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Abstract: The recent upsurge of smart cities’ applications and their building blocks in terms of the
Internet of Things (IoT), Artificial Intelligence (AI), federated and distributed learning, big data
analytics, blockchain, and edge-cloud computing has urged the design of the upcoming 6G network
generation, due to their stringent requirements in terms of the quality of services (QoS), availability,
and dependability to satisfy a Service-Level-Agreement (SLA) for the end users. Industries and
academia have started to design 6G networks and propose the use of AI in its protocols and operations.
Published papers on the topic discuss either the requirements of applications via a top-down approach
or the network requirements in terms of agility, performance, and energy saving using a down-top
perspective. In contrast, this paper adopts a holistic outlook, considering the applications, the
middleware, the underlying technologies, and the 6G network systems towards an intelligent and
integrated computing, communication, coordination, and decision-making ecosystem. In particular,
we discuss the temporal evolution of the wireless network generations’ development to capture the
applications, middleware, and technological requirements that led to the development of the network
generation systems from 1G to AI-enabled 6G and its employed self-learning models. We provide a
taxonomy of the technology-enabled smart city applications’ systems and present insights into those
systems for the realization of a trustworthy and efficient smart city ecosystem. We propose future
research directions in 6G networks for smart city applications.

Keywords: Artificial Intelligence (AI); beyond 5G; blockchain; Deep Learning; Internet of Things (IoT);
Machine Learning; metaheuristics algorithms; Sixth Generation (6G) wireless communication; smart city

1. Introduction

With the prominence of connected smart cities and the recent emergence of a smart
city’s mobile applications and their building blocks architecture in terms of Internet of
Things (IoT) [1], Artificial Intelligence (AI) [2], federated and distributed learning [3], big
data analytics [4], blockchain [5], and edge-cloud computing [6], the implementation of a
new generation of networks has been prompted. While optimization strategies at the appli-
cation level along with a fast network, such as the currently in-deployment 5G networks,
play an important role, this is not enough for AI-based distributed, dynamic, contextual,
and secure smart city applications enabled by emergent technologies [7]. As shown in
Figure 1, these applications include, but are not limited to, autonomous driving, accident
prevention and traffic management enabled by the Internet of Vehicles (IoV), remote pa-
tient monitoring, medical drug supply chain management, the prognosis/diagnosis of
diseases empowered by the Internet of Medical Things (IoMT), industry automation and
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surveillance using the Internet of Robotic Things (IoRT), building maintenance and package
delivery enabled by the Internet of Drones (IoD), system maintenance and pollution con-
trol enabled by the Industrial Internet of Things (IIoT), interactive gaming and aerospace
navigation using Holographic Communication (HC), immersive training and guided repair
enabled by Extended Reality (XR), intelligent transportation systems and smart connected
healthcare using blockchain, and data analytics empowered by edge-cloud computing.
These applications and their rigorous support for meeting requirements in terms of the
quality of services (QoS) and dependability to satisfy the Service-Level-Agreement (SLA)
for the end users [8–11] have been a driving force for the evolution of networks.
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Figure 1. A view of smart city digital ecosystem.

The energy consumption of the smart cities’ digital ecosystem serving these appli-
cations is a major issue causing environmental threats and increasing electricity bills,
requiring immediate sustainable remedies [12]. Estimates show that cloud data centers,
considered the backbone of smart cities, will be responsible for 4.5% of the total global
energy consumption by 2025 [13]. The average electricity cost for powering a data center
could be as high as $3 million per year [14]. Furthermore, it is predicted that by 2040,
Information and Communications Technology (ICT) will be responsible for 14% of global
carbon emissions [15]. Consequently, the underlying communication networks should
focus on deploying efficient, dependable, and secure applications in smart city applications
while considering the critical requirements of privacy, energy efficiency, high data rates,
and ultra-low latencies for those applications.

Therefore, industries and academia have started to look beyond 5G networks and
design the upcoming 6G. In particular, 6G network designers propose the use of AI in
its underlying protocols and operations for optimal performance and energy efficiency.
The vibe over AI and its tremendous potential for intelligent applications and network
systems, in combination with IoT smart city applications, have been a great motivation
in developing AI-IoT-based solutions. These solutions require huge communication and
computation resources, giving rise to latency, energy consumption, network congestion,
and privacy leakage.
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The current research on this topic either focuses on the requirements of AI applications
in a smart city ecosystem that can benefit from the underlying 6G networks or on the
self-learning 6G networks for agility, flexibility, and energy efficiency. To our knowledge,
no work adopts a holistic perspective considering the underlying 6G networks, middle-
ware, and technology-enabled applications for an intelligent and integrated smart city
digital ecosystem.

The main contributions of our paper are as follows.

1. We provide a temporal evolution of the wireless communication network generations
from 1G to AI-enabled 6G and capture the inherent challenges and technological
requirements that lead to the development of a given network generation over a
certain period.

2. We present self-learning models that would be infused in 6G to accommodate the
strict requirements of smart city applications in terms of low latency, high reliability,
security, energy efficiency, execution time, and context awareness.

3. We propose a taxonomy of distributed, dynamic, and contextual AI applications in
6G networks based on the underlying technology used by those applications. In
addition, we provide insights on the requirements of these applications that should
be considered by the underlying 6G networks.

4. We propose future directions toward the realization of a trustworthy and efficient
digital ecosystem consisting of intelligent and connected applications, the middleware,
the underlying technologies, and the 6G network systems.

The rest of the paper is organized as follows. Section 2 provides a categorization
and overview of related surveys. The temporal evolution of wireless communication
network generations is presented in Section 3. Sections 4 and 5 synthesize the taxonomies
of AI-enabled 6G networks with their self-learning models and technology-enabled smart
city applications in 6G. Future research directions are discussed in Section 6. Section 7
summarizes and concludes the paper.

2. Related Survey

There have been few surveys on AI-enabled applications and AI-6G in smart cities.
We classify these surveys into two categories based on the survey’s approach: (1) a top-
down approach highlighting the requirements of AI applications in terms of networks’
capabilities [16,17] and (2) a down-top perspective focusing on AI-enabled 6G networks for
agile, flexible, and efficient systems [18–21].

Concerning the top-down approach, Akhtar et al. [16] presented the projected 6G
architecture and its characteristics along with potential technologies enabling the envi-
sioned network generation systems. The authors focused on quantum communication
and machine learning, blockchain, tactile internet, and free duplexing and spectrum shar-
ing technologies. Furthermore, the authors discussed e-heath and bio-sensing, HC, and
IoT applications that will be underlined by 6G networks. However, the authors did not
analyze the requirements of the technology-enabled applications in 6G. Using a similar
approach, Tataria et al. [17] explained the 6G networks architecture, characteristics, and
deployment scenarios. In addition, the authors analyzed the requirements for applications
in 6G systems enabled by HC, tactile and haptic internet, edge-cloud computing, and IoT
technologies. However, these works [16,17] do not focus on employing self-learning models
on the underlined 6G networks layer for security, agility, flexibility, and energy efficiency.

Regarding the down-top approach, Yang et al. [18] proposed an AI-enabled 6G archi-
tecture for radio network resource management and service provisioning. Similarly, Letaief
et al. [19,20] analyzed the potential of AI for 6G networks design and optimization. Zhang
and Zu [21] presented a survey on AI-enabled 6G networks for radio interface, intelligent
traffic control, resource management, performance and energy optimization, and security.
However, these works do not analyze the requirements of AI applications in 6G networks.

Table 1 summarizes the related survey and their comparison with our work. In
contrast to these surveys based on top-down or down-top approaches, in this paper, the



Sensors 2022, 22, 5750 4 of 30

6G technology is prospected from a holistic perspective, where self-learning models are,
respectively, inserted into the main technical layers of 6G to achieve the requirements
of building an integrated smart city digital ecosystem as a whole, not just looking at
application needs or network requirements. In this approach, in addition to AI-enabled 6G
network systems and employed self-learning models, middleware and technology-enabled
applications and their requirements for an intelligent and connected contextual computing
and communication smart cities ecosystem are analyzed.

Table 1. Summary of related surveys.

Work Approach
Evolution of Wireless

Communication
Technology

AI-Enabled 6G
Networks

Technology-Enabled
Applications in 6G

[16] Top-down X 5 X
[17] 5 5 X

[18]

Down-Top

5 X 5

[20] 5 X 5

[19] 5 X 5

[21] 5 X 5

This paper Holistic X X X
X→ considered; 5→ not considered.

3. Evolution of Wireless Communication Technology (1G–6G)

Wireless communication technology has evolved over the years intending to provide
high-speed, reliable, and secure communication. Figure 2 shows the evolution of wireless
network development from 1G to 6G, including the year of proposing and that of deploying
a particular network generation over time. In the following, we explain each evolution
along with its applications and shortcomings.
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Figure 2. Evolution of wireless communication technology from 1G to 6G.

3.1. First Generation (1G) Technology

The first generation (1G) communication system was introduced in 1978 in the
United States based on the Advanced Mobile Phone System (AMPS) [22]. The AMPS
is an analog cellular system allocated with 50MHz bandwidth with a frequency range of
824–894 MHz [23]. The bandwidth in the AMPS is divided into sub-channels of 30 KHz,
each using Frequency Division Multiple Access (FDMA) for multiple users to send data.
In 1979, 1G was commercially launched in Japan by the Nippon Telegraph and Telephone
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(NTT) DoCoMo Company. In 1981, the Nordic Mobile Telephone (NMT) standard for 1G
was developed by the Nordic countries such as Norway, Denmark, Switzerland, Finland,
and Sweden. In 1983, the AMPS was commercially launched in the United States and was
later used in Australia. The Total Access Communication Systems (TACS) standard was
introduced in the United Kingdom for 1G [24]. First generation technology supported
voice calls with up to 2.4 Kbps of bandwidth within one country. However, the underlying
technology could not handle international voice and conference calls, and other applica-
tions such as messaging services, emails, and accessing information over a mobile wireless
network. In addition, being an analog system, 1G suffered from bad voice quality and poor
handoff reliability. Furthermore, 1G was less secure. To overcome these shortcomings, the
2G network generation was introduced.

3.2. Second Generation (2G) Technology

To enable applications such as international voice calls, messaging, and access to
information over a wireless network, which require a high data transfer rate, and to
make communication more secure, the second-generation (2G) wireless technology was
designed in the 1980s and introduced in 1991 under the Global System for Mobile (GSM)
communication standards in Finland [25]. The analog system of 1G was replaced by a
digital system enabling the encryption of voice calls and thus providing security. The
GSM uses Time Division Multiple Access (TDMA) such that each network user is allocated
the channel bandwidth based on time slots [26]. The GSM operates on a 900–1800 MHz
frequency band except for in America where it operates in the 1900 MHz band. TDMA
was later used by other digital standards such as the Digital AMPS (D-AMPS) in the
United States and the Personal Digital Cellular (PDC) in Japan. As an alternative to TDMA,
Code Division Multiple Access (CDMA) was introduced in the United States on the IS-95
standard [22] which allowed multiple network users to simultaneously transmit data based
on assigned unique code sequences. In addition to international roaming voice calls, 2G
supported conference calls, call hold facility, short message services (SMS), and multimedia
message services (MMS) with a data rate up to 9.6 Kbps.

The continuous evolution of the GSM technology led to the development of General
Packet Radio Service (GPRS), referred to as 2.5 G, which implemented packet switching
in addition to circuit switching. GPRS has provided additional services such as Wireless
Application Protocol (WAP) access and internet communication such as e-mail and World
Wide Web (WWW) access [27]. It provides data rates up to 115 Kbps [28]. GPRS further
evolved to the Enhanced Data Rates for GSM evolution (EDGE), providing higher data
rates. For instance, a 40 KB text file can be transferred in 2 s using EDGE compared to
6 s in GPRS. EDGE was deployed on GSM networks in 2003 by Cingular (now AT&T)
in the United States. The peak data speed of 2G is 50 Kbps using GPRS and 1 Mbps
using EDGE. However, 2G networks were not capable of handling video conferencing,
navigation services, and other applications which require high data rates, leading to the 3G
network generation.

3.3. Third Generation (3G) Technology

The Third Generation Partnership Project (3GPP) was formed in 1998 to provide
a standardized frequency across the globe for mobile networking, enabling high data
rate services such as video calls, navigation, and interactive gaming. It is based on the
International Mobile Telephone (IMT)-2000 standard and was first made available in Japan
by the NTT DoCoMo in 2001. The IMT-2000 focused on providing a wider coverage area,
improving the QoS, and making services available to users irrespective of their location [29].
One of the requirements of the IMT-2000 was to have a minimum speed of 200 Kbps for
a network to be 3G. The third generation has introduced wireless technology such as
video conferencing and video downloading with an increased data transmission rate at a
lower cost. It increased the efficiency of the frequency spectrum by improving the audio
compression during a call, allowing more simultaneous calls in the same frequency range.
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Third generation technology evolved between 2000 and 2010 to provide Universal Mobile
Telecommunications System (UMTS)-based networks with higher data rates and capacities.
In particular, High-speed Downlink Packet Access (HSDPA) was deployed (also referred to
as 3.5G), which is a packet-based data service providing downlink data rates 8–10 Mbps.
To provide services for applications that require high data rates such as interactive gaming,
High-Speed Uplink Packet Access (HSUPA) was introduced (referred to as 3.75G) which
enabled an uplink data transmission speed of 1.4–5.8 Mbps. However, IP telephony, 3D
videos, and High Definition (HD) mobile TV were not supported by the 3G technology,
leading to the foundation of the 4G network generation.

3.4. Fourth Generation (4G) Technology

To transmit data, voice, multimedia, and internet services at a higher rate, quality,
and security at a low cost, the Fourth Generation (4G) was initiated in the late 2000s as an
all-IP-based network system. Fourth Generation technology was first used commercially
in Norway in 2009 after its successful field trial in Japan in 2005. It aimed to provide
peak data rates of up to 1 Gbps at low mobility and 100 Mbps at high mobility and is
based on Long-Term Evolution (LTE) and Wireless Interoperability for Microwave Access
(WiMAX) technologies. The LTE standard was further enhanced to LE-Advanced Pro
(referred to as 4.5G) to increase the mobile broadband and connectivity performances [22].
However, 4G was not capable of operating applications that require image processing,
such as machine vision, smart connected cars, and augmented reality, giving rise to the 5G
network generation.

3.5. Fifth Generation (5G) Technology

To obtain a consistent QoS, low end-to-end latency, reduced cost, and massive device
connectivity, the Fifth Generation (5G) communication technology was established to
support applications such as AR, home and industrial automation, and machine vision.
Fifth Generation technology was first offered in South Korea in 2019. It provides a data rate
of 20 Gbps in the downlink and 10 Gbps in the uplink, and is aimed to support three generic
services; Enhanced Mobile Broadband (eMBB), Massive Machine-type Communications
(mMTC), and Ultra-Reliable Low-Latency Communications (URLLCs) [30]. eMBB aims to
deliver peak download speeds of over 10 Gbps to support applications such as Ultra-High
Definition (UHD) videos and AR. mMTC defines the requirement to support one million
low-powered economical devices per Km2 with a battery life of up to 10 years. It can
support applications such as smart homes and industrial automation that involve several
sensors, controllers, and actuators. URLLC sets the requirement of high reliability (99.99%),
extremely low latencies (<1 ms), and support for low data rates (bps/Kbps) to support
applications such as social messaging services, traffic lights, self-driving cars, and smart
healthcare. In 2020, Huawei, as part of the 5.5G vision, proposed three additional sets
of services; Uplink-centric Broadband Communication (UCBC), Real-Time Broadband
Communication (RTBC), and Harmonized Communication and Sensing (HCS) [31]. UCBC
aims to increase the uplink bandwidth by 10-fold to support applications involving machine
vision. For Augmented Reality (AR), Virtual Reality (VR), and Extended Reality (XR)
applications, RTBC would provision large bandwidth and low latency services with a
certain level of reliability. HCS focuses to offer communication and sensing functionalities
for connected cars and drone scenarios. However, with the emergence of an interactive
and connected IoT, communicating IoV, and holographic applications, the 5G networks
could not manage the stringent high computing and communications requirements of those
applications. Consequently, the 6G network generation was instigated.

3.6. Sixth Generation (6G) Technology

The Sixth Generation (6G) technology was envisioned in 2019–2020 to transform the
“Internet of Everything” into an “Intelligent Internet of Everything” with more stringent re-
quirements in terms of a high data rate, high energy efficiency, massive low-latency control,
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high reliability, connected intelligence with Machine Learning (ML) and Deep Learning
(DL), and very broad frequency bands [19]. Three new application services are proposed;
Computation Oriented Communications (COC), Contextually Agile eMBB Communica-
tions (CAeC), and Event-Defined uRLLC (EDuRLLC) [19]. COC will enable the flexible
selection of resources from the rate-latency-reliability space depending on the available
communication resources to achieve a certain level of computational accuracy for learning
approaches. CAeC will provision eMBB services that would be adaptive to the network
congestion, traffic, topology, users’ mobility, and social networking context. 6G-EDuRLLC
targets the 5G-URLLC applications that will operate in emergency or extreme situations
having spatial-temporal device densities, traffic patterns, and infrastructure availability.

Table 2 summarizes the characteristics of the wireless communication networks from
1G to 6G [16,32].

Table 2. Characteristics of the wireless communication technology from 1G to 6G.

Features
Network

1G 2G 3G 4G 5G 6G

Start 1970 1980 1998 2000 2010 2020
Deployment 1984 1999 2001 2010 2019 2030 *

Technology AMPS, NMT,
TACS GSM, GPRS, EDGE WCDMA,

UMTS LTE, WiMAX MIMO, mm
Waves

THz
communications,

VLC
Frequency 30 KHz 1.8 GHz 1.6–2 GHz 2–8 GHz 3–30 GHz 95 GHz–3 THz
Multiplexing FDMA TDMA/CDMA CDMA OFDMA OFDM OFDM
Switching Circuit Circuit, packet Packet All packet All packet All packet

Core network PSTN PSTN Packet
Network Internet Internet Internet

Primary services (in
addition to previous
generations)

Voice calls

International roaming
voice calls, conference
calls, SMS, MMS, WAP,

WWW, and emails

Video
conferencing,

GPS

Mobile web
access, IP

telephony, 3D
videos, HD
mobile TV

Machine
vision,

connected cars,
smart homes,

AR

Tactile and haptic
internet, connected

autonomous
systems,

holographic society

Peak data rate NA 50 Kbps (GPRS)
1 Mbps (EDGE) 21 Mbps 100 Mb/s 20 Gb/s ≥1 Tb/s

Mobility support NA NA NA 350 km/h 500 km/h ≥1000 km/h
Latency NA 300 ms 100 ms 10 ms 1 ms 10–100 µs
Network energy
efficiency (compared
to 4G)

NA 0.01x 0.1x 1x ≥10x ≥100x

Spectral efficiency
(compared to 4G) NA NA 0.6x 1x 3x ≥15x

Area traffic capacity NA NA 1 Kbps/m2 0.1 Mbps/m2 10 Mbps/m2 1 Gbps/m2

Connection density
(devices/km2) NA NA 104 105 106 107

*→ Expected; AMPS→ Advanced Mobile Phone System; NMT→ Nordic Mobile Telephone; TACS→ Total
Access Communication System; GSM → Global System for Mobile; GPRS → General Packet Radio Service;
EDGE → Enhanced Data rates for GSM Evolution; WCDMA → Wideband Code Division Multiple Access;
UMTS→ Universal Mobile Telecommunications Service; LTE→ Long-Term Evolution; WiMAX→Worldwide
Interoperability for Microwave Access; MIMO→Multiple Input Multiple Output; THz→ Terahertz; VLC→
Visible Light Communication; FDMA→ Frequency Division Multiple Access; TDMA→ Time Division Multiple
Access; CDMA→ Code Division Multiple Access; OFDMA→ Orthogonal Frequency Division Multiple Access;
OFDM→ Orthogonal Frequency Division Multiplexing; PSTN→ Public Switched Telephone Network; SMS→
Short Message Service; MMS→Multimedia Message Service; WAP→Wireless Application Protocol; WWW→
World Wide Web; GPS→ Global Positioning System; HD→ High Definition; AR→ Augmented Reality; NA→
Not Applicable.

4. Artificial Intelligence (AI)-Enabled 6G Networks

The disruptive emergence of highly distributed smart city mobile applications [33–35]
such as the IoV, IoMTs, IoD, IoRT, IIoT, 3D virtual reality, and their stringent requirements
in terms of the QoS and the need for the service providers to satisfy SLAs, have been
a driving force for 6G. In addition, many of those applications are AI-Big data-driven,
making it challenging if not impossible for 5G to satisfy those requirements. Therefore,
6G must provide battery-free device capabilities, very high data rates, a very high en-
ergy efficiency, massive low-latency control, very broad frequency bands, and ubiquitous
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broadband-global network coverage beyond what 5G LTE can offer. To achieve that level
of efficiency, in contrast to 5G, 6G needs to be equipped with context-aware algorithms
to optimize its architecture, protocols, and operations. For this purpose, 6G will infuse
connected intelligence in its design in an integrating communication, computing, and
storage infrastructure from the edges to the cloud and core infrastructure. Supporting a
wide range of applications that are demanding in terms of low latency, high reliability,
security, and execution time requires an AI-enabled optimization for 6G [19]. Traditional
approaches using statistical analysis based on prior knowledge and experiences via the
deployment of the Software Defined Network (SDN) [19] will not be any more effective due
to the elapsed time from analysis to decision making. Consequently, ML and DL algorithms
are used to solve several issues in networking, such as caching and data offloading [36]. In
this section, we present AI-enabled 6G network protocols and mechanisms (Figure 3) and
their employed self-learning ML/DL models.
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4.1. Channel Estimation

To fulfill the demanding requirements of smart city applications in terms of high data
rate (Tbps), low latency (order of 0.1–1 ms), and high reliability (order of 10−9) [37], the
6G radio access will be enabled by emerging technologies such as Terahertz communi-
cation [38], visible-light communication, ultra-massive multiple-input multiple-output
(MIMO) [39], and large intelligent surfaces [40]. These technologies will increase the
complexity of the radio communication channels, making efficient channel estimation
challenging using the traditional mathematical approaches. The wireless communication
channel attenuates the phase shifts and attenuates and adds noise to the transmitted in-
formation. In this context, channel estimation can be defined as the process of estimating
the characteristics of the communication channel to recover the transmitted information
from the channel effect. To increase the performance and capacity of 6G communication,
precise and real-time channel estimation becomes crucial. Recently, DL has gained wide
attention for precise channel estimation. Figure 4 shows a DL-based channel estimation
process where the signal is first transmitted along with some pilot (reference) signals. The
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effects of the channel on the pilot signals are then extracted. The channel characteristics are
then estimated by a DL method using the interpolated channel.
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Ye et al. [41] proposed a Deep Neural Network (DNN)-based approach for channel es-
timation and symbol detection in an Orthogonal Frequency Division Multiplexing (OFDM)
system. The DNN model is trained offline using OFDM samples generated using different
information sequences under distinct channel conditions. The model is then used to recover
the transmitted information without estimating the channel characteristics. Gao et al. [42]
proposed a Convolutional Neural Network (CNN)-based channel estimation framework
for massive MIMO systems. The authors used one-dimensional convolution to shape the
input data. Each convolutional block consists of a batch normalization layer to avoid
gradient explosions [43] and a Rectified Linear Unit (Relu) activation function.

4.2. Modulation Recognition

With the increasing data traffic in smart cities, different modulation methods are
employed in a communication system for efficient and effective data transmission by
modulating the transmitted signal. In this context, modulation recognition aims to identify
the modulation information of the signals under a noisy interference environment [44].
Modulation recognition aids in signal demodulation and decoding for applications such
as interference identification, spectrum monitoring, cognitive radio, threat assessment,
and signal recognition. The conventional decision-theory-based and statistical-pattern-
recognition-based methods for modulation recognition become computationally expensive
and time consuming for smart city applications [44]. DL can be used as an alternative
to improve the accuracy and efficiency of modulation recognition as shown in Figure 5.
Zhang et al. [44] investigated the applicability of a CNN and Long Short-Term Memory
(LSTM) for modulation recognition as the former is good for the automatic feature extraction
of spatial data and the latter performs well for sequential data. Yang et al. [45] proposed
the use of CNN and Recurrent Neural Networks (RNNs) for modulation recognition over
additive white Gaussian noise and Rayleigh fading channels. The authors found that DL
algorithms perform modulation recognition more accurately compared to ML algorithms
such as the Support Vector Machine (SVM). To ensure the privacy and security of the
transmitted data, Shi et al. [46] proposed a CNN-based federated learning approach with
differential privacy for modulation recognition.
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4.3. Traffic Classification

The categorization of network traffic into different classes, referred to as traffic classifi-
cation, is important to ensure the QoS, control pricing, resource management, and security
of smart city applications. The simplest method for traffic classification involves mapping
the applications’ traffic to port numbers [47]. However, this technique provides an inac-
curate classification since several applications use dynamic port numbers. Payload-based
methods are alternatives to the port-based techniques where the traffic is classified by
examining the packet payload [47]. However, the traffic payload cannot be accessed in
scenarios where the packets are encrypted due to privacy and security concerns. Con-
sequently, ML/DL-based methods can be used to address the issues of the conventional
methods (Figure 6). Ren, Gu, and Wei [48] proposed a Tree-RNN to classify network traffic
into 12 different classes. The proposed DL model consists of a tree structure that divides
the large classification problem into smaller ones, with each class represented by a tree
node. Lopez-Martin et al. [49] proposed a hybrid RNN- and CNN-based network to classify
traffic from IoT devices and services. CNN layers extract complex network traffic features
automatically from the input data, eliminating the feature selection process used in the
classical ML approaches.
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4.4. Traffic Prediction

Network traffic predictions focus on predicting future traffic using previous traffic
data. This aids in proactively managing the network and computing resources, improving
the QoS, making the network operations cost-effective, and detecting anomalies in the data
traffic. DL has shown potential in predicting network traffic accurately in real time. Figure 7
shows an overview of the DL-based predictions of the network traffic data. Vinayakumar
et al. [50] evaluated the performance of different RNNs, namely the simple RNN, Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Identity Recurrent Unit (IRNN),
and Feed-forward Neural Network (FNN) to predict network traffic using a GEANT
backbone networks dataset. The experimental results showed that LSTM predicts the
network traffic with the least MSE. Aloraifan, Ahmad, and Alrashed [51] used Bi-directional
LSTM (Bi-LSTM) and Bi-directional GRU (Bi-GRU) to predict the network traffic matrix.
To increase the prediction accuracy, the authors combined a CNN with Bi-LSTM or Bi-
GRU. The authors found that the prediction performance of DL algorithms depends on the
configuration of the neural network parameters.
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4.5. Data Caching

Internet data traffic is exploding at a rapid pace with the increasing popularity and de-
mand of different smart city applications such as infotainment, AV, VR, interactive gaming,
and XR. Consequently, it becomes challenging to accommodate these data in terms of stor-
age and transmission for applications that require an ultra-low latency such as autonomous
vehicles and smart healthcare. To address this challenge, edge caching [52] is seen to be a
potential solution that provides storage facilities to the IoT data at the edge of the network,
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i.e., in proximity to the mobile devices. This enables IoT applications to retrieve data in real
time from the edge resources, eliminating backhaul link communication. Consequently,
edge caching reduces data transmission time and energy. However, determining the opti-
mal cache content and cache placement strategies in a dynamic network is challenging [53].
DL can be effective in designing optimal caching strategies, as shown in Figure 8. Jiang
et al. [54] proposed a distributed deep Q-learning-based caching mechanism to improve
the edge caching efficiency in terms of cache hit rate. The mechanism involves the predic-
tion of users’ preferences offline followed by the online prediction of content popularity.
However, due to the limited caching resources of the edge nodes and spatial-temporal
content demands from the mobile users, cooperative edge caching schemes are required.
Zhang et al. [55] proposed a DRL-based cooperative edge caching approach that enables
the communication between distributed edge servers to enlarge the size of the cache data.
However, cooperative schemes often collect and analyze the data at a centralized server.
The sharing of sensitive data, such as users’ preferences and content popularity, among
different edge and cloud servers, raises privacy concerns. To tackle this challenge, federated
learning (FL) can be a promising solution in which learning models to predict content
popularity are trained locally at the IoT devices for cooperative caching [55].
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4.6. Intelligent Routing

To manage the network traffic efficiently and to fulfill the QoS requirements of 6G
applications, several routing strategies have been developed. However, the traditional
routing protocols developed using meta-heuristic approaches become computationally
expensive with increasing traffic variability. Consequently, ML and DL-based approaches
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have been proposed to address the shortcomings of the traditional methods. Figure 9
shows an example of DL-based intelligent routing in an IoT environment. Tang et al. [56]
proposed a real-time deep CNN-based routing algorithm in a wireless mesh network
backbone. A CNN model with two convolutional layers and two fully connected layers is
trained periodically using the continuous stream of network data. Liu et al. [57] proposed
a DRL-based routing in software-defined data center networks by recombining network
resources (such as cache and bandwidth) based on their effectiveness in reducing delay
and then using DRL for routing with the recombined state. The employed DNN model
within DRL consists of two fully connected hidden layers with 30 neurons each. The CNN
model in the actor and critic networks of DRL consists of two max pooling layers, three
convolutional layers with eight filters, and one fully connected layer with 30 neurons. A
Relu activation function is employed in all the layers.
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4.7. Radio Resource Management

With the future 6G networks, the density of small-cell networks increases drastically.
Consequently, radio resource management has emerged for the system-level management
of co-channel interference, radio resources, and other radio transmission characteristics in a
wireless communication system to utilize the radio spectrum efficiently. With the increasing
dynamicity and complexity of network generations towards 6G, the traditional heuristic-
based approaches for radio resource management become inaccurate. ML/DL-based
approaches are explored as an alternative solution. Shen et al. [58] proposed graph neural
networks for radio resource management in a large-scale network by modeling the wireless
network as a wireless channel graph and then formulating the resource management as
a graph optimization problem. The neural network consisted of three layers, an adam
optimizer, and a learning rate of 0.001. Zhang et al. [59] proposed a DNN framework
for radio resource management to minimize the energy consumption of the network
constrained by power limitation, inference limitation, and the QoS. A DNN model with
three layers, 800 neurons per layer, a 0.01 learning rate, and an adam optimizer is employed
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for a power optimization scheme, whereas a DNN model with four layers, 80 neurons per
layer, a 0.05 learning rate, and an RMSProp optimizer is used for sub-channel allocation.

4.8. Network Fault Management

In network management, fault management is to detect, predict, and eliminate mal-
functions in the communication network. The integration of newly emerging technologies
and paradigms in 6G networks makes the network more complex, heterogeneous, and
dynamic. Consequently, fault management becomes more challenging in 6G networks.
ML/DL approaches have been studied recently for efficient fault management. Regin,
Rajest, and Singh [60] proposed a Naïve Bayes and CNN-based algorithm for fault detection
over a wireless sensor network in a distributed manner. The results show that the proposed
approach accurately detects faults and is energy efficient. Regarding fault diagnosis, [61]
implemented an FNN for fault detection and classification in wireless sensor networks. The
DL model was tuned using a hybrid gravitational search and particle swarm optimization
algorithm. Kumar et al. [62] studied the feasibility of ML and DL approaches for fault
prediction on a cellular network. The results showed that a DNN with an autoencoder (AE)
predicts the network fault with the highest accuracy compared to autoregressive neural
networks and the SVM.

4.9. Mobility Management

Sixth Generation networks will serve a spectrum of mobile applications such as the
IoV, IoRT, and IoMT that require low latency and highly reliable services. To guarantee the
QoS for these applications while improving the resource utilization and network bottleneck,
it becomes crucial to learn and predict users’ movements. DL-based approaches can be
an alternative solution, as shown in Figure 10. Zhao et al. [63] proposed a mobile user
trajectory prediction algorithm by combining LSTM with RL. LSTM is used to predict the
trajectories of mobile users, whereas RL is used to improve the model training time of LSTM
by finding the most accurate neural network architecture for the given problem without
human intervention. An initial learning rate of 0.002 is selected for LSTM and a Q-learning
rate and discount factor of 0.001 and 1 are used for RL. Klus et al. [64] proposed ANN
models for cell-level and beam-level mobility management optimization in the wireless
network. The results showed that DL-based approaches outperform the conventional 3GPP
approach for mobility management.

Sensors 2022, 21, x FOR PEER REVIEW 15 of 32 
 

 

model with three layers, 800 neurons per layer, a 0.01 learning rate, and an adam opti-

mizer is employed for a power optimization scheme, whereas a DNN model with four 

layers, 80 neurons per layer, a 0.05 learning rate, and an RMSProp optimizer is used for 

sub-channel allocation. 

4.8. Network Fault Management 

In network management, fault management is to detect, predict, and eliminate mal-

functions in the communication network. The integration of newly emerging technologies 

and paradigms in 6G networks makes the network more complex, heterogeneous, and 

dynamic. Consequently, fault management becomes more challenging in 6G networks. 

ML/DL approaches have been studied recently for efficient fault management. Regin, Ra-

jest, and Singh [60] proposed a Naïve Bayes and CNN-based algorithm for fault detection 

over a wireless sensor network in a distributed manner. The results show that the pro-

posed approach accurately detects faults and is energy efficient. Regarding fault diagno-

sis, [61] implemented an FNN for fault detection and classification in wireless sensor net-

works. The DL model was tuned using a hybrid gravitational search and particle swarm 

optimization algorithm. Kumar et al. [62] studied the feasibility of ML and DL approaches 

for fault prediction on a cellular network. The results showed that a DNN with an auto-

encoder (AE) predicts the network fault with the highest accuracy compared to auto-

regressive neural networks and the SVM. 

4.9. Mobility Management 

Sixth Generation networks will serve a spectrum of mobile applications such as the 

IoV, IoRT, and IoMT that require low latency and highly reliable services. To guarantee 

the QoS for these applications while improving the resource utilization and network bot-

tleneck, it becomes crucial to learn and predict users’ movements. DL-based approaches 

can be an alternative solution, as shown in Figure 10. Zhao et al. [63] proposed a mobile 

user trajectory prediction algorithm by combining LSTM with RL. LSTM is used to predict 

the trajectories of mobile users, whereas RL is used to improve the model training time of 

LSTM by finding the most accurate neural network architecture for the given problem 

without human intervention. An initial learning rate of 0.002 is selected for LSTM and a 

Q-learning rate and discount factor of 0.001 and 1 are used for RL. Klus et al. [64] proposed 

ANN models for cell-level and beam-level mobility management optimization in the wire-

less network. The results showed that DL-based approaches outperform the conventional 

3GPP approach for mobility management. 

 

Figure 10. Deep Learning (DL)-based mobility management for Internet of Things (IoT) devices and 

users. 
Figure 10. Deep Learning (DL)-based mobility management for Internet of Things (IoT) devices
and users.



Sensors 2022, 22, 5750 15 of 30

4.10. Energy Optimization

With 6G networks providing efficient connectivity to a wide range of IoT applications,
the number of IoT devices is expected to increase dramatically. The data transfer, storage,
and analysis from these devices will increase the energy consumption of the network.
Recently, ML/DL approaches have shown potential for saving energy in wireless networks.
Wei et al. [65] proposed actor-critic RL for users’ requests scheduling and resource allocation
in heterogeneous cellular networks to minimize the energy consumption of the overall
network. Continuous stochastic actions are generated by the actor part using a Gaussian
distribution. The critic part estimates the performance of the policy and aids the actor in
learning the gradient of the policy using compatible function approximation. Kong and
Panaitopol [66] proposed an online RL algorithm to dynamically activate and deactivate
the resources at the base station depending on the network traffic. The online RL algorithm
eliminates the need for a separate model training process.

4.11. Intrusion Detection

The evolving smart city applications running on the underlying 6G networks require
high reliability and high security. In this context, intrusion detection can be used to identify
unauthorized access and malicious activities in smart city applications. Figure 11 shows
a DL-based approach for intrusion detection in the IoT environment. Sharifi et al. [67]
proposed an intrusion detection system using a combined K Nearest Neighbor (Knn) and K-
means algorithm. The proposed system employs principal component analysis for feature
extraction and then uses a K-means algorithm to cluster the data. The clustered data is
then classified using KNN. Yin et al. [68] proposed an RNN-based approach for binary and
multi-class intrusion detection. For binary class intrusion detection, an RNN model with
80 hidden nodes and a learning rate of 0.1 provides the highest accuracy. For multi-class
intrusion detection, an RNN model with 80 hidden nodes and a 0.5 learning rate yields the
highest accuracy. The results show that DL approaches are better than ML approaches for
intrusion detection.

Sensors 2022, 21, x FOR PEER REVIEW 16 of 32 
 

 

4.10. Energy Optimization 

With 6G networks providing efficient connectivity to a wide range of IoT applica-

tions, the number of IoT devices is expected to increase dramatically. The data transfer, 

storage, and analysis from these devices will increase the energy consumption of the net-

work. Recently, ML/DL approaches have shown potential for saving energy in wireless 

networks. Wei et al. [65] proposed actor-critic RL for users’ requests scheduling and re-

source allocation in heterogeneous cellular networks to minimize the energy consumption 

of the overall network. Continuous stochastic actions are generated by the actor part using 

a Gaussian distribution. The critic part estimates the performance of the policy and aids 

the actor in learning the gradient of the policy using compatible function approximation. 

Kong and Panaitopol [66] proposed an online RL algorithm to dynamically activate and 

deactivate the resources at the base station depending on the network traffic. The online 

RL algorithm eliminates the need for a separate model training process. 

4.11. Intrusion Detection 

The evolving smart city applications running on the underlying 6G networks require 

high reliability and high security. In this context, intrusion detection can be used to iden-

tify unauthorized access and malicious activities in smart city applications. Figure 11 

shows a DL-based approach for intrusion detection in the IoT environment. Sharifi et al. 

[67] proposed an intrusion detection system using a combined K Nearest Neighbor (Knn) 

and K-means algorithm. The proposed system employs principal component analysis for 

feature extraction and then uses a K-means algorithm to cluster the data. The clustered 

data is then classified using KNN. Yin et al. [68] proposed an RNN-based approach for 

binary and multi-class intrusion detection. For binary class intrusion detection, an RNN 

model with 80 hidden nodes and a learning rate of 0.1 provides the highest accuracy. For 

multi-class intrusion detection, an RNN model with 80 hidden nodes and a 0.5 learning 

rate yields the highest accuracy. The results show that DL approaches are better than ML 

approaches for intrusion detection. 

 

Figure 11. Deep Learning (DL)-based intrusion detection in Internet of Things (IoT) environments. 

4.12. Traffic Anomaly Detection 

Network traffic anomalies refer to unusual changes in the traffic such as a transient 

change in users’ requests, port scans, and flash crowds. The detection of such anomalies 

Figure 11. Deep Learning (DL)-based intrusion detection in Internet of Things (IoT) environments.



Sensors 2022, 22, 5750 16 of 30

4.12. Traffic Anomaly Detection

Network traffic anomalies refer to unusual changes in the traffic such as a transient
change in users’ requests, port scans, and flash crowds. The detection of such anomalies is
important for the security of the network and reliable services. DL approaches have recently
gained popularity for traffic anomaly detection in complex, dynamic, and heterogeneous
wireless networks (Figure 12). Kim and Cho [69] proposed a C-LSTM neural network to
model the spatial-temporal traffic data information and to detect an anomaly. The CNN
layer in the model reduces the variation in the information, the LSTM layer models the
temporal information, and the DNN layer is used to map the data onto a separable space.
The tanh activation function is employed in all the layers except the LSTM output layer,
which uses softmax activation. Naseer et al. [70] evaluated the performance of ML and
DL models for anomaly detection. The authors implemented extreme learning machine,
nearest neighbor, decision tree, random forest, SVM, Naïve Bayes, quadratic discriminant
analysis, Multilayer Perceptron (MLP), LSTM, RNN, AE, and CNN models. The results
showed that DCNN and LSTM detect anomalies with the highest accuracy.
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4.13. Botnet Detection

The ever-growing IoT network in smart cities suffers from botnet attacks where a
large number of IoT devices are infected by malware to execute repetitive and malicious
activities and launch cyber-attacks such as Denial of Service (DoS), distributed DoS (DdoS),
or data theft against critical smart city infrastructure [71,72]. For efficient and reliable botnet
detection, ML and DL approaches have been restored as potential solutions in the literature
(Figure 13). Injadat et al. [73] proposed a combined Bayesian Optimization Gaussian
Process (BO-GP) algorithm and Decision Tree (DT) classifier for detecting botnet attacks
on the IoT devices. Popoola et al. [74] proposed a DL-based botnet detection system for
the resource-constrained IoT devices. The dimensionality of the large volume of network
traffic data is reduced using the LSTM autoencoder (LAE) having a Relu activation function
and a learning rate of 0.001. A deep Bi-LSTM model, with six input neurons, four dense
hidden layers, and an output layer, is then used for botnet detection on the low-dimensional
feature set. A Relu activation function is employed in the input and hidden layers, whereas
sigmoid and softmax activation functions are used at the output layer for binary and
multiclass classification, respectively.
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5. Taxonomy of Technology-Enabled Smart City Applications in 6G Networks

In this section, we present a taxonomy of smart city applications for next-generation
6G networks, as shown in Figure 14. We base the taxonomy on the underlying technologies,
i.e., IoT, HC, blockchain, XR, and edge-cloud computing, used by those applications
empowered by AI, ML/DL, federated and distributed learning, and big data analytics
paradigms. In the following, we describe the technologies along with the requirements, in
terms of the network characteristics, of the applications using them.

5.1. Internet of Things (IoT)

The IoT is a network of connected devices, sensors, and users using internet technolo-
gies that can self-organize, sense and collect data, analyze the stored information, and react
to the dynamic environment [75]. The number of connected devices is expected to reach
more than 30 billion by 2025 which will be more than 70% of the non-IoT devices. Figure 15
shows the growth of IoT and non-IoT devices over years. The IoT can be further classified
based on its application domains such as the IoV, IoMT, IoRT, IoD, and IioT.

5.1.1. Internet of Vehicles (IoV)

The IoV is a distributed network of mobile vehicles that have sensing, computing,
and Internet Protocol (IP)-based communication capabilities [76]. The global IoV market
is projected to reach $208,107 million by 2024 from $66,075 in 2017, with a GAGR of 18%
between 2018 and 2024 [77]. The IoV network interconnects vehicles with pedestrian
and urban infrastructure facilities such as the cloud and Roadside Units (RSUs). The IoV
includes six types of communications for vehicles to receive and transmit data as shown in
Figure 16: (1) Vehicle-to-Vehicle (V2V), (2) Vehicle-to-Infrastructure (V2I), (3) Vehicle-to-
Roadside (V2R), (4) Vehicle-to-Sensors (V2S), (5) Vehicle-to-Cloud (V2C), and (6) Vehicle-to-
Pedestrian (V2P). Several vehicular applications have been developed for the IoV such as an
intelligent parking system, real-time navigation, traffic and accident alert, facial recognition
for autonomous driving, cooperative adaptive cruise control, and traffic signal violations.
These applications have strict data rate and latency requirements that should be supported
by the underlying 6G networks. For instance, autonomous driving involving multiple
sensors may require a total data rate of 1 Gbps for V2V and V2X communications [78].
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Furthermore, it requires a reliability of 99.999% [79], which cannot be obtained with the
existing wireless communication systems. In addition, vehicular applications such as
infotainment, e-toll collection, collision warning, autocruise, AR map navigation, and
co-operative stability control have stringent latency requirements of 500 ms, 200 ms, 100 ms,
20 ms, 5 ms, and 1 ms, respectively [80]. The 6G networks should consider the issues of
the limited spectrum, high latency, and low reliability prevailing in the current vehicular
standards, i.e., IEEE 802.11p [81].
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5.1.2. Internet of Medical Things (IoMT)

The IoMT is a distributed network of bio-medical sensors and devices that acquire,
process, and transmit the bio-medical signals of patients. It integrates the communication
protocol of the IoT with medical devices to enable remote patient monitoring and treatment.
Its global market is expected to reach $172.4 billion by 2030 from $39.3 billion in 2020,
at a CAGR of 15.9% from 2021 to 2030 [82]. The IoMT has several applications, such as
the monitoring of patients with chronic diseases, monitoring of elderly people, disease
prognosis and diagnosis, medical equipment and drug monitoring, drug anti-counterfeiting,
and medical waste management. In the context of a pandemic such as COVID-19, the
IoMT can be used for the detection, tracking, and monitoring of infected individuals and
the prediction of infections [83]. The IoMT applications require ultra-low latency and
high reliability for scenarios such as remote surgery. The tactile and haptic internet is the
backbone for such scenarios, whose requirements are not completely fulfilled by the current
wireless systems [84]. The tactile internet requires an end-to-end latency of the order of
1 ms and haptic feedback requires a latency of sub-milliseconds [85,86].
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5.1.3. Internet of Robotic Things (IoRT)

The IoRT is a distributed network of intelligent robot devices that can monitor events,
integrate sensors’ data from multiple heterogeneous sources, and use local/distributed
intelligence to take actions [87]. The IoRT market is expected to reach $1.44 billion by 2022,
growing at a CAGR of 29.7% from 2016 to 2022 [88]. The IoRT has several applications
in several domains such as agriculture, construction, logistics, transportation, banking,
healthcare, home automation, and industrial automation [89]. Robotics and automation
require control in real time to avoid oscillatory movements, with a maximum tolerable
latency of 100µs and round-trip times of 1ms [17]. Moreover, industrial robotic automation
requires a reliability of 99.999% [79].

5.1.4. Internet of Drones (IoD)

The IoD is a network of coordinated drones with communication capabilities among
themselves, pedestrians, and ground infrastructure [90]. The global drone market is ex-
pected to reach $43.4 billion by 2027 with a CAGR of 12.56% between 2022 and 2027 [91].
The IoD applications include smart city surveillance, infrastructure monitoring, and main-
tenance, search, and rescue missions in place of natural/manmade hazards, logistics, traffic
control, weather forecasts, disaster management, and events live streaming [92]. These
applications require tactile and haptic internet with an ultra-low latency, high data rate,
and high reliability requirements.

5.1.5. Industrial Internet of Things (IioT)

The IioT refers to a network of connected machines and devices in the industry for
machine-to-machine (M2M) and machine-to-human (M2H) communications [93]. The
IioT market is expected to reach $197 billion by 2023 from $115 billion in 2016 with a
CAGR of 7.5% from 2017 to 2023 [94]. Applications involve predictive maintenance, quality
control, safety management, and supply chain optimization. The IioT sensors and devices
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are often placed in noisy environments to support mission-critical safety applications.
These applications have stringent latency and reliability requirements for proper control
decisions [95]. In some cases, the IioT may require a reliability of 99.99999% [96] as
information loss could be catastrophic in some scenarios such as nuclear energy plants.

5.2. Holographic Communication (HC)

HC is the next evolution of 3D videos and images that will capture data from multiple
sources, providing end users with an immersive 3D experience. The global holographic
display market size is projected to reach $11.65 billion by 2030 from $1.13 billion in 2020,
i.e., a CAGR of 29.1% from 2021 to 2030 [97]. It requires very high data rates and an ultra-low
latency. The bandwidth requirements for a human-sized hologram after data compression
varies from tens of Mbps to 4.3 Tbps [98,99]. However, a high level of compression to
reduce the bandwidth requirements will lead to a high latency. To have a seamless 3D
experience, holograms require a latency of sub-milliseconds [17,100]. Consequently, there
is a tradeoff between the level of compression, computation bandwidth, and latency, which
needs to be optimized by the network [101]. Furthermore, the network should have high
resilience in the case of HC to maintain a high QoS by assuring reliability and reducing
jitter, packet loss, and latency. Considering the security requirements for HC in applications
such as smart healthcare (remote surgery), the network must be secured.

5.3. Extended Reality (XR)

Extended reality (XR) technologies involve AR, Mixed Reality (MR), and VR applica-
tions. The current wireless communication technologies are unable to provide an immersive
XR experience for users of these applications, such as 3D medical imaging, surgical train-
ing, immersive gaming, guided remote repair and maintenance, virtual property tours,
e-commerce purchase, hands-on virtual learning, and virtual field trips for students. This is
due to the inability of the currently deployed 5G technology to deliver ultra-low latencies
and very high data rates [102]. These XR applications are highly demanding in terms of
communication and computation due to the incorporation of perceptual needs (human
senses, physiology, and cognition). The envisioned 6G networks should ensure the Quality-
of-Physical-Experience (QoPE) [103] for these XR applications by providing URLLLC and
eMBB services.

5.4. Blockchain

Blockchain is a decentralized peer-to-peer technology that eliminates the need for
a centralized third party [104]. Each event in the network is recorded in a ledger that is
replicated and synchronized among all network participants. A participant in the network
owns a public–private key pair [105], which enables authentication [106,107] and allows
transaction validation. The consensus, cryptographic, provenance, and finality characteris-
tics of blockchain provide security, privacy, immutability, transparency, and traceability.
Blockchain has shown potential in several applications including healthcare [108–112],
transportation [113,114], energy [115,116], education [117,118], and governance [119,120].
Figure 17 shows a blockchain-based integrated IoV-edge-cloud computing system, where
the ledge is replicated at the edge and cloud servers. The events for different vehicular ap-
plications such as autonomous driving, infotainment, and real-time navigation are recorded
as transactions in the ledger. The consensus protocol and replication of the ledger involved
in blockchain require high bandwidth, reliable connection, and low-latency communica-
tions between multiple nodes to reduce communication overhead [121–123]. It requires a
synergistic aggregation of URLLC and mMTC to provide an ultra-low latency, reliability,
and scalability.
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5.5. Edge-Cloud Computing

Cloud computing is a technological paradigm that enables on-demand access to
a shared pool of configurable computing, storage, and network resources over the in-
ternet [124]. It is based on a pay-per-use model and can be provisioned with minimal
management effort. With the emergence of the IoT and big data analytics applications in
various domains such as healthcare [125–127], education [128–130], transportation [131],
banking [132,133], energy utilities [134,135], and entertainment [136,137], cloud computing
provides a sandbox for data processing and storage, enabling the deployment of compute-
intensive smart city applications [138]. However, considering the distance between the
IoT devices and the remote cloud servers, the latency requirements of time-critical ap-
plications may be violated. Consequently, mobile edge computing has been introduced,
which provides computing and storage resources close to the IoT devices. For applications
with low latency requirements, the service request can be directed to the nearest edge
computing site. However, the computing capabilities of edge servers are low compared
to the remote cloud servers, leading to the high processing time for compute-intensive
applications. Thus, an integrated edge-cloud computing system is often used to handle
compute-intensive and/or time-critical applications [139,140]. However, the underlying
6G networks should consider the energy efficiency [141–148], optimal resource provision-
ing and scheduling [149–152], and contextual-aware application partitioning [153–164]
requirements of this integrated system.

In summary, smart city applications have stringent requirements, in terms of an
ultra-low latency, high data rate, reliability, energy efficiency, and security that should be
fulfilled by the next-generation 6G networks. These applications, underpinned by emerging
technologies such as the IoT, HC, blockchain, XR, and edge-cloud computing, provide a
lot of potential for unprecedented services to citizens. However, smart urbanism [165]
is seen as critical for the success of a smart city. Governments should put in place plans
to address some inherent issues to the deployment of AI-sensing and data-driven smart
applications. In particular, privacy concerns should be addressed as personal data is
collected continuously. In addition, people’s fear that this paradigm shift to smart cities
may generate unemployment in some professions should be dealt with. Furthermore,
worries of losing social face-to-face interactions with government entities, which would
rely on sensing and digital devices to collect personal data for improving services, have to
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be taken care of. Consequently, smart urbanism advocates incremental changes to cities
rather than a massive one.

6. Future Directions

While the 5G mobile communication networks generation is just starting to be de-
ployed, there is already a plan to design new 6G networks. This is because of the prolif-
eration of diversified smart city applications that are extensively distributed and more
intelligent than ever before, thanks to the emergence of AI, big data analytics, federated
and distributed learning, the IoT, edge-cloud computing, and blockchain. The currently
in-deployment 5G networks will not be capable of meeting the heterogeneous and strin-
gent requirements of these applications, in terms of efficiency, real-time operation, and
reliability, with ever-increasing traffic demands. For instance, 5G is incapable of delivering
ultra-low latencies and high data rates for holographic applications that demand data
rates of up to 4.3 Tbps. In contrast to the previous generation networks, 6G is expected to
support numerously connected and intelligent applications with stringent requirements
in terms of high data rates, high energy efficiency, ultra-low latencies, and very broad
frequency bands. Considering the requirements of 6G networks and smart city applications,
AI will be the dominant enabler in the network, middleware, and application layers, as
shown in Figure 18. Current research practices either focus on self-learning 6G networks,
AI-enabled middleware, or AI applications in smart cities’ digital ecosystems. AI with
self-learning capabilities empowers 6G networks to be intelligent, agile, flexible, and adap-
tive by providing functionalities for channel estimation, modulation recognition, network
traffic classification and prediction, intelligent routing, radio resource management, fault
management, network energy optimization, and intrusion, botnet, and traffic anomaly
detections. Furthermore, at the middleware layer, AI can aid in the scheduling of smart city
applications’ requests, computing resource management, computation and communication
energy optimization, application performance optimization, context-aware data caching,
and fault tolerance and data availability. In regard to smart city applications, AI can benefit
the evolving applications within emerging technological paradigms such as the IoV, IoMT,
IoD, IoRT, IIoT, HC, XR, cloud computing, edge-cloud computing, and blockchain.

Research in the following directions is required for the realization of AI-enabled smart
city applications in self-learning 6G networks.

1. Automated AI frameworks: In 6G networks, a massive amount of the data will be
generated from the network, middleware, and application layers. The dynamic
environment requires ongoing updates of the AI learning models’ parameters. In 6G
networks where ultra-low latencies are a key requirement, tuning the parameters using
traditional grid search or meta-heuristic approaches may introduce a computational
overhead, degrading the performance of smart city applications and the underlying
6G networks. Consequently, there is a need for automated AI frameworks that would
select the optimal models’ parameters based on the contextual applications and
network dynamics.

2. AI frameworks integration: The self-learning 6G networks in the smart city digital
ecosystem will comprise numerous AI models at the network, middleware, and
application layers. The output of the learning models from the application and
middleware layers should be fed as the input to the learning models at the network
layer in a dynamic environment. The high flexibility and scalability of the AI learning
frameworks are crucial for supporting a high number of interactions between the
learning models at different layers and providing dependable services in real time.
Consequently, further research is required on how to integrate dependable, flexible,
and scalable learning frameworks for smart city applications in 6G networks.

3. Performance of AI models: In 6G networks, meeting the accuracies of the AI models to
process high-dimensional dynamic data at the network, middleware, and application
layers is crucial. However, these AI models, deep learning and meta-heuristics in
particular, have high computational complexity and require a huge amount of time
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for convergence. This hinders the deployment of applications with ultra-low latency
requirements such as robotics and automation, collision warning in the IoV, and AR
map navigation. Furthermore, the computationally expensive AI models have a high
energy consumption. Consequently, further research on how to design efficient AI
approaches to improve computation efficiency and energy consumption is required.
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7. Summary and Conclusions

The design of agile, flexible, and self-learning 6G networks is envisioned to support
emerging distributed, dynamic, and intelligent smart city applications. AI is expected
to play an important role in smart city applications as well as the 6G networks. In this
paper, we provide a temporal evolution of wireless network generations capturing the
technological and application requirements that led to the development of a given network
generation over a certain period. In addition, we adopt a holistic approach to providing
taxonomies for AI-enabled 6G networks and technology-enabled smart city applications.
For the 6G networks, we highlight the employed self-learning models. Furthermore, for the
applications use cases, we provide the QoS and SLA requirements that should be considered
for the deployment of these applications. Finally, we discussed research directions toward
intelligent and integrated computing, communication, coordination, and decision-making
smart city digital ecosystems in 6G networks.
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