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Universidad Politécnica de Madrid, Madrid, Spain

†mingc4@student.unimelb.edu.au, {maria.read, rbuyya}@unimelb.edu.au, §p.arroba@upm.es

Abstract—Cloud computing has become an important driving
force in the economy and the fundamental facility for digitization
transformation. Due to its rapid development and increasing
demands, accurate resource usage prediction for the cloud has
been a long-term challenge. To address this challenge, this
paper introduces RCorrPolicy for resource metrics selection
and proposes EN-Beats, an efficient ensemble learning-based
approach, for predicting multiple resource usages in the cloud.
The paper presents trace-driven experiments conducted on a real-
world dataset, demonstrating notable improvements in predicting
multiple resource metrics. Ablation experiments conducted on
existing methods for RCorrPolicy indicate that the proposed
policy enhances the performance of these methods across
different evaluated metrics. Furthermore, EN-Beats outperforms
existing methods by achieving the lowest NRMSE (lower values
indicate better performance) for CPU util rate (up to 8% lower),
memory usage (up to 6% lower), and network incoming traffic
(up to 3% lower). Additionally, EN-Beats attains the highest R2

score (higher values indicate better performance) for predicting
CPU util rate (up to 1.39 higher), memory usage (up to 0.57
higher), and network incoming traffic (up to 0.62 higher).

Index Terms—resource usage prediction, correlation analysis,
ensemble learning

I. INTRODUCTION

Recently, a variety of devices and cloud-supported
applications are being used in every aspect of our life. Smart
devices, including surveillance cameras, augmented reality
helmets, cell phones and autonomous vehicles, are generating
massive data, irrespective of structured data or unstructured
data [1]. Similarly, there are also arising complex cloud
applications (e.g., WeChat, Instagram, Netflix, and TikTok)
producing a huge amount of data. The more we use these
applications or services, the smarter of these applications we
may feel. It is mainly because the application itself can learn
from historical data to automate the decision-making process,
like the recommendation features of TikTok. Due to such a
trend, numerous new devices and complex applications call
for a great surge of vibrant cloud services, thus increasing the
consumption of these cloud-supported applications. Moreover,
during the global COVID-19 pandemic, many companies and
government sectors have accelerated the speed of digitization
of their business or services, which also invokes the need

(a) Normalized historical usages of CPU and Memory.

(b) Normalized historical data of network incoming/outgoing traffic.

(c) Normalized historical usages of disk reading and writing.

Fig. 1: An illustration of normalized average resource usages
across the 1,250 Virtual Machines (VMs) from a modern cloud
at 5 min interval index in dataset from Bitbrains.

for surging cloud resource demands and efficient resource
management techniques in cloud systems.

To better utilize and manage cloud resources, efficient
resource management strategies in cloud data centers are
important. We conducted an in-depth experimental analysis



Fig. 2: The overall workflow of RCorrPolicy for selecting resource metrics and EN-Beats for resource prediction.

of multiple resource utilization based on open-source
Bitbrains [2] dataset1 from a real cloud production
environment and we observed that the resource usage fluctuate
greatly and demonstrate great uncertainties, as shown in Figure
1. Inefficient resource predictions for fluctuating resource
consumption bring out challenges like QoS violations due to
resource under-subscription, or inefficient resource utilization
when oversubscribing too many resources.

To address the problem of how to efficiently predict
resource utilization in dynamic cloud computing environments,
different approaches are proposed for different scenarios.
However, most of these approaches fail to capture the
latent correlations among different resource metrics and have
limitations on multiple resource predictions. A few of the latest
research works, like [3], do consider resource correlations,
but their algorithms for correlation calculation are based on
pearson correlation which assumes two calculated data
vectors are uniformly distributed, while some resources in
real clouds might not have these patterns. Moreover, the
proposed techniques in [3] fail to make multiple resource
usage predictions.

In this paper, we proposed an efficient ensemble learning-
based approach EN-Beats along with the resource metric
selection policy RCorrPolicy for multiple resource metrics
predictions in cloud computing environments. RCorrPolicy
is used for selecting the correlated resource metrics, which
are adopted as the inputs to EN-Beats model for future
resource prediction. The ablation experiments have shown the
effectiveness of RCorrPolicy and the improvement in workload
predictions by EN-Beats model. Our contributions can be
summarized as:

• We proposed a resource metric selection policy
RCorrPolicy by choosing the correlated metrics from raw
data traces.

• We designed the ablation experiments and evaluated
the effectiveness of RCorrPolicy by presenting ablation
experimental results via widely-used current models.

• We proposed the EN-Beats model based on ensemble
learning by aggregating multiple weak learners into
a strong learner for making multiple resource metric
predictions.

• We found that the recently proposed N-Beats model is a
good candidate for cloud resource usage prediction. To

1The open-source Bitbrains dataset can be downloaded from
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

the best of our knowledge, N-Beats hasn’t been analyzed
and adopted in the scenario of cloud resource utilization,
which we are able to do.

The remainder of this paper is organized as follows.
Section II discusses the background and motivation of this
work. Related work is discussed in the following Section
III. In Section IV, we explain feature engineering and the
resource correlation selection policy RCorrPolicy for choosing
the ranked correlated resource metrics. Section V presents
the design of EN-Beats model by illustrating the model
architecture with weak learners and the aggregation process of
constructing a strong learner. The evaluation and experimental
part are discussed in Section VI, which includes the ablation
experiments of RCorrPolicy and the performance evaluation
of EN-Beats. Section VII concludes the paper along with a
discussion on future work.

II. BACKGROUND AND MOTIVATION

A. Background

Cloud computing usually refers to the delivery of different
resources over the Internet, including resources like memory,
CPU, bandwidth, disk, and applications/services. It has
emerged as a pivotal driving force in the economy, serving
as the foundational infrastructure for digital transformation.
Despite the numerous advantages it offers, modern cloud
computing also faces a range of challenges that hinder
its overall efficiency. One of the primary obstacles lies in
accurately predicting workload resource usage in cloud data
centers, which is exacerbated by the escalating demands of
diverse cloud applications. Consequently, workloads in cloud
computing exhibit dynamic and uncertain characteristics,
presenting a formidable prediction problem for resource usage.
Unfortunately, existing research primarily focuses on single
resource metric prediction and fails to capture the underlying
correlations among different resource metrics.

B. Motivation

These challenges motivate us to propose a new method for
tackling the problem of efficient resource predictions in cloud
computing environments. As observed from Figure 3, the
resource utilization characteristics within randomly selected
Virtual Machines (VMs) are distributed unevenly, where
different colors represent different VMs. It is worth noting
that while some VMs are highly utilized, others demonstrate
a markedly low utilization rate. In addition, the sub-figures in
Figure 1 depict that the utilization of correlated resources (e.g.,



Fig. 3: An illustration of actual CPU utilization rate from 20 randomly selected VMs across 30 days from Bitbrains
dataset. Different color line represents different CPU utilization rate in the corresponding VM.

CPU and memory, network incoming and outgoing traffic) are
showing similar utilization patterns across time, which means
that these resource metrics are correlated to some extent. The
correlation matrix is shown in Figure 4. These figures from the
real cloud production environment demonstrate the imbalance
and dynamics in resource allocation and inefficiency in task
scheduling.

To alleviate these issues, methods of correlation analysis
among different resource metrics and efficient learning
techniques should be proposed. Our main motivations can be
summarized as follows:

• Most current research works fail to analyze the
correlations among different resource metrics and there
is no suitable correlation selection policy. Therefore,
latent correlation analysis and correlation selection policy
should be proposed.

• Some traditional methods like Principal Component
Analysis (PCA) and Support Vector Regression (SVR)
reduce the feature space largely, resulting in the loss
of some valuable features, thus the system model
performance is degraded.

• There are limitations to the dominant RNN-based
methods (such as LSTM, Bi-LSTM, GRU) for estimating
dynamic and long-term resource utilizations due to issues
like gradient vanishing and exploding.

III. RELATED WORK

In this section, we summarize the methods employed in
previous research on predicting workload resource usage
in cloud computing environments. The contributions of
these studies can be primarily categorized into three
types: regression-based models, learning-based models, and
hybrid-based models. Regression-based approaches typically
incorporate linear regression and auto-regression models. In
terms of learning-based models, machine learning and deep
learning-based models are widely utilized across various
scenarios. Hybrid-based models generally integrate multiple
models to tackle challenges in complex cloud environments.

A. Regression-based Models

In recent years, many researchers have conducted extensive
research on resource usage prediction from grid computing

to cloud computing. The widely-used regression model for
time-series forecasting is ARIMA (Autoregressive integrated
moving average) model, which inspired lots of researchers
to design ARIMA-based predictive models. Calheiros et al
[7] introduced a regression model based on auto-ARIMA for
predicting workloads by using real traces from web server
requests. Other similar ARIMA-based models addressed this
challenge for other scenarios [11] [12] [13]. Bi et al. [14]
combined Savitzky-Golay filter and wavelet decomposition for
workload prediction in the following time slot. Doulamis et al.
[15] proposed a non-linear task prediction by incorporating
Quality of Service oriented resource management in grid
computing. These regression-based methods showed their
effectiveness in terms of resource prediction. Farahnakian et
al. [5] introduced a prediction approach by linear regression
technique based on the history of resource usage in each host.

B. Learning-based Models

Considering the characteristics of complex workloads, an
increasing number of researchers have applied numerous
learning-based approaches for addressing this challenge. The
learning-based models mainly include machine learning based-
models and deep learning-based models.

For machine learning-based models, Gao et al. [6]
introduced a clustering-based workload prediction method by
clustering all tasks into different categories and training a
single prediction model for each category respectively. In [16],
authors introduced Bayesian-based model for predicting short
and long-term virtual resources by learning workload patterns
from several data centers.

Deep learning-based models have been widely used in
recent years. Qiu et al. [17] introduced the VM workload
prediction model, i.e., Deep Belief Network (DBN), which
consists of multiple-layered Restricted Boltzmann Machines
(RBMs) and a regression layer. By integrating Extreme
Gradient Boosting Tree, Eli et al. [18] introduced a system,
known as Resource Central, to collect VM characteristics
in Azure and learn VM behaviors offline and predict the
over-subscription of VM resources. Boris N. Oreshkin et
al [8] proposed a novel time-series forecasting model N-
BEATS, which solves the problem of predicting univariate
time series. LSTM/BiLSTM-based [9] [19] [20] [21], GRU-



TABLE I: A comparison of related work.

Work Resource Types Resource Prediction correlation
analysis

colocated
workload

Cloud
Environmentscpu memory network single multiple

RPTCN [3] ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓
esDNN [4] ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

[5] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓
[6] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓

ARIMA [7] ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓
N-BEATS [8] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

LSTM [9] ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓
TCN [10] ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓

EN-Beats (This work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

based [4] and TCN-based [3] [10] deep learning methods
are also widely stuied in academia. Kumar et al [9] adopted
LSTM-RNN to predict cloud workload for solving issues
of power consumption and resource scaling. Bai et al [10]
conducted a systematic experiment evaluation for sequence
modeling and found that a simple convolutional architecture
outperforms traditional recurrent networks, which inspired the
author to design an efficient temporal convolutional neural
network for sequence modeling.

C. Hybrid-based Models

To be adaptive to different resource prediction challenges,
some researchers attempted to integrate multiple models for
tackling sophisticated challenges. In [22], Janardhanan et al.
proposed methods for forecasting of CPU usage of machines
using LSTM and ARIMA. Ceticik et al. [23] introduced
an Advanced Model for Efficient Workload Prediction in
the Cloud (AME-WPC) by combing statistical and learning
methods. Bankole et al. [24] developed prediction models
for cloud client prediction in terms of TPC-W benchmark
web application through the implementation of Linear
Regression (LR), Neural Networks (NN), and Support Vector
Machine (SVM). Recently, the Quantum Neural Network-
based approach for predicting cloud resource usage has also
gained attention. Singh et al. [25] proposed hybrid models
by implementing an Evolutionary Quantum Neural Network
(EQNN) and integrating a Self Balanced Adaptive Differential
Evolution (SB-ADE) model for optimizing qubit network
weights, which are implemented for cloud resource prediction
as well.

D. Comparisons with EN-Beats

When comparing with the proposed method EN-Beats,
these models have limitations on correlated latent feature
learning and adaptions for multiple resource patterns. Firstly,
these models are mainly considering single resource metrics
as inputs, thus such models are weak in taking the latent
correlations among different resource metrics. Secondly, in the
modern cloud, different resources show different time patterns.
However, these models mentioned above are usually designed
for specific workload pattern learning like periodical web
requests modeling and single CPU utilization prediction, while
our proposed models show good performance on learning

different patterns of resource metrics, like CPU utilization
rates, memory usage, and network incoming traffic.

As noted in Table I, compared to related works, our
method is unique because it is able to support different usage
patterns from multiple types of resources and predictions along
with handling correlation analysis and co-located application
workloads.

IV. FEATURE ENGINEERING WITH RCORRPOLICY

In this section, we will first describe the pre-processing
of raw cluster traces through normalization. Secondly, we
will compare the Pearson correlation and Spearman
correlation. Finally, we will detail our proposed resource
metric selection algorithm, referred to as RCorrPolicy.

A. Dataset Preprocessing and Feature Scaling

The original Bitbrains dataset consists of raw resource
provision and utilization metrics from different virtual
machines (VMs) in the cloud. As shown in Figure 3, we
can observe that, in some VMs, the CPU resource utilization
rate remains nearly zero for a significant of time span. Thus,
firstly, we pre-processed the raw data by calculating the mean
values of the same metrics at the same timestamp among
all VMs. Then, we can get the mean resource usage metrics
for all VMs across the observed time span. Lastly, to make
the model training process more efficient, we normalized the
pre-processed data via the min-max method, as indicated in
Equation (1)

xscaled =
x− xmin

xmax − xmin
(1)

where x is the original value, xmin is the minimal value,
xmax is the maximum value and xscaled is the scaled value.
Another nonnegligible step is to scale back the predicted
values. After finishing model training, if the predicted scaled
values are taken as the resource utilization values, it would be
wrong for calculating errors and there are biases for real value
predictions, while some researchers may forget to rescale the
values especially when predicting CPU or memory utilization
rate, which have the same value range (from 0 to 1) as
the scaled values. Thus, it is also important to re-scale the
predicted scaled value with the following Equation (2).

x̂ = ˆxscaled · (xmax − xmin) + xmin (2)



where x̂ is the final predicted value, ˆxscaled is the predicted
scaled value from the trained model.

B. Comparison of Pearson Correlation and Spearman
Correlation

We compared the two widely-used statistical correlation
methods. The main differences between these two correlation
methods lie in the assumptions of the data distribution and the
calculated results. Pearson correlation assumes that the data
are uniformly distributed and the results show linear relations,
while there is no requirement for Spearman correlation to
assume the data to be uniformly distributed and its correlation
results show monotonicity between calculated data instead of
linearity calculated by Pearson. The Equation 3 represents
how correlations between two data vectors are calculated by
Spearman correlation.

ρ = 1−
6
∑

i∈n(x− y)2i
n(n2 − 1)

(3)

where ρ represents the correlations between data vector x and
vector y, i is the ith observation, and n is the total number
of observations.

C. Correlation selection policy for resource metrics

Considering the actual cloud computing environments, we
design RCorrPolicy to analyze the VM metrics correlations
and select the metrics for predicting either single or multiple
future resource utilization. The policy procedure is described
in Algorithm 1.

Algorithm 1 demonstrates the resource metrics correlation
selection process from raw data traces. Firstly, from timestamp
1 to t, we collect the raw resource metrics vector Rres =
{R⃗1, R⃗2, R⃗3, ..., R⃗t} from data traces in cloud production
environment. Usually, at each timestamp, there are multiple
different resource metrics, thus m resource metrics at
timestamp t can be formulated as R⃗t = {rt1, rt2, rt3, ..., rtm}.
Secondly, based on the observations from the correlation
heat map in Figure 4, in our scenario, we define the
threshold T , which can be modified to other values under
different scenarios. With the defined threshold T , we can
select the correlated resource metrics for the target resource
metric. Then, by adopting Spearman correlation analysis,
we calculate the correlations between r⃗i = {r1i , r2i , r3i , ..., rti}
and r⃗j = {r1j , r2j , r3j , ..., rtj}, which represents the ith and jth

resource metric from timestamp 1 to t respectively. Finally,
by following the loop process in Algorithm 1, the correlated
metric list for ith resource metric will be represented as
List Corri and the final all correlated lists can be represented
as

⋃m
i=1 List Corri.

V. DESIGN OF EN-BEATS MODEL FOR RESOURCE
PREDICTION

In this section, we will introduce the proposed EN-
Beats method. According to the observations of traces from
Bitbrains cloud and intrinsic characteristics of neural
networks, we make the following assumptions:

Algorithm 1 RCorrPolicy algorithm for resource metrics
selection from raw resource metrics matrix
Input: The trace logs record different raw resource metrics

in the cloud system from timestamp 1 to t. The
raw resource metrics matrix can be represented as
Rres = {R⃗1, R⃗2, R⃗3, ..., R⃗t} , where R⃗t =
{rt1, rt2, rt3, ..., rtm} indicates there are m resource
metrics at time t.

Output: the selected resource metrics matrix indicates
correlated resource metrics.

1: Define a threshold T (0 < T ≤ 1) for the
selecting boundary in initial correlation matrix. r⃗i =
{r1i , r2i , r3i , ..., rti} represents the ith resource metric from
time 1 to t. r⃗j = {r1j , r2j , r3j , ..., rtj} represents the jth

resource metric from time 1 to t. Define the correlated
resource metrics list as List Corri for r⃗i and initially
List Corri is an empty list.

2: for i = 1 to m do
3: for j = 1 to m do
4: Corrij ← Spearman (ri, rj)
5: if (| Corrij |≥ T ) then
6: List Corri ← List Corri.ADD{Corrij}
7: end if
8: end for
9: end for

10: List Corr ←
⋃m

i=1 List Corri
11: return List Corr

Fig. 4: The Spearman correlation heatmap for different
resource metrics in our experimental scenario. The
metrics targeted for predictions are CPU UtilRate(%),
Mem usage(KB), and Network in(KB/s).



Fig. 5: The overall design framework of EN-Beats with strong learner and weak learners.

Fig. 6: The architecture of weak learner (N-Beats [8] model)
implemented in EN-Beats design.

• Assumption1: Data between current time and previous
time are correlated and the generated data in near time
are the same data structure, i.e., the same dimension and
data type.

• Assumption2: The data distribution shows differences as
time goes by, i.e., not the same data distribution all the
time.

• Assumption 3: Data are generated in a continuous way
and the time consumed by model training is longer than
the time for data generation, thus the model could be
continually trained with new accumulated data.

A. Framework of EN-Beats

To learn the behavior of the use of resources that fluctuate
continually we propose the EN-Beats model with a global
strong learner stacked by different weak learners with different
weights, as shown in Figure 5. For a basic weak learner,
we adopted an N-Beats (Neural basis expansion analysis for
interpretable time series forecasting) model is a deep learning
model for time series forecasting that was introduced by
Oreshkin et al. [8] in 2020. By using ensemble learning, we
integrate weak learners into a strong learner, as indicated in
Figure 5.

1) Weak learner: The basic building block of EN-Beats
is the N-Beats-based weak learner (WL). Oreshkin et al.
[8] proposed N-Beats model for providing interpretable time-
series forecasting. It is based on a stack of fully connected
layers, where each layer consists of a set of basis functions
that are learned from the data. These basis functions can be
thought of as a kind of dictionary of time series patterns, and
the model learns how to combine them to make predictions.

To build up the weak learner, N-Beats is chosen as the
basic model for the following reasons. Firstly, the N-BEATS
model is highly modular and can be easily scaled to handle
large and complex time series data and can also be easily
adapted to different types of time series data and forecasting
tasks. Secondly, it uses a decomposition of the time series
into a sequence of basis functions, which makes it highly
interpretable and helps to understand the contribution of
each component to the forecast and identify trends, seasonal
patterns, and other factors that may affect the time series.
Thirdly, it has a simple architecture that makes it fast to train
compared to other deep learning models. This makes it suitable
for applications where speed is important, such as real-time
forecasting. Fourthly, it has been shown to achieve state-of-
the-art performance on several benchmark time series datasets,
outperforming other popular deep learning models like LSTMs
and GRUs.

2) Strong learner: Inspired by ensemble learning, we build
the Strong Learner (SL) from WLs with different weights.
The aggregation process of WLs into SL can be summarized
as the following process. Firstly, we partition the original
dataset D into m chunks of sub-dataset with equal length,
which can be represented by D =

⋃m
i=1 Datai. Secondly,

we group these sub-dataset into different groups by following
Groupn =

⋃n
i=1 Datai, in which 1 <= n <= m. Thirdly,

each WL will be trained by different groups of data. Fourthly,
we train a linear regression model to aggregate the weak
learners into the strong learner. When new data is coming, the
newly accumulated data will be added as a new sub-dataset to
update the recent data groups and train new weak learners.

VI. PERFORMANCE EVALUATION

In this section, we describe the performance evaluation
for RCorrPolicy and EN-Beats, including dataset introduction,



(a) LSTM - CPU utilization rate
prediction (b) LSTM - Memory usage prediction (c) LSTM - Network incoming traffic

prediction

Fig. 7: Resource usage predictions by LSTM baseline model with RCorrPolicy implemented

(a) TCN - CPU utilization rate
prediction (b) TCN - Memory usage prediction (c) TCN - Network incoming traffic

prediction

Fig. 8: Resource usage predictions by TCN baseline model with RCorrPolicy implemented.

(a) N-BEATS - CPU utilization rate
prediction

(b) N-BEATS - Memory usage
prediction

(c) N-BEATS - Network incoming
traffic prediction

Fig. 9: Resource usage predictions by N-BEATS baseline model with RCorrPolicy implemented.

baseline model explanations, experimental setup, ablation
experiments for RCorrPolicy and evaluations for EN-Beats
model.

A. Dataset

Bitbrains [2] dataset2 was collected from the cloud of
Bitbrains, which is a cloud service provider and specializes
in providing financial computation services for enterprise
customers, including many major banks, credit card operators,
and insurers. In Bitbrains fastStorage dataset, it includes
workload traces of 1,250 VMs that were used for co-located

2The open-source Bitbrains dataset can be downloaded from
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

business software applications within Bitbrains cloud data
center. These data are stored as CSV files across 30 days with
5 min sampling interval. In Table II, the collected resource
metrics and the corresponding statistical characteristics are
summarized. As observed in Figure 1 and Figure 3, the
Bitbrains dataset shows the evolving resource usage trends
with high dynamics and uncertainties, making the predictions
of resource usages difficult.

B. Baseline Models

In the comparison experiments, we evaluated the
effectiveness of baseline models with the proposed RorrPolicy.
There are three models including RNN-based LSTM [9], TCN



TABLE II: Statistical characteristics of the GWA-T-12
Bitbrains fastStorage dataset [2] used in our evaluations.

Properties Mean Min Max SDev
CPU requested [GHz] 8.9 2.4 86 11.1
CPU usage [GHz] 1.4 0.0 64 4.4
Memory requested [GB] 10.7 0.0 511 29.3
Memory usage [GB] 0.6 0.0 384 1.8
Disk, Read throughput [MB/s] 0.3 0.0 1,411 5.2
Disk, Write throughput [MB/s] 0.1 0.00 188 1.1
Network receive [MB/s] 0.1 0.0 859 0.7
Network transmit [MB/s] 0.1 0.0 3,193 1.5
CPU cores 3.3 1 32 4.0

(temporal convolutional neural network) [10] and N-BEATS
model [8]. Many researchers have used RNN-based models
like LSTM for cloud workload prediction [9] [4], and other
deep learning models like TCN [3] and N-BEATS model [8]
for tackling new sophisticated scenarios.

1) LSTM model: Long Short-Term Memory (LSTM) is
a special form of Recurrent Neural Network (RNN) that
could learn long-term dependencies from historical data. The
recurring module is achieved through a combination of four
layers exchanging information with each other. In a typical
LSTM cell, there are three gates (input gate, forgot gate, and
output gate) and a timely-changing cell state. The gates and
cell state empowers LSTM to selectively learn, unlearn and
retain information as time goes by.

2) TCN model: A TCN (Temporal Convolutional Network)
model consists of dilated, causal 1D convolutional layers with
the same input and output lengths. This model was recently
proposed by Lea et al. [10] for modeling sequential data
samples with previously ignored convolutional modules. While
previous RNN-based models such as LSTM, bi-LSTM, and
GRU have demonstrated favorable performance with certain
data samples, they often encounter issues with exploding or
vanishing gradients, which hampers their overall efficiency.
By integrating a convolutional module rather than a recurrent
one can improve the overall performance because it allows for
parallel computation of outputs. TCN model and its modified
version have gained popularity in the recent few years.

3) N-BEATS model: For univariate time series prediction,
N-BEATS (Neural Basis Expansion Analysis) for interpretable
Time Series” is a type of recently proposed neural network
with deep architectures based on backward and forward
residual links, with deep stacks of fully-connected layers [8].
The N-BEATS model is capable of making more accurate
predictions and interpretable results without sacrificing
training time. N-BEATS has attracted increasing attention and
is treated as a comparison model by state-of-the-art works [26]
[27]. However, the original N-BEATS model is designed for
predicting univariate time series, while our scenario is multiple
resource usage prediction, thus we made some changes to it
to suit the multivariate inputs and outputs.

C. Evaluation Metrics

To evaluate the effectiveness of the proposed methods, we
adopted three different performance metrics as follows.

1) MSE (Mean Square Error):

MSE(yi, ŷi) =
1

n

n∑
i=1

(yi − ŷi)
2 (4)

2) NRMSE (Normalized Root Mean Square Error):

NRMSE(yi, ŷi) =
1

ymax − ymin

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5)

3) R2 score (Coefficient of determination):

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − yi)2
(6)

In Equations (4), (5), and (6), n is the number of all true
values, yi is the value of truth observations, ŷi is the prediction
value, ymax and ymin are the maximum and minimum values
among all yi values respectively.

D. Experimental setup

We configured and tuned different parameters for baseline
models for evaluating the proposed RCorrPolicy policy
and EN-Beats model. All the algorithms are configured to
provide predictions of the target metric two timestamps in
advance, which is 10 min in our scenario because 10 min
prediction in the cloud environment is enough for the system
scheduler to make decisions. The threshold in Algorithm 1
for RCorrPolicy is configured as T = 0.7. In TCN model,
some key parameters are set as input_chunk_length
= 8, output_chunk_length = 2, dropout =
0.08, dialation_base = 2, kernal_size =
5, learning_rate=1e-3. In LSTM model, the key
parameters are set up as input_chunk_length=8,
output_chunk_length=2, dropout=0.01,
hidden_dim = 10, learning_rate = 1e-3,
batch_size = 32. For N-BEATS model, the key
parameters are configured as input_chunk_length
= 8, output_chunk_length = 2, dropout =
0.08, learning_rate = 1e-3, num_blocks = 4,
num_stacks = 30, expansion_coefficient_dim
= 5, activation_function = ReLU. For the EN-
beats model, the weak learner’s key parameters are the same
as those used for N-BEATS.

E. Ablation Experiments for RCorrPolicy

1) RCorrPolicy Effectiveness: We analyzed the correlations
among VM metrics and plotted the heatmap, presented in
Figure 4. For each resource that we plan to predict, we used
the RCorrPolicy to select metrics according to our needs and
evaluated the effectiveness of the proposed policy. For the
comparison experiments, we selected three baseline models,
including TCN [10], LSTM [9], N-BEATS [8], which are
widely used for time-series prediction problems. For each
baseline model, we selected three different metrics (i.e., CPU
utilization rate, Memory utilization, and Network incoming
traffic) in experiments and the quantified experiment results
are summarized in Table III.



TABLE III: The evaluation of RCorrPolicy with different models for predicting different resource metric types with evaluation
metrics including MSE, NRMSE, and R2.

COMPARISON Evaluation Metrics
Without RCorrPolicy With RCorrPolicy

Baseline models Resource metrics MSE NRMSE R2 MSE NRMSE R2

CPU util. rate 0.44 4.8% 0.79 0.24 3.5% 0.89
LSTM [9] Memory usage 83.19*109 20% -0.23 67.69*109 18.49% -0.01

Network in 3669.55 8.2% -0.38 1781.82 5.7% 0.33
CPU util. rate 2.2 10% -0.04 1.68 9.4% 0.20

TCN [10] Memory usage 55.74*109 16% 0.17 17.04*109 9.2% 0.74
Network in 1163.26 4.6% 0.56 915.43 4.1% 0.65
CPU util. rate 0.68 5.9% 0.68 0.15 2.8% 0.93

N-BEATS [8] Memory usage 17.41*109 9.4% 0.74 15.48*109 8.6% 0.78
Network in 1548.45 5.3% 0.42 885.75 4.1% 0.67

2) Discussions of RCorrPolicy evaluation: In Figure 7,
Figure 8, and Figure 9, we present the ablation experiments
by implementing three models for predicting CPU utilization
rate, Memory usage, and Network incoming traffic resource
metrics. It can be observed that models implemented with
RCorrPolicy outperform the corresponding models that do
not include RCorrPolicy. From the experimental results
in Figure 8b, the results demonstrate a notable reduction
in NRMSE from 16% to 9.2%, representing a substantial
improvement of 44.7%. In addition, from the experimental
results shown in Table III, it can be observed that TCN and N-
BEATS models show better overall performance in predicting
different resource metrics. Furthermore, when comparing TCN
and N-BEATS models, according to their designed model
structures [10] [8], TCN demonstrates suitability for long-term
time series sequences, while the N-BEATS model excels at
capturing both short-term and long-term time series patterns,
making it particularly valuable in dynamic and uncertain cloud
environments.

F. Evaluation of EN-Beats model

We evaluated the proposed EN-Beats model for resource
metric prediction alongside baseline models. Figure 10, Figure
11, and Figure 12 demonstrate the superior performance of the
proposed EN-Beats in comparison to the baseline models.

1) Discussion of experimental results: To evaluate the
effectiveness of the proposed EN-Beats, we conducted
extensive experiments comparing it with existing models in
terms of multiple resource predictions for resource usages
from Bitbrains [2]. As depicted in Figure 10, Figure 11,
and Figure 12, EN-Beats demonstrates strong performance
across various resource metric predictions, exhibiting lower
MSE (lower values indicate better performance), lower
NRMSE (lower values indicate better performance), and
higher R2 score (higher values indicate better performance).
Therefore, EN-Beats outperforms the existing models.

For the prediction of CPU utilization rate, Figure 10
illustrates that our proposed EN-Beats model closely follows
the trend of the ground truth, outperforming other models. In

TABLE IV: The evaluation of EN-Beats model and baseline
models for predicting CPU utilization.

CPU util. rate (%) MSE NRMSE R2

LSTM [9] 2.92 12.4% -0.56
TCN [10] 0.80 6.51% 0.62
N-BEATS [8] 0.64 5.84% 0.66
EN-Beats(This work) 0.36 4.4% 0.83

terms of NRMSE, the LSTM model, TCN, N-BEATS, and EN-
Beats achieved respective experimental results of 12%, 6.5%,
5.8%, and 4.4%. Thus, the proposed EN-Beats exhibits lower
prediction errors for the CPU utilization rate. Additionally,
our method attains the highest R2 score, indicating superior
generalization ability compared to the other methods under
consideration.

In terms of resource prediction for Memory usage, Figure
11 and Table V demonstrate that EN-Beats effectively captures
the changing patterns of the ground truth. Quantitatively, the
NRMSE values for LSTM, TCN, N-BEATS, and EN-Beats
are 13.97%, 11.82%, 8.22%, and 5.93%, respectively. These
results indicate that our proposed method exhibits the lowest
error rate and highest accuracy. Furthermore, our method
achieves a higher R2 score (indicating better performance)
compared to other methods, further highlighting the superiority
of our trained model.

For predicting network incoming traffic, Figure 12
demonstrates the close estimation achieved by our proposed
EN-Beats model compared to the ground truth. Regarding the
NRMSE values of different models, Table VI presents the
normalized errors for LSTM, TCN, N-BEATS, and EN-Beats
as 6.37%, 6.78%, 4.50%, and 6.44%, respectively. Although
the NRMSE of our proposed model is slightly higher than that
of other models, it is important to note that our model excels
in another crucial evaluation metric, the R2 score, indicating
its ability to effectively fit the data.



Fig. 10: A comparison of CPU utilization rate predictions.

Fig. 11: A comparison of memory usage predictions.

Fig. 12: A comparison of network incoming traffic predictions

TABLE V: The evaluation of EN-Beats model and baseline
models for predicting memory utilization.

Memory usage (KB) MSE NRMSE R2

LSTM [9] 38.56*109 13.97% 0.31
TCN [10] 27.65*109 11.82% 0.51
N-BEATS [8] 13.37*109 8.22% 0.76
EN-Beats(This work) 6.96*109 5.93% 0.88

TABLE VI: The evaluation of EN-Beats model and baseline
models for predicting network incoming traffic.

Network in traffic (KB/s) MSE NRMSE R2

LSTM [9] 21.79*102 6.37% -0.08
TCN [10] 24.74*102 6.78% -0.22
N-BEATS [8] 10.85*102 4.50% 0.46
EN-Beats(This work) 22.02*102 6.40% 0.54

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce two novel contributions: an
efficient metric selection policy called RCorrPolicy and
an ensemble learning-based model called EN-Beats for
multiple resource predictions. Our performance evaluation
demonstrates that the proposed RCorrPolicy approach
enhances prediction accuracy for three key metrics (CPU
utilization rate, memory usage, and network incoming traffic)
across different algorithms (LSTM, TCN, N-BEATS) through
effective feature engineering. Furthermore, our proposed EN-
Beats model showcases the ability to predict computing
resource usage with 10-minute advance notice. In terms of
R2 score, a metric indicating the goodness-of-fit between the
data and trained models, our experiments yield promising
results, with 0.83%, 0.88%, and 0.54% for CPU utilization
rate, memory usage, and network incoming traffic metrics,
respectively. Overall, our proposed methods outperform
existing approaches across various evaluation metrics when
predicting multiple resource metrics.

Moving forward, our future work will focus on automatic
determination of the threshold parameter T for RCorrPolicy,
as well as integration of the proposed multiple resource
prediction methods into Virtual Machine (VM) auto-scaling
approaches. By achieving more accurate predictions of future
resource usage, the scheduler can dynamically adjust VM
provisioning, scaling up when resources are over-utilized and
scaling down during periods of low utilization. This enables
cloud providers to optimize their systems while delivering
consistent Quality of Service. Additionally, we plan to evaluate
our approach using more workload datasets from large-scale
clouds such as Alibaba and Google Cloud.
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