
SLA-Based Resource Scheduling for Big Data Analytics as a Service in Cloud
Computing Environments

Yali Zhao, Rodrigo N. Calheiros, Graeme Gange, Kotagiri Ramamohanarao, Rajkumar Buyya
Department of Computing and Information Systems

The University of Melbourne, Australia
{yaliz1@student., rnc@, gkgange@, kotagiri@, rbuyya@}unimelb.edu.au

Abstract— Data analytics plays a significant role in gaining
insight of big data that can benefit in decision making and
problem solving for various application domains such as
science, engineering, and commerce. Cloud computing is a
suitable platform for Big Data Analytic Applications (BDAAs)
that can greatly reduce application cost by elastically
provisioning resources based on user requirements and in a pay
as you go model. BDAAs are typically catered for specific
domains and are usually expensive. Moreover, it is difficult to
provision resources for BDAAs with fluctuating resource
requirements and reduce the resource cost. As a result, BDAAs
are mostly used by large enterprises. Therefore, it is necessary
to have a general Analytics as a Service (AaaS) platform that
can provision BDAAs to users in various domains as
consumable services in an easy to use way and at lower price. To
support the AaaS platform, our research focuses on efficiently
scheduling Cloud resources for BDAAs to satisfy Quality of
Service (QoS) requirements of budget and deadline for data
analytic requests and maximize profit for the AaaS platform.
We propose an admission control and resource scheduling
algorithm, which not only satisfies QoS requirements of
requests as guaranteed in Service Level Agreements (SLAs), but
also increases the profit for AaaS providers by offering a cost-
effective resource scheduling solution. We propose the
architecture and models for the AaaS platform and conduct
experiments to evaluate the proposed algorithm. Results show
the efficiency of the algorithm in SLA guarantee, profit
enhancement, and cost saving.

I. INTRODUCTION

As we enter into the big data era, data analytics becomes
critical in decision making and problem solving for various
domains, such as science, engineering, commerce, and
industry. Big data is referred to a massive volume of
structured, unstructured, semi-structured, or real-time data,
which is difficult to manage and process with traditional
database techniques [1, 2]. Huge amount of data is generated
from various sources, i.e., social media, sensors, websites, and
mobile devices every day. The key enablers of big data are the
increased capability of storage and computing resources
enabled by recent advances in Cloud computing and the
increased availability of data and the ease of access to data
supported by various companies like Amazon, Google, IBM,
and Facebook. Cloud computing is a suitable platform for big
data analytics by providing various resources, which are: (1)
Cloud infrastructures, such as Amazon EC2, which offer on-
demand virtualized resources, i.e., Virtual Machines (VMs)
and storages; (2) Cloud platforms, such as Google App
Engine, which manage underlying infrastructure resources

and allow users to deploy and run applications; (3) application
services, such as IBM Social Media Analytics [3], which are
provided to users through web browser portals.

Analyzing big data to find potential insights in the data is
essential for individuals, organizations, and governments to
make better decisions, i.e., product trend prediction, business
strategy making, and disaster prediction and management.
However, big data analytics has several challenges. Obtaining
analytic solutions is usually expensive as it requires large data
storage systems to store voluminous data and considerable
computing resources to analyze the data. Furthermore,
licenses of Big Data Analytic Application (BDAA) are often
expensive. As a result, big data analytics is mostly used by a
small number of large enterprises [4]. Moreover, scheduling
resources for BDAAs requires expert knowledge. For
example, in order to reduce the time of generating analytic
solutions, BDAAs should be deployed on various machines
for parallel processing on large datasets, while in order to save
energy and cost, resources should be scaled up and down for
varied resource demands of BDAAs. The lack of such
expertise makes resource scheduling for BDAAs difficult for
many users. The above challenges illustrate the need for an
Analytics as a Service (AaaS) platform, which aims at serving
on-demand analytic requests and delivering AaaS to users as
consumable services in an easy to use way and at lower cost.
The delivered AaaS should satisfy Quality of Service (QoS)
requirements of requests with Service Level Agreement
(SLA) guarantees. SLA is the agreement negotiated between
service users and providers, which defines the metrics,
expected QoS, and penalties during service delivery.

To support the AaaS platform, our research focuses on
efficiently scheduling Cloud resources for BDAAs and
provisioning BDAAs to users as consumable services. We aim
to serve the interests of AaaS providers to enhance profit by
proposing cost-effective resource scheduling solutions,
increase market share by accepting more requests, and
improve reputation by delivering satisfactory services to users
with SLA guarantees. BDAAs that typically process read-only
query requests on given datasets and leave out data
consistency and security issues [5] are our targeted
applications. The key contribution of our work is an
admission control and resource scheduling algorithm that
admits queries based on QoS requirements, delivers analytic
solutions to users with SLA guarantees, and provides a cost-
effective resource scheduling solution to create higher profit
for AaaS providers. To achieve this, we (1) propose the
architecture and models of the AaaS platform; (2) formulate
the resource scheduling problem based on mixed Integer

Linear Programming (ILP) model [6] and propose the
admission control and resource scheduling algorithm; and (3)
conduct experiments to evaluate the performance of the
algorithm in SLA guarantee, profit enhancement, and cost
saving.

II. ARCHITECTURE AND MODELS

A. Architecture

We propose the architecture of the AaaS platform that
provisions general AaaS to various domains of users as
consumable services, as shown in Fig. 1. The architecture is
composed of the following components:

Admission
Controller

Query
Scheduler

BDAA
Manager

Data Source
Manager

Resource
Manager

…

Dataset1

VM1 …

DatasetN
…

…

Cloud Resource Registry

Storage

VM

Analytics as a Service Platform

SLA
Manager

Cost
Manager

…

BDAA Registry

Provider1

…

ProviderN

Provider1

ProviderN

User1 UserN

VMN

BDAA1 BDAAN

Query
Request

Figure 1. Architecture of the AaaS Platform

Admission controller makes decisions about whether to
accept queries submitted by users. Admission controller first
searches exhaustively in BDAA registry for requested
BDAAs and the Cloud resource registry for all possible
resource configurations. Then, it estimates query execution
time and cost as basis to decide whether to accept or reject
queries. Accepted queries are submitted to SLA manager.

SLA manager builds SLAs for accepted queries. SLA
violations not only decrease user satisfaction but also generate
additional penalty cost; thus, they should be avoided.

Query scheduler is the core component of the AaaS
platform, which makes scheduling decisions and coordinates
the other components. Scheduling decisions mainly contain:
(a) resource configuration: the scheduler decides which type
of Cloud resource to use and how many to use for each
resource type; (b) VM control: the scheduler sends VM
controlling commands to the resource manager to control
VMs, i.e., create VM, terminate VM, and migrate VM; (c)
BDAA selection: the scheduler selects requested BDAA to
execute a query; (d) query execution sequence: queries that
request the same BDAA are submitted to the waiting queues
of VMs running the BDAA (as queries contain deadline
constraints, they are ordered for execution to avoid deadline
violations); and (e) query management: the scheduler
monitors and manages status of queries during their lifecycles.
Query status can be one of submitted, accepted, rejected,
waiting for execution, being executed, succeeded, and failed.
Query status is monitored to allow the scheduler to take
appropriate actions, i.e., send query with failed status to cost
manager to generate penalty cost.

Cost manager manages all the cost occurred in the AaaS
platform, i.e., query cost and resource cost. It also aims at

providing pricing policies that can attract more users to
enlarge market share and generate higher profit.

BDAA manager manages BDAAs provided by different
BDAA providers and keeps up-to-date BDAA information.

Data source manager manages datasets that are to be
processed. As big data has high volume, we move the compute
to the data to save data transferring time and network cost.

Resource manager keeps a catalog of all available Cloud
resources from different providers and monitors status of VMs
to allow the scheduler to take actions such as terminating idle
VMs at the end of billing period to save cost.

B. Models

The models of the AaaS platform are shown as below:
Query request model: Query requests should contain the

following information in query specifications: (a) QoS
requirements, which contain budget and deadline to fulfill; (b)
required resources to execute a query; (c) the requested
BDAA; (d) data characteristics including data size, data type,
and data location; (e) user who submits the query; and (f)
query type, i.e., aggregation query and join query.

Cloud resource model contains a set of datacenters and a
matrix showing the network bandwidth between the
datacenters. Each datacenter contains a set of hosts and data
storages that pre-store datasets. Each host contains a set of
VMs.

BDAA profile model contains resource configurations,
data processing time, data size, data type, and costs for
different queries. BDAA profiles are the basis for AaaS
platform to estimate query time and cost to make admission
and scheduling decisions. Obtaining the profiles requires
expert knowledge. Thus, BDAA profiles are assumed to be
provisioned by BDAA providers and are reliable.

Cost model contains sub-models of resource cost, penalty
cost of SLA violations, query cost (query income) that charges
users for using AaaS platform, and profit that is created for
AaaS platform providers. Profit is the difference of query cost
and the sum of resource cost and penalty cost. Query cost has
different cost policies, which are: (a) cost based on urgency of
deadline; (b) proportional cost, i.e., proportional to BDAA
cost; and (c) a combination of (a) and (b). Resource cost
contains BDAA cost and Cloud resource cost. BDAA cost
policies are: (a) fixed cost, i.e., annual contract; (b) usage
period based cost, i.e., hourly basis; and (c) per request based
cost. Penalty cost policies are: (a) fixed cost; (b) delay
dependent cost; and (c) proportional cost [7].

III. ADMISSION CONTROL AND RESOURCE SCHEDULING

We propose the admission control and resource
scheduling algorithm that only admits queries whose QoS can
be satisfied and schedules resources to execute queries with
SLA guarantees to maximize the profit of AaaS providers. We
adopt proportional query cost model, which calculates the
query cost proportional to BDAA cost and fixed BDAA cost
model, which is fixed cost under annual contract. We aim to
make scheduling decision that can give 100% SLA guarantee.
Thus, penalty cost of violating SLAs can be avoided if
scheduling decision is well made. Since query cost and BDAA
cost are fixed and penalty cost can be avoided, our goal of

maximizing profit of the AaaS providers is to minimize the
Cloud resource cost.

A. Admission Control Algorithm

The admission controller makes query admission
decisions. It first searches the BDAA registry to check
whether a query requested BDAA exists. If the BDAA exists,
admission controller obtains the BDAA profile. Based on the
profile, expected execution time and query cost for different
resource configurations are calculated. The expected query
cost is calculated based on the adopted query cost model. The
expected finish time is the sum of estimated execution time,
specified timeout (the maximum time the scheduling
algorithm can run), VM creation time (the time to create new
VM when needed), submission time (the time when the query
is submitted), and waiting time (the time till the query is
scheduled). Admission controller makes query acceptance
decision if estimated finish time and cost of queries can satisfy
QoS requirements of queries using any resource
configuration. Afterwards, SLA manager builds SLAs for
accepted queries.

B. Scheduling Algorithms

After the admission controller accepts queries, the query
scheduler makes the scheduling decision for each BDAA. We
develop scheduling algorithms that support different
scheduling scenarios, which are periodic scheduling that
schedules queries for each Scheduling Interval (SI) and non-
periodic (real time) scheduling that schedules queries
whenever they arrive. For periodic scheduling, we set
different SI parameters to study how SI can influence the
performance of the scheduling algorithms. We detail the study
of algorithm performance for different scheduling scenarios in
performance evaluation section.

We aim at scheduling and provisioning resources for
BDAAs that can maximize profit for AaaS providers by
minimizing resource cost and guarantee SLAs of queries on
deadline and budget. The scheduling algorithms adopt a two-
phase scheduling policy that provision resources in a scalable
and elastic way. They scale resources down by releasing
resources when the provisioned resource capacity is more than
required to reduce cost and scales resources up by leasing new
resources when provisioned resources do not have sufficient
capacity to execute queries to avoid SLA violations.

1) ILP scheduling algorithm
We model and formulate the two-phase resource

scheduling problem based on ILP model [6]. Phase 1 aims at
minimizing resource cost by scheduling queries to existing
VMs to maximize VM utilization while satisfying SLAs of
queries. If queries are not successfully scheduled, they will be
handled by Phase 2 for further scheduling, which aims to
minimize the cost of creating VMs to execute queries with
SLA guarantees.

Phase 1 of the scheduling problem is formulated as a
multi-objective ILP problem [8]. Minimizing cost of
resources for query execution under budget and deadline
constrains is an NP-complete decision problem that can be
polynomially reduced to an ILP problem. The optimization
objective of Phase 1 scheduling is minimizing resource cost.

To achieve this, we have three individual objectives to fulfill,
which are: Objective A aims to maximize resource utilization
by assigning queries to existing VMs using maximized VM
capacity, as shown in (1), where ݊ denotes the number of
created VMs; ݉ indicates the number of queries to be
scheduled; ܮ௜ is the required resource of query; and ݔ௜௝
denotes whether ܳݕݎ݁ݑ௜ is assigned to ܸܯ௝ (if ܳݕݎ݁ݑ௜ is
assigned to ܸܯ௝ ௜௝ݔ , ൌ 1; otherwise, ݔ௜௝ ൌ 0). Objective B
aims to save resource cost by executing queries on VMs with
lower cost first to reduce load on VMs with higher cost to
allow VM termination, as shown in (2), where ܥ௝	is the cost of
௝ܯܸ (modeled on an hourly basis) and ݕ௜ denotes whether
௝ݕ ,௝ is to be terminatedܯܸ ௝ is to be terminated (ifܯܸ ൌ 0;
otherwise, ݕ௝ ൌ 1). Objective C aims to reduce VM runtime
for cost saving purpose and to reduce query response time for
better performance by executing queries at the earliest time,
as shown in (3), where ݏ௜ is the starting time of ܳݕݎ݁ݑ௜.

ܣ ൌ ∑ሺݔܽ݉	 ∑ ሺܮ௜ ∗ ௜௝ሻݔ
௠
௜ୀଵ ሻ௡

௝ୀଵ (1)
ܤ ൌ ∑ሺെ	ݔܽ݉	 ሺܥ௝ ∗ ௝ሻሻݕ

௡
௝ୀଵ (2)

ܥ ൌ ∑ሺെ	ݔܽ݉	 	௜ሻݏ
௠
௜ୀଵ (3)

The importance of above objectives contributing to the
optimization problem is A > B > C. Combining the three
individual objectives, we formulate the Objective D as shown
in (4), subjects to constraints (5)-(16). The combination leads
to a standard lexicographic optimization problem [9].
Coefficient ܨ଴ and ܨଵ are given accordingly to Objective ܣ
and Objective ܤ	to guarantee the aggregated problem with
maximization of all individual objective functions is
consistent to the original problem, as shown in (17) and (18).
The symbols of the ILP model are defined in Table I.

Objective:
ܦ ൌ max	ሺܨ଴ ∗ ∑ ∑ ൫ܮ௜ ∗ ௜௝൯ݔ

௠
௜ୀଵ

௡
௝ୀଵ െ ଵܨ ∗ ∑ ൫ܥ௝ ∗

௡
௝ୀଵ

௝൯ݕ െ ∑ ௜ሻݏ
௠
௜ୀଵ (4)

Subject to:
∑ ൫ܮ௜ ∗ ௜௝൯ݔ ൑ ܥ ௝ܲ
௠
௜ୀଵ , ∀݅ ∈ ݉, ݆ ∈ ݊ (5)

௜௝ݔ ൌ ሼ0|1ሽ, ∀	݅ ∈ ݉; 	݆ ∈ ݊ (6)
ܾ௜௞ ൅ ܾ௞௜ ൑ 1, ∀	݅, ݇ ∈ ݉ (7)
ܾ௜௞ ൌ 	 ሼ0|1ሽ, ∀	݅, ݇ ∈ ݉ (8)
ܾ௜௞ ൅ ܾ௞௜ െ ௜௝ݔ െ ௞௝ݔ ൒ െ1, ∀	݅, ݇ ∈ ݉; 	݆ ∈ ݊ (9)
௜ݏ െ ௞ݏ ൅ ଶܨ ∗ ܾ௜௞ ൑ ଶܨ െ ݁	௜௝, ∀	݅, ݇ ∈ ݉; 	݆ ∈ ݊	 (10)
௜ݏ ൅ ଷܨ ∗ ௜௝ݔ ൑ ଷܨ ൅ ௜ܦ െ ݁௜௝, ∀݅ ∈ ݉, ݆ ∈ ݊ (11)
௜௝ܥ ∗ ௜௝ݔ ൑ ,௜ܤ ∀݅ ∈ ݉, ݆ ∈ ݊	 (12)
∑ ௜௝ݔ ൑ 1, ∀݅ ∈ ݉, ݆ ∈ ݊௡
௝ୀଵ (13)

௝ݕ ൒ ,௜௝ݔ ∀	݅ ∈ ݉, ݆ ∈ ݊	 (14)
௝ݕ ൒ ,௝ାଵݕ ∀	݆ ∈ ݊ (15)
௝ݕ ൌ ሼ0|1ሽ, ∀		݆ ∈ ݊ (16)
VM capacity constraints: as shown in (5), where ݔ௜௝ is a

binary variable indicating whether ܳݕݎ݁ݑ௜ is scheduled to
ܥ ,௝, as shown in (6)ܯܸ ௝ܲ denotes the available capacity of
௝ܯܸ before the maximum deadline of the ݉ queries.
Constraint (5) ensures that the overall resources required by
queries do not exceed the available capacity of ܸܯ௝.

Query deadline constraints: as shown in (7) to (11),
where ܾ௜௞ is a binary variable as shown in (8), which denotes
whether ܳݕݎ݁ݑ௜ is executed before ܳݕݎ݁ݑ௞, if it is, ܾ௜௞ ൌ 1;

otherwise, ܾ௜௞ ൌ 0. Constraint (7) is used to ensure the unique
execution order of ܳݕݎ݁ݑ௜ and ܳݕݎ݁ݑ௞ by allowing
maximum one of ܾ௜௞ and ܾ௞௜ to be 1. Constraint (9) restricts
that ܳݕݎ݁ݑ௜ must be executed either before ܳݕݎ݁ݑ௞ or after
௝ܯܸ ௞when they are executed on the sameݕݎ݁ݑܳ , which is
derived from non-linear constraint (19). Constraint (19)
ensures that if ܳݕݎ݁ݑ௜ and ܳݕݎ݁ݑ௞	are scheduled on ܸܯ௝ ,
either ܾ௜௞ ൌ 1, ܾ௞௜ ൌ or (௞ݕݎ݁ݑܳ ௜ executes beforeݕݎ݁ݑܳ) 0
ܾ௜௞ ൌ 0, ܾ௞௜ ൌ Constraint .(௞ݕݎ݁ݑܳ ௜ executes afterݕݎ݁ݑܳ) 1
(10) is derived from non-linear constraint (20), which is used
to restrict if ܾ௜௞ ൌ 1 ௜ݕݎ݁ݑܳ , should finish before ܳݕݎ݁ݑ௞
starts execution, where ݁௜௝ denotes the execution time of
 ଶ is a sufficient large constant satisfyingܨ ௝ andܯܸ ௜ onݕݎ݁ݑܳ
(21). Constraint (11) is used to ensure that if ܳݕݎ݁ݑ௜ starts
execution on ܸܯ௝ at ݏ௜, it should finish before its deadline ܦ௜,
derived from non-linear constraint (22), where ܨଷ is a
sufficient large constant satisfying (23).

TABLE I. DEFINITION OF SYMBOLS

Symbol Definition
݅ A specific query, ܳݕݎ݁ݑ௜
݇ A specific query, ܳݕݎ݁ݑ௞
݆ A specific VM, ܸܯ௝
݉ The set of queries
݊ The set of VMs
 ௜ The required resources of a queryܮ

 ௝ܯܸ ௞ is assigned toݕݎ݁ݑܳ/௜ݕݎ݁ݑܳ ௞௝ It indicates whetherݔ / ௜௝ݔ
 ௝ܯܸ ௝ The cost ofܥ
 is to be terminated	௝ܯܸ ௝ It indicates whether aݕ

 ௞ݕݎ݁ݑܳ/௜ݕݎ݁ݑܳ ௞ The starting execution time ofݏ / ௜ݏ
ܥ ௝ܲ The available capacity of ܸܯ௝

ܾ௜௞ / ܾ௞௜ It indicates whether ܳݕݎ݁ݑ௜ executes before ܳݕݎ݁ݑ௞
݁௜௝ The execution time of ܳݕݎ݁ݑ௜ on ܸܯ௝
 ௜ݕݎ݁ݑܳ ௜ The deadline ofܦ
 ௜ݕݎ݁ݑܳ ௜ The budget ofܤ
 ௝ܯܸ ௜ onݕݎ݁ݑܳ ௜௝ The cost of executingܥ
 ௝ is to be createdܯܸ ௝ It indicates whether aݖ

Query budget constraint: as shown in (12), where 	

 ௝. Constraint (12) isܯܸ ௜ onݕݎ݁ݑܳ ௜௝ is the cost of executingܥ
used to guarantee that execution cost of ܳݕݎ݁ݑ௜ on ܸܯ௝ do
not exceed its budget ܤ௜.

Query scheduling times constraint: as shown in (13),
which indicates that query can be either scheduled in Phase 1
(∑ ௜௝ݔ ൌ 1௡

௝ୀଵ) or not (∑ ௜௝ݔ ൌ 0௡
௝ୀଵ). If there is any query not

scheduled in Phase 1, it is to be scheduled in Phase 2.
VM termination constraints are shown in (14) to (16),

where ݕ௝ is a binary variable denotes whether ܸܯ௝ is to be
terminated, as shown in (16). Constraint (14) is used to
guarantee when ܸܯ௝ is to be terminated, a query should not
be assigned to it, which constrains when ݕ௝ ൌ ௜௝ must beݔ ,0
௝ݕ when ;(௝ܯܸ ௜ should not be assigned toݕݎ݁ݑܳ) 0 ൌ ௜௝ݔ ,1
can be 0 or 1 (ܳݕݎ݁ݑ௜ can either be assigned to ܸܯ௝ or not).
Constraint (15) is used to provide the priority of utilizing
created VMs. Created VMs are input to ILP in a cost
ascending list. Thus, (15) can allow the scheduler to use VMs
with cheaper cost first, which allows load decreasing on VMs
with higher cost to terminate VMs when they become idle for

cost saving. If VMs have the same price, the query scheduler
first uses VMs in front of the VM list. Moreover, the scheduler
checks periodically whether any VM is idle. If there is an idle
VM, the scheduler further checks whether the VM is reaching
the end of its billing period. If it is, the scheduler releases the
VM to serve the objective of cost minimization.

଴ܨ ൌ ܤሺݔܽ݉ ൅ ሻܥ െ ݉݅݊ሺܤ ൅ ሻܥ ൅ 1 (17)
ଵܨ ൌ ሻܥሺݔܽ݉ െ݉݅݊ሺܥሻ ൅ 1 (18)
௜௝ݔ ൌ 1
௞௝ݔ ൌ 1

௘௜௧௛௘௥
ሳልልሰ ൜

ܾ௜௞ ൌ 1, 	ܾ௞௜ ൌ 0
ܾ௜௞ ൌ 0, ܾ௞௜ ൌ 1 , ∀	݅, ݇ ∈ ݉, ݆ ∈ ݊ (19)

ܾ௜௞ ൌ 1
	
⇒ ௜ݏ ൅ ݁௜௝ ൑ ,௞ݏ ∀	݅, ݇ ∈ ݉, ݆ ∈ ݊ (20)

ଶܨ ൒ ௜ݏሺ	ݔܽ݉ ൅ ݁௜௝ െ ௞ሻݏ ൅ 1, ∀	݅, ݇ ∈ ݉, ݆ ∈ ݊ (21)
௜ݏ ∗ ௜௝	ݔ ൑ ௜ܦ െ ݁௜௝, ∀	݅ ∈ ݉, ݆ ∈ ݊ (22)
ଷܨ ൒ ௜ݏሺ	ݔܽ݉ ൅ ݁௜௝ െ ௜ሻܦ ൅ 1, ∀	݅ ∈ ݉, ݆ ∈ ݊ (23)
Phase 2 of scheduling starts to scale resources up by

creating VMs to execute queries that are not scheduled in
Phase 1. The objective is to minimize VM cost with
guaranteed SLAs in query execution, as shown in (24).
Objective E is subjected to all constraints the same as in Phase
1, except constraint (13). Changed constraint is shown in (25),
which is used to restrict that ܳݕݎ݁ݑ௜ has to be scheduled to
one of the newly created VMs for execution to avoid SLA
violation. We use a greedy algorithm to decide the initial
number of VMs of each VM type to input to Phase 2 of ILP
algorithm. This ensures the capacity of input VMs is close to
the required capacity of the optimal solution to avoid ILP
taking long time to find a solution, which greatly reduces the
algorithm running time of ILP. Given that input VMs obtained
from the greedy algorithm have sufficient capacity to execute
queries, to serve the cost minimization objective, ILP decides
whether to create each of input VMs to execute queries,
indicated by ݖ௝. If ݖ௝ ൌ 1, ILP creates input ܸܯ௝; otherwise,
ILP does not create the VM. After Phase 1 and Phase 2, all
queries are successfully scheduled to VMs for execution.

ܧ ൌ ݉݅݊∑ ൫ܥ௝ ∗ 	௝൯ݖ
௡
௝ୀଵ (24)

∑ ௜௝ݔ ൌ 1, ∀݅ ∈ ݉, ݆ ∈ ݊௡
௝ୀଵ (25)

Based on the above formulation of the scheduling
problem, we build the ILP scheduling algorithm. ILP
algorithm first gets all accepted queries for each requested
BDAA. In Phase 1, ILP schedules queries to existing VMs
running the BDAA to maximize VM utilization and execute
queries with SLA guarantees. Meanwhile, ILP tries to scale
down VM resources to save resource cost and executes
queries at the earliest time to achieve better performance.
Afterwards, ILP takes scheduling actions based on returned
scheduling solution. After Phase 1, if there are queries not
scheduled, Phase 2 generates scheduling solutions by scaling
up VM resources to execute queries with minimized resource
cost and SLA guarantees. Then, ILP takes actions based on
the returned scheduling solutions of Phase 2.

2) Adapative Greedy Search (AGS) scheduling algorithm
We propose the AGS scheduling algorithm, inspired by

previous works [5, 7], which aims to find a cost-effective VM
configuration to execute queries while satisfying SLAs of
queries by applying a greedy search heuristic. For each
BDAA, in Phase 1 of scheduling, the AGS algorithm first gets
queries requesting the BDAA and the created VMs running

the requested BDAA. If the BDAA is requested for the first
time, one initial VM is created. AGS first tries to use all
existing VMs to execute accepted queries, as shown in Lines
1-9 of the pseudo code below. AGS schedules all queries
based on the urgency of deadline, which is represented by
Scheduling Delay (SD). SD is the difference between deadline
and expected finish time of the query. AGS first sorts queries
based on SD in an ascending order for scheduling; then, AGS
tries to assign each query to a VM that can satisfy its SLAs
and gives it the Earliest Starting Time (EST). We name this
scheduling method as the SD-based method.

AGS scheduling algorithm
Input: accepted queries and current VM configuration
Output: query scheduling solution and new VM configuration
1: for each BDAA ∈ requested BDAA list
2: queries  get accepted query list of BDAA
3: VMs  get running VM list of BDAA
4: if size(queries) > 0
5: create initial VM for BDAA if it is firstly requested
6: queries  sort queries based on SD
7: for each query ∈ queries
8: do Phase 1 schedule to assign query to VMEST that can
satisfy its SLAs and update EST of VMEST
9: end for
10: queries  get queries not scheduled if they exist
11: if queries contains at least one query do Phase 2 schedule
12: CMs  get all possible configuration modifications
13: continueSEARCH  true
14: iterationN  0
15: iteration2N  0
16: Cost(AGS)cheapest  a constant which is sufficient large
17: while continueSearch is true or iteration2N > 0
18: iterationN++
19: iteration2N--
20: for iterator  CMs; iterator has next CM
21: CM1  get next CM from iterator
22: while iterator has next CM
23: CM2  get next CM from iterator
24: C1  get new VM configuration by applying CM1
25: C2  get new VM configuration by applying CM2
26: Cost(AGS)1  calculate cost of C1 based on SD
27: Cost(AGS)2  calculate cost of C2 based on SD
28: C  choose from C1 and C2 for cheaper Cost(AGS)
29: Cost(AGS)C  cheaper Cost(AGS)
30: end while
31: end for
32: if Cost(AGS)C < Cost(AGS)CHEAPEST,
33: CCHEAPEST  C;
34: Cost(AGS)CHEAPEST  Cost(AGS)C
35: end if
36: else
37: continueSEARCH  false
38: iteration2N  2 * iterationN
39: end else
40: end while
41: adopt CCHEAPEST and take according scheduling actions
42: end if
43: end if
44: end for

After Phase 1, if there still are some queries not scheduled
due to QoS constraints on deadline and budget, AGS starts
Phase 2 of scheduling to find a cost-effective VM
configuration to create new VMs for query execution, as
shown in Lines 10-40. The set of all possible VM
configurations for a requested BDAA is represented by a
directed acyclic graph, ݏ݊݋݅ݐܽݎݑ݂݃݅݊݋ܥ ൌ ሺܰ, ܰ ሻ, whereܧ
is a set of nodes and ܧ is a set of edges. A node is a possible
VM configuration ܥ௜ . An edge ሺܥ௜, ௜ାଵሻܥ indicates VM
configuration ܥ௜ାଵ can be obtained from VM configuration
௜ܥ by applying a Configuration Modification (ܯܥ). The
number of VM types available in the AaaS platform
determines the number of possible ܯܥs. The ܯܥs are adding
the cheapest VM, adding a more expensive VM, adding a next
more expensive VM if it exists, till adding the most expensive
VM.

Firstly, AGS gets all possible ܯܥs and iteratively apply
each ܯܥ on current resource configuration to generate a new
configuration. Then, the cost manager calculates ݐݏ݋ܥሺܵܩܣሻଵ
and ݐݏ݋ܥሺܵܩܣሻଶ of resource configurations ܥଵ and ܥଶ in the
following way: for each configuration, the scheduler applies
the SD-based method to schedule queries. Then the cost
manager calculates the cost of the scheduling solution, which
is the sum of resource cost and penalty cost. The penalty cost
is set to a sufficiently high value that generates high
 ሻ for SLA violations. This causes AGS selecting aܵܩܣሺݐݏ݋ܥ
cheaper resource configuration without violating SLAs of
queries. In each search iteration, AGS selects the
configuration ܥ	that gives cheapest ݐݏ݋ܥሺܵܩܣሻ௖. Then, AGS
compares ݐݏ݋ܥሺܵܩܣሻ௖ with the cheapest ݐݏ݋ܥሺܵܩܣሻ௖௛௘௔௣௘௦௧
generated thus far. If the ݐݏ݋ܥሺܵܩܣሻ௖ is cheaper, the cheapest
configuration ܥ௖௛௘௔௣௘௦௧ is set as ܥ while the cheapest cost
ሻ௖௛௘௔௣௘௦௧ܵܩܣሺݐݏ݋ܥ is set as ݐݏ݋ܥሺܵܩܣሻ௖ . AGS scheduling
algorithm continues these steps until it finds the first local
optimal configuration using N iterations (ே݊݋݅ݐܽݎ݁ݐ݅).
Afterwards, it continues exploring for another 2N iterations
 to see whether it can find another local optimal (ଶே݊݋݅ݐܽݎ݁ݐ݅)
configuration that can give a cheaper ݐݏ݋ܥሺܵܩܣሻ . The
cheapest configuration found after these 3N iterations is
chosen. Finally, the scheduling solutions are adopted to
execute queries, as shown in Line 41.

3) Adaptive ILP (AILP) scheduling algorithm
ILP can find the optimal solution for the scheduling

problem. However, as an optimization algorithm, the
Algorithm Running Time (ART) of ILP increases quickly as
the input size grows, which might lead to deadline violations
when ILP takes a long time to find scheduling solution. In case
that an unexpected large number of queries arrive, to avoid the
risk of violating deadline in such situation, we integrate AGS
and ILP to form a new scheduling algorithm, which is AILP.

AILP works in the following way: it first utilizes ILP to
make scheduling decision and specifies a timeout for ILP to
give scheduling solution to limit the ART of ILP. When
timeout is reached, if feasible integer linear programming
solution is found (which may not be the optimal one), ILP
returns the suboptimal solution. If no feasible solution is
found, ILP only returns the timeout. After the scheduling of
ILP, if there is any query that is not successfully scheduled,

AILP utilizes AGS as the alternative scheduling algorithm to
make scheduling decision to avoid SLA violations. The reason
that AILP utilizes ILP at the first place to give scheduling
decisions is to maximize profit and guarantee SLAs. Only if
timeout of ILP is reached, to avoid deadline violations that can
lead to user dissatisfaction and additional penalty cost, AILP
utilizes AGS as an alternative scheduling algorithm. In this
way, AILP serves as the best solution to make scheduling
decisions for the purposes of profit maximization and SLA
guarantee while overcoming the ART limitation of ILP, which
is utilized as the scheduling algorithm for the AaaS platform.

IV. PERFORMANCE EVALUATION

To evaluate the proposed admission control and
scheduling algorithm, we build the framework of AaaS in
CloudSim [10], which is a discrete event simulator. CloudSim
enables repeatable and controllable experiments and offers
comprehensive environment for resource scheduling and
provisioning studies. We conduct experiments on the AaaS
framework to evaluate the effectiveness and efficiency of the
proposed admission control and resource scheduling
algorithm for SLA guarantee, profit enhancement, and cost
saving. ILP and AGS are utilized as baseline algorithms for
the evaluation of AILP scheduling algorithm.

A. Resource Configuration

We simulate a datacenter that consists of 500 physical
nodes. Each node has 50 CPU cores, 100GB memory, 10TB
storage, and 10GB/s network bandwidth. We simulate five
types of memory optimized VMs, which are based on Amazon
EC2 VM model and managed by the resource manager. The
VMs are r3.large, r3.xlarge, r3.2xlarge, r3.4xlarge, and
r3.8xlarge, as shown in Table II [11]. VMs in Amazon EC2
are charged by an hourly basis with unit of dollar/hour. The
unit for memory is GiB while for storage is GB.

TABLE II. VM CONFIGURATION

Type vCPU ECU Memory Storage Cost

r3.large 2 6.5 15 32 SSD 0.175

r3.xlarge 4 13 30.5 80 SSD 0.350

r3.2xlarge 8 26 61 160 SSD 0.700

r3.4xlarge 16 52 122 320 SSD 1.400

r3.8xlarge 32 104 244 640 SSD 2.800

B. Workload

The workload generated in this study is based on the Big
Data Benchmark [12], which runs query applications using
different data analytic frameworks on large datasets with
given data size, data type, and data location. The benchmark
uses Amazon EC2 VMs and details query processing time and
the VM configurations. Based on the information, resource
requirements of queries requesting different BDAAs under
different resource configurations are modeled in CloudSim.
Each query request contains the following information:
Query submission time is generated using a Poisson process
with 1 minute mean Poisson arrival interval. Query class
contains 4 types, which are: scan query, aggregation query,
join query, and User Defined Function (UDF) query. BDAAs:

in our experiment, 4 types of BDAAs are considered, which
are built on Impala (disk) (BDAA1), Shark (disk) (BDAA2),
Hive (BDAA3), and Tez (BDAA4). Query resource is
modeled based on the resource requirements of queries. As the
performance of queries vary, we model 10% performance
variation by introducing a variation coefficient [13], which is
generated from a Uniform Distribution with upper bound 1.1
and lower bound 0.9. Query user: we simulate 50 users who
submit queries and request for BDAAs. Query deadline is
generated as the benchmark does not contain QoS
requirements on deadline (the same for budget). Two types of
deadline are considered, tight deadline and loose deadline.
Tight deadline is generated using a Normal Distribution (3,
1.4), where 3 represents that the mean deadline of a query is 3
times of its processing time and 1.4 represents the standard
deviation. Loose deadline is generated similarly using a
Normal Distribution (8, 3) [14]. Query budget contains tight
budget and loose budget. Tight budget is generated using a
Normal Distribution (3, 1.4) while loose budget is generated
using a Normal Distribution (8, 3).

C. Result Analysis

We generate an approximate 7 hours query workload that
contains 400 queries. The requested BDAAs by queries are
managed by the BDAA manager. We use lp_solve 5.5 [15] as
the integer linear programming solver. Queries whose QoS
requirements on deadline and budget can be satisfied are
admitted by admission controller. To avoid deadline violation
and ensure the performance of queries, the number of queries
assigned to VMs by the query scheduler is less than the
number of VM cores to avoid time sharing between queries as
time sharing may cause deadline violations. To evaluate the
effectiveness and efficiency of the admission and scheduling
algorithm, we conduct the following studies:

1) Admission control and SLA guarantee:
We conduct the real time scheduling and periodic

scheduling by varying SI from 10 to 60 (unit: minute) to
evaluate the effectiveness of the admission control algorithm.
The results are shown in Table III, where SQN is the
submitted query number, AQN is the accepted query number,
and SEN is the successfully executed query number.

TABLE III. QUERY NUMBER INFORMATION

Number
Real
Time

Periodic
10 20 30 40 50 60

SQN 400 400 400 400 400 400 400

AQN 336 317 299 287 274 261 252

SEN 336 317 299 287 274 261 252

We calculate the acceptance rate based on the obtained

results. For real time scheduling, the rate is 84.0%, while for
periodic scheduling of SI from 10 to 60, the rate is 79.3 %,
74.8 %, 71.8 %, 68.5 %, 65.3 %, and 63. 0%. As the SI
increases, the acceptance rate of queries decreases due to
deadline constraints. Short SI is recommended as more
queries can be admitted to increase user satisfaction and
enlarge market share. We can see that all accepted queries are
successfully executed with SLA guarantees, which helps to

increase the reputation of AaaS providers. Obtained results
show the effectiveness of the admission control algorithm in
query admission.

2) Cost saving and profit enhancement
In this study, we evaluate the efficiency of AILP, ILP, and

AGS scheduling algorithms in cost saving and profit
enhancement. AILP is an integration of AGS and ILP, it first
utilizes ILP to find scheduling solution and only switches to
AGS when no feasible solution is returned by ILP within
specified scheduling timeout to avoid potential deadline
violations. When timeout of AILP is reached, we record the
data to show the contribution of ILP and AGS in generating
the scheduling solution of AILP. For periodic scheduling
using ILP, we only record the scheduling solutions that are
given within the SI. As scheduling solutions exceeding the SIs
are not applicable, from this paragraph on, we do not include
ILP in algorithm comparison for simplicity purpose. Obtained
results are shown in Fig. 2. We note that for real time
scheduling and periodic scheduling with SI=10 and SI=20,
ILP algorithm can schedule queries within the specified
timeout. This indicates that scheduling decisions of AILP for
these SIs are optimal and are given by ILP. For SI=30 and
SI=40, in some SIs, scheduling timeout of ILP is reached,
which indicates the solution given by AILP might be sub-
optimal. For SI=50 and SI=60, AGS is utilized along with ILP
to contribute to the scheduling solution of AILP. Based on the
obtained results, we can know that, for real time scheduling,
the resource cost of AILP is 7.3% less than AGS, while for
periodical scheduling with SI from 10 to 60, resource cost
generated by AILP is 11.3%, 9.3%, 4.8%, 4.4%, 5.4%, and
4.3% less than AGS.

Figure 2. Resource Cost of AGS, AILP, and ILP

The resource configuration to execute the query workload
is shown in Table IV. Results show that, for all scheduling
scenarios, AILP can efficiently reduce the numbers of VMs
that are used. The observation is consistent with the Objective
B and Objective E, as shown in (2) and (24), and constraint
(15). ILP uses cheaper VMs at first if they are available; then,
for the same VM type, ILP first uses VMs in the front of the
VM queue. This leads to cheaper resource cost and higher
resource utilization, which also leads to less VM creations.
Creating less VMs is beneficial as it takes several minutes to
boot VMs and make VMs online. We use 97 seconds as VM

configuration time in our experiment [16]. Creating more
VMs will cause more delay to serve requests, which may
cause deadline violations and lead to higher resource cost.
Thus, less VM creations can better benefit our objective of
SLA guaranteeing and cost saving. Results show that the VM
types utilized by AILP and AGS are r3.large and r3.xlarge
while other types of r3.2xlarge, r3.4xlarge, and r3.8xlarge are
not utilized. We find the reason that, indicated by Table II,
there is no pricing advantages to use VMs with larger capacity
as the capacity of VM increases, the price increases
proportionally. Since VMs is not always fully utilized and
creating VMs with higher capacity leads to higher resource
cost, expensive VMs are not given the priority for utilization.

TABLE IV. RESOURCE CONFIGURATION

Scheduling Scenario AGS AILP
Real Time 58 ∗ r3. large 23 ∗ r3. large

Periodic

SI=10 48 ∗ r3. large 23 ∗ r3. large
SI=20 27 ∗ 	r3. large 22 ∗ r3. large
SI=30 32 ∗ r3. large 22 ∗ r3. large

SI=40
28 ∗ r3. large,
2 ∗ r3. xlarge

22 ∗ r3. large

SI=50 28 ∗ r3. large
17 ∗ r3. large,
2 ∗ r3. xlarge

SI=60
21 ∗ r3. large,
4 ∗ r3. xlarge

16 ∗ r3. large,
2 ∗ r3. xlarge

Profit gained by AILP and AGS is shown in Fig. 3. We

notice that for both real time scheduling and periodic
scheduling, AILP performs significantly better than AGS in
profit enhancement. For real time scheduling, profit gained by
AILP is 11.4% more than AGS. For periodic scheduling of SI
from 10 to 60, profit gained by AILP is 19.8%, 15.2%, 7.9%,
6.7%, 8.2%, and 6.1% more than AGS.

Figure 3. Profit of AILP and AGS

For real time scheduling, profit created by AILP and AGS
is relatively high as more queries are admitted that leads to
higher query income. The profit decreases when the real time
scheduling is switched to the periodic scheduling with SI=10
as more queries are rejected, which decreases the query
income. With the continuous increase of SI, as more queries
are scheduled during each SI, AGS and AILP can make better
scheduling decisions to provision resources and schedule
queries to VMs, which increases the profit. For AGS with SI
from 10 to 60, we notice the overall increasing trend of profit
is relatively obvious comparing to AILP. For AILP, we notice

that profit increases when SI increases from 10 to 20.
However, when SI increases from 20 to 30, the profit drops as
AILP returns sub-optimal solutions in some SIs when timeout
is reached. We further notice that when SI increases from 30
to 40, the profit starts increasing again, which indicates that
AILP can give higher cost saving to create higher profit even
though the query income is decreased when more queries are
rejected. When SI of AILP increases from 40 to 50 and from
50 to 60, the profit keeps increasing as more queries are
scheduled that leads to better scheduling decisions. For SI=50
and SI=60, the solutions of AILP are given by integration of
ILP and AGS, as for some SIs, AGS are utilized when feasible
solutions are not given by ILP, which weakens the profit
enhancement and cost saving advantages of ILP.

 As shown in Fig. 4, for all scheduling scenarios, the
median resource cost for AILP is $135.3 while for AGS is
$145.4, which shows AILP gives 7.5% higher cost saving
regarding median resource cost. The median profit made by
AILP is $95.0 while by AGS is $87.0, which shows AILP
creates 9.2% higher median profit than AGS. Results also
show that the mean resource cost generated by AILP is
$135.3, which is 6.7% less than AGS while the mean profit
created by AILP is $94.9, which is 10.6% higher than AGS.

Figure 4. Profit and Resource Cost of AILP and AGS

All of the obtained results show that AILP generates less
resource cost and creates higher profit comparing to AGS,
which proves the efficiency of AILP in achieving the cost
saving and profit enhancement objectives. For real time
scheduling, the benefit is that more queries can be accepted
for higher profit, while the drawback is that frequent
scheduling consumes more computing resources. Thus, real
time scheduling is not applicable when load of queries is high.
For periodic scheduling, the more queries are collected, the
better scheduling decisions can be made to save more resource
cost and create higher profit. However, the drawback is that
the longer the SI is, the more queries are rejected due to
deadline constraints. This causes customer dissatisfaction due
to higher request rejection rate, which also leads to reduction
of market share. Therefore, long SI is not recommended even
more resource cost can be saved. In order to achieve higher
cost saving and profit enhancement, while at the same time
accept more queries to serve more users for larger market
share and higher user satisfaction, periodic scheduling with
SI=20 is the best solution to execute the query workload.

We further study the performance of AILP and AGS in
profit enhancement and cost saving for different BDAAs
using SI=20. Results are shown in Fig. 5. We notice that
resource cost and profit vary for different BDAAs, which is
caused by variation of the number of accepted queries and
their required resources. For different queries, query
execution time can vary from minutes to hours. Resource cost
generated by AILP is 1.9%, 2.4%, 15.5%, and 3.3% less than
AGS for BDAA1, BDAA2, BDAA3, and BDAA4.
Accordingly, the profit created by AILP is 3.5%, 4.3%,
26.2%, and 4.8% higher than AGS. All the obtained results
show AILP can generate less resource cost and create higher
profit for each BDAA that further prove that AILP can better
serve the cost saving and profit enhancement objectives.

Figure 5. Profit and Resource Cost of BDAAs for SI=20

3) Study of algorithm performance based on C/P metric
We use the C/P metric [5] to evaluate the performance of

AILP and AGS. C/P is the quotient of resource cost and
workload running time. Smaller C/P value indicates better
performance of the scheduling algorithm. We can see that
AILP has smaller C/P values for all scheduling scenarios,
which indicates that AILP performs better than AGS, as
shown in Fig. 6.

Figure 6. C/P of AILP and AGS

We use periodic scheduling with SI=20 as an example. For
SI=20, results show that to execute the query workload, AILP
uses 156.5 hours that is 78.9% longer than AGS and generates
$135.3 resource cost that is 9.3% less than AGS. This leads to
a smaller C/P value of 0.9 for AILP, comparing to larger C/P
value of 1.7 for AGS. For AGS, we notice that the trend of
C/P keeps decreasing while SI increases, which indicates that

AGS performs better when more queries are scheduled in each
SI. For AILP, the trend of C/P fluctuates as the scheduling
solution returned by AILP is an integration of ILP and AGS.

4) Study of ART
We record the ART for AILP and AGS to execute the

query workload, as shown in Fig. 7. For real time scheduling,
a query is scheduled based on its arrival. There is one query
that is scheduled each time by AGS and AILP. Thus, ART is
not a limitation factor. For periodic scheduling, variation of SI
leads to variation of the number of queries to be scheduled in
each SI. To avoid deadline violations when the number of
queries is large, a scheduling timeout is set to limit the ART.
The maximum value of the timeout is limited to 90% of SI to
ensure that sufficient time is left for AGS to give scheduling
solution when no feasible solution is given by ILP.

Figure 7. ART of AILP and AGS

We made efforts to reduce the ART of ILP by utilizing two
greedy algorithms to decide the input of VMs to Phase 1 and
Phase 2 of ILP scheduling algorithm, which ensures that the
given VMs have sufficient capacity to execute queries;
meanwhile, the given number of VMs is close to the number
of VMs of the optimal solution. In this way, ILP does not need
to search large solution space, which greatly reduces the ART
of ILP. For different query workload, SI can be adjusted to a
suitable value based on the arrival rate of queries to allow
AILP algorithm generating scheduling solutions to better
achieve cost saving and profit enhancement objectives.

Results show that ARTAILP is longer than ARTAGS for all
scheduling scenarios. For periodical scheduling, AGS takes
milliseconds to give a scheduling decision for each SI and
ARTAGS increases when SI increases. However, the increasing
rate of ARTAGS is not as rapid as ARTAILP. For AILP, the
increasing rate of ARTAILP decreases while SI increases as the
ART cannot exceed the scheduling timeout, which is a
constant value. Obtained results show that ART is not the
limiting factor for AILP to serve as the scheduling algorithm
of the AaaS platform as it can give scheduling solution within
each SI. However, it is not recommended to use long SI. As
the longer the SI is, the more requests with tight deadline are
rejected by the admission controller, which is not consistent
with the profit maximization objective of the AaaS platform.
Moreover, it also decreases the user satisfaction and reduces
the market share of AaaS providers.

V. RELATED WORK

Our research focuses on provisioning effective and
efficient algorithms to support the AaaS platform to deliver
on-demand AaaS for various domains of users with SLA
guarantees and at lower cost in order to enhance profit, enlarge
market share, and improve user satisfaction. We compare our
work with the most related works with respect to various
parameters, as summarized in Table V.

TABLE V. RELATED WORK

Parameter
Related Work Our

Work [4] [5] [7] [17] [18] [19]

AaaS Y N N Y N N Y

Cost saving Y Y Y Y Y Y Y

Profit enlarging N N N N N N Y

SLA guarantee Y N Y Y Y N Y

Admission control N N Y N N N Y

Budget N N N N Y Y Y

Deadline N N N Y Y Y Y
Scalable and elastic
resource provision N Y Y Y N Y Y

Y: covered; N: not covered

Sun et al. [4] propose a general-purpose analytic
framework to provision cost-effective analytic solution with
multi-tenancy support. They propose an SLA customization
mechanism to satisfy diverse QoS requirements of tenants.
However, their work does not consider admission control;
thus, SLAs are at risk of violations. Moreover, they do not
address resource scheduling algorithms with SLA guarantees
on deadline and budget and also do not address profit
enhancement purpose of AaaS providers.

Mian et al. [5] focus on resource provisioning for data
analytic workloads in a public Cloud that aims to determine
the most cost-effective resource configuration using greedy
search heuristic. Their work schedules queries for one
application, which does not serve general data analytic
purpose. Moreover, the SLA they considered is average query
response time and SLA violation is allowed for a cheaper
resource cost, which is different from our SLA guaranteeing
perspective. We believe that SLA violations can significantly
decrease user satisfaction and reputation of AaaS providers.
Therefore, SLA violations should be avoided.

Garg et al. [7] manage resources for heterogeneous
workload in a datacenter. They focus on resource scheduling
problem for mixed workloads instead of data analytic
workloads. They propose an admission control and resource
scheduling algorithm, which considers deadline-constrained
scheduling while we consider budget-constrained scheduling
as well, which is the market feature of delivering analytics as
a service in Cloud computing environments. Zulkernine et al.
[17] propose the conceptual architecture of Cloud-based
Analytics as a Service, which does not consider admission
control. Their work focuses on data analytics for workflow
applications.

Scheduling and resource provisioning for MapReduce
tasks is a well-explored area, which targets at a specific
application model and does not serve general data analytic

purpose. Alrokayan et al. [18] propose cost-aware and SLA-
based algorithms to provision Cloud resources and schedule
MapReduce tasks under budget and deadline constraints.
They adopt Lambda architecture and focus their current work
on the batch layer. Mattess at al. [19] propose an algorithm to
dynamically provision resources to meet soft deadline of
MapReduce tasks while minimizing the budget. Both of the
above works do not consider admission control for SLA
guaranteeing purpose.

There are some works focus on delivering specific
analytics as a service and provisioning query processing
techniques, which give support to the AaaS platform and
enrich the BDAAs that the AaaS platform can provide to
users. Chen et al. [20] address the challenges in delivering
continuous analytics as a service to analyze real-time events.
Barga et al. [21] propose Daytona to offer scalable
computation for large scale data analytics, which focuses on
spreadsheet applications. Agarwal at al. [22] propose
BlinkDB, which enables approximate query processing on
data samples of large datasets with bounded response time and
bounded errors.

VI. CONCLUSIONS AND FUTURE WORK

Data analytics has significant benefits in decision making
and problem solving for various domains. To support the
AaaS platform that offers data analytics as a service to various
domains of users as consumable services, our research focuses
on proposing effective and efficient admission control and
resource scheduling algorithms. The aim is to allow AaaS
providers delivering AaaS with SLA guarantees to increase
market share, improve reputation, and enhance profit. We
have proposed the architecture and models of the AaaS
platform and conducted experiments to evaluate the
performance of the admission control and resource scheduling
algorithm. Experiments are conducted based on different
scheduling scenarios, which are non-periodic (real time)
scheduling and periodic scheduling with varied scheduling
intervals. Results have shown that our admission control
algorithm successfully admits queries based on QoS
requirements to allow scheduling algorithms giving SLA
guarantees. Moreover, AILP, which is an integration of AGS
and ILP, can save more resource cost and create higher profit
while overcoming the limitation of ILP in ART. As part of the
future work, we will (1) continue working on proposing
efficient admission control and resource scheduling
algorithms; (2) study the effect of application profiling in the
performance of algorithms; and (3) study data sampling
techniques that allow query processing on sampled datasets
for quicker response time and higher cost saving.

ACKNOWLEDGMENTS

We thank Mohsen Amini Salehi, Yun Yang, Satish
Srirama, and all the members at the CLOUDS Lab for their
valuable comments and suggestions to improve the work.

REFERENCES
[1] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. Netto, and R.

Buyya, "Big Data computing and clouds: Trends and future directions,"
Journal of Parallel and Distributed Computing, vol. 79, pp. 3-15, 2015.

[2] K. Kambatla, G. Kollias, V. Kumar, and A. Grama, "Trends in big data
analytics," Journal of Parallel and Distributed Computing, vol. 74, pp.
2561-2573, 2014.

[3] http://www-03.ibm.com/software/products/en/social-media-analytics-
saas

[4] X. Sun, B. Gao, L. Fan, and W. An, "A cost-effective approach to
delivering analytics as a service," in Proc. of 2012 IEEE 19th
International Conference on Web Services (ICWS), pp. 512-519, 2012.

[5] R. Mian, P. Martin, and J. L. Vazquez-Poletti, "Provisioning data
analytic workloads in a Cloud," Future Generation Computer Systems,
vol. 29, pp. 1452-1458, 2013.

[6] M. Benichou, J.-M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and
O. Vincent, "Experiments in mixed-integer linear programming,"
Mathematical Programming, vol. 1, pp. 76-94, 1971.

[7] S. K. Garg, S. K. Gopalaiyengar, and R. Buyya, "SLA-based resource
provisioning for heterogeneous workloads in a virtualized Cloud
datacenter," in Proc. of the 11th International Conference on
Algorithms and Architectures for Parallel Processing (ICA3PP), pp.
371-384, 2011.

[8] R. Benayoun, J. De Montgolfier, J. Tergny, and O. Laritchev, "Linear
programming with multiple objective functions: Step method
(STEM)," Mathematical Programming, vol. 1, pp. 366-375, 1971.

[9] H. Isermann, "Linear lexicographic optimization," Operations-
Research-Spektrum, vol. 4, pp. 223-228, 1982.

[10] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R.
Buyya, "CloudSim: a toolkit for modeling and simulation of Cloud
computing environments and evaluation of resource provisioning
algorithms," Software: Practice and Experience, vol. 41, pp. 23-50,
2011.

[11] http://aws.amazon.com/ec2/instance-types/

[12] https://amplab.cs.berkeley.edu/benchmark/

[13] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, "Runtime measurements
in the Cloud: observing, analyzing, and reducing variance," in Proc. of
the VLDB Endowment, vol. 3, pp. 460-471, 2010.

[14] R. N. Calheiros and R. Buyya, "Cost-effective provisioning and
scheduling of deadline-constrained applications in hybrid Clouds," in
Proc. of the 13th International Conference on Web Information System
Engineering (WISE), pp. 171-184, 2012.

[15] http://lpsolve.sourceforge.net/5.5/

[16] M. Mao and M. Humphrey, "A performance study on the VM startup
time in the Cloud," in Proc. of 2012 IEEE 5th International Conference
on Cloud Computing (CLOUD), pp. 423-430, 2012.

[17] F. Zulkernine, P. Martin, Y. Zou, M. Bauer, F. Gwadry-Sridhar, and A.
Aboulnaga, "Towards Cloud-Based Analytics-as-a-Service (CLAaaS)
for big data analytics in the Cloud," in Proc. of 2013 IEEE International
Congress on in Big Data (BigData Congress), pp. 62-69, 2013.

[18] M. Alrokayan, A. Vahid Dastjerdi, and R. Buyya, "SLA-aware
provisioning and scheduling of Cloud resources for big data analytics,"
in Proc. of 2014 IEEE International Conference on Cloud Computing
in Emerging Markets (CCEM), pp. 1-8, 2014.

[19] M. Mattess, R. N. Calheiros, and R. Buyya, "Scaling MapReduce
applications across hybrid Clouds to meet soft deadlines," in Proc. of
2013 IEEE 27th International Conference on Advanced Information
Networking and Applications (AINA), pp. 629-636, 2013.

[20] Q. Chen, M. Hsu, and H. Zeller, "Experience in Continuous analytics
as a Service (CaaaS)," in Proc. of the 14th International Conference on
Extending Database Technology, pp. 509-514, 2011.

[21] R. S. Barga, J. Ekanayake, and W. Lu, "Project daytona: Data analytics
as a Cloud service," in Proc. of 2012 IEEE 28th International
Conference on Data Engineering (ICDE), pp. 1317-1320, 2012.

[22] S. Agarwal, A. P. Iyer, A. Panda, S. Madden, B. Mozafari, and I.
Stoica, "Blink and it's done: interactive queries on very large data," in
Proc. of the VLDB Endowment, vol. 5, pp. 1902-1905, 2012.

