtual address space.

The DVMA base is the highest address in the 32-bit virtual address space minus the DVMA range.
Address Space Identifiers (ASI’s)

The processor modules contain items that are accessed in ASI space with virtual addresses. The
Address Space Identifiers (ASI’s) and virtual addresses from the SPARC IU are interpreted and used
solely on these modules.

For ASI’s 0x8, 0x9, 0xA and 0xB, the address is translated into a 36-bit physical address by the
SRMMU; the bypass ASI’s 0x20-0x2F generate the physical address without using the MMU. Other
AST’s have particular functions associated with them. For example, the ASI 0x03 is used for flushing/
probing the SRMMU TLB; ASI’s 0x36 and 0x37 are used to invalidate (flush clear) the contents of the
instruction and data caches respectively. ASI spaces are accessed through use of the SPARC lda, sta
and swapa instructions, which can be issued only in supervisor mode.

DVMA virtual addresses are translated by the [IOMMU. The 36-bit physical address space is further
broken down into sixteen 32-bit address spaces specified by PA (35:32).

6.6 Memory Organization

The organization of primary memory in PARAM 9000 is depicted in Figure 6.3. The microkernel uses
some firmware services provided by OpenBoot (OBP). These include using OBP’s serial port drivers for
performing console I/O, scanning the device tree, accessing device properties, determining the amount
of physical memory available on the system etc. Hence, it is necessary to allow OBP to remain resident
and operational, by not reclaiming the resources (primarily memory) that is being used by the firmware.

OxFFFFFFFF T
OxFFF00000
Address range
Open Boot used by OBP
and
OXFFD00000 for DVMA

v

OxFF000000 -

~256MB | Reserved for use of kernel

~2MB
Microkernel

0

Figure 6.3: Memory Organisation in PARAM

8 The Design of the PARAS Microkernel

6.7 Virtual Memory Data Structures

The microkernel sets up and uses the data structures needed for virtual address translation. The data
structures needed to represent an address space are the level 1, level 2 and level 3 page tables. A context
table, indexed by context number, points to the root level (levell) page table of an address space. The
address space associated with a task is given by the context number that has been assigned to it on
creation.

The kernel uses the context table and the page tables are for managing the SRMMU and an iommu
page table for managing the [OMMU.

The context table and the iommu table are statically allocated data structures, aligned on the bound-
aries required by hardware while the page tables are allocated from zones. The microkernel uses 2 zones,
one for level one page tables (which has 256 entries) and the other for allocating level 2 and level 3 page
tables (which have 64 entries).

The page address and page valid arrays are maintained by the kernel for use by physical memory
allocation/deallocation routines. The page address array holds the addresses of physical pages and
the page valid array is used to determine if the corresponding physical page is free or is allocated. Both
these arrays are indexed by physical page number.

6.8 Memory Management Routines - Undocumented
The pmap Interface

The pmap (acronym for physical map) is the machine dependent memory mapping data structure corre-
sponding to the hardware representation of an address space. On SPARC, a pmap corresponds to page
tables that represent an address space, and is identified by the context number associated with the
address space.

The pmap is the handle with which machine-independent code communicates with machine-depen-
dent code. All routines that operate on pmaps explicitly specify which pmap is to be operated upon.

All virtual addresses, offsets and sizes are passed to the pmap module as byte offsets. Neverthe-
less, operations at the page level (allocation, deallocation, changing protection attributes) are only
meaningful on page boundaries.

The interface to the pmap module is split into 2 functional groups:

+ pmap handle maintenance such as creation and destruction of pmaps
« Pmap range operations - primitives that change mappings for a range within a pmap.
+ Use information, by which the kernel specifies which pmap is to be used on the processor.

Functional Group Primitives

Pmap handles pmap_create, pmap_destroy
Range operations pmap_enter, pmap_remove
Use operation pmap_activate

Table 6.2: Virtual Memory Interfaces

Chapter 5: Virtual Memory Management 9

The [ITTTITTITTTIMis invoked when the system begin using a new address space. Since the
kernel is part of every task’s address space, the mappings for these will be set up in the new pmap also.
The [ITITTITTINis invoked to validate addresses. Address invalidation is performed by the

CIITTTTTTITTQ)] The [CITTTTTTTTT({is used to change the protection attributes of an address
range. A call to [TTTTTTTTTTT{)Ireleases all resources that are used by the pmap.
The next part of the pmap interface consists of a [TTTTTTTITIITTITTITTITTITITI()lthat is used

to notify the pmap module which address space is going to be used on the processor. This primitive sets
up hardware page table registers, and other hardware specific registers and state related to memory
management to effect the address space switch (as in context switching between threads belonging to
different tasks). pmap_act i vat e specifies which pmap is now going to be active on the processor.

Managing physical memory

Information about physical pages is maintained by the kernel in tables indexed by physical page
number. These tables hold information of the page address and whether the page is free or is allocated.
Physical memory allocation routines scan these lists to determine the address of a free page.

The pmap Operations

INEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Syntax:

LITTTITTIT O I TTTITITTITIM]

Description:

Create and return a pmap. This routine is called to initialize a new address space. Since the kernel is part
of every task’s address space, its address translation information is put into the new pmap.

[ITTTTITTITTTIQOI- Destroy a pmap

Syntax:

[CITTTTITITITITITTNT]
[TITITTTINITITT Tl

Description:

Destroy the pmap and the resources that it has been using. This is called when a task dies.

Syntax:

[ITTT T T I I T I I T T I T T IO T I I I I TIrTd
[ITTTTTITNIIoITTITTIT]

[IITTTTTTITITIIMIImmT]

[IITTTTTTIIIMIITI L]
[ITITTTTTTTII I IITITIITTI 11

Description:

Insert the given page (p) at the specified virtual address (v) in the specified physical map. The page is
marked as a cacheable page if cacheable is set to TRUE.

10 The Design of the PARAS Microkernel

LIITT T T T I I T I I T I I I T I I I I I I IIITIIIT1
[ITTTTTIT]

[TTTTTTTI T T I T T T T T Tl
LITTTTTTUIMIITTI T T
LITTTTTTTTITINmIT]

Description:

Remove the specified range of addresses from the specified pmap. The start and end addresses (s and
e) are guaranteed to be rounded to page boundaries.

Syntax:

I I O O
ITTTT T T T ITT]
[TITITTTITTTITIIIITITII]

I I I T T]

Description:

Set the protection on the specified range in the pmap. The start and end addresses are specified by s
and e. The desired protection is specified by prot. Like pmap _remove, the start and end addresses are
rounded off to page boundaries.

Syntax:

(NNNNNNNNNNENNNNNNEEE
LITTTTTTUIMIITTI T T

Description:

Signifies that the specified pmap is now active on the processor.

6.9 Generic OS support

The virtual memory management module of the microkernel uses the “zone package” feature - a generic
kernel facility, for fast dynamic allocation of internal kernel data structures.

The zone package

This package facilitates fast allocation of memory for kernel data structures, some of which may be in
time critical pieces of code. The zone package provides a simple, efficient mechanism for allocation and
deallocation of many data structures used by the kernel.

Memory for these data structures is organized into zones. A zone is a collection of free data struc-
tures, managed as a linked list. If the zone is non-empty, an allocation requires a list removal operation,
and deallocation a list insertion operation. It is assumed that a zone has enough elements to satisfy all
requests that may arise at any point of time.

Each zone is associated with the following information:

+ aname, a string used for debugging purposes
« afree list, a linked list of free elements available for allocation

Chapter 5: Virtual Memory Management 11

« element size, the size of each element of the zone
+ The maximum number of elements in that zone

The zone package is extensively used not only by the virtual memory implementation, but also by the
rest of the PARAS microkernel.

Zone Operations
The zone package supports the following interfaces:

Syntax:

OO OO T O I T OO I T O O T il
[TTTTITTOINOOTITTIT I]

MO T OO I I

[EEEEEEEEEN NN NN

Description:

Create and initialize a new zone. The size of each element of the zone is specified by ‘element size’. A
maximum of ‘n_elements’ are present in this zone. The ‘name’ parameter provides a textual name that
can be used for debugging purposes.

O OO OO I OO OO I 1

OO O O O OO I 1

[ITTTTTTTIOoITTITITT]

OO O I I 1]

EEEEEEEEEN IR

Puts the memory specified by ‘newmem’ and ‘size’ into the specified zone.

Syntax:
MO O I
[TTTTTTTUTOOTITTITT]

Description

Returns an element from the specified zone.

Syntax:
MO O I O

[ITTTTTTTIOoITTITITT]
[TITTTTTTITTIMITIIT]

Description:

Places the specified element (‘elem’) onto the free list of the specified zone (‘zone’)

6.10 Kernel Page table initialization

When the kernel starts executing, the address translation will still be done using OBP’s page tables (set
up as described in the section on Stand-alone environment). The kernel takes up control over memory

12 The Design of the PARAS Microkernel

management after initializing all its data structures, including its own page tables. The following is the
sequence of steps done while the kernel sets up its page tables.

1) Get the addresses of the kernel’s context table and IOMMU table

These tables are statically allocated (they are in the bss segment of the kernel). These tables are (to be)
aligned as required by the alignment restrictions of the processor.

2) Bring the MMU and the caches to a clean state

The contents of the on-chip instruction and data caches are invalidated (flash-cleared). The MMU
TLB’s contents are also invalidated. The contents of the external cache are written back to memory by
performing a read of size 1 MB (the size of the cache) on some address.

3) Unmap regions of memory that are not being used by the kernel

As described elsewhere in this document, 10 MB of memory is mapped by firmware before the kernel
starts executing. The portions of memory that are not used by the microkernel are now unmapped. In
particular, the area from the end of kernel to 10 MB and the region between VA 0 and the start of our trap
table (which is mapped just below the kernel start address) is unmapped.

4) Setup the kernel’s page tables

The contents of OBPs page tables are copied into the kernel’s page tables. This is done in order to retain
the mappings that OBP has set up for itself, as the firmware has to be kept active. The kernel’s page
tables can be accessed as cacheable locations. However, all accesses to OBP’s page tables (here and in
step 3) have to bypass the MMU since these addresses are not virtually mapped.

5) Setup registers in MMU to start using our page tables
The microkernel is now responsible for all memory mapping operations.
6) Initialize data structures used for physical page allocation.

The amount of physical memory available and their addresses are obtained by making service calls to
the firmware. This information is used to initialize the page address and page valid arrays.

7) Initialize the IOMMU

Memory for the CCP send and receive buffers is allocated in the DVMA range and the mappings for
these are setup both in the SRMMU and the IOMMU. These buffers are treated as cacheable locations.

6.11 Operational Issues
The issues related to flushing, maintaining cache coherence, etc., are discussed below:
SRMMU Flushing

Flushing is used to purge stale translation from the TLB. The flush operation is implemented through
the use of SPARC store alternate (sta) instruction in an alternate address space reserved for MMU
probing/flushing. The address format encodes the type of flush (page, segment, region, context, entire)
to be done.

Cache flushing

As the on-chip instruction and data caches and the external cache are physically addressed, there is no
need to flush (write back) the contents of the cache to memory on a context switch between tasks, which

Chapter 5: Virtual Memory Management 13

has to be done in systems which have virtually addressed caches. We need to invalidate the contents
of the caches only once - on startup, to bring the system to a clean state.

DVMA and cache coherence

To ensure that both the processor and the DVMA device see the most recent copy of the information
at an address, the hardware and the kernel work together to ensure this in one of two ways.

1) The page is marked as non-cacheable in both the SRMMU tables and the IOMMU table.

2) The page is marked as cacheable in both the SRMMU tables and the IOMMU table. Hardware will
ensure that coherence is maintained, provided that the processor does not touch pages belonging to a
stream data transfer during the transfer.

The microkernel follows the second model. The CCP transmit and receive buffers (allocated in
DVMA space) are mapped as being cacheable in both the SRMMU tables and the IOMMU table.

6.12 Standalone Program Interface

Stand-alones programs are programs that are loaded into and execute from RAM. The OBP interface to
the stand-alone programs consists of the specification of the machine environment that exists when the
stand-alone program begins execution, and the set of services that OBP provides for the program’s use.

Standalone Environment
Initial Program Counter

A stand-alone program is first loaded into memory at the address given by ‘load-base’. If the
program expects to execute from an address other than ‘load-base’, the program must begin with
position-independent-code and copy itself to the expected address.

Stack

Stand-alone programs are invoked with a valid stack pointer, with at least 2K-bytes of memory available
for stack growth. If the stand-alone requires more stack space, it should allocate a sufficient amount of
stack space in its “bss” area, and setup the stack pointer appropriately.

Arguments

Arguments are passed to the stand-alone program using C subroutine argument passing conventions.
The first argument is the base address of the ROMvec structure. The second and third arguments are
the address and length of the array of bytes that is passed to the program from the program that booted
it. For programs booted by OBP, the length is zero.

Memory and MMU

The stand-alone program may assume the presence of some amount of pre-mapped (one-to-one map-
ping) memory when it starts execution. On SuperSPARC, 10MB of memory is premapped by OBP. This
is primarily intended for the use by the self-relocation code that moves the stand-alone to the location
at which it is intended to execute.

The protection attributes of this pre-mapped memory is system dependent, but read, write and
execute access from system state is guaranteed. Whether or not memory is marked cacheable is system
dependent. Unused virtual addresses are marked invalid.

14 The Design of the PARAS Microkernel

Interrupts

When a stand-alone program begins execution, interrupts are enabled but the processor priority level is
set to its maximum value, denying all interrupts except non-maskable ones. When the program is ready,
it should decrease the processor priority level to allow the user to interrupt the booting process from the
keyboard.

The CPU’s interrupt (trap) table will be valid, with OBP’s clock interrupt, console input and output
vectors and the breakpoint vectors appropriately installed. The stand-alone may setup it’s own trap
table, if required, but it should copy the clock, input, output and breakpoint vectors if it expects to use
these services.

ROMyvec Interface

The set of services provided to stand-alone programs by OBP is described by ROMvec. ROMvec is an
array of data and subroutine addresses described by a C structure. ROMvec services include device
tree access, console I/0, network I/O and other services.

6.13 Booting the microkernel

Diskless nodes running on the compute partition depend on the CCP network to load their OS. The
network booting proceeds as follows: the diskless nodes use the “RARP/TFTP” protocols of the TCP/
IP suite to load the image of the program that will run on the booting machine. Often, this is the
secondary loader program, which then loads the OS, possibly using other protocols.

The microkernel loader is the secondary loader program used while booting the microkernel. It
relocates itself to the address at which it is expected to execute, loads the image of the microkernel into
memory using the TFTP protocol and then transfers control to the microkernel. The microkernel loader
would have established one-to-one mapping for the microkernel.

