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Abstract—Distributed parallel training of large-scale deep neu-
ral networks (DNN) has attracted the attentions of both artificial
intelligence and high-performance distributed computing. One of
efficient approaches is the micro-batch-based pipeline parallelism
(MBPP), e.g., GPipe and Terapipe. Based on the MBPP, we
establish a time-cost model with the basic time function of layers,
which considers computing time and communication time simul-
taneously as well as considers they are nonlinear with the amount
of input data. Focusing on the jointly optimal solutions of network
division and data partition, we propose a Cross-Search algorithm
with Improved Multi-dimensional Dichotomy (CSIMD). Through
theoretical derivation, we prove improved multi-dimensional
dichotomy (IMD) has appreciable theoretical optimality and
linear computational complexity significantly faster than the
state-of-the-art methods including dynamic programming and
recursive algorithm. Extensive experiments on both CNN-based
and transformer-based neural networks demonstrate our pro-
posed CSIMD can obtain optimal network division and data
partition schemes under MBPP. On average, the training speeds
of CSIMD in CNN- and transformer-based DNNs are respectively
(2.0, 2.5)× and (2.66, 5.48)× of (MBPP-R, MBPP-E).

Index Terms—Distributed Parallelism, Micro-batch Pipeline,
Cross-Search, Improved Multi-Dimensional Dichotomy, Large
DNN, Transformer

I. INTRODUCTION

DEEP learning (DL) is showing a significant trend that
the scale of model parameters continues to increase [1].

The recent large deep neural networks (DNN), especially
large language models (LLMs), have hundreds of billions of
parameters, e.g., FLAN with 137B parameters [2], GPT-3 with
175B parameters [3], Gopher with 280B parameters [4], and
Llama series with above 70B parameters [5], [6].

In practice, training large DNNs requires cooperative and
parallel work of numerous distributed artificial intelligence
(AI) devices (e.g., GPU cluster), which usually consume much
time [7], [8]. How to improve the efficiency of parallel training
becomes a hotspot in the fields of AI and distributed comput-
ing [7], [9]. The optimization of parallel training is a complex
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NP-Hard problem where the solution space (scheme space) is
often an uncountable set [7], [10]. To obtain some approximate
schemes, the community established data parallelism (DP),
tensor model parallelism (TMP) and pipeline model paral-
lelism (PMP) as three foundational policies [11], [12], [13],
which directs current parallel training architectures. Currently,
some well-performed parallel training architectures belong
to micro-batch-based pipeline parallelism (MBPP), such as
GPipe [14], Dapple [15], Hippie [11] and Terapipe [13].

Data partition and network division are two critical factors
of parallel training especially for MBPP [16], [17], which di-
rectly affects the schedulable granularity of computing process
and communication process [13]. Data partition contains two
forms: dividing a mini-batch into multiple micro-batches and
dividing a sequence into multiple micro-sequences (or called
micro-tokens). Network division in pipeline parallelism means
dividing multiple layers of a DNN into several continuous
subsegments and deploying them on multiple devices (i.e.,
multiple stages). Improving schedulable granularity allows
more overlap between the time of various processes and can
improve feasible solutions of parallel schemes [15], [18], [19].

However, the finer granularity of data partition or network
division may not lead to better training performance. It is
because of the existence of nonlinear relationship between
time consumption and data volume (or model parameter
volume), which means excessive splitting of network layers
or data may introduce additional time cost instead. Therefore,
solving the optimization problems of data partition and net-
work division based on a more realistic theoretical cost model
showcases significance. To simplify the modeling and solving
of optimal parallel schemes, the existing studies usually as-
sumed computing time and communication time proportional
to data volume [16], [20], [21], [22]. However, when using
practical GPUs and communication networks to implement
parallel training, the computing time or communication time
is probably not proportional to their data volume [10], [23].
For example, in Fig. 1: although the computing time shows an
approximately linear trend with the batch size (data volume)
in some local ranges, there are some ranges in which the
trend is nonlinear. The nonlinear relationship mainly stems
from two reasons: when the data volume is reduced to a
certain extent, processing small data also needs to complete
some inherent operations; the devices generally have a certain
parallel processing capability, which means the processing
time of the data volume within the parallel capability has
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relatively constant trend, while the data beyond the parallel
capability will enter the queue for serial execution. There-
fore, improving parallel training requires finding the optimal
schemes of network division and data partition according to
the cost model considering the non-linear relationships.
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Fig. 1. The computing time of one layer in LLMs with different data sizes.

To find the optimal schemes of data parallelism or model
parallelism, some recent research mainly leveraged dynamic
programming, linear programming, etc [15], [24]. However,
in the optimization problems of MBPP with multiple parallel
dimensions, the data partition and network division belong to
heterogeneous decision variables, which indicates that a single
algorithm is unable to simultaneously solve their optimal solu-
tions. As the solution space generally increases exponentially
with large numbers of model parameters and devices, the
existing methods have massive computational complexity [20],
[22], [25]. Additionally, the lack of accurate analysis models
and formulas (especially lack of models considering nonlinear
relationship) makes it difficult to evaluate the performance of
parallel schemes during optimization. The above characteris-
tics are challenging the optimization of MBPP.

Aiming at addressing the above challenges of MBPP, we
derive and construct a theoretical time-cost model, which
takes the schemes of network divisions and data partitions
as variables, as well as considers the nonlinear relationship
between time consumption and data volume. For the sake
of solving the optimal schemes of MBPP, we formulate the
optimization problem as a joint optimization problem with two
subproblems including: solving the optimal network division
schemes under the fixed data partitioning number, which can
be formulated as a multi-dimensional array segmentation;
solving the optimal data partitioning number under the fixed
network division. Based on formulations of joint problem
with multiple subproblems, the key to improving MBPP is
to solve two subproblems and the joint problem respectively.
To solve the subproblem of network division, we propose an
improved multi-dimensional dichotomy (IMD) to obtain the
optimal schemes in linear time complexity, by converting the
subproblem into the ordered bin-packing problem of multi-
dimensional arrays. For the subproblem of data partitions, we
propose a fast optimal data partition algorithm (ODPA) based
on matrix operations. Then, in order to solve the joint problem
with heterogeneous decision variables, we propose CSIMD (a
cross-search algorithm based on IMD and ODPA).

The main contributions are summarized as follows.
(1) Theoretical models: to support the optimization of MBPP,

we derive a theoretical cost model regarding heteroge-

neous decision variables of DP and PMP. Our cost model
not only considers computing time and communication
time simultaneously, but also considers the nonlinear
relationship between time consumption and data size,
which conforms to reality. With cost model, we convert
the optimization problem of MBPP to a joint problem
with multiple subproblems: solving the optimal network
division under the fixed data partition, and solving the
optimal data partition under the fixed network division.

(2) IMD and ODPA for subproblems: to solve opti-
mal network division (an ordered multi-dimensional ar-
ray segmentation problem), we propose an improved
multi-dimensional dichotomy (IMD). Through theoretical
derivation, we prove that IMD has a theoretical approxi-
mation ratio close to 1 under linear time complexity. To
solve optimal data partition, we propose a fast optimal data
partition algorithm (ODPA) based on matrix operations.

(3) CSIMD for the joint problem: we propose a cross-
search framework (CS) to solve joint optimization prob-
lems containing heterogeneous decision variables by alter-
nately solving subproblems. Combining joint optimization
framework (cross-search) and sub optimization algorithms
(IMD and ODPA), we construct an overall optimization
algorithm (CSIMD) for simultaneously solving the multi-
dimensional parallel schemes in MBPP.

(4) Extensive experiments in real GPU cluster not only
demonstrate the optimality and fastness of our IMD, but
also demonstrate the optimality of CSIMD for both CNN-
and transformer-based DNNs under MBPP.

The rest of this paper is organized as follows. We review
the related work in Section II. The formulation and analysis
of the time cost model are derived in Section III. We propose
the methodology and present its theoretical analysis in Section
IV. The evaluation results are presented in Section V. Finally,
we conclude this paper in Section VI.

II. RELATED WORK

In this section, we mainly review three aspects that are
related to our research in this paper: parallelism, mathematical
cost model, and optimization algorithms.

Data parallelism and model parallelism are two basic modes
of parallel training, which derive various new parallelism [11],
[24]. Data parallelism partitions training data into multiple
pieces [26], [27] and model parallelism divides the DNN
model into multiple parts [11], [20], [28]. Combining data
parallelism and model parallelism, one important series is
micro-batch-based pipeline parallelism (MBPP). GPipe [14]
divided mini-batch data into multiple micro-batches, which al-
lowed the computation and communication of different stages
corresponding to different model nodes (on different devices)
can overlap. The more temporal overlapping parts of various
processes on different devices correspond to the less idle time
(bubbles) of devices [24]. On the premise that the pipeline
does not introduce redundant computing and communication
costs, the total training time of GPipe is smaller than the
original pipeline. Based on GPipe, PipeDream [29] added
a strategy, i.e., shifting the gradient backward-propagation
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(BP) earlier to the moment immediately after its last part of
forward-propagation (FP). Other well-performed methods or
parallelism, including Dapple [15], Hippie [11], TeraPipe [13],
NasPipe [30], et al, are all the variants of GPipe or PipeDream
based on MBPP. Terapipe [13] with micro-tokens-based data
parallelism followed GPipe and improved the granularity to
reduce the pipeline bubbles of the transformer-based NLP
model by proposing a new dimension, i.e., token dimension.

The mathematical cost model is also an important factor
of parallel training, which is the basis for optimizing parallel
training schemes. Next, we mainly review the time-cost model
of MBPP in existing research. The complexity of parallel
training, makes it difficult to obtain an accurate expression
of the cost model. GPipe did not consider the corresponding
time-cost model in [14]. In the subsequent studies [13], [16],
[20], the cost model was considered as:

TPP = (m− 1)·(max (Fi) + max (Bi))+
∑

(Fi +Bi) (1)

where TPP means the total training time for one mini-batch
in one iteration when using MBPP, Fi and Bi are the time
respectively for FP and BP of the i-th stage, and m is the
number of micro-batches in one mini-batch. The cost model
of PipeDream was considered as a recursive formula [29].
Narayanan et al [31] proposed PipeDream-2BW and consid-
ered a time-cost model for pipelining as

TPP = max
i

max

T cp
i +

∑
j

T cm
j→i,

1

m
· T cm

i

 ,

where T cp
i means the computing time of the i-th stage, T cm

j→i

means the communication time between stages i and j, and
T cm
i means the communication time of exchanging gradients.

PipePar [32] considered a cost model as

TPP = Tcm + Tcp,

which directly adds communication and computing time.
Narayanan et al [33] proposed Megatron-LM and considered
a cost model as

TPP = C · (F +B)) ,

where C is a coefficient related to micro-batch size and data
parallel size. Elango [22] proposed PaSE and considered the
FLOP-to-bytes ratio in the cost model.

Because the cost model was generally non-analytical or
recursive, dynamic programming is widely used to obtain
the optimal partition of data parallelism or model paral-
lelism [24]. Some examples include PipeDream [15], Dap-
ple [15], Terapipe [13], EffTra [16], Alpa [20], PaSE [22],
PipePar [32]. Linear programming is also a frequent method
in parallel training [9], [27], [34]. Some examples include Net-
Placer [34], HGP4CNN [9], DPDA [27]. Other partition meth-
ods include off-the-shelf graph partitioning algorithms [35],
recurrence [22], multi-chromosome genetic algorithm [36],
grouping genetic algorithm [37], minimum vertex-cut graph
partitioning algorithm [38], near-optimal layer partition of
local search [25]. As the state-of-the-art methods to obtain
optimal network division schemes, dynamic programming and

recursive algorithms suffered from their large computational
complexity, which is a quadratic polynomial about the number
of layers (denoted as K) and a linear polynomial about the
number of stages (denoted as N ), i.e., O(2NK2).

From the literature review, the formulation of the cost model
affected the choice of optimal algorithms. Some of the cost
models only considered one of computation and communica-
tion processes; some only provided recursive formulas; and
some with direct expressions relied on a lot of ideal assump-
tions which was far away from the real scenario. Referring
to but distinguished from the existing research, this paper
derives a time-cost model of MBPP considering computation
and communication simultaneously. The model doesn’t limit
the features of devices, so it adapts to both homogenous and
heterogeneous systems. The cost model also considers the
nonlinear relationship between cost and data size, which is
closer to reality. To solve the parallel training schemes, we
proposed a novel method that is cross-search with improved
multi-dimensional dichotomy (CSIMD). Compared with the
state-of-the-art methods including dynamic programming and
recursive algorithm, our proposed IMD is far faster in solving
the network division. IMD’s time complexity is linear with K
and decreases as N increases.

III. THEORETICAL FORMULATIONS OF MBPP

For the sake of derivation and analysis for the cost model
of MBPP, we list some notations in Table I.

TABLE I
NOTATIONS AND DESCRIPTIONS

Notation Description
N Number of stages
p Number of partitions
K Number of layers of DNN
FP
i (p) The forward computing time of one micro-batch in the i-th

stage when partitioning the mini-batch into p micro-batches
FM
i (p) The forward communication time of one micro-batch

BP
i (p) The backward computing time of one micro-batch

BM
i (p) The backward communication time of one micro-batch

SP
ij(p) The start computing time of the j-th partition in the i-th stage

of FP
SM
ij (p) The start communication time of the j-th partition in FP

RM
ij (p) The start computing time of the j-th partition in BP

RM
ij (p) The start communication time of the j-th partition in BP

Hi(p) The computing time of the i-th layer when partitioning the
mini-batch into p micro-batches

Ji(p) Time required to communicate the output data of the i-th layer
Li The i-th layer
Ci The collection of layer on the i-th device
αi The maximum index of layers in Ci

λ The collection of αi as λ = ⟨α1, . . . , αN ⟩

In this paper, we mainly focus on the structures of MBPP
(e.g., GPipe with micro-batch data and Terapipe with micro-
tokens data) shown in Fig. 2. The characteristic of MBPP is
that the BPs of micro-batches in each mini-batch need to start
after the FP of the last micro-batch in the last layer ends. To
simplify the structure of MBPP so that the analytical formulas
of time-cost are obtainable, we consider that the receiving data
and sending data of the same device do not affect each other,
otherwise, the recursive formula will be more complex. This
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consideration is consistent with the full-duplex communication
mode which is widely used in distributed systems [18]. Thus,
Fig. 2 only needs to present the process of devices in sending
data, without drawing the process of receiving data.
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Fig. 2. The parallel structures of the MBPP: CMP. means computing process,
and CMM. means communication process.

A. Cost Model Considering Computation and Communication

For MBPP, the expression of time is as Eq. 1 without
consideration of communication. While, it is not enough to
support the cost model considering computation and com-
munication simultaneously. In order to support subsequent
research on data partitioning and network division, we need
to formulate a more comprehensive cost model considering
computation and communication simultaneously.

The computing time and communication time of one micro-
batch (or micro-tokens) can be set as functions in terms of data
partitions: FP

i (p) and FM
i (p) are respectively the computing

time and communication for FP of one micro-batch (or one
micro-token) in the i-th stage, where p is the number of data
partitions; BP

i (p) and BM
i (p) are that for BP. The processing

time of different data partitions in the same stage is relatively
stable. It can be set that the SP

ij(p) is the start computing time
of the j-th partition in the i-th stage of FP and SM

ij (p) is the
start communication time; RP

ij(p) and RM
ij (p) are for BP.

When the functions FP
i (p), FM

i (p), BP
i (p) and BM

i (p)
are given, SP

ij(p), S
M
ij (p), R

P
ij(p) and RM

ij (p) can completely
represent the whole process of parallel training in MBPP.
Since these variables are functions of partition number p, we
omit the (p) in the subsequent expression. In MBPP, the BP
in the same mini-batch needs to wait for all FPs to complete
before starting. Then, the recursive formula can be written as
Eq. 2 according to its characteristics.

SP
ij = max

(
SM
(i−1)j + FM

i−1, S
P
i(j−1) + FP

i

)
SM
ij = max

(
SP
ij + FP

i , S
M
i(j−1) + FM

i

)
RP

ij = max
(
RM

ij +BM
i , RP

i(j−1) +BP
i

)
RM

ij = max
(
RP

(i+1)j +BP
i+1, R

M
i(j−1) +BM

i

)
(2)

where 1 ≤ i ≤ N is the index of stage, N is the number
of stages, 1 ≤ j ≤ p is the index of micro-batch (or micro-
token) in one mini-batch. The recursive formulas of Eq. 2

illustrate that the start time of each micro-batch data process
(including micro-batch token process) depends on the end time
of the two preamble processes: micro-batch process with the
same index in the previous stage, and the previous micro-batch
process in this stage. Taking computation process of FP as an
example, the computation process of the j-th data partitions
in the i-th stage (corresponding to the start time SP

ij ) needs to
be simultaneously after the communication process of the j-th
data partition in the (i−1)-th stage (corresponding to the end
time SM

(i−1)j+F
M
i−1) and the computation process of (j−1)-th

data partitions in the i-th stage (corresponding to the end time
SP
i(j−1)+F

P
i ). The recurrence relationship of other processes

is similar to the above example. If i /∈ [1, N ] or j /∈ [1, p],
then SP

ij(p) = RP
ij = −∞. And if i /∈ [1, N − 1] or j /∈ [1, p],

then SM
ij = RM

ij = −∞. The initial conditions of Eq. 2 are:

SP
11 = 0, RP

N1 = SP
Np + FP

N (3)

Substituting Eq. 3 into Eq. 2 obtains the expressions of FP:

SP
ij =

i−1∑
k=1

(
FP
k + FM

k

)
+ (j − 1)max

(
max

1≤k≤i−1

(
FP
k , F

M
k

)
, FP

i

)
SM
ij =

i∑
k=1

(
FP
k + FM

k

)
− FM

i + (j − 1) max
1≤k≤i

(
FP
k , F

M
k

)
(4)

where 1 ≤ i ≤ N and 1 ≤ j ≤ p. The expressions of BP are:

RP
(N−i)j = SP

Np + FP
N +

i−1∑
k=1

(
BP

N−k +BM
N−k

)
+BP

N

+ (j − 1)max

(
max

1≤k≤i−1

(
BP

N−k, B
M
N−k

)
, BP

N

)
RM

(N−i)j = SP
Np + FP

N +

i∑
k=1

(
BP

N−k+1 +BM
N−k

)
+ (j − 1) max

1≤k≤i

(
BP

N−k+1, B
M
N−k

)
(5)

Then, the time-cost for one iteration of one mini-batch is:

T = RP
1p +BP

1 =

N∑
k=1

(
FP
k + FM

k +BP
k +BM

k

)
+ (p− 1) max

1≤k≤N

(
max

(
FP
k , F

M
k

))
+ (p− 1) max

1≤k≤N

(
max

(
BP

k , B
M
k

)) (6)

where FM
N = BM

N = 0. From Eq. 6, the training time
(makespan) of MBPP consists of three parts: the sum of the
calculation time and communication time of one micro-batch
in all pipeline stages (i.e.,

∑N
k=1

(
FP
k + FM

k +BP
k +BM

k

)
);

the computation time or communication time of the
longest micro-batch data in FP multiplied by (p − 1)
(i.e., (p− 1)max1≤k≤N

(
max

(
FP
k , F

M
k

))
); the time of the

longest micro-batch data in BP multiplied by (p − 1) (i.e.,
(p− 1)max1≤k≤N

(
max

(
BP

k , B
M
k

))
). Compared to Eq. 1,

Eq. 6 takes the computations and communications into con-
sideration simultaneously. The derivation process of Eq. 6
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only depends on the recursive relationship between the micro-
batch processes in MBPP, and does not limit the form of
the basic time functions and the device nodes. Therefore,
Eq. 6 is applicable to scenarios considering both nonlinear
time relationships and clusters combining various devices.

B. Theoretical Analysis of Cost Model
In parallel training of MBPP, two aspects need to be

optimized: dividing DNN into N stages (network division)
and finding the optimal number of data partitions.

If FP
i (p), FM

i (p), BP
i (p) and BM

i (p) are given, the optimal
partition number can be obtained by the extreme values of
Eq. 6. Thus, we first discuss network division which needs to
be determined before solving the optimal data partition.

It can be set that the DNN has K layers denoted as
L = ⟨L1, L2, . . . , LK⟩ where Li corresponds to the i-th layer.
In this paper, we mainly discuss the situation that K ≥ N and
the network layers within the same device must be continuous,
which means each device must at least contain one layer
of network. For the sake of analysis, we also set that the
computing time and communication time (time required to
communicate its output data to the next layer) for FP of the i-
th layer are respectively HP

i (p) and HM
i (p) where 1 ≤ i ≤ K.

That for the BP are set as JP
i (p) and JM

i (p). Thus, we can
plot a diagram of the whole computation process and the
corresponding symbols for one micro-batch as Fig. 3.
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Fig. 3. The diagram of the whole computing process and the corresponding
symbols for training one micro-batch of DNN.

The division of the network layer is actually to determine
on which device each layer is executed on. It can be set that
the collection of layers on the i-th device is Ci, i.e., Lj ∈
Ci means the j-th layer is executed on the i-th device. The
MBPP structure divides the network layer in order, thus: if
Li1 ∈ Cj and Li2 ∈ Cj where i1 ≤ i2, then Li ∈ Cj for
i1 ≤ ∀i ≤ i2. Therefore, we can set the maximum index of
layers in Ci as αi where αi−1 < αi. This means if αi−1 <
j ≤ αi then Lj ∈ Ci, else Lj /∈ Ci. It also means Cj =〈
Lαi−1+1, Lαi−1+2, . . . , Lαi

〉
. Then, we can use HP , HM ,

JP and JM to express the FP , FM , BP and BM as Eq. 7.
FP
i =

αi∑
k=αi−1+1

HP
k , F

M
i = HM

αi

BP
i =

αi∑
k=αi−1+1

JP
k , B

M
i = JM

αi+1

(7)

where FP
i =

∑αi

k=αi−1+1H
P
k means the computing time of

i-th pipeline stage equals to the sum of computing time of all
the layers in this stage; FM

i = HM
αi

means the communication
time of i-th pipeline stage equals to the time to transmit the
output data of the last layer (i.e., Lαi

) in this stage.
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Fig. 4. The diagram of network division (K layers to N stages) in FP.

For the sake of presentation of the relationship between
pipeline stages and layers of DNN, we plot the diagram of
network division with FP in Fig. 4. The process of BP is
analogous to that of FP. Substituting Eq. 7 into Eq. 6 can obtain
the expression of training time regarding decision variables of
network division (i.e., αi) and data partition (i.e., p):

T =

K∑
i=1

(
HP

i + JP
i

)
+

N−1∑
i=1

(
HM

αi
+ JM

αi+1

)
+(p− 1) (ρ1 (λ, p) + ρ2 (λ, p))

(8)

where ρ1 = maxNi=1

(
max

(∑αi

k=αi−1+1 J
P
k , J

M
αi+1

))
and

ρ2 = maxNi=1

(
max

(∑αi

k=αi−1+1H
P
k , H

M
αi

))
, respectively

corresponding to the longest FP and BP pipeline stages.
Therefore, the key to solving the problem of minimizing

total training time is to find the optimal collection of λ =
⟨α1, α2, . . . , αN ⟩ and p. In the scenario of this paper, λ and
p necessarily and sufficiently correspond to a unique parallel
training scheme under MBPP. Thus, we can use the vector
⟨λ, p⟩ to represent the joint solution of a parallel training prob-
lem and use T (λ, p) to represent its corresponding training
time under MBPP for one mini-batch.
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IMD updates network division λ

ODPA update date partition  p

Stop cross search until both IMD and 
OPDA are unable to update schemes

Calculate the initialized upper limits 
Dmax and lower limits Dmin 

Take the median Dmean as the 
preset volume

Use MASP algorithm to check if the number 
of bins greater than the number of  stages number of 

bins>stages ?

Dmax=Dmean

False

Dmin=Dmean

True

Dmax≤Dmin+ε?

False

Output network division scheme λ

True

IMD based on MASPCross Search based on IMD and ODPA

Fig. 5. CSIMD framework of joint optimization for parallel training.

When p is given,
∑K

i=1

(
HP

i + JP
i

)
is a constant. Thus,

the problem can be transformed into the balancing division
of layers (a multi-dimensional array segmentation problem).
If only considering the computing of FP, the problem is
converted to minimizing maxNi=1

(∑αi

k=αi−1+1H
P
k

)
, which

is segmenting K numbers to N groups without changing
orders to minimize the maximum sum of these groups (one-
dimensional array segmentation problem). However, consider-
ing communication and computation simultaneously or consid-
ering FP and BP simultaneously will increase the complexity
significantly, because changing network division will also
change the layers involved in communication. Additionally,
it will change both maxNi=1

(∑αi

k=αi−1+1H
P
k

)
of FP and

maxNi=1

(∑αi

k=αi−1+1 J
P
k

)
of BP, hence requiring a method

to simultaneously optimize data partition and network division
(jointly optimizing the parallel schemes of DP and PMP).

IV. METHODOLOGY

Based on the theoretical formulation and analysis in the
above section, the problem of solving the optimal training
scheme for MBPP can be transformed into three aspects:
(1) ω1: solving optimal λ = ⟨α1, α2, . . . , αN ⟩ (network divi-

sion) of PMP with given p (partition number) of DP;
(2) ω2: solving optimal p (partition number) of DP with given

λ = ⟨α1, α2, . . . , αN ⟩ (network division) of PMP;
(3) Jointly solving problem ω1 and problem ω2 to obtain the

optimal parallel training scheme ⟨λ, p⟩.
To achieve the solutions of the above three aspects, we pro-

posed CSIMD (cross-search with improved multi-dimensional
dichotomy algorithm), whose framework is presented in Fig. 5.
As shown in Fig. 5, CSIMD contains three key components:
improved multi-dimensional dichotomy (IMD) for ω1, optimal
data partition algorithm (ODPA) for ω2, and cross-search
for jointly solving ω1 and ω2, respectively corresponding to
the above three aspects. In this section, we will detail the
corresponding methods to solve these three aspects.

A. Cross-Search for Joint Solution of ω1 and ω2

Firstly, we discuss the systematic method, i.e., cross-search
for a joint solution of ω1 and ω2. Supposing two algorithms,
denoted as A1 and A2, can respectively obtain the theoretical
optimal solution of problems ω1 and ω2, two avenues to get
the joint solution of ω1 and ω2 are:
(1) Traversing all feasible partition numbers to find the corre-

sponding optimal network divisions, and then comparing
their solutions to obtain the optimal scheme;

(2) Traversing all network divisions to find their correspond-
ing optimal partition number, and then comparing their
solutions to obtain the optimal scheme.

Algorithm 1: Cross-Search Algorithm for Joint Solu-
tion of ω1 and ω2

Input : K, N , The functions of HP
i , HM

i , JP
i , and

JM
i for ∀1 ≤ i ≤ K

Output: Solution ⟨λ, p⟩ of parallel training and its
corresponding training time T (λ, p)

1 Set p = 1 or other initial number
2 Use algorithm A1 to obtain the optimal network

division λ = ⟨α1, α2, . . . , αN ⟩ under p and record its
corresponding training time T (λ, p)

3 while True do
4 Use algorithm A2 to obtain the optimal data

partition number p′ under λ and obtain its
corresponding training time as T (λ, p′)

5 if T (λ, p′) = T (λ, p) then
6 Break
7 Use algorithm A1 to obtain the optimal network

division λ′ under p′ and obtain T (λ′, p′)
8 if T (λ′, p′) = T (λ, p′) then
9 Break

10 Update p = p′ and λ = λ′

However, these two traversal avenues both need to consume
a lot of computational complexity. To improve the speed for
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jointly solving ω1 and ω2 with maintaining the optimality, we
propose a cross-search algorithm whose pseudo-code can be
seen in Algorithm 1:
(1) Firstly, set an initial data partition p (Line 1), and obtain

the corresponding initial network divisions λ (Line 2).
(2) The loop from Line 3 to Line 10 is the cross-search

to update the optimization schemes of data partitions
and network divisions alternately, until there is no better
network layer division and no better partition number.

By switching the sub optimization problems between ω1 and
ω2, the cross-search of Algorithm 1 enables joint optimization
of network division and data partition.

With the framework of the systematic method (cross-
search), two algorithms A1 and A2 which can respectively
solve problems ω1 and ω2 are significantly required. Next, we
will discuss them successively.

B. IMD to Divide Network Layers

1) Algorithm and Framework: The problem ω1, that solv-
ing the optimal network division with a given partition number,
is a variant of the array-balanced segmentation problem, i.e.
multi-dimensional array segmentation problem. The typical
array balanced segmentation problem only considers a one-
dimensional array. For example, when only considering com-
puting of BP, the objective of problem ω1 can be simplified
to min

(
maxNi=1

(∑αi

k=αi−1+1 J
P
k

))
setting p is given, which

is a one-dimensional array segmentation problem. A well-
performed method to solve the one-dimensional array seg-
mentation problem is the dichotomy method, while it does
not apply to multi-dimensional array segmentation. To solve
the problem ω1 in real scenarios which requires considering
JP , JM , HP , and HM simultaneously, we introduce multi-
ple weight vectors and propose improved multi-dimensional
dichotomy method (IMD), whose pseudo-code can be seen in
Algorithm 2 and algorithm framework is shown in Fig. 5.

Following the strategy of typical dichotomy, IMD converts
the problem ω1 to the ordered bin-packing problem and
transforms the solution target to find the minimum volume of
bins. Line 1 to Line 3 in Algorithm 2 are respectively setting
convergence standard (i.e., ϵ), the initial range of packing
volume (Dmin and Dmax), and the weight groups (W ). The
operations in Line 2 can ensure that the initial range must
contain the optimal packing volume. The loop from Line 4
to Line 15 is the search process of the multi-dimensional
dichotomy. As Line 5, IMD utilizes the mean value (Dmean)
of the maximum value (Dmax) and the minimum value
(Dmin) as the preset packing volume. The volume is measured
by ρ1+ρ2. Because the proportion between ρ1 (corresponding
to the longest FP pipeline stage) and ρ2 (corresponding to
the longest BP pipeline stage) varies with pipeline network
divisions, IMD introduces multi-weight vectors to distribute
the preset volume (Dmean) according to different proportions
(as Line 7) to check: whether there is a packing scheme
satisfying the current preset packing volume after proportional
distribution (i.e., v1 and v2) so that the total number of packing
bins (τ ) is not greater than the number of pipeline stages (N ).
The loop from Line 6 to Line 11 is to traverse all vectors in

the weight groups. Shown as Lines 12 to 15, IMD updates the
search range by adjusting the upper and lower boundaries. If
there is a weight vector satisfying the number of bins is not
greater than the number of pipeline stages (i.e., τ ≤ N ), the
preset volume can be further reduced (i.e., the value ρ1 + ρ2
corresponding to the theoretical optimal solution of λ is less
than Dmean), otherwise, to enlarge the preset volume.

Algorithm 2: Improved dichotomy to solve multi-
dimensional array segmentation (IMD)

Input : K, N , p, The functions of HP
i , HM

i , JP
i ,

and JM
i for ∀1 ≤ i ≤ K

Output: Solution λ = ⟨α1, α2, . . . , αN ⟩ and T (λ, p)
1 Set a small value ϵ as the convergence standard
2 Set Dmin = max

(
max

(
HP , JP

)
,min

(
HM , JM

))
,

D1 =
K∑
i=1

(
HP

i +HM
i

)
, D2 =

K∑
i=1

(
JP
i + JM

i

)
,

Dmax = D1 +D2

3 Set the weight groups with η + 1 (or other given
number) groups W = ⟨w0, w1, w2, . . . , wη⟩ where
wi = ⟨wi(1), wi(2)⟩ =

〈
i
η , 1−

i
η

〉
4 while Dmax −Dmin ≥ ϵ do
5 Set Dmean = Dmax+Dmin

2 , check = False
6 for w in W do
7 Set v1 = w(1) ·Dmean, v2 = w(2) ·Dmean

8 Substitute v1 and v2 into multi-dimensional
array segment packing algorithm (Algorithm
3) to obtain τ and λmean

9 if τ ≤ N then
10 check = True, λ = λmean

11 Break the “for” loop

12 if check then
13 Dmax = Dmean

14 else
15 Dmin = Dmean

16 Calculate the training time T (λ, p)

Algorithm 3: Multi-dimensional array segment pack-
ing algorithm (MASP)
Input : K, N , p, upper limit v1 and v2, the functions

of HP
i , HM

i , JP
i , and JM

i for ∀1 ≤ i ≤ K
Output: The number of bins τ , the solution of array

segmentation λ = ⟨α1, α2, . . . , ατ ⟩
1 Set ψ1 = ψ2 = 0, λ = ∅, τ = 0, i = 0
2 while i ≤ K do
3 i++, ψ1+ = HP

i , ψ2+ = JP
i

4 if max
(
ψ1, H

M
i

)
≤ v1 ∧max

(
ψ2, J

M
i

)
≤ v2 then

5 α = i

6 if max
(
ψ1, H

M
i

)
> v1 ∧max

(
ψ2, J

M
i

)
> v2 then

7 τ ++, λ+ = {α}, i = α, ψ1 = ψ2 = 0

8 τ ++, λ+ = {K}
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As the IMD transforms the problem ω1 to an array segmen-
tation packing problem, it needs to call an improved multi-
dimensional array segmentation packing algorithm (MASP),
shown as Algorithm 3. When v1 and v2 are given, the theo-
retical optimal solution of the problem of partitioning ordered
arrays can be obtained through the local greedy algorithm.

2) Analysis to Convergent Solutions of IMD: The improved
dichotomy to solve multi-dimensional array segmentation
(IMD, Algorithm 2) aims at solving the problem that

minω(1)(λ) = ρ1 (λ, p) + ρ2 (λ, p) (9)

Denoting the convergent solution of Algorithm 2 as λID, the
feasible solution set of the problem as Λ, and the theoretical
optimal solution is λO, then the solution has the following
property according to the process of Algorithm 2.

Property 1: If ϵ→ 0 and the weight groups W has adequate
weights η → +∞ which can ergodic all possible proportions
between ρ1 and ρ2, then for ∀ω(1) > 0 the following formula
must be tenable.τ(ω) ≤ N, if ω ≥ ω(1)

(
λ(ID)

)
τ(ω) > N, if ω < ω(1)

(
λ(ID)

) (10)

where τ (ω) is the minimum required number of bins when
setting the preset volume of bins as ω.

The proof of Property 1 can be seen as follows considering
τ(ω) is a non-increasing function.

Proof 1: Because τ
(
ω(1)

(
λ(ID)

))
= N , therefore τ(ω) ≤

N when ω ≥ ω(1)
(
λ(ID)

)
. If ∃ω < ω(1)

(
λ(ID)

)
s.t. τ(ω) ≤

N , then the value Dmin < Dmean. Then, the Algorithm 2
needs to be continued, which is in contradiction with λ(ID)

is a convergent solution. Therefore, for ∀ω < ω(1)
(
λ(ID)

)
,

τ(ω) > N . Thus, Property 1 is proved.
On the basis of Property 1, we can obtain Property 2.
Property 2: For ∀λ ∈ Λ, ω(1) (λ) ≥ ω(1)

(
λ(ID)

)
=

ω(1)
(
λ(O)

)
under the conditions of Property 1, i.e., λ(ID) is

one theoretical optimal solution of problem minω(1).
The proof of Property 2 is as follows by contradiction.
Proof 2: If ∃λ ∈ Λ s.t. ω(1) (λ) < ω(1)

(
λ(ID)

)
, then

τ
(
ω(1) (λ)

)
> N according to the second formula of Eq. 10.

Because λ ∈ Λ is a feasible solution of problem minω(1),
therefore τ

(
ω(1) (λ)

)
≤ N . These two inequalities are con-

tradictory. Thus, for ∀λ ∈ Λ, ω(1) (λ) ≥ ω(1)
(
λ(ID)

)
, i.e.,

λ(ID) is a theoretical optimal solution.
In fact, Property 1 and Property 2 are equivalent to reveal

that the convergent solution of Algorithm 2 is the theoreti-
cally optimal solution. However, there are two indispensable
conditions for Property 1 and Property 2 to be tenable, i.e.,
ϵ → 0, and W has adequate weights (η → +∞). In real
computer programs, these two conditions are generally unable
to be achieved, since the computer cannot generate infinitely
small numbers. In practical implementation of Algorithm 2 to
solve the problem minω(1), the error between ω(1)

(
λ(ID)

)
and ω(1)

(
λ(O)

)
is related to both ϵ and η, which is revealed

by Property 3 through deduction.

Property 3: When ϵ > 0 and η < +∞, the error ξ between
the convergent solution ω(1)

(
λ(ID)

)
and the theoretical opti-

mal solution ω(1)
(
λ(O)

)
is:

0 ≤ ξ = ω(1)
(
λ(ID)

)
−ω(1)

(
λ(O)

)
≤ ϵ+

ω(1)
(
λ(O)

)
η − 1

(11)

According to the process of Algorithm 2, we can present
the proof of Property 3 as follows.

Proof 3: When the Algorithm 2 reaches convergence, the
following relationships are tenable:
(1) ∃i s.t. Dmax i

η ≥ ϱ1
(
λO
)

and Dmax η−i
η ≥ ϱ2

(
λO
)
;

(2) ∀i ∈ [0, η], Dmin i
η ≤ ϱ1

(
λO
)

or Dmin η−i
η ≤ ϱ2

(
λO
)
;

(3) 0 ≤ Dmax −Dmin ≤ ϵ.
If 0 ≤ ∃i ≤ η s.t. Dmin i

η ≤ ϱ1
(
λO
)

and Dmin η−i
η ≤

ϱ2
(
λO
)
, then Dmin ≤ ϱ1

(
λO
)
+ϱ2

(
λO
)
= ω(1)

(
λ(O)

)
. Be-

cause, ω(1)
(
λ(ID)

)
≤ Dmax ≤ Dmin+ϵ, thus ω(1)

(
λ(ID)

)
≤

ω(1)
(
λ(O)

)
+ ϵ.

If for 0 ≤ ∀i ≤ η,
(
Dmin i

η ≤ ϱ1
(
λO
))

∧(
Dmin η−i

η ≤ ϱ2
(
λO
))

= False, then there must 0 ≤ ∃i < η

s.t. Dmin i
η ≤ ϱ1

(
λO
)
, Dmin η−i

η ≥ ϱ2
(
λO
)
, Dmin i+1

η ≥
ϱ1
(
λO
)

and Dmin η−i−1
η ≤ ϱ2

(
λO
)
. Therefore, Dmin η−1

η ≤
ϱ1
(
λO
)
+ϱ2

(
λO
)
. Thus, ω(1)

(
λ(ID)

)
≤ η

η−1ω
(1)
(
λ(O)

)
+ϵ.

Thus, Property 3 is proved.
Property 3 reveals the theoretical optimality of IMD. From

Eq. 11 of Property 3, we can also obtain that:

lim
ϵ→0,η→+∞

(
ω(1)

(
λ(ID)

)
− ω(1)

(
λ(O)

))
= 0 (12)

3) Analysis of Computational Complexity and Selection of
Parameters: To further discuss the performance of Algorithm
2, we analyze its computational complexity CIMD.

Since the dichotomy will reduce the search space by half
each time, it needs log2

(
D
ϵ

)
times to reach convergence where

D = D1+D2−max
(
max

(
HP , JP

)
,min

(
HM , JM

))
. The

complexity of each time is determined by η and Algorithm 3.
It can be obtained as O (η (2K)), where the complexity of
Algorithm 3 is O (2K). Thus, the complexity of Algorithm 2
can be derived as

CIMD = O
(
2Kη log2

(
D

ϵ

))
(13)

If the maximum allowable error is given as ξ where ξ =
ϵ+ 1

η−1ω
(1)
(
λ(O)

)
according to Eq. 11 of Property 3, we can

obtain the complexity of Algorithm 2 with respect to ϵ as:

CIMD = O

(
2K

ω(1)
(
λ(O)

)
ξ − ϵ

log2

(
D

ϵ

))
(14)

Minimizing CIMD is equivalent to minimizing 1
ξ−ϵ ln

(
D
ϵ

)
where ξ and D are given. It can be derived that when

ϵ (lnD − ln ϵ+ 1) = ξ, (15)

CIMD achieves the minimum. Eq. 15 presents a way to
select the appropriate parameters of ϵ and η to reduce the
computational complexity under the given maximum error ξ.
Eq. 15 can be solved through various numeric methods such
as Newton iteration method and secant method.
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Contemporary methods to solve the pipeline networks di-
vision mainly include dynamic programming and recursive
algorithm [15], [22], [24], whose computational complexities
are both O

(
2NK2

)
. One advantage of IMD is that its com-

putational complexity is not affected by the number of stages
(i.e., N ), and the other is that it has a linear relationship with
the number of networks (i.e., K). Thus, IMD is significantly
faster than the state-of-the-art methods.

C. Optimal Data Partition Algorithm (ODPA)

To obtain the optimal solution of parallel training, we also
need to find the optimal partition number p of data parallelism
(i.e., problem ω2) under a given network division scheme λ.

Algorithm 4: Optimal data partition algorithm via
basic time function (ODPA)

Input : K, N , λ, the functions of HP
i , HM

i , JP
i , and

JM
i for ∀1 ≤ i ≤ K

Output: The optimal partition number p
1 Get four matrices Q(1), Q(2), Q(3) and Q(4) to

respectively represent HP
i , HM

i , JP
i , and JM

i . For
example, the element Q(1)

ji in Q(1) equals to HP
i (j)

2 Get two K ×N matrices (P (1) and P (2)) and a
one-dimensional matrix P (3) where

P
(1)
ij =

{
1, if αi−1 + 1 ≤ j ≤ αi

0, others
,

P
(2)
ij =

{
1, if j = αi

0, others
, P

(3)
i = i− 1

3 Calculate Z (the array composed of respective training
time under each data partition schemes):

U1 = max

max
(
Q(1) × P (1), dim = 1

)
max

(
Q(2) × P (2), dim = 1

)
 · P (3)

U2 = max

max
(
Q(3) × P (1), dim = 1

)
max

(
Q(4) × P (2), dim = 1

)
 · P (3)

Z = sum

(
4∑

i=1

(
Q(i)×P (2−(i mod 2))

)
, dim = 1

)
+U1 + U2

4 Obtain the index corresponding to the minimum value
of matrix Z as the optimal partition number that

p = argmin (Z)

When, HP , HM , JP and JM are known, it is easy to
calculate the training time T (λ, p) for ∀p. Then, it only needs
to choose the partition number corresponding to the minimum
running time. As the network division scheme λ is given,
matrix operation can be used to accelerate the calculation of
training time for all possible partition numbers. The algorithm
to obtain the number of the optimal partitions under given λ

is as Algorithm 4, where X ×Y means matrix multiplication,
max(X, dim = 1) means taking the maximum value of each
row in X , max(X,Y ) means taking the maximum value of the
homologous elements of two matrices, X ·Y means multiply-
ing the homologous elements of two matrices. In Algorithm
4, Line 1 and Line 2 are to prepare the matrix for subsequent
calculation. Line 3 is to calculate the training time of each data
partition schemes, where U1 = ⟨. . . , (p− 1)ρ1(λ, p), . . . ⟩,
U2 = ⟨. . . , (p− 1)ρ2(λ, p), . . . ⟩, and Z = ⟨. . . , T (λ, p), . . . ⟩.

With cross-search for joint optimization problem, improved
multi-dimensional dichotomy method (IMD) for the subprob-
lem ω(1) and optimal data partition algorithm (ODPA) for
the subproblem ω(2), we can obtain the systematic method
for solving optimal parallel schemes of MBPP, i.e., cross-
search based on IMD and ODPA (CSIMD) whose framework
is shown as Fig. 5. Subsequently, we will evaluate the perfor-
mance in the real GPU cluster.

V. EXPERIMENT EVALUATION

For the sake of the comprehensive evaluations of our
proposed methodologies, we carry out three groups of exper-
iments from various aspects including:
(1) EX1: evaluation of IMD to solve the ordered multi-

dimensional array segmentation problem;
(2) EX2: evaluation of CSIMD in the CV-related networks

with CNN layers to obtain jointly optimal schemes of
network division and data partition;

(3) EX3: evaluation of CSIMD in the NLP-related networks
(typical LLMs) with transformer layers to obtain jointly
optimal schemes of network division and data partition.

In the actual parallel training, there is also a restriction that
the peak memory of the workload in each GPU cannot exceed
that of the corresponding GPU. Then, the experiments are
launched on a real cluster with multi-servers. The configu-
rations of the realistic cluster environment are as follows.

• Communication Network: 10 Gigabit, full duplex;
• Program version: Python 3.7 + Pytorch 1.13.1;
• Servers:

– CPU: Intel i9 10850K @ 3.6GHz, 10 cores;
– RAM: LPX 64GB DDR4 3200;
– GPU: NVIDIA TESLA V100 @ 32GB;

The datasets used to execute training in experiments mainly in-
clude Mnist (with 60000 training images resized to 100×100),
ImageNet (with more than 14M images uniformly resized to
100×100) and WikiText-2 (with 2M tokens divided by the seq
length). To observe the algorithm performance in the scenarios
with more GPUs, we also use process concatenation to simu-
late the parallel operation of neural networks appropriately.

A. EX1: Evaluating the Theoretical Performance of IMD

To evaluate the optimality of the improved dichotomy
algorithm (IMD) in solving multi-dimensional array segmen-
tation, we carry out experiments in two groups of scenarios
with the small scale that (K ∈ [5, 100], N = 4) and
(K ∈ [5, 100], N = 5) to observe the approximation and
probabilities to achieve the theoretical optimization (PATO).
In each combination of (K,N), we execute 100 instances
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by randomly generating the values of the array in a uniform
distribution, i.e., HP

i , H
M
i , JP

i , J
M
i ∼ U [50, 100]; use an enu-

merative algorithm to obtain theoretical optimization solution;
and record the maximum approximation and PATO of each
(K,N) using IMD respectively with the number of weight
group as 11, 101, and 1001. Then, we plot the approximation
in Fig. 6 and the corresponding PATO in Fig. 7.
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(a) K ∈ [5, 100], N = 4
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(b) K ∈ [5, 100], N = 5

Fig. 6. The maximum approximations for different numbers of weight groups
when using IMD to solve multi-dimensional array segmentation where each
combination of (K,N) has 100 instances.
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Fig. 7. The probabilities achieving the theoretical optimization (PATO)
for different numbers of weight groups when using IMD to solve multi-
dimensional array segmentation where each combination of (K,N) has 100
instances corresponding to Fig. 6.

From the results of Fig. 6, the maximum approximations
of η = 1000 (within the range of [1, 1.001]) are lowest,
followed by that of η = 100 (within [1, 1.01]) and η = 10
(within [1, 1.1]). As η increases, the maximum approximation
decreases, indicating that the solution of the algorithm is closer
to the theoretically optimal solution. The fluctuation range
of the maximum approximations is approximately inversely
proportional to η. Additionally, as K increases, the maximum
approximation ratio does not show a significant upward trend,
which indicates that the approximation (or relative error) is
mainly influenced by η and has no explicit positive or negative
correlation with (K,N). These observations are consistent
with the theoretical conclusion of Property 3, which can serve
as supplementary proof of theory verifying the theoretical error
of the IMD algorithm proposed in this paper.

From Fig. 7, the probability of the algorithm reaching the
theoretical optimal solution increases with the η. The PATO
is within the range of (0.45, 1] when η = 10, (0.70, 1] when
η = 100, and (0.95, 1] when η = 1000. This is also consistent
with the conclusion of Property 3.

As concluded by Property 3, Fig. 6 and Fig. 7, when η
approaches infinity, the approximation and PATO will both
tend to 1. However, the actual selection of η needs to be

based on the requirements of computational complexity and
optimality. To further observe the time complexity required
for IMD to achieve the convergent solution, we execute
experiments in two groups of scenarios with the huge scale that
(K ∈ [100, 10000], N = 50) and (K ∈ [2000, 50000], N =
1000). Each combination of (K,N) has 20 instances. Fig. 8
plots the average execution time of IMD.
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Fig. 8. The average execution time (computational complexity) for different
sizes of weight groups when using IMD to solve multi-dimensional array
segmentation where each combination of (K,N) has 20 instances.

As shown in Fig. 8, the average execution time of each
η increases approximately linearly with K. As η increases,
the gradient of the curve significantly increases. To further
observe the relationship between slope and η, we linearly fit
the curves in Fig. 8, and then obtained their fitted slope and
goodness-of-fit (R-square) as shown in Table II.

TABLE II
THE FITTED SLOPE (FS) AND GOODNESS-OF-FIT TO LINEARLY FIT THE

EXECUTION TIME OF IMD CORRESPONDING TO FIG. 8.

Scenario η FS R2

K ∈ [1000, 10000], N = 50
10 0.00015 0.9977
100 0.00112 0.9857
1000 0.01116 0.9887

K ∈ [2000, 50000], N = 1000
10 0.00009 0.9459
100 0.00112 0.9951
1000 0.01285 0.9938

The R-squares of all rows in Table II are larger than
0.9, indicating that the execution time can be statistically
acceptable as proportional to K. The fitted slope in Table
II is approximately proportional to η, which equals to that
the execution time is proportional to η. These conclusions
on computational complexity are consistent with Eq. 14 in
Section IV-B3, which means that in the statistical sense, IMD
is a linear time algorithm with controllable errors in solving
the multi-dimensional array segmentation.

To demonstrate the rapidity of IMD, we also carry out ex-
periments to compare it with contemporary methods including
dynamic programming and recursive algorithm. Based on the
simulation dataset, incremental experiments, for K and N
respectively, were conducted on IMD, dynamic programming
and recursive algorithms. Due to that multi-layer recursions
will affect the stability of the program and system, some
experiments in ultra-large scale scenarios only present the
results of IMD and dynamic programming, without losing
representativeness. While, in large-scale scenarios, it can be
seen that the computational complexity of recursive algorithms
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is similar to that of dynamic programming, i.e., both satisfying
O
(
2NK2

)
. In experiments, each combination of (K,N)

contains 20 instances. IMD method chooses 1000 weights (i.e.,
η = 1000). Then, the results of the average execution time of
these three algorithms to solve the multi-dimensional array
segmentation (problem ω(1)) are plotted in Fig. 9.
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Fig. 9. The average execution time (computational complexity) of IMD and
baselines (dynamic programming) to solve multi-dimensional array segmen-
tation where each combination of (K,N) has 20 instances.

From Fig. 9, the computational complexity of the state-
of-the-art algorithms (dynamic programming and recursive
algorithm) is slightly lower than that of IMD for small-scale
cluster, while IMD has a significantly lower computational
complexity with increasing scale, which may be because
small-scale corresponds to a search space that can be traversed
in a short period of time, in which the advantages of IMD
(using η = 1000) have not yet been manifested. IMD is an
algorithm for the linear polynomial computational complexity
of K (the number of network layers); dynamic programming
and recursive algorithm are algorithms for the quadratic poly-
nomial computational complexity of K. For N (the number
of stages), dynamic programming and recursive algorithm
are algorithms with positive linear polynomial computational
complexity; while the complexity of IMD decreases with
increasing N . This is because, in IMD, N mainly affects
the calculation process of the total occupancy in each bin
after transforming multi-dimensional segmentation problems
into orderly packing. As N increases, the average number
of layers in each stage decreases, resulting in a decrease
in overall computational complexity. Thus, the computational
complexity of IMD can be further updated as:

CIMD = O
(
2 (K − ϕ(N)) η log2

(
D

ϵ

))
(16)

where ϕ(N) is an increasing positive function related to N ,
satisfying ϕ(N) ≤ K and ϕ(K) = K.

The experiments on approximation, PATO, and computa-
tional complexity in this subsection not only verify the the-

oretical derivation of IMD algorithm performance in Section
IV-B, but also again demonstrate its optimality and rapidity.
We set η = 1000 considering the number of DNN’s layers
in the subsequent experiment is much smaller than the order
of magnitude of K in the experiment of this subsection. The
optimization algorithm can give a parallel scheme in advance
without affecting the actual process of parallel training.

B. EX2: Evaluating CSIMD in the CV-related networks

To evaluate the CSIMD in solving the joint optimization
problem to obtain the network division and data partition, we
first carry out the experiments in CV-related networks which
mainly consist of convolutional layers and fully connected
layers. The compared strategies are selected as:
(1) GPipe-R: GPipe based on random network divisions and

data partitions;
(2) GPipe-E: GPipe based on the evenly distributed network

divisions and a fixed number of data partitions.

TABLE III
DETAIL OF SELF-DESIGNED CNNS

Layer Types Input Channel Output Channel Kernel
L1 CNN In1 = 1 Out1 = U(20, 50)

3× 3Lx CNN Inx =Outx−1 Outx = U(20, 50)
LK FC InK =OutK−1 OutK = 10

In self-designed CNNs, as shown in Table III, we con-
tinuously increase the number of CNN layers, where the
number of output channels of each CNN layer is a random
value generated by uniform distribution U(20, 50). Three fixed
partitions of GPipe-E are set as 1, 4 and mini-batch size (BS).
The mini-batch size is set as 64, the input figures are resized
to 100× 100. Then, we record the time to train 6400 images
in Mnist dataset for one iteration respectively in each instance
of two groups of scenarios that (K ∈ [8, 19], N = 4) and
(K ∈ [8, 19], N = 8) and plot results in Fig. 10.
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Fig. 10. The training time with respect of K (number of layers) for self-
designed CNN in Table III to train 6400 images of Mnist under different
network division and batch partition strategies where mini-batch size is 64,
the resize of image is 100× 100.

As shown in Fig. 10, the curve of CSIMD remains the low-
est, followed by GPipe-E-4. The results of Fig. 10 demonstrate
using CSIMD to search the network division and mini-batch
partitions can further improve the performance of MBPP. This
also indicates that setting fixed network division and mini-
batch partitions cannot adapt to all scenarios. The observation
that GPipe-E-4 is better than GPipe-E-1 indicates performing
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certain mini-batch partitioning can improve training speed,
which is consistent with the goal proposed by GPipe. However,
as the number of partitions increases to 64, the training
time actually becomes larger on the contrary. This indicates
that there are one or more network layers whose time cost
(computing time or communication time) is non-linear to the
data volume (batch size), i.e. HP

i , H
M
i , JP

i , J
M
i may not be

inversely proportional to p.
Additionally, to verify the performance of CSIMD in par-

allel training of existing common CV-related neural networks,
we execute experiments in VGG16 on the ImageNet dataset.
We collect training performance data in two network band-
width environments that are under the Gigabit bandwidth and
10 Gigabit bandwidth. As the layers of VGG16 are given, we
select the number of stages (N ) as abscissa. Then, we plot
their training time for training 6400 images in Fig. 11.
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Fig. 11. The training time regarding N (number of stages) for VGG16 to train
6400 images of ImageNet under different network division and batch partition
strategies where mini-batch size is 64, the resize of image is 224× 224.

In Fig. 11, the curve of CSIMD also remains the lowest
showing a decreasing trend with the increase of N . The curve
of GPipe-E-1 increases with N , which is because adding
the stages actually increases additional communication time.
In addition, with the change in the number of stages, the
experimental results of GPipe-E have a certain fluctuation,
which may be mainly because the division of network layers
is not strictly balanced under different numbers of pipeline
stages, and the real device operation status also has a certain
fluctuation. This also reflects the necessity of optimizing the
network division of pipeline stages. Comparing Fig. 11(a) to
Fig. 11(b), as bandwidth increases, the training time of CSIMD
and GPipe-E decreases, which indicates that improving com-
munication speed can accelerate parallel training. However, the
acceleration effect by improving communication for GPipe-
E-1 with the longest training time is the most significant,
and that for CSIMD is the smallest. This is because CSIMD
minimizes the impact of communication time on the overall
training speed by optimizing network division and mini-batch
partition, which once again validates the advantage of cross-
search when considering both nonlinear computation time and
communication time. To our knowledge, there is currently no
algorithm that can achieve this.

To quantitatively evaluate the improvement effect of
CSIMD, we compile various experimental results on CNNs in
this subsection and record the (minimum, average, maximum)
ratios of training time between the comparison strategies and
CSIMD under CNNs. Then, we list the ratios in Table IV.

TABLE IV
THE (MINIMUM, AVERAGE, MAXIMUM) RATIOS OF TRAINING TIME

BETWEEN THE COMPARISON STRATEGIES AND CSIMD UNDER CNNS

Compared Strategies Self CNNs VGG16 Average
GPipe-R1 (1.04, 2.29, 6.60) (1.51, 2.01, 3.71) 2.15
GPipe-R2 (1.16, 2.24, 6.18) (1.25, 2.12, 3.19) 2.18
GPipe-R3 (1.14, 1.76, 3.53) (1.21, 2.10, 4.20) 1.93
GPipe-E-1 (1.66, 2.40, 3.69) (2.78, 4.68, 6.55) 3.54
GPipe-E-4 (1.07, 1.24, 1.48) (1.43, 1.80, 2.18) 1.52

GPipe-E-BS (2.16, 2.93, 3.97) (1.11, 1.40, 1.78) 2.17

As shown in Table IV, CSIMD can achieve 2.0×, 3.5×,
1.5× and 2.1× speeds on average respectively over GPipe-
R, GPipe-E-1, GPipe-E-4 and GPipe-E-BS in CNNs of the
experiments. On average, the training speeds of CSIMD in
CNNs are (2.0, 2.5)× of (GPipe-R, GPipe-E).

C. EX3: Evaluating CSIMD in the NLP-related networks

To evaluate CSIMD in the NLP-related networks, we carry
out experiments on GPT series and Llama series which are
some representative LLMs. Different from CNNs, transformer-
based NLP models can not only be partitioned in data batches
but also in tokens, i.e., Terapipe [13]. Since these two aspects
are actually both data parallelism obeying the same cost model
of Eq. 6, our CSIMD is applicable to both of them. Therefore,
in experiments of transformer-based DNNs, we present the
verification for the partition of both batch size and token size,
comparing the heuristic strategies under GPipe and Terapipe
respectively. Table V lists the configures and details of LLMs
in experiments, where D model is embedding dimension, M
means mini-batch size and S means seq length.

TABLE V
DETAILS OF EXPERIMENTS AND CONFIGURES OF LLMS

DP Dimension LLMs Transformer D model Heads (M,S)

Batch Size

Llama 3.2: 3B 28 Layers 3072 32 (256, 32)
Llama 2: 7B 32 Layers 4096 32 (256, 32)

GPT-2 Large: 774M 36 Layers 1280 20 (512, 64)
GPT-2 XL: 1.56B 48 Layers 1600 25 (512, 64)

Token Size Llama 2: 70B 80 Layers 8192 64 (8, 1024)
GPT-3: 175B 96 Layers 12288 96 (4, 1024)

For the perspective of micro-batch-based data parallelism,
we carry out experiments on real clusters, training LLMs on
WikiText-2, comparing CSIMD with the heuristic strategies
under GPipe. Applying the number of stages as abscissa, we
plot the time to train 10240 sequences in Fig. 12.

In Fig. 12, the curves of CSIMD are significantly lower
than compared strategies, which verifies the feasibility and
superiority of CSIMD in optimizing parallel training of typical
LLMs. The trends of GPipe-E-1, GPipe-E-4 and GPipe-E-BS
indicate there are layers with nonlinear time cost (computing
time or communication time) with respect to data volume
in transformer-based NLP networks, otherwise, GPipe-E-BS
(GPipe-E-256 or GPipe-E-512) should be better than GPipe-E-
4 and GPipe-E-1, because if following the linear assumptions
of time functions, more partitions of mini-batch will cause
a smaller training time usually. In addition, as the number
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Fig. 12. The training time with respect of number of stages for typical LLMs
to train 10240 sequences of WikiText-2, comparing CSIMD with heuristic
strategies from the perspective of micro-batch-based data parallelism.

of layers continues to increase, the advantages of CSIMD
become increasingly apparent, which is because an increase
in the number of network layers will bring more possibilities
for network division, and CSIMD can find optimal solutions
among these possibilities due to the optimality of IMD. In
experiments, when N is greater than a certain number, the
training time achieved by CSIMD remains almost unchanged
and does not decrease as N increases. This is because us-
ing a certain number of GPUs in CSIMD search results is
optimal, while more GPUs may actually introduce additional
communication time. Therefore, when the graphics card has
enough memory, the more stages of the pipeline, the shorter
the training time may not be.
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Fig. 13. The training time with respect of number of stages for typical LLMs
to train 1024 sequences (with 1024×1024 tokens) of WikiText-2, comparing
CSIMD with heuristic strategies from the perspective of micro-tokens-based
data parallelism.

To further verify the practicability of CSIMD for the
general MBPP parallel training architecture, we carry out
experiments on real clusters to observe performance of CSIMD
for micro-tokens-based data parallelism, by training LLMs
on WikiText-2 (significantly, the training performance mainly
corresponds to the training time of the language text under
the specific sequence length. In fact, it has little relevance
to the dataset itself). To adapt to micro-tokens-based data

parallelism, we leverage the heuristic strategies under Terapipe
as the baselines. Then, the results of the time to training 1024
sequences (with 1024 × 1024 tokens) are plotted in Fig. 13
where “SL” means the fixed partitions of tokens are seq length
(i.e., partitioning one sequence into 1024 micro-sequences in
experiments).

Overall, CSIMD remains lowest in Fig. 13, which demon-
strates the superiority of CSIMD in MBPP with micro-tokens.
In fact, the partitions from tokens and mini-batches both
correspond to a certain dimension of the input data matrix, not
changing the formulas of the cost model. The theoretical cost
model and optimization algorithm of CSIMD are targeted at
the pipeline parallel training with the general data parallelism,
so they are not only suitable for micro-batch-based GPipe, but
also suitable for micro-tokens-based Terapipe.

TABLE VI
THE (MINIMUM, AVERAGE, MAXIMUM) RATIOS OF TRAINING TIME

BETWEEN THE COMPARISON STRATEGIES AND CSIMD UNDER LLMS

Compared Strategies Llama Series GPT Series Average
MBPP-R1 (1.20, 2.73, 18.07) (1.48, 2.62, 8.19) 2.68
MBPP-R2 (1.31, 2.76, 11.24) (1.11, 2.66, 11.74) 2.71
MBPP-R3 (1.18, 2.80, 12.27) (1.34, 2.40, 7.98) 2.60
MBPP-E-1 (2.08, 4.42, 6.66) (3.22, 6.35, 8.96) 5.38
MBPP-E-4 (1.01, 1.53, 2.00) (1.33, 2.01, 2.78) 1.77

MBPP-E-BS/SL (4.09, 10.79, 17.73) (4.38, 7.75, 12.93) 9.27

Similarly, in order to quantitatively evaluate the improve-
ment effect of CSIMD in NLP networks, we compile results
in this subsection and list the (minimum, average, maximum)
ratios of training time between the comparison strategies and
CSIMD in Table VI. On average, the training speeds of
CSIMD in transformer networks are (2.66, 5.48)× of (MBPP-
R, MBPP-E) (MBPP can represent various pipeline parallel
training architecture based on data time-sharing parallelism
such as GPipe and Terapipe).

VI. CONCLUSION

Distributed parallel training is now a hotspot in the de-
velopment of artificial intelligence models. Micro-batch-based
pipeline parallelism (MBPP, e.g., GPipe and Terapipe) is one
of the popular strategies to improve the performance of parallel
training. In MBPP, two key factors are the division of the
network layers and the partition of mini-batches. Additionally,
due to the complexity of the parallel training process, some
cost models make a lot of assumptions, which makes them
deviate from the real scenarios.

In view of these, we consider computing time and commu-
nication time simultaneously and consider them nonlinear to
data size. Then focusing on the scenario where the number
of network layers is greater than the number of devices, we
derive a time-cost model with respect of network division and
data partitions. Based on the time cost model, we formulate
the problem of solving network division and data partitions as
a joint optimization problem, where solving network division
can be regarded as an ordered multi-dimensional array seg-
mentation problem. To solve the joint optimization problem,
we propose CSIMD, in which we propose an improved multi-
dimensional dichotomy (IMD) to solve multi-dimensional ar-
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ray segmentation. Through theoretical derivation, we present
and prove the theoretical performance of IMD, indicating that
IMD can approximately achieve theoretical optimum with lin-
ear calculational complexity. Finally, experiments have verified
the theoretical optimality and linear computational complexity
O
(
2Kη log2

(
D
ϵ

))
of IMD, far faster that the state-of-the-

art methods, i.e., dynamic programming and recursive algo-
rithm with quadratic polynomials calculational complexity as
O
(
2NK2

)
. We also carry out extensive experiments in CNN-

based networks and transformer-based networks. Experimental
results demonstrate our proposed CSIMD can obtain optimal
network division and data partition schemes under MBPP. On
average, training speeds of CSIMD in CNN- and transformer-
related deep neural networks are respectively (2.0, 2.5)× and
(2.66, 5.48)× of (MBPP-R, MBPP-E).

This paper not only provides an algorithm to obtain op-
timal parallel schemes but also provides a complete idea of
solving high-performance parallel training schemes from the
perspective of solving joint optimization problems, which can
also be applied to scenarios adding tensor model parallelism.
In the future, we consider combining 3D or 4D parallelism
to explore time-cost models and optimization algorithms for
more complex scenarios.
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