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Abstract— Data analytics plays a significant role in gaining 
insight of big data that can benefit in decision making and 
problem solving for various application domains such as 
science, engineering, and commerce. Cloud computing is a 
suitable platform for Big Data Analytic Applications (BDAAs) 
that can greatly reduce application cost by elastically 
provisioning resources based on user requirements and in a pay 
as you go model. BDAAs are typically catered for specific 
domains and are usually expensive. Moreover, it is difficult to 
provision resources for BDAAs with fluctuating resource 
requirements and reduce the resource cost. As a result, BDAAs 
are mostly used by large enterprises. Therefore, it is necessary 
to have a general Analytics as a Service (AaaS) platform that 
can provision BDAAs to users in various domains as 
consumable services in an easy to use way and at lower price. To 
support the AaaS platform, our research focuses on efficiently 
scheduling Cloud resources for BDAAs to satisfy Quality of 
Service (QoS) requirements of budget and deadline for data 
analytic requests and maximize profit for the AaaS platform. 
We propose an admission control and resource scheduling 
algorithm, which not only satisfies QoS requirements of 
requests as guaranteed in Service Level Agreements (SLAs), but 
also increases the profit for AaaS providers by offering a cost-
effective resource scheduling solution. We propose the 
architecture and models for the AaaS platform and conduct 
experiments to evaluate the proposed algorithm. Results show 
the efficiency of the algorithm in SLA guarantee, profit 
enhancement, and cost saving. 

I. INTRODUCTION 

As we enter into the big data era, data analytics becomes 
critical in decision making and problem solving for various 
domains, such as science, engineering, commerce, and 
industry. Big data is referred to a massive volume of 
structured, unstructured, semi-structured, or real-time data, 
which is difficult to manage and process with traditional 
database techniques [1, 2]. Huge amount of data is generated 
from various sources, i.e., social media, sensors, websites, and 
mobile devices every day. The key enablers of big data are the 
increased capability of storage and computing resources 
enabled by recent advances in Cloud computing and the 
increased availability of data and the ease of access to data 
supported by various companies like Amazon, Google, IBM, 
and Facebook. Cloud computing is a suitable platform for big 
data analytics by providing various resources, which are: (1) 
Cloud infrastructures, such as Amazon EC2, which offer on-
demand virtualized resources, i.e., Virtual Machines (VMs) 
and storages; (2) Cloud platforms, such as Google App 
Engine, which manage underlying infrastructure resources 

and allow users to deploy and run applications; (3) application 
services, such as IBM Social Media Analytics [3], which are 
provided to users through web browser portals. 

Analyzing big data to find potential insights in the data is 
essential for individuals, organizations, and governments to 
make better decisions, i.e., product trend prediction, business 
strategy making, and disaster prediction and management. 
However, big data analytics has several challenges. Obtaining 
analytic solutions is usually expensive as it requires large data 
storage systems to store voluminous data and considerable 
computing resources to analyze the data. Furthermore, 
licenses of Big Data Analytic Application (BDAA) are often 
expensive. As a result, big data analytics is mostly used by a 
small number of large enterprises [4]. Moreover, scheduling 
resources for BDAAs requires expert knowledge. For 
example, in order to reduce the time of generating analytic 
solutions, BDAAs should be deployed on various machines 
for parallel processing on large datasets, while in order to save 
energy and cost, resources should be scaled up and down for 
varied resource demands of BDAAs. The lack of such 
expertise makes resource scheduling for BDAAs difficult for 
many users. The above challenges illustrate the need for an 
Analytics as a Service (AaaS) platform, which aims at serving 
on-demand analytic requests and delivering AaaS to users as 
consumable services in an easy to use way and at lower cost. 
The delivered AaaS should satisfy Quality of Service (QoS) 
requirements of requests with Service Level Agreement 
(SLA) guarantees. SLA is the agreement negotiated between 
service users and providers, which defines the metrics, 
expected QoS, and penalties during service delivery. 

To support the AaaS platform, our research focuses on 
efficiently scheduling Cloud resources for BDAAs and 
provisioning BDAAs to users as consumable services. We aim 
to serve the interests of AaaS providers to enhance profit by 
proposing cost-effective resource scheduling solutions, 
increase market share by accepting more requests, and 
improve reputation by delivering satisfactory services to users 
with SLA guarantees. BDAAs that typically process read-only 
query requests on given datasets and leave out data 
consistency and security issues [5] are our targeted 
applications. The key contribution of our work is an 
admission control and resource scheduling algorithm that 
admits queries based on QoS requirements, delivers analytic 
solutions to users with SLA guarantees, and provides a cost-
effective resource scheduling solution to create higher profit 
for AaaS providers. To achieve this, we (1) propose the 
architecture and models of the AaaS platform; (2) formulate 
the resource scheduling problem based on mixed Integer 



Linear Programming (ILP) model [6] and propose the 
admission control and resource scheduling algorithm; and (3) 
conduct experiments to evaluate the performance of the 
algorithm in SLA guarantee, profit enhancement, and cost 
saving. 

II. ARCHITECTURE AND MODELS 

A. Architecture 

We propose the architecture of the AaaS platform that 
provisions general AaaS to various domains of users as 
consumable services, as shown in Fig. 1. The architecture is 
composed of the following components: 
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Figure 1.  Architecture of the AaaS Platform 

Admission controller makes decisions about whether to 
accept queries submitted by users. Admission controller first 
searches exhaustively in BDAA registry for requested 
BDAAs and the Cloud resource registry for all possible 
resource configurations. Then, it estimates query execution 
time and cost as basis to decide whether to accept or reject 
queries. Accepted queries are submitted to SLA manager. 

SLA manager builds SLAs for accepted queries. SLA 
violations not only decrease user satisfaction but also generate 
additional penalty cost; thus, they should be avoided. 

Query scheduler is the core component of the AaaS 
platform, which makes scheduling decisions and coordinates 
the other components. Scheduling decisions mainly contain: 
(a) resource configuration: the scheduler decides which type 
of Cloud resource to use and how many to use for each 
resource type; (b) VM control: the scheduler sends VM 
controlling commands to the resource manager to control 
VMs, i.e., create VM, terminate VM, and migrate VM; (c) 
BDAA selection: the scheduler selects requested BDAA to 
execute a query; (d) query execution sequence: queries that 
request the same BDAA are submitted to the waiting queues 
of VMs running the BDAA (as queries contain deadline 
constraints, they are ordered for execution to avoid deadline 
violations); and (e) query management: the scheduler 
monitors and manages status of queries during their lifecycles. 
Query status can be one of submitted, accepted, rejected, 
waiting for execution, being executed, succeeded, and failed. 
Query status is monitored to allow the scheduler to take 
appropriate actions, i.e., send query with failed status to cost 
manager to generate penalty cost. 

Cost manager manages all the cost occurred in the AaaS 
platform, i.e., query cost and resource cost. It also aims at 

providing pricing policies that can attract more users to 
enlarge market share and generate higher profit. 

BDAA manager manages BDAAs provided by different 
BDAA providers and keeps up-to-date BDAA information.  

Data source manager manages datasets that are to be 
processed. As big data has high volume, we move the compute 
to the data to save data transferring time and network cost.  

Resource manager keeps a catalog of all available Cloud 
resources from different providers and monitors status of VMs 
to allow the scheduler to take actions such as terminating idle 
VMs at the end of billing period to save cost. 

B. Models 

The models of the AaaS platform are shown as below: 
Query request model: Query requests should contain the 

following information in query specifications: (a) QoS 
requirements, which contain budget and deadline to fulfill; (b) 
required resources to execute a query; (c) the requested 
BDAA; (d) data characteristics including data size, data type, 
and data location; (e) user who submits the query; and (f) 
query type, i.e., aggregation query and join query.  

Cloud resource model contains a set of datacenters and a 
matrix showing the network bandwidth between the 
datacenters. Each datacenter contains a set of hosts and data 
storages that pre-store datasets. Each host contains a set of 
VMs.   

BDAA profile model contains resource configurations, 
data processing time, data size, data type, and costs for 
different queries. BDAA profiles are the basis for AaaS 
platform to estimate query time and cost to make admission 
and scheduling decisions. Obtaining the profiles requires 
expert knowledge. Thus, BDAA profiles are assumed to be 
provisioned by BDAA providers and are reliable.  

Cost model contains sub-models of resource cost, penalty 
cost of SLA violations, query cost (query income) that charges 
users for using AaaS platform, and profit that is created for 
AaaS platform providers. Profit is the difference of query cost 
and the sum of resource cost and penalty cost. Query cost has 
different cost policies, which are: (a) cost based on urgency of 
deadline; (b) proportional cost, i.e., proportional to BDAA 
cost; and (c) a combination of (a) and (b). Resource cost 
contains BDAA cost and Cloud resource cost. BDAA cost 
policies are: (a) fixed cost, i.e., annual contract; (b) usage 
period based cost, i.e., hourly basis; and (c) per request based 
cost. Penalty cost policies are: (a) fixed cost; (b) delay 
dependent cost; and (c) proportional cost [7].  

III. ADMISSION CONTROL AND RESOURCE SCHEDULING 

We propose the admission control and resource 
scheduling algorithm that only admits queries whose QoS can 
be satisfied and schedules resources to execute queries with 
SLA guarantees to maximize the profit of AaaS providers. We 
adopt proportional query cost model, which calculates the 
query cost proportional to BDAA cost and fixed BDAA cost 
model, which is fixed cost under annual contract. We aim to 
make scheduling decision that can give 100% SLA guarantee. 
Thus, penalty cost of violating SLAs can be avoided if 
scheduling decision is well made. Since query cost and BDAA 
cost are fixed and penalty cost can be avoided, our goal of 



maximizing profit of the AaaS providers is to minimize the 
Cloud resource cost. 

A. Admission Control Algorithm 

The admission controller makes query admission 
decisions. It first searches the BDAA registry to check 
whether a query requested BDAA exists. If the BDAA exists, 
admission controller obtains the BDAA profile. Based on the 
profile, expected execution time and query cost for different 
resource configurations are calculated. The expected query 
cost is calculated based on the adopted query cost model. The 
expected finish time is the sum of estimated execution time, 
specified timeout (the maximum time the scheduling 
algorithm can run), VM creation time (the time to create new 
VM when needed), submission time (the time when the query 
is submitted), and waiting time (the time till the query is 
scheduled). Admission controller makes query acceptance 
decision if estimated finish time and cost of queries can satisfy 
QoS requirements of queries using any resource 
configuration. Afterwards, SLA manager builds SLAs for 
accepted queries. 

B. Scheduling Algorithms 

After the admission controller accepts queries, the query 
scheduler makes the scheduling decision for each BDAA. We 
develop scheduling algorithms that support different 
scheduling scenarios, which are periodic scheduling that 
schedules queries for each Scheduling Interval (SI) and non-
periodic (real time) scheduling that schedules queries 
whenever they arrive. For periodic scheduling, we set 
different SI parameters to study how SI can influence the 
performance of the scheduling algorithms. We detail the study 
of algorithm performance for different scheduling scenarios in 
performance evaluation section.  

We aim at scheduling and provisioning resources for 
BDAAs that can maximize profit for AaaS providers by 
minimizing resource cost and guarantee SLAs of queries on 
deadline and budget. The scheduling algorithms adopt a two-
phase scheduling policy that provision resources in a scalable 
and elastic way. They scale resources down by releasing 
resources when the provisioned resource capacity is more than 
required to reduce cost and scales resources up by leasing new 
resources when provisioned resources do not have sufficient 
capacity to execute queries to avoid SLA violations.  

1) ILP scheduling algorithm 
We model and formulate the two-phase resource 

scheduling problem based on ILP model [6]. Phase 1 aims at 
minimizing resource cost by scheduling queries to existing 
VMs to maximize VM utilization while satisfying SLAs of 
queries. If queries are not successfully scheduled, they will be 
handled by Phase 2 for further scheduling, which aims to 
minimize the cost of creating VMs to execute queries with 
SLA guarantees.  

Phase 1 of the scheduling problem is formulated as a 
multi-objective ILP problem [8]. Minimizing cost of 
resources for query execution under budget and deadline 
constrains is an NP-complete decision problem that can be 
polynomially reduced to an ILP problem. The optimization 
objective of Phase 1 scheduling is minimizing resource cost. 

To achieve this, we have three individual objectives to fulfill, 
which are:  Objective A aims to maximize resource utilization 
by assigning queries to existing VMs using maximized VM 
capacity, as shown in (1), where ݊  denotes the number of 
created VMs; ݉  indicates the number of queries to be 
scheduled; ܮ௜  is the required resource of query; and ݔ௜௝ 
denotes whether ܳݕݎ݁ݑ௜  is assigned to ܸܯ௝  (if ܳݕݎ݁ݑ௜  is 
assigned to ܸܯ௝ ௜௝ݔ , ൌ 1; otherwise, ݔ௜௝ ൌ 0). Objective B 
aims to save resource cost by executing queries on VMs with 
lower cost first to reduce load on VMs with higher cost to 
allow VM termination, as shown in (2), where ܥ௝	is the cost of 
௝ܯܸ  (modeled on an hourly basis) and ݕ௜  denotes whether 
௝ݕ ,௝ is to be terminatedܯܸ ௝ is to be terminated (ifܯܸ ൌ 0; 
otherwise, ݕ௝ ൌ 1). Objective C aims to reduce VM runtime 
for cost saving purpose and to reduce query response time for 
better performance by executing queries at the earliest time, 
as shown in (3), where ݏ௜ is the starting time of ܳݕݎ݁ݑ௜.  

ܣ ൌ ∑ሺݔܽ݉	 ∑ ሺܮ௜ ∗ ௜௝ሻݔ
௠
௜ୀଵ ሻ௡

௝ୀଵ                                       (1)                       
ܤ ൌ ∑ሺെ	ݔܽ݉	 ሺܥ௝ ∗ ௝ሻሻݕ

௡
௝ୀଵ                                                      (2)                 

ܥ ൌ ∑ሺെ	ݔܽ݉	 	௜ሻݏ
௠
௜ୀଵ                                                                 (3) 

The importance of above objectives contributing to the 
optimization problem is A > B > C. Combining the three 
individual objectives, we formulate the Objective D as shown 
in (4), subjects to constraints (5)-(16). The combination leads 
to a standard lexicographic optimization problem [9]. 
Coefficient ܨ଴  and ܨଵ  are given accordingly to Objective ܣ 
and Objective ܤ	to guarantee the aggregated problem with 
maximization of all individual objective functions is 
consistent to the original problem, as shown in (17) and (18). 
The symbols of the ILP model are defined in Table I. 

Objective: 
ܦ ൌ max	ሺܨ଴ ∗ ∑ ∑ ൫ܮ௜ ∗ ௜௝൯ݔ

௠
௜ୀଵ

௡
௝ୀଵ െ ଵܨ ∗ ∑ ൫ܥ௝ ∗

௡
௝ୀଵ

௝൯ݕ െ ∑ ௜ሻݏ
௠
௜ୀଵ                                                                                   (4) 

Subject to: 
∑ ൫ܮ௜ ∗ ௜௝൯ݔ ൑ ܥ ௝ܲ
௠
௜ୀଵ , ∀݅ ∈ ݉, ݆ ∈ ݊                                 (5) 

௜௝ݔ ൌ ሼ0|1ሽ, ∀	݅ ∈ ݉; 	݆ ∈ ݊                                             (6) 
ܾ௜௞ ൅ ܾ௞௜ ൑ 1, ∀	݅, ݇ ∈ ݉                                                 (7) 
ܾ௜௞ ൌ 	 ሼ0|1ሽ, ∀	݅, ݇ ∈ ݉                                                   (8) 
ܾ௜௞ ൅ ܾ௞௜ െ ௜௝ݔ െ ௞௝ݔ ൒ െ1, ∀	݅, ݇ ∈ ݉; 	݆ ∈ ݊             (9) 
௜ݏ െ ௞ݏ ൅ ଶܨ ∗ ܾ௜௞ ൑ ଶܨ െ ݁	௜௝, ∀	݅, ݇ ∈ ݉; 	݆ ∈ ݊	        (10) 
௜ݏ ൅ ଷܨ ∗ ௜௝ݔ ൑ ଷܨ ൅ ௜ܦ െ ݁௜௝, ∀݅ ∈ ݉, ݆ ∈ ݊                   (11) 
௜௝ܥ ∗ ௜௝ݔ ൑ ,௜ܤ ∀݅ ∈ ݉, ݆ ∈ ݊	                                               (12) 
∑ ௜௝ݔ ൑ 1, ∀݅ ∈ ݉, ݆ ∈ ݊௡
௝ୀଵ                                                   (13)   

௝ݕ ൒ ,௜௝ݔ ∀	݅ ∈ ݉, ݆ ∈ ݊	                                                            (14) 
௝ݕ ൒ ,௝ାଵݕ ∀	݆ ∈ ݊                                                                        (15) 
௝ݕ ൌ ሼ0|1ሽ, ∀		݆ ∈ ݊                                                                     (16) 
VM capacity constraints: as shown in (5), where ݔ௜௝ is a 

binary variable indicating whether ܳݕݎ݁ݑ௜  is scheduled to 
ܥ ,௝, as shown in (6)ܯܸ ௝ܲ denotes the available capacity of 
௝ܯܸ  before the maximum deadline of the ݉  queries. 
Constraint (5) ensures that the overall resources required by 
queries do not exceed the available capacity of ܸܯ௝.  

Query deadline constraints: as shown in (7) to (11), 
where ܾ௜௞ is a binary variable as shown in (8), which denotes 
whether ܳݕݎ݁ݑ௜ is executed before ܳݕݎ݁ݑ௞, if it is, ܾ௜௞ ൌ 1; 



otherwise, ܾ௜௞ ൌ 0. Constraint (7) is used to ensure the unique 
execution order of ܳݕݎ݁ݑ௜  and ܳݕݎ݁ݑ௞  by allowing 
maximum one of ܾ௜௞ and ܾ௞௜ to be 1. Constraint (9) restricts 
that ܳݕݎ݁ݑ௜ must be executed either before ܳݕݎ݁ݑ௞ or after 
௝ܯܸ ௞when they are executed on the sameݕݎ݁ݑܳ , which is 
derived from non-linear constraint (19). Constraint (19) 
ensures that if ܳݕݎ݁ݑ௜  and ܳݕݎ݁ݑ௞	are scheduled on ܸܯ௝ , 
either ܾ௜௞ ൌ 1, ܾ௞௜ ൌ   or (௞ݕݎ݁ݑܳ  ௜ executes beforeݕݎ݁ݑܳ) 0
ܾ௜௞ ൌ 0, ܾ௞௜ ൌ  Constraint .(௞ݕݎ݁ݑܳ ௜ executes afterݕݎ݁ݑܳ) 1
(10) is derived from non-linear constraint (20), which is used 
to restrict if ܾ௜௞ ൌ 1 ௜ݕݎ݁ݑܳ ,  should finish before ܳݕݎ݁ݑ௞ 
starts execution, where ݁௜௝  denotes the execution time of 
 ଶ is a sufficient large constant satisfyingܨ ௝ andܯܸ ௜ onݕݎ݁ݑܳ
(21). Constraint (11) is used to ensure that if ܳݕݎ݁ݑ௜  starts 
execution on ܸܯ௝ at ݏ௜, it should finish before its deadline ܦ௜, 
derived from non-linear constraint (22), where ܨଷ  is a 
sufficient large constant satisfying (23). 

TABLE I.  DEFINITION OF SYMBOLS 

Symbol Definition 
݅ A specific query, ܳݕݎ݁ݑ௜ 
݇ A specific query, ܳݕݎ݁ݑ௞ 
݆ A specific VM, ܸܯ௝ 
݉ The set of queries 
݊ The set of VMs 
 ௜ The required resources of a queryܮ

 ௝ܯܸ ௞ is assigned toݕݎ݁ݑܳ/௜ݕݎ݁ݑܳ ௞௝ It indicates whetherݔ / ௜௝ݔ
  ௝ܯܸ ௝ The cost ofܥ
  is to be terminated	௝ܯܸ ௝ It indicates whether aݕ

 ௞ݕݎ݁ݑܳ/௜ݕݎ݁ݑܳ ௞ The starting execution time ofݏ / ௜ݏ
ܥ ௝ܲ The available capacity of ܸܯ௝ 

ܾ௜௞ / ܾ௞௜ It indicates whether ܳݕݎ݁ݑ௜ executes before ܳݕݎ݁ݑ௞ 
݁௜௝ The execution time of ܳݕݎ݁ݑ௜ on ܸܯ௝ 
 ௜ݕݎ݁ݑܳ ௜ The deadline ofܦ
 ௜ݕݎ݁ݑܳ ௜ The budget ofܤ
 ௝ܯܸ ௜ onݕݎ݁ݑܳ ௜௝ The cost of executingܥ
  ௝ is to be createdܯܸ ௝  It indicates whether aݖ

 
Query budget constraint: as shown in (12), where 	

 ௝. Constraint (12) isܯܸ ௜ onݕݎ݁ݑܳ ௜௝ is the cost of executingܥ
used to guarantee that execution cost of ܳݕݎ݁ݑ௜  on ܸܯ௝  do 
not exceed its budget ܤ௜. 

Query scheduling times constraint: as shown in (13), 
which indicates that query can be either scheduled in Phase 1 
(∑ ௜௝ݔ ൌ 1௡

௝ୀଵ ) or not (∑ ௜௝ݔ ൌ 0௡
௝ୀଵ ). If there is any query not 

scheduled in Phase 1, it is to be scheduled in Phase 2. 
VM termination constraints are shown in (14) to (16), 

where ݕ௝  is a binary variable denotes whether ܸܯ௝  is to be 
terminated, as shown in (16). Constraint (14) is used to 
guarantee when ܸܯ௝ is to be terminated, a query should not 
be assigned to it, which constrains when ݕ௝ ൌ  ௜௝ must beݔ ,0
௝ݕ when ;(௝ܯܸ ௜ should not be assigned toݕݎ݁ݑܳ) 0 ൌ  ௜௝ݔ ,1
can be 0 or 1 (ܳݕݎ݁ݑ௜ can either be assigned to ܸܯ௝ or not). 
Constraint (15) is used to provide the priority of utilizing 
created VMs. Created VMs are input to ILP in a cost 
ascending list. Thus, (15) can allow the scheduler to use VMs 
with cheaper cost first, which allows load decreasing on VMs 
with higher cost to terminate VMs when they become idle for 

cost saving. If VMs have the same price, the query scheduler 
first uses VMs in front of the VM list. Moreover, the scheduler 
checks periodically whether any VM is idle. If there is an idle 
VM, the scheduler further checks whether the VM is reaching 
the end of its billing period. If it is, the scheduler releases the 
VM to serve the objective of cost minimization.   

଴ܨ ൌ ܤሺݔܽ݉ ൅ ሻܥ െ ݉݅݊ሺܤ ൅ ሻܥ ൅ 1                              (17) 
ଵܨ ൌ ሻܥሺݔܽ݉ െ݉݅݊ሺܥሻ ൅ 1                                                  (18) 
௜௝ݔ ൌ 1
௞௝ݔ ൌ 1

௘௜௧௛௘௥
ሳልልሰ ൜

ܾ௜௞ ൌ 1, 	ܾ௞௜ ൌ 0
ܾ௜௞ ൌ 0, ܾ௞௜ ൌ 1 , ∀	݅, ݇ ∈ ݉, ݆ ∈ ݊    (19) 

ܾ௜௞ ൌ 1
	
⇒ ௜ݏ ൅ ݁௜௝ ൑ ,௞ݏ ∀	݅, ݇ ∈ ݉, ݆ ∈ ݊                       (20) 

ଶܨ ൒ ௜ݏሺ	ݔܽ݉ ൅ ݁௜௝ െ ௞ሻݏ ൅ 1, ∀	݅, ݇ ∈ ݉, ݆ ∈ ݊         (21) 
௜ݏ ∗ ௜௝	ݔ ൑ ௜ܦ െ ݁௜௝, ∀	݅ ∈ ݉, ݆ ∈ ݊                                      (22) 
ଷܨ ൒ ௜ݏሺ	ݔܽ݉ ൅ ݁௜௝ െ ௜ሻܦ ൅ 1, ∀	݅ ∈ ݉, ݆ ∈ ݊             (23) 
Phase 2 of scheduling starts to scale resources up by 

creating VMs to execute queries that are not scheduled in 
Phase 1. The objective is to minimize VM cost with 
guaranteed SLAs in query execution, as shown in (24). 
Objective E is subjected to all constraints the same as in Phase 
1, except constraint (13). Changed constraint is shown in (25), 
which is used to restrict that ܳݕݎ݁ݑ௜ has to be scheduled to 
one of the newly created VMs for execution to avoid SLA 
violation. We use a greedy algorithm to decide the initial 
number of VMs of each VM type to input to Phase 2 of ILP 
algorithm. This ensures the capacity of input VMs is close to 
the required capacity of the optimal solution to avoid ILP 
taking long time to find a solution, which greatly reduces the 
algorithm running time of ILP. Given that input VMs obtained 
from the greedy algorithm have sufficient capacity to execute 
queries, to serve the cost minimization objective, ILP decides 
whether to create each of input VMs to execute queries, 
indicated by ݖ௝. If ݖ௝ ൌ 1, ILP creates input ܸܯ௝; otherwise, 
ILP does not create the VM. After Phase 1 and Phase 2, all 
queries are successfully scheduled to VMs for execution. 

ܧ ൌ ݉݅݊∑ ൫ܥ௝ ∗ 	௝൯ݖ
௡
௝ୀଵ                                                             (24) 

∑ ௜௝ݔ ൌ 1, ∀݅ ∈ ݉, ݆ ∈ ݊௡
௝ୀଵ                                                      (25) 

Based on the above formulation of the scheduling 
problem, we build the ILP scheduling algorithm. ILP 
algorithm first gets all accepted queries for each requested 
BDAA. In Phase 1, ILP schedules queries to existing VMs 
running the BDAA to maximize VM utilization and execute 
queries with SLA guarantees. Meanwhile, ILP tries to scale 
down VM resources to save resource cost and executes 
queries at the earliest time to achieve better performance. 
Afterwards, ILP takes scheduling actions based on returned 
scheduling solution. After Phase 1, if there are queries not 
scheduled, Phase 2 generates scheduling solutions by scaling 
up VM resources to execute queries with minimized resource 
cost and SLA guarantees. Then, ILP takes actions based on 
the returned scheduling solutions of Phase 2.  

2) Adapative Greedy Search (AGS) scheduling algorithm 
We propose the AGS scheduling algorithm, inspired by 

previous works [5, 7], which aims to find a cost-effective VM 
configuration to execute queries while satisfying SLAs of 
queries by applying a greedy search heuristic. For each 
BDAA, in Phase 1 of scheduling, the AGS algorithm first gets 
queries requesting the BDAA and the created VMs running 



the requested BDAA. If the BDAA is requested for the first 
time, one initial VM is created. AGS first tries to use all 
existing VMs to execute accepted queries, as shown in Lines 
1-9 of the pseudo code below. AGS schedules all queries 
based on the urgency of deadline, which is represented by 
Scheduling Delay (SD). SD is the difference between deadline 
and expected finish time of the query. AGS first sorts queries 
based on SD in an ascending order for scheduling; then, AGS 
tries to assign each query to a VM that can satisfy its SLAs 
and gives it the Earliest Starting Time (EST). We name this 
scheduling method as the SD-based method.  

 
AGS scheduling algorithm 
Input: accepted queries and current VM configuration  
Output: query scheduling solution and new VM configuration 
1: for each BDAA  ∈ requested BDAA list 
2:  queries   get accepted query list of BDAA                
3:  VMs   get running VM list of BDAA 
4:     if size(queries) > 0 
5:       create initial VM for BDAA if it is firstly requested 
6:       queries  sort queries based on SD 
7:       for each query ∈ queries 
8:          do Phase 1 schedule to assign query to VMEST that can 
satisfy its SLAs and update EST of VMEST 
9:       end for 
10:     queries  get queries not scheduled if they exist 
11:     if queries contains at least one query do Phase 2 schedule 
12:        CMs  get all possible configuration modifications 
13:        continueSEARCH   true 
14:        iterationN  0 
15:        iteration2N  0 
16:        Cost(AGS)cheapest   a constant which is sufficient large              
17:        while continueSearch is true or iteration2N > 0  
18:           iterationN++ 
19:           iteration2N-- 
20:           for iterator   CMs; iterator has next CM  
21:              CM1  get next CM from iterator  
22:              while iterator has next CM 
23:                 CM2   get next CM from iterator  
24:                 C1   get new VM configuration by applying CM1 
25:                 C2   get new VM configuration by applying CM2 
26:                 Cost(AGS)1  calculate cost of C1 based on SD 
27:                 Cost(AGS)2   calculate cost of C2 based on SD 
28:                 C    choose from C1 and C2 for cheaper Cost(AGS) 
29:                 Cost(AGS)C  cheaper Cost(AGS)  
30:              end while  
31:           end for   
32:           if Cost(AGS)C < Cost(AGS)CHEAPEST,  
33:                CCHEAPEST  C;  
34:      Cost(AGS)CHEAPEST  Cost(AGS)C  
35:           end if 
36:          else 
37:                continueSEARCH   false  
38:                iteration2N  2 * iterationN  
39:           end else 
40:       end while 
41:          adopt CCHEAPEST and take according scheduling actions 
42:     end if 
43:   end if 
44: end for 

 

After Phase 1, if there still are some queries not scheduled 
due to QoS constraints on deadline and budget, AGS starts 
Phase 2 of scheduling to find a cost-effective VM 
configuration to create new VMs for query execution, as 
shown in Lines 10-40. The set of all possible VM 
configurations for a requested BDAA is represented by a 
directed acyclic graph, ݏ݊݋݅ݐܽݎݑ݂݃݅݊݋ܥ ൌ ሺܰ,  ܰ ሻ, whereܧ
is a set of nodes and ܧ is a set of edges. A node is a possible 
VM configuration ܥ௜ . An edge ሺܥ௜, ௜ାଵሻܥ  indicates VM 
configuration ܥ௜ାଵ  can be obtained from VM configuration 
௜ܥ by applying a Configuration Modification ( ܯܥ ). The 
number of VM types available in the AaaS platform 
determines the number of possible ܯܥs. The ܯܥs are adding 
the cheapest VM, adding a more expensive VM, adding a next 
more expensive VM if it exists, till adding the most expensive 
VM.  

Firstly, AGS gets all possible ܯܥs and iteratively apply 
each ܯܥ on current resource configuration to generate a new 
configuration. Then, the cost manager calculates ݐݏ݋ܥሺܵܩܣሻଵ 
and ݐݏ݋ܥሺܵܩܣሻଶ of resource configurations ܥଵ and ܥଶ in the 
following way: for each configuration, the scheduler applies 
the SD-based method to schedule queries. Then the cost 
manager calculates the cost of the scheduling solution, which 
is the sum of resource cost and penalty cost. The penalty cost 
is set to a sufficiently high value that generates high 
 ሻ for SLA violations. This causes AGS selecting aܵܩܣሺݐݏ݋ܥ
cheaper resource configuration without violating SLAs of 
queries. In each search iteration, AGS selects the 
configuration ܥ	that gives cheapest ݐݏ݋ܥሺܵܩܣሻ௖. Then, AGS 
compares ݐݏ݋ܥሺܵܩܣሻ௖ with the cheapest ݐݏ݋ܥሺܵܩܣሻ௖௛௘௔௣௘௦௧ 
generated thus far. If the ݐݏ݋ܥሺܵܩܣሻ௖ is cheaper, the cheapest 
configuration ܥ௖௛௘௔௣௘௦௧  is set as ܥ  while the cheapest cost  
ሻ௖௛௘௔௣௘௦௧ܵܩܣሺݐݏ݋ܥ  is set as ݐݏ݋ܥሺܵܩܣሻ௖ . AGS scheduling 
algorithm continues these steps until it finds the first local 
optimal configuration using N iterations ( ே݊݋݅ݐܽݎ݁ݐ݅ ). 
Afterwards, it continues exploring for another 2N iterations 
 to see whether it can find another local optimal (ଶே݊݋݅ݐܽݎ݁ݐ݅)
configuration that can give a cheaper ݐݏ݋ܥሺܵܩܣሻ . The 
cheapest configuration found after these 3N iterations is 
chosen. Finally, the scheduling solutions are adopted to 
execute queries, as shown in Line 41.  

3) Adaptive ILP (AILP) scheduling algorithm 
ILP can find the optimal solution for the scheduling 

problem. However, as an optimization algorithm, the 
Algorithm Running Time (ART) of ILP increases quickly as 
the input size grows, which might lead to deadline violations 
when ILP takes a long time to find scheduling solution. In case 
that an unexpected large number of queries arrive, to avoid the 
risk of violating deadline in such situation, we integrate AGS 
and ILP to form a new scheduling algorithm, which is AILP.  

AILP works in the following way: it first utilizes ILP to 
make scheduling decision and specifies a timeout for ILP to 
give scheduling solution to limit the ART of ILP. When 
timeout is reached, if feasible integer linear programming 
solution is found (which may not be the optimal one), ILP 
returns the suboptimal solution. If no feasible solution is 
found, ILP only returns the timeout. After the scheduling of 
ILP, if there is any query that is not successfully scheduled, 



AILP utilizes AGS as the alternative scheduling algorithm to 
make scheduling decision to avoid SLA violations. The reason 
that AILP utilizes ILP at the first place to give scheduling 
decisions is to maximize profit and guarantee SLAs. Only if 
timeout of ILP is reached, to avoid deadline violations that can 
lead to user dissatisfaction and additional penalty cost, AILP 
utilizes AGS as an alternative scheduling algorithm. In this 
way, AILP serves as the best solution to make scheduling 
decisions for the purposes of profit maximization and SLA 
guarantee while overcoming the ART limitation of ILP, which 
is utilized as the scheduling algorithm for the AaaS platform. 

IV. PERFORMANCE EVALUATION 

To evaluate the proposed admission control and 
scheduling algorithm, we build the framework of AaaS in 
CloudSim [10], which is a discrete event simulator. CloudSim 
enables repeatable and controllable experiments and offers 
comprehensive environment for resource scheduling and 
provisioning studies. We conduct experiments on the AaaS 
framework to evaluate the effectiveness and efficiency of the 
proposed admission control and resource scheduling 
algorithm for SLA guarantee, profit enhancement, and cost 
saving. ILP and AGS are utilized as baseline algorithms for 
the evaluation of AILP scheduling algorithm. 

A. Resource Configuration 

We simulate a datacenter that consists of 500 physical 
nodes. Each node has 50 CPU cores, 100GB memory, 10TB 
storage, and 10GB/s network bandwidth. We simulate five 
types of memory optimized VMs, which are based on Amazon 
EC2 VM model and managed by the resource manager. The 
VMs are r3.large, r3.xlarge, r3.2xlarge, r3.4xlarge, and 
r3.8xlarge, as shown in Table II [11]. VMs in Amazon EC2 
are charged by an hourly basis with unit of dollar/hour. The 
unit for memory is GiB while for storage is GB. 

TABLE II.  VM CONFIGURATION 

Type vCPU ECU Memory Storage Cost 

r3.large 2 6.5 15 32 SSD 0.175 

r3.xlarge 4 13 30.5 80 SSD 0.350 

r3.2xlarge 8 26 61 160 SSD 0.700 

r3.4xlarge 16 52 122 320 SSD 1.400 

r3.8xlarge 32 104 244 640 SSD 2.800 

B. Workload 

The workload generated in this study is based on the Big 
Data Benchmark [12], which runs query applications using 
different data analytic frameworks on large datasets with 
given data size, data type, and data location. The benchmark 
uses Amazon EC2 VMs and details query processing time and 
the VM configurations. Based on the information, resource 
requirements of queries requesting different BDAAs under 
different resource configurations are modeled in CloudSim. 
Each query request contains the following information: 
Query submission time is generated using a Poisson process 
with 1 minute mean Poisson arrival interval. Query class 
contains 4 types, which are: scan query, aggregation query, 
join query, and User Defined Function (UDF) query. BDAAs:  

in our experiment, 4 types of BDAAs are considered, which 
are built on Impala (disk) (BDAA1), Shark (disk) (BDAA2), 
Hive (BDAA3), and Tez (BDAA4). Query resource is 
modeled based on the resource requirements of queries. As the 
performance of queries vary, we model 10% performance 
variation by introducing a variation coefficient [13], which is 
generated from a Uniform Distribution with upper bound 1.1 
and lower bound 0.9. Query user:  we simulate 50 users who 
submit queries and request for BDAAs. Query deadline is 
generated as the benchmark does not contain QoS 
requirements on deadline (the same for budget). Two types of 
deadline are considered, tight deadline and loose deadline. 
Tight deadline is generated using a Normal Distribution (3, 
1.4), where 3 represents that the mean deadline of a query is 3 
times of its processing time and 1.4 represents the standard 
deviation. Loose deadline is generated similarly using a 
Normal Distribution (8, 3) [14]. Query budget contains tight 
budget and loose budget. Tight budget is generated using a 
Normal Distribution (3, 1.4) while loose budget is generated 
using a Normal Distribution (8, 3).  

C. Result Analysis  

We generate an approximate 7 hours query workload that 
contains 400 queries. The requested BDAAs by queries are 
managed by the BDAA manager. We use lp_solve 5.5 [15] as 
the integer linear programming solver. Queries whose QoS 
requirements on deadline and budget can be satisfied are 
admitted by admission controller. To avoid deadline violation 
and ensure the performance of queries, the number of queries 
assigned to VMs by the query scheduler is less than the 
number of VM cores to avoid time sharing between queries as 
time sharing may cause deadline violations. To evaluate the 
effectiveness and efficiency of the admission and scheduling 
algorithm, we conduct the following studies: 

1) Admission control and SLA guarantee: 
We conduct the real time scheduling and periodic 

scheduling by varying SI from 10 to 60 (unit: minute) to 
evaluate the effectiveness of the admission control algorithm. 
The results are shown in Table III, where SQN is the 
submitted query number, AQN is the accepted query number, 
and SEN is the successfully executed query number.  

TABLE III.  QUERY NUMBER INFORMATION 

Number 
Real 
Time 

Periodic 
10 20 30 40 50 60 

SQN 400 400 400 400 400 400 400 

AQN 336 317 299 287 274 261 252 

SEN 336 317 299 287 274 261 252 

 
We calculate the acceptance rate based on the obtained 

results. For real time scheduling, the rate is 84.0%, while for 
periodic scheduling of SI from 10 to 60, the rate is 79.3 %, 
74.8 %, 71.8 %, 68.5 %, 65.3 %, and 63. 0%. As the SI 
increases, the acceptance rate of queries decreases due to 
deadline constraints. Short SI is recommended as more 
queries can be admitted to increase user satisfaction and 
enlarge market share. We can see that all accepted queries are 
successfully executed with SLA guarantees, which helps to 



increase the reputation of AaaS providers. Obtained results 
show the effectiveness of the admission control algorithm in 
query admission. 

2) Cost saving and profit enhancement 
In this study, we evaluate the efficiency of AILP, ILP, and 

AGS scheduling algorithms in cost saving and profit 
enhancement. AILP is an integration of AGS and ILP, it first 
utilizes ILP to find scheduling solution and only switches to 
AGS when no feasible solution is returned by ILP within 
specified scheduling timeout to avoid potential deadline 
violations. When timeout of AILP is reached, we record the 
data to show the contribution of ILP and AGS in generating 
the scheduling solution of AILP. For periodic scheduling 
using ILP, we only record the scheduling solutions that are 
given within the SI. As scheduling solutions exceeding the SIs 
are not applicable, from this paragraph on, we do not include 
ILP in algorithm comparison for simplicity purpose. Obtained 
results are shown in Fig. 2. We note that for real time 
scheduling and periodic scheduling with SI=10 and SI=20, 
ILP algorithm can schedule queries within the specified 
timeout. This indicates that scheduling decisions of AILP for 
these SIs are optimal and are given by ILP. For SI=30 and 
SI=40, in some SIs, scheduling timeout of ILP is reached, 
which indicates the solution given by AILP might be sub-
optimal. For SI=50 and SI=60, AGS is utilized along with ILP 
to contribute to the scheduling solution of AILP. Based on the 
obtained results, we can know that, for real time scheduling, 
the resource cost of AILP is 7.3% less than AGS, while for 
periodical scheduling with SI from 10 to 60, resource cost 
generated by AILP is 11.3%, 9.3%, 4.8%, 4.4%, 5.4%, and 
4.3% less than AGS. 

 
Figure 2.  Resource Cost of AGS, AILP, and ILP 

The resource configuration to execute the query workload 
is shown in Table IV. Results show that, for all scheduling 
scenarios, AILP can efficiently reduce the numbers of VMs 
that are used. The observation is consistent with the Objective 
B and Objective E, as shown in (2) and (24), and constraint 
(15). ILP uses cheaper VMs at first if they are available; then, 
for the same VM type, ILP first uses VMs in the front of the 
VM queue. This leads to cheaper resource cost and higher 
resource utilization, which also leads to less VM creations. 
Creating less VMs is beneficial as it takes several minutes to 
boot VMs and make VMs online. We use 97 seconds as VM 

configuration time in our experiment [16]. Creating more 
VMs will cause more delay to serve requests, which may 
cause deadline violations and lead to higher resource cost. 
Thus, less VM creations can better benefit our objective of 
SLA guaranteeing and cost saving. Results show that the VM 
types utilized by AILP and AGS are r3.large and r3.xlarge 
while other types of r3.2xlarge, r3.4xlarge, and r3.8xlarge are 
not utilized. We find the reason that, indicated by Table II, 
there is no pricing advantages to use VMs with larger capacity 
as the capacity of VM increases, the price increases 
proportionally. Since VMs is not always fully utilized and 
creating VMs with higher capacity leads to higher resource 
cost, expensive VMs are not given the priority for utilization. 

TABLE IV.  RESOURCE CONFIGURATION  

Scheduling Scenario AGS AILP  
Real Time 58 ∗ r3. large 23 ∗ r3. large

Periodic 

SI=10 48 ∗ r3. large 23 ∗ r3. large
SI=20 27 ∗ 	r3. large 22 ∗ r3. large
SI=30 32 ∗ r3. large 22 ∗ r3. large

SI=40 
28 ∗ r3. large, 
2 ∗ r3. xlarge 

22 ∗ r3. large 

SI=50 28 ∗ r3. large 
17 ∗ r3. large, 
2 ∗ r3. xlarge

SI=60 
21 ∗ r3. large, 
4 ∗ r3. xlarge 

16 ∗ r3. large, 
2 ∗ r3. xlarge

 
Profit gained by AILP and AGS is shown in Fig. 3. We 

notice that for both real time scheduling and periodic 
scheduling, AILP performs significantly better than AGS in 
profit enhancement. For real time scheduling, profit gained by 
AILP is 11.4% more than AGS. For periodic scheduling of SI 
from 10 to 60, profit gained by AILP is 19.8%, 15.2%, 7.9%, 
6.7%, 8.2%, and 6.1% more than AGS.  

 
Figure 3.  Profit of AILP and AGS 

For real time scheduling, profit created by AILP and AGS 
is relatively high as more queries are admitted that leads to 
higher query income. The profit decreases when the real time 
scheduling is switched to the periodic scheduling with SI=10 
as more queries are rejected, which decreases the query 
income. With the continuous increase of SI, as more queries 
are scheduled during each SI, AGS and AILP can make better 
scheduling decisions to provision resources and schedule 
queries to VMs, which increases the profit. For AGS with SI 
from 10 to 60, we notice the overall increasing trend of profit 
is relatively obvious comparing to AILP. For AILP, we notice 



that profit increases when SI increases from 10 to 20. 
However, when SI increases from 20 to 30, the profit drops as 
AILP returns sub-optimal solutions in some SIs when timeout 
is reached. We further notice that when SI increases from 30 
to 40, the profit starts increasing again, which indicates that 
AILP can give higher cost saving to create higher profit even 
though the query income is decreased when more queries are 
rejected. When SI of AILP increases from 40 to 50 and from 
50 to 60, the profit keeps increasing as more queries are 
scheduled that leads to better scheduling decisions. For SI=50 
and SI=60, the solutions of AILP are given by integration of 
ILP and AGS, as for some SIs, AGS are utilized when feasible 
solutions are not given by ILP, which weakens the profit 
enhancement and cost saving advantages of ILP. 

 As shown in Fig. 4, for all scheduling scenarios, the 
median resource cost for AILP is $135.3 while for AGS is 
$145.4, which shows AILP gives 7.5% higher cost saving 
regarding median resource cost. The median profit made by 
AILP is $95.0 while by AGS is $87.0, which shows AILP 
creates 9.2% higher median profit than AGS. Results also 
show that the mean resource cost generated by AILP is 
$135.3, which is 6.7% less than AGS while the mean profit 
created by AILP is $94.9, which is 10.6% higher than AGS.  

 
Figure 4.  Profit and Resource Cost of AILP and AGS 

All of the obtained results show that AILP generates less 
resource cost and creates higher profit comparing to AGS, 
which proves the efficiency of AILP in achieving the cost 
saving and profit enhancement objectives. For real time 
scheduling, the benefit is that more queries can be accepted 
for higher profit, while the drawback is that frequent 
scheduling consumes more computing resources. Thus, real 
time scheduling is not applicable when load of queries is high. 
For periodic scheduling, the more queries are collected, the 
better scheduling decisions can be made to save more resource 
cost and create higher profit. However, the drawback is that 
the longer the SI is, the more queries are rejected due to 
deadline constraints. This causes customer dissatisfaction due 
to higher request rejection rate, which also leads to reduction 
of market share. Therefore, long SI is not recommended even 
more resource cost can be saved. In order to achieve higher 
cost saving and profit enhancement, while at the same time 
accept more queries to serve more users for larger market 
share and higher user satisfaction, periodic scheduling with 
SI=20 is the best solution to execute the query workload.  

We further study the performance of AILP and AGS in 
profit enhancement and cost saving for different BDAAs 
using SI=20. Results are shown in Fig. 5. We notice that 
resource cost and profit vary for different BDAAs, which is 
caused by variation of the number of accepted queries and 
their required resources. For different queries, query 
execution time can vary from minutes to hours. Resource cost 
generated by AILP is 1.9%, 2.4%, 15.5%, and 3.3% less than 
AGS for BDAA1, BDAA2, BDAA3, and BDAA4. 
Accordingly, the profit created by AILP is 3.5%, 4.3%, 
26.2%, and 4.8% higher than AGS. All the obtained results 
show AILP can generate less resource cost and create higher 
profit for each BDAA that further prove that AILP can better 
serve the cost saving and profit enhancement objectives. 

 
Figure 5.  Profit and Resource Cost of BDAAs for SI=20 

3) Study of algorithm performance based on C/P metric 
We use the C/P metric [5] to evaluate the performance of 

AILP and AGS. C/P is the quotient of resource cost and 
workload running time. Smaller C/P value indicates better 
performance of the scheduling algorithm. We can see that 
AILP has smaller C/P values for all scheduling scenarios, 
which indicates that AILP performs better than AGS, as 
shown in Fig. 6.  

 
Figure 6.  C/P of AILP and AGS 

We use periodic scheduling with SI=20 as an example. For 
SI=20, results show that to execute the query workload, AILP 
uses 156.5 hours that is 78.9% longer than AGS and generates 
$135.3 resource cost that is 9.3% less than AGS. This leads to 
a smaller C/P value of 0.9 for AILP, comparing to larger C/P 
value of 1.7 for AGS. For AGS, we notice that the trend of 
C/P keeps decreasing while SI increases, which indicates that 



AGS performs better when more queries are scheduled in each 
SI. For AILP, the trend of C/P fluctuates as the scheduling 
solution returned by AILP is an integration of ILP and AGS. 

4) Study of ART 
We record the ART for AILP and AGS to execute the 

query workload, as shown in Fig. 7. For real time scheduling, 
a query is scheduled based on its arrival. There is one query 
that is scheduled each time by AGS and AILP. Thus, ART is 
not a limitation factor. For periodic scheduling, variation of SI 
leads to variation of the number of queries to be scheduled in 
each SI. To avoid deadline violations when the number of 
queries is large, a scheduling timeout is set to limit the ART. 
The maximum value of the timeout is limited to 90% of SI to 
ensure that sufficient time is left for AGS to give scheduling 
solution when no feasible solution is given by ILP.  

 
Figure 7.  ART of AILP and AGS 

We made efforts to reduce the ART of ILP by utilizing two 
greedy algorithms to decide the input of VMs to Phase 1 and 
Phase 2 of ILP scheduling algorithm, which ensures that the 
given VMs have sufficient capacity to execute queries; 
meanwhile, the given number of VMs is close to the number 
of VMs of the optimal solution. In this way, ILP does not need 
to search large solution space, which greatly reduces the ART 
of ILP. For different query workload, SI can be adjusted to a 
suitable value based on the arrival rate of queries to allow 
AILP algorithm generating scheduling solutions to better 
achieve cost saving and profit enhancement objectives. 

Results show that ARTAILP is longer than ARTAGS for all 
scheduling scenarios. For periodical scheduling, AGS takes 
milliseconds to give a scheduling decision for each SI and 
ARTAGS increases when SI increases. However, the increasing 
rate of ARTAGS is not as rapid as ARTAILP. For AILP, the 
increasing rate of ARTAILP decreases while SI increases as the 
ART cannot exceed the scheduling timeout, which is a 
constant value. Obtained results show that ART is not the 
limiting factor for AILP to serve as the scheduling algorithm 
of the AaaS platform as it can give scheduling solution within 
each SI. However, it is not recommended to use long SI. As 
the longer the SI is, the more requests with tight deadline are 
rejected by the admission controller, which is not consistent 
with the profit maximization objective of the AaaS platform. 
Moreover, it also decreases the user satisfaction and reduces 
the market share of AaaS providers.   

V. RELATED WORK 

Our research focuses on provisioning effective and 
efficient algorithms to support the AaaS platform to deliver 
on-demand AaaS for various domains of users with SLA 
guarantees and at lower cost in order to enhance profit, enlarge 
market share, and improve user satisfaction. We compare our 
work with the most related works with respect to various 
parameters, as summarized in Table V.   

TABLE V.  RELATED WORK  

Parameter 
Related Work Our 

Work [4] [5] [7] [17] [18] [19] 

AaaS Y N N Y N N Y 

Cost saving Y Y Y Y Y Y Y 

Profit enlarging N N N N N N Y 

SLA guarantee Y N Y Y Y N Y 

Admission control N N Y N N N Y 

Budget N N N N Y Y Y 

Deadline N N N Y Y Y Y 
Scalable and elastic 
resource provision N Y Y Y N Y Y 

Y: covered; N: not covered 

Sun et al. [4] propose a general-purpose analytic 
framework to provision cost-effective analytic solution with 
multi-tenancy support. They propose an SLA customization 
mechanism to satisfy diverse QoS requirements of tenants. 
However, their work does not consider admission control; 
thus, SLAs are at risk of violations. Moreover, they do not 
address resource scheduling algorithms with SLA guarantees 
on deadline and budget and also do not address profit 
enhancement purpose of AaaS providers. 

Mian et al. [5] focus on resource provisioning for data 
analytic workloads in a public Cloud that aims to determine 
the most cost-effective resource configuration using greedy 
search heuristic. Their work schedules queries for one 
application, which does not serve general data analytic 
purpose. Moreover, the SLA they considered is average query 
response time and SLA violation is allowed for a cheaper 
resource cost, which is different from our SLA guaranteeing 
perspective. We believe that SLA violations can significantly 
decrease user satisfaction and reputation of AaaS providers. 
Therefore, SLA violations should be avoided. 

Garg et al. [7] manage resources for heterogeneous 
workload in a datacenter. They focus on resource scheduling 
problem for mixed workloads instead of data analytic 
workloads. They propose an admission control and resource 
scheduling algorithm, which considers deadline-constrained 
scheduling while we consider budget-constrained scheduling 
as well, which is the market feature of delivering analytics as 
a service in Cloud computing environments. Zulkernine et al. 
[17] propose the conceptual architecture of Cloud-based 
Analytics as a Service, which does not consider admission 
control. Their work focuses on data analytics for workflow 
applications. 

Scheduling and resource provisioning for MapReduce 
tasks is a well-explored area, which targets at a specific 
application model and does not serve general data analytic 



purpose. Alrokayan et al. [18] propose cost-aware and SLA-
based algorithms to provision Cloud resources and schedule 
MapReduce tasks under budget and deadline constraints. 
They adopt Lambda architecture and focus their current work 
on the batch layer. Mattess at al. [19] propose an algorithm to 
dynamically provision resources to meet soft deadline of 
MapReduce tasks while minimizing the budget. Both of the 
above works do not consider admission control for SLA 
guaranteeing purpose.  

There are some works focus on delivering specific 
analytics as a service and provisioning query processing 
techniques, which give support to the AaaS platform and 
enrich the BDAAs that the AaaS platform can provide to 
users. Chen et al. [20] address the challenges in delivering 
continuous analytics as a service to analyze real-time events. 
Barga et al. [21] propose Daytona to offer scalable 
computation for large scale data analytics, which focuses on 
spreadsheet applications. Agarwal at al. [22] propose 
BlinkDB, which enables approximate query processing on 
data samples of large datasets with bounded response time and 
bounded errors.  

VI. CONCLUSIONS AND FUTURE WORK 

Data analytics has significant benefits in decision making 
and problem solving for various domains. To support the 
AaaS platform that offers data analytics as a service to various 
domains of users as consumable services, our research focuses 
on proposing effective and efficient admission control and 
resource scheduling algorithms. The aim is to allow AaaS 
providers delivering AaaS with SLA guarantees to increase 
market share, improve reputation, and enhance profit. We 
have proposed the architecture and models of the AaaS 
platform and conducted experiments to evaluate the 
performance of the admission control and resource scheduling 
algorithm. Experiments are conducted based on different 
scheduling scenarios, which are non-periodic (real time) 
scheduling and periodic scheduling with varied scheduling 
intervals. Results have shown that our admission control 
algorithm successfully admits queries based on QoS 
requirements to allow scheduling algorithms giving SLA 
guarantees. Moreover, AILP, which is an integration of AGS 
and ILP, can save more resource cost and create higher profit 
while overcoming the limitation of ILP in ART. As part of the 
future work, we will (1) continue working on proposing 
efficient admission control and resource scheduling 
algorithms; (2) study the effect of application profiling in the 
performance of algorithms; and (3) study data sampling 
techniques that allow query processing on sampled datasets 
for quicker response time and higher cost saving. 
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