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Abstract Grid computing is mainly helpful for executing high-performance com-
puting applications. However, conventional grid resources sometimes fail to offer a
dynamic application execution environment and this increases the rate at which the
job requests of users are rejected. Integrating emerging virtualization technologies
in grid and cloud computing facilitates the provision of dynamic virtual resources in
the required execution environment. Resource brokers play a significant role in man-
aging grid and cloud resources as well as identifying potential resources that satisfy
users’ application requests. This research paper proposes a semantic-enabled CARE
Resource Broker (SeCRB) that provides a common framework to describe grid and
cloud resources, and to discover them in an intelligent manner by considering software,
hardware and quality of service (QoS) requirements. The proposed semantic resource
discovery mechanism classifies the resources into three categories viz., exact, high-
similarity subsume and high-similarity plug-in regions. To achieve the necessary user
QoS requirements, we have included a service level agreement (SLA) negotiation
mechanism that pairs users’ QoS requirements with matching resources to guarantee
the execution of applications, and to achieve the desired QoS of users. Finally, we have
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implemented the QoS-based resource scheduling mechanism that selects the resources
from the SLA negotiation accepted list in an optimal manner. The proposed work is
simulated and evaluated by submitting real-world bio-informatics and image process-
ing application for various test cases. The result of the experiment shows that for jobs
submitted to the resource broker, job rejection rate is reduced while job success and
scheduling rates are increased, thus making the resource management system more
efficient.

Keywords Cloud computing - Grid computing - High-performance computing
(HPC) - Resource broker - Semantic description - Semantic discovery - Service level
agreement (SLA)

List of symbols

NS Number of Schedule

S < {81, 82,...,8,.5ns} It represents set of schedules

S; It represents pth schedule

M It represents the total number of resources

R <~ {R{, Ry, ... It represents the list of resources

Ji It represents ith job

R; It represents jth resource

CB Cloud broker

(ER), Exact region contain resources that exactly satisfies the
demands of job J;

(SR) Subsume region contain resources that has more capabil-
ity than demand of job J;

(PR), Plug-in region contain resources that has less capability
than demand of Job J;

Sim_mat Similarity matrix holds the cosine similar measure
between jobs and resources in (SR)j and (PR);,. Its
dimension are (1 % I(SR) J; |) and (1 * |(PR) Ji ), respec-
tively

(hs_SR) , High-similarity resources that satisfy demand specified
by job J; from subsume region

(hs_PR) , High-similarity resources that satisfy demand specified
by job J; from plug-in region

thresholdsg To filter the resources from subsume region whose sim-
ilarity is greater or equal to specified value

thresholdpr To filter the resources from plug-in region whose simi-
larity is greater or equal to specified value

Req(J;) { JiID, no_Nodes,, Ram_needed,, Hd_needed,,
Deadline;, OS;., Swy,}

Avail(Ry) i;Dj no._Nodes R Ram_Capacity R;" Hd_Capacity R}

vailability R} OSg;, Swg;, Type R;
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1 Introduction

Number of resources in exact region of job J; thatis represented
as N_ER

Number of resources in subsume region of job J; that is repre-
sented as N_SR

Number of resources in plug-in region that satisfies job J; that
is represented as N_PR

List of resources to which negotiation is agreed in exact region
by broker

List of resources to which negotiation is agreed in subsume
region by broker

List of resources to which negotiation is agreed in plug-in
region by broker

Initial proposal send by cloud broker

Utility value of the cloud broker

Counter proposal given by resource R; that receives Pyt
Number of resources in exact region that send counter proposals
which is received by broker

Number of resources in subsume region that send counter pro-
posals which is received by broker

Number of resources in plug-in region that send counter pro-
posals which is received by broker

Utility counter of the resource R;

Set of utilities received by broker from the resources in exact
region of the job J;

Set of utilities received by broker from the resources in qualified
subsume region of the job J;

Set of utilities received by broker from the resources in qualified
plug-in region of the job J;

Average proposal received by the cloud broker

Resources in plug-in region that is scheduled to Job J;
Number of Jobs submitted for the Schedule S,

Number of Jobs rejected for the scheduleS),

Job Rejection Rate for the schedule S,

Number of Jobs submitted to the scheduler in the schedule S,
Job Success Rate for the schedule S,

Number of Jobs successfully met deadline in the schedule S,
Number of jobs failed to meet deadline in the scheduleS),
Scheduling Success Rate for the schedule S,

Total pixels defected in ith fruit

Grid computing [1] is the federation of computer resources from multiple administra-
tive domains to solve scientific applications involving high-performance computing
(HPC). It consists of a heterogeneous, large-scale and dynamic environment, and it
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aims to exploit the usage of underutilized resources and the parallel processing capabil-
ity of HPC applications. However, the major drawback of grid is its inability to provide
the required execution environment due to its rigid nature. Thus, it leaves certain user
application requirements unsatisfied and this result in the failure or rejection of some
jobs. This drawback has been overcome through integrating virtualization technology
with grid and cloud computing, and provisioning resources in an on-demand manner.
This flexibility in resource provisioning, in addition to the conventional features of
grid, enables improved throughput and success rate of jobs. NIST [2] characterizes
cloud computing in terms of on-demand self-service, broad network access, resource
pooling, rapid elasticity and measured service. The cloud service models are cate-
gorized into “Software as a Service” (SaaS), “Platform as a Service” (PaaS), and
“Infrastructure as a Service” (IaaS). In Saa$S, the consumer gets the provider’s appli-
cations that are hosted and run in cloud infrastructure. In PaaS, the consumer gets
the platform that is running in the cloud infrastructure for creating or deploying the
applications. In TaaS, the consumer gets the virtual resources in which an execution
environment can be deployed to run an application. Virtualization concepts [3] cre-
ate a wide range of opportunities for using virtualized resources. Correspondingly,
it provides the multitenant [4] capability of running multiple virtual machines, or
resources sharing the same hardware, in an isolated manner for different application
purposes.

The management of the grid and cloud resources is a serious and complex issue.
The complexity of the resource management is due to the dynamic nature of scaling
and shrinking resources in a grid and cloud environment. Czajkowski et al. [5] defined
that “Resource Management is related to the operations that are mainly used to con-
trol the capabilities provided by grid resources and services that are made available
to users, applications or services”. In addition, they explained that the main objec-
tive of resource management is to establish a mutual agreement between a resource
provider and a resource consumer. In this paper, we have proposed a semantic-based
resource management framework to manage both the grid and cloud resources. When
the required grid resources are not available, cloud resources are used to provide virtual
resources dynamically. Consequently, this work is an extension of the existing grid
resource broker to manage both the grid and cloud resources in an interoperable and
efficient manner. The main challenge in this proposed work involves co-ordinating
the use of the resources available in the grid or cloud environments. Moreover, these
resources may reside in different geographical locations, managed by different orga-
nizations, and thus, there are no standardized interfaces, protocols or commands. To
coordinate the usage of resources and to solve the interoperability issue between
different grid and cloud resources, there is a need to integrate semantic technology
in the resource broker [6]. According to Berners-Lee et al. [7], a semantic web is
a cluster or group of information arranged in hierarchical structure and it is easily
understandable by computers. In addition, it is an efficient way of representing data
on the World Wide Web (WWW). Ontology [8] is the language mainly used for rep-
resenting the available information. Semantic Grid [9] is a recent initiative to expose
semantically rich information associated with grid resources to build more intelligent
grid services. Semantic web and semantic grid use a resource description framework
(RDF) [10] to create an ontology knowledge base. It is used as a standard model for
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interchanging data on the web and grid. It is able to merge data even when the under-
lying schemas are different in nature. Web Ontology Language (OWL) [11] is one
of the popular ontology languages recommended by the World Wide Web Consor-
tium (W3C). It is the combination of the descriptions of classes, properties and their
instances. Protégé [12] is an editor used for creating an ontology-based knowledge
base.

A CARE Resource Broker (CRB) [13] is a grid metascheduler or resource broker
that is deployed over the Globus Toolkit 4 (GT4) [14] Middleware to manage grid and
virtualization-enabled grid resources. It addresses several scheduling issues encoun-
tered when a virtualization technology is integrated with the grid environment. It has
the ability to create and manage virtual resources on a virtualization-enabled grid.
This feature allows CRB to make several application decisions that conventional grid
schedulers may not do. It obtains the user’s requirement request for running an appli-
cation in the grid resources, aggregates the grid resource information and discovers
the suitable physical resources that perfectly match the application requirements. The
various scheduling scenarios that are handled by the CRB are as follows:

(A) Application requests that are run in the existing physical grid resources.

(B) Application requests that are run by creating some virtual resources and attaching
these virtual resources to the existing physical grid resources (co-allocation) [15].

(C) Application requests that cannot be run in the existing physical Grid resources
given that application execution environment are unavailable, in terms of software
and operating systems. A virtual cluster is dynamically created, deployed and
configured for the execution of application (virtual cluster).

(D) Application requests that are used for leasing virtual resources (virtual machines
and virtual cluster) [16].

Our proposed work considers the scheduling scenarios B, C and D to create vir-
tual resources in the grid and cloud resources residing in an organization. The main
aim of the proposed work is to extend the conventional CRB to a Semantic-enabled
CRB (SeCRB) and to integrate a Service Level Agreement (SLA)-driven resource
allocation for managing the grid and cloud resources. We have devised and imple-
mented a common semantic resource management framework for describing and
discovering grid and cloud resources based on the user’s application requirements.
The proposed framework mainly aims to solve the interoperability between grid and
cloud resources, and effectively allocate job requests to the resources that satisfy the
user’s QoS requirements. The comparison between CRB and SeCRB is shown in
Table 1.
The main contributions of the paper are summarized as follows:

e A semantic-based resource description mechanism to semantically represent the
grid and cloud resources information and the operating system images in the ontol-
ogy knowledge base.

e A semantic-based resource discovery mechanism to semantically discover the
potential resources for virtual resource creation and application execution.

e The implementation of an SLA negotiation mechanism and a Quality of Service
(QoS)-Based Resource Scheduling (QBRS) mechanism that selects the grid and
cloud resources in a near optimal manner.
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;r:gls"CICR%"mpms"“ of CRB S.no. CRB SeCRB
1 Keyword-based match Semantic-based match
making making
2 First come first serve Deadline-based job
(FCFS)-based job prioritization
prioritization
3 Rank-based resource QBRS-based resource
allocation allocation
4 Static image management  Automated image metadata
system management system
5 Managing grid Managing grid and
resources only cloud resources
6 Object-oriented Service-oriented
implementation implementation
7 Grid monitoring and Introduction of cloud
Discovery service monitoring and Discovery
service
S Tested with image Tested with image processing

processing application

and bio-informatics

application

e The integration of a Cloud Monitoring and Discovery Service (CMDS) to discover
and monitor the cloud resources information.

e The design and development of an Image Metadata Management System to effi-
ciently manage the available operating system images from the grid and cloud
resources, which are required for virtual resource creation.

e The testing of the proposed work in real grid and cloud environments for execut-
ing real-world scientific applications and comparing the total execution time of
submitted applications.

e The comparison of various performance parameters such as job rejection rate, job
success rate and scheduling success rate, and the processing of the overhead for the
semantic-based resource management.

The rest of the paper is organized as follows:

Section 1 gives the introduction and motivation for the proposed research work.
Section 2 discusses some related works that motivated ours. Section 3 describes the
high-level architectural structure of our proposed work. Section 4 presents the design
and implementation details in a thorough manner. Section 5 covers the working princi-
ple of the proposed framework. Section 6 introduces the real-time experimental setup
made in our campus, and discusses operating system images and real-world appli-
cation. The generation of workloads, performance metrics and simulation results are
reviewed in Sect. 7. Finally, Sect. 8 concludes the paper by highlighting the features
of the proposed work and exploring ideas for possible future work.

2 Related works

A lot of research has been done on semantic grid and cloud, and this section dis-
cusses some closely related papers that motivated us. Condor [19] uses ClassAds for
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matchmaking to solve resource allocation problems in a distributed environment. This
framework focuses mainly on the matchmaking process that is based on constraints
specified by the resource providers and consumers. Computing Resource Execution
and Management (CREAM) [20] has been developed and integrated with gLite Work-
load Management System (WMS) [21]. Using the CREAM, users can submit jobs that
are described using Classified Advertisements (ClassAds) [22] and Job Description
Language (JDL) [23]. JDL is a high-level, user-oriented language. It works mainly on
the principle of the ClassAds developed as a part of the Condor project. It is used to
describe job characteristics and requirements that are submitted to the gLite WMS.
ClassAds works on the principle of key and value pair. InteliGrid [24] proposed a
three-layer semantic architecture consisting of conceptual, software and basic resource
layers. The concept layer provides ontology descriptions about knowledge entities.
The software layer describes software that use the knowledge entities outlined in the
concept layer. The basic resource layer presents infrastructure and fabric resources.
The Grid Interoperability Project (GRIP) [25] addressed the problem of resource
description in the context of a resource broker. The resource broker is compatible with
Grid Middleware such as GT2, GT3 and Unicore. GRIP proposed a semantic-based
approach to describe the resource information aggregated from different middleware-
enabled grid resources in the broker level. Another project “myGrid” [26] is a multi-
organizational project mainly aimed at developing infrastructure middleware. It oper-
ates on the existing web services and grid infrastructure, and helps scientists using
distributed resources to work with ease. The middleware has been integrated with
semantic technology for resource discovery and workflow management. Finally, it pro-
vides access to Bioinformatics archives and the tools for analysis through web service
technologies. The Semantic Grid [27] project exposes semantically rich information
associated with Grid resources to build more intelligent Grid services. It takes the struc-
tured semantic descriptions of real commodities that have associated identities and
behaviors.

Somasundaram et al. [28] proposed a semantic component that supports context-
based Grid resource discovery. It has been integrated with Gridbus Broker to iden-
tify potential grid resources in a semantic manner. An ontology-based Matchmaker
Service proposed in [29] provides the support for a dynamic resource discovery
and resource descriptions. They concluded that users’ application requests should
be expressed as ontology descriptions. Dynamic virtual clustering (DVC) [30] is
a system for deploying virtual machines in a cluster or multi-cluster environment.
The main goals of DVC are reducing job turnaround time and queue wait time, and
increasing cluster utilization and workload throughput. Virtual Machines are use-
ful for giving users a fraction of their system’s resources, or providing a different
software environment to the host system. However, when applied to HPC appli-
cations, virtual machines perform worse on application execution relative to native
execution [31]. Eucalyptus [32] is one of the most popular open source cloud mid-
dleware. It is used for managing private cloud infrastructures. It is arranged in a
hierarchical manner, and has the following four main service-based components:
Cloud Controller, Cluster Controller, Node Controller and Storage Controller. The
Cloud Controller is responsible for managing and coordinating cluster and node con-
trollers in the same availability zone. It acts as an interface for clients’ requests. The
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main functions of a Cluster Controller are application provisioning, monitoring of
the state information of the virtual instances that running in physical resources and
so on. Node Controllers are responsible for creating, deleting and monitoring vir-
tual instances by interacting with hypervisors running on physical resources. The
Storage Controllers are responsible for managing data and storing-related concepts.
OpenNebula [33] is an open source virtual infrastructure manager, and it is used to
manage the life cycle of a virtual machine’s creation, monitoring and deletion. It
manages the resources with different types of hypervisors such as Xen [34], KVM
[35] and VMWare [36]. It also has the provision to interface with Amazon EC2 [37]
Cloud.

Ma et al. [38] proposed an ontology-based resource management for cloud comput-
ing to define concepts and relations. They have implemented an SLA-based resource
allocation for the selection of resources. Xu et al. [39] proposed the idea of build-
ing a cloud infrastructure on clusters. The main aim of their proposed work is to
offer a virtual resource manager to control the compute nodes in the cluster. They
are yet to discuss semantic concepts. Buyya et al. [40] proposed and developed
the Cloudbus toolkit that works on the principle of market-based resource man-
agement and computational resource risk management to maintain an SLA-oriented
resource allocation. Ejarque et al. [41] proposed an approach for managing cloud
resources using Semantic Resource Allocation as a multi-agent distributed system.
Their proposed approach combines the advantages of semantic web and agent tech-
nologies for managing the cloud resources of different resource providers. Ponnusamy
and Somasundaram [42] proposed SLA-aware CRB for negotiating job require-
ments with available grid resource information and monitoring the resource con-
sumption of jobs. Ejarque et al. [43] extended their previous work of [41] as SLA-
Driven Semantically Enhanced Resource Allocation (SERA). The resource alloca-
tion process is carried out using the negotiation process with the resource provider’s
agents. The last two papers mentioned motivated us to extend the SLA aware strat-
egy in our proposed work for managing cloud resources. Czajkowski et al. [44]
classified SLA into three categories namely Resource SLAs (RSLA), Task SLAs
(TSLA) and Binding SLAs (BSLA). They proposed SNAP protocol, which negotiates
Grid resources through the exchange of messages between the three categories. In
addition, they have addressed the issue of acquiring multiple resources using SLA
negotiation.

Venugopal et al. [45] proposed a protocol for negotiation based on the concept of
alternating offers. Their proposed work is integrated with advance reservation mecha-
nism that reserves negotiation-accepted resources in advance. Yan et al. [46] proposed
a framework for automated negotiation using agents in the context of service com-
position. The service consumer is represented by a set of agents who negotiate the
parameters with individual services in the composition. Son et al. [47] proposed a
negotiation mechanism to negotiate multiple issues such as price, timeslot and other
QoS parameters in a cloud environment. The StratusLab [48] project is aimed at
providing virtual resources in an on-demand manner. They used KVM hypervisors
for creating virtual resources. Recently, they integrated the OpenNebula as a cloud
management tool to create virtual resources to dynamically provision resources and
enhance scalability. WNoDes [49] project effectively makes use of the largely invested
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Grid Computing Infrastructure. Its main aim is to create virtual resources, in an on-
demand manner, of the jobs that are queued due to the unavailability of software
requirements in the existing grid environment. The Grid Lab Uniform Environment
(GLUE) Schema v1.3 [50] is currently used in the gLite-based Grid infrastructure to
describe resource attributes. Initially, ApplicationSoftwareRunTimeEnvironment was
used to describe the list of software packages installed in the grid environment. Now,
GLUE has been extended to describe the virtual operating systems bundled with appli-
cation software libraries. An Open Cloud Computing Interface (OCCI) [51] is used
to interface with cloud resources. Similar to their work, we have extended the GLUE
schema in the broker level to represent the cloud and grid resource information and the
same has been represented in the Ontology knowledge base. However, the StratusLab
[48] and WNoDes [49] projects, previously mentioned, created the virtual resources
that are specifically due to the unavailability of software execution environments. de
Assuncio et al. [52] proposed an approach to acquire cloud resources in addition to
their local cluster resources, so as to decrease the response time of user job requests.
Their proposed work is evaluated with seven scheduling strategies. Finally, they have
compared the various performance metrics of job slowdown, number of deadline vio-
lations, average weighted response time, number of rejected jobs and cost of improving
performance. Their experiment showed that naive scheduling strategies lead to higher
costs for heavy loads. In addition, other scheduling strategies such as request backfill-
ing and selective backfilling have been shown to improve the performance over cloud
resources.

Ostermann et al. [53] investigated the benefits of using the cloud compute resources
in an Askalon-based grid environment to increase the execution time of scientific
workflow applications. To integrate the cloud resources with the grid workflow man-
agement, they have introduced three new components: cloud management, software
deployment and images repository. Their proposed approach is implemented by a just-
in scheduling mechanism, which creates the cloud resources when the grid resources
are not available to run the workflow applications. Iosup et al. [54] presented the
performance analysis of Cloud computing services for scientific computing applica-
tions. The authors examined if the performance of the clouds are enough for many
task computing (MTC)-based scientific computing. Finally, their proposed approach
is empirically evaluated with four different types of clouds namely Amazon EC2,
GoGrid, ElasticHosts and Mosso. They note that the present cloud computing ser-
vices are not sufficient for scientific computing on a large scale. Mao et al. [55] have
made a performance study of virtual machine startup times in the cloud resources,
which play a main role in the performance of an application. A long startup time
degrades the performance of an application. The startup time of virtual instances has
been made in three different types of cloud providers namely Amazon EC2, Win-
dows Azure and Rackspace. They also analyzed factors such as time of the day, OS
image size, instance type and data center location, as well as the number of instances
acquired at the same time in virtual machine startup time. Their studies are evidence
that the startup time of spot instances are longer and have greater variance relative to
on-demand instances. Our proposed resource brokering approach identifies the various
cases using scheduling. Another major difference between our work and those men-
tioned above is a proposed semantic component that is capable of handling schedul-
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ing scenarios such as Physical, Hybrid, Virtual and Lease. In addition, they have
not considered the semantic relationship between different operating system images
and the required one. Our proposed work is extensively tested for HPC-based scien-
tific applications. It can be easily extended to provide SaaS- based solution to different
scientific applications. From related works, we have identified various approaches pro-
posed for semantic-based resource management of grid resources. However, the papers
mentioned above provide very little knowledge with regard to the implementation of
semantic-based resource management of both the grid and cloud resources for HPC
applications.

3 Proposed layered architecture

The proposed layered high-level architectural view for managing the grid and cloud
resources is shown in Fig. 1. Itis extended for managing the cloud resources in addition
to the grid resource management in CRB. Information about resources and operating
system images are discovered and described under Knowledge Base.
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Fig. 1 Semantic-enabled CARE Resource Broker (SeCRB)
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3.1 Application layer

The application layer enables the use of the resources in a grid and cloud environ-
ment through various collaboration and resource access protocols. The graphical user
interface (GUI) and command line interface (CLI) presented in this layer enable the
service providers and users to register their services and identities into resource broker.
In addition, it enables the user to submit a query and semantically retrieve information
from the ontology using the proposed matchmaking algorithm.

3.2 Broker layer

SeCRB resides in the broker layer. It interacts and aggregates the information from
the Grid and Cloud the grid and cloud resources information and represents them as
concepts and properties in the ontology knowledge base. The ontology knowledge
base is created using the Resource Description Language (RDL) of OWL. Protégé
is used for creating the ontology knowledge base. It is implemented with an intelli-
gent matchmaking algorithm for identifying the various scheduling scenarios such as
physical, co-allocation, virtual cluster and lease. The matchmaking algorithm identi-
fies the potential resources the grid and cloud environments. The resources may fall
into exact, high-similarity plug-in and high-similarity subsume regions. The SLA-
driven resource allocation mechanism negotiates with the resource provider on behalf
of the user. Based on the outcome of SLA negotiation, the QBRS algorithm selects
the resources in a near optimal manner that satisfies the user desired QoS.

3.3 Middleware layer

In middleware layer, Globus Toolkit [14] is used for managing the grid resources, and
Eucalyptus is used as cloud middleware for managing the cloud resources. Information
management is responsible for dynamically monitoring the information from the grid
and cloud resources. Security management handles security-related issues such as
authentication and authorization. Instance management in grid and cloud middleware
handles the creation, deletion and monitoring of virtual instances. Image management
is useful for managing the operating system images uploaded in the grid and cloud
resources. Network Management solves networking-related issues such as assigning
IP addresses. Execution Management in the grid initiates and monitors the execution
of jobs.

3.4 Fabric layer
The fabric level provides the resources that may belong to the grid or cloud envi-

ronment. The resources in the fabric level include computational resources, storage
resources, network resources and database resources.
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4 Design and implementation details

To manage both the grid and cloud resources, the existing CRB has been extended
to a Service Oriented resource broker. The four major components that have been
integrated in SeCRB at broker level are given below:

1. Semantic Resource Management

2. Job Handler and Resource Selection Management

3. Cloud Resource and Image Information Management
4. Controller and Adapter Management.

4.1 Semantic resource management

The core part of the semantic component is the grid or cloud Resource Ontology
template. An ontology template is a domain-specific ontology that provides a hierar-
chy of concepts and the properties that define their characteristics. The Grid/Cloud
Resource Ontology template is structured based on the fact that any resource that
can be described using the properties of a specific concept can be modelled as an
instance of that concept. Protégé is an ontology editor that creates ontology using
a Web Ontology Language. Once the ontology template is created, a knowledge
base can be built with the instances and specific property instantiations. The seman-
tic description component shown in Fig. 2 is responsible for constructing a knowl-
edge base of Grid/Cloud resources. It obtains the information from three different
sources: Monitoring and Discovery Service (MDS), which runs in the Grid resources;
Virtual Resource Information Service (VRIS), which deploys and runs in the Grid
resources, which supports virtualization; and CMDS, which deploys and runs in the
Cloud resources. MDS in Grid fetch the Grid resources information, once the Grid
resources are registered with Grid Middleware. With this information, an instance of
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the appropriate resource concept in the ontology template is created for every com-
puting resource in the grid. The semantic description module possesses the complete
required information with which it can construct a knowledge base of Grid/Cloud
resources. Protégé-OWL APIs is used to dynamically create an instance of a particu-
lar concept and also to assign values to appropriate properties in the resource ontology
template. With these features, the resource information of the entire Grid/Cloud envi-
ronment aggregated by the semantic description component can be populated in an
ontology template thereby creating a knowledge base. The resource brokering strat-
egy in SeCRB mainly depends on resource ontologies. Ontologies are mainly used to
describe the relationship between domains in a machine understandable format. In our
proposed work, we have made the following extensions (A) and (B) to semantic-based
resource management of previous research works of Amarnath et al. [17] and Soma-
sundaram et al. [18] for managing the cloud resources. The semantic-based resource
management is implemented using semantic description and discovery service
(SDDS).

(A) Semantic description: it describes the grid and cloud resources and operating
system images available in the grid and cloud resources.

(B) Semantic discovery: it develops an intelligent matchmaking system which is capa-
ble of handling both the grid and cloud resources for various several scheduling
decisions in SeCRB.

4.1.1 Semantic resource description

Meaningful and understandable semantic description of resources by the system is
essential for semantic-based resource management. The automated tasks of ontol-
ogy creation and updation are the major tasks in a semantic description module.
The resource ontology template is created by the semantic description, and it rep-
resents the concepts and properties of the resources. It is a domain-specific ontol-
ogy that is helpful for representing the concepts and properties that define the
characteristics of resources in a hierarchical manner. Ontology is mainly used for
understanding the domain information. It describes the concepts in the domain and
also relationships between those concepts. OWL is used for creating and represent-
ing the ontology template. The knowledge base created is based on the concept
of instances and specific property instantiations. The semantic description module
as shown in Fig. 2 is responsible for constructing a knowledge base, and updat-
ing information about the grid and cloud resources, and the images of operating
systems.

The registered grid and cloud resources are monitored using appropriate grid and
cloud middleware adapters (CMAs). The extended version of the Monitoring and Dis-
covery Service has been developed and deployed in the grid middleware that retrieves
information such as architecture, operating system, free ram memory, free hard disk
memory, hostname, IP address, processor speed, operating system version, LRMS
name, total number of nodes, free nodes, hypervisor type, bandwidth, latency, operat-
ing system image details, including the application support, and the hardware details
of the compute node. The CMA interfaces with the Eucalyptus Cloud middleware

@ Springer



522 T. S. Somasundaram et al.

to retrieve information such as total memory, free memory, ram memory, hard disk
memory, the types of virtual machines and the number of virtual machines that can be
created in the physical cloud resources. In a periodic interval, the semantic descriptor
module accesses the Grid Resource Repository (GRR), Cloud Resource Repository
(CRR) and OS Image Metadata Repository (OSIMR). The information retrieved from
the grid and cloud resources is analyzed by the parser module. This parsing feature
has been implemented with three types of parsers namely, grid resource information
parser to analyze the grid resource information, cloud resource information parser to
parse the cloud resource information and image information parser to parse the infor-
mation of the operating system images and the bundled software libraries. The parsers
use the Ontology Creator to update the parsed information to the ontology knowledge
base. It is implemented based on Protégé-OWL APIs. Using these APIs, it creates
instances and assigns values to the corresponding properties in the resource ontology
template in a dynamic manner. For example, an existence of a computer with Linux
OS can be represented in the ontology template by creating an instance for the concept
“Cluster” and thus, the “hasOS” property of the concept “Cluster” will be assigned
the value “Linux”. Similarly, the image information of this resource can be mapped as
the appropriate properties described for the concept cluster. With these features, the
resource information of the entire grid and the environment aggregated by the seman-
tic description component can be populated in an ontology template thereby creating
a knowledge base.

Protégé is used as an ontology editor for creating the ontology template. The created
ontology template is shown in Fig. 3, which symbolizes the hierarchical representation
of the grid and cloud resources. Cluster is a major class and it has a subclass called Head
Node. The Head Node has the following subclasses: HypervisorDetails, ImageDe-
tails, NetworkDetails, OSDetails, SoftwareDetails, Compute Node, ApplicationDe-
tails, and HardwareDetails. The HeadNode contains the properties that reflect the
details about processor speed (hasProcessorSpeed), free RAM memory (hasFreeRam),
free hard disk memory (hasFreeMemory), and so on. The HypervisorDetails has
the property of hasHypervisorName to identify the type of hypervisor. The Oper-

Bioinformatics

ApplicationDetails
® ImageDetais

HypervisorDetails
L 0SDetais

PolicyDetails

<
HeadNode

D ) ComputeNode ComputeHardwareDetails

© HardwareDetails - Namrk’j&(als

ImageProcessing

ClimateModeling
¥ SoftwareDetails

Fig. 3 Ontology template
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atingSystemImageDetails class has the properties to identify the available software
“hasAvailableSoftwares” and “hasApplicationSupport” for identifying application
support.

4.1.2 Semantic resource discovery

The main objective of the resource broker is matching the user’s application require-
ments with available resource information. Matchmaking is one of the core compo-
nents in the resource broker. Based on the output of the matchmaking process the
resource broker decides to either consider the job for execution or to reject it because
the requested resources are not available. The existing resource brokers, which are
available as open-source software, mostly use keyword-based matchmaking for match-
ing the user’s application requirements with available resources. However, this process
often results in the rejection of application requests because the resource broker exactly
matches the keywords given in the user’s application requirements with the available
resources. For example, if the user requests a Red Hat Enterprise Linux (RHEL)
5.0 for application execution but the available resources have only Cent OS 5.0, the
keyword-based matchmaking will fail to select the Cent 5.0 resource even though it
is a feasible option for running the application. Therefore, there is a strong need for
representing the semantic relationship of resource information in the resource broker
level.

The semantic discovery component constitutes of the actual resource brokering
mechanism, and it implements the matchmaking mechanism. It accepts the user’s
application requirements expressed in the form of job submission description lan-
guage (JSDL). The request expresses hardware, software and QoS requirements such
as Operating System, Number of Nodes required and Software libraries. The power
of the brokering algorithm heavily relies on the ontology reasoner used. In our proto-
type implementation, we have used an Algernon [56] inference engine for retrieving
information from the ontology knowledge base. The proposed brokering algorithm
must consider physical and virtual resource information while discovering a suitable
resource for a job. Hence, based on the users’ resource request, the broker constructs an
Algernon-based query and executes it in knowledge base. The query also determines
the semantic relationship between the request and the available options. However, if
no such resource is found in the first iteration of a query on the knowledge base, the
broker constructs an alternate query to determine the physical resources that match all
requirements but possess a lesser number of CPUs than requested. If such resources
are available, it will suggest that virtual machines, as many as are still required, should
be created in one cluster and connected as computing nodes to another cluster. If it still
fails, the broker constructs yet another query to determine the physical resources that
exactly matches the hardware requirements but not the software. If such resources are
available, the broker will suggest creating virtual clusters corresponding to the user’s
request. In the last two cases, the broker verifies that the cluster possesses the required
virtualization software and can support the creation of virtual machines. The devised
semantic discovery module and the interaction of various components are shown in
Fig. 4.
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Fig. 4 Semantic discovery module

The request handler service redirects the job submission requests to Semantic Dis-
covery Service (SDR). It retrieves the application requirements, and the requirements
are constructed as Algernon queries by a Query Constructor. The query construc-
tion is based on the requirements of the user’s hardware, software and applications
such as number of nodes, processor speed, ram memory, hard disk memory, band-
width, etc. The constructed query is sent to the Algernon Inference Engine. It interacts
with the ontology knowledge base to find out the potential resource for application
execution as well as the virtual resource creation. The matchmaking algorithm imple-
mented in semantic resource discovery module is given in Algorithm 1. It classifies
the resources that may fall into three regions namely exact, high-similarity plug-
in and high-similarity subsume. The exact region contains resources that perfectly
satisfy the hardware and software requirements of the user’s job requests. The sub-
sume region contains resources that are overqualified and the plug-in region contains
resources that do not meet the demands of the user. Cosine similarity is used to retrieve
the resources that are near optimal to the user’s request in the subsume and plug-in
regions. These are termed high-similarity subsume and high-similarity plug-in regions.
The threshold values in the subsume and plug-in regions are fixed between 0 and 1.
Let us consider the number of resources in the subsume and plug-in regions to be
‘M’. For each resource in the subsume and plug-in regions, cosine similarities are
calculated using cos (J;, Rj) where 1 < j < M&,1 <i < N. A resource R;
from subsume region (SR) j, will be considered as near the optimal resource included
in the set (hs_SR)y,, if similarity measures cos (J;, R;) > thresholdsg. Similarly,
a resource R; from the plug-in region (PR),, will be considered as near the opti-
mal resource included in the set (hs_PR),, if similarity measures cos (J; , R;) >
threshold p .
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Algorithm 1: Pseudo Code for Semantic Matchmaking Process

Input: List of Resources R

Output: Three regions, Exact Region (ER)/ , High similarity Subsume Region (hs_SR), , High similarity

Plug-in Region (/s _ PR)

‘]:

I Initialize (ER), «{ }.(SR), «{ }.(PR), «{ },Sim_matl*‘(sm ‘<—{ }.

(hs _sR), { }. Sim_mat, . {}. (hs_PR), <{}

(r),

2. For V R€R where 1< <M

3. If Req(J,) EAvail(Rj)
4. (ER), «(ER), U{R,}
S. End
6. If Req(J,)< Avail (R, )
7. (SR), «(SR), V{R,}
8. End
9. Else
10. (PR), «(PR), U{R,}
11. End
12. End
13. For VR/.E(SR)J
(1.8
14. Sim_mat,, «—d(J,,R,) —cos(J,,R,) VIR] = 1<k<|(SR),
i J
15. End
16. If Sim _mat, , 2threshold, then
7. (hs_SR), «(hs _SR), U{R}  Where R €(SR),
18. End
19. For each resource R € (PR)J
(1.8
20. Sim _mat,, ~d(J,.R,) = cos(J,. R ) " | Where lsks‘(PR)J‘
i J
21. End
22. 1f Sim _mat, , 2threshold ,, then
23. (hs _PR), «(hs_PR) U{R}  Where R e(PR),
24. End

The various cases using scheduling, identified by the resource broker for virtual
resource creation and application execution, are given below:

Use Case 1 In this use case, the Algernon query will determine if the existing
grid has the required application execution environment and operating system to run
the application. Then, it will check that the grid resources satisfy the user hardware
requirements such as node count, processor speed, ram speed, etc. If the existing
physical Grid resource satisfies the job requirements, it is classified into a schedul-
ing category called “Physical”. Here, the job is submitted only to the grid resources
without creating any virtual resources, and the jobs may be sequential or parallel in
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nature. A sample query for identifying the “Physical” scheduling scenario is given
below.

Query 1: String Physical Query = “((: instance HeadNode? Head) (HeadNodeApp? Head? App)
(hasApplications? App? job.getApplicationName ( )) (HeadNodeOS? Head? HeadOS) (hasOSVersion?
HeadOS? OS) (hasOSVersion? HeadOS? job.getOsName ( ) (hasFreeNodes? Head? Nodes) (: TEST (:
LISP (>=? Nodes "+job.getNodeCount () + "))))"

Use Case 2 Here, the existing grid resources satisfy the user’s application require-
ments, but the number of required nodes are not available in a single grid resource.
For example, if the user’s application requires five nodes and the existing cluster
(physical grid resource) has ten nodes, but eight have been already engaged with
another job, then there is a shortage of three nodes to run this application request.
However, it is possible to create three nodes as virtual machines in the grid or cloud
resources. Once a virtual resource is created, it is attached to the existing physi-
cal grid cluster using the hostname and IP address assigned to it. Moreover, it is
automatically configured with Beowulf Cluster configuration of Domain Name Ser-
vice (DNS), Network File System (NFS) and Network Information Service (NIS).
Once the configuration is completed, it is possible to run the job in a coordinated
manner. This category of scheduling is classified as a “hybrid” scheduling scenario.
The job scheduled to the resources, which has both physical nodes and virtual nodes
attached to physical nodes, is shown in Fig. 5. The sample query for handling the
“hybrid” scheduling scenario is given below. It first identifies the head node of the
required operating system image using hasImageName property. Then, it verifies
whether the operating system has been bundled with the required application sup-
port using hasApplicationSupport property. The images may be available in grid or
cloud resources. Once the required images’ location is identified the query to find the
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Fig. 5 Hybrid scheduling scenario
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hardware capability is executed on the ontology knowledge base for virtual resource
creation.

Query 2: String Hybrid Query = "((: instance HeadNode? Headl) (HeadNodelmage? Headl?
HeadnodeImage) (hasImageName? HeadnodeImage? ImageName) (hasImageLocation? Headnodelmage?
hasImageLocation) (hasApplicationSupport? ImageName? \""+job.getApplicationName () +"\")) ";

Use Case 3 The existing grid resources do not provide the required user operating
system, or the execution environment to support the application. It is classified as
“virtual cluster” scheduling scenario. It is the creation of a virtual cluster in the grid
or cloud resources, in an on-demand manner, and the submission of parallel jobs in
the newly created virtual cluster. The query to identify the “virtual cluster” schedul-
ing scenario is given below. It first determines if the head node has the required
operating system image and the required application support. The images may be
available in the grid or cloud resources. Once the location of the required operating
system image is identified, the query to identify the hardware capability is executed
on the ontology knowledge base to find the potential resources for virtual resource
creation.

Query 3: String Virtual Cluster Query = “((: instance HeadNode? Head) (HeadNodeApp? Head? App)
(hasApplicationSupport? App \""+job.getApplicationName ( )))”;

Use Case 4 Here, the user is interested in leasing resources in the form of virtual
machines or virtual clusters without any application requirements. The broker creates
the virtual resources and the required operating system, and provides access to the
user. The sample query for handling the “lease” scheduling scenario is given below. It
identifies the head node of the required operating system image using hasImageName
property but does not bother about the application execution environment. Similar to
the hybrid and virtual cluster scheduling scenarios, the images may be available in the
grid or cloud resources. Once the location of the required operating system images
location is identified, the query to identify the hardware capability is executed on the
ontology knowledge base to find the potential resources for virtual resource creation.

Query 4: String Lease Query ="((: instance HeadNode? Head) (HeadNodelmage? Head? Imagename))”’;

4.2 Job handler and resource selection management

The job handler and resource selection management is responsible for the follow-
ing: retrieving job requests from the user, ordering jobs, negotiating with resource
providers, selecting the resources for provision and the application execution from the
grid or cloud resources. The four main services implemented in the job handler and
resource selection management are as follows:

1. Request handler service
2. Queue manager service
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3. SLA Negotiator service
4. Scheduling service.

4.2.1 Request handler service

The request handler service retrieves the user’s application requirements as JSDL file.
The JSDL file consists of hardware, software and QoS requirements. This service
is responsible for parsing the user’s application requirements, and the parsed user
requirements are updated in the job pool. It maintains a list of dispatched and un-
dispatched jobs in job queues. It periodically invokes the SDDS to discover or match
the resources for application execution and virtual resource creation. Once the matched
resource is retrieved from the SDDS that information is updated in the job pool. It
invokes the SDDS every 2 min or when the maximum number of jobs waiting in
the queue reaches 10. Once the resources are found, it sends the job id and matched
resource list to the Queue Manager.

4.2.2 Queue manager service

The queue manager service is responsible for retrieving the job requests from the
request handler service along with job and scheduling type. The jobs are classified
as sequential, parallel or lease, and placed into the queue. The scheduling types may
be physical, hybrid, virtual cluster creation or lease. The queue manager service is
implemented as a factory/instance pattern. The queue manager service invokes the
Scheduler Thread in a periodic interval when scheduling the available jobs in the
queue. The queue manager factory service invokes the queue manager service for
each request and creates the instance for each request. Once the job and resources are
selected and dispatched, the jobs are removed from the job queue. It invokes the SLA
negotiator service to find an acceptable resource list after negotiation. Finally, it calls
the scheduling service to invoke the prioritization of job/application requests and the
selection of suitable resources.

4.2.3 SLA negotiator service

There may be several resources appropriate for a single-user application request. The
semantic discovery process returns several resources, which satisfy the user’s appli-
cation requirements. Among these resources, some of the best options need to be
selected based on the QoS parameters. The broker representing the user match makes
and negotiates among all the resources returned and offers a set of resources that agree
with the negotiated QoS. The best QoS value emerges during the course of negotiation
and is the value that is mutually agreed on by both the broker and the provider after
negotiation. The SLA template is established with all the resource providers that are
returned after negotiation. Instantiation of the template is done after finalizing one
provider during scheduling. The QoS parameters to be negotiated are pre-decided.
Negotiation is done by giving proposals and counter-proposals. The broker starts by
giving the initial proposal of a parameter value to all the resource providers. Each
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provider replies by generating a counter-proposal. The broker then offers its own
counter-proposal to each provider. This process continues for several iterations until
an agreement is reached with at least one of the providers. All the providers who
reach an agreement with the broker are returned by the algorithm. The generation
of counter-proposals is based on the utility values of parameters calculated by each
provider. The utility value of a parameter shows the level of satisfaction of the entity
calculating the utility on a parameter value. For example, if the deadline for the user’s
request is 20-Jun-2013 18:00 hours from today, the broker calculates utility for this
value. In addition, the resource provider calculates the utility for this value. The bro-
ker and the provider may come up with different utility values for 20-Jun-2013 18:00
hours that show the different levels of satisfaction of each provider when the dead-
line is 20-Jun-2013 18:00 hours. This is because the provider aspires to satisfy the
request on or after the deadline and the broker aspires to satisfy the request on or
before the deadline. A utility function calculates the utility of each parameter for each
provider in the negotiation. The utility for a parameter y calculated by provider z is as
follows:

(Pmax)R; —P¢
(Pinax) R; = (Payin) R
Ur;, = 1)
P —(Pyin)R;
(Pinax) R~ (Payin) R

if y is expected to be minimum
if y is expected to be maximum

In (1), (Pmax)g; is the maximum value and (P;; ) g; represents the minimum value of
parameter y in the acceptance range of provider R;. It is pre-decided by the provider,
and P{ is the current value of a parameter. The total utility for each provider is cal-
culated by considering weights w, for each parameter y ranging from 1 to t. The
weights are decided by the providers a priori. The total utility is calculated using
Eq. (2), and the negotiation algorithm implemented in SeCRB is given below in

Algorithm 2.

t
U k) < D (UDR; x wy )
y=1

4.2.4 Scheduling service

The Scheduling Service prioritizes the user’s application requests based on the jobs
that are closer to the deadline. Once the jobs have been prioritized, it invokes the
resource scheduler to select the near optimal resource from the negotiation accepted
list. The resource scheduler is integrated with the QBRS algorithm. The QBRS algo-
rithm selects the resources from the exact region only if the resources accept the utility
values and satisfy the hardware, software and QoS requirements for a job execution.
The pseudo code for the selection of resources, which may fall in an exact region, is
given below in Algorithm 3.
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Algorithm 2: Negotiation ((ER )J (hs SR )J , (hs PR )J , Flag)
Input: (ER)J .(hs _SR) ., (hs_PR)

Ji Ji

Output: Set of resource providers from N( Er), OF N( sR) and N( PR) with whom negotiation is agreed

Ji i i

1. CB broadcasts P, to V (Rj)e (ER), and computes U,

2. For (R‘,-)e (ER)J’ sends counter proposal (PC)(R,)

3. (Nu.proposal)ER e(Nu.proposal)ER +1
. End
5. Initialize U(ER)J’ e{ }, N(ER) e{ }

Ji

6. For V(Rj)e (ER), sends counter proposal

t
7. (Ue)x )%Zngwy
! y=1
8. If (UC)(R )>U,,,,», then
9. U(ER)J‘ <_U(ER)JI U{(Uc)(R,)}
10. Niewy, < Niem, (%))}
11. Flag=1;
12. return;
13. End
14. End
15. If U(ER)‘,‘ = then
16. CB Broadcasts P, to V (Rj )e (hs_SR), and V(Ri/») e(hs_PR),
17. For (Rj )e (hs _SR), sends counter proposal (R,)(R )
18. (Naproposal)SR e(No.proposal)SR +1
19. End
20. For (Rj)e (hs _PR), sends counter proposal (PC)(R )
21. (No.proposal)PR (—(No.proposal)PR +1
22. End
23. Initia]izeU(SR)J’ {1} N(SR)L {1} U(PR)J’ {1 N(PR)L «{}
24. For V(Rj )e (hs_SR)J send the proposal counter in subsume region,
3
25. (UC)(R)%ZUL%’XW}}
A

26. If (U, )(R/) > U, then
2. Uisny, <Usn, u{(U[,)(R/)}
28. Nisr), < Nisr), o{(&,)}
29. End
30. End
31. If Uy =@

Ji
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32. PA‘,g<—Avg((PC)RJ ) Where (R, )e (hs _SR),
33. For (R, )e (hs_SR),
34, I (B) ) 2P
3s. Uisr), <Uisw), u{(UC )(R/)}
36. Nise), < Nisw), u{(Rj )}
37. End
38. End
39. End
40. For V(R g )e (hs_PR), send the proposal counter in plug-in region,
13
41. (o) )eZUg’ny
j g
42. If (U, )(R )> U,y then
43. U(PR)_,‘ <—U(PR)/’ u{(UL, )(R/)}
a Niew, < Nowy, V{(R:)}
45. End
46. End
47. It Uppgy, =@
48. Prg eAvg( (R), ) (R;)e (hs_PR),
49. For V(R;)e (PR),
50. If (P, )(R )ZPAVg
31 Uter), <Yirn), U{(Uc )(R,)}
52. Nipgy, < Nir), ul(#))}
53. End
54. End
55. End
56. End
Algorithm 3: Scheduling_Exact ((ER)/ sNigr) )
Input:(ER)J‘ , N(ER)J

Output: Single resource R; € (ER), &N )
E i i

1. For VRjE (ER)J’

2
3.
4.
5
6

End

If R; e N(ER) && (noiNodesR/ ):(m;iNudexJ’ ) then

Ji
return R;
break;

End
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The QBRS will select resources from the high-similarity subsume and high-
similarity plug-in regions, if the resources available in the exact region do not accept
the negotiation value. This selection will be based on the execution time of the jobs.
The QBRS selects a resource from the high-similar subsume region, if the resource
has accepted the negotiation that is present in the N(sr),. The selection of resources
for jobs in the high-similarity plug-in region involves two scenarios. Scenario 1 deals
with a set of resources that perfectly match the software requirements of the job but
lack the required nodes. The QBRS selects the resources that are present in N(pR),. .
If the physical resources are not present in Npr),., it will select resources for virtual
resources creation. In Scenario 2, if the software lrequirements of a job do not match
the resources present in the high-similarity plug-in region, a virtual cluster will be
created. The scheduler selects the head node that has the maximum hard disk and
RAM capacity. The compute nodes are created in other resources depending on its
capability.

Algorithm 4: Scheduling_Subsume_Plugin ( (hs SR )j »Nisr) ,(hS _ PR)J > Nipry, » FP)
i J; i Jj

Input:(hs_SR)J’ » Nisr) (hs_PR)J’, Nipr)

Ui Ji

Output: Single resource R; € (QfSR)/ & N(SR) or (R(PR)) consists of set of resources{Rl,..RW} where
Ji Ji J;

1<sw< N(PR) ‘
Ji
L. (R(PR))]’ ={}
2. For VR;e (hs_SR)J
3 IfR; € N(SR)J’ then
4. Choose R;
5. break;
6 End
7 End
8. For VR,e (hs_PR)J
9. If (SW)J = (Sw)R then
10. IfR, € Nppy && (No.Nodes) , # 0 then
Ji Ji
11. (Na.Nades)J « (No.Nodes)J — (No.Nodes) ,
12. (R(PR))J’ - (R(PR))JI u{r}
13. Fp=1;
14. End
15. End
16.  End
17. If(Fp==1)
18. If (No.Nodes)J’ #0&& (N().Nodes)VR‘E (s_rR), =0 then
19. For vRr e (h.LPR)j’
20. If (No.Nodes)J # 0 then
21. Riyax < Max( Hd _ Capacity & Ram _Capacity),, _ (hs_PR)
€ (hs_PR),
22. If (Hd_Capacity), > ( (No.Nodes), *(deneededjl )) then
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23. Create ((No.Nodes)J —l) Virtual machine in R,
24. (R)Vm (_(R)Vm U{Rmax}
25. If R, ¢ (R(,,R)) then
Ji
26. (R ), < (Bem)), 1R
27. End
28. (No.Nodes)J — (N(LN()d(:’S)J - ( (No.Nodes)J —1)
29. End
30. End
31. End
32. End

33. End // ifFp==
34. Else If (Fp==0)

3s. Ry < Max( Hd _Capacity & Ram _ Capacity ), . _ (hs_PR)
e (hs_PR),

36. HeaderNode <R,
37. For VR e (hsiPR)J
38. If R, € N(PR)_,L && (No.Nodes)J' # 0 then
39. If (Hd _Capacity), = ( (No.Nodes) , * (Hd_neededjl )) then
40. Create ((No.Nades) , —1) Virtual machine in R,
41 (R)Vm <_(R)wn U{Rmax}
4. I Ry € (Ripg) ),‘ then
. (Rew), < (Rew), v iR}
44, End
45. (No.Nodes), « (No.Nodes), — ( (No.Nodes) 71)
46. End
47. End
48. End
49. End
50. For VR, e (R(pR) )J’ where 1<v< (R(PR) )JL
51, TET «TET +(Extime),
52. End
53. If TET < (Extime), then

7
54. Call Middleware Adapter ( (R) = )
55. return (R(PR))J’
56. End
57. Else
58. return R;
59. End

The pseudo code for complete resource brokering progression is shown in Algo-
rithm 5. It first invokes the matchmaking algorithm. Next, it invokes the negotiation
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and the resource selection algorithms, and finally it invokes the appropriate middle-
ware adapters.

Algorithm 5: Resource Brokering Algorithm

Input: Number of Schedule NS
Output: Optimal schedule in which jobs are allocated to resources
For V Schedule S where 1<S< NS

1
2 For V Job J; where 1<i<N
3. Initialize the values of Flag = 0, Fp = 0;
4. Matchmaking (R)
5 Negotiation((ER)J ,(hS_SR)J ,(hs_PR)J , Flag)
6 If (Flag == 1) then
7 Scheduling_Exact ((ER) I (N(ER) ) )
i i)
8. End
9. Else
10. Scheduling_Subsume Plugin ( (h_SR)J - Nisgy (hS_PR)J s Nipry -Fp)
i ;i i ;i
1. End
12. End // end of all jobs in a schedule
13. End // end of all schedule

4.3 Cloud resource and image information management

The description of information about cloud resources, and the details of the available
operating system images and software are represented in the semantic knowledge base
using ontology. The following two services have been introduced for the purpose of
resource and image information management.

1. Cloud information manager service (CIMS)
2. Image metadata manager service (IMMS).

4.3.1 CIMS

The architecture of CIMS and its components are shown in Fig. 6. The cloud
resource information updater (CRIU) component periodically accesses the CMA and
retrieves the Cloud resource information. The retrieved information is represented in
an XML format in CRR. The cloud resource information parser (CRIP) component
parses the cloud resource information available in CRR. The parsed information is
updated and represented in the knowledge base (KB) using the semantic description
module. The sample details of the cloud resource’s information represented in CRR
is shown in Table 2.

4.3.2 IMMS

It is essential to know the details of the existing operating system images and the soft-
ware required to execute an application. Hence, we have introduced Image IMMS in
SCRB. The architecture of IMMS and its interactions with other components is shown
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Fig. 6 Cloud information manager service

Table 2 Cloud resources information

<CloudResourcelnfo>

<Resourcelnfo 1>
<CloudControllerName>eucacloudserver.care.mit.in

</ CloudControllerName >

<ClusterControllerName 1>

<HostName> eucaclusterserverl.care.mit.in</HostName>
<NodeControllerName 1>
<HostName>eucanc].care.mit.in</HostName>
<TotalHardDiskMemory>150000(GB)</TotalHardDiskMemory>
<FreeHardDiskMemory>10000 (GB) </ FreeHardDiskMemory >
<TotalAvailableRam> 2048 (MB) </ TotalAvailableRam >
<FreeRam> 1024 (MB) </FreeRam>

</NodeControllerName 1>

< NodeControllerName N> ...</Node Controller Name N>
</ClusterControllerName 1>...</ClusterControllerName N>
< /Resourcelnfo 1 >

< Resourcelnfo N>...< /Resourcelnfo N >
</CloudResourcelnfo >

in Fig. 7. The main purpose of IMMS is to identify the operating system images bun-
dled with the software required for the execution of an application. In Eucalyptus,
a single operating system image is divided into three types of images namely, root,
kernel and ramdisk. The images are uploaded to cloud resources through CMA. The
images are bundled, encrypted, registered and uploaded in the Cloud resources. The
sample metadata that generated the resource with Fedora Core 5.3 as its operating
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Fig. 7 Image metadata manager service

Table 3 OS images metadata information

<OperatingSystemImageInformation>
<OperatingSystemImages>

<ImageName> Fedora Core 5.3 </ImageName>
< CloudControllerName >eucacloudserver.care.mit.in
</ CloudControllerName>
<SoftwareAvailable>

<fft><version> 3.2.x </fft>
<mpi><version>1.2.6</version></mpi>
</SoftwareAvailable>

<ImageURI 1>

<RootImage> emi-223457</RootImage>
<Kernellmage>eki-234344</Kernellmage>
<RamdiskImage>eri-34333</RamdiskImage>
</ImageURI 1>

<ImageURI N>
</ImageURI N>

</OperatingSystemImages>
</OperatingSystemImageInformation>

system and bundled the software for running GROningen MAchine for Chemical
Simulation (GROMACS) Application, and generated the URI and the cloud controller
hostname are represented in Table 3. For example, the image of the Red Hat Enter-
prise Linux operating system with fast Fourier transform (FFT) [57] and message
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Fig. 8 Middleware adapters

passing interface (MPI) [58] software libraries are required to run the GROMACS
[59] application. IMMS retrieves from the request handler service a request to upload
the operating system images and the required software in the cloud infrastructure.
The image metadata creation and parser (IMCP) module creates the metadata for
the available OperatingSystemImages and the software libraries as shown in Table 3.
The operating system images are uploaded through CMA, and the Eucalyptus cloud
middleware generates unique URT’s for root, kernel and ramdisk. Once the operating
system images are uploaded in the cloud resources, image metadata is updated through
the image metadata updater (IMU) and the IMCP module. The image metadata infor-
mation is updated in the XML-based OSIMR. The generated unique URIs is updated
within the ImageURI tag.

4.4 Controller and adapter management

The controller and adapter management is responsible for connecting the grid and
cloud resources that are responsible for invoking the appropriate services based on the
needs. It consists of the three major components represented in Fig. 8.

1. Grid middleware adapter (GMA)
2. Cloud middleware adapter
3. Action manager service.

4.4.1 GMA

The GMA is responsible for aggregating the grid resources, transferring the executable
input and output files, executing and monitoring jobs and creating and deleting vir-
tual resources. It uses the Globus API’s for interacting with the grid middleware and
performing the various operations stated above.

(A) Grid file transfer manager service (GFTMS)—this service is implemented as a
transfer manager factory service and a transfer manager service, and deployed in
the resource broker. It uses GridFTP and reliable file transfer (RFT) protocol for
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(B)

©

D)

transferring files. First, creates the remote job directory in the selected resource
then it transfers the executable input files to the remote directory. Once the job
is successfully completed, the output files are transferred to the resource broker.
It acts as a wrapper for the GridFTP and the RFT services. Finally, it sends the
success/failure message to the Action Manager Component after the file transfer.
Grid job execution manager service (GJEMS)—it uses the Job Managed Factory
service in the Globus Toolkit to submit, monitor and retrieve the job status. It is
implemented as an execution manager factory service and an execution manager
service, and deployed in the resource broker. It provides an abstraction from the
resource management layer available in the grid resources. It receives the job
id as an input, and accesses the request handler to retrieve the job executables,
arguments, input files, selected execution host and LRMS type. Then, it gener-
ates the resource specification language (RSL) file for the job request, and the
generated RSL is maintained in the job directory of the resource broker node.
The RSL file contains the job parameters required to submit the job for GRAM
in the grid resources. It invokes the WS-GRAM client to submit the RSL file.
The WS-GRAM client interfaces with the Job Managed Factory service of the
selected execution host, submits the job for execution and monitors the status of
the job execution. Once the job has been executed successfully, it receives the
status message as “DONE”. Finally, it updates the status message of the Action
Manager Service. The WSGRAM client needs an argument such as execution
hostname, type of LRMS such as PBS, SGE, Condor, LSF or Fork, RSL file and
job id.

Grid resource information manager service (GRIMS)—it is deployed at the bro-
ker level. It periodically accesses the MDS, which is running in grid middleware.
It retrieves static as well as dynamic information. Some of the static information
retrieved from grid resources includes processor speed, operating system, kernel
version, etc. The dynamic information retrieved from grid resources are band-
width, latency, free ram memory, free hard disk memory, free nodes, etc. The
aggregated resource information is parsed and the same is updated in the Grid
Resource Repository.

Virtual resource manager service—it manages the life cycle of virtual resources
including creation, deletion, etc. It interfaces with the virtual manager service,
which we developed, and deploys in the grid resources that interact with the
hypervisor.

4.4.2 CMA

Similar to the GMA, the CMA is responsible for interacting with the cloud middleware
that is deployed in the cloud resources. It aggregates the cloud resource information,
provides the virtual resources and manages the uploaded operating system images in
the cloud resources.

A)

Cloud resource information service—It is deployed at the broker level. Cloud
controller (CLC) is the entry point for the Eucalyptus cloud middleware. This
service interfaces CLC to fetch the static and dynamic information about physical
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(Or) FAILURE Message | (Or) FAILURE Message (Or) FAILURE Message

cloud resources. The aggregated information is updated in the Cloud Resource
Repository. Later on, this information is updated in the ontology knowledge base.
(B) Cloud resource provisioning service—this service is deployed at the broker level.

It invokes CLC for virtual instance creation, deletion and monitoring.

(C) Cloud image metadata manager service—Eucalyptus cloud middleware requires
three types of images namely, kernel, ramdisk and root for virtual instance cre-
ation. It generates unique URIs for each image. It makes use of CLC to upload
the operating system images installed and the required software libraries, and

retrieve the generated unique URIs from the cloud controller service.

4.5 Action manager service

The action manager service acts as a mediator among queue manager service, GMA,
and CMA. If the selection of resource is in the grid environment, the Action Manager
Service invokes the GMA to perform the operations shown in Fig. 9. Else, if the
selection of resources is in the cloud environment, the Action Manager Service invokes

the CMA to perform the operations shown in Fig. 10.

5 Working principle of SeCRB

The working principle of semantic-based resource management for managing both

the grid and cloud resources is described below.

1. The user submits an application request through the GUI or JSDL to SeCRB.

@ Springer



540 T. S. Somasundaram et al.

Number of VMS, Resource
Name, Operating System Image
Name

Number of VMs, Image URISs,
ResourceName

Resource Name,

Job Id, Executable}
Input Files 7y
VM CREATE TRANSFER IMAGE UPLOAD
Message Message Message
VM Create Transfer Image Upload
SUCCESS SUCCESS SUCCESS
(Or) FAILURE Message (Or) FAILURE Message | (Or) FAILURE Message
I T R 2 B

o g,
Vs e e e

Fig. 10 Action manager with CMA

2. Therequest handler service retrieves the job request that may consist of hardware,
software and QoS requirements. It parses the job requirements and the parsed
requirements are stored in job object.

3. The request handler service invokes the Semantic Description and Discovery Ser-
vice to match-make the user’s application requests and the available information
about the grid and cloud resources.

4. The SDDS finds out suitable and potential grid and cloud resources that may
fall into the exact, subsume and plug-in regions for virtual resource creation and
application execution.

5. The queue manager service maintains the incoming requests in the job queue and
invokes the appropriate services based on the type of job.

6. The scheduling Service is responsible for selecting or prioritizing the user appli-
cation requests, and selecting the best resource for a virtual resource creation for
the hybrid, virtual cluster creation and lease scheduling scenarios. The schedul-
ing service is implemented with resource selection algorithms for selecting the
resources from the exact, subsume and plug-in regions in an optimal manner.

7. The queue manager service invokes the SLA negotiator service to pair the user
application requirements with the matched grid and cloud resources, and retrieves
the resources that satisfy the service level objectives (SLOs) of deadline and
response time specified by the user.

8. The SLA negotiator service first initiates the user application requirements and
resources that may fall in the exact region. If the resources that fall into the exact
region are not satisfactory, it negotiates the resources to fall in the subsume and
plug-in regions.

9. Finally, the queue manager service sends the job object, selected resources and
type of resources such as grid or cloud to the action manager service.
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10. The action manager service invokes the GMA if the selected resource is in grid
else, it invokes CMA if the selected resource is in cloud.

11. The GMA acts as a port for interfacing the Globus grid middleware to update the
grid resource information, transfer files, execute and monitor jobs, and create,
delete and update virtual resources.

12. The CMA acts as a port for interfacing with the Eucalyptus cloud middleware. It
is responsible for the following operations that are shown in Fig. 11.

e Virtual instance creation

e Virtual instance deletion

e Cloud resource information updation
e Image metadata updation.

6 Experimental setup, operating system images preparation and application
execution

To evaluate the efficiency of our proposed SeCRB—for running HPC applications
on the grid and cloud resources, we have processed a real case study for solving
the well-known protein analysis problem GROMACS. Generally, the experimental
methodology is a twofold process. First, we have executed the GROMACS application
in real grid and cloud resources, which allowed us to gather real traces of job data
such as job execution time. Second, we have used the real traces of gathered job data
for a simulation using the discrete event simulation method.

6.1 Experimental setup

To evaluate the performance of the proposed work, we used the sixty resources that are
available in the HPC laboratory and CARE research laboratory in our Anna University
Campus. The experimental setup shown in Fig. 12 was made on our campus. It con-
sists of three grid resources namely, carecluster.care.mit.in, xencluster.care.mit.in and
centcluster.care.mit.in. Each grid resource has one head node and 20, 10, 10 compute
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Fig. 12 Experimental setup

nodes, respectively. The grid middleware of Globus Toolkit 4.0.7 is used for man-
aging the Grid resources. The sun grid engine (SGE) and the portable batch system
(PBS) are configured as local resource managers. The grid resources are configured
with Beowulf’s cluster configuration. We have installed Red Hat Enterprise Linux 5
(RHELS) and Cent OS 5.5 as operating systems, and Xen-3.2.3 and Kernel Virtual
Machine (KVM) (kvm-36) as hypervisors in grid resources. The head node and com-
pute nodes of grid resources have 2 GB RAM, 160 GB hard disk and 3,200 MHz
processor speed. We have configured two cloud cluster resources namely eucaclus-
terl.care.mit.in and eucacluster2.care.mit.in. The Eucalyptus version 2.0.1 is used as
cloud middleware for managing the cloud clusters. Each cloud cluster is configured
with 10 node controllers and in total we have configured 20 node controllers for vir-
tual instance creation. The gmetad daemon is configured in the cluster controllers,
and gmond daemon is configured in the node controllers. These two daemons are
responsible for retrieving the CPU-related information of total memory, free memory,
processor speed, etc. The SeCRB is developed as Grid Services, which are deployed
in the Globus Toolkit-4.0.7, and installed on a Dell server that consists of 4 CPUs
with 2000 GHz per processor (4 CPUs x 4 Cores), 16 GB RAM and RHEL-5.0 as
operating system. The Protégé Editor 3.4 is used for creating the ontology knowledge
base, and the Algernon 5.0.1 is used as an inference engine. The GUI is running in
a SeCRB server, which was developed using Java Server Faces and NetBeans IDE
6.7. The GUI has the provision for registering the grid and cloud resources as well
registering the user details.

6.2 Operating system images preparation

We have prepared nine types of Linux operating system images that are listed below.
Each Linux operating system image is classified into two types. The first one is grid
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enabled and is installed with Globus Toolkit using GTAI [60] software and MPI library.
The other one is not grid enabled. Both types of images have been bundled with FFT
and MPI library to run the GROMACS application. In addition, images have been
configured with Beowulf Cluster configuration of head node, compute node, etc. For
Beowulf cluster configuration, we have automated the process of DNS, NFS and NIS.
The prepared images have been uploaded in the grid and cloud resources.

Red Hat Enterprise Linux Server release 5
Red Hat Enterprise Linux Server release 5.2
Fedora release 11

Fedora Core release 4

CentOS release 5.3

CentOS release 5.4

Scientific Linux CERN Release 3.0.5
Scientific Linux CERN SLC release 4.5
Scientific Linux SL release 5.0.

WXk L=

6.3 GROMACS application execution

GROningen MAchine for Chemical Simulation (GROMACS) is a very powerful tool-
box in modern molecular modeling. It was developed at the University of Groningen,
which was built mainly for testing biochemical molecules such as lipids, proteins and
nucleic acids, and for understanding the structure, dynamics and motion of individual
atoms. The two most commonly used methods are energy minimization and molecu-
lar dynamics that optimize the structure and simulate the natural motion of biological
macromolecules. It converts molecular coordinates from a protein data bank (PDB)
file into its internal format. The GROMACS simulation process first generates the
configuration file. The actual simulation process starts once the configuration file is
created—producing a trajectory file describing the movements of atoms over time.
The generated trajectory file is analyzed and visualized later to understand the struc-
ture of the protein. To run the simulation process in grid and cloud resources, we have
automated the above seven steps as a shell script. It is defined as an executable in
JSDL. The Gromacs parallel MPI application is tested in SeCRB bacteriophage T4
Lysozyme Protein Database (10MB.pdb) [61] structure. The whole simulation process
consists of seven steps as given below:

. Creation of topology files using PDB file
. Solvating the protein

. Energy Minimization

. Equilibration run

. Performing MD simulation

. Viewing Trajectory files

. Viewing MD simulation results.

~N N RN

The execution of an application requires the protein files and the input files as shown
in Table 4 when analyzing the structure of the protein. The execution time of the appli-
cation mainly depends on the number of steps in the input files. We have considered
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Table 4 Protein database, input

Protein database and input file names Number of steps
file names and number of steps

10 MB.pdb (Bacteriophage T4 Lysozyme -
Protein Database)

em.mdp 400
pr.mdp 25,000-125,000 steps
run.mdp 50,000-250,000 steps
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Fig. 13 Comparison of application execution time

this application for testing our proposed approach by generating the virtual instances in
the grid as well as in the cloud resources to complete the application within a minimal
time. The SeCRB has been tested with five job requests and each request is varied with
the required number of nodes and number of steps. The number of steps in the input
files plays a major role in deriving the accurate results about molecule structures. We
have pre-configured the VM images with the application required libraries and soft-
ware environment. These images have been stored in the grid and cloud resources.
The metadata information is updated for the uploaded images. The first step in SeCRB
is generating job requests in JSDL file and submitting the job requests through GUI.
We have conducted this experiment in two iterations to find out the consistency in
application execution time. In addition, if we increase the number of steps in the input
files, the execution time of applications will obviously increase as well. Hence, we
have increased the number of nodes from 10 to 40 as an application requirement that
reduces the execution time of applications. We have collected the real traces of the
applications’ booting time, transfer time and execution time by varying the number of
nodes and steps. The execution time of the applications has been reduced significantly
using our proposed SeCRB by increasing the number of virtual instances as shown in
Fig. 13. The application execution is calculated using Eq. (3). It includes the file trans-
fer time of input files, the booting time of virtual instances and actual running time
of jobs. The grid middleware in CRB directly invokes the Xen libraries to instantiate
the virtual machine creation. However, the virtual instances creation request in cloud
should go through three levels such as cloud controller, cluster controller and node con-
troller that increase the boot time of the virtual instances. In addition, SeCRB transfer
the input files to the newly created cluster head that represents the transfer time of the
applications. However, the conventional CRB has the master image for the applications
to execute. The conventional CRB bundles the images with required software libraries
and transfers the image to the scheduled grid resources. The conventional CRB does
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Fig. 14 Application execution for overhead analysis

not consider the boot time, and transfer time for the execution time calculation. In addi-
tion to that, SeCRB upload the operating system images with required libraries in the
Cloud environment. Moreover in SeCRB, we have not considered the semantic match-
making time and SLA negotiation time during the execution time calculation. Even
though, there is slight variation in the total execution time of applications in SeCRB, it
increases the success rate and decreases the job rejection ratio of applications in a linear
manner.

JCT,, =TTy, + BTy, + ART}, 3)

This experiment is carried out to analyze the overhead imposed by running the same
set of jobs in the same physical resource. Sometimes, the resource broker allocates the
virtual instance creation in the same machine to reduce the job rejection. It is tested
by running three jobs where each job requires 10 nodes. The execution time for the
three jobs is represented in Fig. 14. From the Fig. 14, it is evident that the workload
of three virtual resources inside the same machine increases the execution time of a
job in a linear manner. Once the simulation process is successfully completed, we
use the visual molecular dynamics (VMD) tool to analyse the results. The output file
generated during the GROMACS simulation process is transferred to the user’s site for
analysis. The generated output file in our simulation process is run.trr. It is visualized
using the VMD as shown in Fig. 15.

Similar to the previous two experiments, we have carried out this experiment
to analyze the consistency of application execution time by varying the number of
nodes from 10 to 40 for a job. This experiment is carried out using the same protein
database and the required input files as discussed earlier. This simulation experi-
ment is carried out by varying the number of nodes for a job and fixed the value
of number of steps in pr.mdp and run.mdp. From the Fig. 16, it is evident that our
proposed system maintains the consistency of application execution time for two
iterations.

This experiment is carried out to analyze the throughput of jobs submitted per
schedule in CRB versus SeCRB. We have generated five schedules and each schedule
is varied with 10-50 short-term and long-term applications of Bio-Informatics and
Image Processing applications in a random manner. We used the real grid and cloud
resources that consist of totally 60 nodes. The generated job requests are submitted to
resource broker and the comparative study is made. The number of jobs successfully
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completed within deadline versus time for CRB and SeCRB is tested in a real grid
and cloud environment. The conventional CRB discovers the potential resources only
from the grid environment. If the resources are not available in the grid environment
for virtual instance creation, the jobs go to waiting state in the resource broker queue,
and after sometimes it gets rejected. The conventional CRB submits the jobs only
to the exact region. However, the proposed work discovers the potential resources
from both grid and cloud environment. Nevertheless, the proposed SeCRB discovers
the potential resources from subsume as well as plug-in region. After the resource
match-making process, SLA negotiation brings the suitable resources from the exact,
plug-in and subsumes regions from both the grid and cloud resources that guarantee to
satisfy the user QoS requirements of response time and deadline. Hence, the number
of jobs successfully completed per schedule in SeCRB increases in a linear manner,
whereas the successful completion of jobs per schedule in CRB decreases drastically,
if we increase the number of job requests. This can be seen in Fig. 17, where the
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Fig. 17 Comparison of throughput of jobs

maximum number of jobs completed for all the five schedules is more in SeCRB than
CRB.

6.4 Image processing application execution for detection of defects in apple

The Central Electronics Engineering Research Institute (CEERI), India, has devel-
oped an image processing application namely Surface Detection of Defects on fruits.
Detection of defects in the fruits is a complex task due to stem areas, diverse types
of defects present and natural variability of skin color. The Defect Detection, in par-
ticular, requires the precise segmentation of the defects. In addition, the identification
of surface defects in fruits helps in automatic rejection of fruits. Peel defects in apple
were detected using RGB thresholding method; whereas the mechanical defects are
detected by Bit-Plane slicing method, and Line Defects are detected using sub-image
thresholding. In order to improve the execution time, we have parallelized this appli-
cation as parameter sweep application that takes the picture of fruits in four distinct
directions, which are coming through the conveyor belt. These images are compared
with test images, which are stored in the database to identify whether there is any black
spots surface defect in apples. In real-time, this application requires huge amount of
computational resources in an on-demand manner. The experimentation setup for
processing an image processing application is shown in Fig. 18.

The Sobel defect detection algorithm first captures the fruit images and removes the
background and noise using minimal filter as shown in Fig. 19. The identified defects
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Fig. 18 Experimentation setup
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Fig. 19 Four views of an apple before processing

Fig. 20 Segmented images showing defects

in fruit images are shown in Fig. 20. The flow chart of the defect detection algorithm
is presented in Fig. 21. The resultant region related to black spots in fruit images have
been counted by human vision and proposed technique. After analyzing the results
carefully, we have identified that global thresholding method failed to detect many
black spots whereas the marker-controlled watershed segmentation method identified
the black spots count closer to human eye. Due to the presence of noise in original
image such as very high-contrast and rough surface, the proposed technique shows
some extra black spots but it is negligible. This application requires four different
views of apple image. Every view of apple images is sent to four different virtual
machines as shown in Fig. 18. Finally, the output is aggregated from those processors.
The area of each defected region is calculated and returned from all four processors in
four different variables each belonging to separate fruit. The total pixels defected for
each fruit is calculated using (4). Here, A; S; represents the number of pixels defected
in jy, view of iy apple. The application is tested in CRB as well as in SeCRB for ten
iterations to know the consistency of application execution time. The execution time
is noted in Table 5.

4
TPDefectedith_fruit = »_ A;S; )
j=l

7 Simulation results and discussion

Inthe absence of areal large-scale testbed to study the impact of the proposed semantic-
based resource brokering approach, we have developed a discrete event-based simula-
tor to model the semantic-based resource brokering algorithm explained in this paper.
The developed simulator is shown in Fig. 22. This section discusses the evaluation of

@ Springer



Semantic-enabled CARE Resource Broker (SeCRB)

549

Fruit Image

Convert the fruit image into gradient Image and calculate
Gradient magnitude of Image using sobel filter

A\ 4 A\ 4
Calculate Regional Minima to act as Find Distance transform to act as
Internal Markers which External markers which are
corresponds to defects corresponding to the background

A 4

o N
Find Watershed ridge lines using internal and external markers

&
<

\ 4 A 4

outer boundary and defects outer boundary

\

( N
Edges corresponds to both ] [ Edges correspond to the

A 4 A

Edges correspond to defects alone

[ Convert every boundary into the region

Calculate the Percentage of
defected region

Fig. 21 Flow chart for defect detection in an image processing application

Table 5 Application execution
time for detection of defects in
fruits using CRB and SeCRB

Iteration CRB
Application execution
time (Consider Execu-
tion time only) (min)

SeCRB

Application execution time
(Consider booting time +
transfer time + execution
time) (min)

11.1853

11.95596
14.27329
11.37914
11.83616
12.18261
11.83616
12.18261
13.98613
1291121

O 00 N AN W R W N =

—
(=]

14.9786

15.8834

20.72738
16.12189
14.38732
15.34276
15.64823
17.36219
17.49416
17.32839
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Fig. 22 Discrete event simulator

our proposed resource brokering approach by analyzing various performance metrics
such as job rejection rate, job success rate, scheduling success rate and the quantifi-
cation of overhead introduced by our semantic-based resource brokering approach.

7.1 Performance metrics

To evaluate the performance of our resource brokering approach, we have defined the
following metrics in our systems:

Job rejection rate It is the ratio of the number of jobs rejected to the total number
of jobs submitted to the resource broker. The job rejection rate is calculated using
Eq. (9).

JR
JRR;, = Ss 5)
P

Job success rate It is defined as the ratio of number of jobs that successfully meet the
deadline to the number of jobs submitted to the scheduler. The scheduling success rate
is calculated using (6) and (7). Equation (6) represents the number of jobs successfully
completed within the deadline. If the job meets the deadline it is considered a success,
else it is a failure. Equation (7) represents the job success rate.

JSDg, = JSTSs, — JEDs, (6)
JSDg
ISRy, = —JSTSSP 7
P
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Scheduling success rate It is defined as the number of jobs completed per unit time.
The scheduling success rate is calculated using (8).

SSRg, = 2% @®)

7.2 Workload traces

To evaluate our proposed work, we have used the job workload traces of Feitelson’s
Parallel Workload Archive (PWA) [62] to model the HPC applications. The collected
job traces are parallel and iterative in nature. From the collected traces, we obtained
only the submit time, the requested number of processors and the execution time of
the applications. The job traces do not contain the required hardware parameters such
as RAM memory and Hard disk memory, and QoS parameters such as deadline and
response time. Hence, deliberately we have generated the required job parameters.
Our work focused mainly on completing the applications within a deadline. Hence,
we have used the methodology proposed by Irwin et al. [63] for assigning deadline
values based on the low-urgency (LU) and high- urgency (HU) classes. Statically, we
have configured five sites as grid resources and the remaining five as cloud resources.
The number of nodes available in each resource is varied from 100 to 500. The nodes
are heterogeneous in terms of number of CPUs, RAM memory, processor speed,
hard disk memory, bandwidth and delay. Every host is capable of creating ‘Ny’ the
number of virtual machine instances based on the user application requirements and
the availability of resources. The simulation model maps the generated resources onto
a semantic-enabled resource broker. The proposed system is accessed by the ‘Ny’
numbers of users at a regular interval of ‘Ry’ in a Poisson distribution manner.

7.3 Simulation experiments

This section evaluates how our proposed resource approach plays a role in completing
the jobs within the deadline specified by the user as the job success rate. In addition, this
section also evaluates the efficiency of our resource management system by efficiently
allocating the jobs in an optimal manner to reduce the job rejection rate and increase the
scheduling success rate. The simulation experiment is conducted for five schedules.
Job success rate We have evaluated this parameter based on the jobs that are com-
pleted within the deadline. If the job is completed within the deadline, the job is
considered as success or else, the job is considered as failure. The job success rate
depends upon the urgency factor and number of users submitting the number of jobs.
The success rate of a job is less in CRB due to the submission of jobs with physical
scheduling types and the provisioning of resources for co-alloc or virtual scheduling
types from the shared and controlled grid environment. The proposed resource broker-
ing approach not only creates the on-demand virtual instances in the grid environment
but also invokes the cloud controller to create the on-demand virtual instances from
the cloud environment. The QBRS algorithm selects the resources from the exact,
high-similarity plug-in and high-similarity subsume in an optimal manner by consid-
ering deadline as one of the essential factor. Moreover, the guaranteed availability of
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Comparison of Job Success Rate SeCRB Vs.CRB
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Comparison of Scheduling Success Rate SeCRB Vs. CRB

0.1

Scheduling Success Rate
o 0o
W oA

o

2 3 a4 S
[ CRB 0.468085106 0.402061856 0.543859649 0.570833333 0.583606557
e E 1. K 4 E B 1 . 4
SeCRB 0.78313253 0.79069767 0.83333333 0.807065217 0.868644068

Fig. 24 Comparison of scheduling success rate

resources from the SLA negotiation process also plays a main role in the completion
of jobs within their deadline. The results as shown in Fig. 23 depict the percentage of
jobs successfully completed within the deadline specified by the user.

Scheduling success rate We have evaluated this parameter by considering the jobs
which are completed per unit time. The proposed scheduling approach selects the
resources in an optimal manner from the exact, high-similarity plug-in and high-
similarity subsume regions. Moreover, it selects the resources that complete the jobs
efficiency and within a minimal time before the deadline specified by the user. This
leads to an increase in the number of jobs completed before the deadline in a minimal
time. Obviously, this increases the scheduling success rate of our proposed approach.
The scheduling success rate is shown in Fig. 24. The existing CRB gets the job requests,
matches them to the resources in order to identify the scheduling case, and submits the
job into the selected resource. However, in this proposed research work, the resources
are discovered in an efficient manner from the high-similarity subsume and high-
similarity plug-in regions based on the threshold value that paves the way for increasing
the scheduling success rate for the jobs.

7.4 Overhead analysis of proposed SeCRB
This section is used to evaluate the performance of a proposed architecture in three

processes—semantic matchmaking, SLA negotiation and scheduling process. We have
measured the time taken for these processes. The total job processing time for five
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Analysis of Job Processing Overhead
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Fig. 25 Analysis of job processing overhead

schedules—including the time it takes for semantic matchmaking, SLA negotiation
and scheduling—is shown in Fig. 25. The experimental results show that the total
processing time varies linearly with the increase in the number of resources per sched-
ule. When the number of resources increases, the total processing time also increases.
After receiving the job requirements, SeCRB constructs the Algernon query based
on them. The generated query is executed in the Ontology Knowledge Base. It iden-
tifies the various scheduling use cases—including physical, hybrid, virtual cluster
and lease creation—based on the job requirements and in consideration of the hard-
ware and software resource requirements. Finally, the semantic match-making mod-
ule classifies the matched resources that may fall into three regions namely, exact,
subsume and plug-in based on a cosine similarity value that lies between O and 1.
The resources which may fall in the exact region are capable of running the jobs in
the physical grid resources and there is no need to create the virtual resources. The
resource which has cosine similarity value greater than or equal to a threshold value
of 0.90 has been taken into account for the SLA negotiation process. The semantic-
based resource discovery mechanism retrieves more closely matching resources that
are relevant to the job requirements. It results in increasing the efficiency of the
resource discovery mechanism implemented in the proposed work over a conven-
tional keyword-based resource discovery mechanism, because, even when the resource
requested by the user does not perfectly match the available resources described in
the knowledge base, the semantic component retrieves the resources that have a high-
similarity subsumption relationship and a high-similarity plug-in relationship with the
request.

This experiment is carried out by generating five schedules. Each schedule is var-
ied with hosts ranging from 100 to 500. Figure 25 shows the semantic matchmaking
time required to find the resources whose requirements match the job’s needs. The
results show that the higher the number of resources, the longer the query process-
ing time. The variation in the job does not create an impact in the query processing
time. The semantic matchmaking time involves querying and updating the ontol-
ogy knowledge base. The SLA negotiation process calculates the utility value and
sends a proposal to the resources in the exact region. If the resource providers in
the exact region do not agree with the utility value, the broker will send the pro-
posal to the resources in the high-similarity subsume and high-similarity plug-in
regions. Finally, the QBRS algorithm implemented with the scheduler selects the
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resources from the exact, subsume and plug-in regions in an optimal manner. The
main motivation of the scheduling is selecting resources that satisfy the hardware,
software and QoS requirements, and completing jobs within the deadline specified by
the user.

8 Conclusion and future work

This paper begins by extending CRB to semantic-enabled CRB. This proposed
semantic-based resource management framework, which manages the grid and cloud
resources, provides a better environment for HPC applications. It starts with a descrip-
tion of the grid and cloud resources in a semantic manner. Next, it devises a semantic-
based matchmaking mechanism for discovering the resources from the grid and cloud
resources. The discovered resources are classified into the exact, high-similarity sub-
sume and high-similarity plug-in regions based on a cosine similarity and threshold
value. The proposed work is integrated with an SLA-driven negotiation mechanism
that negotiates the user’s job requests to satisfy the user’s QoS requirements. The
QBRS mechanism implemented in SeCRB selects the grid and cloud resources in a
near optimal manner. The proposed mechanism is simulated as well as empirically
evaluated by running the real-world bio-informatics application of GROMACS both
in the grid and cloud resources, and the results are represented as graphs. The proposed
mechanism decreases the rejection rate and increases the success and scheduling suc-
cess rates for jobs submitted to the resource broker, which enhances the efficiency of
a resource management system. In the future, the semantic-based resource manage-
ment can be extended as a PaaS Engine for federating cloud resources that belongs to
different types of providers along with the development environment. In addition, the
feasibility of integrating particle swarm optimization (PSO)-based scheduling algo-
rithm can be explored in order to select resources in an optimal manner, monitor the
SLA of virtual instances, and enforce the rules based on SLAs.
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