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Abstract

Broad adoption of Large Language Models (LLM) demands rapid
expansions of cloud LLM inference clusters, leading to the accumu-
lation of embodied carbon—the emissions from manufacturing and
supplying IT assets—that mostly concentrate on inference server
CPU. This paper delves into the challenges of sustainable growth of
cloud LLM inference, emphasizing extended amortization of CPU
embodied over an increased lifespan. Given the reliability risks of
silicon aging, we propose an aging-aware CPU core management
technique to delay CPU aging effects, allowing the cluster operator
to safely increase CPU life. Our technique exploits CPU underuti-
lization patterns that we uncover in cloud LLM inference by halting
aging in unused cores and even-outing aging in active cores via
selective deep idling and aging-aware inference task allocation.
Through extensive simulations using real-world Azure inference
traces and an extended LLM cluster simulator from Microsoft, we
show superior performance of our technique over existing meth-
ods with an estimated 37.67% reduction in yearly embodied carbon
emissions through p99 performance of managing CPU aging effects,
a 77% reduction in CPU underutilization, and less than 10% impact
to the inference service quality.
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Figure 1: The carbon footprint of an A100x4 GPU server
running per second inference application when powered by
energy sources with different carbon intensity [26].

17-20, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 13 pages.
https://doi.org/lo.l145/3679240.3734608

1 Introduction

The proliferation of applications driven by cloud-based genera-
tive Large Language Model (LLM) inference is seen across diverse
domains, such as conversational agents [35], education [8], and
coding assistance [16]. As the popularity of such applications scales
their user base to billions [43], cloud service providers continue
to expand LLM inference clusters towards the GigaWatt scale to
support the growing demand [11]. Recently, Meta announced its
plans to build a brand new data center targeting Al workloads [34],
and xAlI plans to expand its Al cluster from 100K to 1 million GPUs
[12].

LLM Inference clusters deploy and serve pre-trained LLMs [36].
In inference, a user request (i.e., prompt query) is split into a set
of input tokens. Input tokens are then fed to the model (i.e., for-
ward pass) to generate the first output token and an intermediate
context called KV-cache. KV-cache and the first token are then
fed for the second forward pass, and the process is repeated until
a stopping condition is met [36]. In return, a single request can
incur many forward passes. To reduce the latency in that, clusters
employ parallel model computation via GPU accelerators [31]. Due
to memory constraints, each server typically utilizes several GPUs
to support modern LLMs with billions of parameters [40]. In return,
LLM inference becomes both memory and compute-intensive [46].
When serving LLMs at scale, inference clusters employ many infer-
ence optimization techniques to better utilize underlying resources,
such as phase splitting [36] and iteration-level scheduling [52]. As
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a result, LLM inference at scale results in a complex set of CPU
tasks (i.e., inference tasks), such as facilitating steps of optimization
techniques [36, 52], request scheduling [46], and tokenization [26].

The growth of LLM inference clusters also increases cloud infras-
tructure carbon footprint [7, 11, 34]. It combines two aspects: direct
carbon emissions owing to energy sources (i.e., operational) and
indirect carbon emissions resulting from business activities such
as manufacturing, shipping, and recycling IT assets (i.e., embod-
ied) [9, 53]. Today, as cloud service providers invest in renewable
energy generation to meet net-zero emission goals [10, 34], renew-
able energy sources with lesser carbon intensity [29] continue to
penetrate power grids [7], diminishing the effect of operational
carbon over the embodied. Microsoft, a hyper-scale cloud provider,
reported that over the past four years, its operational carbon was
reduced by 6.3 percent while embodied increased by 30.9 percent
[5]. In LLM inference clusters, most of its embodied carbon ac-
counts for CPU components, including the die and mainboard [26].
Therefore, optimizing CPU embodied becomes paramount for the
sustainable growth of LLM inference clusters. Figure 1 illustrates
that. With lesser carbon-intensive renewable energy sources, the
CPU embodied becomes the dominant carbon aspect in inference
servers.

We study the problem of optimizing the CPU embodied in LLM
inference clusters. Inference clusters amortize the CPU embodied
over its lifetime. Therefore, extending CPU life further amortizes
its embodied carbon. CPU life extensions are typically achieved
through extending its hardware refresh cycle [18]. CPU hardware
refresh cycle replaces CPUs with newer hardware generations. Its
aim is to gain performance-per-watt improvements [18] and avoid
reliability risks of silicon aging [17, 18, 44]. However, CPU per-
formance gains in that are minimal for inference clusters. This is
because CPU tasks in inference clusters carry out GPU-accelerated
LLM inference, and these inference tasks mostly benefit from single-
core performance, which has plateaued in recent years [45]. As a
result, the sole aim of maintaining a standard hardware refresh
cycle is to avoid silicon aging. In this context, extending the CPU
hardware refresh cycle requires efficient management of the CPU
to delay the effects of silicon aging. It is worth noting that this is
not the case for GPU, for which the embodied carbon footprint
is smaller and performance gains of newer hardware generation
are significant [26]. Many works exploring silicon aging manage-
ment in CPUs employ efficient aging-aware workload management
[1, 17, 27, 54]. They leverage task scheduling among CPU cores to
even out core aging and, in return, slow down the aging rate of the
overall CPU [17, 27, 44, 54]. However, leveraging the opportunities
present in CPU usage patterns of cloud LLM inference is yet to be
explored.

To this end, we propose an aging-aware CPU core management
technique to extend the CPU life in inference clusters. In return,
cluster embodied carbon is further amortized over the increased
lifespan. We design our technique for CPU usage patterns in cloud
LLM inference. Using production inference traces, we uncover that
LLM inference clusters mostly underutilize CPU cores with occa-
sional usage bursts. To exploit that, we design a dynamic working
set of cores where the cores in the set remain active while others
deep idle [48]. We then design online algorithms that (1) identify
and adjust the working set based on usage bursts and (2) assign
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inference tasks inside the working set to even out aging across cores.

Collectively, our approach achieves age-halting and reduced under-

utilization of cores. The working set, however, can lead inference

tasks to oversubscribe the CPU if not scaled in time. The online
algorithms we propose are also designed to mitigate that.

We implement our approach by extending splitwise-sim, a high-
fidelity LLM cluster simulator from Microsoft [36]. We use produc-
tion LLM inference traces generated with data collected from LLM
inference services in Azure [36] and use state-of-the-art CPU core
management techniques as baselines. Results for our experimental
cluster show an estimated 37.67% reduction in yearly embodied
carbon emissions through p99 performance of managing CPU aging
effects and reduction of CPU core underutilization by 77%, all while
maintaining CPU oversubscription below 10%. The key contribu-
tions of our work are as follows:

(1) An investigation into the role of the CPU in state-of-art LLM in-
ference clusters and uncovering CPU underutilization patterns
using production traces.

(2) Propose a new technique for aging-aware CPU core manage-
ment using dynamic age-halting of deep idling CPU cores.

(3) Implement the proposed technique in a simulated environment
and conduct extensive experiments using production inference
traces.

(4) An evaluation of our proposed technique against state-of-the-
art CPU core management baselines, focusing on its efficiency
in managing CPU core aging, reducing yearly embodied carbon,
and controlling task-related CPU oversubscription.

2 Background and Motivation

In this section, we provide background on embodied carbon amor-
tization in cloud servers and optimizing it by extending CPU life.
We then outline our investigations on applying that in cloud LLM
inference clusters. We highlight key takeaways from where we
draw our motivations for this paper.

2.1 Background: Embodied Carbon
Amortization in Cloud Servers through CPU
Age Management

In managing the carbon footprint of cloud data centers, Green
House Gas (GHG) protocol, a global standard formed to manage
GHG emissions [37], defines three scopes. Scopes 1 and 2 represent
the operational carbon, typically owing to the carbon intensity
of the data center’s energy sources. Scope 3 represents embodied
carbon: carbon emissions that indirectly result from the manufac-
turing and shipping of servers and other IT assets that have already
been built and installed in data centers [9]. Unlike operational car-
bon, which can be optimized by adopting less carbon-intensive
energy sources, embodied carbon needs to be amortized over the
asset’s lifespan. Here, amortization is a way to account for em-
bodied carbon. For example, if a server with a 4-year operational
lifetime causes 1000 kgCOzeq of Scope 3 emissions, then amortiza-
tion accounts for 250 kgCOzeq of embodied carbon emissions per
year.

Recent studies of embodied carbon optimization outline three
tenets of environmental design: reduce, reuse, and recycle [18]. Out
of that, this paper focuses on recycling, more specifically enabling
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Figure 2: Distributions of running inference tasks in an LLM inference cluster of 22 H100 machines.

a second life of the CPU by improving its reliability to extend the
lifetime [18]. The primary reason for CPU reliability degradation is
the silicon aging of its transistors beyond the rated life [44]. Many
works studying silicon aging in CPU [17, 39, 44] model with Neg-
ative Bias Temperature Instability (NBTI). NBTI is an aging
mechanism that affects PMOS transistors in the CPU [1]. It is caused
by the stress of workload execution. During workload execution,
transistors in the CPU continue to switch, applying stress on tran-
sistors and releasing them back. When stress is applied, NBTI shifts
the transistor’s threshold voltage (AV;;) but leaves a residual shift
when the stress is removed. That incurs a slight increase in the
AV;p,, accumulating over time. As a result, critical path delay in the
circuit increases, reducing the maximum operating frequency of
the CPU (i.e., CPU Aging). Since NBTI aging results from work-
load execution, workload management techniques can mitigate that
for improved CPU reliability [17, 27, 39, 44]. In return, embodied
carbon is further amortized through a second life of the CPU.

2.2 Motivation: Impact of CPUs’ on Embodied

Carbon in LLM Inference Clusters

Servers in LLM inference clusters serve generative Al requests via
low-latency model computation through GPU accelerators. There-
fore, most of the inference server’s thermal design power (TDP)
comes from the GPU. In return, GPU dominates the server’s op-
erational carbon footprint [26]. Nevertheless, the electrical grids
powering inference clusters continue to integrate low-emission
renewable energy sources [20]. As a result, the operational car-
bon intensity of inference servers continues to diminish, whilst
embodied carbon accounts for the majority of the server’s carbon
footprint (see Figure 1).

The embodied carbon of an inference server consists of two
categories: CPU embodied and GPU embodied. GPU is packaged
into an independent hardware unit and installed using a standard
interface such as PCle. In return, it is loosely coupled from the
server and straightforward to replace [23]. In contrast, the CPU
is installed as a tightly coupled component with many other as-
sociated components, such as the CPU chassis, mainboard, power
delivery components, etc [22, 25, 26]. Moreover, CPU components
have strict compatibility requirements. For instance, the CPU die
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must be compatible with the mainboard’s socket type and its chipset
generation [21, 22].

Thus, replacing individual CPU components has become increas-
ingly unsustainable in cloud platforms due to multiple reasons.
Firstly, maintaining a continuous supply of spare components with
fine-grained compatibility requirements is difficult to procure due
to the poor availability of repair parts [6, 28]. Secondly, recent
technology trends in data centers, such as utilizing liquid cooling,
significantly increase the time and effort required to repair servers
at the component level [28]. Therefore, upon a CPU component
failure, cloud providers tend to replace the CPU and the associated
components as a whole [42]. In this context, the CPU embodied in
an inference server is attributed to the embodied carbon footprint
of the CPU and its associated components [25, 26].

Refined carbon modeling studies in LLM inference clusters show
a substantial impact from CPU embodied towards the cluster’s
embodied carbon footprint [25]. In an Azure T4 inference server,
the GPU embodied calculates only 41.8 kgCO2eq emissions for
its total lifetime. However, the CPU embodied accounts for 278.3
kgCO2eq, while 54% of this is attributable to the CPU die, the CPU
chassis, and the mainboard alone [26]. Therefore, cloud providers
are challenged with lowering the rate of accumulation of CPU
embodied and achieving extended amortization of procured CPU
embodied.

Inference clusters acquire CPU embodied faster than it can amor-
tize through its hardware refresh life cycle. A hardware refresh cycle
aims to gain performance improvements of newer CPU hardware
generations and avoid reliability concerns of aging CPUs [18]. Re-
cent studies show that LLM inference clusters may not gain signifi-
cant performance benefits from newer CPU hardware generations.
CPUs in inference clusters execute tasks (i.e., inference tasks) fa-
cilitating the inference workflows, such as phase splitting, request
scheduling, batching, and tokenization [26, 36]. These typically
benefit from single-core performance, yet the yearly single-core
performance of newer CPU hardware generations has been mostly
the same [45]. That leaves avoiding reliability concerns of CPU
aging as the sole benefit of the CPU hardware refresh cycle.

It’s important to note that the reliability concerns of aging are
significant in the CPU, whereas its associated components, such as
the mainboard, pose minimal risks. For instance, long-term failure
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analysis of servers shows mainboard failure rates have dropped
over time [42]. Further, many associated components, such as stor-
age and memory, already implement error correction mechanisms
for aging hardware, such as Error Correction Codes (ECC) [13].
In contrast, erroneous computations of unreliable aging CPUs are
extremely difficult to correct through preventive mechanisms and
have become increasingly frequent in hyper-scale cluster deploy-
ments [13, 19].

As discussed in Section 2.1, an efficient aging-aware work-

load management technique can mitigate CPU reliability concerns,
which also translates to an extension to the CPU hardware refresh
cycle, allowing the cluster to further amortize its CPU embodied.
Takeaways: Extended amortization of CPU embodied significantly
reduces the carbon footprint of inference clusters. However, it is con-
strained by the reliability concerns of CPU aging. Hence, there is an
opportunity for an effective aging-aware CPU management technique
to optimize that.
CPU Utilization Patterns in LLM Inference Clusters: To de-
sign an efficient aging-aware CPU management technique, it is
important to understand CPU utilization patterns in cloud LLM in-
ference. For that, we monitor and analyze CPU utilization patterns
in a high-fidelity simulated LLM inference cluster environment that
infers real workload traces.

We use an LLM cluster simulator from Microsoft [36] and extend
it to model CPU in cloud LLM inference. We then replay production
inference traces from Azure and observe cluster CPU utilization.
In that, we allocate each CPU task to a dedicated core. Our cluster
settings closely match that in production. In Section 5, We discuss
our experimental setup in detail. Figure 2 illustrates our results.
Each subplot maps to a different throughput level and shows the
distribution of concurrent inference tasks executed in each cluster
machine. The x-axis denotes the machine number, and the y-axis
denotes the inference task count. We make two key observations
in that.

e O1: Cores are mostly underutilized, as indicated by the lower mean
values in the violin plots.

o O2: There are occasional bursts of running tasks as indicated by the
maximum values of the violin plots, which justifies having CPUs
with higher core counts.

In our simulation, our key finding is that underutilized CPU cores
are available to the machine operating system to schedule system
tasks apart from the inference serving platform. Therefore, these
cores can actively execute system tasks in a time-shared manner
[51]. In return, all cores can actively execute instructions regardless
of being allocated to an inference task, thus continuing to age due
to the transistor stress of workload execution. In this context, we
identify an opportunity to halt aging in the underutilized cores. We
hypothesize to reduce the available cores to match the number
of running tasks of the inference platform. In return, we can
put the remaining cores to deep idle, which turns off the clock and
power gates the CPU cores [50, 51], stopping the transistor switch-
ing and halting the core aging. However, doing so can introduce a
new set of challenges. As shown in Figure 2, the number of concur-
rent inference tasks can dynamically change. Therefore, limiting
the available cores can lead inference tasks to oversubscribe the
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Figure 3: High-Level system diagram of aging-aware CPU
core management in LLM inference clusters.

CPU unless the number of available cores is scaled in time. More-
over, a reduced set of available cores can introduce core affinity,
which can increase the failure risks of individual CPU cores due to
uneven core aging [54].

Takeaways: Underutilized cores in cloud LLM inference provide the
opportunity to halt CPU aging through deep idling of unused cores.
However, it presents new challenges, including timely switching of
core idle states to reduce CPU oversubscription and efficient use of the
available cores to avoid uneven core aging.

3 System Model and Problem Formulation

This section presents the system model, its components, and the
formulation of the problem.

3.1 System Model

Figure 3 provides a high-level view of our system model. We
model a high-performance LLM inference cluster deployment with
inference-optimized servers. It executes cloud LLM inference ser-
vices, and we assume it does not co-locate other types of workloads.
Our model is based on similar production settings in practice where
an inference cluster is reserved for LLM inference services [36].
Firstly, the inference requests from end-user applications reach
the cluster’s inference service. Each request is then scheduled to
servers by the cluster-level scheduler. Inference servers run virtual-
ized worker instances, which conduct request batching, queuing,
model loading, and finally execute the request leveraging an in-
ference backend, such as vLLM [2]. Inference backend efficiently
utilizes CPU and GPU resources and may leverage high-bandwidth
InfiniBand interconnections between GPUs, such as sharing inter-
mediate KV-cache in phase splitting [36]. Our system architecture
matches that of production deployments, such as the NVIDIA triton
server inference architecture on Kubernetes [2].

In return, the server-level worker instance of the inference ser-
vice executes many CPU tasks (i.e., inference tasks). For each in-
ference task, we allocate a dedicated CPU core. If the cores are
insufficient, we assume that inference tasks oversubscribe the CPU.
We introduce a new component to conduct aging-aware CPU core
management. It oversees assigning cores to inference tasks and
controlling the idle states of CPU cores. A CPU core in our system
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Figure 4: Changes in operating temperature when half of
the cores are set to deep idle in an Intel Xeon CPU. If awake,
cores are 100% utilized.

model can switch between either active or deep idle states [48].
Being in the active state gradually ages the CPU cores. In contrast,
deep idling halts cores from aging. However, cores that deep idle
become unavailable for inference task execution. Cores in the active
state are available for task execution, yet allocating a task acceler-
ates core aging. In Section 3.2, we provide in-depth details about the
silicon aging behavior with our aging model. CPU cores in the host
are isolated and pinned to worker instance CPU cores, such that
task mapping and idle state changes directly reflect on the physical
core. Overall, the combination of inference task execution and deep
idling control the CPU aging rate, where a lower value further
amortizes its embodied carbon through the increased lifespan [54].

3.2 Aging Model

We model the aging of CPU cores due to the execution of system
and inference tasks. In that regard, Negative-bias Temperature In-
stability (NBTI) is a major aging mechanism [1, 17] for the CPU.
In this work, we model NBTI-induced core aging. Similar to pre-
vious works [1], we use a reaction-diffusion-based aging model to
calculate CPU core frequency degradation due to NBTI-induced

aging.

AV,
f0) = fox (1= ot W
where f(t) is the frequency at time ¢, and fj is the initial frequency
of the core. Previous works show that fy can deviate from the
nominal value due to variations in the manufacturing process [17,

38]. To accommodate that, we use the following model to calculate

fo-

_ ! : 1

fr= i i)

where K’ is a technology-dependent constant, and Scp represents
the sections of the core containing critical paths. In order to cal-
culate fo, we first divide the chip area into an Nepjp X Nepip grid
and assume that critical paths are contained entirely within the
grid cells. Then, we assign each grid cell with a Gaussian random
variable ( pg;). In order to calculate the spatial correlation between
the random variables, we use the following formula [38].

pijkl = e—a\/(i—k)2+(j—l)2 Vi, j.k1 € [1, Nepip)

where a decides how quickly spatial correlations die out. For our
experiments, we set Nepp, to 10 and K’ to 1. Then, we set the mean
of random variables by solving for a scenario where if a core does
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Table 1: Temperature modeling for different core states.

Idle-state ~ C-state [48] Inference Task Temp.
Active Cco Allocated 54°C
Active Co Unallocated 51.08°C
Deep Idle C6 N/A 48°C

not exhibit process variation, fy should equal the nominal value.
We set the remaining parameters similar to the calculation of a
previous work [38].

After fy, we calculate AV, in Equation 1, which is the shift in
the threshold voltage. CPU cores in our system can undergo time
intervals in different idle states. In order to calculate AV}, in those,
we calculate AV}, using the following recursive equation [32].

1 n
AVip (tp-1) \ 7
AViy(tp) = ADF, (— 7

ADF,

where Vi (tp) is the value at p'P time interval, and 7p is the length
of the p* h time interval. ADF is a time-independent factor for each
time interval, which we calculate using the following equation.

E BY,
ADF(T, Vyg, Y) = K - exp(——o) ~exp<i) @)

kgT tox kgT

where Y is the stress from the executing task. We assume each
task in our system incurs the worst case by setting it to 1.0. T is
the operating temperature of the CPU core. In order to create a
realistic temperature model, we conduct an experiment by running
a high utilization task in a server-grade CPU and switching its cores
between active and deep idle states. During the experiment, we
monitor the changes in core temperatures. Figure 4 illustrates our
observations. Table 1 denotes the temperature model we derive from
that. We set the rest of the parameters in equation 2 as follows. K
is a fitting parameter. To calculate its value, we use CPU aging data
from a previous work, which states that for 22nm CPU technology,
the worst-case frequency reduction due to aging for a lifetime of
10 years can reach 30% [1]. We set values of our model to match
this scenario and solve the AV}, equation to find the value for K.
All parameters that were not explicitly mentioned are set similarly
to a previous work matching for the 22nm CPU technology [1].

3.3 Embodied Carbon Model

Our carbon modeling is based on our findings in section 2.2. We
model the embodied carbon of the CPU and its associated compo-
nents in LLM inference servers to accurately measure the carbon
amortization optimizations of our proposed technique. We use re-
cent fine-grained carbon modeling [26], encompassing different
configurations and components of multi-GPU inference servers,
such as the peripheral components for cooling and power delivery.
With that, the yearly CPU embodied carbon footprint of an LLM
inference server (CFE™P-PY) is modeled as,

1
CPmbert = — (N,K; + )" CF
k
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where k € {CPU die, CPU Chassis, Mainboard, DRAM, PDN, etc.},
CFy is the carbon footprint of associated component k, LT is the
lifetime in years, and N,K; is the packing carbon footprint.

In section 6, we use our yearly CPU embodied carbon model to
quantify the resulting carbon savings of the proposed technique.
In that, we use concrete values of CPU embodied carbon foot-
print calculated using our carbon model for the Azure T4 infer-
ence server with 16GB GDDR6 denoted by the VM flavor Stan-
dard_NC4as_T4 _v3 [4, 26].

3.4 Problem Formulation

This paper considers a cluster of LLM inference servers managed
by an inference service. It serves inference requests arriving from
cloud users.

At the server level, the GPU-accelerated inference requests result
in a dynamic number of concurrent CPU tasks (i.e., inference tasks).
They are handled by a multi-core CPU. Due to manufacturing pro-
cess variations, each CPU core exhibits a maximum frequency value
that deviates from the nominal value, degrading over time with
workload execution due to core aging. Depending on the task allo-
cation and management of core idle states, the rate of frequency
degradation among the cores can differ. Over time, the multi-core
CPU exhibits a distribution of degraded frequencies among its cores,
increasing their failure risks [54]. In addition, the service quality of
serving inference tasks can be impacted if active cores are insuffi-
cient to facilitate the running inference tasks. In this context, we
formulate our problem as follows.

Our multi-core CPU contains an N number of CPU cores. We
denote the number of deep idling cores at time ¢ with N;g;.(t),
the number of executing tasks with T(t), and the frequency of
the core i with feore; (t). For the duration of AT, the following
equation calculates the reduction of core frequency due to core

aging (freq, (AT)) for the ith core.

fred,-(AT) = feore,i(t) = feore,i(t +AT) i€N
Similarly, the following equation calculates the variance in the
CPU core frequency distribution (fyar (AT)).

frar(AT) = Var(F) where F = { feore,i(t + AT) : i € N}

Finally, the following equation quantifies service quality impact
from inference serving due to core deep idling (T, yersup (AT)).

t+AT
Toversub(AT) = [ u(T(t) = (N = Nigre(1)))
X(T(t) = (N = Nigie(1))) dt
Where u is the unit step function. The goal of our problem is to
extend amortizing CPU embodied carbon through increasing its
operating lifespan by mitigating CPU aging effects. For that, both
per-core and uneven aging effects across cores must be reduced.

Moreover, the impact on the service quality of inference tasks must
also be reduced. With that, we state our problem,

Min. freq,(AT) Vi
Min. far(AT)
Min.  Tyyersup(AT)
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4 Extended Embodied Carbon Amortization
through Aging-aware CPU Core Management
in LLM Inference Clusters

In this section, we provide the design and inner workings of our pro-
posed aging-aware CPU core management technique. Our design is
based on our findings in Section 2.2. We evaluate the performance
of the proposed technique in Section 6, showcasing its potential to
reduce yearly embodied carbon emissions of inference clusters.

Figure 3 illustrates the design of the proposed technique. We
optimize CPU core aging at the server level to extend CPU lifetime,
matching the CPU GPU asymmetric lifetime. To implement our
proposed aging-aware core management, we introduce two main
mechanisms: (1) Task to Core Mapping and (2) Selective Core Idling.
Task to Core Mapping runs an algorithm to decide the mapping of
each inference task to a CPU core. It aims to mitigate uneven aging
among available CPU cores. Whereas Selective Core Idling runs an
algorithm to determine a working set of cores to match the current
inference throughput. It halts the aging of cores in the non-working
set by setting them to deep idle. Apart from age halting, it further
complements uneven core aging by selecting cores to deep idle in
an aging-aware manner.

Together, the proposed technique reduces the overall aging rate
of the CPU in two aspects. Both Task-to-Core Mapping and Selective
Core Idling even-out aging across cores, preventing early effects of
premature aging in specific cores. Selective Core Idling halts aging
in cores when the inference throughput provides opportunities to
do so. It delays aging effects in cores.

4.1 Task-to-Core Mapping

The primary goal of Task-to-Core Mapping is to reduce the age
variance among CPU cores. To achieve that, it distributes the stress
of inference tasks favoring lesser-aged cores. As a result, older cores
age slower, delaying overall aging effects.

Algorithm 1 outlines the proposed algorithm for Task-to-Core
Mapping. It takes the set of active cores (i.e., working set) as the
input and selects a core to run an inference task. Therefore, each
new inference task executes the algorithm 1 once. To reduce the ex-
ecution time, we design the algorithm to leverage an age estimation
approach for its selection logic rather than obtaining CPU micro-
architectural attributes to calculate an accurate value. To achieve
that, each core in the input working set provides two additional
attributes: task-assigned status and its idle history. Using a core’s
idle history, we calculate an estimation for its age. We maintain a
core’s last eight idle durations, similar to that of the Linux governor
algorithm [48]. At execution, we create placeholders for both the
selected core and its idle score (line 1). Then, we iteratively evaluate
each core in the working set. We calculate an idle score for each core
that has not been assigned a task yet (line 7). Idle score accumulate
all idle durations in the provided history. Here, the insight is that
if a core mostly remained idle, its aging rate is lower than that of
a less idle core. We then use the idle score to conduct a relative
comparison among the cores to filter the core with the most idle
score (line 8). As a result, the core with the least estimated age is
selected to execute the next inference task.

Overall, the algorithm estimates the age of each core using a
rolling idle duration window and distributes the stress of executing
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Algorithm 1 Proposed Task-to-Core mapping algorithm.

Algorithm 2 Proposed selective core idling algorithm.

Require: cpu_cores: The working set of cores. Each has:

o task: Inference task assigned (or None if no task),
e last_idle_durations: Recent idle durations.

Ensure: The selected core to run the inference task.
1: selected _core < None
2: selected_idle_score < 0.0
3: for all core in cpu_cores do
4. if core.task # None then
5: continue
6: end if

7 idle_score « ) (core.last_idle_durations)

8:  if (selected_core = None)

or (idle_score > selected_idle_score) then

9: selected_core < core

10: selected_idle_score « idle_score

11:  endif

12: end for

3: return selected core

o

inference tasks in a least-aged-first manner. In return, the aging ef-
fects of cores take a prolonged time to appear, i.e., slowing down the
CPU aging rate. Our age estimation approach avoids the overhead
of calculating an accurate aging value. Since Task-to-Core Mapping
is executed quite frequently in the cloud environments, a minimum
execution overhead ensures reduced latency impact on inference
request serving.

4.2 Selective Core Idling

In addition to the reduction of the aging rate of Task-to-Core Map-
ping, we provide a core-level optimization mechanism called Selec-
tive Core Idling, which halts aging. It contributes to the overall aging
reduction in the CPU by dynamically halting core aging whenever
the inference task execution is able to tolerate that.

The main idea behind Selective Core Idling is to leverage the
unused CPU cores in cloud LLM inference for deep idling (see
Section 2.2). We do that by dynamically adjusting the size of the
working set of cores and using the remaining cores for deep idling.
The key challenge here is to match the size of the working set to
the number of running inference tasks. If the working set is smaller,
then inference tasks begin to oversubscribe the CPU, whereas a
larger working set leaves a portion of unused cores in the active
state, which otherwise would have been utilized for deep idling. To
address that, we design an algorithm for Selective Core Idling. The
main part of our algorithm is a module called a reaction function.
The reaction function decides the algorithm’s sensitivity when
adjusting the size of the working set. We periodically execute the
Selective Core Idling algorithm to adjust the working set to match
the inference throughput.

Algorithm 2 outlines the proposed algorithm for Selective Core
Idling. It takes two inputs: the set of available cores and the number
of inference tasks that are oversubscribing the CPU. Once executed,
it adjusts the working set by selectively setting the idle states of
available cores to either deep idle or active. Firstly, the algorithm
processes the set of available cores to obtain the number of total
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Require: e cpu_cores: List of available cores
e oversub_tasks: Number of CPU oversubscribing tasks

Ensure: Adjusted core idle states: deep idle or active.

1: N « get_total_core_count(cpu_cores)
: active_cores «— get_active_core_count(cpu_cores)
: normal_tasks « get_assigned_task_count(cpu_cores)
: Cspp, < N —active_cores
: Ty « normal_tasks + oversub_tasks
: Ty « min(N, T})
i et — (N—-Csip, — Ty)
P € prd <€t

% € _prd <
10: if e; prqg > 0 then

[~ I BN~ NES B N O R )

1 Fle prq) < tan(0.785 - ¢; yrq)
12: else

13 F(e; prq) < arctan(1.55- ¢, ,pq)
14: end if

15: er_corr < N X F(etiprd)

16: €t _corr <— int(etfcorr)

17: Scores — |et_corr|

18: if e; corr > 0 then

190 put_cores_idle(Scores, Cpu_cores)
20: else if e; corr < 0 then

21:  put_cores_active(Scores, CPU_COTes)
22: end if

=

—— Underutilized
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o
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Figure 5: Behavior of the piecewise Reaction Function (F) for
utilization of the CPU.

cores, the number of cores that are in the active state, and the
number of inference tasks that are allocated with a dedicated core
(line 1). The algorithm calculates the number of cores that are
currently deep idling (line 4), as well as the total number of tasks.
Here, we cap the total number of tasks at the total number of CPU
cores (line 6). This is done to obtain a normalized error term (e;_p,q),
which we are calculating next (line 9). The error term indicates the
severity of CPU oversubscription of the inference tasks. We then
use the error term as the input to the part of our algorithm that
carries out the reaction function (line 10 to line 14). The output
of the reaction function is then scaled back (line 15) and used to
determine the cores to set either active or deep idle. When putting
cores to deep idle, we do that in the order of most aged first. When
putting cores to active, we do it in the order of least aged first. That
way, we complement even-out core aging of Task to Core Mapping
when deep idling the cores.
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Reaction Function: The reaction function is designed to be inde-
pendent of the number of CPU cores. It takes the normalized error
term (e;_prq) in Algorithm 2 (line 9) as the input. It returns a nor-
malized output between —1 and +1. Here, a positive output indicates
CPU underutilization, requiring the setting of cores from active
to deep idle. A negative output indicates CPU oversubscription,
requiring the setting of cores from deep idle to active. In the infer-
ence cluster, CPU oversubscription impacts the inference latency
of user requests, which is a short-term effect requiring immediate
action. In contrast, CPU underutilization leads to the aging of cores,
which is a long-term effect since aging is a slow process. To balance
this trade-off, we design the reaction function to react slower for
CPU underutilization and faster for CPU oversubscription. Figure
5 illustrates the behavior of our reaction function. Algorithm 2
denotes the equation and the values we used for that (line 10 to
line 14).

5 Implementation

We implement our proposed technique in a simulated environment.
We use splitwise-sim [36], an event-driven, high-fidelity LLM clus-
ter simulator from Microsoft. It employs Splitwise, a state-of-the-art
phase splitting LLM serving technique. Compared to vanilla request
level scheduling, Splitwise increases CPU load due to the facilitation
of additional tasks of phase splitting. As a result, our simulation
environment enables exposing our technique to realistic CPU stress
levels present in state-of-the-art cloud LLM inference clusters.

First, we extend the simulator to model the inference tasks that
run on the CPU. Table 2 outlines the tasks we modeled. We model
the CPU load of the executor component that facilitates the in-
ference workflow, worker instance tasks that handle memory and
iterative-level scheduling, and the tasks of interconnects. For that,
we merge each class function with the APIs of a new processor
subclass we implemented for the CPU. Inside the CPU class, we
manage the state of CPU cores. Using the models we outlined in
Section 3, we maintain core temperatures, idle states, and the shift
in threshold voltage. Each class function call outlined in Table 2
invokes the assign_core_to_cpu_task API of the CPU class. It
then provides inputs and invokes the Algorithm 1. In return, we
determine a CPU core to cater for the function call. We update the
idle states and temperature of the core to match the task execution.
Further, we update the shift in the threshold voltage and the re-
sulting operating frequency of the core. The execution time of the
calling function in the simulator is then adjusted according to the
operating frequency. In parallel to that, we periodically invoke the
adjust_sleeping_cores API of the CPU class to conduct Selective
Core Idling. It retrieves the system state and executes the Algorithm
2. In return, the algorithm sets the idle state of a number of CPU
cores to either active or deep idle. Since the periodic execution of
algorithm 2 does not add overhead to inference request latency,
we use it as an opportunity to accurately calculate degraded core
frequency due to aging. We assume that data is provided by the
core-level aging sensors [17] with an additional overhead.

It is important to note that, in practice, the performance of our
proposed technique and its implementation could depend on the
underlying CPU hardware, its features, and our algorithm config-
urations. For instance, the selective core idling in our proposed
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Table 2: Tasks modeled as inference tasks in the extended
splitwise-sim [36] simulator.

Task Name

finish_flow
finish_request
finish_task
submit
submit_chain
submit_flow
submit_task
alloc_memory
free_memory
start_iteration
flow_completion

Class/Function

Executor.finish_flow
Executor.finish_request
Executor.finish_task
Executor.submit
Executor.submit_chain
Executor.submit_flow
Executor.submit_task
Instance.alloc_memory
Instance.free_memory
ORCAInstance.start_iteration
Link.flow_completion

technique is supported across CPU vendors via the CPU idle states
feature [49]. Since their specific hardware implementations could
differ [30, 51], the effectiveness of CPU age halting will be deter-
mined by the number of CPU components that get deactivated at
the deepest sleep state [51]. In addition, the deeper sleep states
introduce longer transition latencies (due to longer wake times of
idle cores) [49], however, due to latencies of microsecond-scale [51],
it typically incurs minimum impact to inference tasks, depending
on the inference task throughput and CPU oversubscription. While
selective core idling and task-to-core mapping mechanisms do not
incur coordination latency in between due to their independent
execution, they can exhibit latency overhead within their work-
flows. For instance, the implementation of the task-to-core mapping
mechanism could introduce a latency overhead in algorithm ex-
ecution. We reduce the impact of that through low-complexity
algorithm design. Accordingly, selective core idling could intro-
duce a communication latency overhead when retrieving data from
core-level aging sensors. We reduce this impact by executing its
algorithm periodically rather than executing it for each inference
task scheduling event.

6 Performance Evaluation

In this section, we evaluate the performance of our proposed CPU
core management for amortizing embodied carbon in LLM clusters.
We provide our experimental design and setup, compare our results
with state-of-the-art baselines, and analyze them in detail.

6.1 Experiment Design and Setup

We conduct evaluation experiments in the simulated environment,
which we modeled and implemented with an LLM cluster simulator
from Microsoft. We describe the inner details of our implementa-
tion in Section 5. We model a cluster of 22 GPU-optimized Nvidia
H100 machines with 5 prompt instances and 17 token instances
of phase splitting, which is an iso-throughput, power-optimized
cluster design for cloud LLM inference [36]. We use it to create a
realistic cloud inference cluster. Each server in the cluster runs a
worker instance. For the worker instance CPU, we use CPU core
counts of 40 and 80 to match public VM offerings in Azure for
Nvidia H100 machines [3].
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6.1.1 Baselines: As discussed in section 2.1, our problem context

requires extended embodied carbon amortization through an effi-
cient CPU age management technique. However, existing works
focusing on CPU age management in the cloud settings for LLM
inference are limited. In that regard, we use two state-of-the-art
baselines. We use linux to compare the performance of our tech-
nique with state-of-the-art inference serving systems [36], and
we use least-aged to compare the performance of our technique
with state-of-the-art CPU age management techniques designed for
cloud settings that cater CPU tasks similar to inference tasks used
in our system model. We further detail our baselines as follows:
linux: It represents existing state-of-the-art LLM inference servers
that leave default Linux schedulers to manage the core-level task
scheduling. To implement that, we use CPU data from an LLM
inference server captured while executing inference requests [47].
Using the data, we build a probabilistic model to generate inference
tasks to CPU core mappings.

least-aged [54]: Tt is an aging-aware task-serving idea proposed
for cloud servers. Unlike most works, least-aged proposes the idea
of assigning tasks away from aged cores using executed work as an
aging estimate without requiring frequent CPU profiling. Although
least-aged was designed for cloud CPU tasks in general, the task
characteristics it uses for aging apply to the inference tasks that we
model.

6.1.2  Workloads: We use LLM inference traces generated by Mi-
crosoft using real Azure inference data [36]. Each request in the
trace is characterized by the number of input tokens and the num-
ber of output tokes generated. It does not provide the actual query
that was used in the public cloud environment due to privacy re-
quirements. For the performance metrics that we outline next, the
actual query does not make an impact; rather, the execution times
resulted from processing the input tokens.

6.1.3 Metrics: To measure the effects of CPU aging, we use the
coefficient of variation (CV) of the distribution of frequencies among
CPU cores in each inference server after the experiment. We then
calculate the percentile values across the cluster. The resulting
frequency CVs reflect how well the technique could even out the
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aging effects among the cores in the cluster machines. To measure
the application impact, we calculate the distribution of the number
of idle CPU cores in inference servers during the experiments. The
resulting data reflect the impact of CPU oversubscription across
the cluster servers.

6.2 Results and Analysis

We carry out the performance evaluation as follows. We sample a set
of initial core frequencies for each inference server CPU according
to the process variation model described in Section 3.2. We then
replay LLM inference traces on the cluster. We conduct repeated
experiments for different throughput levels of LLM inference traces
for each baseline and for our proposed technique. At the end of
the experiments, we calculate the degradation of initial CPU core
frequencies through our metrics to evaluate how each baseline and
our proposed technique managed cores across the cluster to reduce
CPU aging effects and minimize the application impact. We further
estimate the reduction of the cluster’s yearly embodied carbon
emissions resulting from CPU aging management.
Management of core aging effects: Based on our aging model
described in Section 3.2, the initial frequency of each CPU core
deviates from the nominal value due to process variation. Due to
the execution of inference tasks, initial frequencies degrade over
time, resulting in a frequency distribution across CPU cores. Figure
6 illustrates the results of that. Its subplot, figure 6a, illustrates the
performance of managing the coefficient of variation (CV) of the
core frequency distribution. The performance value decreases when
the frequency CV increases, and vice versa. It also illustrates the
performance of managing the mean frequency degradation. The
performance value decreases when the mean frequency degradation
increases and vice versa. Both performances are for the VM with
40 cores. Figure 6b illustrates the same for the VM core count of
80. All plots share the x-axis, which is the throughput of inference
traces.

The results show that in both VM core types, the reduction of
frequency variance among cores with the least-aged is better than
in linux. It shows the effectiveness of assigning inference tasks



E-ENERGY ’25, June 17-20, 2025, Rotterdam, Netherlands

kgCO,eqlyear

Figure 7: Comparison of estimated yearly CPU embodied carbon reduction in the cluster through management of CPU aging

effects.

I linux

p99 Mean Freq.

[ least-aged

p90 Mean Freq.

Hewage, llager, Read, and Buyya

I proposed

p50 Mean Freq.

40 60 80

Request Rate (req/s)

100

kgCO,eqlyear

40 60 80 100

Request Rate (req/s)

LLLLLL

kgCO,eqlyear

40 60 80

Request Rate (req/s)

Normalized Idle CPU Cores

Normalized Idle CPU Cores

(b) Comparison for 80 VM cores

Normalized Idle CPU Cores

100

LbLLL

@ linux least-aged proposed
[} c 1.0 >
29 | 90=095 i d| |- 90 = 0.95 P
85— biooss L fl | b1 = 0,575 ‘ 4oreq/s
E Los P : - p90 = 0.2 60req/s
@ g
8 s | i | T b pl =-0.875 | —— 80req/s
=00 - - 1 - —— 100req/s
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0
Normalized Idle CPU Cores Normalized Idle CPU Cores Normalized Idle CPU Cores
(a) Comparison for 40 VM cores
* linux least-aged proposed
25 107 90 = 0.975 90 = 0.975 i
22 | p90=0.975  dl | p90 = 0.
s | —o077s 4ol il —— 40req/s
3 gos pl =0.775 pl=0775 & B L 4 990 = 0.112 60req/s
@
38 i i i I ™ B pl =-0.462 | — 80req/s
=00 - - - —— 100req/s
—0.25 0.00 0.25 0.50 0.75 1.00 —0.25 0.00 0.25 0.50 0.75 1.00 —0.25 0.00 0.25 0.50 0.75 1.0u

Figure 8: Comparison of utilization of available cores for running tasks. The x-axis in each plot denotes normalized idle CPU
cores, where a negative value indicates CPU oversubscription and a positive value indicates CPU underutilization.

away from the aged cores to improve aging imbalance across cores
in the least-aged. However, the proposed technique significantly
outperforms both baselines in that. It showcases the superiority
of core age even-out behavior across both Task-to-core mapping
and Selective Core Idling mechanisms in the proposed technique.
The results of managing mean frequency degradation performance
show that both baselines exhibit quite similar performances. In
Figures 6a and 6b, their frequency performances are consistent, only
deviating slightly at the request rate of 100. In contrast, the proposed
technique surpasses baselines across all evaluated request rates,
showecasing the superior performance of its age halting. Discussed
performance patterns are consistent across both VM sizes.

Reduction of yearly CPU-embodied carbon emissions: De-
layed CPU aging effects allow cloud operators to extend CPU lifes-
pan by increasing the hardware refresh lifecycle. We apply the
same with our results of managing core aging effects. We take the
hardware refresh cycle of a typical Linux-based LLM inference
server as 3 years and its CPU embodied carbon during this lifes-
pan as 278.3 kgCOzeq [26]. We then compare the reduction of the
mean core frequency of other techniques to linux and estimate
an increase in lifecycle extension using a linear model. Using the
carbon and lifespan expansion data, we calculate yearly embodied
carbon emissions for baselines and the proposed technique. Figure
7 presents our results. It shows the cluster’s yearly CPU-embodied
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carbon emissions for the age management performance of different
throughput levels.

The results show that yearly CPU-embodied carbon savings for

the least-aged are minimal when compared to linux. This is due
to the similar performance of the mean frequency degradation
that we discussed previously. In contrast, a cluster managed with
our proposed technique shows significant carbon savings in CPU
embodied. When estimated with p99 mean frequency performance,
our proposed method reduces yearly CPU embodied emissions in
our experimental inference cluster by 37.67%. It further increases to
49.01% for p50 mean frequency performance. The observed results
are due to the superiority of the mean frequency performance of
our proposed technique. It showcases achieving CPU embodied
carbon reduction through effective age management. Note that the
advantage of carbon reductions with least-aged over linux may
improve with the experiment duration. However, the goal of our
experiments is to evaluate the advantage of our proposed technique,
which we show within the evaluated experiments.
Application impact of aging-aware core management: Figure
8 illustrates the results of idle core availability in the cluster servers
during inference task execution. The x-axis in all figures shows
normalized idle CPU cores, in which a positive value indicates core
underutilization and a negative value indicates core oversubscrip-
tion, whereas the y-axis denotes the measurement distribution.
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Table 3: Comparison of relevant works with our proposed technique.

Work Even-Out Core Aging | Process Variation Aware | Avoid CPU Profiling | Dynamic Age-halting
Facelift’08 [44] v 4

Hyat’15 [17] v v

Tamer’21 [39] v

Shoulao’23 [27] v v

Zhao et al’23 [54] v v

Our Proposed v v 4 v/

The results show that both baselines do not incur core oversub-
scription but underutilize cores, yielding positive values of idle
CPU cores. p1 to p90 percentiles in both baselines reside closer to
1.0, with a higher VM count increasing the closeness. In contrast,
the proposed technique outperforms both baselines in CPU under-
utilization. Its p90 percentile is at least 77.8% better in both VM
core counts. However, its negative p1 percentile indicates that the
proposed technique results in CPU oversubscription. The severity
of that improves with the VM core count, showing a smaller P1
value. We observe consistent idle core distributions across different
inference throughput rates. Additionally, results show that p1 of
the proposed technique is at least less than -0.1, which means the
proposed technique maintains the CPU oversubscription below
10%.

In summary, we observe the core aging even-out behavior of
our proposed technique surpassing baselines in reducing frequency
CVs. Alongside, age-halting behavior in our technique showcases
its superiority in delaying mean frequency degradation. Both fre-
quency CV and mean frequency performance are metrics of CPU
aging effects in our system model. We then estimate yearly CPU
embodied emissions in the experimental inference cluster based
on the mean frequency performance. Results highlight the efficacy
of our proposed method to reduce CPU embodied through manag-
ing its aging effects. In return, our proposed method shows CPU
oversubscription, which can impact the service quality of the infer-
ence tasks. Yet, results show that our proposed technique is able to
maintain its severity.

7 Related Work

The environmental impact of embodied carbon in growing LLM
inference clusters has caught attention in recent years [7, 10, 14,
26, 33]. As an early research area, these works model embodied
carbon in LLM inference and advocate for potential directions to
reduce that [26, 33, 53]. Further, some outline CPU GPU asymmetric
optimization opportunities of heterogeneous energy, performance,
and inference application patterns [26, 53] and accounting carbon
footprint for a given inference request on specific hardware settings
[15]. In contrast, some works propose system-level techniques to
actively optimize embodied carbon. These include controlling LLM
token generation [24] and disaggregation of specific computing
onto older hardware [41].

Building on studies of embodied carbon optimization in CPU
GPU asymmetric lifetimes, we explore system-level solutions for
fine-grain CPU-aging management by leveraging request-level pat-
terns in cloud LLM inference clusters.
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A plethora of works investigates mitigating CPU aging effects
through workload management [17, 27, 39, 44, 54]. Their predomi-
nant approach is even-outing tasks across the cores to reduce un-
even aging. These include utilizing CPU profiling [17, 27, 39, 44] and
addressing manufacturing process variations in CPU [17, 27, 44].
However, not many consider the efficacy of the proposed techniques
in cloud settings. For example, conducting CPU profiling in clouds
with large server fleets is difficult. Nevertheless, few recent works
consider cloud-efficient techniques, such as workload management
at the resource management level, to reduce the severe exercising
of specific cores [54]. In addition to even-outing aging, age halting
is an efficient approach to slow down CPU aging. Age halting has
been used in the literature to leverage dark silicon in CPUs for
age management [17]. However, their age-halting is static since
the age-halting adjustments are only done after a relatively longer
epoch.

In contrast, we study CPU age management for cloud LLM in-
ference. Further, our study encompasses both even-outing aging
and dynamic age-halting.

8 Conclusions and Future Work

Given the growing imperative for sustainable growth of cloud LLM
inference clusters, our work focuses on mitigating the accumulation
of embodied carbon that mostly concentrates on inference server
CPU. We propose an aging-aware CPU core management technique,
showcasing its potential to extend the cluster’s embodied carbon
amortization through increasing CPU lifespan. Exploiting CPU
underutilization patterns that we uncover, the proposed technique
not only even-out silicon aging across cores but also harnesses the
opportunities of age halting using core deep idling. Our empirical
simulations demonstrate the superiority of the proposed technique
over existing methods in reducing the cluster’s yearly embodied
emissions with a minimum impact on the inference service quality.
Our technique enables LLM inference to reduce embodied carbon
through the CPU and improve performance with the GPU via the
CPU GPU’s asymmetric lifetime.

In future work, we plan to implement the proposed technique
with cloud resource management middleware and leverage runtime
core telemetry data to improve the core aging estimation. Further,
selective core idling in the proposed technique leverages CPU usage
patterns of LLM inference. It can be advanced to deployments that
co-locate other services as a promising direction for future research.
Similarly, another important direction is to investigate the aging
heterogeneity across different server CPUs, complementing each
node’s existing core aging management.
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