IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020 3

A Hybrid Bio-Inspired Algorithm for
Scheduling and Resource Management
in Cloud Environment

Shridhar G. Domanal
Ram Mohana Reddy Guddeti

, Student Member, IEEE,
, Senior Member, IEEE, and Rajkumar Buyya

, Fellow, IEEE

Abstract—In this paper, we propose a novel HYBRID Bio-Inspired algorithm for task scheduling and resource management, since it
plays an important role in the cloud computing environment. Conventional scheduling algorithms such as Round Robin, First Come
First Serve, Ant Colony Optimization etc. have been widely used in many cloud computing systems. Cloud receives clients tasks in a
rapid rate and allocation of resources to these tasks should be handled in an intelligent manner. In this proposed work, we allocate the
tasks to the virtual machines in an efficient manner using Modified Particle Swarm Optimization algorithm and then allocation /
management of resources (CPU and Memory), as demanded by the tasks, is handled by proposed HYBRID Bio-Inspired algorithm
(Modified PSO + Modified CSO). Experimental results demonstrate that our proposed HYBRID algorithm outperforms peer research
and benchmark algorithms (ACO, MPSO, CSO, RR and Exact algorithm based on branch-and-bound technique) in terms of efficient
utilization of the cloud resources, improved reliability and reduced average response time.

Index Terms—Bio-inspired algorithms, load balancing, resource management, task scheduling, virtual machines

1 INTRODUCTION

C LOUD computing is the emerging technology in distrib-
uted environment consisting of several data centers,
servers, virtual machines, load balancers etc. which are con-
nected intelligently. Further, the cloud deals with many
things such as storing and retrieving of documents, sharing
of multimedia, lending the related resources on pay-as-you-
go model and much more [1], [2]. Even though there is much
advancement in the era of computers and Internet of Things
(IoT) with respect to responsiveness, reliability and flexibil-
ity, still there is a room for improvement in scheduling, opti-
mal resource allocation and management algorithms since
these algorithms come under NP-hard and NP-complete
complexity classes. Hence, there is a need to address these
set of challenging problems using different techniques. Effi-
cient task scheduling and resource management is a chal-
lenging problem of distributed computing but it is still in its
infant stage in spite of exhaustive research in recent years [1].

o S.G. Domanal is with the Department of Information Technology,
National Institute of Technology Karnataka, Surathkal, Mangalore,
Karnataka 575025, India. E-mail: shridhar.domanal@gmail.com.

e R.M.R. Guddeti is with the Department of Information Technology and
Central Computer Center, National Institute of Technology Karnataka,
Surathkal, Mangalore, Karnataka 575 025, India.

E-mail: profgrmreddy@gmail.com.

e R. Buyya is with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, Department of Computing and Information
Systems, University of Melbourne, Vic 3010, Australia.

E-mail: rbuyya@unimelb.edu.au.

Manuscript received 10 Dec. 2016; accepted 1 Mar. 2017. Date of publication

8 Mar. 2017; date of current version 12 Feb. 2020.
Digital Object Identifier no. 10.1109/TSC.2017.2679738

In a cloud environment, there are different service mod-
els such as SaaS, laaS, PaaS and XaaS where X refers to any-
thing as a service (Ex: Security as a Service). All these
service models need to satisfy the incoming tasks of the
clients within the service level agreements (SLA). To exe-
cute these tasks, we need to deploy Virtual Machines (VMs)
in the cloud and these VMs play a key role in serving the
incoming client tasks [3], [4]. Since cloud is a pay-as-you-go
model hence several VMs can be created and destroyed
inside the physical machines (PMs).

Recently, Amazon developed a novel Elastic cloud based
solution in which all the components (PMs, VMs, load bal-
ancers etc.) shrink when there is a less load, and expand
when there is an increase in the load (here load refers to the
incoming tasks for the cloud) [5], [6]. Thus, this elastic cloud
resolves the problem of allocating the resources depending
on the load. But the efficiency of the VMs depends on the
scheduling and load balancing techniques rather than allo-
cation of resources dynamically for its execution. Even
though the property of elasticity improves the performance
of the cloud, but this service has its own limitations with
respect to heterogeneity. For example, scaling of cloud
resources with the different system configurations needs to
be considered for heterogeneous environment. If the cloud
has to work seamlessly, then the load balancer has to play a
vital role in satisfying the above mentioned services given
by any cloud [7]. In this work, we mainly focus on the Bio-
Inspired algorithms for solving the challenging issues of
task scheduling, resource allocation and management near
optimally. Our approach follows the process of hot-

1939-1374 © 2017 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2582-1089
https://orcid.org/0000-0002-2582-1089
https://orcid.org/0000-0002-2582-1089
https://orcid.org/0000-0002-2582-1089
https://orcid.org/0000-0002-2582-1089
https://orcid.org/0000-0003-1361-3837
https://orcid.org/0000-0003-1361-3837
https://orcid.org/0000-0003-1361-3837
https://orcid.org/0000-0003-1361-3837
https://orcid.org/0000-0003-1361-3837
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:
mailto:
mailto:

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

plugging in which the resource units such as Memory and
CPU will be added and removed from the VMs without
interrupting the current state of the VMs.

The core idea of our proposed methodology lies in
achieving the following two goals:

o Efficient Task Scheduling for Load Balancing: By design-
ing a novel Modified Particle Swarm Optimization
algorithm, the tasks can be efficiently scheduled with
balanced load on VMs.

e Dynamic Resource Allocation and Management: By
designing a novel HYBRID Bio-Inspired algorithm
using Modified Particle Swarm Optimization (MPSO)
and Modified Cat Swarm Optimization (MCSO) tech-
niques, the cloud resources can be efficiently allo-
cated to execute the clients’ tasks.

There is a significant tradeoff between the aforemen-
tioned goals in the context of efficient utilization of VMs and
managing the resources allocated to each task so that the
resources can be utilized efficiently. Scheduling and load bal-
ancing play an important role in allocating the incoming
tasks and managing the resources dynamically as demanded
by tasks respectively in the cloud environment. In the pres-
ent scenario of cloud, efficient utilization of VMs and effec-
tive utilization of the resources (CPU and Memory) are very
important. These resources must be used in an intelligent
manner to attain high throughput and low response time for
execution of incoming tasks which are converging from all
over the world [8], [9].

Nowadays, many clients demand for several resources
(CPU, Memory etc.) on pay-as-you-go model and satisfy-
ing these types of tasks is very tedious and needs profi-
ciency in managing these tasks from IaaS platform. Since,
the efficiency of the cloud should not be hindered, hence
throughput of the cloud should be directly proportional
to the efficient utilization of cloud resources. Special
focus is needed when these tasks change their demand
for resources which are uncertain and handling the
resources demand would be a great challenge in the
cloud environment.

Peer research algorithms such as Round Robin, First
Come First Serve, and Throttled [10], [11] etc. have been
used for task scheduling and resource management. These
algorithms are rule based techniques and suffer from under-
utilization of VMs, resources; resulting in overall delay in
executing the tasks. Further, Bio-Inspired techniques such
as Particle Swarm Optimization (PSO) [12], Ant Colony
Optimization (ACO) [13], Cat Swarm Optimization (CSO)
[14], Honey Bee etc. [15] are much suitable for solving the
Scheduling, Resource Allocation and Management prob-
lems which come under NP-hard/NP-complete complex
classes. Hence, by applying Bio-Inspired techniques, we
would enhance the efficiency in terms of reliability, flexibil-
ity and time (response and execution).

In this paper, we mainly focus on scheduling the tasks
using MPSO and allocation & managing the cloud resources
using MPSO, MCSO and HYBRID Bio-Inspired (MPSO-+
MCSO) algorithms. Our proposed MPSO is more efficient
for task scheduling when compared to other proposed algo-
rithms. Our proposed HYBRID Bio-Inspired algorithm
(MPSO+MCSO) outperforms peer research algorithms in

terms of reduced execution time and average response time
with efficient utilization of cloud resources.

Hence, our main/key research contributions in this
paper are as follows:

1) A novel Bio-Inspired load balancing algorithm is
designed for efficient scheduling of the tasks using
MPSO technique.

2) An efficient dynamic resource allocation and man-
agement approach is designed using both MPSO and
MCSO techniques.

3) A combined HYBRID (MPSO+MCSO) heuristic
approach is proposed for managing the cloud resour-
ces efficiently.

4) Performance evaluation of proposed HYBRID
approach with benchmark exact algorithm along
with statistical hypothesis analysis.

The remainder of the paper is organized as follows.
Section 2 begins with related work on task scheduling
and resource management, Section 3 deals with proposed
methodology and HYBRID heuristic algorithms. Section 4
describes the performance evaluation and simulation sce-
narios followed by experimental results & analysis and
finally we conclude with future directions in Section 5.

2 RELATED WORK

In this section, we briefly summarize the state of the art
scheduling and resource management algorithms available
in the literature [16], [17], [18], [19], [20]. Many researchers
have contributed towards efficient algorithms for load bal-
ancing, scheduling and resource management, but still there
is a scope for further improvement since the aforemen-
tioned algorithms are NP-hard /NP complete complex class
problems. Al Nuaimi et al. [10] presented efficient algo-
rithms for assigning the clients’ tasks to the nodes or virtual
machines in the cloud environment. This approach aims to
enhance the overall performance of the cloud.

Gougarzi et al. [21] proposed a resource allocation prob-
lem that aims to minimize the total energy cost of cloud com-
puting system while meeting the specified client-level SLAs
in a probabilistic sense. Here, authors applied a reverse
approach to put a penalty if the client does not meet the SLA
agreements. Authors implemented a heuristic algorithm to
solve the aforementioned resource allocation problem.

Radojevi¢ and Zagar [11] introduced Central Load Bal-
ancing Decision Model in the cloud environment which
automates the complete scheduling process and reduces the
role of human administrator. It lacks in finding the node
capabilities, configuration details and complete system has
no backup thus resulting in single point of failure.

Nishant et al. [13] proposed Ant Colony Optimization tech-
nique for Scheduling the incoming tasks effi-ciently by utiliz-
ing the under-loaded nodes in the cloud environment. After a
few iterations, this ACO algorithm slows down and fails in
changing the node status for scheduling the future tasks.
Shojaee et al. [14] proposed New Cat Swarm Optimization for
scheduling the tasks in the distributed environment with bet-
ter performance of task allocation. Here, authors focus was on
both seeking and tracing modes of CSO and this leads to delay
in execution of tasks. Jeyarani et al. [17] proposed Self Adap-
tive MPSO technnique for efficient scheduling of the VMs in
the homogeneous cloud environment.

DOMANAL ETAL.: AHYBRID BIO-INSPIRED ALGORITHM FOR SCHEDULING AND RESOURCE MANAGEMENT IN CLOUD ENVIRONMENT 5

Domanal and Reddy [22], [23] proposed a modified
throttled algorithm that efficiently schedules the incoming
client tasks to the virtual machines. The authors focus was
on the response time of the tasks. Later, the same authors
proposed another VM-Assign load balancing algorithm
which focuses not only on the response time, but also on the
efficient utilization of VMs present in the cloud. In both
algorithms, scheduling of incoming tasks to the VMs are
addressed efficiently, but the authors did not consider the
resources such as CPU and Memory which are inevitably
demanded by clients tasks across the world.

Gongalves et al. [24] proposed a Distributed Cloud
Resource Allocation System (D-CRAS) which ensures an
automatic monitoring and control of resources of the cloud
to guarantee the optimal functioning while meeting the SLA
requirements, but authors did not compare their work with
State-of-the-art technologies. Gongalves et al. [24] presented
an Heterogeneous Earliest Finish Time (HEFT) based
HYBRID scheduling algorithm that decides which resources
should be taken on lease from public cloud to accomplish the
execution of a task within its deadline and with minimum
cost for the user. Later, the same authors modified their algo-
rithm with sub-deadlines for resource provisioning and com-
pared with greedy approach and min-min algorithms.

Zhou et al. [25] implemented a resource allocation pol-
icy for load balancing in virtual machine cluster. This
resource allocation policy not only monitors the real-time
resource utilization of CPU, Memory etc. but also uses
instant resource reallocation for VMs running on the PM
using VM migration.

Zuo et al. [12] proposed a resource allocation framework
in which an IaaS provider can outsource its tasks to External
Clouds (ECs) when its own resources are insufficient to meet
the current tasks demand. There is no guarantee that ECs
could be used all the time, but the key issue is how to allocate
users’ tasks to maximize the profit of IaaS provider while
guaranteeing the Quality of Service (QoS). Authors formu-
lated this problem as an Integer Programming (IP) model,
and it is solved by a Self-Adaptive Learning Particle Swarm
Optimization (SLMPSO)-based scheduling approach.
Authors did not highlight the overhead caused during the
communication between laaS providers and the external
cloud. These aforementioned issues motivated us to propose
novel HYBRID Bio-Inspired technique in this paper.

In this proposed work, we focus on scheduling of in-com-
ing tasks over the VMs (here the task refers to execu-tion of a
task with resource demand) using Bio-Inspired MPSO tech-
nique. Thus achieving better efficiency with respect to opti-
mal allocation tasks to the VMs with better average response
time and balanced load. Further, we consider the resource
demands in terms of CPU & Memory and managing of these
resources are taken care by our proposed Bio-Inspired tech-
niques such as MPSO, MCSO and HYBRID (MPSO+MCSO).
For resource management, we aim to achieve better Average
Response time and less communication overhead between
cloud resource pool and VMs. If the VMs have sufficient
resources to execute the tasks then it proceeds, otherwise it
lends from the cloud resource pool. In this work, the main
investigation is how Bio-Inspired techniques play a major
role in assigning and managing these resources efficiently.
Table 1 summarizes some important existing works.

TABLE 1
Summary of Existing Works

Authors Methodology Remarks
Huang Job Scheduling in Efficient scheduling
etal. [26] distributed cloud is done without load

using Dominant balancing of VMs

Resource Fairness (DRF)
Zheng and Task Scheduling and Authors did not
Wang [27] Resource Allocation consider other

using Pareto based

fruit Fly Optimization

algorithm (PFOA)
Rasti-Barzoki Distributed Scheduling
and Hejazi [28] and Resource Allocation

using Pseudo-Polynomial

Dynamic Programming

heuristic approaches
for performance
evaluation

Authors considered
supply chain
management application.
However, heuristics

Algorithm approaches can be
added to suit
multiple platforms

Akbari and Task Scheduling in Random assignment
Rashidi [29] Heterogeneous Cloud of tasks to processors

Environment using during scheduling

Multi-Objective

Scheduling Cuckoo

Optimization

Algorithm (MOSCOA)

Pillai and Resource Allocation No comparison
Rao [30] mechanism for machines ~ with other state-

in cloud based on the of-the-art algorithms

uncertainty principle

of game theory

Xuetal [31] Energy-aware Resource Authors did

Allocation method for not consider

workflow executions Resource-aware
scheduling

Wang Load Balancing Min-Min Execution time of
etal. [32] (LBMM) for load balancing the tasks is not

in cloud environment considered and leads
to bottleneck for
task scheduling

Xu and Stable matching Authors did not
Li [33] framework based consider dynamic

Resource management resources demands

for mapping virtual and job scheduling
machines to
physical servers

Tsaietal [1] Hyper Heuristics Heterogeneous
Scheduling Algorithm environment is

not considered
for scheduling

in cloud environment

3 PROPOSED METHODOLOGY

We proposed improved MPSO for task scheduling. We also
proposed MPSO, MCSO and HYBRID (MPSO+MCSO) tech-
niques for resource allocation and management.

3.0.1 Modified Particle Swarm Optimization

Particle Swarm Optimization was developed by Eberhart
and Kennedy [34] in 1995 and it has been widely used sto-
chastic optimization technique based on the behavior of ani-
mals and birds. In MPSO, the particle is represented by its
position and velocity; these particles keep track of local
best (LB) and global best (GB) values; fitness function

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

determines the LB and GB values. In the scheduling
approach, particles refer to VMs; LB refers to under-loaded
VM from each cluster and GB refers to the minimum value
among all LB values. The algorithm iterates continuously to
get the new LB and GB values. In MPSO, GB does not
remain the same in each iteration when compared to PSO.
The position and velocity of a particle are updated based on
the following Equations (1) and (2) respectively [35]

z(t+1) = 2(t) + v(t) (1)
z(t+1)=v(t)+car (LB —x(t)) + car2(GB — z(t)), (2)

where,

x(t) is current position of particle / Current load of a VM.
LB is least under loaded VM from cluster.

GB is least under loaded VM from all LB values.

¢1 and ¢, acceleration coefficients, usually ¢; = ¢; = 2.

r1 and ry are random numbers between (0, 1).

3.0.2 Modified Cat Swarm Optimization

CSO technique [36] deals with two important phases like
Seeking mode and Tracing mode. In the proposed MCSO,
we mainly concentrate on Seeking mode rather than on
Tracing mode as it is similar to the MPSO approach. MCSO
is used for resource allocation management based on Seek-
ing mode only. However, MCSO cannot be efficiently used
for scheduling if it uses both Seeking and Tracing modes.
MCSO deals with four different types of memories like
Seeking Memory Pool (SMP), Seeking Range of selected
Dimension (SRD), Counts to Dimension Change (CDC) and
Self Position Consideration (SPC). These memory pools
play an important role in assigning the cloud resources to
VMs in the current work. The usage details of these memory
pools are given in the Section 3.1.3 along with the proposed
MCSO algorithm. The main difference between MPSO and
MCSO is that the seeking mode of MCSO overcomes the
limitations of the MPSO by comparing the future resource
demands with excess resources present in the VMs. The
complete details are given in Section 4.2.2.

3.0.3 Example for Explaining Our Proposed Work

In this proposed model, tasks are scheduled on the VMs and
resources such as CPU & Memory are also utilized effi-
ciently by our proposed algorithms. Here, we used different
types of VMs on a PM which can communicate with the
scheduler for the efficient functioning of proposed algo-
rithms. The tasks are coming at a batch of ten and their inter
arrival time remains constant. Initially, tasks are scheduled
efficiently on VMs and then allocation of required resources
will take place.

Fig. 1 shows an example for explaining our proposed
work. The incoming task demands n number of cloud
resources wheren=0,1,2,3,4,5,6,7,8,9 and allocation of
n resources are provided by either cloud resource pool or
by the VMs. Each cluster contains different VMs with the
best two n resource values represented as excess_res] and
excess_res2, respectively and the remaining resources avail-
able with VMs are stored in excess_res3[]. During resource
allocation, the on demand resources are compared with
excess_res1, excess_res2 and excess_res3[], respectively by our
proposed MPSO, MCSO and HYBRID (MPSO+MCSO)

/ Cloud Generating Requests \
Users
Tasks
Scheduler

Cloud
Resource
Pool

VM1 VM2 VM3 VM4 VM5

pMJ

algorithms. The excess_resl and excess_res2 mappings are
used by the MPSO algorithm where as excess_res3[] map-
ping is used by the MCSO algorithm. On the other hand,
HYBRID (MPSO+MCSO) algorithm uses all the three afore-
mentioned resource mappings.

3

Fig. 1. Example for explaining our proposed work.

3.0.4 Branch-and-Bound Based Exact Algorithm

To check the performance, proposed algorithms are com-
pared with bench mark solution based on Branch-and-
Bound based Exact algorithm [37]. The exact algorithm
gives the global optimum solution for efficient utilization of
cloud resources. Hence, we compared our proposed algo-
rithms with Exact algorithm, and details of the Exact algo-
rithm are as follows. Let ‘N be the node at level 1" of the
search tree along with ‘Ib” as lower bound and ‘ub” as upper
bound. The root node NO corresponds to an empty solution
and each node at level I > 1 corresponds to the partial solu-
tion. Initially at root level, all VMs are not allocated and
child node is created by comparing the MIPS of each VMs
along with resource demands. Further, the child node N is
created only if the following conditions are met.

e MIPS(VMs) < MIPS(task)

e Resources(VMs) < Resource Demand (task)

e Resources(VMs) # Resource Demand (task)

Hence, if the above conditions are met, then ‘Ib’ is com-
puted. Later, if it reaches ‘ub’, then child node is pruned
and the best fit VMs are chosen for the scheduling, resource
allocation and thus execution of tasks is carried out.

3.1 Proposed Model
In the proposed work, incoming tasks, i.e., {z1,z2, x5, ..., z,}
have to be scheduled on the virtual machines such as
{vmg, vmy, vma, . .., vmy}. Further, cloud resources deman-
ded by these requests are intelligently handled by proposed
algorithms. Hence our objectives are as follows.

Objective 1. Efficient utilization of VMs.

VM Type(i) = Number of tasks 3)

i.6. T1,To,T3,...,T, handled by VMs.
VM Type(i) refers to type of VM used in the experiment. We
have used five different types of VMs (small, Medium,
Large, X-Large, Extra Large) and more details are given in
Table 4 of Section 4.

DOMANAL ETAL.: AHYBRID BIO-INSPIRED ALGORITHM FOR SCHEDULING AND RESOURCE MANAGEMENT IN CLOUD ENVIRONMENT 7

TABLE 2
Notations and Definitions

bibid

Data Center

Notations Definitions Controller
VMType; Type of VM on which the task is being

executed

Load Bal

RD Number of resources demanded by tasks
R Resources (CPU and Memory)
t Time at which task enters the VM MPSO Algorithm
to Time at which task completes the execution
excess_resl First highest remaining resource from the v

cluster

excess_res2
Needed res[]

Second highest resource from the cluster
Number of resource demands from the
request

Remaining resources other than best
excess_resl & excess_res2

excess_res3|[]

Objective 2. Reducing the Average Response.

Average Response Time (AR_Time) is the total amount of
time taken for responding to a task and AR_Time is calcu-
lated by the following

n

Z VM Type(i)

r=1

AR Time =ty -1

VM Type(i)} 4)
1

r=

(R) Yo VM Type(i)
> (RD)

For resource allocation and management, the fitness
value (FV) is given by the Equation (5). Here, at each
iteration, we find the FV and then choose the suitable
VMs for assigning the task for the execution. If FV value
is feasible then it takes unused resources from the VMs
otherwise it assigns the resources from the cloud
resource pool as explained in the example. Table 2 gives
the notations and definitions used in the proposed
methodology.

FV = (5)

3.1.1 Scheduling of VMs Using MPSO Algorithm

Here, we use a MPSO technique for scheduling the VMs
against incoming tasks. Cloud receives tasks in a rapid rate
from the outside world, assigning and executing these tasks
is a challenging issue.

Number of incoming requests/tasks, i.e., {1, 22, z3,...,
z,} have to be scheduled on VMs, i.e., {vmg, vmy,vma, ...,
vmy}. Here, our proposed MPSO algorithm is deployed for
scheduling the tasks in a balanced way. The MPSO algo-
rithm plays an important role in assigning the incoming
tasks to the VMs as efficiently as possible. We experimented
this work for a private cloud which receives the tasks in a
batch of ten (can be extended) and these tasks are assigned
to the VMs. Clustering depends on the number of VMs
taken for experimentation. Algorithm 1 gives the complete
details of task scheduling by MPSO.

In every iteration, each cluster will identify the least
loaded VM referred to as local best (LB,) and the smallest
among these VMs referred to as global best. The next task is
allocated to the VM that is associated with GB. If the GB
remains the same in the subsequent iteration, then GB is
updated with second least LB, from the cluster list C,. The

Cluster

Check for LB, from
each Cluster

A

| cz= {c1,¢2,c3,...cz)

Update GB for

GB = Least of LB, [each iteration

A

GB remains same

A

Assign next request to
the VM which has GB

GB = next least LB,

A

Fig. 2. Flow diagram of MPSO based scheduler.

same process is continued until all the tasks are executed.
The time complexity of this algorithm is 0(n.z). Since z is a
constant hence the time complexity of MPSO algorithm will
be 0(n) in polynomial time. The flow diagram of the pro-
posed MPSO algorithm is shown in Fig. 2.

Algorithm 1. Task Scheduling Using MPSO

0: Initialisation: {vmg, vmq,vma, ..., vm;} count =0
Local Best (LLB.) =0
Global Best (GB) =0
say VMs = {vmg, vmy, vmo, ...
say Clusters, C. = {c, ¢z, c3, . .
Cluster size =k/C,
: for all incoming requests {1, z2, x3, ..., z,}
each cluster C, = least loaded VM
Assign each one of them as LB, from C',
end for
Assign GB = least L3,
: Next task allocated to VM which contains GB
: if (Next allocation == last used GB) then skip
goto step 2 for next least L3,
: else
goto step 6

7vmk}
-7Cz}

SO RPN DN

—_

3.1.2 Resource Allocation and Management Using
Modified Particle Swarm Optimization Algorithm

Tasks demand for dynamic resources at a rapid rate in the
cloud environment and satisfying these demands is a chal-
lenging task. VMs must have enough resources to execute
clients” tasks and providing these resources to VMs is man-
aged by the proposed MPSO. Let us assume that there is a
cloud resource pool (Res_pool) which provides the resour-
ces demanded by the tasks and it acts as a resource reposi-
tory. Each of the VMs has at least two minimum resources

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

(CPU and Memory) for executing a task. In the first itera-
tion, for all VMs, resources are given by cloud resource
pool and from the second iteration onwards it depends on
the resources as demanded by the tasks. Each of the VMs
will not use all the resources for execution of tasks and
these unused excess resources which remain with the VMs
can be utilized for the future tasks demands. Our proposed
MPSO algorithm plays an important role in assigning these
unused resources either from the VMs or from the cloud
resource pool.

Algorithm 2. Resource Allocation and Management
Using MPSO Algorithm

0: Initialisation: Res_pool, Needed_res, min_res = 2
sum_res =0
say VMs = {umg, vmy, vma, ..., vmy}
say Clusters, C. = {c1, ¢, ¢35, ..., ¢}
Cluster size = k/C.

1: for all incoming requests {x, z2, x3, ..., z,}
2: Res_demand «+ sum of resources from requests
3 Needed_res < resource demand for each request
4: for all available VMs
5: sum_res < sum_res + Res_demand
6: end for
7. if (iteration 1)
8: Res_pool < Res_pool - sum_res
9: endif
10: else
11: for all Cluster size, C. = {c, ¢2, 3, ..., ¢}
12: excess_res] « first best of ¢,
13: excess_res2 < second best of ¢,
14: end for
15: for all available VMs {vmy, vmy, vma, . .., vmy}
16: for all Cluster size, C, = {c1, 2, ¢3,. .., ¢}
17: if (excess_res1 == Needed_res|[])
18: VM executes using excess_resl
19: else
20: Res_pool < Res_pool — Needed _res|]
21: if (excess_res2 == Needed_res[])
22: VM executes using excess_res2
23: else
24: Res_pool < Res_pool — Needed res|]
25: end for
26: end for
27: Res_pool < Res_pool + remaining Needed _res]]
28: end for

For better efficiency, let us form a clusters {c;,cs,c3, ...,
c.} from the VMs {vmg, vm,vma, ..., vm;} which operate in
both sequential and parallel modes. For parallel mode exe-
cution, we need at least two clusters. For subsequent assign-
ment of resources to the VMs, let us take the best two excess
resources, i.e., excess_resl and excess_res2 (VMs which have
unused extra resources) from each cluster and check for
match with the next resource demands. If the next resource
demands match with the best values (unused resources),
then VMs start executing the task immediately, or else the
resources are taken from the resource pool for the execution.
After each iteration, if there are any unmatched/unused
resources then these resources can be released to the
resource pool. Once VMs complete the execution of a task,
then the minimum resources available with VMs can be

released to the cloud resource pool. The main focus is on
utilizing the resources from the VMs rather than lending
the resources from the resource pool. In doing so, we
dynamically exploit the resources and thus communication
overhead between the cloud resource pool and VM is
reduced significantly. Algorithm 2 describes the resource
allocation and management using the proposed MPSO
technique.

Usually in MPSO algorithm, the local and global best may
result in minimum or maximum values and further it is appli-
cation specific. In the Algorithm 1, we took only one best (min-
imum: load on VM) value from each cluster; but in the
Algorithm 2, our main objective is to choose the best (maxi-
mum) two values and thus resulting in more optimization if it
matches the subsequent resource demands from the tasks.

Even though Algorithm 2 improves the allocation of
resources intelligently but it has the following limitations

o excess_resl and excess_res2 may not match exactly with
subsequent future resource demands.

e Increase in the communications overhead between VMs
and cloud resource pool.

3.1.3 Resource Allocation and Management Using
Modified Cat Swarm Optimization Algorithm

The aforementioned limitations of Algorithm 2 can be
addressed by using our proposed MCSO algorithm (Algo-
rithm 3). Cats always remain calm and move slowly and
this behavior of cats is referred to as seeking mode. When
the presence of prey (resource match happens) is sensed,
then cats chase it with high speed, and this behavior is rep-
resented by the tracing mode. The tracing mode acts similar
to that of MPSO algorithm, but seeking mode awaits the
opportunity to capture a prey. The details of the Algorithm
3 are as follows.

In the proposed MCSO algorithm, we mainly concentrate
on seeking mode rather than tracing mode. In Algorithm 2,
it matches only with the excess_resl and excess_res2 values
from each cluster, but the remaining excessive resources
from each cluster are not considered for the assignment and
this issue is addressed in the proposed MCSO algorithm as
shown in Algorithm 3.

The seeking mode of MCSO passes through four differ-
ent types of memories. The excess resources available with
VMs other than excess_res1 and excess_res2 are stored in the
seeking memory pool. Using SMP, the cats await the oppor-
tunity in order to find the exact match with the future
resource demands from the tasks. If there is a match, then
status is stored in the seeking range of selected dimension.
If SRD has a new update, then VMs start executing the task
and this status is referred to as counts to dimension change.
Cats position is changing in every update of seeking mode
of MCSO and it is stored in self position consideration. The
tracing mode operation is applied to the outcome of seeking
mode and the procedure is same as that of Algorithm 2. The
limitations of Algorithm 2 can be overcome by seeking
mode of MCSO. There might be a situation in which all
remaining excessive resources (other than excess_res1 and
excess_res2) may match with future resource demands;
hence, time to lend the resources from the resource pool
may be reduced considerably.

DOMANAL ETAL.: AHYBRID BIO-INSPIRED ALGORITHM FOR SCHEDULING AND RESOURCE MANAGEMENT IN CLOUD ENVIRONMENT 9

Algorithm 3. Resource Allocation and Management
Using MCSO Algorithm (Seeking Mode only)

0: Initialisation: Res_pool, Needed_res, min_res = 2
sum_res =0
say VMs = {vmyg, vmy, vmy, ..., vmy}
say Clusters, C, = {ci, ¢, ¢3,..., ¢}
Cluster size = k/C,

1: for all incoming requests {z, z2, x3, ..., x,}
2: Res_demand « sum of resources from requests
3: Needed_res[] < resource demand for each request
4: for all available VMs
5: sum_res < sum_res + Res_demand
6: end for
7. if (iteration 1)
8: Res_pool < Res_pool — sum_res
9: endif
10: else
11: for all Cluster size, C., = {c1, c2,¢3, . .., ¢}
12: excess_res3[] < rest of first and second best from
13: each cluster
14: end for
15: for all available VMs {vmg, vmy, vma, . .., vmy}
16: for all Cluster size, C. = {c1, ¢, ¢3,. .., ¢}
17: while (size of(excess_res3[])
18: if (excess_res3[] == Needed_res[])
19: VM executes using excess_res3[]
20: else
21: Res_pool < Res_pool — Needed_res]
22: end while
23: end for
24: end for

25: Res_pool < Res_pool + remaining Needed_res[]
26: end for

Thus, the MCSO algorithm overcomes the aforemen-
tioned limitations of the MPSO algorithm. The seeking
mode matching ratio of MCSO is greater than the best two,
i.e., excess_resl and excess_res2 matching policies of the
MPSO and thus MCSO will improve the dynamic allocation
and management of cloud resources. However, the MCSO
algorithm has the following limitations.

o The values of excess_res3[] may not (rare case) match with
the subsequent resource demands.

e If the above condition is true, then the algorithm will be
slower and communication overhead between VM and
cloud resource pool will be increased.

3.1.4 Resource Allocation and Management Using
HYBRID (MPSO+MCSO) Algorithm

The limitations of the MPSO and MCSO algorithms can be
overcome by our proposed HYBRID (MPSO+MCSO) Bio-
Inspired algorithm which combines the merits of both MPSO
and MCSO techniques. Thus HYBRID approach provides a
better efficiency in terms of allocation of resources with
reduced total execution time. Further, communication over-
head between VMs and resource pool is marginally
decreased. In MPSO and MCSO, we compare only exact
matches of excess_res1, excess_res2 with the Needed_res[] from
future resource demands. In the worst-case, HYBRID
approach may not work efficiently and degrades the perfor-
mance of the resource allocation and thus the system will

respond with high delay. To overcome this situation, we con-
sider the excess_res3[] which contains the remaining resources
other than excess_res1 and excess_res2. The complete flow of
HYBRID (MPSO+MCSO) technique is given in Algorithm 4.

Algorithm 4. Resource Allocation and Management
Using HYBRID (MPSO+MCSO) Bio-Inspired Algorithm

0: Initialisation: Res_pool, Needed_res, min_res =2
sum_res =0
say VMs = {vmg, vmy, vma, ..., vmy}
say Clusters, C. = {c1, ¢, ¢3, ..., ¢}
Cluster size = k/C,

1: for all incoming requests {x1, z2, 3, ..., 2}
2: Res_demand « sum of resources from requests
3: Needed_res < resource demand for each request
4: for all available VMs
5: sum_res < sum_res + Res_demand
6: end for
7 if (iteration 1)
8: Res_pool < Res_pool — sum_res
9: endif
10: else
11: for all Cluster size, C., = {cy, ¢z, c3,. .., ¢}
12: excess_res] « first best of c,
13: excess_res2 «+ second best of ¢,
14: excess_res3|[] « rest of first and second best of c.
15: end for
16: for all available VMs {vmy, vmy, vma, . .., vmy}
17: for all Cluster size, C. = {ci, ¢z, c3,. .., ¢}
18: if (excess_res1 > Needed res[])
19: VM executes using excess_res1
20: else
21: Res_pool < Res_pool — Needed res][]
22: if (excess_res2 > Needed_res[])
23: VM executes using excess_res2
24: else
25: Res_pool < Res_pool — Needed_res|[]
26: while (size 0f(excess_res3[]))
27: if (excess_res3[] > Needed _res[])
28: VM executes using excess_res3[]
29: else
30: Res_pool < Res_pool — Needed res][]
31: end while
32: end for
33: end for

34: Res_pool < Res_pool + remaining Needed_res[]
35: end for

In the proposed HYBRID approach, we modify the con-
dition by checking the upper bounds of excess resl,
excess_res2 and excess_res3[] of Algorithms 2 and 3. In doing
so, we can decide how many resources from excess_resl,
excess_res2 and excess_res3[] should be given to the forth-
coming task and the remaining (unmatched) extra resources
can be returned to cloud Res_pool. Thus, our proposed
HYBRID algorithm outperforms MPSO and MCSO algo-
rithms when considered individually. Algorithm 4 behaves
intelligently from line numbers 12 to 30 as it combines the
features of both Algorithms 2 and 3 with optimum modifi-
cations. We need to apply both approaches simultaneously,
so that the line numbers 18-25 and 26-29 execute in parallel
using Python threads during the execution (applying both

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

Incoming Data Center

Requests

Controller

[Timvsmer T
v
[T

Choose LB from

I HYBRID I

v
Choose LB from
each Cluster

I

Match for
GBs

each Cluster

Assign From
Res_Pool

Match for
GBand
others

Match for
other than
GBs

Assign res
from VM
buffer

Assign res
from VM
buffer

Assign res
from VM

buffer

Fig. 3. Overall flow diagram of proposed algorithms.

MPSO and MCSO). Hence, the matching possibility of
excess_res3[] with future resource demands is more than
that of MPSO and MCSO algorithms when taken separately.
The results and analysis of all proposed algorithms are dis-

cussed in Section 4. Fig. 3 gives the overall flow diagram of
MPSO, MCSO and HYBRID (MPSO+MCSO) approaches.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

The proposed work is experimented on a simulator
which gives the real-time scenario of cloud environment.
The complete simulation scenario is written in Python
language and here after it is named as Python Simulator,
in short, PySim. Fig. 4 shows the block diagram of
PySim, which is used for experimenting the proposed
Bio-Inspired algorithms. The experimental setup consists

Client

Elastic Load
Balancer

Management Console

i

VM Instances

Pricing Model

T

VM Instances

»$a

Heterogeneous Systems

SERVER 1 SERVER 2

e e e

Fig. 4. Block diagram of PySim.

TABLE 3
Configuration Details of PySim
Machine GHz RAM(GB) Storage (GB)
Client Machine 2.80 4 100
Load Balancer 3.40 8 100
Server 1 3.40 16 200
Server 2 3.40 16 200

of four physical machines which are interconnected with
different configurations among them.

The configuration details of customized simulation setup
are given in Table 3 and it consists of four different
machines in which one machine act as a task sender (Client
Machine), one machine acts as a load balancer and other
two machines act as servers with several VMs which exe-
cute the incoming tasks. Here, the task refers to executing a
job which demands several resources. We considered CPU
and Memory as two types of resources which are needed
for executing a task. Resources are given by the cloud
resource pool which has many resources. The systems used
in the customized setup are with different system configura-
tions such as the load balancer with i7 processor of 3.40 GHz
clock speed and 8 GB RAM; the server machines with i7
processor of 3.40 GHz clock speed and 16 GB RAM and
other client machine which generates tasks with a dual core
processor of 2.80 GHz clock speed and 4 GB of RAM.

For resource allocation and management strategy, the
tasks are coming from the clients’” side with the same inter
arrival time. We considered a queue size of ten tasks and
each task demands cloud resources in random fashion. Allo-
cation and management of these resources are managed by a
load balancer based on our proposed algorithms. For experi-
mentation purpose, we assumed CPU and Memory as man-
datory resources for execution and each of the VMs needs at
least two resources (i.e., CPU and Memory) for execution of
a task. In the first iteration, resources are taken from the
cloud resource pool which acts as global hub of resources.

Experimentation is carried out with different sets of tasks
and VMs. The performance evaluation is carried out in
terms of efficient utilization of available virtual machines,
average response time and optimum usage of cloud resour-
ces. If the resources are not in use, then these unused resour-
ces are given back to the cloud resource pool. We consider
Round Trip Time (RTT) of 1 second when the VMs take the
resources from cloud resource pool. Clusters are made
depending on the number of VMs and each of the VMs has
its own buffer to store the excess resources.

In this work, the parameters such as execution time,
response time and reliability are considered for analysis.
Here, the execution time refers to the time spent by the task
using the cloud resources; response time refers to the time
when the task becomes active till it completes the execution.
Reliability refers to the consistency of the proposed algo-
rithms with different scenarios during the experimentation.

For scheduling of VMs, we considered the applications
like Facebook users, Twitter users, Internet users etc. For
experimentation purpose, we used the internet users from
six different continents of the world (six different geographic
locations) during peak and non-peak hours [38], [39]. Physi-
cal machine has a capacity to host several virtual machines

DOMANAL ETAL.: A HYBRID BIO-INSPIRED ALGORITHM FOR SCHEDULING AND RESOURCE MANAGEMENT IN CLOUD ENVIRONMENT 11

TABLE 4
Configurations of VMs

VM Type MIPS RAM (GB) Storage (GB)
Small 500 0.5 20
Medium 1,000 1 30
Large 1 1,500 2 40
X. Large 2,000 3 50
Extra Large 2,500 4 50

TABLE 5

Workload Setup for Scheduling

User Base Region Online Online

Users during Users during

peak hours non-peak hours

North 0 135,000 13,500
America
South 1 125,000 12,500
America
Europe 2 255,000 25,500
Asia 3 535,000 53,500
Africa 4 30,000 3,000
Oceania 5 10,000 1,000

which are needed for an application. In this regard, we used
five different types of VMs and Table 4 shows the configura-
tion details of VMs in terms of Million Instructions Per Sec-
ond (MIPS), Random Access Memory (RAM) and Storage in
Gigabyte (GB). Table 5 shows the workload setup used for
conducting the experiment for scheduling.

4.2 Experimental Results and Analysis

Results of our proposed Bio-Inspired algorithms are ana-
lyzed with respect to efficient utilization of VMs, Average
Response Time during Scheduling, Resource Allocation and
optimum usage of cloud resources. Further, the proposed
algorithms are compared with Branch-and-Bound based
Exact Algorithm. We also carried out statistical analysis for
null hypothesis using T-Test. Further, the time complexity
of the proposed HYBRID algorithm is also analysed.

4.2.1 Efficient Load Balancing of VMs by Scheduling

As explained in Section 3, we use the proposed MPSO algo-
rithm for scheduling the tasks to the VMs. Hypothetical
examples like web application tasks from different parts of
the continents are considered as input and details are given
in Table 5. Table 6 shows the number of tasks handled by
the VMs for different algorithms.

From Table 6, we can observe that both Round Robin and
proposed MPSO algorithms efficiently schedule the tasks as
compared to Throttled algorithm. But, if we compare Round
Robin and proposed MPSO algorithms, the results are same,
but in Round Robin, we do not check the state of the VM
(BUSY/AVAILABLE) which leads to the queuing of the
incoming task on the server. The proposed MPSO algorithm
gives better results by checking the state of the VM and it
has cluster based comparison of allocating tasks to a VM
and thus avoids the server queuing. In Ant Colony Optimi-
zation, the tasks can be assigned to VMs which have less
pheromone content. In Exact algorithm, the scheduling of

TABLE 6
Utilization of VMs
SI. No. Throttled Round ACO Exact Proposed
Robin Algorithm MPSO
VM1 1,182 254 356 253 254
VM2 76 254 289 254 254
VM3 8 253 389 254 254
VM4 2 253 180 254 253
VM5 0 254 54 253 253
TABLE 7
Average Response Time of Algorithms

Algorithms Average Response Time

Throttled 365.52 ms

Round Robin 364.85 ms

ACO 362.67 ms

Exact Algorithm 365.87 ms

Proposed MPSO 360.11 ms

ALGORITHMS
—— Throttled —%¥— RR ACO
Exact —#—— Proposed MPSO

100

90 %f’_*_’—-*—\f

50 L\,’/v—/*\vk/!
;\; 70 X [
‘g 60
o] 50 4+
2 404
Z 304
20 +
10 +
0 : : :
VM1 VM2 VM3 VM4 VM5

Different Types of VMs

Fig. 5. Average utilization of VMs.

the tasks is similar to that of proposed MPSO but it needs
more Average Response time. The same steps are repeated
with different number of clusters when there are more
VMs. For the aforementioned experiment, we used two
clusters with equal number of VMs on each cluster and the
Average Response time in milli seconds (ms) for the same
setup is given in Table 7.

It is clearly observed from the Tables 6 and 7 that the pro-
posed MPSO algorithm is not only efficient in balancing the
load on the virtual machines but also achieves better Aver-
age Response time. The experiment is repeated for different
sets of virtual machines, tasks and the obtained results are
consistent.

Next, we analysed the utilization of VMs with different
combinations 1,000, 2,000 and 3,000 tasks. Fig. 5 shows the
utilization of VMs using different algorithms used in the
experiment. It is observed from Fig. 5 that Throttled and
ACO algorithms are not consistent in utilizing the VMs
when compared to other algorithms. Even though RR and
Exact Algorithms utilize the VMs efficiently but our pro-
posed MPSO algorithm is more efficient in utilizing the

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

TASKS = 60, Sequentail TASKS = 60, Parallel
—&— 10VMs —¥%— 20 VMs —&— 10VMs —¥%— 20 VMs
100 60
90 1-
80 -/.\-/-\-/. 1
70 I 201
~ 601 —~
))
o 504 o 304
£ E
= 40 v—/v\v,//"\'/" = .
301 20 |
20 4 10 -
104
0 1 1 1 1 0 1 1 1 1
MPSO RR MCSO ACO HYBRID EXACT MPSO RR MCSO ACO HYBRID EXACT
Algorithms Algorithms
(a) Sequentail Analysis with 60 Tasks (a) Parallel Analysis with 60 Tasks
TASKS = 300, Sequentail TASKS = 300, Parallel
—&— 10VMs —¥%— 50 VMs —=&— 10VMs —¥— 50 VMs
500
240 I
450 4 T
210 +
400 ;/-\-/.\r//. 1/-\-/.\-/—/.
350 1 180 -
= 300+ z PO
[0} (V] T
£ 250 + £ 120 T
= 2004 F 9T
150 4 0T
100 - - . .
"’/#'\F/!\F/”" 30 4+
50 + T
1 1 1 1 0+ 1 1 1 1
MPSO RR MCSO ACO HYBRID EXACT MPSO RR MCSO ACO HYBRID EXACT
Algorithms Algorithms

(b) Sequentail Analysis with 300 Tasks

Fig. 6. Sequential analysis.

VMs and Average Response time. If MCSO algorithm uses
two modes (Seeking and Tracing mode) for scheduling then
Seeking mode takes more time when compared to that of
the tracing mode. Hence, we have not considered proposed
MCSO for scheduling. Similarly our proposed HYBRID
(MPSO+MCSO) is also not considered for scheduling since
it combines both MPSO and MCSO. Next, we will analyze
the resource allocation and management based on our pro-
posed algorithms (MPSO, MCSO and HYBRID) and the
details are given in Section 4.2.2.

4.2.2 Efficient Resource Allocation and Management

VMs facilitate the resources demanded by the tasks which are
managed by the proposed techniques. As explained in
Section 4, Incoming tasks have the same inter-arrival time
and arrive in a batch of ten periodically and demand for dif-
ferent cloud resources. Proposed algorithms are experi-
mented with different number of VMs and tasks. In the first
iteration, VMs take resources from cloud resource pool and
from the second iteration onwards the proposed algorithms
such as MPSO, MCSO and HYBRID (MPSO+MCSO) allocate
the resources either from cloud resource pool or from the
unused resources of VMs. We experimented the proposed

(b) Parallel Analysis with 300 Tasks

Fig. 7. Parallel analysis.

algorithms with two clusters having equal number of VMs.
Once the tasks are served by the VMs, then the excess resour-
ces are stored in the individual buffers of VMs. Further, these
resources are used for serving the upcoming task demands.
As discussed earlier, initially VMs start executing the tasks by
lending the resources from the cloud resource pool. Experi-
ments are conducted for evaluating the Average Response
Time in both sequential and parallel modes; and the corre-
sponding results are shown in Figs. 6 and 7, respectively.

In Fig. 6a, we used 10 and 20 VMs in two clusters with 60
incoming tasks. In Fig. 6b we used 10 and 50 VMs in two
clusters with 300 incoming tasks. In MPSO, for the best
match (GB) case approach, the two best VMs from each
cluster are taken for resources matching with the upcoming
demands. For example, excess_resl and excess_res2 from
each cluster are compared with resource demands. Further,
the reamining VMs will follow the MCSO approach. For
example, excess_res3[] from each cluster are compared with
the upcoming demands.

Further, the experiment is carried out in parallel approach
by using threads (depend on the number of clusters) which
are executed asymmetrically. Here, threads play a vital role
in handling the resources effectively. Each cluster has several
threads with which the execution speed can be improved.

DOMANAL ETAL.: AHYBRID BIO-INSPIRED ALGORITHM FOR SCHEDULING AND RESOURCE MANAGEMENT IN CLOUD ENVIRONMENT 13

ALGORITHMS

—#— RR —%— ACO —@— MPSO
—X— HYBRID —&A— EXACT

MCSO

100

90

80

70

Time (s)

[
60

50

40 ¥

T
Best-Case Avearge-Case Worst-Case

Fig. 8. Execution time analysis of proposed algorithms.

In Fig. 7a, we used 10 and 20 VMs in two clusters with 60
incoming tasks and in Fig. 7b, we used 10 and 50 VMs in two
clusters with 300 incoming tasks. It is clearly observerd from
Fig. 7 that the parallel mode execution will reduce the aver-
age response time as compared with the sequential mode.

Figs. 6 and 7 illustrate that MPSO, MCSO and HYBRID
(MPSO+MCSQO) algorithms give feasible solutions with
respect to average response time when compared with
branch-and-bound based Exact Algorithm and further our
HYBRID algorithm takes less time when compared with all
other algorithms.

Fig. 8 shows the execution time analysis for different
cases (Best, Average and Worst) of all the proposed algo-
rithms. We experimented with different combinations of
tasks and varied numbers of VMs using the proposed and
state-of-the-art benchmark algorithms. It is observerd from
Fig. 8 that, the worst-case execution time for all the pro-
posed algorithms is a rare case in which the matching
never happens with excess resources present in the buffer
with the future resource demands. Since RR takes the
resources from the cloud resource pool for most of the
time, hence the execution time of RR will remain the same
for all the cases.

In ACO, the resources match with the VMs which have
highest pheromone content. Since there will not be any per-
fect resource match for most of the time due to high phero-
mone evaporation rate and hence ACO takes same
execution time for all cases. The Exact algorithm tries to
match with all possible combinations and then allocates
resources with possible solution. Hence the Exact algorithm
also takes same execution time for all cases.

The worst-case execution time of MPSO, MCSO and
HYBRID (MPSO+MCSO) approaches is continuously incr-
easing because of the delay in the mismatch comparison of
resources from the VMs buffer to the future resources
demand. In the MPSO, the best-case is considered when the
best two values from each cluster match with the upcoming
resource demands. In average-case, resources match is vary-
ing so that MPSO can work efficiently when compared to
RR and ACO. In MCSO, the best-case is considered when
rest of the values (other than excess_resl and excess_res2) are
matched with excess resources from VMs buffer to
the future resource demands. Hence, more resources got

TASKS = 1000
[Cloud Resource Pool [l Reused Resources
100
90 +
& 80+
® 70
N
= 607
= 50
]
O 40
3 30
3
2 20+
10
0 —
MPSO MCSO HYBRID
(a) Resource Utilization with 1000 Tasks
TASKS = 2000
[0 Cloud Resource Pool [l Reused Resources
100
90 +
S 80+
® 70
N
= 60
jun] 50 -
]
g 40
3 30
3
9 20
10
0 T
MPSO MCSO HYBRID EXACT
(b) Resource Utilization with 2000 Tasks
TASKS = 3000
[Cloud Resource Pool [l Reused Resources
100
90 +
§ 80+
©® 70
N
S 60
] 50 |
]
O 40|
3 30
3
9 20
10
0 T
MPSO MCSO HYBRID

(c) Resource Utilization with 3000 Tasks

Fig. 9. Average resource utilization.

matched when compared to MPSO and thus MCSO outper-
forms both MPSO, ACO and RR.

Further, HYBRID approach takes less execution time in
both best and average-cases. And if all the resource map-
pings are true with HYBRID approach then it outperforms
both MPSO and MCSO when considered separately. Hence,
HYBRID (MPSO+MCSO) approach is more efficient in
terms of resource allocation and management in the cloud
environment.

As mentioned earlier, the resources are taken either from
the cloud resource pool or from the unused resources of the
respective VMs from the clusters. Accordingly, proposed
algorithms are analyzed with respect to resource utilization
factor. Figs. 9a, 9b, and 9c show the resource utilization
with 1,000, 2,000 and 3,000 tasks respectively. In all three
cases, RR takes maximum resources from the cloud resource

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 1, JANUARY/FEBRUARY 2020

TABLE 8
Results of T-TEST Analysis
Algorithms P-values
RR-HYBRID 0.005
ACO-HYBRID 0.0035
MPSO-HYBRID 0.0015
MCSO-HYBRID 0.001
EXACT-HYBRID 0.0045

pool. ACO takes almost equal amount of resources from
both cloud resource pool and unused resources from VMs.
Our proposed MCSO provides better resource utilization as
compared to proposed MPSO. On the other hand, the pro-
posed HYBRID (MPSO+MCSO) algorithm is more efficient
in utilising the unused resources from clusters rather than
taking it from the cloud resource pool. All the proposed
algorithms are compared with bench mark Exact algorithm.
It is clearly observed from Fig. 9 that our proposed HYBRID
(MPSO+MCSO) algorithm achieves high resource utiliza-
tion efficiency when compared with all other state-of-the-
art methods considered for performance evaluation.

4.3 Statistical Hypothesis Analysis

In the statistical hypothesis, two entities are evaluated about
a given workload or population so that we can determine
the best supported entity for different cases. Hence, we
made statistical analysis by evaluating the proposed
HYBRID (MPSO+MCSO) algorithm with state-of-the-art
benchmark algorithms. For statistical hypothesis, we used
T-Test analysis for resource allocation and management.
The results of T-Test analysis are shown in Table 8. For the
null hypothesis analysis, Threshold value of P or Signifi-
cance Level of « are considered. In this experiment, we con-
sidered « = 0.05 which is the standard cutoff for null
hypothesis. The P-value of HYBRID (MPSO+MCSO) algo-
rithm in comparison with other algorithms is less than « =
0.05 and thus it rejects the null-hypothesis. Hence, our pro-
posed HYBRID (MPSO+MCSO) algorithm is more efficient
when compared to all other algorithms considered for
Resource Allocation and Management.

4.4 Time Complexity Analysis

Our proposed HYBRID algorithm is based on MPSO and
MCSO techniques. In this experiment, n number of tasks
which are scheduled on heterogeneous VMs hosted on C.
clusters. Therefore, the time complexity of our proposed
HYBRID (MPSO+MCSO) algorithm is [O(number of tasks)
% O(number of clusters) *+ O(number of m iterations)] =
[OMPSO) + OMCSO)], ie., [O(m) * O(C.) * O(m)] *
[O(wm,,C.) + O(vmy,C.)]. Tt is reduced to O(n * C. * m *
vmy,). Finally, the time complexity is O(n * vmy), which is
O(n) < O(n xvmy) < O(n?) since C, (clusters are fixed) and
m are constants.

5 CONCLUSIONS AND FUTURE WORK

In this work, we proposed three Bio-Inspired (MPSO,
MCSO and HYBRID) algorithms for efficient scheduling
and resource management in a cloud environment. The
MPSO algorithm is more efficient in scheduling the tasks

when compared to other algorithms. On the other hand, our
proposed HYBRID (MPSO+MCSO) approach is more effi-
cient in allocating the resources to the VMs when compared
to other algorithms. Our proposed HYBRID algorithm not
only reduces the average response time but also increases
the resource utilization by approximately 12 percent when
compared to other state-of-the-art benchmark algorithms.
In future, our focus will be on more effective dynamic
scheduling in which tasks will be entering the cloud with
different inter arrival times.

REFERENCES

[1] C.-W. Tsai, W.-C. Huang, M.-H. Chiang, M.-C. Chiang, and C.-S.
Yang, “A hyper-heuristic scheduling algorithm for cloud,” IEEE
Trans. Cloud Comput., vol. 2, no. 2, pp. 236-250, Apr.—Jun. 2014.

[2] Y. Wang and W. Shi, “Budget-driven scheduling algorithms for
batches of MapReduce jobs in heterogeneous clouds,” IEEE Trans.
Cloud Comput., vol. 2, no. 3, pp. 306-319, Jul.-Sep. 2014.

[3] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. Ramak-
rishnan, and J. E. Van der Merwe, “Resource management with
hoses: Point-to-cloud services for virtual private networks,” IEEE/
ACM Trans. Netw., vol. 10, no. 5, pp. 679-692, Oct. 2002.

[4] S.Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in Proc.
IEEE INFOCOM, 2010, pp. 1-9.

[5] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1107-1117, Jun. 2013.

[6] B.Guan,]. Wu, Y. Wang, and S. U. Khan, “CIVSched: A communi-
cation-aware inter-VM scheduling technique for decreased net-
work latency between co-located VMs,” IEEE Trans. Cloud
Comput., vol. 2, no. 3, pp. 320-332, Jul.-Sep. 2014.

[7 Q. Zhang, M. F. Zhani, R. Boutaba, and]. L. Hellerstein, “Dynamic
heterogeneity-aware resource provisioning in the cloud,” IEEE
Trans. Cloud Comput., vol. 2, no. 1, pp. 14-28, Jan.—Mar. 2014.

[8] A.]J. Younge, G. Von Laszewski, L. Wang, S. Lopez-Alarcon, and
W. Carithers, “Efficient resource management for cloud computing
environments,” in Proc. Int. Green Comput. Conf., 2010, pp. 357-364.

[91 M. Polverini, A. Cianfrani, S. Ren, and A. V. Vasilakos, “Thermal-
aware scheduling of batch jobs in geographically distributed data
centers,” IEEE Trans. Cloud Comput., vol. 2, no. 1, pp. 71-84, Jan.—
Mar. 2014.

[10] K. Al Nuaimi, N. Mohamed, M. Al Nuaimi, and J. Al-Jaroodi,
“A survey of load balancing in cloud computing: Challenges and
algorithms,” in Proc. 2nd Symp. Netw. Cloud Comput. Appl., 2012,
pp. 137-142. }

[11] B. Radojevi¢ and M. Zagar, “Analysis of issues with load balanc-
ing algorithms in hosted (cloud) environments,” in Proc. 34th Int.
Convention MIPRO, 2011, pp. 416-420.

[12] X.Zuo, G. Zhang, and W. Tan, “Self-adaptive learning PSO-based
deadline constrained task scheduling for hybrid laaS cloud,” IEEE
Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 564-573, Apr. 2014.

[13] K. Nishant, et al., “Load balancing of nodes in cloud using ant
colony optimization,” in Proc. UKSim 14th Int. Conf. Comput.
Model. Simul., 2012, pp. 3-8.

[14] R. Shojaee, H. R. Faragardi, S. Alaee, and N. Yazdani, “A new cat
swarm optimization based algorithm for reliability-oriented task
allocation in distributed systems,” in Proc. 6th Int. Symp. Telecom-
mun., 2012, pp. 861-866.

[15] P. V. Krishna, “Honey bee behavior inspired load balancing of
tasks in cloud computing environments,” Appl. Soft Comput.,
vol. 13, no. 5, pp. 2292-2303, 2013.

[16] T.-Y. Wu, W.-T. Lee, Y.-S. Lin, Y.-S. Lin, H.-L. Chan, and
J.-5. Huang, “Dynamic load balancing mechanism based on cloud
storage,” in Proc. Comput. Commun. Appl. Conf., 2012, pp. 102-106.

[17] R.Jeyarani, N. Nagaveni, and R. V. Ram, “Design and implemen-
tation of adaptive power-aware virtual machine provisioner
(APA-VMP) using swarm intelligence,” Future Generation Comput.
Syst., vol. 28, no. 5, pp. 811-821, 2012.

[18] A. Kundu and C. Ji, “Swarm intelligence in cloud environment,”
in Proc. 3rd Int. Conf. Swarm Intell., 2012, pp. 37-44.

[19] Z.Liu and X. Wang, “A PSO-based algorithm for load balancing
in virtual machines of cloud computing environment,” in Proc.
3rd Int. Conf. Swarm Intell., 2012, pp. 142-147.

DOMANAL ETAL.: AHYBRID BIO-INSPIRED ALGORITHM FOR SCHEDULING AND RESOURCE MANAGEMENT IN CLOUD ENVIRONMENT 15

[20] S. Bilgaiyan, S. Sagnika, and M. Das, “Workflow scheduling in
cloud computing environment using cat swarm optimization,” in
Proc. IEEE Int. Advance Comput. Conf., 2014, pp. 680-685.

H. Goudarzi, M. Ghasemazar, and M. Pedram, “SLA-based opti-
mization of power and migration cost in cloud computing,” in
Proc. 12th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2012,
pp- 172-179.

S. G. Domanal and G. R. M. Reddy, “Load balancing in cloud
computingusing modified throttled algorithm,” in Proc. IEEE
Int. Conf. Cloud Comput. Emerging Markets, 2013, pp. 1-5.

S. Domanal and G. Reddy, “Optimal load balancing in cloud com-
puting by efficient utilization of virtual machines,” in Proc. 6th Int.
Conf. Commun. Syst. Netw., 2014, pp. 1-4.

G. Gongalves, et al, “CloudML: An integrated language for
resource, service and request description for D-clouds,” in Proc.
IEEE 3rd Int. Conf. Cloud Comput. Technol. Sci., 2011, pp. 399-406.
W. Zhou, S. Yang, J. Fang, X. Niu, and H. Song, “VMCTune:
A load balancing scheme for virtual machine cluster using
dynamic resource allocation,” in Proc. 9th Int. Conf. Grid Cloud
Comput., 2010, pp. 81-86.

D. Huang, C. Zhu, H. Zhang, and X. Liu, “Resource intensity
aware job scheduling in a distributed cloud,” China Commun.,
vol. 11, no. 14, pp. 175-184.

X.-l. Zheng and L. Wang, “A Pareto based fruit fly optimization
algorithm for task scheduling and resource allocation in cloud
computing environment,” in Proc. IEEE Congr. Evol. Comput.,
2016, pp. 3393-3400.

M. Rasti-Barzoki and S. R. Hejazi, “Pseudo-polynomial dynamic
programming for an integrated due date assignment, resource
allocation, production, and distribution scheduling model in sup-
ply chain scheduling,” Appl. Math. Model., vol. 39, no. 12,
pp- 3280-3289, 2015.

M. Akbari and H. Rashidi, “A multi-objectives scheduling algo-
rithm based on cuckoo optimization for task allocation problem at
compile time in heterogeneous systems,” Expert Syst. Appl.,
vol. 60, pp. 234248, 2016.

P. S. Pillai and S. Rao, “Resource allocation in cloud computing
using the uncertainty principle of game theory,” IEEE Syst. |.,
vol. 10, no. 2, pp. 637-648, Jun. 2016.

X. Xu, W. Dou, X. Zhang, and J. Chen, “EnReal: An energy-aware
resource allocation method for scientific workflow executions in
cloud environment,” IEEE Trans. Cloud Comput., vol. 4, no. 2,
pp- 166-179, Apr.—Jun. 2016.

S.-C. Wang, K.-Q. Yan, W.-P. Liao, and S.-S. Wang, “Towards a
load balancing in a three-level cloud computing network,” in
Proc. 3rd IEEE Int. Conf. Comput. Sci. Inf. Technol., 2010, vol. 1,
pp- 108-113.

H. Xu and B. Li, “Anchor: A versatile and efficient framework for
resource management in the cloud,” IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 6, pp. 1066-1076, Jun. 2013.

R. C. Eberhart and]. Kennedy, “A new optimizer using particle
swarm theory,” in Proc. 6th Int. Symp. Micro Mach. Human Sci.,
1995, vol. 1, pp. 39-43.

J. Kennedy and R. C. Eberhart, “A discrete binary version of the
particle swarm algorithm,” in Proc. IEEE Int. Conf. Syst. Man
Cybern. Comput. Cybern. Simul., 1997, vol. 5, pp. 4104-4108.

A. Bouzidi and M. E. Riffi, “Cat swarm optimization to solve job
shop scheduling problem,” in Proc. 3rd IEEE Int. Collog. Inf. Sci.
Technol., 2014, pp. 202-205.

S. Martello and P. Toth, Knapsack Problems: Algorithms and Com-
puter Implementations. Hoboken, NJ, USA: Wiley, 1990.

I. W. Stat, “Internet users,” [Online]. Available: http://www.
internetworldstats.com/stats.htm

S. Bakers, “Blog,” [Online]. Available: http:/ /www.socialbakers.
com/blog/878-new-number-1-asia-became-the-largest-continent-
on-facebook

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371
[38]

[39]

Shridhar G. Domanal received the BE and
MTech degrees from the Visveswaraya Techno-
logical University, Belgaum, Karnataka, India, in
2009 and 2011, respectively. Currently, he is work-
ing toward the full-time PhD in the National Insti-
tute of Technology Karnataka, Surathkal,
Mangalore, India. He focuses on scheduling and
resource managementin cloud computing. He is a
student member of the IEEE and has nine Interna-
tional Conference publications so far.

Ram Mohana Reddy Guddeti received the
BTech degree from S.V. University, Tirupati,
Andhra Pradesh, India, in 1987, the MTech
degree from the Indian Institute of Technology,
Khargpur, India, in 1993, and the PhD degree
from the University of Edinburgh, United King-
dom, in 2005. Currently, he is the professor and
head in the Department of Information Technol-
ogy, National Institute of Technology Karnataka
Surathkal, Mangalore, India. His research inter-
ests include affective computing, big data and
cognitive analytics, bio-inspired cloud and green computing, Internet of
Things and smart sensor networks, social multimedia, and social net-
work analysis. He has more than 160 research publications in reputed
and peer reviewed International Journals, Conference Proceedings, and
Book Chapters. He is a senior member of the IEEE and the ACM, a ILife
fellow of the IETE (India), and a life Member of ISTE (India)

Rajkumar Buyya a professor of computer sci-
ence and software engineering, future fellow of
the Australian Research Council, and director of
the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, University of Melbourne,
Australia. He is also serving as the founding CEO
of Manjrasoft, a spin-off company of the Univer-
sity, commercializing its innovations in Cloud
Computing. He has authored more than 500 pub-
lications and four text books including “Mastering
Cloud Computing” published by McGraw Hill,
China Machine Press, and Morgan Kaufmann for Indian, Chinese and
international markets respectively. He also edited several books includ-
ing “Cloud Computing: Principles and Paradigms” (Wiley Press, USA,
Feb 2011). He is one of the highly cited authors in computer science and
software engineering worldwide (h-index=97, g-index=202, 44,100+ cita-
tions). Microsoft Academic Search Index ranked, he as the world’s top
author in distributed and parallel computing between 2007 and 2015. “A
Scientometric Analysis of Cloud Computing Literature” by German sci-
entists ranked, he as the World’s Top-Cited (#1) Author and the World’s
Most-Productive (#1) Author in Cloud Computing Software technologies
for Grid and Cloud computing developed under His leadership have
gained rapid acceptance and are in use at several academic institutions
and commercial enterprises in 40 countries around the world. He has led
the establishment and development of key community activities, includ-
ing serving as foundation chair of the IEEE Technical Committee on
Scalable Computing and five IEEE/ACM conferences. These contribu-
tions and international research leadership of, he are recognized through
the award of “2009 IEEE TCSC Medal for Excellence in Scalable
Computing” from the IEEE Computer Society TCSC. Manjrasoft’s Aneka
Cloud technology developed under his leadership has received “2010
Frost & Sullivan New Product Innovation Award” and recently Manjrasoft
has been recognised as one of the Top 20 Cloud Computing companies
by the Silicon Review Magazine. He served as the foundation editor-in-
chief of the IEEE Transactions on Cloud Computing. He is currently
serving as co-editor-in-chief of the Journal of Software: Practice and
Experience, which was established more than 40 years ago. He is a fel-
low of the IEEE. For further information on him, please visit his cyber-
home: www.buyya.com.

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://www.socialbakers.com/blog/878-new-number-1-asia-became-the-largest-continent-on-facebook
http://www.socialbakers.com/blog/878-new-number-1-asia-became-the-largest-continent-on-facebook
http://www.socialbakers.com/blog/878-new-number-1-asia-became-the-largest-continent-on-facebook
www.buyya.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

