
1

Brownout Approach for Adaptive Management of Resources
and Applications in Cloud Computing Systems: A Taxonomy
and Future Directions

MINXIAN XU AND RAJKUMAR BUYYA, The University of Melbourne, Australia

Cloud computing has been regarded as an emerging approach to provisioning resources and managing appli-
cations. It provides attractive features, such as on-demand model, scalability enhancement, and management
costs reduction. However, cloud computing systems continue to face problems such as hardware failures,
overloads caused by unexpected workloads, or the waste of energy due to inefficient resource utilization,
which all result to resource shortages and application issues such as delays or saturated eventually. A paradigm
named brownout has been applied to handle these issues by adaptively activating or deactivating optional parts
of applications or services to manage resource usage in cloud computing system. Brownout has successfully
shown it can avoid overloads due to changes in the workload and achieve better load balancing and energy
saving effects. This paper proposes a taxonomy of brownout approach for managing resources and applications
adaptively in cloud computing systems and carries out a comprehensive survey. It identifies open challenges
and offers future research directions.

CCS Concepts: • General Literature; • Distributed Parallel and Cluster Computing; • System and
Software; • Management of Cloud Computing Systems;

Additional Key Words and Phrases: Cloud Computing, Adaptive Management, Brownout, Quality of Service,
Optional Services

ACM Reference Format:
Minxian Xu and Rajkumar Buyya. 2018. Brownout Approach for Adaptive Management of Resources and
Applications in Cloud Computing Systems: A Taxonomy and Future Directions. ACM Comput. Surv. 1, 1,
Article 1 (April 2018), 27 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Cloud computing has been regarded as one of the most dominant technologies that promote
the future economy [36]. Traditionally, the service providers used to establish their own data
centers with a huge investment to maintain the applications and provide services to users. With
cloud computing, resources can be leased by application providers and the applications can be
deployed without any upfront costs. Nowadays, many applications are developed for the cloud
computing systems, and Clouds also provide elastic resources for applications [61]. This feature
attracts enterprises to migrate their local applications to Clouds [16].

In addition to the traditional requirements, the cloud applications are experiencing unpredictable
workloads because of the dynamic amount of requests and users [21]. Thus, cloud computing
systems are also required to be designed as robust to handle unexpected events: request bursts,
which is commonly named as flash crowds that can increase the size of requests significantly.
For example, the servers of Weibo, a Chinese web social network website owned by Sina, got a
breakdown after a Chinese celebrity announced his new relationship, which resulted from the
celebrity’s fans flooding into the website [7].

Author’s address: Minxian Xu and Rajkumar Buyya, Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, 3010, Australia.

© 2018
0360-0300/2018/4-ART1 $15.00
https://doi.org/0000001.0000001

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 M. Xu and R. Buyya

Similarly, in cloud data centers, unexpected hardware failures are also common issues. In 2016,
the severe weather led to the outage of Amazon data centers in Sydney, knocking the services
of many companies to be offline [4]. Moreover, performance inference resulted from co-located
applications and workload consolidations may lead to unexpected performance degradations [70].

1.1 Need for Adaptive Management in Cloud Computing Systems
To handle the aforementioned phenomena, applications are needed to be carefully designed and
deployed. For instance, techniques such as auto-scaling [42], data replication [48], workload con-
solidation [34] and dynamic load balancing [54] are applied to overcome unexpected events only if
the available resources are adequate. However, these unexpected events are generally only lasting
a relatively short duration, it is not economical to provision sufficient capacity as much as possible.
Without sufficient resource provisioning, the applications can be saturated, and cause the users to
experience longer response time or even no response at all. As a result, the service providers may
lose customers and revenues. Therefore, we argue that the adaptive management of resources and
applications is needed for cloud computing systems.
With adaptive management of resources and applications, different benefits can be achieved.

Adaptive management can improve the Quality of Service (QoS) guarantee of cloud services. QoS
guarantee plays a crucial role in system performance for Clouds environment [40], and cloud
computing systems are required to be designed to offer QoS guaranteed services [59] [60]. It
is a challenging issue for Clouds to support various co-located applications with different QoS
constraints, and provision resources efficiently to be adaptive to the users’ dynamic behaviors.
These aspects make it difficult to provision resources efficiently [58] [25]. It is reported that 53%
mobile users abandon pages that have no response within three seconds. Therefore, Google firmly
recommends a one-second web page loading time to improve user’s experience [29]. QoS of
applications can be improved by dynamically adding or removing hosts via adaptive management.
Energy efficiency of cloud computing systems can be improved by adaptive management. It

has become a major problem in IT industry that huge energy is consumed by cloud data centers
[45]. The rise and evolution of complicated computation intensive applications have promoted
the establishment of large cloud data centers that boost the total amount of power usage [18].
The physical servers deployed in Clouds generate massive heat and require to be managed in an
environment equipped with powerful air conditioners. One of the key reasons for huge energy usage
is due to the inefficient utilization of resources [17]. Adaptive management is able to improve the
resource usage so that the energy consumption can be reduced. For example, when there are fewer
requests, adaptive management can reduce energy consumption by consolidating workloads onto
fewer active physical machines, thus the idle physical machines can be turned into the low-power
mode or fully turned-off.
Balancing the loads in cloud computing systems is another objective that can be fulfilled by

adaptive management. Load balancers are the regular components of web applications, which
allow the system to be scalable and resilience [57]. Numerous load balancing algorithms have
been introduced by researchers, focusing on different optimization targets, ranging from balancing
virtual machines load to physical machines , with specific optimizations by both heuristic and meta-
heuristic algorithms [68]. The purposes of load balancing can be various, including geographical
balancing [41], electricity costs reduction [56] and applications load balancing in cloud computing
systems [47]. Adaptive management can avoid overloads to achieve load balancing.

A promising approach for adaptive management of resources and applications in cloud computing
systems is brownout [38]. In the field of brownout, the applications/services are extended to have
two parts: mandatory and optional. The mandatory parts are desired to keep running all the time,
such as the critical services in the systems including data-relevant services. The optional parts, on

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:3

the other hand, are not necessary to be active all the time and can be deactivated temporarily to
ensure the system performance in the case of flash crowds.
A motivational example of brownout-enabled application is the E-Commerce system, where

product descriptions are shown along with related products suggested to the end users. These
related products are managed by a recommendation engine in the system. The recommendation
engine can be identified as an optional part, because it is not strictly necessary for the core function
to work. Indeed, when the system is overloaded, even if the recommendation engine improves the
user experience, it is preferable to deactivate the engine temporarily to obtain a more responsive
website for more users.

1.2 Motivation of Research
Currently, brownout approaches have been applied in cloud computing system for different opti-
mization objectives, including system robustness improvement, overbooking, load balancing and
energy efficiency. Therefore, we like to investigate them in depth as noted below:

• Brownout approach has shown a promising direction to manage applications and resources
in cloud computing systems. Therefore, this article discusses the development and application
of brownout approaches in the cloud computing area.

• We identify the necessity of a literature review to summarize the progress in brownout
approach with adaptive management of resources and applications for cloud computing
systems. Consequently, we have surveyed the existing articles relevant to this topic and
aimed to draw more attention and efforts to advance research with brownout approaches.

1.3 Our Contributions
The major contributions of our work are summarized as follows:

• We propose a taxonomy of brownout-based adaptive management of resources and applica-
tions in cloud computing systems.

• We investigate a comprehensive review of brownout approaches in cloud computing systems
for adaptive management of applications and resources.

• We categorize the studied brownout approaches according to their common features and
properties, and compare the advantages and limitations of each approach.

• We identify the research gaps and future research directions in brownout-enabled cloud
computing systems.

1.4 Related Surveys
A few articles have conducted surveys or taxonomies on resource management in cloud computing.
Kaur et al.[37] conducted a comprehensive taxonomy and survey for energy efficient scheduling
approaches in Clouds. Weerasiri et al. [64] introduced a survey and taxonomy for resource orches-
tration in Clouds while not focusing on adaptive resource management. Zhan et al. [69] investigated
the cloud computing resource scheduling approaches and summarized their evolution. Mansouri et
al. [44] presented a survey and taxonomy on resource management in Cloud environment, with
the focus on management of storage resources. Singh et al. [60] proposed a systematic review of
Quality of Service aware automatic resource scheduling approaches in Clouds scenario.
However, there is no existing survey and taxonomy focusing on brownout approach. As a

complimentary, our article enhances previous surveys and focuses on the brownout-based approach.
It also identifies the open challenges and future research directions in the area that applying
brownout in cloud computing systems for adaptive management of resources and applications.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

1:4 M. Xu and R. Buyya

1.5 Article Structure
The rest of the paper is organized as follows: a brief background on cloud computing and adaptive
management is introduced in Section 2. Then in Section 3, the discussion on evolution of brownout
in cloud computing is presented. Section 4 depicts the methodology we applied to look for the
suitable related articles. Section 5 discusses the phases and taxonomy of brownout approaches in
cloud computing systems. A review of brownout approaches and their mappings to the phases
are presented in Section 6. Section 7 describes the brownout approach with a perspective model.
Future directions and open challenges are discussed in Section 8. Finally, the conclusions of this
work are given in Section 9.

2 BACKGROUND
In this section, we briefly introduce the background on cloud computing and adaptive management.

2.1 Cloud Computing
The appearance of cloud computing is regarded as a novel paradigm in information technology
industry [19]. The aim of cloud computing is providing resources in the form of utility like water,
gas, and electricity for daily use. Some attractive characteristics including on-demand resource
provisioning model, scalability enhancement, operational cost reduction, and convenient access are
offered by Clouds. All these features enable cloud computing to be appealing to business runners,
which gets rid of the complexity for service providers to do provisioning plan and allows companies
to begin with the minimum resources as required. Cloud platforms like EC2, Google Cloud, and
Azure, have been built by large infrastructure providers to support applications around the world
with the purpose of assuring these applications to be scalable and available for the demands of
the users [46]. The cloud customers are allowed to dynamically lease and unlease the on-demand
resources based on their requirements.

2.2 Adaptive Management
In the past years, a considerable amount of research in adaptive techniques to manage resources in
the system has been conducted. The properties of adaptive techniques are achieving management
in a self-adaptation manner, including protection, optimization, and recovery. These properties are
often featured as self-* characteristics [49].

The feedback loop is the essential concept used to develop an adaptive system, which monitors
the status and the environment of the system, and adapts as desired to obtain the required self-*
characteristics. It is viewed as an important factor to enable adaptive management of resources and
applications by taking advantage of feedback loops for applications [35]. In adaptive systems, one
favorite representation of the feedback loop is the Monitor, Analyze, Plan, Execute and Knowledge
loop, which is abbreviated as MAPE-K [15]. In the MAPE-K loop, there are several phases to be
accomplished in the loop as below:

(1) Monitoring the system status and the environment situation by Monitor phase;
(2) Analyzing the collected data and determining whether the adaptation is required or not by

Analyze phase;
(3) Planning the approach to adapt the system by Plan phase;
(4) Executing the plan by Execute phase,
where the knowledge pool is shared by these 4 phases and acts as integration role [22].

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:5

Table 1. The earliest work in brownout approach for cloud computing sytems in 2014 and their citations

Title Citations
"Brownout: Building more robust cloud applications" 84

"The straw that broke the camel’s back: safe cloud overbooking with application brownout" 22
"Improving cloud service resilience using brownout-aware load-balancing" 23
"Control-theoretical load-balancing for cloud applications with brownout" 14

3 ARTICLE SELECTION METHODOLOGY
In this section, we introduce the approach we followed to find our surveyed articles as well as the
outcome.

3.1 Source of articles
Related articles are broadly searched in main-stream academic databases, including IEEEXplore,
Springer, Elsevier, ACM Digital Library, ScienceDirect, Wiley Interscience and Google Scholar.

3.2 Search Method
Two phases of our search are involved. In the first phase, we use the keywords "Brownout" and
"Cloud Computing" to search the title and abstract of research articles. Several results are found,
however, the number of these articles are quite limited.We think that some articles may bemotivated
by the mechanism of brownout while they do not use the keywords in the title or abstracts. Thus,
in the second phase, based on the initial brownout researches conducted in 2014, we plan to find
other articles using brownout inspired by these work. We show the pioneering work of brownout
approach in 2014 and their number of citations1 in Table. 1. We investigated the articles that cite
these four papers and found more articles that are using brownout.

3.3 Outcome
We have found 18 research articles focusing on brownout approach in cloud computing systems for
adaptive management of resources and applications. 77.8% of these research papers were presented
in conferences, 16.6% were published in journals and 5.6% in symposiums. Moreover, one master
thesis [23] and one PhD thesis [49] have been explored for this topic. The contents of these two
theses are derived from the research articles we have found and reviewed, therefore, they are not
included in the following taxonomy and review.

4 BROWNOUT APPROACH
Brownout is inspired by the blackout in emergency cases that to cope with electricity. Such as light
bulbs emit fewer lights to save energy usage to handle emergency situations [63]. In this section,
we introduce the background and evolution of brownout approach.

4.1 Overview of Brownout Approach
4.1.1 Definition

Brownout is a self-adaptive paradigm that enables or disables optional parts (application compo-
nents or services) in the system concerning how to handle unpredictable workloads [38]. The idea
behind the brownout paradigm is as follows: to be adaptive, optional parts might temporarily be

1This search was conducted on Feb 5, 2018.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

1:6 M. Xu and R. Buyya

deactivated so that the essential functions of the system is ensured as well as avoiding saturated ap-
plications. Deactivating certain optional functions can contribute to increasing request acceptance
rate by utilizing the optional resources for the core functions.

Therefore, the brownout paradigm is a method to make cloud computing system to be adaptive
the changing workloads. Brownout also enables to improve resource utilization while keeping
applications responsive to avoid overloads. Moreover, brownout can be regarded as a special type
of per request admission control, where some requests are fully admitted, while others may only
be admissible without optional services. In the brownout paradigm, dimmer is a control knob
that takes a value in [0, 1] to represent the probability to run the optional parts and manages the
brownout activities in the system. [38].

4.1.2 Architecture Model
The brownout-based scheduling of resources and applications in cloud computing systems

complies the conventional type of adaptive architectures. It is derived from MAPE-K [15] feedback
loop control including phases, like the monitor, analyze, plan, execute, and knowledge illustrated in
Fig. 1. Cloud computing system is the target system of MAPE-K loop and combined with MAPE-K
loop through sensors and actuators. The responsibilities of each module in MAPE-K are as below:

• Knowledge module: It is a module that describes the whole system at abstract level by
capturing the major system features and status. The captured information is applied to trigger
the desirable adaptations;

• Monitor module: It is used to collect the data from sensors and monitor the system status
continuously. The collected data is transferred to Analyze module for further analysis;

• Analyzemodule: It analyzes the data obtained fromMonitormodule and provides references
for Plan module. Different analysis methods can be applied in this module;

• Planning module: It makes plans to change system states to be adaptive the fluctuations of
workloads;

• Execution module: It implements the plans. Its main role is ensuring the specified system
requirement. In addition, through actuators, it also traces the new changes and makes other
plans based on the predefined rules in the knowledge pool.

Fig. 1. Cloud computing systems with MAPE-K adaption loop

4.1.3 Brownout Management
The challenges for brownout management includes:
• When the optional services should be deactivated?
It is relevant to system status. The optional services would be deactivated when some system
indicators show the system is not running as expected. Such as, the system is becoming
overloaded when requests are bursting.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:7

• How to deactivate optional services?
Services can be processed in different ways. For example, for the stateless services, they can
be deactivated without any extra efforts. However, for the stateful services, the states should
be recorded and reloaded when they are activated again.

• Which optional services should be deactivated?
It depends on the optional service selection algorithm. The deactivated optional services can
be selected based on the status of services, such as utilization.

4.2 Evolution of Brownout Approaches in Cloud Computing
The optimization objectives and metrics of brownout approaches in cloud computing system have
been investigated and proposed throughout the years. As shown in Fig. 2, we aim to show the
evolution and development of brownout approaches in recent years.

Fig. 2. Evolution of brownout approach in cloud computing systems

In 2014, the application of brownout in cloud computing systems was proposed by Klein et al. [38],
who introduced brownout as a self-adaptation programming paradigm. They also proposed that
brownout can enhance system robustness when unpredictable requests are coming into the system.
Two web application prototypes have been presented: RUBiS [2] and RuBBoS [1], which have been
widely used in the follow-up research. This work showed the effectiveness of brownout approach,
while the experiments were only conducted on a single machine. Durango et al. [27] presented
load balancing strategies for application replicas based on brownout and admission control to
maximize application performance and improve system resilience. However, the limitation is that
the modeled application is not general.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

1:8 M. Xu and R. Buyya

To find failures earlier and avoid the limitation of periodically monitoring, based on event-driven,
Klein et al. [39] proposed two load balancing algorithms for brownout-aware services. The results
showed that the proposed algorithm has better performance in fault-tolerance. Maggio et al. [43]
proposed and analyzed several different control strategies for brownout-aware applications to
avoid overloads. Predictions for incoming load and service time are also applied in the proposed
policies. To avoid service level objective (SLO) violations and unresponsive requests, Nokolov et al.
[52] presented a platform to manage resource adaptively for elastic Cloud based on SLOs, which
can overcome short-time request bursts. The proposed platform can adapt application execution
to corresponding service level agreement (SLA). However, faults handling is not considered in
this work. Tomas et al. [63] combined overbooking and brownout together to improve resource
utilization without application degradation. Like [27], this approach is also based on admission
control that gradually adapts application according to requests.
In 2015, automatic algorithms based on brownout had drawn more attention. Desmeurs et al.

[24] presented an event-driven brownout technique to investigate the trade-offs between utilization
and response time for web applications. Several automatic policies based on machine learning and
admission control were also introduced in this work. This work opens a direction to establish more
energy-efficient cloud data centers, while the results were not evaluated under real trace. Dupont
et al. [26] proposed another automatic approach to manage cloud elasticity in both infrastructure
elasticity and software elasticity. The proposed method takes advantage of the dynamic selection
of different strategies. This approach considers infrastructure level and extends the application
of brownout by applying it to a broader range. Moreno et al. [50] presented a proactive approach
for latency-aware scheduling under uncertainty to accelerate the decision time. The motivation is
applying formal model to solve the nondeterministic choices of adaptation tactics (disabling different
optional contents). The limitations of this work are: 1) this work does not support concurrent
tactics, and 2) the uncertainty of environment predictions is not considered.
In 2016, several articles were devoted to improving the adaption of decision time. Pandey et al.

[53] proposed a hybrid selection methodology that investigates multiple optimization objectives
to balance the trade-offs between different metrics, such as decision time and optimized results.
Markov decision process is applied to find the best choice among candidates, which represent the
combination of different disabled optional contents. To overcome the limitations in [50], Moreno et
al. [51] presented an approach aiming to eliminate the run-time costs when constructing Markov
Decision Process (MDP). The MDP is solved via stochastic dynamic programming. The results
show that the decision time is reduced significantly. However, the requests are processed in an
offline manner.
Some other researchers have paid their attention to energy saving for Clouds. Hasan et al.

[33] introduced a green energy-aware scheduling approach for interactive cloud application that
allows being dynamically adapted. Each application has three different modes, and each mode
has a different percentage of optional contents. Xu et al. [67] applied brownout to reduce power
consumption by dynamically and selectively disabling the optional components of applications.
The trade-offs between energy and discount were investigated, and several heuristic components
selection policies were also proposed.

In 2017, as an extension work of [33], Hasan et al. [32] investigated multiple metrics other than
energy, including both user experience and performance for the interactive cloud application. An
adaptive application management approach based on dynamically switching application modes was
proposed to improve the trade-offs among multiple optimization objectives. In order to improve
the elasticity of infrastructure by adding or removing resources, Hasan et al. [31] proposed a
platform that applies green energy aware approach to schedule interactive applications in Clouds.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:9

The proposed platform aims to utilize both infrastructure and application resources to adapt to
changing workloads.

5 PHASES AND TAXONOMY OF BROWNOUT-BASED ADAPTIVE MANAGEMENT
In this section, the phases and review of brownout approach for adaptive management of resources
and applications in cloud computing systems are presented. According to our surveyed articles,
we have classified adaptive management of the resources and applications with brownout into
five phases: application design, workload scheduling, monitoring, brownout controller design,
and metrics, as demonstrated in Fig. 3. These phases can be mapped to the MAPE-K modules in
as shown in Fig. 1. Application design and workload scheduling correspond to the Knowledge
module to describe system; monitoring is mapped to the Monitor module to monitor system status;
brownout controller design corresponds to the Analyze, Plan and Execute modules; and metrics are
mapped to the information obtained from the Sensors. Now, we explain the details of each phase.

Fig. 3. Phases of applying brownout approach in cloud computing systems

5.1 Application Design
Applications are running in cloud computing systems and providing services for users. To enhance
the system performance in Clouds, applications are required to be designed by referring to system
configuration and users requirements. In Fig. 4, the categories we used for the application design
are: 1) application type, 2) application domain, 3) optional parts, and 4) application deployment.

Fig. 4. Taxonomy based on application design

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

1:10 M. Xu and R. Buyya

5.1.1 Application Type. The application can be running locally or in the remote manner enabled
by brownout. Brownout-enabled applications can be classified into two types according to appli-
cation type: (1) desktop application, and (2) web application. The desktop application represents
the brownout-enabled applications runs locally on machines, for example, the texts processing
application [14]. The web application is implemented in the client-server model to provide web
services that the users interact through the Internet. The typical brownout-enabled web application
is online shopping system, which has been applied in many existing brownout-related articles
[27][38][43].

5.1.2 Application Domain. Applications are implemented to provide functionalities for users. The
developer is aiming to develop applications in a more efficient manner, while the complexity of
applications is growing. Adaptive application management in cloud computing systems provides
an approach to manage the complex applications. To manage these applications, the domain of
applications should be identified, as applications in different domains have different management
requirements. For the applications in the general domain, applications are providing functions
for general purposes [67], such as scientific calculation applications. While for the applications in
the business domain, which focuses on maximizing the profits of service providers, they are more
sensitive to some specific performance metrics. For example, in the online shopping system that
belongs to the business domain, the response time as QoS requirement is one of the most critical
metrics [32], since long response time or unresponsiveness leads to the loss of users.
5.1.3 Optional Parts. In brownout-enabled applications, the optional parts in the applications

are temporarily deactivated to manage resources and applications. The optional parts represent
the scheduling units in the applications. In existing articles, the optional parts are identified
as (1) contents, (2) components and (3) containers. Optional web contents on servers are to be
showed selectively to users to save resource usage [38]. Components-based applications deactivate
optional components to manage resource utilization [14]. In containerized clouds, each service
is implemented as containers, and the optional containers can be activated/deactivated based on
system status. [67]
5.1.4 Application Deployment. In cloud computing systems, applications can be deployed on

physical machines (PMs) or virtual machines (VMs). Deploying applications directly on PMs
enables applications to have almost the same performance as native systems, such as containerized
applications. One PM can host multiple VMs, and multiple applications can be deployed on the
same VM to improve the usage of shared resources. When applications are deployed on VMs, VM
migrations and VM consolidation can be applied with brownout together to optimize resource
utilization [67].

5.2 Workload Scheduling
Workload scheduling aims at scheduling and allocating appropriate resources to suitable workloads
according to SLA defined by end-users and service providers so that the workloads can be executed
efficiently and the applications utilize resources efficiently. In Fig. 5, the categories we used for
workload scheduling are: 1) workload type, 2) resource type, 3) dynamicity, 4) workload trace and
5) experiment platform.
5.2.1 Workload Type. The workload type represents the resource requirement of workloads. In

current brownout-relevant articles, most works are focusing on scheduling the CPU-intensive
workloads [27][24][26], as computation resources are regarded as the main resource allocated to
workloads. Some articles also consider network-intensive workloads to reduce the network latency
[52].

5.2.2 Resource Type. For homogeneous resource type, the resources offered by service providers
are limited to a single type. This configuration simplifies the workload scheduling and overlooks the

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:11

Fig. 5. Taxonomy based on workload scheduling

various characteristic of workload. The homogeneous configuration is mostly used in small-scale
tests where resource diversity is limited or for the initial research of novel approach [27][38]. Cloud
computing systems have the nature of heterogeneity, to take advantage of this feature, mature
service providers are offering heterogeneous resources for workload scheduling. For example,
Amazon EC2 has provided more than 50 types of VMs, and these VMs are categorized as various
classifications for different workload types, such as general purpose, computation intensive purpose
or memory intensive purpose [28].

5.2.3 Dynamicity. The dynamicity of workload scheduling represents the time when the workload
information is obtained. The dynamicity of workload scheduling is noted as online if the information
of workloads is only available when the workloads are coming into systems. If all the information
of workloads are known in advance and workloads can be rescheduled based on system resource,
this scheduling process is identified as offline. One example of the offline scheduling is the batch
job [33], in which the deadlines of jobs are known and jobs can be executed with delay based on
resource availability. Compared with online workload scheduling, offline workload scheduling is
prone to achieve more optimized results, however, it is not available for some scheduling scenarios,
such as real-time applications.

5.2.4 Workload Trace. Different workload traces are used to evaluate the performance of brownout
approaches. When brownout was initially proposed, synthetic traces, such as workloads generated
based on Poisson distribution, were applied. Later on, workloads derived from real traces are also
applied. Presently, the popular real traces are from FIFA [3], Wikipedia [65], and Planet lab trace
[55].

5.2.5 Experiments Platform. Both real testbed and simulations have been conducted to test the per-
formance of brownout approaches. Experiments under real testbed are more persuasive. Grid’5000
platform [30] has been adopted in several articles, which provides APIs to collect PM utilization
and energy consumption. However, some uncontrolled factors exist in the real testbed, such as
network traffics and unpredictable loads. Therefore, simulation tools provide more feasible options.
Besides, with simulations, it is easier to conduct experiments with heterogeneous resources as
well as large-scale size. The cloud simulation toolkit, CloudSim [20], has been used for simulating
brownout-enabled workload scheduling.

5.3 Monitoring
The objective of monitoring is achieving performance optimization by monitoring the resource
usage in cloud computing systems. Therefore, a monitoring component is required to collect system
and analyze the resource utilization information. After analysis, decisions to change the system

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

1:12 M. Xu and R. Buyya

status and resource usage are made to ensure system to satisfy the specified SLA. As shown in Fig.
6, we categorize the components of monitoring as 1). resource usage, 2) services, 3) status, and 4)
execution.

Fig. 6. Taxonomy based on monitoring

5.3.1 Resource Usage. The monitor in Clouds environment is used to monitor the resource usage,
including CPU, memory and network usage via the monitoring tools. As mentioned in section 5.2.1,
the current brownout related workload scheduling are focusing on handling CPU-intensive and
network-intensive workloads [39][52]. So, the monitors in brownout-enabled systems are mainly
monitoring the CPU and network resource usage. Two objectives of monitoring resource usage
can be achieved from both users’ and service providers’ perspectives: users expect their requests
to be processed within QoS, and service providers aim to execute the workloads with minimum
resource usage.
5.3.2 Services. Service monitoring gathers the information about resource statuses to check

whether the workload is executed by applications as desired. Two types of service monitoring exist
in cloud computing systems, one is centralized and the other is distributed. In a centralized manner,
a central repository is applied to store the collected data, which is not scalable when the number of
monitored targets is increased [67]. For the distributed service monitoring, the monitored data is
stored distributedly to achieve better fault tolerance and load balancing [14].
5.3.3 Status. To be more specific, monitoring resource utilization is regarded as monitoring the

status of different levels, including PMs [50], VMs [26], and applications [63]. Based on various
optimization goals, data are collected from different levels. For example, to reduce the energy of
cloud computing systems, power consumption of PMs should be collected. To improve the response
time of requests, it is required to obtain the resource usage of applications.
5.3.4 Execution. To avoid unexpected failures and execute workloads promptly, the execution

monitoring has two types: periodically and event-driven. In the periodical manner, the monitor
periodically checks the resource usage and makes decisions on execution process for the next
time period [27]. In an event-driven manner, changes in execution process are triggered once a
specific event is detected, such as resource usage is above the predefined overloaded threshold [39].
The motivation of event-driven is its real-time requirement, which is suitable for latency-aware
applications.

5.4 Brownout Controller/Dimmer Design
In brownout-enabled systems, the deactivation/activation operations on optional parts are managed
by brownout controller. The brownout controller also has a control knob called dimmer, which

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:13

represents the probability of the optional parts to be deactivated. Therefore, we can notice that the
brownout controller design is the most important part for brownout approach. In Fig. 7, we have
categorized the classification of brownout controller/dimmer design as 1) parameters, 2) controller
algorithm, 3) controller number and 4) adaptivity.

Fig. 7. Taxonomy based on brownout controller design

5.4.1 Parameters. Brownout controller can be designed based on different parameters. These
parameters can be classified based on system and user perspectives as system performance and
user experience. If system performance is addressed, the brownout controller is configured with
system parameters, such as resource utilization [27]. If the brownout controller aims to optimize
user-experience, parameters like response time can be designed into brownout controller [38].
5.4.2 Controller Algorithm. Similar to the resource scheduling problem, finding the optimal

solutions of suitable optional parts to be deactivated/activated by controller algorithms is computa-
tionally expensive. Thus, finding the approximate solutions is an alternative to the most of proposed
approaches. We have classified the surveyed controller algorithms as heuristic and meta-heuristic.
The heuristic ones comply with the predefined constraints and try to find an acceptable solution for
particular problem [62]. Usually, the constraints are varied for different problems, and the solutions
can be obtained within a limited time. One type of heuristic algorithms is greedy algorithm and
has been adopted in [24][26][50]. As for meta-heuristic algorithms, they are generally applied to
general purpose problems [62], and have standard procedures for problem construction and solving.
One example of the meta-heuristic algorithm is the approach based on Markov decision process
that has been applied in [66][51].
5.4.3 Controller Number. The brownout controller may have single or multiple controllers to

manage the optional parts in cloud computing systems. In [63], multiple controllers are applied,
in each application, there is a controller and its dimmer value is calculated based on its status.
Thus, the dimmer values of different applications in [63] can be varied. For overall management, a
single controller is applied. For example, in [31], the dimmer value is calculated as the severity of
overloads in the whole data center.
5.4.4 Adaptivity. The adaptivity represents whether the brownout controller is adaptive to the

change of workloads. It is categorized as static and dynamic. In our surveyed approaches, most of
them are dynamic [27][43][63], which can be dynamically adapted to the change of system. Only
limited approaches are static, which apply static parameters. The static brownout controllers are
easy to violate the specific SLAs [33][31].

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

1:14 M. Xu and R. Buyya

5.5 Metrics
Different metrics are considered in cloud computing systems to evaluate the performance of
different brownout-based approaches. As shown in Fig. 8, from our surveyed literature, we have
identified 9 metrics: response time, execution time, utilization, availability, decision time, latency,
request number, energy and revenue.

Fig. 8. Taxonomy based on metrics

Response Time [27][38][43] is the total time it costs from when users send requests until they
receive a response. The response time can be influenced by system processing time, which is
also relevant to hardware resource utilization. This metric should be reduced to improve the user
experience. Execution Time [14][71] is the time required to complete the workloads execution.
Minimizing the execution time can improve system QoS. Utilization [52][63] is the actual resource
percentage used to run workloads to the total resource provided by service provider. Available
utilization should be improved to maximize the resource usage. Availability [14][71] is the capability
of the cloud computing system to guarantee the services are available with expected performance
as well as handle fatal situations. This metric should be ensured in cloud computing systems, e.g.
during 99.9% time, the services are running with expected performance. Decision Time [50][51] is
the time that scheduling algorithm takes to find the optional parts to be deactivated/activated, which
is associated with algorithm design. To find the solutions faster, in online scheduling scenario, the
decision time of algorithm should be accelerated. Latency [38][50] is the time delay that spends on
message communication across the network, which is relevant to hardware resources and utilization.
In business applications, latency is an crucial metric to indicate the system performance. Requests
Number [26][33] is the number of requests received by the system. The scheduling algorithm has
better performance if more requests can be served with the same amount of resources. Energy
[67][66] is the total power used for the cloud computing system to provide the services to users.
The system should reduce energy consumption while ensuring QoS. Revenue [31][33] is the profit
obtained from users when service providers are offering services. The service provider aims to
maximize their revenue as well as lowering costs.

6 REVIEW OF BROWNOUT APPROACHES
In this section, a review of brownout-based approaches for adaptive management of resources
and applications in cloud computing system is conducted. To identify the differences in surveyed
articles, we use the taxonomy in Section 5 to map the key features of these approaches. Table 2
shows a summary of selected brownout approaches, and Tables 3 to 7 summarize the comparison of
selected brownout approaches and their categorized classification according to our taxonomy. For
instance, Table 3 shows the comparison based on the taxonomy of application design as presented
in Section 5.1, and Table 7 shows the metrics comparison based on the discussion in Section 5.5.
The "Convex Optimization Based Load Balancing" (COBLB) [27] technique extends brownout

approach for services with multiple replicas, which are the copies of applications providing same

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:15

Table 2. Summary of brownout approaches

Approach Year Author Description Orgranization

COBLB [27] 2014 Durango et al. Load Balancing with Brownout
and Control Theory Umea University, Sweden

SAB [38] 2014 Klein et al. Robust Cloud Applications
with Brownout Umea University, Sweden

EPBH [39] 2014 Klein et al. Resilience and Load Balancing
with Brownout Umea University, Sweden

FPF [43] 2014 Maggio et al. Brownout Prediction Lund University, Sweden

CLOUDFARM [52] 2014 Nikolov et al. Adaptive Resource
Management University of Ulm, Germany

BOB [63] 2014 Tomas et al. Overbooking with Brownout Umea University, Sweden

EDB [24] 2015 Desmeurs et al. Event-Driven Application
with Brownout Umea University, Sweden

CAA [26] 2015 Dupont et al. Cloud Elasticity
with Brownout INRIA, France

PLA [50] 2015 Moreno et al. Proactive Self-Adaptation for
Uncertainty Environment

Carnegie Mellon University,
USA

HYB-Q [33] 2016 Hasan et al. Green Energy for
Cloud Application INRIA, France

PLA-SDP [51] 2016 Moreno et al. Decision-Making for
Proactive Self-Adaptation

Carnegie Mellon University,
USA

HYBP [53] 2016 Pandey et al. Hybrid Planning in
Self-Adaptation

Carnegie Mellon University,
USA

LUFCS [67] 2016 Xu et al. Energy Efficiency in
Clouds with Brownout

University of Melbourne,
Australia

MODULAR [14] 2017 Alvares et al. Modular Autonomic Manager
in Software Components INRIA, France

SaaScaler [32] 2017 Hasan et al. Power and Performance
Scaler for Applications INRIA, France

GPaaScaler [31] 2017 Hasan et al. Green Energy Aware Scaler for
Interactive Applications INRIA, France

RLBF [71] 2017 Zhao et al. Reinforcement Learning for
Software Adaptation Peking University, China

BMDP [66] 2017 Xu et al.
Energy Efficient Clouds

with Markov Decision Process
and Brownout

University of Melbourne,
Australia

functionalities. These replicas contain optional contents and allow to be served selectively according
to system status. To enhance the system load balancing performance, the technique also collects
information about adaptation in replicas. In the technique, all replicas are managed in queuing
systems adopting the resource sharing. Response time and the number of requests are improved by
this technique.
Self-Adaptive Brownout (SAB) [38] approach adds a dynamic parameter that affects user expe-

rience and the amount of resource required by the application. This parameter is adapted based
on both workload and available resources to enhance the robustness of applications. The pro-
posed approach is synthesized with control theory approach to adaptively determine when to
activate/deactivate optional features in the applications. With control theory, the behaviors of
applications can be predicted, and some system constraints can be guaranteed. In this approach,

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

1:16 M. Xu and R. Buyya

Table 3. Taxonomy based on application design

Approach Application Type Application Domain Optional Parts Application Deployment
COBLB [27] Web application Business Contents Virtual Machine
SAB [38] Web application Business Contents Virtual Machine
EPBH [39] Web application Business Contents Virtual Machine
FPF [43] Web application Business Components Physical Machine

CLOUDFARM [52] Web application Business Components Physical Machine
BOB [63] Web application Business Contents Virtual Machine
EDB [24] Web application Business Contents Virtual Machine
CAA [26] Web application Business Contents Virtual Machine
PLA [50] Web application Business Contents Virtual Machine

HYB-Q [33] Web application Business Contents Virtual Machine
PLA-SDP [51] Web application Business Contents Virtual Machine
HYBP [53] Web Application Business Contents Virtual Machine
LUFCS [67] Web Application General Components Virtual Machine

MODULAR [14] Desktop Application General Components Physical Machine
SaaScaler [32] Web application Business Contents Virtual Machine
GPaaScaler [31] Web application Business Contents Virtual Machine

RLBF [71] Web application Business Components Physical Machine
BMDP [66] Web Application General Containers Virtual Machine

Table 4. Taxonomy based on workload scheduling

Approach Workload Type Resource Type Dynamicity Trace Experiments Platform
COBLB [27] CPU-intensive Homogeneous Online Synthetic Simulation
SAB [38] CPU-intensive Homogeneous Online Synthetic Real testbed
EPBH [39] CPU-intensive Homogeneous Online Synthetic Real testbed
FPF [43] CPU-intensive Homogeneous Online Synthetic Simulation

CLOUDFARM [52] Network-intensive Heterogeneous Online Synthetic Real testbed
BOB [63] CPU-intensive Homogeneous Online/Offline Real Real testbed
EDB [24] CPU-intensive Homogeneous Online Synthetic Real testbed
CAA [26] CPU-intensive Homogeneous Offline Synthetic Real testbed
PLA [50] CPU-intensive Homogeneous Online Real Real testbed

HYB-Q [33] CPU-intensive Homogeneous Online Real Real testbed
PLA-SDP [51] CPU-intensive Homogeneous Offline Real Real testbed
HYBP [53] CPU-intensive Heterogeneous Online Real Simulation
LUFCS [67] CPU-intensive Heterogeneous Online Real Simulation

MODULAR [14] CPU-intensive Homogeneous Online Synthetic Real testbed
SaaScaler [32] CPU-intensive Homogeneous Online Real Real testbed
GPaaScaler [31] CPU-intensive Homogeneous Online Real Real testbed

RLBF [71] CPU-intensive Homogeneous Online/Offline Synthetic Real testbed
BMDP [66] CPU-intensive Heterogeneous Online Real Simulation

the maximum latency is controlled so that the latency is reduced. Also, SAB can serve more users
with fewer resources.

Equality Principle-Based Heuristic (EPBH) [39] is focusing on enhancing the resilience of cloud
services when system faces resource shortage. Similar to COBLB [27], this approach is also applied
to application replicas. This event-driven approach is based on heuristic and requires all the replicas
to have a control parameter (dimmer) value. According to the parameter value, EPBH decides which
replicas to receive more loads. EPBH has been proven to improve resilience when resource shortage
is triggered by failures.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:17

Table 5. Taxonomy based on monitoring

Approach Resource Usage Services Status Execution
COBLB [27] CPU Centralized Applications Periodically
SAB [38] CPU Centralized Applications Periodically
EPBH [39] CPU Centralized Applications Event-Driven
FPF [43] CPU Centralized Applications Periodically

CLOUDFARM [52] Network Centralized PMs, Applications Periodically
BOB [63] CPU Centralized Applications Periodically
EDB [24] CPU Centralized Application Event-Driven
CAA [26] CPU Centralized VMs Periodically
PLA [50] CPU Centralized PMs Periodically

HYB-Q [33] CPU Centralized Applications Periodically/Event-Driven
PLA-SDP [51] CPU Centralized PMs Periodically
HYBP [53] CPU Centralized PMs Periodically
LUFCS [67] CPU Centralized PMs Periodically

MODULAR [14] CPU Decentralized PMs Periodically/Event-Driven
SaaScaler [32] CPU Centralized VMs, Applications Periodically/Event-Driven
GPaaScaler [31] CPU Centralized VMs, Applications Periodically

RLBF [71] CPU Centralized PMs Periodically
BMDP [66] CPU Centralized PMs Periodically

Table 6. Taxonomy based on brownout controller/dimmer design

Approach Parameters Controller Algorithm Controller Number Adaptivity
COBLB [27] System Performance Heuristic Multiple Dynamic
SAB [38] User-experience Heuristic Multiple Dynamic
EPBH [39] System Performance Heuristic Single Dynamic
FPF [43] User-experience Heuristic Single Dynamic

CLOUDFARM [52] System Performance Heuristic Multiple Dynamic
BOB [63] System Performance Heuristic Multiple Static/Dynamic
EDB [24] System Performance Heuristic Multiple Dynamic
CAA [26] System Performance Heuristic Multiple Dynamic
PLA [50] System Performance Meta-heuristic Single Dynamic

HYB-Q [33] User-experience Heuristic Single Static
PLA-SDP [51] System Performance Meta-heuristic Single Static
HYBP [53] System Performance Meta-heuristic Single Dynamic
LUFCS [67] System Performance Heuristic Multiple Dynamic

MODULAR [14] System Performance Heuristic Multiple Dynamic
SaaScaler [32] User-experience Heuristic Single Static
GPaaScaler [31] User-experience Heuristic Single Static

RLBF [71] System Performance Meta-heuristic Multiple Static/Dynamic
BMDP [66] System Performance Meta-heuristic Multiple Dynamic

The objective of Feedforward Plus Feedback (FPF) [43] approach is keeping the average response
time below a certain threshold. FPF works by configuring the probability to serve requests with
optional computations. FPF is able to handle the requests bursts for cloud applications and reacts
to the changes of resource amount allocated to cloud applications. The idea of FPF is obtaining the
number of currently queued requests from the applications and predicting the latency experienced
by future requests. The results demonstrate that although FPF spends efforts on obtaining more
information, the overloads are mitigated.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

1:18 M. Xu and R. Buyya

Table 7. Taxonomy based on metrics

Approach Response
Time

Execution
Time Utilization Availability Decision

Time Latency Requests
Number Energy Revenue

COBLB [27] X X
SAB [38] X X
EPBH [39] X X
FPF [43] X X

CLOUDFARM [52] X
BOB [63] X X
EDB [24] X X
CAA [26] X X
PLA [50] X X

HYB-Q [33] X X X X
PLA-SDP [51] X X
HYBP [53] X X
LUFCS [67] X X

MODULAR [14] X X
SaaScaler [32] X X X X
GPaaScaler [31] X X X

RLBF [71] X X
BMDP [66] X X

CLOUDFARM [52] is an elastic cloud platform to manage resource reservations in flexible and
adaptive ways based on actual resource demands and predefined SLAs. It provides flexible SLAs
that can be configured dynamically to fulfill the elasticity of cloud computing systems. Based on
SLAs and costs produced by users, the services can be dynamically downgraded to avoid bursts so
that system utilization and revenue can be improved. CLOUDFARM also introduces an abstract
level by using virtual framework for all the applications, which benefits from its lightweight and
dynamic degradation from full mode to degraded mode.

Brownout OverBooking (BOB) [63] technique is designed to ensure graceful degradation when
loads spike and thus avoiding overloads in resource overbooking scenario. The motivation of BOB
is combining overbooking and brownout together, where overbooking system takes advantage of
application information from brownout and applies deactivation operations to relieve overloads.
In BOB, an overbooking controller is responsible for admitting or rejecting new requests and a
brownout controller is responsible for adapting the resources allocated to accepted requests. Higher
utilization is achieved while response time is ensured by BOB.

To ensure application responsiveness, an Event-Driven Brownout (EDB) [23] technique at appli-
cation level has been proposed. In this approach, the application is allowed to run optional codes
that are not necessary for key functionalities but for extra user experience. EDB combines machine
learning techniques and control theory together to dynamically configure a given threshold that
represents the number of pending requests. The configuration operation is based on application
response time. An advance in ensuring response time is achieved without sacrificing utilization.

Cloud Automatic Approach (CAA) [26] aims at managing cloud elasticity in a cross-layered man-
ner. The motivation is combining the infrastructure elasticity and software elasticity to overcome
the conceptual limitations of IaaS and make software at SaaS involved in the elasticity process. For
the software at SaaS, they are running at different levels and can be degraded to lower levels when
the resource is limited. And for the resources at IaaS level, physical machines can be scaled in and
out according to system loads. An advantage in response time is obtained when the cross-layered
manner is working in a coordinated way.
Proactive Latency-Aware (PLA) [50] addresses the inefficient reactive adaption problem when

adaptation has latency. Thus, PLA considers adaptation latency and applies the probabilistic model
to decide adaptations. The main motivation is using a formal model to find the adaptation decisions

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:19

Table 8. Comparison of brownout approaches

Approach Objectives Advantages Limitations

COBLB [27] Load balancing for
Cloud applications Resilience is improved Application model is not

general

SAB [38] Enhance robustness of
Cloud applications

Support more users
with fewer resources

Only tested on a single
machine

EPBH [39] Improve resilience Response time is reduced Parameters are chosen
empirically

FPF [43] Mitigate overloads Prediction is applied Only validated with
simulations

CLOUDFARM [52] Improve elasticity SLA is ensured when
there are bursts

Faults handling is not
considered

BOB [63] Resource overbooking Improve resource utilization
without application degradation Scalability is not discusses

EDB [24] Balance utilization and
response time

Utilization is improved and
response time is ensured

Not evaluated with
real workloads

CAA [26] Manage elasticty
Elasticity is improved at both
infrastructure and software

levels

Limited number of
tactics

PLA [50] Accelerate decision time Latency is reduced Concurrent tactics are
not supported

HYB-Q [33]
Green energy provisioning

for interactive cloud
application

Brown energy is saved
Non-interactive cloud
applications are not

investigated

PLA-SDP [51] Accelerate decision time Decision time is reduced Not available for
online requests

HYBP [53] Balance decision time
and optimality Decision time is reduced Not validated in real

testbed

LUFCS [67]
Energy efficient management
of application at component

level

Energy consumption is
reduced

Not all combinations of
deactivated components

are accessed

MODULAR [14] Manage modular
components System availability is improved

The availability for other
applications is not

discussed

SaaScaler [32]
Investigate trade-offs
between energy and

performance

Energy is reduced and QoS
is improved

Resources addition or
removal are not flexible

GPaaScaler [31] Reduce energy consumption Energy is saved Not available for real-time
requests

RLBF [71] Enhance flexibility of
approach

Better adaptation effectiveness
is achieved

Convergence time is not
analyzed

BMDP [66] Improve trade-off between
energy and discount

Trade-off between energy and
discount is improved

Not validated in real
testbed

which are underspecified through nondeterminism, and then resolve the nondeterministic choices to
maximize optimization goals. PLA takes the uncertainty of environment into account and predicts
needed resources by looking ahead. The effectiveness of adaptation decisions is significantly
improved.
The QoS aware hybrid controller (HYB-Q) [33] technique is aiming at achieving green energy-

aware scheduling by using both green and brown energy. The target applications are focused on
interactive cloud applications that can be dynamically adapted to available green energy based on
changing conditions. HYB-Q obtains information in feedback loop about the number of requests
executed under different modes in the previous time period and computes the current adaptation

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

1:20 M. Xu and R. Buyya

value. In the controller, the response time and workload changes are periodically checked. If the
response time arises above the predefined threshold, the user experience is downgraded to lower
mode to avoid overloads by the controller. It is observed that providers’ revenue is improved and
the usage of brown energy is reduced.
As an extension work of PLA [50], Proactive Latency-Aware with Markov Decision Process

(PLA-SDP) [51] takes advantage of the probabilistic property of Markov decision process to adapt
application functionalities. To eliminate the run-time overhead of constructing MDP, stochastic
dynamic programming is applied to solve MDP. The decision time is vitally reduced while same
results are obtained.
The objective of Hybrid Planning (HYBP) [53] is finding the trade-offs between timeliness and

optimality of solutions to adapt application modes. HYBP combines two approaches together to
achieve the best balance between the conflicts. One is deterministic planning and the other is
Markov decision process planning, which can be fitted in different cases. In the case of fast response
is required, the deterministic planning is applied to give a fast response. When the time is adequate,
the MDP planning is applied to generate an optimal solution. Simulated experiments have shown
that HYBP can improve system performance by balancing the aforementioned trade-offs.

The "Lowest Utilization First Component Selection" policy (LUFCS) [67] is a heuristic technique
to save data center power usage via dynamically deactivating application components. The compo-
nents with lower utilization are selected with higher priority until the sum of these components’
utilization equals to the expected utilization reduction. This technique is combined with VM con-
solidation to decrease the active number of hosts. The discount is also considered to be given to
users if some services are not provided. Therefore, there is a trade-off between saved energy and
revenue, which is investigated by LUFCS.
MODULAR [14] approach leverages modularity feature of the component-based system to

strengthen the domain-specific language application. Domain-specific language has high-level
constructs to describe the configurations and executed policies of the target system. With brownout
mechanism, the components can be transferred from nominal configuration to degraded one,
which incurs different loads for the system. Thus, the system is entitled the capability of dynamic
reconfiguration to be self-adaptive.

Compared with HYB-Q [33] that focuses on green energy usage, SaaScaler [32] approach analyzes
the trade-off between power and performance by considering green energy usage for the interactive
cloud applications. SaaScaler can satisfy different metrics. Considering these metrics, three levels
of user experience are defined. Capacity requirement is dynamically adjusted among these levels to
serve more users. Experiments conducted in real testbed show that energy consumption is reduced
while performance and revenues are improved by carefully tuning applications.

GPaaScaler [31] considers adaptation both at infrastructure and application levels by using
green energy source. At the infrastructure level, resources are added or removed according to
resource demand of applications. While the applications are dynamically changing their service
levels according to performance and green energy availability. These adaptations are implemented
separately and can be coordinated together. Lower costs and less usage of brown energy are
achieved.

The objective of Reinforcement Learning-Based Framework (RLBF) [71] approach is overcoming
the limitations of rule-based adaptation that decisions are only made based on static rules. Based on
reinforcement learning, RLBF enables automatic learning rules with various optimization objectives
in an offline manner. Additionally, the rules can also be evolved with real-time information for
online adaptation of selecting optional services to run. The efficiency and effectiveness of adaptation
process are improved by this approach.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:21

Aiming at improving the trade-offs mentioned in [67], another brownout-based approach com-
bining with Markov Decision Process, called BMDP [66] aims to select the better combinations of
deactivated application components was proposed. With MDP, solutions space is increased and
more possible solutions are found. To reduce the solutions space and avoid the curse of dimension,
key states that can reduce energy consumption are identified. Taking advantage of MDP, a better
trade-off between energy and revenue is fulfilled.
To summarize the merits and demerits of reviewed brownout approaches, a comparison of the

advantages and limitations of each brownout approach is presented in Table 8. For example, COBLB
[27] approach achieves better resilience while the adopted application model is not general.

7 A PERSPECTIVE MODEL

Fig. 9. Perspective model of applying brownout in cloud computing systems

Brownout approach has shown its ability to improve applications and resources management to
handle changes in workloads. However, the trade-offs between workload handling and performance
degradation are necessary for consideration. Several optimization objectives are usually considered
together to investigate the trade-offs. The primary research problems in the context are as below:

• (1). How to enable brownout approach in cloud computing system?
• (2). How to enable brownout to manage resources and applications adaptively?
• (3). How to balance the trade-offs between different metrics when applying brownout?

To deal with these issues, there is a need for the brownout-enabled mechanism for adaptive
management. We propose a perspective model of brownout-enabled cloud computing system for
adaptive resource scheduling as shown in Fig. 9.

From users’ perspective, users interact with the system and submit their requests for services to
the system. The users may have constraints for the submitted requests, such as QoS constraints or

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

1:22 M. Xu and R. Buyya

budget. From service providers’ perspective, these workloads generated by users are executed by
applications.

Applications are provided by service providers to offer services for users, and these applications
are managed by the application hosting engine, e.g. Docker [6] and Apache Tomcat [9]. Applications
can be deployed on either virtualized platform (virtual resources) or cloud infrastructure (phys-
ical resources). The host application engine can be container-based management platforms, e.g.
Docker Swarm [12], Kubernetes [11] or Mesos [8], which provide management of container-based
applications. The virtualized platform manages the virtualized resources, for example, the Virtual
Machines managed by VMware [13]. As for the resource allocation and provisioning in cloud
infrastructure, they can be managed by infrastructure management platform, such as OpenStack
[10].

To deal with research problem (1), the applications can be composed of optional and mandatory
components/services. The optional components/services should be identified by service providers
and can be activated/deactivated by brownout controller. For instance, in Docker Swarm, the
services can be deployed via a configuration file [5] and the file can set the service with the feature
"optional".

To resolve research problem (2), a brownout controller is required based on MAPE-K architecture
model and fits into the feedback loop of MAPE-K model as introduced in Fig. 1. As described in
Section 4.1.2, it has modules including Monitor, Analyze, Plan and Execute to fulfill adaptation
with cloud computing system. Sensors and Actuators are used to interact with cloud computing
system. Sensors collect the information from different levels in cloud computing systems, including
application hosting engine, virtualized platform, and cloud infrastructure. The Sensors can be the
devices attached to hardware, e.g. power meter. The collected information is provided to Monitor
module.

After analyzing the information by Analyze module, Plan module makes decisions for applying
brownout control operations, in which the brownout-based scheduling policies are implemented.
Based on the decisions, the Execute module applies brownout via actuators to application hosting
engine and virtualized platform to enable/disable optional components/services. These operations
can be fulfilled via the APIs provided by application hosting engine or virtualized platform.
To handle the research problem (3), the Knowledge pool in MAPE-K model is applied to store

the predefined objectives (e.g. load balancing, energy efficiency or SLA constraints) and trade-offs
(e.g. trade-offs between energy and SLA). The rules in Knowledge pool, such as SLA rules, can be
updated according to brownout-based policies.

8 FUTURE RESEARCH DIRECTIONS
Although the significant progress of applying brownout to cloud computing systems has been
achieved and adaptive management of resources and applications is improved, there are still some
research gaps and challenges in this area to be further explored. They are discussed below:

• For resource management with brownout, current works mostly focus on management of
computation resources. More resource types, like memory, network and storage, need to be
considered as parameters to form more comprehensive resource management. For example,
brownout approach can be applied to manage data-intensive applications.

• Brownout has been applied to optimization goals including load balancing and energy
efficiency. Besides these optimization goals, other goals such as more complicated cost-aware
resource scheduling scenario, and more QoS metrics can be applied with brownout.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:23

• Presently, there is a lack of standard benchmark for performance evaluation of brownout-
based approaches. It is required to have a benchmark to test the performance of new algorithm
and compare it with other approaches having the same optimization objective.

• Scalability of brownout controller can be improved by using distributed controllers. The
centralized controller can be bottleneck of the whole system. Therefore, distributed controllers
design can be investigated.

• Cost model could be improved by considering more parameters. An integrated model consid-
ering more cost-aware parameters will be attractive for service providers.

• Most experiments are tested on RUBiS, more prototype systems based on the target systems
other than RUBis should be introduced to show broader availability of brownout.

• Rather than considering a single data center, brownout approach for cloud computing sys-
tems can be extended to multiple data centers to deal with multi-cloud challenges, such as
geographical load balancing. The knowledge pool in the perspective model can be used for
tracking availability of the system when the system is scaled.

• The decision time and execution time of brownout-based algorithm to find the optional parts
to be deactivated can be reduced by using machine learning methods. For example, based
on response time constraints, requests can be clustered by machine learning algorithms
(K-means) for further execution on the same type of machines to improve resource usage.

• The overhead and runtime complexity of heuristic and meta-heuristic approaches are not
discussed in our surveyed works, which should be investigated.

We summarize the future research directions identified as follows:
• Integration with container: Containers have provided a flexible ability to provide services
with isolated function, and their quick start and stop operations enable brownout approach
to work efficiently. Therefore, integrating brownout and containers is a promising direction
to improve scheduling performance.

• Exploring more scenarios: Brownout has been used for load balancing, energy efficient,
latency-aware and cost-aware cloud computing systems. Additionally, more scenarios, such
as sustainable cloud computing systems with brownout can be investigated to reduce carbon
emissions.

• Combined with existing approaches: It has been evaluated that brownout can be com-
bined with VM consolidation to achieve better resource management effects [67][66] . It is
reasonable to expect better results when combining brownout with other validated resource
management techniques, such as DVFS for energy efficiency.

• Apply brownout with other application models: As current works primarily focused
on web applications, it is important to explore how brownout approaches can be applied
in other application composition models such as Map-Reduce, bag of tasks application, and
stream processing.

• Implementing the perspective model: Fig. 9 shows a perspective model to resolve the
research problems when applying brownout in cloud computing systems. Implementing a
prototype system based on this model significantly advances research in brownout area. To
implement the perspective model, some open source softwares, e.g. Docker, OpenStack, can
be applied.

9 SUMMARY AND CONCLUSIONS
Brownout is a novel paradigm for self-adaptation that enables optional parts in the system to be
temporarily disabled in order to deal with changing situations. In addition, it has been shown as a
promising approach to improve system performance and user experience. This paper introduces

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

1:24 M. Xu and R. Buyya

a review and taxonomy of brownout-based adaptive resources and applications management for
cloud computing systems. A taxonomy is presented according to 5 phases: (1) application design, (2)
workload scheduling, (3) monitoring, (4) brownout controller/dimmer design and (5) metrics. The
taxonomy of each phase is summarized based on the different classification of brownout approaches.
Then, a comprehensive review of existing brownout approaches is presented. Furthermore, the
comparison of the advantages and limitations of the surveyed brownout approaches are also made.
Finally, the future directions and open challenges of brownout-based approaches to managing
resources and applications in cloud computing systems are given.
Our analysis shows that brownout can be applied in cloud computing systems for different

optimization objectives. Brownout approach also provides a new option for adaptive management
of resources and applications. This article shows the progress of brownout since it was firstly
borrowed to Clouds, and it also helps readers to find the research gap existing in the discussed area.
It is a promising direction to combine brownout with other existing techniques to achieve better
system performance.

ACKNOWLEDGMENTS
This work is supported by China Scholarship Council, and Australia Research Council (ARC).
We thank Editor-in-Chief (Prof. Sartaj Sahni), Associate Editor (Prof. Yeh-Ching Chung), and
anonymous reviewers for their excellent comments on improving the paper. We also thank Dr.
Sukhpal Singh Gill, Jungmin Jay Son, and Shashikant Ilager for their suggestions on improving this
paper.

REFERENCES
[1] 2005. RUBBoS: Bulletin Board Benchmark. (2005). http://jmob.ow2.org/rubbos.html
[2] 2009. RUBiS. RUBiS: Rice University Bidding System. (2009). http://rubis.ow2.org/
[3] 2014. 1998 World Cup Web Site Access Logs - The Internet Traffic Archive. (2014). http:

//ita.ee.lbl.gov/html/contrib/WorldCup.html
[4] 2016. (2016). http://www.afr.com/technology/banks-websites-down-as-wild-weather-knocks-out-amazon-web-

services-20160605-gpc8ob
[5] 2017. Docker Compose file version 3 reference. (2017). https://docs.docker.com/compose/compose-file/
[6] 2017. Docker Documentation | Docker Documentation. (2017). https://docs.docker.com/

[7] 2017. Weibo Servers Down After Lu Han Announces New Relationship. (2017). https:
//www.whatsonweibo.com/weibo-servers-lu-han-announces-new-relationship/

[8] 2018. Apache Mesos. (2018). http://mesos.apache.org/
[9] 2018. Apache Tomcat - Welcome! (2018). http://tomcat.apache.org/
[10] 2018. Open source software for creating private and public clouds. (2018). https://www.openstack.org/
[11] 2018. Production-Grade Container Orchestration - Kubernetes. (2018). https://kubernetes.io/
[12] 2018. Swarm mode overview | Docker Documentation. (2018). https://docs.docker.com/engine/swarm/

[13] 2018. VMware - Official Site. (2018). https://www.vmware.com/

[14] Frederico Alvares, Gwenaël Delaval, Eric Rutten, and Lionel Seinturier. 2017. Language Support for Modular Autonomic
Managers in Reconfigurable Software Components. In Proceedings of the 2017 IEEE International Conference onAutonomic
Computing. IEEE, 271–278.

[15] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. 2015. Modeling and analyzing MAPE-K feedback loops
for self-adaptation. In Proceedings of the 10th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems. 13–23.

[16] Mohammad Sadegh Aslanpour, Mostafa Ghobaei-Arani, and Adel Nadjaran Toosi. 2017. Auto-scaling Web Applications
in Clouds. Journal of Network Computer Applications 95 (2017), 26–41.

[17] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012. Energy-aware resource allocation heuristics for efficient
management of data centers for cloud computing. Future Generation Computer Systems 28, 5 (2012), 755–768.

[18] Anton Beloglazov and Rajkumar Buyya. 2013. Managing overloaded hosts for dynamic consolidation of virtual
machines in cloud data centers under quality of service constraints. IEEE Transactions on Parallel and Distributed
Systems 24, 7 (2013), 1366–1379.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

http://jmob.ow2.org/rubbos.html
http://rubis.ow2.org/
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://www.afr.com/technology/banks-websites-down-as-wild-weather-knocks-out-amazon-web-services -20160605-gpc8ob
http://www.afr.com/technology/banks-websites-down-as-wild-weather-knocks-out-amazon-web-services -20160605-gpc8ob
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/
https://www.whatsonweibo.com/weibo-servers-lu-han-announces-new-relationship/
https://www.whatsonweibo.com/weibo-servers-lu-han-announces-new-relationship/
http://mesos.apache.org/
http://tomcat.apache.org/
https://www.openstack.org/
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://www.vmware.com/

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:25

[19] Rajkumar Buyya, Rodrigo N Calheiros, Jungmin Son, Amir Vahid Dastjerdi, and Young Yoon. 2014. Software-defined
cloud computing: Architectural elements and open challenges. In Proceedings of the 2014 International Conference on
Advances in Computing, Communications and Informatics. 1–12.

[20] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. 2009. Modeling and simulation of scalable Cloud computing
environments and the CloudSim toolkit: Challenges and opportunities. In Proceedings of the International Conference
on High Performance Computing and Simulation. 1–11.

[21] Dazhao Cheng, Jia Rao, Changjun Jiang, and Xiaobo Zhou. 2016. Elastic power-aware resource provisioning of
heterogeneous workloads in self-sustainable datacenters. IEEE Transactions on Computer 65, 2 (2016), 508–521.

[22] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl,
Gabriel Tamura, Norha M Villegas, Thomas Vogel, et al. 2013. Software engineering for self-adaptive systems: A
second research roadmap. In Software Engineering for Self-Adaptive Systems II. 1–32.

[23] David Desmeurs. 2015. Algorithms for Event-Driven Application Brownout. Master Thesis, Umea University.
[24] David Desmeurs, Cristian Klein, Alessandro Vittorio Papadopoulos, and Johan Tordsson. 2015. Event-driven application

brownout: Reconciling high utilization and low tail response times. In Proceedings of the 2015 International Conference
on Cloud and Autonomic Computing. 1–12.

[25] Wanchun Dou, Xiaolong Xu, Shunmei Meng, Xuyun Zhang, Chunhua Hu, Shui Yu, and Jian Yang. 2017. An energy-
aware virtual machine scheduling method for service QoS enhancement in clouds over big data. Concurrency and
Computation: Practice and Experience 29, 14 (2017), 1–20.

[26] Simon Dupont, Jonathan Lejeune, Frederico Alvares, and Thomas Ledoux. 2015. Experimental analysis on autonomic
strategies for cloud elasticity. In Proceedings of the 2015 IEEE International Conference on Cloud and Autonomic Computing.
81–92.

[27] Jonas Dürango, Manfred Dellkrantz, Martina Maggio, Cristian Klein, Alessandro Vittorio Papadopoulos, Francisco
Hernández-Rodriguez, Erik Elmroth, and Karl-Erik Årzén. 2014. Control-theoretical load-balancing for cloud applica-
tions with brownout. In Proceedings of the 2014 IEEE 53rd Annual Conference on Decision and Control. 5320–5327.

[28] Amazon EC2. 2018. Amazon Web Services. (2018). https://aws.amazon.com/ec2/
[29] Tammy Everts. 2016. Google: 53longer than 3 seconds to load. (2016). https://www.soasta.com/blog/google-mobile-

web-performance-study/
[30] Grid5000. 2017. Grid5000:Home. (2017). https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
[31] MD Sabbir Hasan, Frederico Alvares, and Thomas Ledoux. 2017. GPaaScaler: Green Energy Aware Platform Scaler for

Interactive Cloud Application. In Proceedings of the 10th ACM International Conference on Utility and Cloud Computing.
79–89.

[32] Md Sabbir Hasan, Frederico Alvares, Thomas Ledoux, and Jean-Louis Pazat. 2017. Investigating Energy Consumption
and Performance Trade-Off for Interactive Cloud Application. IEEE Transactions on Sustainable Computing 2, 2 (2017),
113–126.

[33] Md Sabbir Hasan, Frederico Alvares de Oliveira, Thomas Ledoux, and Jean-Louis Pazat. 2016. Enabling green energy
awareness in interactive cloud application. In Proceedings of the 2016 IEEE International Conference on Cloud Computing
Technology and Science. 414–422.

[34] Soamar Homsi, Shuo Liu, Gustavo A Chaparro-Baquero, Ou Bai, Shaolei Ren, and Gang Quan. 2017. Workload
consolidation for cloud data centers with guaranteed QoS using request reneging. IEEE Transactions on Parallel and
Distributed Systems 28, 7 (2017), 2103–2116.

[35] Didac Gil De La Iglesia and Danny Weyns. 2015. MAPE-K Formal Templates to Rigorously Design Behaviors for
Self-Adaptive Systems. ACM Transactions on Autonomous and Adaptive Systems 10, 3 (2015), 1–31.

[36] Neil Irwin. 2013. These 12 Technologies will Drive our Economic Future. (2013). https:
//www.washingtonpost.com/news/wonk/wp/2013/05/24/these-12-technologies-will-drive-our-economic-
future/?utmterm=.e5ad3815c7eb

[37] Tarandeep Kaur and Inderveer Chana. 2015. Energy efficiency techniques in cloud computing: A survey and taxonomy.
ACM Computing Surveys (CSUR) 48, 2 (2015), 1–46.

[38] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-Rodriguez. 2014. Brownout: Building more
robust cloud applications. In Proceedings of the 36th International Conference on Software Engineering. 700–711.

[39] Cristian Klein, Alessandro Vittorio Papadopoulos, Manfred Dellkrantz, Jonas Dürango, Martina Maggio, Karl-Erik
Årzén, Francisco Hernández-Rodriguez, and Erik Elmroth. 2014. Improving cloud service resilience using brownout-
aware load-balancing. In Proceedings of the 2014 IEEE 33rd International Symposium on Reliable Distributed Systems.
31–40.

[40] Hongjian Li, Guofeng Zhu, Yuyan Zhao, Yu Dai, and Wenhong Tian. 2017. Energy-efficient and QoS-aware model
based resource consolidation in cloud data centers. Cluster Computing (2017), 1–11.

[41] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven Low, and Lachlan LH Andrew. 2015. Greening geographical load
balancing. IEEE/ACM Transactions on Networking 23, 2 (2015), 657–671.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

https://aws.amazon.com/ec2/
https://www.soasta.com/blog/google-mobile-web-performance-study/
https://www.soasta.com/blog/google-mobile-web-performance-study/
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
https://www.washingtonpost.com/news/wonk/wp/2013/05/24/these-12-technologies-will-drive-our-economic-future/?utm_term=.e5ad3815c7eb
https://www.washingtonpost.com/news/wonk/wp/2013/05/24/these-12-technologies-will-drive-our-economic-future/?utm_term=.e5ad3815c7eb
https://www.washingtonpost.com/news/wonk/wp/2013/05/24/these-12-technologies-will-drive-our-economic-future/?utm_term=.e5ad3815c7eb

1:26 M. Xu and R. Buyya

[42] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014. A review of auto-scaling techniques for elastic
applications in cloud environments. Journal of Grid Computing 12, 4 (2014), 559–592.

[43] Martina Maggio, Cristian Klein, and Karl-Erik Årzén. 2014. Control strategies for predictable brownouts in cloud
computing. IFAC Proceedings Volumes 47, 3 (2014), 689–694.

[44] Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya. 2017. Data storage management in cloud environments:
Taxonomy, survey, and future directions. ACM Computing Surveys (CSUR) 50, 6 (2017), 1–51.

[45] Toni Mastelic, Ariel Oleksiak, Holger Claussen, Ivona Brandic, Jean-Marc Pierson, and Athanasios V Vasilakos. 2015.
Cloud computing: Survey on energy efficiency. ACM Computing Surveys (CSUR) 47, 2 (2015), 1–36.

[46] Peter Mell, Tim Grance, et al. 2011. The NIST definition of cloud computing. (2011).
[47] Alireza Sadeghi Milani and Nima Jafari Navimipour. 2016. Load balancing mechanisms and techniques in the cloud

environments: Systematic literature review and future trends. Journal of Network and Computer Applications 71 (2016),
86–98.

[48] Bahareh Alami Milani and Nima Jafari Navimipour. 2016. A comprehensive review of the data replication techniques
in the cloud environments: Major trends and future directions. Journal of Network and Computer Applications 64 (2016),
229–238.

[49] Gabriel A Moreno. 2017. Adaptation Timing in Self-Adaptive Systems. PhD Thesis, Carnegie Mellon University.
[50] Gabriel AMoreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015. Proactive self-adaptation under uncertainty:

a probabilistic model checking approach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. 1–12.

[51] Gabriel AMoreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2016. Efficient decision-making under uncertainty
for proactive self-adaptation. In Proceedings of the 2016 IEEE International Conference on Autonomic Computing. 147–156.

[52] Vladimir Nikolov, Steffen Kächele, Franz J Hauck, and Dieter Rautenbach. 2014. Cloudfarm: An elastic cloud platform
with flexible and adaptive resource management. In Proceedings of the 2014 IEEE/ACM 7th International Conference on
Utility and Cloud Computing. 547–553.

[53] Ashutosh Pandey, Gabriel A Moreno, Javier Cámara, and David Garlan. 2016. Hybrid planning for decision making in
self-adaptive systems. In Proceedings of the 2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing
Systems. 130–139.

[54] Reena Panwar and Bhawna Mallick. 2015. Load balancing in cloud computing using dynamic load management
algorithm. In Proceedings of the 2015 IEEE International Conference on Green Computing and Internet of Things. 773–778.

[55] KyoungSoo Park and Vivek S Pai. 2006. CoMon: a mostly-scalable monitoring system for PlanetLab. ACM SIGOPS
Operating Systems Review 40, 1 (2006), 65–74.

[56] Ashikur Rahman, Xue Liu, and Fanxin Kong. 2014. A survey on geographic load balancing based data center power
management in the smart grid environment. IEEE Communications Surveys and Tutorials 16, 1 (2014), 214–233.

[57] Martin Randles, David Lamb, and A Taleb-Bendiab. 2010. A comparative study into distributed load balancing
algorithms for cloud computing. In Proceedings of the 2010 IEEE 24th International Conference on Advanced Information
Networking and Applications Workshops. 551–556.

[58] Altino M Sampaio, Jorge G Barbosa, and Radu Prodan. 2015. PIASA: A power and interference aware resource
management strategy for heterogeneous workloads in cloud data centers. Simulation Modelling Practice and Theory 57
(2015), 142–160.

[59] Sukhpal Singh and Inderveer Chana. 2016. EARTH: Energy-aware autonomic resource scheduling in cloud computing.
Journal of Intelligent and Fuzzy Systems 30, 3 (2016), 1581–1600.

[60] Sukhpal Singh and Inderveer Chana. 2016. QoS-aware autonomic resource management in cloud computing: a
systematic review. ACM Computing Surveys (CSUR) 48, 3 (2016), 1–46.

[61] Jungmin Son, Amir Vahid Dastjerdi, Rodrigo N Calheiros, and Rajkumar Buyya. 2017. Sla-aware and energy-efficient
dynamic overbooking in sdn-based cloud data centers. IEEE Transactions on Sustainable Computing 2, 2 (2017), 76–89.

[62] El-Ghazali Talbi. 2009. Metaheuristics: from design to implementation. Vol. 74. John Wiley and Sons.
[63] Luis Tomás, Cristian Klein, Johan Tordsson, and Francisco Hernández-Rodríguez. 2014. The straw that broke the

camel’s back: safe cloud overbooking with application brownout. In Proceedings of the 2014 IEEE International Conference
on Cloud and Autonomic Computing. 151–160.

[64] Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, Quan Z Sheng, and Rajiv Ranjan. 2017. A Taxonomy and
Survey of Cloud Resource Orchestration Techniques. ACM Computing Surveys (CSUR) 50, 2 (2017), 1–41.

[65] Wikibench. 2017. (2017). http://www.wikibench.eu/wiki/2007-10/
[66] Minxian Xu and Rajkumar Buyya. 2017. Energy Efficient Scheduling of Application Components via Brownout

and Approximate Markov Decision Process. In Proceedings of the 15th International Conference on Service-Oriented
Computing. 206–220.

[67] Minxian Xu, Amir Vahid Dastjerdi, and Rajkumar Buyya. 2016. Energy Efficient Scheduling of Cloud Application
Components with Brownout. IEEE Transactions on Sustainable Computing 1, 2 (2016), 40–53.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

http://www.wikibench.eu/wiki/2007-10/

Brownout Approach for Adaptive Management in Cloud Computing Systems 1:27

[68] Minxian Xu, Wenhong Tian, and Rajkumar Buyya. 2017. A survey on load balancing algorithms for virtual machines
placement in cloud computing. Concurrency and Computation: Practice and Experience 29, 12 (2017), 4123–4138.

[69] Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-Hung Chung, and Yun Li. 2015. Cloud computing
resource scheduling and a survey of its evolutionary approaches. ACM Computing Surveys (CSUR) 47, 4 (2015), 1–33.

[70] Yunqi Zhang, Michael A Laurenzano, Jason Mars, and Lingjia Tang. 2014. Smite: Precise qos prediction on real-system
smt processors to improve utilization in warehouse scale computers. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture. 406–418.

[71] Tianqi Zhao, Wei Zhang, Haiyan Zhao, and Zhi Jin. 2017. A Reinforcement Learning-Based Framework for the
Generation and Evolution of Adaptation Rules. In Proceedings of the 2017 IEEE International Conference on Autonomic
Computing. 103–112.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: April 2018.

	Abstract
	1 Introduction
	1.1 Need for Adaptive Management in Cloud Computing Systems
	1.2 Motivation of Research
	1.3 Our Contributions
	1.4 Related Surveys
	1.5 Article Structure

	2 Background
	2.1 Cloud Computing
	2.2 Adaptive Management

	3 Article Selection Methodology
	3.1 Source of articles
	3.2 Search Method
	3.3 Outcome

	4 Brownout Approach
	4.1 Overview of Brownout Approach
	4.2 Evolution of Brownout Approaches in Cloud Computing

	5 Phases and Taxonomy of Brownout-based Adaptive Management
	5.1 Application Design
	5.2 Workload Scheduling
	5.3 Monitoring
	5.4 Brownout Controller/Dimmer Design
	5.5 Metrics

	6 Review of Brownout Approaches
	7 A perspective model
	8 Future Research Directions
	9 Summary and Conclusions
	Acknowledgments
	References

