
A fine-grained task scheduling strategy for resource auto-scaling over
fluctuating data streams
Yinuo Fana, Dawei Suna,∗, Minghui Wua, Shang Gaob and Rajkumar Buyyac

aSchool of Information Engineering, China University of Geosciences, Beijing, 100083, P.R.China
bSchool of Information Technology, Deakin University, Waurn Ponds, Victoria 3216, Australia
cQuantum Cloud Computing and Distributed Systems (qCLOUDS) Lab, School of Computing and Information Systems, The University of
Melbourne, Australia

A R T I C L E I N F O

Keywords:
Stream computing systems
Fine-grained scheduling
Resource auto-scaling
Communication cost
Fluctuating data streams

A B S T R A C T

Resource scaling is crucial for stream computing systems in fluctuating data stream scenarios.
Computational resource utilization fluctuates significantly with changes in data stream rates, often
leading to pronounced issues of resource surplus and scarcity within these systems. Existing research
has primarily focused on addressing resource insufficiency at runtime; however, effective solutions
for handling variable data streams remain limited. Furthermore, overlooking task communication
dependencies during task placement in resource adjustment may lead to increased communication
cost, consequently impairing system performance. To address these challenges, we propose Ra-
Stream, a fine-grained task scheduling strategy for resource auto-scaling over fluctuating data streams.
Ra-Stream not only dynamically adjusts resources to accommodate varying data streams, but also
employs fine-grained scheduling to optimize system performance further. This paper explains Ra-
Stream through the following aspects: (1) Formalization: We formalize the application subgraph
partitioning problem, the resource scaling problem and the task scheduling problem by constructing
and analyzing a stream application model, a communication model, and a resource model. (2)
Resource scaling and heuristic partitioning: We propose a resource scaling algorithm to scale compu-
tational resource for adapting to fluctuating data streams. A heuristic subgraph partitioning algorithm
is also introduced to minimize communication cost evenly. (3) Fine-grained task scheduling: We
present a fine-grained task scheduling algorithm to minimize computational resource utilization while
reducing communication cost through thread-level task deployment. (4) Comprehensive evaluation:
We evaluate multiple metrics, including latency, throughput and resource utilization in a real-world
distributed stream computing environment. Experimental result demonstrate that, compared to state-
of-the-art approaches, Ra-Stream reduces system latency by 36.37% to 47.45%, enhance system
maximum throughput by 26.2% to 60.55%, and saves 40% to 46.25% in resource utilization.

1. Introduction
Stream computing systems demonstrate exemplary per-

formance in processing stream applications that demand low
latency (on the order of milliseconds) and high throughput
[1], such as traffic monitoring [2], anomaly detection [3],
and Internet of Things [4]. To support the demanding re-
quirements of stream applications, many stream processing
systems have emerged such as Apache Flink and Spark
Streaming [5]. Among them, Apache Storm is particularly
well-suited for time-critical processing scenarios and has
demonstrated extensive applicability in various fields. In re-
cently years, it has established itself as a mainstream stream
computing framework due to its excellent performance [6].

Resource scaling and task scheduling [7, 8] are crucial
for achieving low system latency and high system through-
put—two key metrics for evaluating stream computing sys-
tems [9]. In real-world application scenarios, data stream
rates are often not uniformly stable but instead fluctuate over
time due to various factors [10]. Static scheduling schemes
struggle to adapt to such fluctuations, especially with respect

∗Corresponding author: Dawei Sun
fanyinuocn@email.cugb.edu.cn (Y. Fan); sundaweicn@cugb.edu.cn (D.

Sun); wuminghui@email.cugb.edu.cn (M. Wu); shang.gao@deakin.edu.au (S.
Gao); rbuyya@unimelb.edu.au (R. Buyya)

ORCID(s):

to resources utilization, resulting in two major issues: (1)
When data stream rates are excessively high, the computa-
tional load on compute nodes becomes overwhelming, in-
creasing latency and potentially causing system crashes. (2)
When data stream rates are persistently low, computational
resources allocated to tasks cannot be dynamically released,
leading to substantial resource wastage.

Existing research [11, 12] has made progress in mitigat-
ing the negative impacts of fluctuating data streams through
optimized scheduling strategies. For instance, [13] proposed
two resource allocation strategies that utilize greedy al-
gorithms and genetic algorithms, respectively, to achieve
efficient execution of stream applications. Similarly, [14]
introduced a heuristic algorithm, which dynamically re-
configures stream applications based on variations in data
stream rates and the availability of computational resources.
However, the magnitude of communication cost directly im-
pacts system performance, how to minimize communication
cost during the resource scaling process remains a critical
challenge.

Modeling stream applications as directed acyclic graphs
(DAGs) and exploiting task dependencies to optimize sys-
tem performance is a promising approach [15]. For example,
[16] utilized a dynamic programming algorithm on the crit-
ical path of DAG to reduce communication cost. Similarly,

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 1 of 17

Ra-Stream

[17] proposed partitioning the DAG into multiple subgraphs
based on the communication volume between tasks and
scheduling at the subgraph level. However, the deployment
of tasks within a compute node directly influences communi-
cation cost, as the expenses associated with communication
between tasks within the same process differ from those
between tasks across processes. This is an indispensable
factor to consider in task scheduling.

From the preceding analysis, there are three primary
challenges in task scheduling: (1) How can the schedul-
ing scheme be adjusted to accommodate fluctuating data
streams? (2) How can effective resource utilization be
achieved while ensuring optimal system performance? (3)
How can task deployment within compute nodes be opti-
mized to minimize communication cost? These challenges
have sparked our research interest, as we aim to design a
scheduling strategy that dynamically mitigates the negative
impacts of fluctuating data streams while minimizing com-
munication costs.

To address these challenges, we propose a fine-grained
task scheduling strategy called Ra-Stream, which dynami-
cally scales computational resources based on current data
stream rate to effectively accommodate fluctuating data
streams, achieving efficient resource utilization while pre-
venting excessive loads on compute nodes. Additionally, Ra-
Stream minimizes communication cost through fine-grained
task deployment, further ensuring low-latency processing.

1.1. Contributions
This paper proposes a fine-grained task scheduling strat-

egy (Ra-Stream) for resource auto-scaling over fluctuating
data streams and improving the resource utilization and
latency of distributed stream computing systems. The key
contributions are as follows:

(1) Formalization of the problem: We construct and an-
alyze the stream application model, communication
model, and resource model to formalize the applica-
tion subgraph partition problem, the resource scaling
problem, and the task scheduling problem.

(2) Resource scaling and heuristic partitioning algorithms:
We propose a resource scaling algorithm based on
our heuristic subgraph partitioning algorithm to de-
termine the minimum necessary number of compute
nodes, achieving efficient resource utilization while
accommodating fluctuating data streams.

(3) Fine-grained task scheduling algorithm: We propose a
fine-grained task scheduling algorithm that minimizes
communication cost through thread-level task deploy-
ment, thereby optimizing overall system performance.
Additionally, we set two thresholds for compute nodes
to avoid underloading or overloading.

(4) Implementation and evaluation: We implement and
integrate Ra-Stream into Apache Storm and evalu-
ate various metrics, including system latency, sys-
tem maximum throughput, and resource utilization,
in real-world fluctuating data stream scenarios. The

experimental results confirm the effectiveness of Ra-
Stream.

1.2. Paper organization
The rest of the paper is organized as follows: Section 2

presents related work. Section 3 introduces the stream appli-
cation model, communication model, and resource model.
Section 4 provides the problem statement, including descrip-
tions of subgraph partitioning, task scheduling, and resource
scaling. Section 5 focuses on the system architecture and
main algorithms of Ra-Stream. Section 6 details the ex-
perimental environment, parameter setup, and performance
evaluation. Section 7 concludes the paper and outlines future
work.

2. Related work
We review related work in the field of stream comput-

ing, which can be broadly divided into two main areas:
scheduling for stream computing systems and performance
optimization of stream computing systems.

2.1. Scheduling for stream applications
Achieving excellent system performance in stream ap-

plications has been the focus of numerous researchers [18],
who have devoted significant effort to improving schedul-
ing strategies. However, it has been demonstrated that the
scheduling problem is NP-hard, making it inherently chal-
lenging to find an optimal scheduling solution [19, 20].

To reduce communication latency, [21] proposed SP-
Ant, which places high-communication operators on the
same compute node using a bin-packing algorithm and al-
locates low-communication operators using an ant colony
optimization algorithm. However, this approach lacks con-
sideration for the resource utilization of compute nodes,
potentially leading to overloads that adversely affect overall
system latency.

To optimize load balancing while reducing job execu-
tion costs, [22] introduced a Cost-Efficient Task Schedul-
ing Algorithm (CETSA) alongside a Cost-Effective Load
Balancing Algorithm (LBA-CE). These algorithms ensure
a balanced workload in heterogeneous clusters while min-
imizing costs. However, they inadequately considers real-
time fluctuations in data stream velocities, which do not align
well with the dynamic nature of actual data flows.

To address the complexities and unpredictability of dy-
namic streaming workflow scenarios, [23] proposed a re-
source scheduling and provisioning method for processing
dynamic stream workflows under latency constraints. This
approach assumes that data communication overhead can be
ignored; however, in real-world scenarios, communication
overhead is a significant factor that cannot be overlooked.

To optimize resource utilization and enhance task re-
liability across the network, [24] applied a satisfiability
modulo theory (SMT) constraint solver to determine the
optimal processing quality at each node, ensuring target
system reliability while minimizing resource consumption.

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 2 of 17

Ra-Stream

Table 1
Comparison of Ra-Stream and related work.

Related work
Aspects

Scheduling object Load balancing Communication cost Resource scaling

SP-Ant [21] Task × ✓ ×
CETSA & LBA-CE [22] Task ✓ ✓ ×
VM provisioner [23] Task × × ✓

SMT [24] Resource × × ✓

MorphStream [25] Resource × × ✓

Beaver [26] Resource × ✓ ✓

Ra-Stream (Ours) Resource, Task ✓ ✓ ✓

However, this work lacks consideration of complex and
variable application scenarios, limiting its applicability.

To adapt to dynamically changing workloads, [25] pro-
posed MorphStream, which makes accurate scheduling de-
cisions at runtime with minimal overhead, resulting in ex-
cellent performance improvements. However, this method
requires the construction of a task dependency graph and
the maintenance of multiple versions of state storage, which
significantly increase memory resource consumption.

To achieve optimal performance by minimizing com-
putational bottlenecks at the edge computing environments,
[26] proposed a framework called Beaver for strategic place-
ment of stream operators. While Beaver addresses variations
in network latency and bandwidth, further improvements
can be made in dynamically adjusting compute resource
allocation to address fluctuating stream rates.

Similarly, [27] formulated an optimization strategy to
reduce network latency in distributed environments using
a broad spectrum of computational resources. However,
it does not account for dynamic scaling based on stream
variability.

In summary, these methods have substantially improved
scheduling in stream computing systems. However, most of
them fail to consider system performance optimization from
multiple dimensions. For clarity and conciseness, a compar-
ison of our work with the relevant studies is summarized in
Table 1.

2.2. Optimization for stream computing systems
To improve the performance of stream computing sys-

tems, extensive work has focused on optimization through
various approaches, including large parameter tuning [28]
and tuple scheduling [29]. Below, we introduce and analyze
several noteworthy works.

To mitigate the high resource costs associated with auto-
matic tuning process, [28] introduced a general and efficient
Spark tuning framework. This framework utilizes Bayesian
optimization (BO) to tackle the generalized tuning problem
involving multiple objectives and constraints. By tuning
parameters according to the actual periodic execution of
each job, the framework allows for online evaluation and
parameter optimization.

To address the imbalance of workloads among down-
stream tasks, [29] proposed POTUS, a predictive online

tuple scheduling strategy that directs data stream in a dis-
tributed manner to reduce response time in stream process-
ing. Similarly, [30] introduced a popularity-aware differen-
tiated distributed stream processing system called Pstream.
Pstream employs a novel lightweight probabilistic counting
scheme to identify hot keys in dynamic real-time stream.
This approach effectively adapts to changes in dynamic
popularity within high-velocity streams. Additionally, [31]
developed Hone, a tuple scheduler that uses the online
maximum backlog first (LBF) algorithm to minimize the
maximum queue backlog across all tasks, thereby improving
processing efficiency.

To reduce recovery time from system failures, [32] pro-
posed A-FP4S, an adaptive fragments-based parallel state
recovery mechanism. This mechanism divides each node’s
local state into multiple segments, which are periodically
stored across neighboring nodes. During a failure, different
sets of available segments are used to parallelize the recon-
struction of the lost state. This approach offers significant
scalability for managing lost states and can tolerate multiple
node failures.

In summary, these works have made significant contribu-
tions to stream processing optimization. Our work focuses
on optimizing stream computing systems through resource
scaling and task scheduling, while topics such as parameter
tuning, tuple scheduling, and state management fall outside
the scope of this study.

3. System model
We formalize the resource scaling problem in distributed

stream computing systems by defining the stream applica-
tion model, resource model, and communication model. For
clarity, we summarize the main notations used throughout
the paper in Table 2.

3.1. Stream application model
The functionality of a stream application is typically

defined by users through a logical topology [33]. This logical
topology can be described as a Directed Acyclic Graph
(DAG) [34], denoted as 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)).

Here, 𝑉 (𝐺) = {𝑣𝑖|𝑖 ∈ 1,⋯ , 𝑛} is a finite set of
𝑛 vertices. Each vertex 𝑣𝑖 represents a specific function
𝑓𝑢𝑛(𝑣𝑖), and the function of each vertex is set by users.

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 3 of 17

Ra-Stream

Table 2
Main notations used in the paper.

Notation Description Notation Description
𝐺 DAG of a stream application 𝑅𝑣𝑖,𝑘 ,𝑠𝑡 Resource utilization of task 𝑣𝑖,𝑘 in 𝑠𝑡
𝑣𝑖,𝑘 Task 𝑘 of vertex 𝑖 𝑝𝑖 Acceptance probability of scheme 𝑥𝑖
𝑒𝑖,𝑘, 𝑗,𝑙 Edge from task 𝑣𝑖,𝑘 to task 𝑣𝑗,𝑙 𝐸𝑐𝑢𝑡(𝐺) Set of cut edges in 𝐺
𝑐𝑛 Compute node 𝐺𝑠𝑢𝑏

𝑖 Subgraph 𝑖 of 𝐺
𝑠𝑡 Statistical time frame 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖) Set of internal edges in 𝐺𝑠𝑢𝑏
𝑖

𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) Tuple transmission rate between tasks 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙 𝑊𝑐𝑢𝑡(𝐺) Sum of cut edges’ weights
𝐸𝑇 𝑟

𝑠𝑡 Average tuple transmission rate in 𝑠𝑡 𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖

CPU requirement of subgraph 𝐺𝑠𝑢𝑏
𝑖

𝑛𝑢𝑚𝑣𝑖,𝑘
𝑠𝑡 Number of tuples processed by 𝑣𝑖,𝑘 in 𝑠𝑡 𝑅𝑚

𝐺𝑠𝑢𝑏
𝑖

Memory requirement of subgraph 𝐺𝑠𝑢𝑏
𝑖

𝑅𝑖
𝐺𝑠𝑢𝑏
𝑖

I/O requirement of subgraph 𝐺𝑠𝑢𝑏
𝑖 𝑈 𝑐

𝑐𝑛,𝑠𝑡 CPU utilization of 𝑐𝑛 in 𝑠𝑡

𝑈𝑚
𝑐𝑛,𝑠𝑡 Memory utilization of 𝑐𝑛 in 𝑠𝑡 𝑈 𝑖

𝑐𝑛,𝑠𝑡 I/O utilization of 𝑐𝑛 in 𝑠𝑡
𝜎𝑊 Variance of internal weight sums of subgraphs 𝑟 Ratio of 𝑊𝑐𝑢𝑡(𝐺) to the total weights of 𝐺

𝐸(𝐺) = {𝑒𝑖,𝑗|𝑣𝑖, 𝑣𝑗 ∈ 𝑉 (𝐺)} is a finite set of directed
edges. An edge 𝑒𝑖,𝑗 ∈ 𝐸(𝐺) indicates a data stream flowing
from the upstream vertex 𝑣𝑖 to the downstream vertex 𝑣𝑗 .

Before processing the stream application 𝐺, users can
specify the number of tasks for each vertex 𝑣𝑖, denoted as
𝑉𝑖(𝐺) = {𝑣𝑖,𝑘|𝑘 ∈ {1,⋯ , 𝑚}}, where 𝑚 is the number of
tasks for 𝑣𝑖. All tasks of vertex 𝑣𝑖 share the same function,
i.e., 𝑓𝑢𝑛(𝑣𝑖,1) = 𝑓𝑢𝑛(𝑣𝑖,2) = ⋯ = 𝑓𝑢𝑛(𝑣𝑖,𝑚).

The edges connecting tasks of upstream vertex 𝑣𝑖 to
tasks of downstream vertex 𝑣𝑗 are represented as 𝐸𝑖,𝑗(𝐺) =
{𝑒𝑖,𝑘, 𝑗,𝑙|𝑘 ∈ {1,⋯ , 𝑚}, 𝑙 ∈ {1,⋯ , 𝑠}}, where 𝑠 is the num-
ber of tasks for 𝑣𝑗 . The weight of edge 𝑒𝑖,𝑘, 𝑗,𝑙 is denoted as
𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙), indicating the tuple transmission rate between
task 𝑣𝑖,𝑘 and task 𝑣𝑗,𝑙.

Fig. 1: Logical topology of WordCount.

Fig. 2: Task topology of WordCount.

For clarity, we illustrate the logical topology of the com-
monly used WordCount stream application in Figs. 1 and
2. As shown in Fig. 1, the logical topology of WordCount

consists of four vertices, represented as 𝑉 (𝐺𝑊 𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡) =
{𝑣1, 𝑣2, 𝑣3, 𝑣4}, and three directed edges, 𝐸(𝐺𝑊 𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡) =
{𝑒1,2, 𝑒2,3, 𝑒3,4}. The three edges represent the flow of data
tuples within the topology. Following the data flow direction,
the four vertices perform the following functions: “reading
data tuples”, “splitting sentences into words”, “counting
words”, and “outputting results”. In Fig. 2, the numbers of
tasks for each vertex are 2, 3, 3 and 2, respectively. Tasks for
the same vertex, for example, 𝑣1,1 and 𝑣1,2, share an identical
function.

3.2. Communication model
During the execution of a stream application, tuples are

transferred between vertices and, more specifically, between
the tasks of those vertices, which constitutes communica-
tion. Once tasks are scheduling on the compute cluster, the
resulting communication cost can be categorized into three
types: inter-thread, inter-process and inter-compute node.
Among them, inter-compute node communication incurs the
highest cost, inter-process communication incurs moderate
cost, and inter-thread communication incurs the lowest cost.

Due to the fluctuation of stream rates, the communica-
tion traffic at any given time point is inherently random,
which makes it unsuitable for generalizability in practice. To
address this, we calculate the mathematical expectation of
tuples transmitted between two communicating tasks over
a statistical time frame 𝑠𝑡 spanning from onset time 𝑡𝑜 to
completion time 𝑡𝑐 . Denoted as 𝐸𝑇 𝑟

𝑠𝑡 , this expectation value
represents the average transmission rate and mitigates the
impact of abrupt fluctuations in data streams at specific time
points, as expressed in Eq. (1):

𝐸𝑇 𝑟
𝑠𝑡 =

∫ 𝑡𝑐
𝑡𝑜

𝐸𝑇 𝑟
𝑡 𝑑𝑡 − 𝑚𝑎𝑥(𝐸𝑇 𝑟

𝑡) − 𝑚𝑖𝑛(𝐸𝑇 𝑟
𝑡)

𝑡𝑐 − 𝑡𝑜
, (1)

where 𝐸𝑇 𝑟
𝑡 is the tuple transmission at time 𝑡, and 𝑡 ∈ [𝑡𝑜, 𝑡𝑐].

𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) is the average tuple transmission rate in 𝑠𝑡
from the task 𝑣𝑖,𝑘 to the task 𝑣𝑗,𝑙, it serves as a key input
to the subgraph partitioning and scheduling algorithms and
directly influences the optimization objective by quantifying

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 4 of 17

Ra-Stream

the communication cost associated with separating interde-
pendent tasks. 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) satisfies Eq. (2):

𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) =

⎧

⎪

⎨

⎪

⎩

0, If no tuple transmission
between 𝑣𝑖,𝑘 𝑎𝑛𝑑 𝑣𝑗,𝑙,

𝐸𝑇 𝑟
𝑠𝑡 , Otherwise.

(2)

3.3. Resource model
The resources of compute nodes can be measured across

various dimensions, such as CPU, memory, and I/O [35].
Based on our previous benchmarking experiments, we have
observed that CPU, memory and I/O overutilization become
bottlenecks in system operation. Consequently, this paper
explicitly addresses the resource utilization of CPU, mem-
ory, and I/O in compute nodes.

A compute node can execute multiple tasks concurrently.
Let the set of all tasks running on a compute node 𝑐𝑛 be
denoted as 𝑇𝑐𝑛, and the CPU utilization of 𝑐𝑛 within a
statistical time frame 𝑠𝑡 as 𝑈 𝑐

𝑐𝑛,𝑠𝑡.
The number of tuples processed by task 𝑣𝑖,𝑘 running on

𝑐𝑛 in 𝑠𝑡 is represented by 𝑛𝑢𝑚𝑣𝑖,𝑘
𝑠𝑡 .

The CPU utilization of task 𝑣𝑖,𝑘 in 𝑠𝑡 can then be calcu-
lated by Eq. (3):

𝑅𝑐
𝑣𝑖,𝑘,𝑠𝑡

=
𝑛𝑢𝑚𝑣𝑖,𝑘

𝑠𝑡
∑

𝑣𝑗,𝑙∈𝑇𝑐𝑛 ⋅𝑛𝑢𝑚
𝑣𝑗,𝑙
𝑠𝑡

⋅ 𝑈 𝑐
𝑐𝑛,𝑠𝑡, (3)

where 𝑅𝑐
𝑣𝑖,𝑘,𝑠𝑡

represents the CPU utilization of 𝑣𝑖,𝑘, 𝑛𝑢𝑚𝑣𝑗,𝑙
𝑠𝑡

denotes the number of tuples processed by 𝑐𝑛, and 𝑣𝑗,𝑙 is a
task within 𝑇𝑐𝑛 on node 𝑐𝑛 in 𝑠𝑡.

Similarly, the memory utilization and I/O utilization of
task 𝑣𝑖,𝑘 running on 𝑐𝑛 in 𝑠𝑡 can be obtained by Eq. (4) and
Eq. (5), respectively:

𝑅𝑚
𝑣𝑖,𝑘,𝑠𝑡

=
𝑛𝑢𝑚𝑣𝑖,𝑘

𝑠𝑡
∑

𝑣𝑗,𝑙∈𝑇𝑐𝑛 ⋅𝑛𝑢𝑚
𝑣𝑗,𝑙
𝑠𝑡

⋅ 𝑈𝑚
𝑐𝑛,𝑠𝑡, (4)

𝑅𝑖
𝑣𝑖,𝑘,𝑠𝑡

=
𝑛𝑢𝑚𝑣𝑖,𝑘

𝑠𝑡
∑

𝑣𝑗,𝑙∈𝑇𝑐𝑛 ⋅𝑛𝑢𝑚
𝑣𝑗,𝑙
𝑠𝑡

⋅ 𝑈 𝑖
𝑐𝑛,𝑠𝑡, (5)

where 𝑅𝑚
𝑣𝑖,𝑘,𝑠𝑡

and 𝑅𝑖
𝑣𝑖,𝑘,𝑠𝑡

are the memory utilization and
I/O utilization of 𝑣𝑖,𝑘 on 𝑐𝑛, respectively. 𝑈𝑚

𝑐𝑛,𝑠𝑡 and 𝑈 𝑖
𝑐𝑛,𝑠𝑡

represent the memory utilization and I/O utilization of 𝑐𝑛 in
𝑠𝑡, respectively.

The total resource utilization 𝑅𝑣𝑖,𝑘,𝑠𝑡 by task 𝑣𝑖,𝑘 running
on 𝑐𝑛 in 𝑠𝑡 can then be calculated using a weighted com-
bination of task 𝑣𝑖,𝑘’s CPU, memory and I/O utilization, as
shown in Eq. (6):

𝑅𝑣𝑖,𝑘,𝑠𝑡 = 𝛼 ⋅𝑅𝑐
𝑣𝑖,𝑘,𝑠𝑡

+𝛽 ⋅𝑅𝑚
𝑣𝑖,𝑘,𝑠𝑡

+(1−𝛼−𝛽) ⋅𝑅𝑖
𝑣𝑖,𝑘,𝑠𝑡

, (6)

where 𝛼 and 𝛽 are weighted factors that determine the
relative importance of CPU, memory and I/O utilization for
task 𝑣𝑖,𝑘 running on 𝑐𝑛, 𝛼, 𝛽 ∈ [0, 1] and 𝛼 + 𝛽 < 1.

4. Problem Statement
We formalize the scheduling-related problems in the

context of fluctuating data streams, including subgraph par-
titioning, resource scaling, and task scheduling.

4.1. Subgraph partitioning
The subgraph partitioning problem [36] can be de-

scribed as follows: a user submits a stream application
𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) to a compute cluster consisting of 𝑛𝑐𝑛
available compute nodes 𝑐𝑛. If 𝐺 requires 𝑘 compute nodes
to run, where 𝑘 ≤ 𝑛𝑐𝑛, then 𝐺 should be partitioned into 𝑘
subgraphs. The subgraph partitioning problem is formalized
as: 𝐺 =

⋃𝑘
𝑖=1𝐺

𝑠𝑢𝑏
𝑖 , where 𝐺𝑠𝑢𝑏

𝑖 represents a subgraph and
𝐺𝑠𝑢𝑏
𝑖 ⊆ 𝐺.

The set of tasks in a subgraph𝐺𝑠𝑢𝑏
𝑖 is denoted as 𝑇 (𝐺𝑠𝑢𝑏

𝑖),
and the relationships among the task sets are represented by
Eq. (7):

{

𝑇 (𝐺) =
⋃𝑘

𝑖=1 𝑇 (𝐺
𝑠𝑢𝑏
𝑖),

𝑇 (𝐺𝑠𝑢𝑏
𝑖) ∩ 𝑇 (𝐺𝑠𝑢𝑏

𝑗) = ∅,∀𝑖, 𝑗 ∈ [1, 𝑘], 𝑖 ≠ 𝑗.
(7)

The subgraph partitioning also generates internal edges
within subgraphs and cut edges connecting subgraphs. These
relationships are described by Eq. (8):

⎧

⎪

⎨

⎪

⎩

𝐸(𝐺𝑠𝑢𝑏
𝑖) = {𝑒𝑖,𝑘, 𝑗,𝑙 ∈ 𝐸(𝐺)|𝑣𝑖,𝑘, 𝑣𝑗,𝑙 ∈ 𝑇 (𝐺𝑠𝑢𝑏

𝑖)},
𝐸𝑐𝑢𝑡(𝐺) = {𝑒𝑖,𝑘, 𝑗,𝑙 ∈ 𝐸(𝐺)|𝑣𝑖,𝑘 ∈ 𝑇 (𝐺𝑠𝑢𝑏

𝑖),
𝑣𝑗,𝑙 ∈ 𝑇 (𝐺𝑠𝑢𝑏

𝑗)},
(8)

where 𝐸(𝐺𝑠𝑢𝑏
𝑖) represents the set of internal edges within

𝐺𝑠𝑢𝑏
𝑖 , 𝐸𝑐𝑢𝑡(𝐺) denotes the set of cut edges connecting sub-

graphs, and 𝑒𝑖,𝑘, 𝑗,𝑙 is the edge connecting tasks 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙.
The objective of graph partitioning is to minimize the

weights of cut edges between different subgraphs while
maximizing the weights of internal edges within subgraphs.
Minimizing the weights of cut edges alone may result in an
imbalanced partitioning scheme. For instance, Fig. 3 shows
a scheme where one subgraph contains two tasks, while
another contains six tasks, leading to an imbalance.

To achieve a balanced subgraph partitioning scheme, we
aim to maximize the sum of the internal edge weights for
each subgraph while keeping these sums nearly equal, all
while minimizing the total weight of the cut edges. This is
formalized in Eq. (9):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max
𝑘
∑

𝑖=1
𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖),

min 𝑊𝑐𝑢𝑡(𝐺) = min
∑

𝑒𝑖,𝑘, 𝑗,𝑙∈𝐸𝑐𝑢𝑡(𝐺)
𝑤(𝑒𝑖,𝑘, 𝑗,𝑙),

𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏
1) ≈ 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

2) ≈,… ,≈ 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏
𝑘),

(9)

where 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏
𝑖) is the sum of internal edge weights within

𝐺𝑠𝑢𝑏
𝑖 , 𝑊𝑐𝑢𝑡(𝐺) is the sum of weights of cut edges 𝐸𝑐𝑢𝑡(𝐺),

and 𝑤(𝑒𝑖,𝑘, 𝑗,𝑙) is the weight of edge 𝑒𝑖,𝑘, 𝑗,𝑙.
Fig. 4 illustrates a stream application 𝐺 partitioned into

four subgraphs. The objective of subgraph partitioning is

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 5 of 17

Ra-Stream

Fig. 3: Example of imbalanced graph partitioning scheme.

Fig. 4: Example of balanced graph partitioning scheme.

to maximize and equalize the internal communication traf-
fic within each subgraph while minimizing inter-subgraph
communication. The subsequent section discusses resource
consumption problem related to these subgraphs.

4.2. Resource scaling
Computational resources are not infinite, making it es-

sential to use them efficiently. In real-world applications, we
need to consider the resource scaling problem during the
scheduling process. Resource scaling refers to the process
of configuring computational resources based on the current
data stream rate, aiming to effectively prevent performance
degradation due to insufficient resources while minimizing
resource waste. A critical consideration before scheduling
stream applications to the cluster is ensuring that no indi-
vidual compute node becomes overloaded, while simultane-
ously minimizing resource wastage within those nodes.

In the context of subgraphs partitioning, we need to
consider the resource requirements of each subgraph to
prevent resource overload when scheduling subgraph tasks
to compute nodes. The resource demand for each subgraph
can be determined by aggregating the resource requirements
of all tasks within that subgraph, as described by Eq. (10):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

=
∑

𝑣𝑖,𝑘∈𝑇 (𝐺𝑠𝑢𝑏
𝑖)

𝑅𝑐
𝑣𝑖,𝑘,𝑠𝑡

,

𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

=
∑

𝑣𝑖,𝑘∈𝑇 (𝐺𝑠𝑢𝑏
𝑖)

𝑅𝑚
𝑣𝑖,𝑘,𝑠𝑡

,

𝑅𝑖
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

=
∑

𝑣𝑖,𝑘∈𝑇 (𝐺𝑠𝑢𝑏
𝑖)

𝑅𝑖
𝑣𝑖,𝑘,𝑠𝑡

,

(10)

where 𝑅𝑐
𝐺𝑠𝑢𝑏
𝑗 ,𝑠𝑡

, 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑗 ,𝑠𝑡

and 𝑅𝑖
𝐺𝑠𝑢𝑏
𝑗 ,𝑠𝑡

represent the average

CPU, memory and I/O resource demands of subgraph 𝐺𝑠𝑢𝑏
𝑖

in statistical time frame 𝑠𝑡, respectively.

After the subgraph is scheduled to a compute node, that
node may still have sufficient resources to run additional
subgraphs. To ensure efficient utilization of computational
resources, we calculate the CPU, memory and I/O resource
requirements of the stream application 𝐺, as described by
Eq. (11):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑅𝑐
𝐺,𝑠𝑡 =

𝑘
∑

𝑖=1
𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

𝑅𝑚
𝐺,𝑠𝑡 =

𝑘
∑

𝑖=1
𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

𝑅𝑖
𝐺,𝑠𝑡 =

𝑘
∑

𝑖=1
𝑅𝑖
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

(11)

where 𝑅𝑐
𝐺,𝑠𝑡, 𝑅

𝑚
𝐺,𝑠𝑡 and 𝑅𝑖

𝐺,𝑠𝑡 are the average CPU, memory
and I/O resource requirements of the stream application 𝐺
in 𝑠𝑡, respectively.

Subsequently, we choose some compute nodes (𝑚𝑐𝑛) to
serve as our operational nodes, indicated by 𝑂𝑁 = {𝑜𝑛𝑖|𝑖 ∈
{1, 2,⋯ , 𝑚𝑐𝑛}}, while the other nodes are considered idle
nodes, represented by 𝐼𝑁 = {𝑖𝑛𝑖|𝑖 ∈ {1, 2,⋯ , 𝑛𝑐𝑛 −𝑚𝑐𝑛}}.
The available computational resources of these operational
nodes must exceed the resource requirements of subgraphs.
The available computational resources of these operational
nodes can be calculated by Eq. (12):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝑐
𝑂𝑁,𝑠𝑡 =

∑

𝑜𝑛𝑖∈𝑂𝑁
𝐴𝑐
𝑜𝑛𝑖,𝑠𝑡

,

𝐴𝑚
𝑂𝑁,𝑠𝑡 =

∑

𝑜𝑛𝑖∈𝑂𝑁
𝐴𝑚
𝑜𝑛𝑖,𝑠𝑡

,

𝐴𝑖
𝑂𝑁,𝑠𝑡 =

∑

𝑜𝑛𝑖∈𝑂𝑁
𝐴𝑖
𝑜𝑛𝑖,𝑠𝑡

,

(12)

where 𝐴𝑐
𝑂𝑁,𝑠𝑡, 𝐴

𝑚
𝑂𝑁,𝑠𝑡 and 𝐴𝑚

𝑂𝑁,𝑠𝑡 are the available CPU,
memory and I/O resources of operational nodes, respec-
tively. 𝐴𝑐

𝑜𝑛𝑖,𝑠𝑡
, 𝐴𝑚

𝑜𝑛𝑖,𝑠𝑡
and 𝐴𝑖

𝑜𝑛𝑖,𝑠𝑡
are the available CPU,

memory and I/O resources of an individual operational node.
As shown in Fig. 5, resource scaling consists of two op-

erations: resource shrink and resource extend. As the data
stream rate decreases, the computational resources required
for running a stream application are reduced, enabling us
to achieve similar system performance with fewer compute
nodes. On the other hand, when the stream rate increases,
the required resources grow, necessitating the deployment
of additional compute nodes to sustain optimal system per-
formance.

4.3. Task scheduling
After a stream application 𝐺 is partitioned into 𝑘 sub-

graphs, the subsequent task scheduling problem involves
selecting 𝑘 compute nodes from the available compute nodes
and assigning the subgraphs to these nodes. A compute
node may run multiple subgraphs; however, each subgraph
can only be assigned to a single compute node. We denote
𝑓 𝑑𝑒
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

as the decision factor for mapping a subgraph 𝐺𝑠𝑢𝑏
𝑖

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 6 of 17

Ra-Stream

Fig. 5: Example of resource scaling.

to a compute node 𝑐𝑛𝑗 . It can be calculated by Eq. (13):

𝑓 𝑑𝑒
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

=

⎧

⎪

⎨

⎪

⎩

1, If 𝐴𝑐
𝑐𝑛𝑗 ,𝑠𝑡

> 𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

and 𝐴𝑚
𝑐𝑛𝑗 ,𝑠𝑡

> 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

0, Otherwise.

(13)

where 𝑖 ∈ {1, 2,⋯ , 𝑘}, and 𝑗 ∈ {1, 2,⋯ , 𝑛𝑐𝑛}. 𝑓 𝑑𝑒
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

determines whether subgraph 𝐺𝑠𝑢𝑏
𝑖 can be assigned to com-

pute node 𝑐𝑛𝑗 . 𝐴𝑐
𝑐𝑛𝑗 ,𝑠𝑡

and 𝐴𝑚
𝑐𝑛𝑗 ,𝑠𝑡

are the available CPU
and memory resources of compute node 𝑐𝑛𝑗 in statistical
time frame 𝑠𝑡, respectively.𝑅𝑐

𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

and𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

represent the

CPU and memory resource requirements of 𝐺𝑠𝑢𝑏
𝑖 in 𝑠𝑡.

Since multiple compute nodes may satisfy the resource
requirements of 𝐺𝑠𝑢𝑏

𝑖 , it is essential to identify the most
suitable compute node for scheduling𝐺𝑠𝑢𝑏

𝑖 . For this purpose,
we use 𝑓𝑓𝑖𝑡

𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

as the fitness factor for scheduling subgraph

𝐺𝑠𝑢𝑏
𝑖 to compute node 𝑐𝑛𝑗 . Subgraph 𝐺𝑠𝑢𝑏

𝑖 will be scheduled
to the compute node with the highest 𝑓𝑓𝑖𝑡

𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

, calculated by
Eq. (14):

𝑓𝑓𝑖𝑡
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

= 𝑓 𝑑𝑒
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

⋅ 𝑆𝑅
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

, (14)

where 𝑆𝑅
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

represents the resource surplus of 𝑐𝑛𝑗 after

scheduling 𝐺𝑠𝑢𝑏
𝑖 to it. The resource surplus is calculated by

Eq. (15):

𝑆𝑅
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

= 𝛾 ⋅ (𝐴𝑐
𝑐𝑛𝑗 ,𝑠𝑡

− 𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

)

+ 𝛿 ⋅ (𝐴𝑚
𝑐𝑛𝑗 ,𝑠𝑡

− 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

) (15)

+ (1 − 𝛾 − 𝛿) ⋅ (𝐴𝑚
𝑐𝑛𝑗 ,𝑠𝑡

− 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

),

where 𝛾 and 𝛿 are the weights used to balance CPU, memory
and I/O resources, 𝛾, 𝛿 ∈ [0, 1] and 𝛾 + 𝛿 < 1. The
values of 𝛾 and 𝛿 are determined based on resource usage
characteristics. For example, if CPU is a bottleneck while

memory and I/O are sufficient, 𝛾 can be set to 1 and 𝛿 to 0.
Conversely, if memory becomes more constrained, 𝛾 should
decrease and 𝛿 should increase accordingly.

An example of subgraph scheduling is shown in Fig.
6. As previously mentioned, multiple compute nodes may
satisfy the resource requirements of a subgraph, and the
compute node with the highest fitness factor is selected.

Fig. 6: Example of task scheduling at subgraph level.

5. Ra-Stream: architecture and algorithms
Based on the theoretical analysis presented earlier, we

propose a fine-grained task scheduling strategy for resources
auto-scaling called Ra-Stream, implemented on the Apache
Storm platform. In this section, we provide an overview
of the strategy, including its system architecture and the
algorithms used for subgraph partitioning, resource scaling,
and task scheduling. Since Apache Storm, Apache Flink, and
Spark Streaming all utilize a master-slave architectural de-
sign, and rely on dynamic task allocation across distributed
compute nodes, our scheduling strategy is theoretically ap-
plicable to the other two stream processing platforms.

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 7 of 17

Ra-Stream

Although some components of Ra-Stream employ stan-
dard techniques, our innovation lies in the introduction of
a novel subgraph partitioning component that achieves a
balanced communication-intensive subgraph partitioning.
Furthermore, to address the issues of resource overload
and waste caused by fluctuations in data stream rates, we
propose an innovative resource scaling algorithm that auto-
matically adjusts computational resources based on current
data stream rates, ensuring efficient utilization and conser-
vation of computational resources. These methods provide a
new approach to scheduling strategies in distributed stream
computing systems.

5.1. System architecture
As shown in Fig. 7, the architecture of Ra-Stream con-

sists of four main components: Scheduling trigger, Sub-
graph partition, Resource scaling, and Data monitor.

Scheduling trigger reads the current operational status
of the stream application from the Database and determines
whether to trigger a new scheduling event.

Subgraph partition divides the stream application into
multiple balanced communication-intensive subgraphs ac-
cording to the communication relationships among tasks in
the stream application.

Resource scaling adjusts the subgraph partitioning re-
sults to determine the minimum number of compute nodes
required, ensuring that no compute node is overloaded or
resources are wasted after scheduling.

Data monitor is responsible for the real-time collection
of resource utilization data from all compute nodes, as well
as the resource requirements of tasks, data stream rates, and
the volume of data transferred between tasks.

The Scheduler deploys tasks onto compute nodes in a
fine-grained manner to minimize communication cost.

Fig. 7: Ra-Stream’s architecture.

5.2. Subgraph partitioning
The objective of subgraph partitioning is to divide the

stream application into multiple balanced communication-
intensive subgraphs. Inspired by the principles of the simu-
lated annealing algorithm [37], known for its effectiveness
in global optimization, we develop a intelligent subgraph
partitioning algorithm.

Given that it is not possible to determining the minimum
number of compute nodes required to execute the stream
application before scheduling it to the cluster, we set the
number of subgraphs to be equal to the number of compute
nodes in the cluster, that is, 𝑘 = 𝑛. To achieve balanced
subgraphs (refer to Eq. 9), we incorporate the variance of
the internal weight sums of the subgraphs, 𝜎𝑊 , into our
objective function, as shown in Eq. (16):

𝜎𝑊 =

√

√

√

√
1
𝑘

𝑘
∑

𝑖=1
[𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖) −𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏)]2, (16)

subject to:

𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏) = 1
𝑘

𝑘
∑

𝑖=1
𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖), (17)

where 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏) is the average weight of all subgraphs.
Due to the variations in data stream rates, edge weights

differ, making it impractical to rely solely on absolute values
in the objective function. Instead, we use the ratio of cut edge
weights to the total weights of edges in 𝐺, as illustrated in
Eq. (18):

𝑟 =
𝑊𝑐𝑢𝑡(𝐺)

𝑊𝑐𝑢𝑡(𝐺) +𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏)

=

∑

𝑒𝑖,𝑘, 𝑗,𝑙∈𝐸𝑐𝑢𝑡(𝐺)𝑤(𝑒𝑖,𝑘, 𝑗,𝑙)
∑

𝑒𝑖,𝑘, 𝑗,𝑙∈𝐸(𝐺)𝑤(𝑒𝑖,𝑘, 𝑗,𝑙)
(18)

By combining Eq. (16) and Eq. (18), we obtain our
objective function 𝑓 (𝑥), described in Eq. (19):

𝑓 (𝑥) = 𝜖 ⋅ 𝑟 + (1 − 𝜖) ⋅ 𝜎𝑊 , (19)

where 𝑥 is the current subgraph partitioning scheme, 𝜖 is
the weight factor that combines the ratio of cut edge weights
𝑟 and the variance of internal weight sums of the subgraphs
𝜎𝑊 . In extreme cases, if the tuple transmission rates between
tasks in the stream application are all equal, there will be
no unbalanced subgraph partitioning schemes, and thus 𝜖
should be set to 1. Conversely, the value of 𝜖 should decrease
as the differences in tuple transmission rates between tasks
increase. After defining the objective function, we outline
the algorithmic workflow for the initial subgraph partition-
ing phase in Algorithm 1.

The input to Algorithm 1 includes the stream application
𝐺, the number of subgraphs 𝑘, the number of compute
nodes 𝑛, tuple transmission rate between tasks 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙),
maximum number of iterations𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, initial temperature
𝑇0, cooling rate 𝜁 , and final temperature 𝑇𝑓 . The output is

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 8 of 17

Ra-Stream

Algorithm 1: Subgraph partitioning.
1 Input: 𝐺, 𝑘, 𝑛, 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙), 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, 𝑇0, 𝜁 , 𝑇𝑓 .

Output: Subgraph partitioning scheme 𝑋.
2 𝑘 ← 𝑛;
3 Initialize partition 𝐺 to 𝑘 subgraphs and denote as

𝑥0;
4 𝑋 ← 𝑥0;
5 Calculate 𝑓 (𝑥0) according to Eq. (19) and denote as

𝑓 (𝑋);
6 Initialize current temperature 𝑇 ← 𝑇0;
7 Set the current iteration count 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 ← 0;
8 while 𝑇 > 𝑇𝑓 do
9 while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do

10 Generate a neighboring solution 𝑥𝑖 by
moving a random task to a different
subgraph;

11 Calculate the 𝑓 (𝑥𝑖) according to Eq. (19);
12 if 𝑓 (𝑥𝑖) ≤ 𝑓 (𝑋) then
13 𝑋 ← 𝑥𝑖;
14 end
15 else
16 A
17 end
18 ccept 𝑥𝑖 with probability 𝑝𝑖 according to Eq.

(20); 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 + 1;
19 end
20 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 ← 0; 𝑇 ← 𝜁 ⋅ 𝑇 ;
21 end
22 return 𝑋.

a balanced communication-intensive subgraph partitioning
scheme 𝑋. Steps 1 to 6 prepare the algorithm for execution.
Steps 8 to 17 form the inner loop, where new solutions
are generated, the objective function is calculated, and the
solution is accepted or rejected. Steps 7 to 20 form the outer
loop, representing the cooling phase. The current temper-
ature is set to start from the initial temperature 𝑇0, and is
repeatedly multiplied with the cooling rate 𝜁 until the current
temperature is less than or equal to the final temperature 𝑇𝑓 .
In steps 4 and 10, user can choose the value of 𝜖 in Eq. (19).
The time complexity of Algorithm 1 is 𝑂(𝑙𝑜𝑔 1

𝜁
(𝑇0𝑇𝑓

) ⋅ 𝑚),
where 𝑚 is the maximum number of iterations.

As Algorithm 1 operates, new subgraph partitioning
schemes are progressively explored in the neighborhood of
the current scheme. Each new scheme is evaluated against
the current one using Eq. (19), and based on the Metropolis
acceptance criterion, inferior subgraph schemes are accepted
with a probability pi, calculated using Eq. (20):

𝑝𝑖 = exp(
𝑓 (𝑥𝑖)−𝑓 (𝑋)

𝑇), (20)

At high initial temperatures, inferior schemes are accepted
with higher probability, promoting extensive exploration of
the solution space and mitigating the risk of local conver-
gence. As the temperature gradually decreases according

to the cooling rate 𝜁 , the probability of accepting poorer
inferior schemes diminishes, and the search increasingly fo-
cuses on the neighborhoods of better partitioning solutions.
Ultimately, as the temperature approaches the final value 𝑇𝑓 ,
the algorithm converges near the globally optimal subgraph
partitioning scheme 𝑋.

5.3. Resource scaling
To facilitate efficient utilization of computational re-

sources, we evaluate the resource demands of subgraphs
prior to task scheduling. This allows for the selection of
compute nodes that satisfy these requirements, ensuring high
system performance at minimal resource cost. For this pur-
pose, we define two thresholds for each compute node: the
underload threshold 𝑇𝑢𝑛𝑑𝑒𝑟 and the overload threshold 𝑇𝑜𝑣𝑒𝑟.
We aim to achieve a balanced state where, after scheduling
subgraphs to compute nodes, the resource utilization of each
node lies within the range 𝑇𝑢𝑛𝑑𝑒𝑟 and 𝑇𝑜𝑣𝑒𝑟. To identify the
subgraphs requiring adjustment, we introduce a Boolean fac-
tor 𝑓 𝑎𝑑𝑗

𝐺𝑠𝑢𝑏
𝑖

, which determines whether a subgraph 𝐺𝑠𝑢𝑏
𝑖 needs

adjustment according to its resource requirement 𝑅𝐺𝑠𝑢𝑏
𝑖

. This
is defined in Eq. (21):

𝑓 𝑎𝑑𝑗
𝐺𝑠𝑢𝑏
𝑖

=

{

𝑇 𝑟𝑢𝑒, (𝑅𝐺𝑠𝑢𝑏
𝑖

< 𝑇𝑢𝑛𝑑𝑒𝑟) ∨ (𝑅𝐺𝑠𝑢𝑏
𝑖

> 𝑇𝑜𝑣𝑒𝑟)
𝐹𝑎𝑙𝑠𝑒, 𝑇𝑢𝑛𝑑𝑒𝑟 < 𝑅𝐺𝑠𝑢𝑏

𝑖
< 𝑇𝑜𝑣𝑒𝑟

,

(21)

when 𝑇𝑢𝑛𝑑𝑒𝑟 < 𝑅𝐺𝑠𝑢𝑏
𝑖

< 𝑇𝑜𝑣𝑒𝑟, the subgraph can be directly
scheduled to a compute node. However, when 𝑅𝐺𝑠𝑢𝑏

𝑖
<

𝑇𝑢𝑛𝑑𝑒𝑟 or 𝑅𝐺𝑠𝑢𝑏
𝑖

> 𝑇𝑜𝑣𝑒𝑟, the subgraph need to be adjusted
before scheduling. The resource scaling process is outlined
in Algorithm 2.

The input to Algorithm 2 includes the subgraph par-
titioning scheme 𝑋, resource requirements of subgraphs
𝑅𝐺𝑠𝑢𝑏

𝑖
, and the thresholds 𝑇𝑢𝑛𝑑𝑒𝑟 and 𝑇𝑜𝑣𝑒𝑟. The output is

the resource scaling scheme 𝑅𝑆, comprising adjusted sub-
graphs. The number of subgraphs in 𝑅𝑆 indicates the min-
imum required compute nodes. Steps 4 to 18 handle ad-
justments for subgraphs with resource requirement below
𝑇𝑢𝑛𝑑𝑒𝑟, including subgraph merging (Steps 6–10) and inter-
subgraph task adjustment (Steps 13–15). Steps 22–27 han-
dle the adjustment of subgraphs whose resource demands
exceed 𝑇𝑜𝑣𝑒𝑟 through inter-subgraph task adjustment. The
time complexity of Algorithm 2 is 𝑂(𝑚 ⋅ 𝑙𝑜𝑔𝑛), where 𝑚 is
the number of tasks in a subgraph and 𝑛 is the number of
subgraphs in 𝑋.

5.4. Fine-grained task scheduling
As described in 3.2, when we schedule the task set to

compute nodes at the subgraph level, inter-node commu-
nication is effectively converted into intra-node commu-
nication to reduce communication costs. However, within
a subgraph, the communication traffic between tasks may
vary, leading to the presence of communication-intensive
task pairs. To address this, our scheduling algorithm consists
of two components: scheduling subgraphs to compute nodes

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 9 of 17

Ra-Stream

Algorithm 2: Subgraph partitioning.
1 Input: 𝑋, 𝑅𝐺𝑠𝑢𝑏

𝑖
, 𝑇𝑢𝑛𝑑𝑒𝑟, 𝑇𝑜𝑣𝑒𝑟.

Output: Resource scaling scheme 𝑅𝑆.
2 Sort the subgraphs in 𝑋 in ascending order based

on their resource requirements;
3 while 𝑋 ≠ ∅ do

/* If target subgraph’s resource requirement

is less than underload threshold. */

4 if 𝑅𝐺𝑠𝑢𝑏
𝑖

< 𝑇𝑢𝑛𝑑𝑒𝑟 then
5 𝐺𝑠𝑢𝑏

𝑚𝑎𝑡𝑐ℎ ← ∅;
6 Identify a matched subgraph 𝐺𝑠𝑢𝑏

𝑗 for
merging via binary search;

7 𝐺𝑠𝑢𝑏
𝑚𝑎𝑡𝑐ℎ ← 𝐺𝑠𝑢𝑏

𝑗 ;
/* If merging candidate is found, merge it

with the target. */

8 if 𝐺𝑠𝑢𝑏
𝑚𝑎𝑡𝑐ℎ ≠ ∅ then

9 𝐺𝑠𝑢𝑏
𝑡𝑒𝑚𝑝 ← 𝐺𝑠𝑢𝑏

𝑖 + 𝐺𝑠𝑢𝑏
𝑗 ;

10 Put 𝐺𝑠𝑢𝑏
𝑡𝑒𝑚𝑝 into 𝑅𝑆;

11 Remove 𝐺𝑠𝑢𝑏
𝑖 and 𝐺𝑠𝑢𝑏

𝑗 from 𝑋;
12 end

/* If no merging candidate is found, find

a task-adjusting candidate and move its

task into the target. */

13 else
14 while 𝑅𝐺𝑠𝑢𝑏

𝑖
< 𝑇𝑢𝑛𝑑𝑒𝑟 do

15 Identify a matched subgraph 𝐺𝑠𝑢𝑏
𝑗

for task adjusting via binary search;
16 Select task 𝑣𝑖,𝑘 with minimal impact

on the weight of 𝐺𝑠𝑢𝑏
𝑗 ;

17 Put 𝑣𝑖,𝑘 into 𝐺𝑠𝑢𝑏
𝑖 from 𝐺𝑠𝑢𝑏

𝑗 ;
18 end
19 Put 𝐺𝑠𝑢𝑏

𝑖 into 𝑅𝑆;
20 Remove 𝐺𝑠𝑢𝑏

𝑖 from 𝑋;
21 end
22 end

/* If target subgraph’s resource requirement

is greater than overload threshold */

23 else if 𝑅𝐺𝑠𝑢𝑏
𝑖

> 𝑇𝑜𝑣𝑒𝑟 then
24 while 𝑅𝐺𝑠𝑢𝑏

𝑖
> 𝑇𝑜𝑣𝑒𝑟 do

25 Identify a matched subgraph 𝐺𝑠𝑢𝑏
𝑗 for

task adjusting via binary search;
26 Identify task 𝑣𝑖,𝑘 with minimal impact

on the weight of 𝐺𝑠𝑢𝑏
𝑖 ;

27 Put 𝑣𝑖,𝑘 into 𝐺𝑠𝑢𝑏
𝑗 from 𝐺𝑠𝑢𝑏

𝑖 ;
28 end
29 Put 𝐺𝑠𝑢𝑏

𝑖 into 𝑅𝑆;
30 Remove 𝐺𝑠𝑢𝑏

𝑖 from 𝑋;
31 else
32 Put 𝐺𝑠𝑢𝑏

𝑖 into 𝑅𝑆;
33 end
34 end
35 return 𝑅𝑆.

(coarse-grained) and scheduling tasks within the processes
of compute nodes (fine-grained). Communication-intensive
task pairs within a subgraph are allocated to the same process
on a compute node to further minimize communication
costs.

For tasks 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙, the communication cost within
a process is negligible compared to costs between nodes
or processes. Therefore, we set intra-process communica-
tion cost to 0. To quantify the cost benefits of co-locating
communication-intensive tasks, we define the cost savings
from transforming inter-node to intra-node communication
over a statistical time frame 𝑠𝑡 using Eq. (22), and from inter-
process to intra-process using Eq. (23):

𝐶𝑠,𝑠𝑡
𝑣𝑖,𝑘,𝑣𝑗,𝑙

= 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) ⋅ (𝐶𝑐𝑜𝑚
𝐶𝑁 − 𝐶𝑐𝑜𝑚

𝐶𝑃) ⋅ 𝑠𝑡, (22)

𝐶𝑠,𝑠𝑡
𝑣𝑖,𝑘,𝑣𝑗,𝑙

= 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) ⋅ 𝐶𝑐𝑜𝑚
𝐶𝑃 ⋅ 𝑠𝑡, (23)

where𝐶𝑐𝑜𝑚
𝐶𝑁 and𝐶𝑐𝑜𝑚

𝐶𝑃 represent the per-tuple communication
costs across nodes and across processes, respectively.

Before scheduling subgraphs to compute nodes, it is
essential to consider the available computational resources
of the current compute nodes. As previously mentioned,
multiple compute nodes may satisfy the resource require-
ment of a subgraph. To handle this, we select compute
nodes based on Eq. (14), ensuring that the selected compute
node retains sufficient available resources to handle sudden
increases in resource requirement caused by spikes in data
streams. The detailed steps of our scheduling algorithm are
outlined in Algorithm 3.

Algorithm 3: Subgraph partitioning.
1 Input: 𝑅𝑆, 𝐶𝑁 , 𝑇 (𝐺𝑠𝑢𝑏

𝑖), 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙).
Output: Scheduling scheme 𝑆𝑆.

2 for 𝐺𝑠𝑢𝑏
𝑖 in 𝑅𝑆 do

3 Find compute nodes that satisfy the resource
requirement 𝑅𝐺𝑠𝑢𝑏

𝑖
of subgraph 𝐺𝑠𝑢𝑏

𝑖 according
to Eq. (13);

4 Calculate 𝑓𝑓𝑖𝑡
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

for these compute nodes
based on Eq. (14);

5 Schedule 𝐺𝑠𝑢𝑏
𝑖 to the compute node with highest

value of 𝑓𝑓𝑖𝑡
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

;

6 while the number of tasks in 𝑇 (𝐺𝑠𝑢𝑏
𝑖) > 1 do

7 Place the task pair (𝑣𝑖,𝑘, 𝑣𝑗,𝑙) with the
highest 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) in the same process;

8 Remove 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙 from 𝑇 (𝐺𝑠𝑢𝑏
𝑖);

9 end
10 Remove 𝐺𝑠𝑢𝑏

𝑖 from 𝑅𝑆;
11 end
12 return 𝑆𝑆.

The input to Algorithm 3 includes the resource scaling
𝑅𝑆, compute node set 𝐶𝑁 , task set within each subgraph

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 10 of 17

Ra-Stream

𝑇 (𝐺𝑠𝑢𝑏
𝑖), and the tuple communication rate between tasks

𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙). The output is the fine-grained task scheduling
scheme 𝑆𝑆 for application 𝐺. Steps 2 to 4 describe the
coarse-grained scheduling process, which involves schedul-
ing tasks to compute nodes. Steps 6 to 7 describe the
fine-grained scheduling process, which involves placing
communication-intensive task pairs in the same process. The
time complexity of Algorithm 3 is 𝑂(𝑚 ⋅ 𝑛), where 𝑚 is the
number of subgraphs in 𝑅𝑆 and 𝑛 is the number of tasks
within a subgraph.

5.5. System Implementation
The time complexity analysis for each algorithm shows

that the overhead introduced by Ra-Stream remains within
tolerable limits. While the Ra-Stream modules do introduce
some time overhead, the impact is minimal and does not
degrade system performance. These modules are designed
to optimize system performance, and their effectiveness is
validated through the experiments in Section 6.

Ra-Stream primarily utilizes Storm’s built-in interfaces,
IMetric and IMetricConsumer, to track and collect runtime
information. This includes communication traffic between
tasks in the stream application, resource loads on compute
nodes, and available computational resources. The resource
load on compute nodes can be monitored using Linux system
interface commands. Ra-Stream’s scheduler is implemented
via Storm’s built-in interface, IScheduler.
6. Performance evaluation

According to [38], we evaluate the proposed Ra-Stream
in a real-world distributed computing environment. First,
we present our experimental setup and parameter configura-
tions. Next, we outline the datasets and stream applications
used for testing. Finally, we provide a thorough analysis of
the results.

6.1. Experimental setup
Our distributed compute cluster consists of 15 machines,

including 1 management node and 14 compute nodes. Each
compute node is powered by an Intel(R) Xeon(R) X5650
CPU (dual-core, 2.4 GHz), equipped with 2 GB of RAM,
and a 100 Mbps Ethernet interface card. The management
node is responsible for running Nimbus and Zookeeper to
maintain the overall operation of the cluster, while the com-
pute nodes run Supervisor to handle stream applications.
Each compute node is configured to deploy a maximum of
two Workers, with each Worker running up to two tasks. For
clarity, we exhibit the software configurations in Table 3, and
the parameter configuration of Ra-Stream in Table 4.

During the experiment, we use the public dataset Alibaba
Tianchi [39] as the data source for the real-time word count-
ing application (WordCount application), and use the public
dataset provided by Backblaze [40] as the data source for
the DEBS 2024 Grand Challenge: Telemetry data for hard
drive failure prediction and predictive maintenance [41]. The
topologies of the two applications are illustrated in Figs. 2
and 8, respectively.

Table 3
Software configuration of experimental environment.

Software Version

OS Ubuntu 20.04 64 bit
Apache Storm Apache-storm-2.1.0
JDK jdk-8u171-linux-x64
Apache Zookeeper Apache-Zookeeper-3.5.7
Python Python 3.8.3
MySQL MySQL-8.0.40
Apache Kafka kafka-2.12-3.0.0

Table 4
Ra-Stream’s parameter configuration.

Parameter Value Parameter Value

𝛼 0.50 𝛽 0.35
𝜖 0.70 𝜁 0.99
𝛾 0.50 𝛿 0.35
𝑇𝑢𝑛𝑑𝑒𝑟 0.60 𝑇𝑜𝑣𝑒𝑟 0.75

Fig. 8: Topology of DEBS 2024

In the DEBS 2024 topology (Fig. 8), ‘Data Source’
acts as the Spout, sending real-time data downstream. ‘Data
Filter’ removes invalid or incomplete data. ‘Event Detection’
identifies specific event patterns. ‘Aggregation’ computes
real-time statistics using a sliding window, and the aggre-
gated results are stored in the database by ‘Data Storage’.
‘Anomaly Detection’ identifies anomalies in the data stream
and sends these events to ‘Alert System’. Finally, ‘Alert
System’ generates alert notifications and disseminates them
through a message queue. State migration is involved during
the task scheduling [42]. In this experiment, we employ
Storm’s check-point mechanism for state management [43].

6.2. System latency
System latency is defined as the time elapsed from the

moment a tuple enters the system until it is fully processed.
We assess the system latency of Ra-Stream under varying
data stream rates and compare it with the state-of-the-art

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 11 of 17

Ra-Stream

Fig. 9: System latency of WordCount under stable stream
rates.

solutions, EvenScheduler [44] and SP-Ant [21]. EvenSched-
uler is the default scheduler in Storm and has been widely
referenced in prior studies as a baseline [26, 27, 31]. SP-Ant,
a recent and open-source scheduling framework, reduces
communication overhead and achieves competitive system
performance by dynamically adjusting operator assignments
based on the computational capabilities of compute nodes.

Under a stable data stream rate of 3,000 tuples/s, Ra-
Stream demonstrates significantly lower system latency
compared to the other two solutions. As shown in Fig. 9,
the average system latencies of WordCount are 5.26 ms, 7.81
ms and 11.57 ms for Ra-Stream, SP-Ant and EvenScheduler,
respectively. SP-Ant places communication-intensive tasks
on the same computation node without considering the
resource utilization of that node, resulting in node overload
and consequently higher system latency.

Similarly, under the same stable data rate, Fig. 10 shows
the average system latency of DEBS 2024 application.
EvenScheduler and SP-Ant yield latency of 20.01 ms and
15.80 ms, respectively, while Ra-Stream achieves an average
system latency of only 10.61 ms. Ra-Stream demonstrates
greater stability compared to the apparent latency fluc-
tuations observed with EvenScheduler and SP-Ant. This
improved stability is attributed to Ra-Stream’s ability to
prevent compute node overloads, ensuring that each task has
sufficient resources to process tuples.

Under increasing data stream rates, Ra-Stream consis-
tently demonstrates reduced system latency compared to SP-
Ant and EvenScheduler. We set an initial data stream rate of
1000 tuples/s. After system metrics such as latency stabilize,
we collect performance data for 10 minutes. The data stream
rate is then increased in 1000 tuples/s increments, with
stabilization and data collection occurring at each step, up
to 5000 tuples/s. As shown in Figs. 11 and 12, the average
system latencies of WordCount and DEBS 2024 increase for
all solutions as the data stream rate grows. However, Ra-
Stream experiences a smaller increase in latency compared
to SP-Ant and EvenScheduler, maintaining a performance
advantage.

Fig. 10: System latency of DEBS 2024 under stable stream
rates.

Fig. 11: System latency of WordCount under increasing stream
rates.

Fig. 12: System latency of DEBS 2024 under increasing stream
rates.

In summary, Ra-Stream demonstrates excellent system
latency, whether the data stream rate is stable or increasing.
This is because Ra-Stream effectively prevents overload
situations in the cluster’s compute nodes, guaranteeing that
each task in the stream application has ample computational
resources to steadily process tuples. In addition, Ra-Stream

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 12 of 17

Ra-Stream

minimizes communication costs between tasks, further re-
ducing system latency.

6.3. Maximum system throughput
Maximum system throughput is defined as the highest

data stream rate that a system can steadily process without
failure. In stream computing systems, if any task within the
stream application fails as the data stream rate increases,
the corresponding data stream rate is identified as the sys-
tem’s maximum throughput. To determine the maximum
throughput for Ra-Stream, SP-Ant, and EvenScheduler, we
deploy them on our cluster and run stream applications
under incremental data rates. For fairness, the computational
resource configurations, datasets, and stream applications
used are kept identical across all experiments.

Under an increasing data stream rate with increments
of 500 tuples/s, Ra-Stream demonstrates a higher maxi-
mum throughput than the others. As shown in Fig. 13, for
WordCount and DEBS 2024, Ra-Stream achieves maximum
throughputs of 14500 tuples/s and 12000 tuples/s, respec-
tively. These values represent a significant improvement over
EvenScheduler and SP-Ant.

Fig. 13: Maximum throughput of WordCount and DEBS 2024
under Ra-Stream, SP-Ant and EvenScheduler.

The superior performance of Ra-Stream is attributed to
its ability to automatically configure the scheduling scheme
for tasks based on the current data stream rate, thereby
preventing task failures caused by insufficient computational
resources. Before generating the scheduling scheme, Ra-
Stream systematically adjusts tasks among subgraphs. This
approach ensures that, once tasks are scheduled to compute
nodes at the subgraph level, each task is allocated sufficient
resources to execute.

6.4. Resource utilization
Resource utilization refers to the proportion of utilized

resources relative to the total resources at runtime. The focus
on runtime resource utilization for stream applications is a
prevalent topic in current research. For example, one key
consideration is how to achieve optimal system performance
with a reduced number of compute nodes. However, the
number of compute nodes used does not directly reflect the

resource utilization within a individual compute node. For
instance, excessively low resource utilization in a compute
node indicates significant resource wastage, which is clearly
undesirable. To address this, we employ two metrics to
assess Ra-Stream’s resource utilization: the number of com-
pute nodes used within the cluster and the average resource
utilization within compute nodes. The average resource uti-
lization is consists of CPU, memory and I/O resources,
which can be calculated by Eq. (6).

Fig. 14: Number of compute nodes utilized in WordCount and
DEBS 2024 under stable stream rates.

Under a stable data stream rate of 3000 tuples/s, Ra-
Stream can adjusts the number of compute nodes to adapt
to the data rate. As shown in Fig. 14, for the two stream
applications, WordCount and DEBS 2024, Ra-Stream uti-
lizes 7 and 8 compute nodes, respectively. These figures
are significantly fewer than the number of compute nodes
utilized by SP-Ant and EvenScheduler.

Under fluctuating data stream rates, Ra-Stream automat-
ically adjusts the utilization of compute nodes to accommo-
date current data stream conditions. To simulate real-world
fluctuating workloads, we define a time-varying data stream
profile. For example, the data stream rate increases from
1800 tuples/s to 3000 tuples/s at 60 seconds, and decreases
from 2700 tuples/s to 2000 tuples/s at 330 seconds. This
enables the observation of Ra-Stream’s dynamic resource
scaling and performance adaptability under fluctuating load
conditions. In our experiment, the peak data stream rate is set
to 4,500 tuples/s at the 210 seconds. As shown in Figs. 15
and 16, Ra-Stream dynamically adjusts the number of com-
pute nodes for both WordCount and DEBS 2024 applications
in response to changing data rates. Initially, Ra-Stream’s
number of compute nodes matches that of EvenScheduler.
Subsequently, Ra-Stream generates a new scheduling plan
suitable for the current data rate 1800 tuples/s at runtime 30s,
adjusting the node number (from 14 to 5 in WordCount and
from 14 to 7 in DEBS 2024).

Throughout the runtime, Ra-Stream continues to adapt
to the fluctuating streams. For example, when the data rate
increases from 3,000 tuples/s to 4,500 tuples/s at runtime
210s, Ra-Stream scales up the node number (from 7 to 10 in
WordCount, and from 8 to 11 in DEBS 2024) to ensure stable

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 13 of 17

Ra-Stream

Fig. 15: Number of compute nodes utilized in WordCount
under fluctuating stream rates.

Fig. 16: Number of compute nodes utilized in DEBS 2024
under fluctuating stream rates.

system operation. Conversely, when the rate decreases from
4,500 tuples/s to 2,700 tuples/s at runtime 270s, Ra-Stream
reduces the node number (from 10 to 7 in WordCount, and
from 11 to 8 in DEBS 2024), optimizing resource utilization.

Under fluctuating data stream rates, Ra-Stream also
achieves more efficient average resource utilization. As
shown in Figs. 17 and 18, whether running WordCount
or DEBS 2024, Ra-Stream consistently achieves higher
and more stable resource utilization compared to SP-Ant
and EvenScheduler. In contrast, SP-Ant and EvenScheduler
exhibit inefficient resource utilization, which fluctuates with
changes in data rates, leading to wasted resources.

In summary, Ra-Stream not only scales compute node
resources automatically in response to data stream fluc-
tuations, ensuring the stable operation of stream applica-
tions with a minimum number of nodes, but also achieves
more efficient average resource utilization, greatly reducing
resource waste. Ra-Stream demonstrates a substantial im-
provement in resource utilization.

7. Conclusion and future work
In scenarios involving fluctuating data streams, minimiz-

ing system latency, reducing resource costs, and ensuring

Fig. 17: Average resource utilization in WordCount under
fluctuating stream rates.

Fig. 18: Average resource utilization in DEBS 2024 under
fluctuating stream rates.

efficient resource utilization are critical challenges in cur-
rent stream computing research. Achieving these objectives
requires a scheduling strategy capable of sensing changes in
data flow rates and accounting for the dependencies among
tasks within stream applications. Such a strategy should
automatically adjust computational resources in response to
variations in data streams, while minimizing communication
costs through effective task deployment.

To meet these requirements, this paper proposed a
task scheduling strategy with automated resource scaling
designed to handle fluctuating data streams. Ra-Stream
achieves strong system performance in fluctuating data
stream scenarios with reduced resource costs. Compared
to state-of-the-art approaches, Ra-Stream reduces system
latency by approximately 36.37% to 47.45%, increased sys-
tem maximum throughput by around 26.2% to 60.55%, and
saves approximately 40% to 46.25% in resource utilization.
Despite these advantages, there remain areas for further
enhancement, including support for greater task parallelism,
integration of energy-aware scheduling for reduced power
consumption, and improved scalability across other stream
processing frameworks.

In the future, we aims to further explore the following
areas:

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 14 of 17

Ra-Stream

(1) Task parallelism: Investigating the parallelism of tasks
within stream applications to further reduce system
latency.

(2) Energy consumption: Integrating energy consumption
metrics of compute clusters to achieve additional eco-
nomic and environmental benefits.

CrediT authorship contribution statement
Yinuo Fan: Conceptualization, Methodology, Valida-

tion, Writing original draft. Dawei Sun: Methodology,
Writing review & editing, Funding acquisition. Minghui
Wu: Validation, Writing review & editing. Shang Gao:
Formal analysis, Investigation, Writing review & editing.
Rajkumar Buyya: Methodology, Writing review & editing.

Declaration of competing interest
The authors declare that they have no known competing

financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements
This work is supported by the National Natural Science

Foundation of China under Grant No. 62372419; the Fun-
damental Research Funds for the Central Universities under
Grant No. 265QZ2021001.

References
[1] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Kat-

sifodimos. A survey on the evolution of stream processing systems.
The VLDB Journal, 33(2):507–541, 2024.

[2] Zhenyu Wen, Renyu Yang, Bin Qian, Yubo Xuan, Lingling Lu, Zheng
Wang, Hao Peng, Jie Xu, Albert Y Zomaya, and Rajiv Ranjan. Janus:
Latency-aware traffic scheduling for iot data streaming in edge envi-
ronments. IEEE Transactions on Services Computing, 16(6):4302–
4316, 2023.

[3] Boshra Pishgoo, Ahmad Akbari Azirani, and Bijan Raahemi. A
hybrid distributed batch-stream processing approach for anomaly
detection. Information Sciences, 543:309–327, 2021.

[4] Yuya Sasaki. A survey on iot big data analytic systems: Current and
future. IEEE Internet of Things Journal, 9(2):1024–1036, 2021.

[5] Shuhao Zhang, Juan Soto, and Volker Markl. A survey on transac-
tional stream processing. The VLDB Journal, 33(2):451–479, 2024.

[6] Marcos Dias de Assuncao, Alexandre da Silva Veith, and Rajkumar
Buyya. Distributed data stream processing and edge computing: A
survey on resource elasticity and future directions. Journal of Network
and Computer Applications, 103:1–17, 2018.

[7] Xunyun Liu and Rajkumar Buyya. Resource management and
scheduling in distributed stream processing systems: a taxonomy,
review, and future directions. ACM Computing Surveys (CSUR),
53(3):1–41, 2020.

[8] Nicoleta Tantalaki, Stavros Souravlas, and Manos Roumeliotis. A
review on big data real-time stream processing and its scheduling
techniques. International Journal of Parallel, Emergent and Dis-
tributed Systems, 35(5):571–601, 2020.

[9] Giselle Van Dongen and Dirk Van den Poel. Evaluation of stream pro-
cessing frameworks. IEEE Transactions on Parallel and Distributed
Systems, 31(8):1845–1858, 2020.

[10] Mutaz Barika, Saurabh Garg, Albert Y Zomaya, and Rajiv Ranjan.
Online scheduling technique to handle data velocity changes in stream
workflows. IEEE Transactions on Parallel and Distributed Systems,
32(8):2115–2130, 2021.

[11] Sumathi Gurusamy and Rajesh Selvaraj. Resource allocation with
efficient task scheduling in cloud computing using hierarchical auto-
associative polynomial convolutional neural network. Expert Systems
with Applications, 249:123554, 2024.

[12] Shun Wang and Guo-sun Zeng. Two-stage scheduling for a fluctuant
big data stream on heterogeneous servers with multicores in a data
center. Cluster Computing, 27(2):1581–1597, 2024.

[13] Mutaz Barika, Saurabh Garg, Andrew Chan, and Rodrigo N Cal-
heiros. Scheduling algorithms for efficient execution of stream work-
flow applications in multicloud environments. IEEE Transactions on
Services Computing, 15(02):860–875, 2022.

[14] Patient Ntumba, Nikolaos Georgantas, and Vassilis Christophides.
Adaptive scheduling of continuous operators for iot edge analytics.
Future Generation Computer Systems, 158:277–293, 2024.

[15] Xing Fu, Bing Tang, Feiyan Guo, and Linyao Kang. Priority and
dependency-based dag tasks offloading in fog/edge collaborative en-
vironment. In 2021 IEEE 24th international conference on computer
supported cooperative work in design (CSCWD), pages 440–445,
2021.

[16] Ali Al-Sinayyid and Michelle Zhu. Job scheduler for streaming
applications in heterogeneous distributed processing systems. The
Journal of Supercomputing, 76(12):9609–9628, 2020.

[17] Leila Eskandari, Jason Mair, Zhiyi Huang, and David Eyers. I-
scheduler: Iterative scheduling for distributed stream processing sys-
tems. Future Generation Computer Systems, 117:219–233, 2021.

[18] Hai Jin, Fei Chen, Song Wu, Yin Yao, Zhiyi Liu, Lin Gu, and
Yongluan Zhou. Towards low-latency batched stream processing
by pre-scheduling. IEEE Transactions on Parallel and Distributed
Systems, 30(3):710–722, 2018.

[19] Henriette Röger and Ruben Mayer. A comprehensive survey on
parallelization and elasticity in stream processing. ACM Computing
Surveys (CSUR), 52(2):1–37, 2019.

[20] Mahmood Mortazavi-Dehkordi and Kamran Zamanifar. Efficient
deadline-aware scheduling for the analysis of big data streams in
public cloud. Cluster Computing, 23(1):241–263, 2020.

[21] Mohammadreza Farrokh, Hamid Hadian, Mohsen Sharifi, and Ali
Jafari. Sp-ant: An ant colony optimization based operator scheduler
for high performance distributed stream processing on heterogeneous
clusters. Expert Systems with Applications, 191:116322, 2022.

[22] Hongjian Li, Jianglin Xia, Wei Luo, and Hai Fang. Cost-efficient
scheduling of streaming applications in apache flink on cloud. IEEE
Transactions on Big Data, 9(4):1086–1101, 2022.

[23] Alexander Brown, Saurabh Garg, James Montgomery, and
KC Ujjwal. Resource scheduling and provisioning for processing
of dynamic stream workflows under latency constraints. Future
Generation Computer Systems, 131:166–182, 2022.

[24] Anik Momtaz, Ramy Medhat, and Borzoo Bonakdarpour. Resource
optimization of stream processing in layered internet of things. In
2023 42nd International Symposium on Reliable Distributed Systems
(SRDS), pages 221–231, 2023.

[25] Yancan Mao, Jianjun Zhao, Shuhao Zhang, Haikun Liu, and Volker
Markl. Morphstream: Adaptive scheduling for scalable transactional
stream processing on multicores. Proceedings of the ACM on Man-
agement of Data, 1(1):1–26, 2023.

[26] Peng Kang, Samee U Khan, Xiaobo Zhou, and Palden Lama. High-
throughput real-time edge stream processing with topology-aware
resource matching. In 2024 IEEE 24th International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), pages 385–394.
IEEE, 2024.

[27] Raphael Ecker, Vasileios Karagiannis, Michael Sober, and Stefan
Schulte. Latency-aware placement of stream processing operators in
modern-day stream processing frameworks. Journal of Parallel and
Distributed Computing, page 105041, 2025.

[28] Yang Li, Huaijun Jiang, Yu Shen, Yide Fang, Xiaofeng Yang, Danqing
Huang, Xinyi Zhang, Wentao Zhang, Ce Zhang, Peng Chen, et al.
Towards general and efficient online tuning for spark. Proceedings of
the VLDB Endowment, 16(12):3570–3583, 2023.

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 15 of 17

Ra-Stream

[29] Xi Huang, Ziyu Shao, and Yang Yang. Potus: Predictive online tuple
scheduling for data stream processing systems. IEEE Transactions on
Cloud Computing, 10(4):2863–2875, 2020.

[30] Hanhua Chen, Fan Zhang, and Hai Jin. Pstream: a popularity-
aware differentiated distributed stream processing system. IEEE
Transactions on Computers, 70(10):1582–1597, 2020.

[31] Wenxin Li, Duowen Liu, Kai Chen, Keqiu Li, and Heng Qi. Hone:
Mitigating stragglers in distributed stream processing with tuple
scheduling. IEEE Transactions on Parallel & Distributed Systems,
32(08), 2021.

[32] Hailu Xu, Pinchao Liu, Sarker Tanzir Ahmed, Dilma Da Silva, and
Liting Hu. Adaptive fragment-based parallel state recovery for stream
processing systems. IEEE Transactions on Parallel and Distributed
Systems, 34(8):2464–2478, 2023.

[33] Yidan Wang, Zahir Tari, Xiaoran Huang, and Albert Y Zomaya. A
network-aware and partition-based resource management scheme for
data stream processing. In Proceedings of the 48th International
Conference on Parallel Processing, pages 1–10, 2019.

[34] Risat Pathan, Petros Voudouris, and Per Stenström. Scheduling
parallel real-time recurrent tasks on multicore platforms. IEEE
Transactions on Parallel and Distributed Systems, 29(4):915–928,
2017.

[35] Hongliang Li, Jie Wu, Zhen Jiang, Xiang Li, and Xiaohui Wei. Task
allocation for stream processing with recovery latency guarantee. In
2017 IEEE International Conference on Cluster Computing (CLUS-
TER), pages 379–383, 2017.

[36] Jiawei Jiang, Zhipeng Zhang, Bin Cui, Yunhai Tong, and Ning Xu.
Stromax: Partitioning-based scheduler for real-time stream processing
system. In Database Systems for Advanced Applications: 22nd
International Conference, DASFAA 2017, Suzhou, China, March 27-
30, 2017, Proceedings, Part II 22, pages 269–288, 2017.

[37] Alexander G Nikolaev and Sheldon H Jacobson. Simulated annealing.
Handbook of metaheuristics, pages 1–39, 2010.

[38] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman
Samarev, Henri Heiskanen, and Volker Markl. Benchmarking dis-
tributed stream data processing systems. In 2018 IEEE 34th inter-
national conference on data engineering (ICDE), pages 1507–1518,
2018.

[39] Aliyun. https://tianchi.aliyun.com/dataset/, 2021.
[40] Hard drive test data. https://www.backblaze.com/cloud-

storage/resources/hard-drive-test-data, 2025.
[41] Luca De Martini, Jawad Tahir, Christoph Doblander, Sebastian

Frischbier, and Alessandro Margara. The debs 2024 grand challenge:
Telemetry data for hard drive failure prediction. In Proceedings of the
18th ACM International Conference on Distributed and Event-based
Systems, pages 223–228, 2024.

[42] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker
Markl. Rethinking stateful stream processing with rdma. In Proceed-
ings of the 2022 International Conference on Management of Data,
pages 1078–1092, 2022.

[43] Yuan Zhuang, Xiaohui Wei, Hongliang Li, Mingkai Hou, and Yundi
Wang. Reducing fault-tolerant overhead for distributed stream pro-
cessing with approximate backup. In 2020 29th International Con-
ference on Computer Communications and Networks (ICCCN), pages
1–9, 2020.

[44] Evenscheduler. https://github.com/apache/storm/blob/v2.1.0/storm-
server/src/main/java/org/apache/storm/scheduler/EvenScheduler.java.

Yinuo Fan is a postgraduate student at the School
of Information Engineering, China University of
Geosciences, Beijing, China. He received his
Bachelor Degree from North China University
of Science and Technology, Tangshan, China in
2023. His research interests include big data stream
computing, distributed systems, and reinforcement
learning.

Dawei Sun is a Professor in the School of In-
formation Engineering, China University of Geo-
sciences, Beijing, P.R. China. He received his
Ph.D. degree in computer science from Northeast-
ern University, China in 2012, and conducted the
Postdoctoral research in the department of com-
puter science and technology at Tsinghua Univer-
sity, China in 2015. His current research interests
include big data computing, cloud computing and
distributed systems. In these areas, he has authored
over 90 journal and conference papers.

Minghui Wu is a PhD student at the School of In-
formation Engineering, China University of Geo-
sciences, Beijing, China. He received his Bachelor
Degree in Network Engineering from Zhengzhou
University of Aeronautics, Zhengzhou, China in
2020. His research interests include big data stream
computing, distributed systems, and blockchain.

Shang Gao received her Ph.D. degree in computer
science from Northeastern University, China in
2000. She is currently a Senior Lecturer in the
School of Information Technology, Deakin Univer-
sity, Geelong, Australia. Her current research inter-
ests include distributed system, cloud computing
and cyber security.

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 16 of 17

Ra-Stream

Rajkumar Buyya is a Redmond Barry Distin-
guished Professor and Director of the Quan-
tum Cloud Computing and Distributed Systems
(qCLOUDS) Laboratory at the University of Mel-
bourne, Australia. He is also serving as the found-
ing CEO of Manjrasoft, a spin-off company of
the University, commercializing its innovations in
Cloud Computing. He has authored over 750 publi-
cations and four textbooks. He is one of the highly
cited authors in computer science and software en-
gineering worldwide (h-index 173 with 160,500+
citations). He is among the world’ s top 2 most
influential scientists in distributed computing in
terms of both single-year impact and career-long
impact based on a composite indicator of Sco-
pus citation database. He served as the found-
ing Editor-in-Chief (EiC) of IEEE Transactions
on Cloud Computing and now serving as EiC of
Journal of Software: Practice and Experience.

Y.Fan, D.Sun et al: Preprint submitted to Elsevier Page 17 of 17

