
Simulation of Buffer Management Policies in Networks for Grids

Agustı́n Caminero 1∗, Anthony Sulistio 2, Blanca Caminero 1,
Carmen Carrión 1, Rajkumar Buyya 2

1Department of Computing Systems. 2Dept. of Computer Science and Software Engineering
The University of Castilla La Mancha, Spain. The University of Melbourne, Australia
{agustin, blanca, carmen}@dsi.uclm.es {anthony, raj}@csse.unimelb.edu.au

Abstract

Grid technologies are emerging as the next generation
of distributed computing, allowing the aggregation of re-
sources that are geographically distributed across different
locations. The network remains an important requirement
for any Grid application, as entities involved in a Grid sys-
tem (such as users, services, and data) need to communi-
cate with each other over a network. The performance of
the network must therefore be considered when carrying
out tasks such as scheduling, migration or monitoring of
jobs. Network buffers management policies affect the net-
work performance, as they can lead to poor latencies (if
buffers become too large), but also leading to a lot of packet
droppings and low utilization of links, when trying to keep
a low buffer size. Therefore, network buffers management
policies should be considered when simulating a real Grid
system. In this paper, we introduce network buffers man-
agement policies into the GridSim simulation toolkit. Our
framework allows new policies to be implemented easily,
thus enabling researchers to create more realistic network
models. Fields which will harness our work are scheduling,
or QoS provision. We present a comprehensive description
of the overall design and a use case scenario demonstrating
the conditions of links varied over time.

1 Introduction

Grid computing has emerged as the next-generation par-
allel and distributed computing methodology that aggre-
gates dispersed heterogeneous resources for solving various
kinds of large-scale parallel applications in science, engi-
neering and commerce [11]. Grid systems are highly vari-
able environments, made of a series of independent orga-
nizations that share their resources [12]. Some application

∗Corresponding author. Tel.: +34 967 59 92 00 ext. 2693; fax: +34 967
59 93 43

domains that take advantage of the Grids are collaborative
visualization [21] and medical applications [5].

The network remains an important requirement for Grid
applications, as entities involved in a Grid (e.g. users, ser-
vices, and data) need to communicate with each other over a
network– resulting in the network playing an essential role
in Grid systems [24]. Floyd et al. demonstrated in [9] that
the utilization level of the network links is heavily affected
when the buffer management policy is not efficiently tuned.
Thus, since the performance of the network is affected by
them, network buffers policies also affect the performance
of Grids.

A number of policies have been developed to manage
network buffers [10, 9, 17, 3]. According to Floyd et
al. [10], Random Early Detection (RED) algorithm is useful
to detect incipient network congestion in packet-switched
networks, which is similar to computational Grids since the
Grid infrastructure is built on existing public network. The
RED gateway avoids the global synchronization of many
connections decreasing their window at the same time, and
keeps the average queue size low while allowing occasional
bursts of packets in the queue. This way, RED can improve
the performance received by users, maximazing through-
put and minimizing delay [10]. However, RED algorithm
might not be efficient under varying traffic conditions, as it
requires constant tuning of its parameters to be able to work
efficiently. This makes RED not suitable to be used when
providing network Quality of Service (QoS), as a misconfig-
uration of RED parameters would seriously affect the per-
formance received by users [9]. Therefore, Floyd et al. [9]
suggest using Adaptive RED (ARED) algorithm to over-
come this drawback.

Kumar et al. [17] present a buffer management frame-
work for achieving end-to-end proportional loss differen-
tiation in networks, which is also based on RED. Aweya et
al. [3] present a technique for enhancing the effectiveness of
RED by dynamically changing the threshold settings as the
number of connections and system load changes. Kessel-

man et al. [16] introduce a novel general non-preemptive
buffer management scheme, which considers the queues or-
dered by their size. Gazi et al. [14] propose a threshold-
based dynamic buffer management policy, decay function
threshold, to regulate the lengths of very active queues and
avoid performance degradations.

The contribution of this paper is as follows. We de-
sign and implement buffer policies, such as FIFO, RED
and ARED on GridSim [27], an open-source Grid simula-
tion tool, since it can simulate both computational and data
Grids. Moreover, several researchers have been using this
simulator (such as [7, 23, 25]). More importantly, Grid-
Sim allows the flexibility and extensibility to incorporate
new components into its existing infrastructure. We decided
to implement these two versions of RED because RED (or
policies based on it) is a widely used network buffer man-
agement policy, as we showed above. Hence, our work ben-
efits researchers for evaluating and improving their schedul-
ing works against volatile network conditions.

This paper is organized as follows: Section 2 provides
a overview on several Grid and network simulation tools.
Section 3 provides a brief explanation of the buffer manage-
ment policies implemented in this work. Section 4 describes
the implementations on GridSim, which are supported by
the results depicted in Section 5. Section 6 concludes the
paper and suggests some guidelines for future work.

2 Related Work

As we mentioned previously, simulations are essential
for carrying out research experiments in Grid systems.
Thus, a number of simulation tools have been developed,
such as GridSim [27], OptorSim [4], SimGrid [13], and Mi-
croGrid [20]. Sulistio et al. [27] provide a detailed com-
parison of these simulation tools in terms of their network
functionalities and features. The simulation tool we use for
our work is GridSim. Moreover, [27] also provides an in-
depth explanation of its network components. In this pa-
per, we are interested in the simulation of network buffer
management policies, and none of these tools provide the
mentioned functionality.

Simulations are also widely used in the networking re-
search area. Examples of such simulators are NS-2 [1],
DaSSF [19], OMNET++ [28] and J-Sim [22]. Although
their support for network protocols is extensive, they are not
targeted at studying Grid computing. This is because sim-
ulating Grids requires modeling the effects of scheduling
algorithms on Grid resources and investigating users QoS
requirements for application processes. In addition, we be-
lieve simulating TCP and UDP connections are sufficient to
model a real world behavior, because Grid users are mostly
interested in finding out round trip time and available band-
width of a host. Therefore, these network simulators per-

form other complex functionalities which are not needed in
simulating a Grid computing environment [27].

As a result, we decided to extend GridSim with a better
network model rather than integrating an existing simulator
tool into it. We decided it because GridSim is a very versa-
tile tool that can be extended in an easy and efficient way.
Also, integrating a network simulator would be more com-
plicated and time-consuming than extending GridSim, and
such integration would not be so interesting for the purposes
of Grid researchers.

3 Buffer Management Policies

The aim of our work is the extension of the GridSim
Toolkit with network buffer management policies. This is
necessary for a realistic Grid simulation, because network
buffers affect the performance of the network, and this in
turn affects the performance of the Grid. Thus, in this sec-
tion, we provide an overview on the policies we have imple-
mented, namely RED, Adaptative RED, and FIFO. FIFO is
an straightforward policy, which just enqueues packets into
buffers, and packets get dropped when buffers are full. The
other two policies will be explained the next.

3.1 Random Early Detection

One of the most widely used policies is Random Early
Detection (RED) [10]. RED routers detect incipient conges-
tion by computing the average queue size. The router could
notify congestion to connections either by dropping packets
arriving at the router or by setting a bit in packet headers.
When the average queue size exceeds a preset threshold, the
router drops or marks each arriving packet with a certain
probability, where the exact probability is a function of the
average queue size. RED routers keep the average queue
size low while allowing occasional bursts of packets in the
queue [10].

During congestion, the probability that the router noti-
fies a particular connection to reduce its window is roughly
proportional to that connection’s share of the bandwidth
through the router. RED routers are designed to accompany
a transport-layer congestion control protocol such as TCP.
The RED router has no bias against bursty traffic and avoids
the global synchronization of many connections decreas-
ing their transmission window at the same time [10]. The
RED congestion control mechanisms monitor the average
queue size for each output queue, and, using randomization,
choose connections to notify of that congestion. Transient
congestion is accommodated by a temporary increase in the
queue. Longer-lived congestion is reflected by an increase
in the computed average queue size, and results in random-
ized feedback to some of the connections to decrease their
windows [10].

Algorithm 1 Random Early Detection (RED) algorithm.
1: for all incoming packet do
2: avg← calculate average queue size
3: if avg > maxth then
4: drop packet
5: else if avg > minth then
6: drop packet with a probability maxp

7: else
8: enque packet
9: end if

10: end for

Algorithm 2 Calculation of average queue size.
1: if queue is non-empty then
2: avg ← old avg + wq(q − old avg)
3: else
4: avg ← (1− wq)(time−q time)/s × old avg
5: end if

The RED algorithm can be seen in Algorithm 1. For
each incoming packet, the average queue size is calculated
(line 2). If it is above the maximum threshold, the packet is
dropped (line 4). If it is between both thresholds, the packet
is dropped with probability maxp (line 6). Otherwise, the
packet is enqueued (line 8). The average queue size calcula-
tion is explained by Algorithm 2. The parameters are listed
here: avg: current average queue size; old avg: previous
average queue size; wq: queue weight, the significance of
the current queue size when calculating the average queue
size; q: current queue size; q time: the time when the queue
got empty for the last time; time: current time; s: typi-
cal transmission time. maxth: maximum threshold, upper
limit for the average queue size; minth: minimum thresh-
old, lower limit for the average queue size; maxp: the max-
imum probability for an incoming packet to get dropped.
This algorithm works as follows: if the queue is not empty,
the average queue size is calculated by adding the weighted
difference between the current queue size and the previous
average to the previous average (line 2). Otherwise , the
new average is calculated by considering the time differ-
ence between the current time and the time when the queue
got empty for the last time (line 4).

RED algorithm has been used as a basis for the develop-
ment of other algorithms. Among the algorithms developed
based on RED we can find Adaptive RED [8] [9].

3.2 Adaptive RED

Adaptive RED [8] [9] is based on the assumption that
the resulting average queue length is quite sensitive to the
level of congestion and to the RED parameter settings, and
is therefore not predictable in advance. Authors claim that

Algorithm 3 The Adaptative RED algorithm.
1: repeat
2: Every interval seconds
3: if (avg > target and maxp <= high limit) then
4: maxp ← maxp + α {increase maxp}
5: else
6: if (avg < target and maxp >= low limit) then
7: maxp ← maxp × β {decrease maxp}
8: end if
9: end if

10: until end of simulation

adaptive RED removes the sensitivity to parameters that af-
fect RED’s performance and can reliably achieve a speci-
fied target average queue length in a wide variety of traffic
scenarios. Thus, Adaptative RED is similar to RED, but it
updates the maxp parameter with a given frequency, so that
the average queue length is kept at a reasonable level at all
times. The update procedure is shown in Algorithm 3, and
its parameters are the following: interval: a period of time;
high limit: a top limit for the maximum dropping prob-
ability (max p); α: increment; low limit: : a low limit
for max p; β: decrease factor (β < 1); target: the de-
sired average queue length. Also, ARED calculates wq and
minth based on the speed of the link, thus choosing their
values more accurately than just choosing them by hand.
The equations used for that are wq = 1 − exp(−1/C) and

minth = max
[
5,

delaytarget×C
2

]
[9]. In these equations,

we can see two new parameters, namely C, which is the
link capacity in packets per second, and delaytarget, which
is the target average queuing delay.

The Algorithm 3 works as follows: every interval sec-
onds, the average queue size is checked (it is calculated as
Algorithm 2 says), and it is compared with the target. Also,
the max p is compared with the high limit (line 3). If
the queue size is too large, and the dropping probability is
smaller than the high limit, then increase the dropping prob-
ability (line 4). Otherwise, if the queue is too small, and the
dropping probability is higher than the low limit (line 6),
then decrease the dropping probability (line 7).

These three algorithms (FIFO, RED, and ARED) have
been implemented in GridSim, and the implementation will
be explained in the next section.

4 Implementation of Buffers Management
Policies in GridSim

In this section we will first explain the classes architec-
ture developed to implement the network buffers manage-
ment policies, followed by an explanation on the interac-
tions between entities.

Figure 1. Classes created for the network fi-
nite buffers functionality.

4.1 Architecture

We have implemented FIFO, RED and ARED as man-
agement algorithms for finite buffers in routers, and imple-
mentations have been carried out on GridSim. In order to
provide GridSim with this new functionality, several classes
have been developed. These classes are depicted in bold
font Figure 1, and will be explained the next:
• FnbUser: This class implements the users of our

Grid environment. Its functionality can be summarized
as follows: (1) creation of jobs; (2) submission of jobs
to resources; (3) reception of succeeded jobs.
• FnbSCFQScheduler: This class is based in the
SCFQScheduler GridSim class with some varia-
tions to support finite buffers. This is an abstract
class, and by extending it, new policies can be imple-
mented. We have implemented three policies: RED,
ARED and FIFO. This class has an abstract function,
the enque(Packet) function, which is called ev-
erytime a new packet arrives at the router.
• RED, ARED, and FIFO: These are three buffer man-

agement policies. They implement the
enque(Packet) function, which calls the buffer
management algorithm every time a new packet ar-
rives at the router. These classes behave as was
explained in Section 3. As ARED policy is based
on RED, ARED class extends RED. This way, new
policies based on RED can be easily implemented,
just by extending RED. These four classes (includ-
ing FnbSCFQScheduler) are the most important
classes of our model, as they implement the policies
to manage network buffers.

Apart from that, when a packet gets dropped, we have
to inform the user involved in that transmission. We do
it after a certain delay, thus emulating the expiration of
a time-out. This is essential as the simulator does not
deal well with entities waiting for an event that never
arrives. In other words, if a packet gets dropped, the
user should be informed, because the job to which that
packet belongs is failed. Thus, that job will not ar-
rive back to the user after completion. In real UDP

transmissions, users just inject packets into the net-
work, and do not care if there are lost packets. Work
on implementing TCP on GridSim will be considered
as future work.
• NetIO: It is an interface class, providing some func-

tions to deal with IO ports.
• FnbInput: This class implements NetIO, and it is

based on the Input GridSim class. The differences
between FnbInput and Input are mainly in the
getDataFromLink() function. As packets may
get dropped, input ports must check if all the pack-
ets belonging to a transmission have arrived properly.
Hence, the transmission is successfull only if all the
packets have arrived. Therefore, if any packet belong-
ing to a job’s transmission gets dropped, the job will
get filtered at the input port of the receiver, not reach-
ing the receiver itself. We do that because we are con-
sidering only UDP transmissions, so no detection of
lost packets is performed. As mentioned before, im-
plementing TCP on GridSim is part of the future work.
• FnbOutput: This class implements NetIO, and it is

based on the Output GridSim class. The difference
between FnbOutput and Output is the way how
it receives notifications from routers when a packet is
dropped. In this case, if the output port belongs to a
user, the port will inform the user about that. Another
strategy would be retransmitting the lost packet, and
this is considered as a part of the future work. When
a packet is dropped, and the output port of the user is
informed about that, the port has to match the packet
ID to the job it belongs to. Then, the port tells the
user which job has suffered the dropping. This way a
user can deem a job as failed if any of its packets got
dropped. This has been done in order to avoid the fact
that users keep waiting for a job that never arrives. In
real world with UDP transmissions, output ports only
have to send packets to the other end of transmissions.
• FnbRouter and FnbRIPRouter: based on Grid-

Sim classes Router and RIPRouter, these classes
were modified to include some statistics, such as
dropped packets counters.
• FirstLastPacketsGridlet: An array of ob-

jects of this class is used to keep the number of packets
each job (gridlet using the terminology of the simula-
tor) is made of. This is necessary for the output port to
be able to match a packet ID to the gridlet it belongs
to.
• Source pktNum: This class is used in the input

ports of users/resources, to make sure that all the pack-
ets of a job arrive at the user/resource. If any of the
packets of a job do not arrive, that job will be consid-
ered as failed. In this case, the input port will filter that
job, hence the user/resource will not receive it.

• GridResource: An original GridSim class, used to
execute users’ jobs.

4.2 Functionality

The process of creating an experiment in GridSim re-
quires the following steps (more details on the experiment
creation process can be found in [27, 26]. First, we must ini-
tialize the GridSim package by calling GridSim.init()
and GridSim.initNetworkType(GridSimTags.
NET BUFFER PACKET LEVEL) methods. This way
we decide we want to use the finite buffer functional-
ity. Second, we must create one or more Grid resource
and Grid user entities. Each resource must have num-
ber of processors, speed of processing and internal pro-
cess scheduling policy. Third, we must build a net-
work topology by connecting Grid user and resource en-
tities. Finally, we must run the experiment by calling
GridSim.startGridSimulation() method.

Figure 2 depicts a use case in which a user sends a job
to a resource, and all the packets reach the resource. The
same situation would be for the opposite direction, this is,
from the resource to the user. From left to right, we can see
that an user submits a job, hence his/her output port has to
split that job into a number of packets. The output port also
creates a firstLastPacketGridlet object contain-
ing the ID of the first and the last packet of that job, in this
case, 0 and 2. Then, packets are transmitted through the
network to the router, which calls FnbSCFQScheduler
for each incoming packet. The FnbSCFQScheduler ob-
ject runs the policy algorithm to determine whether each
packet is dropped or not, and this is done by the child class
implementing the chosen policy. In this case, no packet is
dropped, hence they are forwarded to the input port of the
resource. As packets arrive at the input port of the resource,
the port counts them. When all the packets of the job have
arrived, then the job has successfully reached the resource,
hence the input port sends the job to the GridResource
entity where it will be executed.

Figure 3 shows an scenario in which one of the packets
is dropped. This happens when the
FnbSCFQScheduler runs the policy algorithm. In this
case, the SCFQ scheduler informs the output port of the
user about the dropping. In turn, the output port checks
which job this dropped packet belongs to, and informs the
user. This way, the user knows that this job will not get
executed, so his/her will not wait for the output of that job to
come back. Also, the input port of the resource will discover
the dropping when a packet does not reach it. In this case,
the port will filter that job, not sending it to the resource.
Next, we show the usefulness of our work with a use case
scenario.

5 Use Case Scenario

The aim of this experiment is to show GridSim’s abil-
ity to simulate an adequate-size Grid testbed. Therefore,
we create a network scenario based on the on the EU Data-
GRID Testbed 1, as shown in Figure 4 [15]. For this exper-
iment, our main concern is the network behavior in a Grid
environment. Hence, we are trying to look at how differ-
ent buffer management policies affect the network perfor-
mance.

In this scenario we will compare the RED and ARED,
using a FIFO policy as a base case. Table 1 summarizes the
characteristics of simulated resources, which were obtained
from a real LCG testbed [18]. The parameter regarding to
a CPU rating is defined in the form of MIPS (Million In-
structions Per Second) as per SPEC (Standard Performance
Evaluation Corporation) benchmark. Moreover, the num-
ber of nodes for each resource have been scaled down by
10, because of memory limitation on the computer we ran
the experiments on, and also for time restrictions. The com-
plete experiments would require more than 2GB of memory,
and would take several weeks of processing. Finally, each
resource node has four CPUs.

For this experiment, we create 100 users and distribute
them among the locations, as shown in Table 1. Each user
has 10 jobs and the processing power of each job is 1400000
Million Instructions (MI), which means that each job takes
about 2 seconds if it is run on the CERN resource. Also, I/O
files sizes are 24 MB. All jobs have the same parameters that
are taken from ATLAS online monitoring and calibration
system [2]. Moreover, we set the job duration time to be
small because it does not influence the performance of the
network buffer management policy.

In order to create congestion on a link, we have chosen
20% of the users to submit their jobs to the resource CERN.
Thus, the link between this resource and Router0 (shaded
in Figure 4) will be heavily used. So, all the statistics pre-
sented here are those collected at the link between CERN
and Router0.

To simplify the experiment set-up, some parameters are
identical for all network elements, such as the maximum
transfer unit (MTU) of links is 1,500 bytes and the latency
is 10 milliseconds. Links will be scaled down by 1000, for
the same reasons mentioned above.

Table 2 specifies the values for the parameters of the
simulations running RED algorithm. In order to calcu-
late the thresholds, we have considered the rule maxth =
3×minth, as suggested in [10]. The value for wq has been
chosen too small, so that we can appreciate the improve-
ment achieved by ARED, which calculates that parameter
based on the speed of the link. Table 3 specifies the val-
ues for the parameters of the simulations running Adapta-
tive RED algorithm, and these values are those used in [9].

Figure 2. Sequence diagram showing a transmission with no dropped packets.

Figure 3. Sequence diagram showing a transmission with one dropped packet.

The value for maxth follows the same rule as for RED. The
maximum buffer size for all the simulations is 200 pack-
ets, and this is the only parameter for the base case running
FIFO.

Figure 5 shows the first performance results that are col-
lected at the beginning of our simulations. Figure 5 (a)
shows variations on the buffer occupation. We can see that
around time 250, buffer occupations suffer an increase, and
this is because users start submitting their jobs to the re-
source. Thus, the buffer of that link receives a lot of in-
coming packets. When FIFO is running, the buffer gets

Parameter Value
maxth 150 packets
minth 50 packets
maxp 0.02
wq 0.0001

Table 2. Values of RED parameters.

saturated, as FIFO imposes no restrictions on the buffer
occupations. As opposed to it, both RED and ARED can

Resource Name (Location) # Nodes CPU Rating (MIPS) Policy # Users
RAL (UK) 41 49,000 Space-Shared 12

Imp. College (UK) 52 62,000 Space-Shared 16
NorduGrid (Norway) 17 20,000 Space-Shared 4

NIKHEF (Netherlands) 18 21,000 Space-Shared 8
Lyon (France) 12 14,000 Space-Shared 12

CERN (Switzerland) 59 70,000 Space-Shared 24
Milano (Italy) 5 70,000 Space-Shared 4
Torino (Italy) 2 3,000 Time-Shared 2
Rome (Italy) 5 6,000 Space-Shared 4

Padova (Italy) 1 1,000 Time-Shared 2
Bologna (Italy) 67 80,000 Space-Shared 12

Table 1. Resource specifications.

Figure 4. EU DataGRID Testbed 1.

Parameter Value
interval 0.5 seconds

α min(0.001,maxp/4)
β 0.9

target [minth + 0.4× (maxth −minth),
minth + 0.6× (maxth −minth)]

delaytarget 0.005 seconds
low limit 0.01
high limit 0.5

Table 3. Values of Adaptative RED parame-
ters.

keep buffer occupations at reasonable levels, far away from

saturation. In order to achieve that, ARED increases the
max p, and this can be seen in Figure 5 (b). Regarding
RED, the buffer occupation has several spikes, and this is
because the wq has been chosen to a non-optimal parameter
and RED cannot detect congestion efficiently. As opposed
to it, ARED chooses wq based on the link features, thus the
buffer occupation remains more stable.

Figure 6 shows average buffer occupation for RED and
ARED. We do not present this statistic for FIFO, as we can
see in Figure 5 (a) that the buffer occupation reaches the
full buffer capacity (200 packets) and does not change. As
we mentioned above, ARED can keep the average buffer
occupation quite stable, as opposed to RED, which shows
some spikes. Both of them can keep the average buffer size
between the thresholds. Recall that thresholds are differ-
ent for RED and ARED, since they are automatically cal-
culated (in the case of ARED), and chosen by hand (in
the case of RED). Because of this, ARED’s thresholds are
lower (minth = 5 packets and maxth = 15 packets) than
RED’s (minth = 50 packets and maxth = 150 packets).
This way, the difference in average buffer occupation be-
tween both policies showed in Figure 5 (a) is explained.

Figure 7 shows the dropped packets at the link between
resource CERN and the router it is directly connected to.
We can see that the policy which drops more packets at this
link is FIFO, because it does nothing to control the buffer
occupations. Thus, too many packets reach this link, and fill
the buffer. Then, all the packets reaching this link when the
buffer is full will get dropped. On the other hand, RED and
ARED does perform that kind of control, thus the amount
of packets that reach this link is lower. RED and ARED
schedulers at each link in the topology filter packets when
the average queue size becomes too high, thus the amount of
packets that reach this link is lower. Recall that the current
infrastructure does not provide retransmission of dropped
packets, and this improvement is considered as future work.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 300 400 500 600 700 800 900 1000

m
ax

_p

Simulation Time (sec.)

Low_limit

High_limit

RED
ARED

(a) Buffer occupation. (b) maxp.

Figure 5. Timelines showing the progress of buffer occupations and maxp.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 b
uf

fe
r

oc
cu

pa
tio

n
(#

 p
kt

s.
)

Simulation Time (sec.)

Min_threshold

Max_threshold

ARED

 0

 20

 40

 60

 80

 100

 120

 140

 160

 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 b
uf

fe
r

oc
cu

pa
tio

n
(#

 p
kt

s.
)

Simulation Time (sec.)

Min_threshold

Max_threshold

RED

(a) Average buffer occupation for ARED. (b) Average buffer occupation for RED.

Figure 6. Timelines showing the progress of average buffer occupations for RED and ARED.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000

 200 300 400 500 600 700 800 900 1000

D
ro

pp
ed

 p
ac

ke
ts

Simulation Time (sec.)

FIFO
RED
ARED

Figure 7. Statistics on dropped packets.

As for the users point of view, Figure 8 shows statistics
regarding the moment when users from the location CERN

receive the first dropped packet for a job. In a real environ-
ment, this means the retransmission of the lost packet, and if
it is a TCP connection, the decrease of the transmission win-
dow and the retransmission of all the packets from the lost
one onwards. As we explained in Section 3, avoiding global
synchronization is one of the aims of the policies based on
RED. In this figure, we can see that there are few users who
receive a dropped packet at the same time (the vertical lines
in the figure show the moment when more than 1 user gets
a dropped packet at the same time, and number on them
show how many users get synchronized) when using RED
or ARED policies. Figure 8 (a) shows that up to 4 users get
a dropped packet at the same time, and Figure 8 (b) and (c)
show no more than 3. Also, this happens less frequently
when RED or ARED is being used, than with FIFO.

 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 0 25 50 75 100 125 150 175 200 225

U
se

r
ID

Simulation Time (min.)

2 2 3 4 2

43

 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 0 25 50 75 100 125 150 175 200 225

U
se

r
ID

Simulation Time (min.)

3

2

 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58

 0 25 50 75 100 125 150 175 200 225

U
se

r
ID

Simulation Time (min.)

3

2 2

(a) FIFO. (b) ARED. (c) RED.

Figure 8. Timelines showing the moment when users from CERN receive a packet dropped.

6 Conclusion and Future Work

Grid technologies are emerging as the next generation
of distributed computing, allowing the aggregation of re-
sources that are geographically distributed across different
locations. Due to the large scale and distributed manage-
ment of Grids, the use of simulation tools is essential to
carry out research efficiently. Thus, simulation tools should
cover the main features of a real Grid system, but this was
not totally true for the network of Grids.

In this paper we propose an extension to one of the most
widely used simulation tools to cover this gap. More pre-
cisely, we have introduced finite network buffers and net-
work buffers management policies into GridSim. Three
management policies have been implemented, namely
FIFO, RED, and ARED, but more policies can be imple-
mented using the current framework. This way, researchers
will be able to create more realistic network models, thus
improving their research in several key fields in Grids, such
as scheduling, or QoS provision. We have presented results
demonstrating the correctness of our work.

As for future work, we are planning to use the improved
simulation tool to carry out research aimed at providing net-
work QoS in Grids. This will be done by integrating this
functionality into the Grid network broker outlined in [6].
Moreover, the functionality explained in this paper can
be extended to include retransmissions of dropped pack-
ets. Furthermore, we are thinking on implementing TCP
in GridSim as another future step.

Acknowledgement

This work has been jointly supported by the Span-
ish MEC and European Commission FEDER funds un-
der grants “Consolider Ingenio-2010 CSD2006-00046” and
“TIN2006-15516-C04-02”; jointly by JCCM and Fondo
Social Europeo under grant “FSE 2007-2013”; and by

JCCM under grants “PBC-05-007-01”, “PBC-05-005-01”.
This research is also partially funded by the Australian Re-
search Council and the Department of Education, Science
and Training.

References

[1] The network simulator - ns-2. Web Page, 2007. http:
//www.isi.edu/nsnam/ns/.

[2] ATLAS online monitoring and calibration system.
Web Page, 2007. http://dissemination.
interactive-grid.eu/applications/HEP.

[3] J. Aweya, M. Ouellette, D. Y. Montuno, and A. Chap-
man. Enhancing TCP performance with a load-adaptive
RED mechanism. Intl. Journal of Network Management,
11(1):31–50, 2001.

[4] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar,
K. Stockinger, and F. Zini. Simulation of dynamic grid repli-
cation strategies in OptorSim. In Proc. of the 3rd Intl. Work-
shop on Grid Computing (GRID’02), London, UK, 2002.

[5] R. Buyya, S. Date, Y. Mizuno-Matsumoto, S. Venugopal,
and D. Abramson. Neuroscience instrumentation and dis-
tributed analysis of brain activity data: a case for escience
on global grids. Concurrency and Computation: Practice
and Experience, 17(15):1783–1798, 2005.

[6] A. Caminero, C. Carrión, and B. Caminero. Designing an
entity to provide network QoS in a Grid system. In Proc. of
the 1st Iberian Grid Infrastructure Conference (IberGrid),
Santiago de Compostela, Spain, 2007.

[7] E. Elmroth and P. Gardfjäll. Design and evaluation of a de-
centralized system for grid-wide fairshare scheduling. In
Proc. of the 1st Intl. Conference on e-Science and Grid Com-
puting (eScience), Melbourne, Australia, 2005.

[8] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin. A self-
configuring RED gateway. In Proc. of the INFOCOM Con-
ference, New York, USA, 1999.

[9] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED:
An algorithm for increasing the robustness of RED’s active
queue management. Technical report, AT & T Center for
Internet Research at ICSI, Aug. 2001.

[10] S. Floyd and V. Jacobson. Random early detection gate-
ways for congestion avoidance. Transactions on Network-
ing, 1(4):397–413, 1993.

[11] I. Foster and C. Kesselman. The Grid 2: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann, 2 edi-
tion, 2003.

[12] I. T. Foster. The anatomy of the Grid: Enabling scalable
virtual organizations. In Proc. of the 1st Intl. Symposium on
Cluster Computing and the Grid (CCGrid), Brisbane, Aus-
tralia, 2001.

[13] K. Fujiwara and H. Casanova. Speed and accuracy of net-
work simulation in the simgrid framework. In Proc. of the
1st Intl. Workshop on Network Simulation Tools (NSTools),
Nantes, France, 2007.

[14] B. Gazi and Z. Ghassemlooy. Dynamic buffer management
using per-queue thresholds: Research articles. Intl. Journal
Communications and Systems, 20(5):571–587, 2007.

[15] W. Hoschek, F. J. Janez, A. Samar, H. Stockinger, and
K. Stockinger. Data management in an international data
grid project. In Proc. of the 1st Intl. Workshop on Grid Com-
puting, Bangalore, India, 2000.

[16] A. Kesselman and Y. Mansour. Harmonic buffer manage-
ment policy for shared memory switches. Theoretical Com-
puter Science, 324(2-3):161–182, 2004.

[17] A. Kumar, J. Kaur, and H. Vin. End-to-end proportional
loss differentiation. Technical Report TR-01-33, University
of Texas, USA, 2001.

[18] LCG Computing Fabric Area. Web Page, 2007. http:
//lcg-computing-fabric.web.cern.ch.

[19] J. Liu and D. M. Nicol. DaSSF 3.1 User’s Manual. Dart-
mouth College, April 2001.

[20] X. Liu. Scalable Online Simulation for Modeling Grid Dy-
namics. PhD thesis, Univ. of California at San Diego, 2004.

[21] F. T. Marchese and N. Brajkovska. Fostering asynchronous
collaborative visualization. In Proc. of the 11th Intl. Confer-
ence on Information Visualization, Washington DC, USA,
2007.

[22] J. A. Miller, R. S. Nair, Z. Zhang, and H. Zhao. JSIM: A
JAVA-based simulation and animation environment. In 30th
Annual Simulation Symposium (ANSS’97), Atlanta, USA,
1997.

[23] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman,
R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, and
M. Samidi. Scheduling data-intensive workflows onto
storage-constrained distributed resources. In Proc. of the 7th
Intl. Symposium on Cluster Computing and the Grid (CC-
Grid), Rio, Brazil, 2007.

[24] A. Roy. End-to-End Quality of Service for High-End Appli-
cations. PhD thesis, Dept. of Computer Science, University
of Chicago, 2001.

[25] G. Singh, C. Kesselman, and E. Deelman. A provisioning
model and its comparison with best-effort for performance-
cost optimization in grids. In Intl. Symposium on High Per-
formance Distributed Computing (HPDC), Monterey Bay,
USA, 2007.

[26] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya.
A toolkit for modelling and simulating data grids: An exten-
sion to gridsim. Concurrency and Computation: Practice
and Experience, accepted for publication on Dec. 3, 2007.

[27] A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. On
incorporating differentiated levels of network service into
GridSim. Future Generation Computer Systems, 23(4):606–
615, May 2007.

[28] A. Varga. The omnet++ discrete event simulation system,.
In Proc. of the European Simulation Multiconference (ESM),
Prague, Czech Republic, 2001.

