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A B S T R A C T

Cloud Computing has established itself as an efficient and cost-effective paradigm for the execution
of web-based applications, and scientific workloads, that need elasticity and on-demand scalability
capabilities. However, the evaluation of novel resource provisioning and management techniques is
a major challenge due to the complexity of large-scale data centers. Therefore, Cloud simulators
are an essential tool for academic and industrial researchers, to investigate on the effectiveness of
novel algorithms and mechanisms in large-scale scenarios. This paper proposes CloudSim 7G, the
seventh generation of CloudSim, which features a re-engineered and generalized internal architecture
to facilitate the integration of multiple CloudSim extensions within the same simulated environment.
As part of new design, we created a set of new generic classes to abstract common functionalities,
and carried out an extensive refactoring and refinement of the codebase. The outcome is the removal
of a significant amount of lines of code without loss of functionality, significantly better performance
in both run-time and total memory allocated (up to 20% less heap memory allocated), as well as
increased flexibility, ease-of-use, and extensibility of the framework. These improvements benefit not
only CloudSim developers but also researchers and practitioners using the framework for modeling
and simulating next-generation cloud computing environments.

1. Introduction
Over the past decade, Cloud Computing has evolved rapidly, becoming the dominant model for modern computing.

Compared to previous paradigms, the characterizing aspects of Cloud Computing are the illusion of infinite resources
available 24/7 on-demand over the network, and of infinitely scalable applications. This is possible thanks to virtualization
technologies, which allow the sharing of physical machines, storage, and networking devices among multiple customers
and organizations. A plethora of service providers are involved in the provisioning of Cloud services, including Cloud and
Network Service providers, to enable the wide range of applications being built by customers. The goal of the cloud provider
is to ensure a satisfying experience for the customer, usually in terms of performance, reliability, security, and cost, without
compromising profit.

It is difficult and costly to evaluate policies for Cloud provisioning, workload management, and resource handling in a real
environment since a cloud infrastructure is a large and complex system comprising interconnected geo-located datacenters.
In this context, simulation toolkits [32, 31, 4] mitigate the issue and play an important role in research communities for
testing and evaluating complex applications and novel resource management strategies through inexpensive and repeatable
experiments. Furthermore, simulations provide a controlled environment to test the performance of resource provisioning
policies and to easily reproduce the results.

CloudSim [8] has been a forefront simulation toolkit, and the de-facto standard, for evaluating resource management
techniques in Cloud Computing environments, thanks to its ease-of-use and extensibility. The first iteration of CloudSim
offered a machine virtualization layer to simulate Virtual Machines (VMs) and test techniques such as provisioning,
scheduling, and consolidation. Thousands of contributions in the field of Cloud orchestration and resource management use
CloudSim [3, 41, 51], as demonstrated by the 6400+ citations to the seminal paper. CloudSim is a completely customizable
tool: all its components and related interactions can be extended. For instance, Cloud researchers can develop a custom
scheduling policy, or embed power-awareness in their VM instances. As the number and type of services offered by Cloud
service providers have increased, in parallel, simulation toolkits have also evolved. As a result, CloudSim sports a rich
ecosystem of extensions, from now on referred to as “CloudSim modules”, to model and simulate all sorts of resource
management challenges in the Cloud context. The rapid growth in Cloud adoption not only relies on machine virtualization
as its main feature, but also on many fundamental features such as Software Defined Networking (SDN), Network Function
Virtualization (NFV), container-based virtualization, and serverless application execution models. The CloudSim research
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community developed new modules such as NetworkCloudSim [19], CloudSimSDN [44, 45], WorkflowSim [10], and
ContainerCloudSim [37], among others, to accommodate these advancements.

Since its inception, the CloudSim ecosystem has received contributions from diverse researchers and developers with
varying skill levels and coding styles. As highlighted by other authors [47, 43], these contributions often fail to fully
leverage the toolkit’s extensibility and are typically developed as independent packages, significantly hampering the reuse
of these extensions. This has led to a degree of fragmentation within the ecosystem, making it difficult for CloudSim users
to seamlessly integrate multiple modules into a single simulated scenario. The culprit is CloudSim’s lack of generalized
interfaces for implementing the simulated entities and their interactions. A module developer creating an entirely new
component had no easy way to maintain compatibility with components from other, unrelated CloudSim modules: developers
have often been forced to copy-paste existing components and slightly modify their behaviors, to the detriment of the
extensibility capabilities offered by Object-Oriented (OO) programming. For instance, ContainerCloudSim provided a
collection of container scheduling and allocation policies which were the copy-pasted version of the VM-based ones. This
is because VMs and containers have been portrayed as completely different components, despite performing the same task
(i.e., executing user workloads). Another example: ContainerCloudSim provided a collection of host selection policies for
placement purposes, whereas the power-aware package offered a collection of VM selection policies for migration purposes.
The policies are fundamentally the same in both modules (i.e., select an entity from a list of candidates), but CloudSim does
not provide a standard way to interface with them, forcing redundant code paths: one to handle migration, and one to handle
placement. Previous versions of CloudSim have been released with a bundle of these independently packaged modules with
no interoperability guarantees, contributing to some difficulty in the readability of the codebase.

1.1. Contributions
This paper proposes the seventh generation of the CloudSim toolkit, shortened to CloudSim 7G, the biggest re-engineering

of the codebase to date. The major contributions of our proposal, in terms of enhanced functionalities and extensibility
features, are:

1. A set of new generalized interfaces to standardize the definition, configuration, and creation of new components
and their interactions. This enables the integration of several CloudSim modules, which were previously available
independently and often had compatibility issues, within the same simulated scenario.

2. A re-engineered, refactored, and refined version of various modules from CloudSim 6G, for a total of more than
13,000 lines of code removed. In particular: i) The networking module of CloudSim, “NetworkCloudSim”, has been
rewritten almost completely; and ii) the container module, “ContainerCloudSim”, has been heavily refactored to reduce
its codebase.

3. The ability to simulate scenarios with nested virtualization: containers within VMs, VMs within containers, or even
VMs within VMs, are all possible now. This allows a more accurate simulation of the typical configuration of a real-
world cloud infrastructure: an example in the state-of-the-art are Kata Containers1, where VMs are deployed within
Kubernetes to improve isolation among them [52].

4. Significant performance improvement in simulation run-time and memory usage compared to previous CloudSim
iterations, thanks to the various optimizations that have been carried out during the refactoring and refinement process.

The pre-packaged modules within CloudSim have been consolidated into a base layer to support the development of
multi-module extensions. Therefore, the innovative capabilities of CloudSim 7G open up new opportunities for simulating
next-generation Cloud Computing environments, allowing researchers to experiment with hybrid scenarios using various
computing paradigms (i.e., Cloud Computing, Edge computing, Serverless computing, etc.). This ability for different modules
to coexist and interact was previously not possible; To this end, significant attention has been given to minimizing the effort
required for module developers to restore compatibility of their contributions with CloudSim 7G.

1.2. Paper Organisation
The rest of the paper is organized as follows: Section 2 recalls the evolution of the official CloudSim codebase, as released

by researchers of the CLOUDS Lab, in conjunction with the paradigm shifts in Cloud Computing. Section 3 briefly presents
a collection of external modules not developed within the CLOUDS Lab, as well as a subset of CloudSim’s competitors in the
literature. Section 4 presents: i) the proposed architectural change to the codebase of CloudSim so to allow for multi-extension
simulations; ii) the essential refactoring, refinement and optimization steps performed to construct the new base layer of
CloudSim; and iii) the guidelines to update an old module to CloudSim 7G. Section 5 presents a performance comparison
between CloudSim 6G and CloudSim 7G in terms of run-time and total memory allocated, showcasing the improvements
of CloudSim 7G in large simulations thanks to the massive optimization the codebase has undergone. Section 6 proposes
a simple case study that uses multiple modules simultaneously, demonstrating the flexibility of the novel design. Finally,

1See: https://katacontainers.io/.
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Figure 1: The evolution of CloudSim

Section 7 concludes the paper with final remarks and a discussion on future research directions for modeling and simulating
future generation Cloud Computing environments.
2. CloudSim Through the Evolution of Cloud Computing and Related Paradigms

In the landscape of cloud simulators available in the literature [32, 31, 4], CloudSim, one of the first simulators specialized
in evaluating resource management techniques for Cloud infrastructures, has established itself as the de-facto choice for the
research community. Every simulated scenario follows these steps: the service broker submits an inventory to the datacenter,
which comprises the virtual machines (VMs), physical hosts, and a list of ephemeral activities to be performed. The latter
abstracts the concept of a request submitted to a Cloud service and in CloudSim jargon they are called cloudlets. The datacenter
deploys the submitted inventory using a variety of resource provisioning methods and scheduling policies, both at the VM and
cloudlet levels. The simulation terminates when all the submitted activities have been executed. The physical hosts and VMs
are specified in terms of number of processing elements, available RAM, and network bandwidth. Each processing element has
a specific processing strength measured in millions of instructions per second (MIPS), and the hardware resources allocated
to each VM are limited by the capabilities of the physical host.

A cloudlet specifies an execution length, in terms of millions of instructions (MI), and the number of required processing
elements to be provisioned. The actual execution time is determined by the capabilities of the underlying VM, the number
of co-hosted activities on it, and the cloudlet scheduling policy. Out-of-the-box CloudSim supports two scheduling policies:
space-shared, where only one cloudlet at a time can execute (others will be on a waiting list), and time-shared, where the
processing strength is shared among cloudlets running simultaneously. More specifically, for time-shared scheduling, the start
time of a cloudlet corresponds to the submission time, since there is no queuing, and the estimated finish time solely depends
on the current processing capacity. For space-shared scheduling, the estimated start time depends on the cloudlet’s position
in the waiting list, whereas the current processing capacity of the VM is constant since always only one cloudlet at times is
executing. Refer to the seminal paper at [8] for a more in-depth description of the simulated entities and their interactions.
The power of CloudSim comes from the framework’s extensibility, which allows researchers to customize existing policies,
or create new ones, at different levels of the infrastructure.

2.1. CloudSim Official Releases
This section recalls the major characteristics of the milestones in the evolution of CloudSim, depicted in Figure 1, as

officially released by researchers at the CLOUDS Lab. Notice that some of the described modules have been integrated into
the base layer of CloudSim 7G.

CloudSim originated as a derivative of GridSim [6], enhancing its core functionalities with a new discrete-event
management framework that more effectively represents the dynamic nature of cloud environments. The first iteration of
CloudSim [7, 8] modeled the basic functionalities of machine virtualization described above, simple network behaviors in
the form of a constant propagation delay calculated using a latency matrix, and a power module for investigating energy-aware
VM consolidation policies. One of the shortcomings of the initial version of CloudSim is the absence of a proper network
model. This limitation precludes the modeling of realistic scenarios with datacenter network topologies [26], which is crucial
for a range of Cloud application domains, including scientific, big-data, and High-Performance Computing (HPC) workloads.
In these contexts, applications are typically composed of several communicating tasks that need to be distributed across a
cluster of interconnected physical machines. NetworkCloudSim [19] addressed such limitations with the introduction of a
network flow model that simulates an internal network made of interconnected switches and physical machines. Consequently,
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NetworkCloudSim also introduced a generalized application model for simulating complex workflow applications using
a message-passing paradigm for communications. A “networked” cloudlet is structured as a sequence of stages, where
each stage represents either a computational activity, like a “traditional” cloudlet, or a data transmission dependency (i.e.,
send/receive data). The communication between cloudlets that are part of the same workflow application but reside on different
physical hosts is managed through a series of simulated switches.

The next evolution step came with the advent of Containers-as-a-Service (CaaS) offerings in the Cloud market. Containers
represent a progression towards lightweight application management [34], hence it became evident the need for simulating
such a novel virtualization paradigm. To this end, ContainerCloudSim [37] enriched CloudSim with new features for the
evaluation of allocation, migration, and scheduling policies in containerized environments. In practice, ContainerCloudSim
adds an additional scheduling layer to the simulated infrastructure, so that cloudlets are deployed within containers that are
placed inside VMs.

The widespread adoption of virtualization technologies eventually reached the telecommunications field with the
rising interest in Network Function Virtualization (NFV). Together with Software-Defined Network (SDN) technologies,
they enable the deployment of network services, such as proxy and firewall ones, on commodity hardware instead of
proprietary, expensive hardware appliances, much like virtualization is employed in cloud infrastructures to drive higher
capacity utilization and reduce cost. CloudSimSDN [44, 45] enabled the evaluation of resource management strategies in
infrastructures with SDN functionalities, such as dynamic network configuration and programmable controllers. In addition,
CloudSimSDN supports the allocation, migration, autoscaling and service chaining for NFV. The simulation framework is
based on the Open Source NFV Management and Orchestration (MANO) architecture [15].

The advent of the Internet-of-things (IoT) paradigm created the need for pushing computation and storage away from
centralized data centers, and towards the “edge” of the network, to support the surge of big data. In this regard, iFogSim [20]
enabled the simulation of IoT devices connected to Edge and Fog computing environments. The latest version [28] supports
also the creation of complex microservice applications, as well as the simulation of service migrations for different mobility
models of IoT devices and distributed cluster formation among Edge/Fog nodes of different hierarchical tiers.

The subsequent step in the history of CloudSim was supporting the evaluation of cloud-native applications [17]. In this
context, Serverless computing gained much popularity thanks to the simplification it brings to the whole process of acquiring
and managing cloud resources. The cloud provider takes on full responsibility for all operational tasks for provisioning and
allocating the required resources to running applications, scheduling the applications on the infrastructure, and scaling the
allocated resources to adapt to traffic changes. This enables developers to concentrate solely on the development of their
cloud-native applications without the burden of server administration. CloudSimSC [30] is a toolkit for modeling serverless
computing environments. This contribution offers a generalized architecture for function execution, scheduling, and load
balancing, as well as resource scaling and monitoring metrics in terms of application performance, system throughput, and
underlying resource consumption.

The latest trends in Cloud research are investigating hybrid quantum computing environments for solving computationally
intractable problems. In this regard, iQuantum [33] extends the base CloudSim for the evaluation of scenarios with the
presence of quantum resources. The module extracts the features of quantum circuits and then models them as workload
entities to be executed on quantum datacenters.

3. Related Work
The CloudSim toolkit boasts a rich ecosystem of modules developed by researchers and institutions not affiliated with the

CLOUDS Lab. These external, or “third-party”, contributions are orthogonal to the evolution of CloudSim described in the
previous subsection: sometimes an external contribution provides an alternative implementation of a milestone module or a
direct improvement to it. Finally, we discuss about alternative Cloud simulators found in the literature.

3.1. CloudSim-driven External / Third-Party Modules
There are a plethora of external modules in the literature, those presented in this paper are summarized in Table 1

(first portion). One notable contribution is WorkflowSim [10] from the University of Southern California, an alternative
to NetworkCloudSim which focuses on the simulation of the scheduling, clustering, and provisioning of large-scale scientific
workflow workloads. A scientific workflow is expressed as a set of tasks that are interdependent in terms of data or control
flow. In practice, the workloads are represented using the DAX format of PegasusWMS [13]. Compared to NetworkCloudSim,
WorkflowSim adds an additional layer of workflow management to CloudSim to evaluate workflow optimization techniques
such as task clustering [49]. Moreover, WorkflowSim supports the generation and monitoring of failures at run-time. A more
recent contribution in this context is CloudSim4WDf [16] from University of Sfax. This extension examines the financial
impact of dynamic changes of workflow. Application are represented using Business Process Modeling Notation (BPMN)
to facilitate the modeling of workload structures changes at run-time. In comparison, WorkflowSim only supports the rigid
structure imposed by the DAX file.
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Name Based on Use-case
WorkflowSim [10] CloudSim 3G Clustering and failure modeling for scientific workflows

CloudSim4DWf [16] CloudSim 4G Dynamic workflows
CloudSimDisk [27] CloudSim 3G Disk operations modeling
CloudSimSFC [48] CloudSim 3G NFV

[40] CloudSim 5G Container orchestration
ACE [21] CloudSim4G Resiliency in Cloud

IoTSim [53] CloudSim 4G IoT for big data processing
edgeCloudSim [46] CloudSim 4G Mobility in Edge Computing
IoTSimEdge [22] CloudSim 5G IoT and Edge Computing
CloudSimPlus [43] CloudSim 3G Re-engineering of CloudSim’s core simulation framework
CloudnetSim [11] OMNeT++ Advanced CPU Scheduling

CloudnetSim++ [29] OMNeT++ Energy consumption
Simcan2Cloud [9] OMNeT++ Machine Virtualization
GreenCloud [23] NS2 Energy consumption
DSLab IaaS [47] DSLab Machine virtualization
DSLab FaaS [42] DSLab Serverless Computing
FaaS-Sim [39] SimPy Serverless in Cloud-Edge scenarios

Table 1
A subset of the landscape of external CloudSim modules and alternate simulators.

CloudSimEx is a set of tools featuring disk operations, the simulation of MapReduce clusters [12], web sessions, and
probabilistic cloudlet arrivals, among others. CloudSimDisk [27] from Luleå University of Technology is an alternative to
the simple disk features of CloudSimEx that focuses on modeling the energy consumption of storage systems within a cloud
infrastructure. Compared to CloudSimEx, CloudSimDisk provides a model for describing the characteristics of a Hard Disk
Drive (HDD), an integration with the power modeling package of CloudSim, and a collection of algorithms for energy-aware
storage management. CloudSimSFC [48], developed by Beihang University and based on CloudSimEx, is an alternative to
CloudSimSDN that enhances the simulation of performance fluctuations in service chaining within Multi-domain Service
Networks.

A contribution from German University in Cairo [40] provides an improved version of ContainerCloudSim that supports
simulation scenarios with both VMs and containers, and dynamic arrival of cloudlets and workflow applications. However,
the authors re-implemented each feature from scratch. CloudSim 7G supersedes this contribution since it allows to use VMs,
containers (ContainerCloudSim), workflows (NetworkCloudSim, but also WorkflowSim), and specify a dynamic cloudlet
arrival (CloudSimEx) in the same scenario without “yet another” independently-packaged re-implementation of such features.

FTCloudSim [54] from Beijing University of Posts and Telecommunications extends CloudSim to evaluate performance
in the event of fault and recovery events using checkpointing [24]. A related work is ACE [21] from Western University
Ontario, which investigates the resiliency of cloud infrastructure by enhancing CloudSim with support to availability-aware
placement policies. ACE allows to inject failures at VM level and recover from them through a series of recovery and repair
policies. Compared to FTCloudSim, ACE also explores replication as a fault-tolerant technique.

There is a significant collection of CloudSim modules focusing on different aspects of fog and edge computing.
IoTSim [53] from Australian National University focuses on the simulation of IoT devices using the MapReduce model
for big data processing. EdgeCloudSim [46] from Boğaziçi University is an alternative to iFogSim for modeling edge
infrastructures. Compared to the first version of iFogSim, EdgeCloudSim considers mobility and implements a dynamic
network communication model. IoTSimEdge [22] from Newcastle University focuses on composing IoT applications as
microservices, offers enhanced mobility features compared to EdgeCloudSim, and examines also energy consumption
implications.

A notable mention goes to CloudSimPlus [43] from Instituto Federal de Educação Ciência e Tecnologia do Tocantins,
which is proposed as an alternative to the “base” CloudSim. The authors present a full rewrite of CloudSim3G to reduce code
duplication and increase code reuse by improving several engineering aspects of CloudSim. The goal of CloudSimPlus is in
common with our work, however, the latter suffers from two shortcomings: i) it is a fork of a very old version of CloudSim,
and ii) it is not compatible with current CloudSim modules. Therefore, CloudSimPlus cannot support the rich ecosystem
of contributions developed for CloudSim thus far. On the contrary, CloudSim 7G is a re-engineering attempt that stays as
faithful as possible to previous CloudSim versions.

In conclusion, there is a vast array of modules that leverage the ease-of-use and extensibility of CloudSim to provide
support for several computing paradigms. However, we observed significant overlap among these contributions (and
particularly in the context of Edge computing), where each one is an ex-novo extension to CloudSim. This indicates that
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CloudSim 7G’s generalized interfaces could have facilitated building them on top of one another, rather than independently
packaged modules, creating a more cohesive and readable framework.

3.2. Other Simulators
While many contributions to the simulation and modeling of Cloud Computing are CloudSim modules, the literature also

presents several alternative approaches. CloudSim remains one of the most comprehensive simulators to date, largely thanks
to the extensive array of modules for experimenting with the full spectrum of Cloud-related techniques and paradigms, making
it unmatched by any other Cloud simulator in terms of features. By contrast, related works tend to offer distinct advantages
tailored to specific scenarios.

As highlighted by a recent survey on the topic [31], most alternative cloud simulators in the literature are extensions of
existing commercial network simulators. A subset of these contributions is described in what follows and summarized in
Table 1 (second portion). CloudNetSim [11] was an extension of OMNeT++ [50], a commercial but open-source network
simulator, to support the simulation of CPU scheduling within physical hosts and VMs, including hypervisor-level and guest
OS-level hierarchical scheduling. It focused on the simulation of the Completely Fair Scheduler (CFS) default scheduler in
the Linux kernel when used to schedule KVM VMs onto over-provisioned physical hosts, as well as to schedule tasks within
a Linux guest VM. CloudnetSim++ [29] was another extension of OMNet++, developed independently from CloudNetSim,
designed to study energy consumption at different components of geographically distributed cloud datacenters. These two
platforms exploited OMNeT++ to offer accurate simulation of the TCP/IP network protocol, but in different contexts:
scheduling algorithms and energy consumption, respectively. Simcan2Cloud [9] is one of the latest Cloud simulators based
on OMNet++, which focuses in providing a highly-detailed simulated Cloud infrastructure. It models innovative aspects,
including VM rental extensions, different queues for managing diverse access types, and prioritized resource allocation.

GreenCloud [23] was an extension of NS2, one of the most popular open-source network simulators, for evaluating
energy-aware scheduling algorithms in cloud environments. It offered detailed modeling of energy consumption for hardware
resources, including networking appliances such as switches and links, with differing compute and communication capacities,
and SLA requirements. All these approaches have the advantage that they inherit packet-level accuracy from the underlying
network simulator, but at the cost of long simulation times due to the large amount of “small” individual simulated
components. Additionally, they lack support for simulating per-VM resource allocation and placement strategies, unlike a
“general-purpose” simulator such as CloudSim.

Regarding ex-novo simulators, the authors in [47] propose DSLab IaaS, a novel simulator for IaaS infrastructures based on
a general-purpose software framework for simulating distributed systems. Much like base CloudSim, DSLab IaaS’s focus is on
traditional machine virtualization. The simulator’s standout feature is its ability to model multiple concurrently operating VM
schedulers within the same host. The same authors also proposes DSLab FaaS [42] for the simulation of the Function-as-a-
Service paradigm. However, there is no evidence that the two simulators can be used together, even though they originate from
the same underlying framework. The primary drawback of both works is that are written in Rust, a programming language
with a much smaller community of developers than Java or C, due to the much steep learning curve. On the contrary, much
of CloudSim’s popularity is to be attributed to the ease of use, whose only requirement is basic knowledge of the Java
programming language.

FaaS-Sim is a Python-based, trace-driven stochastic simulation framework designed to evaluate placement and scaling
decisions in serverless computing platforms. Given a network topology, a software architecture spanning the edge-cloud
continuum and workload traces, FaaS-Sim provides estimates of function execution times and resource usage. Compared to
CloudSimSC, it provides a more accurate resource model validated with real-world traces in comparison to NS2; Compared
to FaaS-Sim, the focus is less tailored towards edge computing environments.

In conclusion, CloudSim has established itself as the tool of choice for researchers in this landscape thanks to: i) its ease of
use, requiring only beginner-level Java knowledge and minimal expertise in specific domains, such as networking or serverless
computing; ii) its abstraction level, which is well-suited for simulating key characteristics of Cloud scenarios without having
to perform a fine-grained packet-level, hop-by-hop, simulation in a distributed worldwide network, as it would be needed
with approaches based on network simulators; and iii) its wide array of extensions covering any Cloud-related computing
paradigm.

4. CloudSim 7G
In CloudSim 7G, the codebase has undergone a massive refactoring and refinement process to accommodate the

generalized interfaces that enables the coexistence of multiple modules within the same simulated scenario. As a positive
side-effect, the refactoring and refinement process allowed us to modernize and optimize the original codebase, improving the
simulation performance, as well as its readability, usability, and flexibility. See Section 5 for a performance evaluation between
CloudSim 6G and CloudSim 7G. Feature-wise, CloudSim 7G contains refined versions of many spin-off contributions
previously bundled with CloudSim as independent packages. These contributions include containers, geo-located services,
web load balancing, and network flow modeling.
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Figure 2: The architecture of CloudSim 7G. Blue boxes correspond to the CloudSim components of the base layer. Grey boxes
correspond to user-defined policies and scenario configurations, as well as newly created or extended CloudSim components.

Section 4.1 gives an overview of the high-level architecture of CloudSim 7G. Section 4.2 describes in detail the new
internal design of CloudSim to implement the integration layer within the building blocks of CloudSim. Section 4.3 and
Section 4.4 provide a practical description of the refactoring, optimization and refinement process the codebase has undergone
to accommodate the adaptation interface. Lastly, Section 4.5 gives the guidelines to update an old module to CloudSim 7G.

4.1. Architecture
Figure 2 shows the up-to-date architectural components of CloudSim 7G. Several building blocks have been removed or

consolidated compared to the figure in the seminal paper [8] thanks to the generalized interfaces of CloudSim 7G. The overall
structure is the same: a user-facing section for Cloud providers, application developers, and researchers (the “User Code”),
and a portion dedicated to the development of the simulator and its modules.

The user code exposes the functionalities to evaluate a workload on an infrastructure. More specifically, a user specifies:
i) the characteristics of the cloud infrastructure in terms of the number of physical hosts, their hardware specification, and
how they are interconnected (if the user is interested in modeling the network flow); ii) the characteristics of the virtual
components and their resource requirements; iii) the characteristics of the cloud applications coupled with optional Quality-
of-Service requirements; and iv) the characteristics of any installed CloudSim module. The latter are typically loaded into
the user installation of CloudSim using build automation tools like Maven or Gradle. Depending on the modules in use
by the CloudSim user, an application may be expressed as a workflow (using NetworkCloudSim, for instance), or a host
may exhibit energy-awareness capabilities through the power-aware module. A Cloud researcher may go a step further
and programmatically extends such functionalities to perform a customized and more complex evaluation of resource
management techniques. These are typically more “aware” provisioning, placement, or scheduling policies: a Cloud researcher
may implement its own topology-aware cloudlet scheduling policy to optimize a workflow application within a networked
datacenter, or exploit the migration module to develop an auto-scaling policy for web sessions.

Subsequently, CloudSim configures the simulation according to the user specifications, replacing the basic building
blocks with the custom policies and components expressed in user code. In particular, CloudSim 7G provides out-of-the-
box support for containers, VMs, “traditional” cloudlets, and workflow applications (i.e., networked cloudlets constructed as
graphs) at the virtual layer. The latter resources are then orchestrated through a collection of basic placement, scheduling, and
migration policies. For instance, CloudSim’s power-aware package uses migration policies to optimize the VM placement
using statistical analysis of host load utilization. Throughout the whole software stack, it is possible to exploit custom
components, such as the serverless capabilities of CloudSimSC, as long as they are compatible with CloudSim 7G.

4.2. Design
CloudSim is a toolkit that leverages the features of the Java programming language to offer a highly extensible and

portable simulation platform. CloudSim modules are developed using inheritance and composition in Java to enhance
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(a) CloudSim 6G

(b) CloudSim 7G

Figure 3: UML class diagram of host and guest entities in CloudSim. Green boxes depict Java interfaces, and blue
boxes represent Java classes. The relationship arrows follow the UML relations notation style: a dashed line represents a
realization/implementation, and a full line represents inheritance.

existing components or create new ones. The design changes of CloudSim 7G impacted the following Java classes (and
their extensions): Datacenter, DatacenterBroker, Host, Vm, Container, VmAllocationPolicy, and CloudletScheduler. These classes
implement the building blocks of the simulator previously described at the beginning of Section 2, and also depicted in
Figure 2.

CloudSim 7G presents a collection of Java interfaces that generalizes the definition of some components and facilitates
the coexistence of multiple CloudSim modules within the same simulated scenario. This design change is one of the biggest
shifts in the codebase. Firstly, CloudSim 7G introduces the concept of Guest entity and Host entity. A guest entity executes
actions related to the management and processing of cloudlets according to a given scheduling policy. A host entity executes
actions related to the management (i.e., allocation, provisioning, and scheduling) of guest entities within the simulated cloud
infrastructure. A guest entity runs inside a host entity which may be shared among several guest entities. Such sharing affects
the ability of a guest entity to execute its actions. Figure 3 depicts the UML class diagram of the components affected
by the design change. For instance, the authors of ContainerCloudSim had to distinguish between the Container and Vm

classes. The two components performed the same actions but were implemented as completely independent entities. This
triggered the need for further redundant components: an instance of the Container class required an extension of the Vm

class, called ContainerVm (i.e., a VM that hosts containers). In turn, the latter required an extension of the Host class called
ContainerHost, which can only reside on an extension of the Datacenter class, the ContainerDatacenter. To overcome such
structural limitations of the framework, CloudSim 7G introduces the following Java interfaces:

1. HostEntity: A Java interface featuring a collection of abstract methods required to implement a host entity and
its actions. A few methods provide a default, generalized implementation of an action. Therefore, a possible
implementation of the HostEntity interface corresponds to the Host class in previous CloudSim versions.

2. GuestEntity: A Java interface featuring a collection of abstract methods required to implement a guest entity. Similarly,
a few generalized implementations are provided by default. Therefore, a possible implementation of the GuestEntity

interface corresponds to the Vm and Container classes in previous CloudSim versions.
3. CoreAttributes: A Java interface that defines the methods required for implementation by both HostEntity and

GuestEntity classes.
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4. VirtualEntity: A placeholder interface to implement an entity that is simultaneously a HostEntity and a GuestEntity.
This interface is essential to support nested virtualization.

5. PowerHostEntity and PowerGuestEntity: Extended interfaces to standardize the integration of power-aware features into
the implementation of host and guest entities.

The new design rendered some components completely redundant, such as the ContainerHost or NetworkVm classes (see Fig-
ure 3). As a result, module developers must adhere to the newly defined Java interfaces to be compatible with CloudSim 7G
(More on this in Section 4.5).

Secondly, CloudSim 7G introduces the concept of selection policy, which generalizes the process of selecting an entity
with a criterion from within a list of candidates. This concept is typically employed to implement placement and migration
policies. In previous iterations of CloudSim, there is a clear divergence between a placement policy (i.e., select a host
for a VM to be placed) and a migration policy (i.e., select a VM to be migrated), despite being essentially the same
activity. Therefore, the selection policy interface in CloudSim 7G serves as the fundamental building block for implementing
placement, migration, or any policy that involves selecting an entity. This design change significantly simplifies the codebase,
as illustrated in Figure 4, by rendering redundant several Java classes from ContainerCloudSim and the power module.
Specifically, the amount of Java classes related to the selection process decreases from 26 to 11.

In conclusion, CloudSim 6G features a large number of unnecessary copied-pasted classes. As previously stated, the
original version of ContainerCloudSim used to treat VMs and containers as completely independent entities, even if they
performed the same actions. In comparison, CloudSim 7G provides a common collection of interfaces that unites most
modules developed so far, as long as they are developed correctly using OO principles. The new internal design of CloudSim
7G helped with code deduplication: thanks to the new architecture, ContainerCloudSim has undergone a 64% reduction in
terms of line of code (LoC). Similarly, the source code of NetworkCloudSim has been reduced by 50%. The power module
has been reduced by 21%. The total amount of LoC removed is more than 13000, with no functionality lost during the
deduplication process. This was verified by running the examples provided in the CloudSim example package.

4.3. Code Refactoring and Optimization
The CloudSim refactoring process mainly focused on code deduplication thanks to the new internal design, on the

improvement of code reusability, and on the enforcement of compliance with OO principles. The code optimization step
comprises the following changes:

1. Removed multiple parts of the codebase that contained redundant operations or that were marked as deprecated.
2. Eliminated redundant data structures and variables in the VmScheduler class and its extensions, consolidating the

components responsible for tracking Pe and MIPS allocations.
3. Simplified a series of nested loops that could be combined into a single loop, reducing the time complexity from 𝑂(𝑛2)

to 𝑂(𝑛𝑙𝑜𝑔𝑛) in some instances.
4. Optimized the usage of built-in data structures and sorting algorithms. Depending on the use-case, choosing an

appropriate data structure (and the most efficient sorting algorithm for it) significantly improves the performance
of the simulator. For example, ArrayList and LinkedList have strengths and weaknesses in different operations:
Iterator.remove() and add() have constant complexity in a LinkedList but linear complexity in an ArrayList; on the
other hand, the get() operation has linear complexity in a LinkedList but constant one in an ArrayList.

5. Enforced the use of method isEmpty() for lists, instead of checking the “actual” size, as in certain implementations (such
as LinkedList), determining the size requires counting the items, which is more time-consuming than simply checking
for emptiness.

6. Optimized string operations by using StringBuffer and StringBuilder. During a simulation, the simulator prints many
logs on the console or outputs them to log files. For convenience, many developers use the plus operator to concatenate
strings. However, since Java strings are immutable, this coding behavior caused unnecessary load on the CPU and
memory.

7. Preferred the use of primitive data types (e.g., int, long, double) rather than classes (e.g., Integer, Long, Double) where
possible to minimize object creation and auto-boxing/auto-unboxing overheads. Furthermore, we maximized the reuse
of objects to avoid the frequent creation/destruction of objects from the Java heap. This optimizes memory usage and
reduces the frequency and load of garbage collection (GC).

8. Removed some use of synchronized data structures and replaced by non-synchronized counterparts, given the single-
threaded nature of the core simulation engine.

9. Performed the necessary code upgrades for supporting the latest Java Development Kit (JDK), the JDK21.
10. Removed duplicated code snippets in extensions to CloudSim’s core components, such as Datacenter, Vm and

DatacenterBroker, as well as scheduling components.
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(a) CloudSim 6G

(b) CloudSim 7G

Figure 4: UML class diagram of the host and guest selection policies in CloudSim. Green boxes depict Java interfaces, and blue
boxes represent Java classes. The relationship arrows follow the UML relations notation style.

11. Frequently invoked methods with non-constant computational complexity were cached in local variables for efficiency.
For instance, the calculation of the required per-core MIPS of VMs and containers used to be performed continuously
throughout the simulation, which involved iterating through multiple arrays. Similarly, getUid() previously re-
constructed the unique identifier from scratch with each call, involving a string concatenation.

4.4. Code Refinement
The refinement process targeted: i) the event handling system; ii) the logic of the CloudletScheduler class; and iii) the

NetworkCloudSim module in an attempt to provide a better user experience. Detailed descriptions of each bullet point are
provided in the following paragraphs, in order.

CloudSim employs a set of event tags to indicate an action that needs to be undertaken by a simulated entity when an event
is triggered at run-time. Each CloudSim module typically creates its own collection of custom tags, which can potentially
lead to collisions if integer values are inadvertently reused, to the detriment of multi-module scenarios. In CloudSim 7G, the
event handling system has been updated to make use of the Enum Java class for declaring tags to improve code readability and
prevent collisions.

The original version of CloudletScheduler abstract class was not a generic template that represented the life-cycle of a
cloudlet deployed on a guest entity: any extension to the CloudletScheduler class needed to re-implement the whole scheduling
logic, causing a lot of redundant code. As a significant side-effect, different implementations of the Cloudlet class could not
coexist within the same cloudlet scheduler, and consequently, on the same VM (unless manually managed by the module
developer, for each possible cloudlet implementation). CloudSim 7G solves this problem by providing a revised cloudlet
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scheduling life-cycle represented by Algorithm 1, extracted from the CloudletScheduler abstract class. Lines 4, 7, and 14
expose 3 handler methods (highlighted in gray) to standardize the customization of the scheduling behaviors. The first two
handlers are used to customize the update logic and stopping condition of a cloudlet. Therefore, any extension to the Cloudlet

class is supported out-of-the-box by a CloudletScheduler instance. For instance, the NetworkCloudlet class exploits these 2
handlers to implement the stages that realize an activity within a scientific workflow. The third handler is used by the cloudlet
scheduler itself to customize the unpause logic for cloudlets that are waiting to be executed. Lines 1-6 update the number of
executed instructions of each active cloudlet in the time interval since the previous processing update. Lines 7-10 terminate
the cloudlets that finished executing all the instructions. Line 11-13 returns early if the cloudlet scheduler has no more events
(i.e., no active cloudlets) in the foreseeable future. Lines 14-16 unpause a subset of waiting cloudlets based on a customizable
behavior of the cloudlet scheduler. For instance, CloudletSchedulerTimeShared class does not use the handler method, since all
the submitted cloudlets are executed in a time-shared manner. Lines 17-23 estimate the simulation time for the next discrete
event for this cloudlet scheduler, which depends on the finish time of the earliest finishing cloudlet. Thanks to this refinement
process, the CloudletScheduler class and its extensions have undergone a 40% LoC reduction.

Algorithm 1 Revised logic of the cloudlet scheduler instantiated by the guest entities
Input: 𝑚𝑖𝑝𝑠𝑆ℎ𝑎𝑟𝑒, currently available processing power to the guest entity
Input: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒, current simulation time
Input: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑇 𝑖𝑚𝑒, simulation time of the previous scheduling update
Input: 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡, list of active cloudlets on the guest entity
Input: 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑊 𝑎𝑖𝑡𝐿𝑖𝑠𝑡, list of waiting cloudlets on the guest entity
Output: Predicted completion time of the earliest finishing cloudlet, or 0 if there are no active cloudlets left

1: 𝑡𝑖𝑚𝑒𝑆𝑝𝑎𝑛 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑇 𝑖𝑚𝑒
2: for 𝑐𝑙 ∈ 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡 do
3: 𝑎𝑙𝑙𝑜𝑐𝑀𝑖𝑝𝑠 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑀𝑖𝑝𝑠𝐹𝑜𝑟𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒, 𝑚𝑖𝑝𝑠𝑆ℎ𝑎𝑟𝑒, 𝑐𝑙)
4: if cl.update() then
5: 𝑐𝑙.𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑆𝑜𝐹𝑎𝑟 ← 𝑐𝑙.𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑆𝑜𝐹𝑎𝑟 + (𝑡𝑖𝑚𝑒𝑆𝑝𝑎𝑛 ⋅ 𝑎𝑙𝑙𝑜𝑐𝑀𝑖𝑝𝑠)
6: end if
7: if cl.isFinished() then
8: 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡.𝑟𝑒𝑚𝑜𝑣𝑒(𝑐𝑙)
9: end if

10: end for
11: if 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡.𝑒𝑚𝑝𝑡𝑦() ∧ 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑊 𝑎𝑖𝑡𝐿𝑖𝑠𝑡.𝑒𝑚𝑝𝑡𝑦() then
12: return 0
13: end if
14: 𝑢𝑛𝑝𝑎𝑢𝑠𝑒𝑑𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑖𝑠𝑡 ← unpauseCloudlets(cloudletWaitList)
15: 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑊 𝑎𝑖𝑡𝐿𝑖𝑠𝑡.𝑟𝑒𝑚𝑜𝑣𝑒𝐴𝑙𝑙(𝑢𝑛𝑝𝑎𝑢𝑠𝑒𝑑𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑖𝑠𝑡)
16: 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡.𝑎𝑑𝑑𝐴𝑙𝑙(𝑢𝑛𝑝𝑎𝑢𝑠𝑒𝑑𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑖𝑠𝑡)
17: 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 ← 𝐷𝑜𝑢𝑏𝑙𝑒.𝑀𝐴𝑋_𝑉 𝐴𝐿𝑈𝐸
18: for 𝑐𝑙 ∈ 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡 do
19: 𝑒𝑠𝑡𝐹 𝑖𝑛𝑖𝑠ℎ𝑇 𝑖𝑚𝑒 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒 + 𝑐𝑙.𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ−𝑐𝑙.𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑆𝑜𝐹𝑎𝑟

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑀𝑖𝑝𝑠𝐹𝑜𝑟𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒,𝑚𝑖𝑝𝑠𝑆ℎ𝑎𝑟𝑒,𝑐𝑙)
20: if 𝑒𝑠𝑡𝐹 𝑖𝑛𝑖𝑠ℎ𝑇 𝑖𝑚𝑒 < 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 then
21: 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 ← 𝑒𝑠𝑡𝐹 𝑖𝑛𝑖𝑠ℎ𝑇 𝑖𝑚𝑒
22: end if
23: end for
24: return 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡

Regarding NetworkCloudSim, it introduced a series of network-related features that were cumbersome to set up, and
some features were not fully implemented, leading to confusion and difficulty in their use. Moreover, there were plenty of
hard-coded constants that could not be customized. In short, NetworkCloudSim is presented as a proof of concept, rather than
a usable module. To this end, CloudSim 7G includes a revised version of NetworkCloudSim, which has been generalized to
function as a proper module, and enriched with several new features to complete and enhance the user experience.

For instance, there was no user-friendly way to configure a network with multiple switches. As a result, a CloudSim
user had to directly access the member variables of a Switch instance, which was very error-prone. Furthermore, the
NetworkCloudlet class, which implemented the cloudlets with network capabilities for constructing workflow applications,
followed a different execution model than the traditional cloudlet, despite inheriting the properties from the Cloudlet class.
A stage within a networked cloudlet was defined in terms of execution time (in milliseconds), whereas a traditional cloudlet
is defined in terms of execution length (in millions of instructions). The payload size of a packet was defined in bytes, but it
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Algorithm Total Heap Usage (MB) Run-time (s)
6G 7G Reduction 6G 7G Reduction

Dvfs 2608.629 2420.015 7.2% 11.071 10.677 3.6%
MadMmt 43531.363 44182.750 -1.5% 104.666 102.666 2%
ThrMu 43400.920 35601.881 18% 99 96 3%
IqrRr 41549.674 33458.236 19.5% 101.333 93.333 8%
LrrMc 41452.075 36243.197 12.6% 92.333 88.333 4%

Table 2
Performance comparison of CloudSim 6G and CloudSim 7G in terms of total allocated memory and run-time. Each experiment
is performed 3 times, and the average result is shown in the table. The “Reduction” column displays the percentage decrease (or
increase, if the value is positive) for each metric.

was not converted to bits when calculating the packet transmission time. NetworkCloudSim allowed configuring a deadline
to the execution time of the workflow application, but it did not implement the logic to check whether the deadline had been
met.

4.5. Guidelines for Upgrading a Module to CloudSim 7G
This section provides the guidelines for restoring the compatibility of older CloudSim modules with the new base layer

of CloudSim 7G. Most re-engineered Java methods within classes for core CloudSim components have retained their original
APIs, some kept the previous one as a deprecated alternative. While we aimed to minimize disruptions, the new internal design
of CloudSim 7G necessitated key changes that need to be addressed by extension developers; Using modern IDEs should
make the upgrade process piloted and straight-forward, as they can detect dangling code paths and the use of deprecated
methods.

Firstly, some classes have been removed or replaced: for instance, the ResCloudlet class has been completely integrated
into the Cloudlet class. Consequently, any extension to the ResCloudlet class now needs to inherit its properties from the
Cloudlet class. Secondly, some methods using Java generics require conversion from type Host to HostEntity (or from Vm to
GuestEntity) due to ambiguities caused by the type erasure mechanism.

Extensions to allocation and migration policies must adhere to the novel API offered by the selection policy interface.
Lastly, since the tag system in CloudSim has been entirely rewritten to use the Enum class instead of integer primitives,
extension developers will need to update their custom tags accordingly. As a side note: although the novel template-based
CloudletScheduler class maintains full backward compatibility, we encourage module developers to adhere to the new
framework outlined in Algorithm 1, thus integrating their custom changes to the scheduling life-cycle through the proposed
handler methods.

The removal of the redundant data structures for the allocation of hardware resources for VMs within the VmScheduler

class and its extensions (described in Section 4.3), required some variable renaming to offer a more generalized API. The
VmScheduler class exposes the following structure: peAllocationMap and mipsAllocationMap, instead of peMap and mipsMap. More
specifically, Cloudhence why we peAllocationMapin VmAllocationSpaceShared, since it was a redundant copy on peMap

5. Performance Evaluation
In CloudSim 7G, the codebase has undergone massive refactoring to improve the readability and performance of the

code. This section presents a series of experiments conducted on an x86-64 laptop with Intel i7-8665U CPU, 8MB L3
cache, 1MB L2 cache, 16GB RAM, and Ubuntu 24.04 LTS. The goal is to evaluate the performance improvements of
CloudSim 7G, compared to CloudSim 6G, using large trace datasets, despite the introduction of new abstraction layers. We
utilized OpenJDK21 in both CloudSim 6G and CloudSim 7G, namely OpenJDK 64-Bit Server VM build 21.0.4+7-Ubuntu-
1ubuntu224.04. All experiments are conducted with JVM parameters -Xms4G -Xmx4G (i.e., fixed heap size to avoid dynamic
resizing at run-time) using the default garbage-first garbage collector [14].

We collected the total memory allocated by each experiment at run-time by aggregating the reclaimed heap memory
reported in Java Garbage Collection log messages (i.e., JVM parameter -Xlog:gc*). The wall-clock run-time is obtained from
the execution summary provided by Maven, the build automation tool used by CloudSim. All experiments are conducted
with CPU frequency blocked at 1.90 GHz (the base frequency suggested by the vendor), and no turbo or dynamic boosting.
For each algorithm and metric combination, we conducted the experiment 3 times and computed the average heap usage and
wall-clock run-time.

For the sake of reproducibility, we evaluate the performance improvements of CloudSim 7G using a collection of simple
heuristic algorithms from the power module[5] and workload traces sampled from the PlanetLab package [35], both of which
are readily available within the CloudSim package. Each experiment involves a distinct VM allocation and selection policy
for the study of energy and performance-efficient dynamic consolidation of VMs within a cloud datacenter.
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(a) Simulated datacenter. (b) Simulated workflow application with end-to-end deadline.

Figure 5: Case-study: A simple workflow application deployed on a datacenter of interconnected physical hosts.

Table 2 depicts the results of the performance comparison: CloudSim 7G consistently outperforms CloudSim 6G in
terms of average total heap usage and wall-clock run-time, except for MadMmt (although the difference is negligible given
the run-time improvement). In selected experiments, CloudSim 7G reduces run-time by up to 8 seconds and lowers total
memory allocated by as much as 8091 MB, greatly improving the performance of the simulator.

6. Case Study
This section presents a simulation scenario that uses multiple CloudSim modules. In particular, the following entities will

interact in a multi-module scenario: i) the “traditional” VMs provided by CloudSim since the first version; ii) the network and
application model of the overhauled NetworkCloudSim, and iii) the service broker of CloudSimEX for simulating realistic
cloudlet arrivals. Notice that the goal of this section is not to thoroughly evaluate a set of placement or scheduling strategies
to optimize a deployment, but to demonstrate CloudSim 7G’s new multi-module feature with a simple scenario.

In the following, we take the viewpoint of a private Cloud provider that needs to deploy a workflow application of
interconnected tasks, represented as a Directed Acyclic Graph (DAG). The provider’s goal is to estimate the end-to-end
(E2E) deadline for its application based on some known parameters: the number of instructions per task, the payload to be
transferred between tasks, and the inter-arrival time of new requests. This use-case is notoriously faced by telco providers in
the context of Industry 4.0, where time-critical applications characterized by strict timing and reliability constraints are being
deployed on contemporary cloud infrastructures. The multi-tenant nature of traditional cloud infrastructures poses a challenge
for such an emerging use-case due to the “noisy neighbor” problem [1, 18]. Notice that previous versions of CloudSim do not
support such a peculiar scenario. A series of experiments are performed to analyze how the total response time of the DAG,
which is the time taken for the execution of all the tasks (the so-called makespan), is affected by the placement strategy, the
network delay, and the computational noise of co-located cloudlets.

The private datacenter in Figure 5a comprises 4 homogeneous physical hosts interconnected via 2 switches. The network
topology resembles a basic tree-like structure: the hosts are split equally between 2 different racks, and each group of hosts is
connected to a Top-of-Rack (ToR) switch using a symmetrical gigabit connection. The ToR switches communicate through
an Aggregate Switch via a symmetrical gigabit connection as well. The logical representation of the workflow application
is depicted in Figure 5b: a DAG with two tasks, 𝑇 0 and 𝑇 1, the source and sink node of the graph, respectively, connected
in a chain by a data transfer dependency. The DAG is “activated” by user requests that trigger periodically. These requests
are simulated in CloudSim by submitting two networked cloudlets interconnected according to the given topology. Hence a
“DAG activation” is a periodic event that refers to the following chain of activities: i) 𝑇 0 and 𝑇 1 are submitted for execution
to the datacenter; ii) 𝑇 0 executes for a pre-fixed amount of millions of instructions 𝐿𝑇 0; iii) 𝑇 0 transmits a payload to 𝑇 1 of
fixed-size 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑆𝑖𝑧𝑒; and iv) 𝑇 1 executes for a pre-fixed amount of 𝐿𝑇 1.

For the sake of simplicity, we will only focus on the effect of cloudlet scheduling and placement using two payload sizes
for data transmission. Therefore we assume hosts with infinite capabilities that meet the VMs’ requirements in terms of
CPU, memory, and network bandwidth. Additionally, the VMs are big enough to accommodate all the cloudlets representing
the workflow application together, if necessary. We employ a time-shared cloudlet scheduling to simulate computational
noise for co-located cloudlets, and the inter-arrival time of the cloudlets is sampled from an exponential distribution and
distributed across selected VMs in a round-robin fashion. The experimental evaluation focuses on 3 possible cloudlet
placement configurations: I) 𝑇 0 and 𝑇 1 are co-located, meaning that data is transmitted locally without using the physical
network; II) 𝑇 0 and 𝑇 1 are located on the same rack, meaning that data is routed through a ToR switch only; and III) 𝑇 0 and
𝑇 1 are located on different racks so that data must be transmitted through the aggregate switch as well.
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Figure 6: Makespan of a single activation of the workflow application in function of the payload size.

The VMs are modeled after the new AWS “m7g.medium” general-purpose EC2 instances2, which are single-core VMs
powered by the AWS Graviton3 processor where the virtual CPU is a physical core running at 2.6 GHz. The processing power
can be approximately estimated in MIPS using the following formula, which is derived from the textbook definition of CPU
time [36]:

𝑣𝑚𝑀𝑖𝑝𝑠 = 𝑐𝑙𝑘_𝑟𝑎𝑡𝑒 ⋅ 𝐼𝑃𝐶
106

(1)

where 𝑐𝑙𝑘_𝑟𝑎𝑡𝑒 is the CPU frequency in Hz, and 𝐼𝑃𝐶 is the number of instructions per cycle. In our use-case, the processing
power can be roughly estimated to 𝑣𝑚𝑀𝑖𝑝𝑠 = 7800 MIPS, assuming 𝐼𝑃𝐶 = 3. The execution lengths of the cloudlets are
configured as 𝐿𝑇 0 = 𝐿𝑇 1 = 10000 MI to ensure a sufficiently long completion time for presentation purposes. The packets
exchanged between nodes include either a negligible payload of 1 byte, or a non-negligible payload of 1 gigabyte of data (i.e.,
𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑆𝑖𝑧𝑒 ∈ {1𝐵, 1𝐺𝐵}).

The deployed workflow application must meet a desired E2E latency specified as a deadline by the Cloud provider.
The tightest possible deadline equals the makespan of a DAG activation, which takes into account the compute times, as
well as the transmission times due to the network switching delay. Other factors can degrade the processing power and the
average network bandwidth of VMs and switches, such as: i) the interference of co-located cloudlets; ii) components with
heterogeneous hardware capabilities; and iii) more complex network and DAG topologies. A detailed analysis is necessary
in such cases to determine the worst-case execution time for each cloudlet and appropriately “inflate” the expected makespan
of the activation [2]. However, this is out-of-scope, hence why for such a simple scenario the makespan can be estimated as:

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =
(

𝐿𝑇 0
𝑣𝑚𝑀𝑖𝑝𝑠

+
𝐿𝑇 1

𝑣𝑚𝑀𝑖𝑝𝑠

)

+ 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐻𝑜𝑝𝑠 ⋅
(

𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑆𝑖𝑧𝑒
𝑠𝑛𝑑𝐵𝑤

+
𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑆𝑖𝑧𝑒

𝑟𝑐𝑣𝐵𝑤

)

, (2)

where 𝑠𝑛𝑑𝐵𝑤 is the network bandwidth for sending packets and 𝑟𝑒𝑐𝑣𝐵𝑤 is the network bandwidth for receiving packets;
Both are equivalent to 1 gigabit given the components of our simulated datacenter (i.e., VMs and switches). The number of
network hops required to realize the communication is 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐻𝑜𝑝𝑠, and it depends on the cloudlet placement: 0 hops for
Configuration I, 1 for Configuration II, and 2 for Configuration III. Equation (2) should be enough to assess the correctness
of the network module.

Figure 6 illustrates some preliminary experiments where only a single DAG activation is simulated. For a negligible
payload size (i.e., 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑆𝑖𝑧𝑒 = 1𝐵), there is no difference between each placement configuration, as the network delay
is irrelevant. For a non-negligible payload size (i.e., 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑆𝑖𝑧𝑒 = 1𝐺𝐵), each network hop adds a constant delay of ∼16
seconds. The simulated network delay aligns with the estimation from Equation (2) when applied to our use-case parameters,
resulting in 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 2.564+𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝐻𝑜𝑝𝑠 ⋅16. Figure 7 depicts the empirical Cumulative Distribution Function (CDF)
of the makespans for a series of DAG activations. In particular, the DAG is activated 20 times with exponential inter-arrival
times so that the computational noise increases incrementally due to the number of concurrent activations. For a negligible
payload size, Configuration I exhibits significant computational noise as depicted in Figure 7a, with a median value that is 25%
higher than those of Configuration II and Configuration III. Notice that there is no difference between Configuration II and III
due to the negligible payload; For presentation purposes only, the orange curve has been slightly shifted upwards to remove the
overlap. This occurs because all cloudlets reside on the same VM: the exponential inter-arrival time of user requests triggers
increasingly overlapping activations of both the source and sink nodes of the DAG, leading to high contention. Consequently,

2See: https://aws.amazon.com/ec2/instance-types/m7g/.
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Figure 7: Multiple activations of the workflow application in function of the payload size.

the VM becomes progressively congested due to the shared processing power. On the other hand, distributing the workload
across two separate VMs significantly reduces the pressure, resulting in less contention and therefore shorter makespans, even
with the exponential inter-arrival time. Figure 7b shows the result for a non-negligible payload size. Notice that Configuration
I exhibits the same behavior as before since the network is not used. Configuration II and III exhibit a similar behavior too,
but the curves are shifted to the right and separated from each other, showing higher makespans in Configuration III due to
the additional network hop. This experiment gives more leverage to the Cloud provider in estimating an end-to-end deadline
to minimize the number of missed deadlines. For instance, a deadline of 70 seconds would likely guarantee no misses, though
it might be too lax depending on the specific context. A deadline of 50 seconds is optimal only with Configuration I, however,
it presents shortcomings in terms of fault-tolerance.

7. Conclusions and Future Outlook
This article unveils a revival of the CloudSim project with the release of its seventh iteration. CloudSim 7G is the release

with the most internal changes to date: it offers a novel base layer comprising multiple past modules that have undergone
a massive refactoring, optimization and refinement process to accommodate the proposed design change. CloudSim 7G
facilitates the integration of multiple modules in the same simulated scenario, opening new opportunities for the evaluation
of scheduling and resource management techniques for next-generation Cloud Computing environments. Furthermore, we
have empirically demonstrated the improved performance of CloudSim 7G thanks to the aforementioned refactoring and
refinement process. Thanks to our recent optimization effort, CloudSim 7G uses 20% less total memory allocations in selected
experiments and overall saves 4-10 seconds compared to CloudSim 6G.

In what follows, we describe a series of future courses of action that we hope will improve CloudSim with the help
of the research community. Several researchers [47, 43, 38] have criticized the cloudlet scheduling component accuracy
for evaluating production-quality Cloud components. In this regard, CloudSim 7G represents a significant advancement
for accelerating the development of new extensions, including one offering a comprehensive overhaul of the scheduling
component so to replace the overly simplistic default models.

A further development step of CloudSim’s internals concerns the merging of the host and guest entity components into one
standardized interface. Indeed, the two concepts realize the same activities, but at different layers: a host entity resides on the
“physical” layer, whereas a guest entity resides on the “virtual” layer. Such a paradigm shift is currently too catastrophic for
restoring compatibility with older modules. In this regard, CloudSim 7G serves as an intermediate step toward the realization
of a fully generic physical/virtual entity component in future releases. Secondly, CloudSim might be updated to specify
the computational capabilities of hosts and virtual machines in terms of clock frequency, in addition to the current MIPS
performance metric. Lastly, CloudSim requires a more comprehensive test suite to ensure its correctness and prevent software
regressions between releases.

Given the large research work on approaches based on Machine Learning (ML), Artificial Intelligence (AI) and
Reinforcement Learning (RL) [25], it may be useful to explore the possibility of integrating within CloudSim additional
components to train and evaluate AI/ML models, to simulate AI-enhanced resource management strategies in Cloud
Computing. This will require the realization of new interfaces to interact with ML/AI accelerators and development
frameworks.

To conclude, with the rapid growth of Cloud Computing, we encourage the research community to develop new modules
that take advantage of the design shift introduced with CloudSim 7G and to investigate novel scheduling policies with
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hybrid scenarios using network modeling, power, serverless, NUMA architectures, quantum computing, and VM-container-
host placement policies. On a similar note, we kindly request experienced module developers to update their contributions
following the guidelines provided in this paper to leverage the novel features of CloudSim 7G.

Software availability
The source code and examples of the CloudSim7G toolkit are accessible on GitHub3 as an open-source tool under the GPL-3.0
license.
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