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Abstract
In recent times, appropriate decision-making in challenging and critical situations has been very well supported by multicri-
teria decision-making (MCDM) methods. The technique for order of preference by similarity to ideal solution (TOPSIS) is 
the most widely used MCDM method for solving decision problems. However, it restricts decision-makers to use only one 
type of Quality of Service (QoS) information, and it suffers from the rank reversal problem. Restriction to only one type of 
QoS makes the decision problems more challenging, as it restricts the decision-makers freedom. Further, the rank reversal 
problem makes the decision result unreliable. To address these issues of TOPSIS, we have proposed a reliable rank reversal 
robust modular TOPSIS (RMo-TOPSIS). RMo-TOPSIS allows crisp, interval, fuzzy, intuitionistic and neutrosophic fuzzy 
QoS metrics. It does not suffer from the rank reversal problem. Cloud computing provides computing services on-demand 
basis without involving maintenance by its users. The availability of many cloud service providers and their services makes 
cloud service selection a challenging problem. To validate RMo-TOPSIS, we select the cloud service selection consisting 
of different types of QoS metrics as an application. Experiments on cloud service selection show consistency and accuracy 
in results obtained by RMo-TOPSIS and its robustness against rank reversal.

Keywords  Decision making · TOPSIS · MCDM · Heterogeneous QoS · Cloud service selection · Rank reversal

1  Introduction

With the increase in the size of the business organization, 
the executive body of the organizations has to take decisions 
in a complex environment to avoid the risk. They take the 
help of decision-making techniques or optimization tech-
niques to solve the decision problems. Optimization tech-
niques are used to find the optimal solution in many fields 
like electricity load and price forecasting (Saeedi et al. 2019; 
Abedinia et al. 2019; Gao et al. 2019a, b; Ghadimi et al. 
2018; Khodaei et al. 2018), service selection, etc. MCDM is 
a widely used decision-making approach in many fields like 

automobile (Yousefi and Hadi-Vencheh 2010; Yang et al. 
2020), defense (Wu and Mendel 2010), web service (Purohit 
2020), cloud service selection (Hussain et al. 2020a, b; Hus-
sain et al. 2020a, b; Garg et al. 2013), etc. to find the optimal 
alternative or service to carry out business. Recently, in the 
web service domain, Artificial Intelligence (AI) enabled 
methods, e.g. neural collaborative filtering-based approaches 
(Chowdhury et al. 2020; Regunathan et al. 2018; Xu et al. 
2021; Gao et al. 2019a, b; Huang et al. 2021), have been 
used for QoS prediction and recommendation in web service 
selection. One of the major limitations of such collaborative 
filtering-based systems is that they require good quality of 
data in a good amount. However, in many domains such 
as cloud service selection, weapon selection, etc., a limited 
amount of data related to alternatives is available; there-
fore, collaborative filtering is not possible, i.e. AI-enabled 
methods cannot be used. So, MCDM plays a crucial role in 
decision-making in such domains.

MCDM is a widely used decision-making approach in 
many fields like automobile (Yousefi and Hadi-Vencheh 
2010; Yang et al. 2020), defense (Wu and Mendel 2010), 
web service (Purohit 2020), cloud service selection (Hussain 
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et al. 2020a, b; Hussain et al. 2020a, b; Garg et al. 2013), 
etc. to find the optimal alternatives or service to carry out 
business. It is a collection of methods such as the tech-
nique for order of preference by similarity to ideal solution 
(TOPSIS) (Yoon and Hwang 1981), analytic network pro-
cess (ANP) (Saaty 2006), analytic hierarchy process (AHP) 
(Saaty 1990), and elimination and choice translating reality 
(ELECTRE) (Roy 1990) to solve the decision problem in 
case of qualitative, quantitative and inter-dependent criteria. 
TOPSIS is one of the most common MCDM methods due 
to its simplicity and efficiency. It finds the best alternative 
based on its distance from the ideal and worst alternative. 
The alternative having maximum geometric distance from 
worst and minimum from ideal is the optimal alternative. 
However, the original TOPSIS method proposed by Hwang 
and Yoon works only for decision matrices with crisp val-
ues and causes the rank reversal problem in some scenarios 
(Wang and Luo 2009; García-Cascales and Lamata 2012). 
In the rank reversal phenomenon, the rank of alternative 
changes on the addition or removal of another alternative 
to the decision problem i.e. an alternative which is opti-
mal before the addition or removal of non-optimal alterna-
tives becomes non-optimal after their addition or removal. 
Since, the TOPSIS is the most widely used MCDM method 
for decision-makers and has been used in many fields like 
defense, automobile, service selection, etc. So, the use of 
TOPSIS may cause a huge loss to the organization's cred-
ibility and capital due to its rank reversal problem.

There are many generalizations of standard TOPSIS to 
address its limitation of operating on crisp decision matrix 
only. Yue (2011) proposed an extension of the TOPSIS 
method for a decision matrix based on interval numbers. 
Later Jahanshahloo et al. (2009) and Dymova et al. (2013) 
also proposed its generalization for interval numbers. Simi-
larly, many generalizations of TOPSIS were proposed by 
many authors for fuzzy (Chen 2000; Krohling and Cam-
panharo 2011; Lee et al. 2014), intuitionistic fuzzy (Boran 
et al. 2009), hesitant fuzzy (Xu and Zhang 2013), spherical 
fuzzy (Kutlu Gündoğdu, and Kahraman 2019) and neutro-
sophic fuzzy (Biswas et al. 2016; Abdel-Basset et al. 2019) 
environment. Wang et al. (2022) proposed a generalization 
of TOPSIS called three-way TOPSIS to effectively solve the 
decision-making problem. Keikha (2022) proposed a gener-
alized hesitant fuzzy number based TOPSIS method to solve 
the decision problem modeled considering the uncertainty. 
Akram et al. (2021) proposed an extension of the TOPSIS 
to model the decision problem in a complex spherical fuzzy 
information scenario. Monika (2022) modeled the cloud ser-
vice selection problem using TOPSIS with a 3-D spherical 
fuzzy set to remove vulnerability in the decision-making 
process of decision-makers. Sadabadi et al. (2022) proposed 
an improved fuzzy TOPSIS using triangular fuzzy numbers 
by removing the shortcomings of fuzzy TOPSIS. However, 

the above generalizations work only for a decision matrix 
with one type of data. However, it is not always the case 
that decision-makers will have a decision matrix with only 
one type of data due to diversity in their knowledge and 
information available to decide, e.g. in the case of a route 
selection problem, where the distance is fixed or quantifiable 
but traffic on the route is qualitative and depends on personal 
familiarity with it. Due to the availability of various types 
of information in different forms like crisp, fuzzy, interval, 
neutrosophic, etc. for a particular decision problem, it has 
become a challenge to make a decision with standard TOP-
SIS or its generalization of a specific type. Many authors 
have proposed the generalization of TOPSIS to deal with a 
heterogeneous decision matrix. Peng et al. (2012) proposed 
a TOSPIS based group decision-making technique for crisp, 
interval and linguistic types of information, where each deci-
sion matrix comprises a specific type of information and is 
transformed into the triangular fuzzy decision matrix. All 
transformed decision matrices were aggregated into a single 
matrix using ordered weighted averaging (OWA) operator 
and fuzzy TOPSIS was applied to find an optimal alternative. 
Wang and Wang (2008) extended the TOPSIS for numeri-
cal, interval, linguistic and fuzzy information. They used 
the transformation function to map a data type into another 
data type and used TOPSIS on a unified decision matrix to 
find the best alternative. Li et al. (2010) proposed a method 
similar to TOPSIS for decision making in heterogeneous 
QoS but it was complex and unable to rank the alternatives 
accurately (Lourenzutti and Krohling 2016). Lourenzutti and 
Krohling (2016) proposed an extension of TOPSIS called 
modular TOPSIS (Mo-TOPSIS) for decision matrix with 
crisp, interval, triangular fuzzy number and intuitionistic 
fuzzy set information without any transformation function.

There are extensions of other MCDM methods for het-
erogeneous QoS environments. An extension of TODIM by 
Fan et al. (2013) finds the best alternative on decision matrix 
with crisp, interval and triangular fuzzy number. They used 
the cumulative distribution function to transform three data 
types into a random variable and used the gain–loss concept 
of the classical TODIM method to find the dominance of 
an alternative over others to rank them. Liu et al. (2020) 
extended the ELECTRE method for decision matrix with 
heterogeneous QoS of type crisp, interval, TFN and IFS. 
They used transformation functions to map crisp, interval 
and TFN into intuitionistic fuzzy number and ranked the 
cloud services from a unified decision matrix using ELEC-
TRE. Espinilla et al. (2013) proposed an MCDM method 
for heterogeneous QoS information using transformation 
functions to transform data type into a particular data type.

Although, the above studies can deal with heterogene-
ous QoS information, but most of them use transformation 
functions to make a unified decision matrix. The transfor-
mation of one data type to another causes some information 
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loss and affects decision-making (Lourenzutti and Krohling 
2016). The method Mo-TOPSIS proposed by Lourenzutti 
and Krohling (2016) does not use any transformation func-
tions. However, Mo-TOPSIS suffers from rank reversal phe-
nomenon, which may affect its use in decision problems that 
are very critical like defense, hazardous material route selec-
tion, etc. It cannot be also used in a decision involving heavy 
capital expenditure like automobile, manufacturing, cloud 
service selection, etc. To show the rank reversal in Mo-TOP-
SIS, we implemented it. We monitored the cases of rank 
reversal by dynamically changing the number of alternatives 
from the original decision matrix by removing some alterna-
tives. Table 1 shows the decision matrix with heterogene-
ous QoS and their weight, where QoS1 and QoS2 are costly 
QoS parameters while others are benefit parameters. It also 
shows the closeness index obtained using Mo-TOPSIS and 
rank of alternatives. We can observe that alternative A4 is the 
best alternative as per QoS weight and decision matrix. We 
removed alternative A3 from the decision matrix of Table 1 
and computed the closeness index of each alternative and 
ranked them to monitor the rank reversal. Table 2 shows the 
decision matrix, closeness index and each alternative’s rank 
on the removal of A3. We can observe that like TOPSIS, 
Mo-TOPSIS also suffers from rank reversal problem as A4, 
which was ranked first is now ranked second after removal 
of non-optimal alternative A3. Now, A1 is ranked best even 
A4 is present in the decision matrix.

The rank reversal phenomenon in Mo-TOPSIS is further 
investigated by performing a series of experiments. We con-
sidered the decision matrix with alternatives ranging from 
four to eight and monitored rank reversal. We randomly 
removed 1 to n − 2 alternatives from the decision matrix with 
n alternatives. Initially, we considered a decision matrix with 
four alternatives i.e. n = 4 and created 10 (4C1 + 4C2) decision 

matrices by removing one and two alternatives from the 
original and found the number of cases causing rank rever-
sal. The same process is carried out for the decision matrix 
with n = 4, 5, 6, 7 and 8 alternatives. The result obtained is 
shown in Fig. 1. We can observe that the rank reversal cases 
increase with decision matrix size and depend on entries in 
the decision matrix.

Therefore, considering the rank reversal problem in Mo-
TOPSIS for heterogeneous QoS without any data trans-
formation functions and wide use of TOPSIS in research, 
an extension of Mo-TOPSIS called robust Mo-TOPSIS 
(RMo-TOPSIS) is developed that is robust to rank reversal 
phenomenon. The RMo-TOPSIS uses different processes 
of computing normalized decision matrix, positive ideal 
solution (PIS) and negative ideal solution (NIS) to avoid 
rank reversal. RMo-TOPSIS is robust and efficient than the 
existing Mo-TOPSIS and will help decision-makers to avoid 
any type of risk in decision. Contributions of this work are 
as follows:

1.	 A rank reversal robust RMo-TOPSIS method for hetero-
geneous QoS information without any data transforma-
tion functions is proposed and compared with state-of-
the-art works.

2.	 A sensitivity analysis is performed to show the robust-
ness of RMo-TOPSIS against the rank reversal phenom-
enon.

3.	 A case study of RMo-TOPSIS in cloud service selection 
as its application in decision making is given to demon-
strate its effectiveness.

The rest of this paper proceeds as follows. Section 2 
describes the various preliminary concept used to develop 
the RMo-TOPSIS while Sect.  3 explains the proposed 

Table 1   Decision matrix with heterogeneous QoS and rank of alternatives using Mo-TOPSIS

Alternatives QoS1 (crisp) QoS2 (interval) QoS3 (crisp) QoS4 (TFN) QoS5 (IFS) Closeness index Rank

QoS weight 0.23 0.23 0.24 0.24 0.06
A1 126 [186, 295] 0.95 [0.5, 0.6, 0.7] [0.65, 0.25] 0.5425 2
A2 107 [182, 280] 0.85 [0.3, 0.5, 0.7] [0.30, 0.65] 0.4543 3
A3 140 [210, 330] 0.98 [0.4, 0.6, 0.9] [0.50, 0.35] 0.4473 4
A4 138 [197, 312] 0.93 [0.5, 0.7, 1.0] [0.45, 0.50] 0.5543 1

Table 2   The rank of alternatives after removal of alternative A3 using Mo-TOPSIS

Alternatives QoS1 (crisp) QoS2 (interval) QoS3 (crisp) QoS4 (TFN) QoS5 (IFS) Closeness index Rank

QoS weight 0.23 0.23 0.24 0.24 0.06
A1 126 [186, 295] 0.95 [0.5, 0.6, 0.7] [0.65, 0.25] 0.5319 1
A2 107 [182, 280] 0.85 [0.3, 0.5, 0.7] [0.30, 0.65] 0.4423 3
A4 138 [197, 312] 0.93 [0.5, 0.7, 1.0] [0.45, 0.50] 0.5314 2
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method for decision making with heterogeneous QoS infor-
mation. Section 4 presents an application of RMo-TOPSIS 
in cloud service selection through a case study. It also shows 
the correctness and robustness of the proposed method 
through sensitivity analysis. Finally, the conclusion and 
future directions are discussed in Sect. 5.

2 � Preliminaries

In this section, various concepts used for developing TOP-
SIS for the heterogeneous QoS are discussed.

2.1 � Fuzzy set theory

In fuzzy set theory, each element of the set has some mem-
bership degree along with its value. It is the extension of 
classical set theory where the membership degree of the 
element represents the degree of its belongingness to the 
fuzzy set. It has been extensively used to handle uncertainty 
and vagueness in various problems. It helps decision-makers 
or experts to provide their judgment in linguistic terms. The 
various concepts and definitions used in the fuzzy set are 
explained below.

Definition 1  (Zadeh 1965) Let X is a universe of discourse, 
then a fuzzy set A is a collection of elements x�X and mem-
bership function �A(x) characterizes each x . A fuzzy set A 
is denoted by-

where

(1)A =
{
x,�A(x)

||x�X}

�A(x) ∶ X → [0, 1]

Definition 2  A triangular fuzzy number (TFN) N is a tri-
plet of real numbers represented as (�, β, γ) where � , β and 
γ represents the least, most and highest possible values. If 
� = β = γ then N is a crisp number. The membership func-
tion �N(x) for each x in the fuzzy set is computed using TFN 
N is defined as

Definition 3  Let N1 = (�1, β1, γ1) and N2 = (�2, β2, γ2) are 
two TFNs, � is a real number then the various arithmetic 
operation defined on N1 and N2 are-

Example 1  Let A = (−3, 2, 4) and B = (1, 0, 6) are two TFN, 
then the various operations discussed above can be per-
formed as-

If � = 0.5 then

(2)�N(x) =

⎧⎪⎨⎪⎩

x−�

β−�
if x ∈ [�, �]

γ−x

γ−β
if x ∈ (�, �]

0 otherwise

(3)N1 + N2 = (�1 + �2, β1 + β2, γ1 + γ2)

(4)N1 − N2 = (�1 − �2, β1 − β2, γ1 − γ2)

(5)N1 ∗ N2 = (�1 ∗ �2, β1 ∗ β2, γ1 ∗ γ2)

(6)� ∗ N1 =
(
��1, �β1, �γ1

)

A + B = (−3 + 1, 2 + 0, 4 + 6) = (−2, 2, 10)

A − B = (−3 − 1, 2 − 0, 4 − 6) = (−4, 2,−2)

A ∗ B = (−3 ∗ 1, 2 ∗ 0, 4 ∗ 6) = (−3, 0, 24)

Fig. 1   Variation of rank reversal 
cases with decision matrix size
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Definition 4   (Dağdevi ren  2009)  The  Eucl id-
e a n  d i s t a n c e  b e t we e n  t h e  s e t  o f  T F N s 
A = {

(
�A
1
, �A

1
, �A

1

)
,
(
�A
2
, �A

2
, �A

2

)
…

(
�A
n
, �A

n
, �A

n

)
}  a n d 

B = {
(
�B
1
, �B

1
, �B

1

)
,
(
�B
2
, �B

2
, �B

2

)
…

(
�B
n
, �B

n
, �B

n

)
} is computed 

using Eq. (7).

2.2 � Intuitionistic fuzzy set

An intuitionistic fuzzy set (IFS) is an extension of classical 
fuzzy set theory. It is helpful in an environment where the 
decision-maker lacks knowledge. IFS provides flexibility to 
decision-makers to give their judgment in membership and 
non-membership degree both. The membership and non-
membership degree represent the truth and falsity involve in 
the rating of the decision process. The various concepts and 
operations performed on IFS are discussed below.

Definition 5  (Atanassov 1986) Let X is a universe of dis-
course, then an IFS A is a collection of elements x�X and 
each x is characterized by the membership function �A(x) 
and non-membership function �A(x) . An IFS A is denoted by-

where

The hesitancy degree �A(x) for x�A is defined as

Definition 6  (Atanassov 1994) Let A = ⟨x,�A(x), �A(x)⟩ and 
B = ⟨x,�B(x), �B(x)⟩ are two IFS, � is a real number then the 
various arithmetic operation defined on A and B are-

�A = (0.5 ∗ −3, 0.5 ∗ 2, 0.5 ∗ 4) = (−1.5, 1, 2)

(7)

d(A,B) =

√√√√ n∑
i=1

1

3

[(
�A
i
− �B

i

)2
+
(
�A
i
− �B

i

)2
+
(
�A
i
− �B

i

)2]

(8)A =
�⟨x,�A(x), �A(x)⟩��x�X}

�A(x) ∶ X → [0, 1]

�A(x) ∶ X → [0, 1]

0 ≤ �A(x) + �A(x) ≤ 1

�A(x) = 1 − �A(x) − �A(x)

(9)
A + B = ⟨x,�A(x) + �B(x) − �A(x) ∗ �B(x), �A(x) ∗ �B(x)⟩

(10)
A.B = ⟨x,�A(x) ∗ �B(x), �A(x) + �B(x) − �A(x) ∗ �B(x)⟩

Definition 7  Let A =
�⟨x

1

,�
A

�
x
1

�
, �

A

�
x
1

�⟩, ⟨x
2

,�
A

�
x
2

�
, �

A

�
x
2

�⟩,…
⟨x

n
,�

A

�
x
n

�
, �

A

�
x
n

�⟩� and B = {⟨x
1

,�
B

�
x
1

�
, �

B

�
x
1

�⟩, ⟨x
2,

�
B

�
x
2

�
, �

B

�
x
2

�⟩,
… ⟨x

n
,�

B

�
x
n

�
, �

B

�
x
n

�⟩} be two IFS vectors of the length of n 
for X = {x1, x2 … , xn}, then the Euclidean distance between 
A and B is defined as-

2.3 � Neutrosophic fuzzy set

Neutrosophic fuzzy set (NFS) is an extension of IFS where 
each element of NFS has an indeterminacy degree along 
with truth and falsity degree. It helps experts to express their 
opinion where the expert is not confident about his deci-
sion or not familiar with the decision problem. The various 
concepts and operations used in NFS theory are discussed 
below through various definitions.

Definition 8  Let X is a universe of discourse, then the NFS 
A is a collection of all x�X where each x is characterized by 
truth TA(x) , indeterminacy IA(x) , and falsity FA(x) member-
ship function. The NFS A is denoted as-

where

Definition 9  (Wang et al. 2010) Let X is a universe of dis-
course, then the single value neutrosophic set (SVNS) A is 
collection of all such x�X where each x is characterized by 
truth TA(x) , indeterminacy IA(x) , and falsity F(x) member-
ship function. The SVNS A is denoted as-

(11)� ∗ A = ⟨x, 1 − �
1 − �A(x)

��
, (�A(x))

�⟩

(12)A� = ⟨x, (�A(x))
�
, 1 −

�
1 − �A(x)

��⟩

(13)

d(A,B) =

√√√√ n∑
i=1

1

2

[(
�A

(
xi
)
− �B

(
xi
))2

+
(
�A
(
xi
)
− �B

(
xi
))2]

(14)A =
�⟨x, TA(x), IA(x),FA(x)⟩��x�X}

TA(x) ∶ X →]−0, 1+[

IA(x) ∶ X →]−0, 1+[

FA(x) ∶ X →]−0, 1+[

0− ≤ TA(x) + IA(x) + FA(x) ≤ 3+

−0 = 0 − �, 1+ = 1 + �, � is an infinitesimal number
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where

Definition 10  (Ye 2015) Let A = ⟨x, TA(x), IA(x),FA(x)⟩ and 
B = ⟨x, TB(x), IB(x),FB(x)⟩ are two SVNS, � is a real number 
then the various arithmetic operation defined on A and B are-

(15)A =
�⟨x, TA(x), IA(x),FA(x)⟩��x�X}

TA(x) ∶ X → [0, 1]

IA(x) ∶ X → [0, 1]

FA(x) ∶ X → [0, 1]

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3

(16)
A⊕ B = ⟨x, TA(x) + TB(x) − TA(x)TB(x), IA(x)IB(x),FA(x)FB(x)⟩

(17)

A⊗ B = ⟨x, T
A
(x)T

B
(x), I

A
(x) + I

B
(x)

− I
A
(x)I

B
(x),F

A
(x)

+ F
B
(x) − F

A
(x)F

B
(x)⟩

(18)
𝛼A = ⟨x, 1 − �

1 − TA(x)
�𝛼
, (IA(x))

𝛼
, (FA(x))

𝛼⟩ for 𝛼 > 0

Definition 11  (Huang 2016) Let A⟨⟨x
1

, T
A

�
x
1

�
, I

A

�
x
1

�
,F

A

�
x
1

�⟩,
⟨x

2

, T
A

�
x
2

�
, I

A

�
x
2

�
,F

A

�
x
2

�⟩,… ⟨x
n
, T

A

�
x
n

�
, I

A

�
x
n

�
,F

A
(x

n
)⟩⟩ 

a n d  B = ⟨x
1

, ⟨T
B

�
x
1

�
, I

B

�
x
1

�
,F

B
(x

1

)⟩, ⟨x
2

, T
B

�
x
2

�
, I

B

�
x
2

�
,

F
B
(x

2

)⟩,… ⟨x
n
, T

B

�
x
n

�
, I

B

�
x
n

�
,F

B
(x

n
)⟩⟩ be two SVNS vec-

tor of length of n for X = {x1, x2 … , xn}, then the Euclidean 
distance between A and B is defined as-

Example 3  Let A = ⟨0.8, 0.0, 0.4⟩ , B = ⟨0.6, 0.0, 0.2⟩ and 
C = ⟨0.6, 0.0, 0.6⟩ and are three single value neutrosophic 
set, Then the distance computed between neutrosophic set 
A, B and C considering � = 1 and �1 = �2 = �3 = �4 = 0.25 
is shown below

A� = ⟨(0.8)0.5, 1 − (1 − 0.1)0.5, 1 − (1 − 0.2)0.5⟩ = ⟨0.89, 0.05, 0.11⟩

(20)D(A,B) =

⎡⎢⎢⎣

n�
i=1

�
4�
j=1

�j�j

�
Ai,Bi

��2⎤⎥⎥⎦

1∕2

where �i ∈ [0, 1],

4∑
j=1

�j = 1 and

(21)
�
1

(
A
i
,B

i

)
=

|||TA
(
x
i

)
− T

B

(
x
i

)|||
3

+

|||IA
(
x
i

)
− I

B

(
x
i

)|||
3

+

|||FA

(
x
i

)
− F

B

(
x
i

)|||
3

(22)
�
2

(
A
i
,B

i

)
= max

(
2 + T

A

(
x
i

)
− I

A

(
x
i

)
− F

A

(
x
i

)
3

,

2 + T
B

(
x
i

)
− I

B

(
x
i

)
− F

B

(
x
i

)
3

)

− min

(
2 + T

A

(
x
i

)
− I

A

(
x
i

)
− F

A

(
x
i

)
3

,

2 + T
B

(
x
i

)
− I

B

(
x
i

)
− F

B

(
x
i

)
3

)

(23)�3

(
Ai,Bi

)
=

|||TA
(
xi
)
− TB

(
xi
)
+ IB

(
xi
)
− IA

(
xi
)|||

2

(24)�4

(
Ai,Bi

)
=

|||TA
(
xi
)
− TB

(
xi
)
+ FB

(
xi
)
− FA

(
xi
)|||

2

D(A,B) = 0.0583

D(A,C) = 0.1417

Example 2  Let A = ⟨0.8, 0.1, 0.2⟩ and B = ⟨0.6, 0.3, 0.4⟩ are 
two neutrosophic set, then the various operations discussed 
above can be performed as-

If � = 0.5 then

(19)
A𝛼 = ⟨x, (TA(x))𝛼 , 1 − (1 − IA(x))

𝛼
, 1 − (1 − FA(x))

𝛼⟩ for 𝛼 > 0

A⊕ B = ⟨0.8 + 0.6 − 0.8 ∗ 0.6, 0.1 ∗ 0.3, 0.2 ∗ 0.4⟩
= ⟨0.92, 0.03, 0.08⟩

A⊗ B = ⟨0.8 ∗ 0.6, 0.1 + 0.3 − 0.1 ∗ 0.3, 0.2 + 0.4 − 0.2 ∗ 0.4⟩
= ⟨0.48, 0.37, 0.52⟩

�A = ⟨1 − (1 − 0.8)0.5, (0.1)0.5, (0.2)0.5⟩ = ⟨0.86, 0.32, 0.45⟩
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2.4 � Interval number

Interval number is the simplest way to handle uncertainty in 
the decision process. It helps decision experts to rate a param-
eter from a range of values, where the parameter can have any 
value from the specified range. It is the extension of the con-
cept of real numbers where each number is represented with a 
lower and upper bound. The various operations on the interval 
number that are being used in this study are discussed below.

Definition 12  (Tsaur 2011) A number X =
[
xL, xU

]
 is called 

interval number, if it can be defined on the real number line 
and xL < xU and xL, xU𝜖R where xL and xU are the lower 
and upper bound respectively. The center and width of an 
interval number are defined as-

Definition 13  If X =
{[
xL
1
, xU

1

]
,
[
xL
2
, xU

2

]
…

[
xL
n
, xU

n

]}
 and 

Y =
{[
yL
1
, yU

1

]
,
[
yL
2
, yU

2

]
…

[
yL
n
, yU

n

]}
 are two interval number 

vectors of length n, then the Euclidean distance between X 
and Y  is computed as-

2.5 � TOPSIS

TOPSIS is the most widely used MCDM method to solve deci-
sion problems. It has been used in various fields like cloud service 
selection, web service selection, optimal route selection, supplier 
selection, etc. It ranks alternatives based on their geometric dis-
tance from an ideal and worst solution. It is widely used as it is 
better than VIKOR, AHP, and ANP in terms of efficiency and 
is simple to understand (Jahan et al. 2010; Mousavi-Nasab and 
Sotoudeh-Anvari 2017). The various steps of the original TOPSIS 
method used to rank alternatives are discussed below.

Step-1: Let there are m alternatives A1 to Am and n criteria 
C1 to Cn involve in a decision problem to rank alternatives, 
then construct a decision matric of size m × n as follow.

(25)m(X) =
xL + xU

2

(26)w(X) = xU − xL

(27)d(X, Y) =

√√√√ n∑
i=1

1

2

[
(xL

i
− yL

i
)
2
+ (xU

i
− yU

i
)
2
]

(28)
DM =

C1 C2 … Cn

A1

A2

⋮

Am

⎡
⎢⎢⎢⎣

x1,1 x1,2
x2,1 x2,2

⋯

…

x1,n
x2,n

⋮ ⋮ ⋱ ⋮

xm,1 xm,2 ⋯ xm,n

⎤⎥⎥⎥⎦

where xi,j denotes the rating of alternative i for criterion j.
Step-2: Transform the decision matrix values on the 

same scale using Eq. (29) to find out the normalized deci-
sion matrix.

where

Step-3: Let W = [w1,w2,… ,wn] are the weight of cri-
teria given by the expert as per their needs, the weighted 
normalized decision matrix is computed using Eq. (30) to 
incorporate decision-makers preference.

where

Step-4: A decision problem is always associated with 
cost and benefit criteria. The cost and benefit criteria are 
those criteria whose minimum and maximum value opti-
mizes the cost of the optimal alternative. Let K1 and K2 
are the set of cost and benefit criteria associated with the 
decision problem, then the positive ideal solution (PIS) and 
negative ideal solution (NIS) are computed using Eqs. (31) 
and (32) respectively. The PIS denotes the ideal alternative 
while NIS represents the worst alternative.

where

(29)
N =

C
1

C
2

… C
n

A
1

A
2

⋮

A
m

⎡
⎢⎢⎢⎣

n
1,1

n
1,2

n
2,1

n
2,2

⋯

…

n
1,n

n
2,n

⋮ ⋮ ⋱ ⋮

n
m,1

n
m,2

⋯ n
m,n

⎤
⎥⎥⎥⎦

ni,j =
xi,j�∑m

i=1
x2
i,j

(30)
W =

C
1

C
2

… C
n

A
1

A
2

⋮

A
m

⎡⎢⎢⎢⎣

w
1,1

w
1,2

w
2,1

w
2,2

⋯

…

w
1,n

w
2,n

⋮ ⋮ ⋱ ⋮

w
m,1

w
m,2

⋯ w
m,n

⎤⎥⎥⎥⎦

wi,j = ni,j ∗ wj

(31)PIS =
[
Pos1,Pos2 …Posn

]

(32)NIS = [Neg1,Neg2 …Negn]

Posj =

{
min
i
(wi,j) if Cj ∈ K1

max
i
(wi,j) ifCj ∈ K2
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Step-5: Compute the Euclidean distance of Ai from PIS 
and NIS using Eqs. (33) and (34) respectively.

Step-6: Compute the closeness index CIi of each alterna-
tive Ai using Eq. (35).

Step-7: The rank of alternative is computed using close-
ness index CI . The alternative having a maximum value of 
CI is the optimal alternative. The alternative with the mini-
mum value of CI is the worst.

3 � RMo‑TOPSIS

The Mo-TOPSIS proposed by Lourenzutti and Krohling 
(2016) uses QoS weight to compute the distance of each 
alternative from PIS and NIS to accommodate customer 
priority, instead of computing weighted decision matrix 
using Eq. (30). Its correctness can be verified by expanding 
Eq. (33) used in traditional TOPSIS to compute the separa-
tion measure.

That means, we can directly use QoS weight at the time 
of computation of separation measure. The proposed Mo-
TOPSIS works properly for decision matrix with the hetero-
geneous type of QoS information, but it is not robust to rank 
reversal (Wang and Luo 2009; García-Cascales and Lamata 
2012) in some scenarios as standard TOPSIS also suffers 
from it. Mo-TOPSIS suffers from rank reversal due to its 
normalization procedure and process of computing PIS and 
NIS. Due to issues in normalization methods, the normalized 

Negj =

{
max

i
(wi,j) if Cj ∈ K1

min
i
(wi,j) ifCj ∈ K2

(33)D+
i
= D

(
Ai,PIS

)
=

√√√√ n∑
j=1

(
wi,j − Posj

)2

(34)D−
i
= D

(
Ai,NIS

)
=

√√√√ n∑
j=1

(
wi,j − Negj

)2

(35)CIi =
D−

i

D+
i
+ D

−

i

(36)

D
+
i
=

√√√√ n∑
j=1

(
w
i,j
− Pos

j

)
2

=

√√√√ n∑
j=1

(
n
i,j
∗ w

j
− n

+
i,j
∗ w

j

)
2

=

√√√√ n∑
j=1

w
2

j

(
n
i,j
− n

+
i,j

)
2

decision matrix changes on the addition or elimination of an 
alternative, which in turn changes the PIS and NIS. It affects 
the ranking of alternatives due to different values of separation 
measure of each alternative from ideal and worst alternatives.

The proposed extension of Mo-TOPSIS called RMo-
TOPSIS uses two standard fictitious alternatives to fix the 
normalized value of each QoS of an alternative, which does 

Fig. 2   Flowchart of RMo-TOPSIS
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not change with a change in the number of alternatives. The 
addition of two fictitious alternatives makes the normaliza-
tion method consistent by fixing the denominator of it. It 
also uses standard PIS and NIS, which do not depend on 
the decision matrix. The RMo-TOPSIS has been designed 
to work for a decision matrix having crisp, interval, TFN, 
IFS and neutrosophic fuzzy type of QoS attributes. How-
ever, it can be extended for QoS information of other types 
using the same concept. The flowchart of RMo-TOPSIS is 
shown in Fig. 2. The various steps of RMo-TOPSIS are 
discussed below.

Step 1: Identify the QoS parameters
The proposed approach initially collects the set Q of nec-

essary and desirable QoS parameter that is to be fulfilled by 
the set of alternatives A , where Q =

{
QoS1,QoS2,… ,QoSn

}
 

and A =
{
A1,A2,… ,Am

}
.

Step 2: Construct the decision matrix
The decision-maker or expert constructs the decision matrix 

of size m × n for TOPSIS based on their experience. Each 
entry of the decision matrix represents the QoS parameters rat-
ing of the decision-maker. The decision matrix is represented 
in Eq. (37) where ri,j represents the rating of the QoS parameter 
QoSj for alternative Ai . Ri can be a vector having crisp, interval 
number, TFN, IFS or NFS type information.

where

Step 3: Identify the maximum and minimum value of 
QoS parameters

The maximum and minimum values of QoS parameters 
for each type are identified. Let the minimum and maximum 
value of each QoS parameter is defined using Eq. (38).

(37)D =
[
R1 R2 ⋯ Rm

]T

Ri =
[
ri,1 ri,2 … ri,n

]

For example, if QoSj is of crisp type and has 
[
rminj , rmaxj

]
 

as [1, 5] , then each alternative can have QoSj value between 
1 and 5. Any other value is not allowed. Similarly, if QoSj is 
of interval type and has 

[[
rL
minj

, rU
minj

]
,

[
rL
maxj

, rU
maxj

]]
 as 

[[0, 0], [5, 5]] , then each alternative can have QoSj value as [
x, y

]
 where 0 ≤ x, y ≤ 5 . The minimum and maximum values 

of IFS type QoS parameter are [0, 1] and [1, 0] as IFS is 
minimum when the degree of membership value � is 0 and 
non-membership value � is 1. Similarly, it is maximum when 
the membership value � is 1 and non-membership value � is 
0. The NFS is minimum when the degree of truth, indeter-
minacy and falsity are 0, 1 and 1. Similarly, it is maximum 
when the degree of truth, indeterminacy and falsity are 1, 0 
and 0. So, any alternative can have a QoS value between the 
above range for IFS and NFS type.

Step 4: Identify the QoS parameters weight
The decision-maker provides the weight of all QoS 

parameters available in set Q as W =
{
w1,w2,… ,wn

}
 . The 

weight is assigned by the decision-maker based on the expe-
rience and preference of each QoS. The weight assigned to 
each QoS is a real number such that 

∑
wi = 1.

Step 5: Add two fictitious alternatives
Two fictitious alternatives F1 and F2 are added to the deci-

sion matrix, which is computed using Eqs. (39) and (40). These 
fictitious alternatives help to fix the normalized value of the 
QoS parameter in case of addition or removal of an alternative, 
which changes in Mo-TOPSIS and causes a rank reversal in it.

(39)

F
1,j =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

rminj if QoSj is crisp type�
rL
minj

, rU
minj

�
if QoSj is interval type�

r�
minj

, r
�

minj
, r

�

minj

�
if QoSj is TFN type

[0, 1] if QoSj is IFS type

[0, 1, 1] if QoSj is NFS type

for j = 1 to n

(38)MinMax
�
QoSj

�
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
rminj , rmaxj

�
if QoSj is crisp type��

rL
minj

, rU
minj

�
,

�
rL
maxj

, rU
maxj

��
if QoSj is interval type��

r�
minj

, r
�

minj
, r

�

minj

�
,

�
r�
maxj

, r�
maxj

, r�
maxj

��
ifQoSj is TFN type

[[0, 1], [1, 0]] if QoSj is IFS type

[[0, 1, 1], [1, 0, 0]] if QoSj is NFS type
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The modified decision matrix obtained after adding F1 and 
F2 are shown in Eq. (41) as-

Step 6: Compute the normalized decision matrix
The normalization of the decision matrix scales all the val-

ues of it on the same scale. The decision matrix consists of 
different types of elements like crisp, internal number, fuzzy 
number, etc. are normalized to make them on the unit scale. 
The normalized decision matrix is computed using Eq. (42).

where

There is no need to normalize the IFS and NFS type QoS 
parameters as they are already in the unit scale. The above nor-
malization method will not cause a change in normalized QoS 
value on addition or removal of alternatives as the denomina-
tor is fixed and its value is the maximum value of QoS i.e. 
any alternative cannot provide QoS value better than it. For 
example, if the QoS value varies between 1 to 100 then all 
alternatives will provide QoS in between 1–100. So, it does not 
depend on the addition and removal of alternatives.

Step 7: Compute the PIS and NIS
Let J1 and J2 are the set of benefit and cost QoS parame-

ters such that J1 ⊆ Q, J2 ⊆ Q and J1 ∪ J2 = Q . The PIS and 
NIS are computed using Eqs. (44) and (45) respectively 
and their computation depends on the type of data in the 
normalized decision matrix.

(40)

F2,j =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

rmaxj if QoSj is crisp type�
rL
maxj

, rU
maxj

�
if QoSj is interval type�

r�
maxj

, r�
maxj

, r�
maxj

�
if QoSj is TFN type

[1, 0] if QoSj is IFS type

[1, 0, 0] if QoSj is NFS type

for j = 1 to n

(41)D =
[
R1 R2 ⋯ Rm ,F1,F2

]T

(42)N =
[
N1 N2 ⋯ Nm ,Nm+1,Nm+2

]T

Ni =
[
ni,1 ni,2 … ni,n

]

(43)ni,j =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

ri,j

rmaxj

if QoSj is crisp type
�

rL
i,j

rU
maxj

,
rU
i,j

rU
maxj

�
if QoSj is interval type�

r�
i,j

r
�
maxj

,
r
�

i,j

r
�
maxj

,
r
�

i,j

r
�
maxj

�
if QoSj is TFN type

ri,j otherwise

(44)PIS =
{(

s+
j
, j�J1

)
,

(
s−
j
, j�J2

)}
for j = 1 to n

w h e r e  n+
j
= max

{
ni,j|i = 1,…m + 2

}
  , 

n
+

Lj
= max

{
n
L

i,j
|i = 1,…m + 2

}
 , n+

Uj
= max

{
nU
i,j
|i = 1,…m + 2

}
 , 

n
+

�j
= max

{
n
�
i,j
|i = 1,…m + 2

}
 , n+

�j
= max

{
n
�

i,j
|i = 1,…m + 2

}
 , 

n
+

�j
= max

{
n
�

i,j
|i = 1,…m + 2

}
 , n+

�j
= max

{
n
�

i,j
|i = 1,…m + 2

}
 , 

n
+

�j
= max

{
n
�

i,j
|i = 1,…m + 2

}
 , n+

Tj
= max

{
nT
i,j
|i = 1,…m + 2

}
 , 

n+
Ij
= max

{
nI
i,j
|i = 1,…m + 2

}
 , n+

Fj
= max

{
nF
i,j
|i = 1,…m + 2

}
 . 

S i m i l a r l y ,  n−
j
= min

{
ni,j|i = 1,…m + 2

}
  , 

n−
Lj
= min

{
nL
i,j
|i = 1,…m + 2

}
 , n−

Uj
= min

{
nU
i,j
|i = 1,…m + 2

}
 , 

n−
�j
= min

{
n�
i,j
|i = 1,…m + 2

}
 , n−

�j
= min

{
n
�

i,j
|i = 1,…m + 2

}
 , 

n−
�j
= min

{
n
�

i,j
|i = 1,…m + 2

}
 , n−

�j
= min

{
n
�

i,j
|i = 1,…m + 2

}
 , 

n−
�j
= min

{
n�
i,j
|i = 1,…m + 2

}
 , n−Tj = min

{
nT
i,j
|i = 1,…m + 2

}
 , 

n−
Ij
= min

{
nI
i,j
|i = 1,…m + 2

}
 , n−Fj = min

{
nF
i,j
|i = 1,…m + 2

}

Step 8: Compute weighted euclidean distance from 
PIS and NIS

The weighted distance of each alternative Ai from PIS and 
NIS excluding the fictitious alternatives F1 and F2 is computed 
using Eqs. (46) and (47) respectively.

(45)NIS =
{(

s−
j
, j�J1

)
,

(
s+
j
, j�J2

)}
for j = 1 to n

s+
j
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n+
j

if QoSj is crisp type�
n+
Lj
, n+

Uj

�
if QoSj is interval type�

n+
�j
, n+

�j
, n+

�j

�
if QoSj is TFN type�

n+
�j
, n+

�j

�
if QoSj is IFS type�

n+
Tj
, n+

Ij
, n+

Fj

�
if QoSj is NFS type

s−
j
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n−
j

if QoSj is crisp type�
n−
Lj
, n−

Uj

�
if QoSj is interval type�

n−
�j
, n−

�j
, n−

�j

�
if QoSj is TFN type�

n−
�j
, n−

�j

�
if QoSj is IFS type�

n−
Tj
, n−

Ij
, n−

Fj

�
if QoSj is NFS type

(46)WD+
i
=

√√√√ n∑
j=1

[wj ∗ d(s+
j
, ni,j)]

2
for i = 1 to m
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where

�1,�2�3 and �4 are defined in Eqs.  (21)–(24) and 
�i ∈ [0, 1],

∑4

j=1
�j = 1

Step 9: Compute the closeness index and rank the cloud 
services

The closeness index of each alternative Ai is computed 
using Eq. (48). The alternative with the highest value of 
the closeness index is considered as best while the alter-
native with the lowest value is considered as the worst 
alternative.

(47)WD−
i
=

√√√√ n∑
j=1

[wj ∗ d(s−
j
, ni,j)]

2 for i = 1 to m

d
�
s+
j
, ni,j

�
=

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�
(s+

j
− ni,j)

2
if QoSj is crisp type�

1

2

�
(s+

Lj
− nL

i,j
)
2
+ (s+

Uj
− nU

i,j
)
2
�

if QoSj is interval type�
1

3

�
(s+

�j
− n�

i,j
)
2
+ (s+

�j
− n

�

i,j
)
2
+ (s+

�j
− n

�

i,j
)
2
�
if QoSj is TFN type

�
1

2

��
s+
�j
− n

�

i,j

�2

+
�
s+
�j
− n�

i,j

�2
�

if QoSj is IFS type

��∑4

k=1
�k�k

�
s+
j
, ni,j

��2

if QoSj is NFS type

d
�
s−
j
, ni,j

�
=

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�
(s−

j
− ni,j)

2 if QoSj is crisp type�
1

2

�
(s−

Lj
− nL

i,j
)
2
+ (s−

Uj
− nU

i,j
)
2
�

if QoSj is interval type�
1

3

�
(s−

�j
− n�

i,j
)2 + (s−

�j
− n

�

i,j
)
2
+ (s−

�j
− n

�

i,j
)
2
�
if QoSj is TFN type

�
1

2

��
s−
�j
− n

�

i,j

�2

+
�
s−
�j
− n�

i,j

�2
�

if QoSj is IFS type

��∑4

k=1
�k�k

�
s−
j
, ni,j

��2

if QoSj is NFS type

4 � Performance evaluation

In this section, a case study is performed to show the 
application of the proposed RMo-TOPSIS in the field of 
cloud service selection. The service selection in the cloud 
environment is one of the critical problems due to the 
availability of many cloud services providing the same 
level of QoS. The cloud users have to select the right ser-
vice as cloud services are hired for a long time and users 
do not churn from one service provider to another. So, the 

(48)CIi =
WD−

i

WD+
i
+WD

−

i

Table 3   Details of QoS 
parameters

QoS parameter Data type QoS type QoS weight Minimum QoS value Maximum QoS value

Cost Crisp Cost 0.23 100 200
Response time Interval Cost 0.23 [150, 160] [350, 360]
Availability Crisp Benefit 0.20 0.5 1
Reliability TFN Benefit 0.14 (0.1, 0.2, 0.3) (0.9, 0.95, 1.0)
Reputation IFS Benefit 0.06 ‹0, 1› ‹1, 0›
Security NFS Benefit 0.14 ‹0, 1, 1› ‹1, 0, 0›
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proper selection of cloud services avoids capital loss and 
failures.

The proposed method is also validated by comparing it 
with MCDM based methods used for ranking alternatives 
with QoS of heterogeneous type. The robustness against 
rank reversal is demonstrated through sensitivity analysis 
comprising a series of experiments.

4.1 � Cloud service selection using RMo‑TOPSIS

In this case study, an e-commerce company wants to deploy 
its application on a server and there are eight infrastructure 
as a service (IaaS) providers CS1 to CS8 , which offers the 
hosting facility. The e-commerce company wants to know 
the best IaaS provider based on QoS parameters cost, avail-
ability, response time, reliability, reputation and security. 
Table 3 shows the QoS parameters, their data type, its type 
i.e. cost or benefit and weight provided by the e-commerce 
company for each QoS to find the best service. Cost is crisp 

as it is provided by the cloud service provider. Availability 
is crisp as it is claimed in the service level agreement signed 
by the cloud service provider. Response time is interval as it 
depends on the load of the cloud machine, network, etc. and 

Table 4   Decision matrix with 
heterogeneous QoS information 
for cloud service selection

Cloud services Cost Response time Availability Reliability Reputation Security

CS1 126 [186, 285] 0.95 (0.5, 0.6, 0.7) ‹0.65, 0.25› ‹0.65, 0.35, 0.30›
CS2 133 [180, 282] 0.88 (0.6, 0.8, 0.9) ‹0.35, 0.60› ‹0.80, 0.20, 0.15›
CS3 110 [201, 291] 0.91 (0.6, 0.7, 0.9) ‹0.85, 0.10› ‹0.35, 0.65, 0.60›
CS4 148 [197, 300] 0.87 (0.4, 0.6, 0.7) ‹0.80, 0.10› ‹0.90, 0.10, 0.05›
CS5 107 [182, 280] 0.85 (0.3, 0.5, 0.7) ‹0.30, 0.65› ‹0.45, 0.55, 0.60›
CS6 122 [195, 310] 0.96 (0.3, 0.4, 0.6) ‹0.55, 0.35› ‹0.50, 0.50, 0.50›
CS7 140 [210, 330] 0.98 (0.4, 0.6, 0.9) ‹0.50, 0.35› ‹0.85, 0.15, 0.20›
CS8 138 [197, 312] 0.93 (0.5, 0.7, 1.0) ‹0.45, 0.50› ‹0.75, 0.20, 0.20›
F1 100 [150, 160] 0.50 (0.1, 0.2, 0.3) ‹0, 1› ‹0, 1, 1›
F2 200 [350, 360] 1.00 (0.9, 0.95, 1.0) ‹1, 0› ‹1, 0, 0›

Table 5   Normalized decision 
matrix for cloud service 
selection using RMo-TOPSIS

Cloud services Cost Response time Availability Reliability Reputation Security

CS1 0.630 [0.52, 0.79] 0.95 (0.5, 0.6, 0.7) ‹0.65, 0.25› ‹0.65, 0.35, 0.30›
CS2 0.665 [0.5, 0.78] 0.88 (0.6, 0.8, 0.9) ‹0.35, 0.60› ‹0.80, 0.20, 0.15›
CS3 0.550 [0.56, 0.81] 0.91 (0.6, 0.7, 0.9) ‹0.85, 0.10› ‹0.35, 0.65, 0.60›
CS4 0.740 [0.55, 0.83] 0.87 (0.4, 0.6, 0.7) ‹0.80, 0.10› ‹0.90, 0.10, 0.05›
CS5 0.535 [0.51, 0.78] 0.85 (0.3, 0.5, 0.7) ‹0.30, 0.65› ‹0.45, 0.55, 0.60›
CS6 0.610 [0.54, 0.86] 0.96 (0.3, 0.4, 0.6) ‹0.55, 0.35› ‹0.50, 0.50, 0.50›
CS7 0.700 [0.58, 0.92] 0.98 (0.4, 0.6, 0.9) ‹0.50, 0.35› ‹0.85, 0.15, 0.20›
CS8 0.690 [0.55, 0.87] 0.93 (0.5, 0.7, 1.0) ‹0.45, 0.50› ‹0.75, 0.20, 0.20›
F1 0.500 [0.42, 0.44] 0.50 (0.1, 0.2, 0.3) ‹0.0, 1.0› ‹0.0, 1.0, 1.0›
F2 1.000 [0.97, 1.00] 1.00 (0.9, 0.95, 1.0) ‹1.0, 0.0› ‹1.0, 0.0, 0.0›

Table 6   PIS and NIS computed 
from the normalized decision 
matrix

Cost Response Time Availability Reliability Reputation Security

PIS 0.500 [0.42, 0.44] 0.50 (0.1, 0.2, 0.3) ‹0.0, 1.0› ‹0.0, 1.0, 1.0›
NIS 1.000 [0.97, 1.00] 1.00 (0.9, 0.95, 1.0) ‹1.0, 0.0› ‹1.0, 0.0, 0.0›

Table 7   Weighted distance from PIS, NIS, closeness index and rank 
obtained using RMo-TOPSIS

Cloud ser-
vices

Weighted 
distance from 
PIS

Weighted 
distance from 
NIS

Closeness 
index

Rank

CS1 0.1923 0.2823 0.5949 2
CS2 0.1909 0.2843 0.5983 1
CS3 0.1958 0.2794 0.5880 3
CS4 0.2078 0.2718 0.5667 6
CS5 0.2083 0.2715 0.5659 7
CS6 0.2126 0.2694 0.5589 8
CS7 0.2047 0.2779 0.5759 5
CS8 0.2023 0.2792 0.5799 4
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has different response times for the same request (Liu et al. 
2020). Reliability is a qualitative parameter and depends on 
expert perception (Liu et al. 2020). So, it is considered as 
TFN and will provide flexibility to experts for rating cloud 
services with partial knowledge. Reputation is perceived by 
cloud users and is a subjective matter, so IFS is used to rep-
resent it. Security is also qualitative QoS and easy to express 
in a fuzzy environment. Therefore, NFS is used to represent 
it. The QoS parameters cost and response time are costly 
QoS while rest are benefit QoS i.e. larger the better. Table 3. 
also shows the minimum and maximum value of each QoS 
parameter that cloud services can provide.

The decision matrix obtained based on the rating 
provided by cloud experts is shown in Table 4. It consists 
of a level or values of QoS provided by each cloud service. 
The RMo-TOPSIS is applied to the decision matrix to 
find the best cloud service as per e-commerce company 
requirements. The next step of RMo-TOPSIS is to compute 
the two standard fictitious alternatives using Eqs. (39) and 
(40) i.e. cloud services F1 and F2 shown in Table 4. These 
two fictitious cloud services contribute to avoiding rank 
reversal in RMo-TOPSIS. The QoS values of the decision 
matrix are normalized on the same scale using Eq. (43) 
in the next step and shown in Table 5. Table 6 shows the 
PIS and NIS computed using Eqs.  (44) and (45) on the 
normalized decision matrix. The weighted distance of each 
cloud service from PIS and NIS is computed using Eqs. (46) 

and (47). Table 7 shows the weighted distance of each 
cloud service along with the closeness index and rank. The 
distance between the NFS data type is computed using each 
beta value of 0.25 throughout the paper. The closeness index 
is computed using Eq. (48) and cloud services are ranked 
based on the closeness index. The cloud service having a 
maximum value of closeness index i.e. CS2 is ranked as the 
best cloud service as per QoS requirement. It provides the 
best QoS for response time and reliability while third-best 
in security, fifth in cost, sixth in availability and seventh in 
reputation. Overall, CS2 is the best among all cloud services 
and can be verified from the decision matrix.

4.2 � Validation of result

The ranking result of the proposed method is compared with 
other methods to validate it. The rank of cloud services com-
puted by RMo-TOPSIS on a decision matrix is compared 
with Mo-TOPSIS (Lourenzutti and Krohling 2016) and 
extended TODIM (Fan et al. 2013). It is also compared with 
generalizations of TOPSIS for a specific type of information 
to validate it further. Since Mo-TOPSIS does not support 
NFS, so we considered a decision matrix with QoS type 
crisp, interval, TFN, and IFS. The decision matrix along 
with QoS wight, which is used to compare rank obtained 
by Mo-TOPSIS and RMo-TOPSIS is shown in Table 8. It 
also shows the closeness index and ranks obtained using 

Table 8   Rank obtained using Mo-TOPSIS and RMo-TOPSIS

Cloud services Cost (0.23) Response time 
(0.23)

Avail-
ability 
(0.24)

Reliability 
(0.24)

Reputation 
(0.06)

Mo-TOPSIS RMo-TOPSIS

Closeness index Rank Closeness index Rank

CS1 126 [186, 285] 0.95 (0.5, 0.6, 0.7) ‹0.65, 0.25› 0.5356 4 0.5864 3
CS2 133 [180, 282] 0.88 (0.6, 0.8, 0.9) ‹0.35, 0.60› 0.6293 2 0.5966 2
CS3 110 [201, 291] 0.91 (0.6, 0.7, 0.9) ‹0.85, 0.10› 0.6539 1 0.6222 1
CS4 148 [197, 300] 0.87 (0.4, 0.6, 0.7) ‹0.80, 0.10› 0.4237 7 0.5330 8
CS5 107 [182, 280] 0.85 (0.3, 0.5, 0.7) ‹0.30, 0.65› 0.4589 6 0.5568 6
CS6 122 [195, 310] 0.96 (0.3, 0.4, 0.6) ‹0.55, 0.35› 0.3728 8 0.5443 7
CS7 140 [210, 330] 0.98 (0.4, 0.6, 0.9) ‹0.50, 0.35› 0.4645 5 0.5618 5
CS8 138 [197, 312] 0.93 (0.5, 0.7, 1.0) ‹0.45, 0.50› 0.5575 3 0.5789 4

Table 9   The rank of cloud services using Mo-TOPSIS, RMo-TOPSIS and extended TODIM

Cloud services QoS1 (0.40) QoS2 (0.22) QoS3 (0.38) Mo-TOPSIS RMo-TOPSIS Extended TODIM

Closeness index Rank Closeness index Rank Dominance degree Rank

CS1 645 [3, 4] (3, 4, 5) 0.3234 5 0.4355 5 0.0000 5
CS2 595 [2, 5] (2, 4, 6) 0.3640 4 0.4684 4 0.3333 4
CS3 700 [1, 3] (4, 5, 6) 0.4882 3 0.4865 3 0.4404 3
CS4 615 [2, 3] (4, 6, 8) 0.6186 2 0.5571 2 0.9305 2
CS5 670 [1, 3] (6, 7, 8) 0.6685 1 0.5860 1 1.0000 1
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both methods. The maximum and minimum values of QoS 
attributes and their type are the same as shown in Table 3. 
The QoS weight used is shown in Table 8 along with the 
QoS name. It can be observed that Mo-TOPSIS and RMo-
TOPSIS rank cloud services in a similar way as only the 
process of normalization is different and the rest is the same.

In the next experiment, the result validation of RMo-
TOPSIS is shown by comparing the rank of cloud services 
obtained using Mo-TOPSIS (Lourenzutti and Krohling 
2016) and extended TODIM (Fan et al. 2013). The deci-
sion matrix used for the experiment is shown in Table 9. 
Since, extended TODIM supports only decision matrix with 
QoS of type crisp, interval and TFN, so there are only three 
types of data. The QoS3 is the benefit QoS while others 
are costly QoS. The QoS weight used to compute the rank 
is shown in Table 9 along with the QoS name. The mini-
mum and maximum value of QoS1, QoS2 and QoS3 used 

for RMo-TOPSIS are [500, 800], [[0, 1], [4, 5]] and [(1, 2, 
3), [7, 8, 9]]. The value of theta used for calculating domi-
nance degree in extended TODIM is 5. Theta signifies the 
loss aversion degree in the decision matrix. A better value 
of theta means a lesser loss aversion degree. The closeness 
index and ranked obtained for cloud services on the given 
decision matrix using Mo-TOPSIS and RMo-TOPSIS is 
stated in Table 9. Table 9 also shows the dominance degree 
and rank of cloud services using extended TODIM. It can 
be observed that all three methods rank the cloud services 
in the same manner, which validates the ranking result of 
the proposed method.

In another experiment, we validate the ranking result of 
the proposed method with rank reversal robust G-TOPSIS 
(Tiwari and Kumar 2021) for crisp type QoS. The deci-
sion matrix along with QoS weight is shown in Table 10. 
The QoS1 and QoS2 are costly parameters while others are 

Table 10   The ranking result of cloud services using G-TOPSIS and RMo-TOPSIS

Cloud service QoS1 (0.3483) QoS2 (0.1072) QoS3 (0.3483) QoS4 (0.1356) QoS5 (0.2464) G-TOPSIS RMo-TOPSIS

Closeness 
index

Rank Closeness 
index

Rank

Amazon 0.29 92.89 126.66 110.33 104 0.7534 2 0.5724 2
Google 0.48 96 140.89 133 70.91 0.7438 4 0.5598 4
Century Link 0.9 100.15 81.21 78.66 70.09 0.6965 6 0.4545 6
HP 0.42 119.63 111.95 100.5 131.81 0.7458 3 0.5670 3
Microsoft 

Azure
0.45 29.07 152.96 42.47 90.83 0.7643 1 0.5894 1

Rackspace 0.42 74.53 6.19 130.84 90.37 0.5989 10 0.3976 9
City-Cloud 1.05 81.22 58.42 68.45 78.15 0.6745 7 0.4269 7
Linode 0.56 43.02 17.34 141.23 51.71 0.6029 9 0.3788 10
GoGrid 0.34 64.64 75.89 174.12 100.14 0.7231 5 0.5160 5
Softlayer 0.48 130.68 23.2 122.62 89.74 0.6216 8 0.4080 8
Minimum QoS 0 10 0 20 20
Maximum 

QoS
2 150 200 200 150

Fig. 3   Cloud services rank-
ing using RMo-TOPSIS and 
G-TOPSIS
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beneficial. The minimum and maximum values used for 
RMo-TOPSIS are also shown in Table 10. The rank and 
closeness index of cloud services computed using both 
methods are shown in Table 10. Figure 3 shows the visual 
comparison of rank obtained with both methods. It can be 
observed that both methods rank cloud services in a similar 
manner as the aggregation process is analogous with a slight 
difference in the computation method of some steps.

The ranking result of the RMo-TOPSIS is also validated 
with the generalization of TOPSIS for the fuzzy environ-
ment. It is compared with the framework proposed by Kumar 
et al. (2017) to rank cloud services under a fuzzy environ-
ment. We considered the same decision matrix and QoS 
weight used by Kumar et al. (2017) shown in Table 11. The 
QoS1 to QoS4 are cost parameters while others are benefi-
cial. The minimum and maximum value of QoS considered 
for Mo-TOPSIS is (0, 0, 0) and (1, 1, 1) for all. The rank of 
cloud services obtained on the decision matrix in Table 11 
using fuzzy TOPSIS and RMo-TOPSIS is shown in Fig. 4. 
It can be observed that both methods rank cloud services 
in a similar manner, which validates our proposed method.

4.3 � Sensitivity analysis

The sensitivity analysis is performed to monitor the rank 
reversal phenomenon in RMo-TOPSIS. The first two cases 
are carried out using deletion of cloud services from existing 
decision matrix while other with addition. The QoS weight, 
their data type, minimum and maximum value along with 
type i.e. cost and benefit used in all cases are the same as 
Table 3. In the first case, one cloud service is removed at a 
time from the decision matrix shown in Table 4 and RMo-
TOPSIS is used to compute the rank of cloud services. 
Initially, we removed CS1 from the decision matrix and 
computed the rank of the remaining cloud services. In the 
successive experiment, we removed CS2, CS3… CS8 from the 
decision matrix one at a time. Table 12 shows the closeness 
index computed in each experiment. It can be inferred that 
the closeness index does not depend on the removal of a 
cloud service and remains the same throughout all experi-
ments. The rank of cloud services obtained in each experi-
ment is shown in Fig. 5. It can be said that the order of rank 
of cloud services remains consistent on the removal of cloud 
services from the decision matrix. For example, it can be 
observed in experiment two that the rank of CS1 changes 
to first and similarly the rank of other cloud services is also 
reduced by one as best cloud service CS2 is removed, but 
overall their relative ranking order remains the same.

We performed a second case of sensitivity analysis by 
removing more than one cloud service from the existing 
decision matrix to monitor rank reversal. The parameters 
and decision matrix used are the same as Tables 3 and 4, 
respectively. Table 13 shows the closeness index of cloud Ta
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service in the different experiments and we can observe that 
the closeness index remains constant and does not depend 
on the removal of more than one cloud service. So, we can 
say that RMo-TOPSIS is robust to the rank reversal in case 
of removal of more than one cloud service at a time.

We performed the third case of sensitivity analysis by 
adding one cloud service in an existing decision matrix to 
monitor robustness against rank reversal on the addition of 
service. The parameters and decision matrix used are the 
same as Tables 3 and 4 respectively. Initially, only three 

cloud services CS1, CS2, and CS3 are considered in the deci-
sion matrix, and rank is computed using RMo-TOPSIS. In 
the successive experiment CS4, CS5… CS8 is added one at a 
time in the decision matrix to compute the rank. Table 14 
shows the closeness index of cloud service in various experi-
ments. The closeness index of cloud services remains the 
same and does not change with the addition of service 
throughout all experiments. The rank of cloud services is 
visually shown in Fig. 6. It can be guaranteed from Fig. 6 
that the rank of cloud service only changes on the addition of 
an optimal service but their rank order relative to ranking on 

Fig. 4   The rank of cloud ser-
vices using fuzzy RMo-TOPSIS 
and TOPSIS
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Table 12   Closeness index of 
cloud services on removal

Cloud services Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8

CS1 – 0.5949 0.5949 0.5949 0.5949 0.5949 0.5949 0.5949
CS2 0.5983 – 0.5983 0.5983 0.5983 0.5983 0.5983 0.5983
CS3 0.5880 0.5880 – 0.5880 0.5880 0.5880 0.5880 0.5880
CS4 0.5667 0.5667 0.5667 – 0.5667 0.5667 0.5667 0.5667
CS5 0.5659 0.5659 0.5659 0.5659 – 0.5659 0.5659 0.5659
CS6 0.5589 0.5589 0.5589 0.5589 0.5589 – 0.5589 0.5589
CS7 0.5759 0.5759 0.5759 0.5759 0.5759 0.5759 – 0.5759
CS8 0.5799 0.5799 0.5799 0.5799 0.5799 0.5799 0.5799 –

0
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7
Exp. 1

Exp. 2

Exp. 3
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Fig. 5   The rank of cloud services on removal

Table 13   Closeness index of cloud services on the removal of multi-
ple services

Cloud services Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

CS1 0.5949 – – – 0.5949
CS2 0.5983 0.5983 0.5983 –
CS3 0.5880 – – 0.5880 –
CS4 0.5667 – 0.5667 – –
CS5 – – 0.5659 0.5659 –
CS6 0.5589 0.5589 0.5589 0.5589 –
CS7 – 0.5759 – – 0.5759
CS8 0.5799 0.5799 0.5799 – –
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the original decision matrix remains the same, which proves 
RMo-TOPSIS is robust to rank reversal.

We performed the fourth case of sensitivity analysis by 
adding more than one cloud service in the existing decision 
matrix to monitor the rank reversal. We initially considered 
the first three cloud services in the decision matrix and 
randomly added more than one service in different experi-
ments. Table 15 shows the closeness index of different cloud 
services in different experiments. It can be observed from 
Table 15 that the closeness index of each cloud service 
remains constant in all experiments and does not depend on 

the random addition of more than one cloud service, which 
indicates that RMo-TOPSIS is robust to rank reversal with 
the addition of more than one cloud services.

In another case, we randomly removed two to six cloud 
services from the decision matrix shown in Table 4 and 
monitored the rank reversal in RMo-TOPSIS. The param-
eters considered are the same as in Table 3 and obtained 
results are shown in Fig. 7. There are 28 (8C2) possible deci-
sion matrices on randomly removing two cloud services 
from the decision matrix shown in Table 4. Similarly, there 
will be 8Cn possible decision matrices on removing n cloud 
services. In Fig. 7, the total possible number of decision 
matrices generated and cases with the rank reversal in RMo-
TOPSIS on removing n cloud services are shown. It can be 
observed that there are zero cases with the rank reversal in 
each experiment, which proves our claim of robustness from 
the rank reversal in RMo-TOPSIS.

In the next experiment, we considered the decision 
matrix shown in Table 8 and monitored rank reversal in 
Mo-TOPSIS and RMo-TOPSIS. We considered the same 
parameters for the experiment as mentioned in the case 
study section for the decision matrix of Table 8. We ran-
domly removed the one to six cloud services from the deci-
sion matrix and found out the number of removals causing 
a rank reversal in each method. Table 16 shows the result 
of the experiment. It can be observed that RMo-TOPSIS 

Table 14   Closeness index of 
cloud services on addition

Cloud services Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

CS1 0.5949 0.5949 0.5949 0.5949 0.5949 0.5949
CS2 0.5983 0.5983 0.5983 0.5983 0.5983 0.5983
CS3 0.5880 0.5880 0.5880 0.5880 0.5880 0.5880
CS4 – 0.5667 0.5667 0.5667 0.5667 0.5667
CS5 – – 0.5659 0.5659 0.5659 0.5659
CS6 – – – 0.5589 0.5589 0.5589
CS7 – – – – 0.5759 0.5759
CS8 – – – – – 0.5799
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Fig. 6   The rank of cloud services on removal

Table 15   Closeness index of cloud services on the addition of multi-
ple services

Cloud services Exp. 1 Exp. 2 Exp. 3 Exp. 4

CS1 0.5949 0.5949 0.5949 0.5949
CS2 0.5983 0.5983 0.5983 0.5983
CS3 0.5880 0.5880 0.5880 0.5880
CS4 – – 0.5667 0.5667
CS5 0.5659 – 0.5659 0.5659
CS6 – 0.5589 – 0.5589
CS7 0.5759 0.5759 0.5759 0.5759
CS8 – 0.5799 0.5799 0.5799
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does not have a rank reversal in any case, while Mo-
TOPSIS has the rank reversal in each case except for the 
removal of a single cloud service case. So, RMo-TOPSIS 
is robust to rank reversal.

4.4 � Comparison and discussion

In this section, we have compared the proposed RMo-TOP-
SIS with state of the art MCDM methods available in the 
literature. We have compared the RMo-TOPSIS with Mo-
TOPSIS, G-TOPSIS, fuzzy-TOPSIS, and extended TODIM. 
It has been already discussed that RMo-TOPSIS ranks alter-
natives similar to all the above methods, while it supersedes 
them in handling rank reversal and QoS data types. Table 17 
compares RMo-TOPSIS with the above methods in terms of 
handling data type and rank reversal. RMo-TOPSIS is capa-
ble of dealing with a decision matrix having crisp, interval, 
TFN, IFS, and NFS, as shown in its cloud service selection 
application in the case study. It is also free from rank rever-
sal, as shown in the sensitivity analysis section. Mo-TOPSIS 
can only handle QoS data types of crisp, interval, TFN, and 
IFS, while it suffers from rank reversal, as shown in the 
introduction section. G-TOPSIS extends the original TOP-
SIS, which is robust in rank reversal and works only with 
the crisp data type. Fuzzy TOPSIS is another extension of 
TOPSIS in the fuzzy environment, which ranks alternatives 
based on QoS of TFN types. It is also robust to rank reversal. 
Extended TODIM is another MCDM that ranks alternatives 
based on QoS data types crisp, interval, and fuzzy, and it 
is also robust to rank reversal. It can be observed from the 
above discussion that RMo-TOPSIS outperforms all the 
above methods in terms of handling different QoS data types 
and robustness against rank reversal. So, RMo-TOPSIS will 
be a good choice for decision-makers to make a consistent 
decision in the presence of heterogeneous QoS information.

5 � Conclusion and future work

In this paper, a novel MCDM based RMo-TOPSIS method 
is presented to evaluate alternatives accurately and consist-
ently. This method is the generalization of TOPSIS, which 
can process a decision matrix with a different type of QoS 
like crisp, interval, TFN, IFS and NFS. RMo-TOPSIS has 
several advantages in comparison to existing methods. First, 
it does not transform the heterogeneous decision matrix into 
homogenous and avoids loss of information in the trans-
formation process, which in turn makes it a more consist-
ent and reliable method. Second, it is the first rank reversal 
free generalization of TOPSIS for heterogenous decision 
matrix. The elimination of rank reversal further improves 
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the consistent and robust ranking of alternatives. The pro-
posed method uses two standard fictitious alternatives, PIS 
and NIS to remove rank reversal from Mo-TOPSIS. Third, it 
is the first method that can process heterogeneous decision 
matrix with NFS type QoS.

An application of RMo-TOPSIS is presented in cloud 
service selection to show its practicability and efficacy in 
the decision-making process. Its ranking result is validated 
by comparing its ranking with existing MCDM methods for 
heterogeneous decision matrix and variations of TOPSIS 
for homogeneous QoS. It was found that it ranks cloud ser-
vices consistently and is nearly similar to other methods. A 
sensitivity analysis consisting of a series of experiments is 
executed to show its rank reversal robustness and found that 
it is robust to rank reversal. Overall, the proposed method 
provides a consistent way to evaluate cloud services. In the 
future, RMo-TOPSIS can be integrated with other data types 
to ranks alternatives.
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