
Simulation Modelling Practice and Theory 120 (2022) 102597

A
1

C
S
J
H
a

b

c

d

e

f

M

A

K
M
S
D
S
N

1

t

h
R

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

loudSimSFC: Simulating Service Function chains in Multi-Domain
ervice Networks
ie Sun a, Tianyu Wo b,∗, Xudong Liu a, Rui Cheng c, Xudong Mou d, Xiaohui Guo d,
aibin Cai e, Rajkumar Buyya f

SKLSDE, School of Computer Science and Engineering, Beihang University, Beijing, China
SKLSDE, School of Software, Beihang University, Beijing, China
Pinduoduo Corp., Shanghai, China
Research Center of Big Data and Computational Intelligence, Hangzhou Institute of Beihang University, Hangzhou, China
Software Engineering Institute, East China Normal University, Shanghai, China
Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and Information Systems, The University of
elbourne, Melbourne, Australia

R T I C L E I N F O

eywords:
ulti-domain service network

ervice function chain
eployment strategy
imulation
etwork function virtualization

A B S T R A C T

Service Function Chain (SFC) is widely adopted in Multi-domain Service Networks (MDSN) to
enforce network policies on customer traffic. Great effort has been devoted to the research of
SFC deployment strategies. In this context, simulators are helpful to the design and evaluation
of those strategies. A good SFC simulator should be accurate, comprehensive and user-friendly
for SFC simulation. However, existing simulators fail to satisfy the requirement due to two
major drawbacks: First, they overlook the resource heterogeneity and performance instability
of the MDSN environment. Second, their performance models for service functions are too
simple to contain the important features such as traffic changing effect and packet queue. To
overcome these drawbacks, we propose CloudSimSFC — a new SFC simulator that (1) simulates
the performance fluctuations and server failure/recovery events in MDSN environment to align
with the performance instability of real-world systems, (2) elaborates the modeling of service
functions by incorporating the computation components such as CPU and queue, and the traffic
changing effect which happens during packet processing, (3) employs scenario abstraction to
simplify the definition of new (heterogeneous) simulation scenarios and supports standard
service metrics like request–response time. With these features, CloudSimSFC can be used
to simulate SFC run-time performance and evaluate deployment strategies. We introduce the
system architecture of CloudSimSFC to explain the simulation principle. We conduct extensive
experiments to evaluate the simulation accuracy of CloudSimSFC by comparing it with an SFC
prototype. Experimental results confirm that CloudSimSFC achieves 95%+ accuracy in all the
evaluation scenarios. We also evaluate the simulation running time and analyze the overhead
caused by the proposed simulation features. Finally, we demonstrate the primary usage of
CloudSimSFC with case studies.

. Introduction

Virtualization technology has been widely applied in IT industry to support elastic, on-demand resource provisioning and multi-
enancy. Although proprietary hardware-based network services such as firewalls or load-balancers exhibit good performance, they
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fail to cope with the customer’s ever-changing resource demand due to their limited support for multi-tenancy and lack of flexibility
(mainly caused by their hardware nature). Network Function Virtualization (NFV) and Software Defined Network (SDN) together
transform the implementation of network services from proprietary hardware appliances to softwarised Service Functions (SF)
running on commodity servers. These two technologies, along with the emerging communication technologies such as 5G have
laid the architectural foundation for envisioning an elastic Multi-domain Service Network (MDSN), where new application demands
like Industrial Internet of Things (IIoT) monitoring and real-time video conference could be satisfied with performance guarantees.

MDSN can contain multiple computing domains, including clouds and edges, connected through the Wide Area Network (WAN).
n MDSN, end-to-end network services are realized through Service Function Chain (SFC). An SFC contains multiple Service Functions
SF) with network- or application-specific purposes. The customer network traffic spans data centers, carrier networks, and edges
s steered through the SFC to enforce a series of operations.

SFC promises great service flexibility with the cost of operational complexity. In other words, as the network size grows,
he deployment choices would increase exponentially. This problem has lead to an extensive pursue of efficient SFC deployment
trategies towards the joint problem of SFC placement and resource allocation. It is however non-trivial to evaluate such strategies
hrough large-scale deployment for the following reasons. First, due to funding limitations, the majority of researchers cannot access
arge-scale MDSN test-beds. In the meantime, to operate a system at such a scale is always complicated and error-prone. Researchers
ave to finish the complicated configuration before they could eventually start the evaluation, leading to a severe distraction from
he research focus. Besides, reproducing the experiment at scale is difficult because of the unstable performance characters of the
esource environment (e.g., server failures, performance fluctuations).

As a result, simulation has been widely used to fill the gap. A moderate-size commodity server can simulate the behaviors of a
assive scale network, not to mention that the simulator is easy to control and the experiments are reproducible. With the help of
suitable simulator, researchers could develop new ideas by dedicating their full attention to the core problem rather than wasting

ime on the pains-taking setup and configuration procedures to operate a physical infrastructure. Innovative ideas could be tested
hrough simulation in prior to be evaluated on physical infrastructure [1].

Many simulators aim for network simulation [2–5] or cloud computing task simulation [6–12]). Although a few simulators
upport SFC simulation (e.g., CloudSimSDN-NFV [6] and CloudSimNFV [10]), to simulate SFC in MDSN environment is still a
hallenging task. The challenges remain in the following aspects. First, due to the absence of a high-level resource abstraction,
o define a MDSN scenario with existing simulators can be very difficult. In fact, existing simulators use per-item based scenario
onfiguration. Users have to finish complex configurations (e.g., for each switch, port and link) in order to boot a heterogeneous
DSN simulation scenario. Second, an SFC processes network traffic as a series of inter-dependent computation and transmission

asks. The throughput of different types of SFs can vary significantly depending on their processing logic. An SF might also
hange the traffic volume during processing. However, the computation models in related work are too simple to include these
haracteristics. Third, users might need to evaluate SFC performance under dynamic environment, since real-world servers could
ail and recover, and computation/transmission performance might fluctuate. Nonetheless, existing studies overlook the unstable
erformance characters of real-world environments.

In this paper, to overcome these drawbacks, we propose CloudSimSFC, a toolkit for simulating SFC in MDSN. The main
ontributions of this paper are summarized as follows:

• We highlight the requirements for simulating SFC in MDSN environment and propose a simulator named CloudSimSFC.
CloudSimSFC can be used to simulate SFC operational performance and evaluate SFC deployment strategies.

• We consider the unstable performance of the underlying resource environment such as performance fluctuations (e.g., SF
throughput fluctuations, network jitters) and server failures as observed in large-scale networked systems, enabling
CloudSimSFC to reflect realistic scenarios.

• We propose an elaborated SF performance model to involve the distinctive features of SFC. In this model, CPU capacity and
packet queue are jointly considered to simulate the SFs. Besides, the traffic changing effect during packet processing is also
considered.

• We implement CloudSimSFC by extending an open-source simulator [6]. CloudSimSFC exposes high-level configuration
interfaces so that users only need to provide three configuration files to start a simulation. The source code of CloudSimSFC
is available at online repository ‘‘https://github.com/JasonatBuaa/CloudSimSFC/".

• We evaluate the performance of CloudSimSFC in terms of simulation accuracy and simulation running time. We then
demonstrate the primary usage of CloudSimSFC through case studies on typical scenarios.

Roadmap: The rest of the paper is organized as follows. Section 2 presents the background and terminology of this paper;
Section 3 presents the overview of CloudSimSFC; Section 4 introduces the simulation model in detail. Section 5 presents the
performance experiments and case studies. We discuss the related work in Section 6 and conclude this paper in Section 7.

2. Background

In terms of simulation, there are three relevant roles from SFC market, namely Resource Provider (RP), SFC customer (customer),
and SFC vendor (vendor). RPs are the owners of cloud or edge environments who lend their resources to the public on an elastic
on-demand basis. Vendors operate SFC systems based on the resources provisioned through multiple RPs, and render SFC services
according to customer demands. Customers are the business owners who use SFC to enhance their applications. Vendors always
2
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pursue the optimal trade-off between delivering better QoS and minimizing operational expenditure. To this end, CloudSimSFC
could help them to evaluate their scheduling policies with simulations.

A Service Function (SF) serves a specific computation purpose like packet filtering or application performance enhancement.
everal SFs of different types constitute an SFC to deliver complex functionalities for customers. Consequently, an SFC can be
egarded as a series of computation tasks and transmission tasks enforced on the network flows between the ingress (the devices
hat issue a network request) and egress (the customer application that serves the request) nodes. An SFC policy should include the
ype and order of SFs, e.g., {Firewall → Network Inspector → L2 forwarder}.

An SFC may span among several heterogeneous domains for latency minimization or cost reduction. Each domain is usually
operated by a different RP, and the inter-domain network is typically backed by Wide Area Network (WAN). As for SFC vendors,
the domains constitute a large resource pool, referred to as Multi-domain Service Network (MDSN), that can be leveraged as an
entirety for resource provisioning and SFC deployment. There are many examples of MDSN in real world. For instance, cloud–edge
continuum [13], cloud federation [14], fog computing [15], joint-cloud [16], hybrid cloud [17], etc.

The switches connecting servers and forwarders inside a server along the SFC constitute a packet transmission path. During
the SFC deployment process, each SF is mapped to a hosting server (SFC placement), and then allocated a resource flavor (resource
allocation), e.g., [1 core, 2 GB Memory]. Meanwhile, network forwarding rules are installed along the packet transmission path
for traffic steering, ensuring that target network traffic should pass through the SFC correctly. The terms SFC scheduling and SFC
deployment are used interchangeably to refer to the joint procedure of SFC placement and resource allocation.

Inside each SF, many state entries control the computation logic. Each state entry contains at least two fields: A matching
ondition and the corresponding actions. The matching condition is a hash of the five-tuple with some protocol-specific fields
e.g., TCP ACK, SYN number) or part of the payload data. The incoming network flow is evaluated against the matching conditions
n the state entries. If matched, the action on that entry such as allowing, dropping, modifying, or rerouting would be applied (on
he network flow).

SFC service latency contains computation latency and transmission latency. When fix the resource flavor, the SFC computation
atency is proportional to the size of the workload. As for latency-sensitive applications, if service latency exceeds the deadline,
etwork packets will be dropped, which will in turn damage the customer perceived QoS. Therefore vendors should guarantee the
ervice latency to avoid affecting the performance of customer applications.

. CloudSimSFC

.1. Overview

The primary goal of CloudSimSFC is to capture the correlation between SFC scheduling decisions and operational performance
hrough simulation. This goal leads to three principles throughout the design and implementation of CloudSimSFC. First, it is a trade-
ff between simplify the simulation model for system efficiency and complicate the model for advanced simulation features. With
his in mind, we decide to focus on the critical resource characters of both MDSN environments and SF architecture that relate to SFC
erformance, and simplify other less important aspects. Second, we should also lower the bar on booting a simulation scenario so
hat users can dedicate their focus to the scheduling policy rather than the simulator configuration. Third, the concepts and structure
f CloudSimSFC should be straightforward for our audiences, who are mostly SFC professionals, to understand. CloudSimSFC follows
hese principles. The modules of CloudSimSFC are shown in Fig. 1.
Scenario Manager maintains the simulation parameters, e.g., to enable/disable the simulation features like server failures or

erformance fluctuations. Besides, Scenario Manager parses the scenario parameters for the Data Factory to generate SFC workloads
nd Failure/Recovery (F/R) events. Specifically, server failures are modeled as F/R events, triggered by the Discrete-Event Simulator
DES) during the simulation. We provide the detailed information in Section 3.3.3. Resource Manager contains three sub-modules
Resource Broker provides the interface for resource provisioning. Resource Monitor keeps tracking the allocated and remaining

esources. Deployment Scheduler provides an interface for users to implement their own scheduling algorithms. When an SFC Demand
rrives, the Deployment Scheduler parses the parameters and executes the scheduling algorithm to get a feasible result. After that,
he Resource Manager generates the corresponding events for SFC deployment and resource allocation.
Service Function Perf Module controls the traffic processing operations. As we have addressed before, the traffic processing

perations in an SFC can be seen as a series of computation and transmission tasks. These tasks are handled by the ServiceFunction
nd (Communication) Channel objects in the simulation environment. In terms of computation task simulation, in addition to the
idely adopted CPU performance parameter Million Instructions Per Second (MIPS) introduced in [6,7,18], we identify other equally
ssential contributing factors to SF performance such as packet queue, traffic changing effect (TCE) and the performance instability of

the underlying environment.
Discrete-Event Simulator (DES) is the central controller of the event-based simulator. We extend the DES of CloudSimSDN-NFV [6]

y adding new events and handlers related to the SFC traffic processing operations and the performance instability of the MDSN
esource environment.

In a standard simulation process, users are required to define a simulation scenario that contains the MDSN resource abstraction
introduced in Section 3.2) and SFC demands (introduced in Section 3.4). Scenario Manager parses the simulation scenario to
ynthesize SFC workloads and F/R events along the simulation timeline. Meanwhile, based on the MDSN resource abstraction,
cenario Manager generates the detailed configurations of servers, switches and network links. During the simulation, the DES
ontrols the timing for all simulation events, such as request arrival, end of transmission, server failure, etc. The Deployment Scheduler
rocesses SFC Demands to generate the scheduling policy. The traffic from ingress nodes is steered along the SFC for processing. The
ervice latency is determined by traffic size, task length, link bandwidth, SF capacity, etc. The detailed discussion could be found
n Section 4.4.
3
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Fig. 1. CloudSimSFC schema.

Fig. 2. The resource abstraction of multi-domain service network.

3.2. Multi-domain service network abstraction

MDSN environment consists of multiple domains with large scale heterogeneous resources. It is infeasible to present MDSN at
its full resolution in simulation. On the contrary, CloudSimSFC extracts the critical characters of MDSN that could influence the
operation of SFC, into an abstract resource model (i.e., the resource abstraction). This model helps to achieve clarity and simplicity
for booting a new simulation scenario.

CloudSimSFC defines HoMogeneous Resource Group (HMRG) to refer to the co-located servers with the same characters such as
price, flavor and availability, in a domain. Notably, this notation is reasonable since the resource heterogeneity in real-world is
observed at cluster level (e.g., rack) rather than server level. By using HMRG as a template of servers, users only need to input
server configuration for per HMRG. This could save a lot of effort for defining simulation scenarios (in contrast to other simulators
which require per-server configuration).

CloudSimSFC models MDSN into an abstract resource model with layered hierarchy. As is shown in Fig. 2, the outside layer
includes the domains and the Wide Area Network (WAN) interconnections. The middle layer corresponds to HMRGs. The innermost
layer refers to the servers for hosting SFs. To define a simulation scenario, we only need to consider the domain and HMRG level
configuration. The detailed server, switch, link and port configurations could be outsourced to CloudSimSFC.

Domain. There are two types of domains in CloudSimSFC, namely cloud DC and edge. Cloud DC maintains large scale elastic
resources with high availability, whereas edge only contains limited resources to facilitate real-time computation and transmission.
Besides, an edge is also the network entry point for the nearby End Users. Network traffic (i.e., workloads) is produced from user
devices (ingress), and then routed through the SFC to the service endpoint (egress).

Computation Resource. Since the edge environment only possesses limited servers, we simulate each edge with one HMRG.
On the other hand, a cloud DC contains thousands of servers with heterogeneous configurations. To be consistent with these
4
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Fig. 3. The CPU and intelligent Network Interface Card plugged on a blade server can be modeled as an intact computation component, containing processing
capacity and data caching capacity.

facts, CloudSimSFC allows for multiple HMRGs in a cloud DC. Besides, intelligent Network Interface Cards (iNIC) have been
widely deployed in modern computing facilities. The iNIC supports to offload network tasks thanks to the on-board memory and
computation units, such that specific tasks like packet queuing or encapsulation/de-encapsulation could be processed efficiently on
the iNICs. In CloudSimSFC, we create a uniform computation model that combines the general purpose platform (e.g., blade server)
and iNIC (shown in Fig. 3) with packet queuing and processing capacities.

Network. Technologies such as switched-fabric have delivered tremendous performance for local area networks (LAN, e.g., data
center network). On the other hand, the inter-domain network connections exhibit limited per-connection bandwidth. In other
words, the WAN bandwidth resource is very scarce in contrast to the LAN bandwidth (see e.g., [19,20]). Based on this fact,
CloudSimSFC simplifies the network model by only considering the bandwidth limitations for inter-domain networks, while assuming
the intra-domain network infrastructure to have unlimited bandwidth. However, since the SFC transmission latency (and payment)
are associated with the allocated bandwidth, users are still encouraged to allocate bandwidth for each intra-domain sub-paths. In
the simulation settings, the intra-domain bandwidth price should be remarkably lower than that of the inter-domain network by
default. Also note that the bandwidth resource of each connection is assumed to be monopolized (rather than shared) by only one
corresponding SFC in our model.

3.3. Performance instability

Prior simulators (CloudSim, CloudSimSDN-NFV, etc.) denote the CPU capacity with Million Instructions Per Second (MIPS) and
use Million Instructions Per Operation (MIPO) to relate VM/SF throughput with CPU capacity. They only consider the expected
performance factors (constant performance, c-perf) while overlooking the widely observed performance fluctuations in shared
infrastructure during run-time. However, these fluctuations could lead to a notable difference on the service latency, which have
been confirmed by [21]. The performance fluctuations should be addressed to get a more thorough simulation result, especially for
latency-critical network services [22]. To this end, CloudSimSFC models both constant and dynamic performance factors for the
system performance, denoted as run-time performance (r-perf).

3.3.1. Constant performance factor (c-perf)
The packing VM’s flavor determines the constant performance (c-perf, represented with million instructions per second) of an

SF. Here our basic premises are (1) c-perf is a linear function of flavor. For example, if 1Core/2 GB flavor corresponds to the c-perf
of 1000MIPS, then 2Core/4 GB corresponds to 2000MIPS. Based on this idea, a server’s processing capacity could be denoted by
its c-perf (instead of flavor). (2) the value of c-perf is bounded by server i’s remaining capacity at time t, i.e., 𝑐 − 𝑝𝑒𝑟𝑓 ≤ 𝐶𝑎𝑝𝑖(𝑡),
(3) c-perf is flexible. it can be any positive integer in the feasible region, which is enabled by recent advances in resource-isolation
technologies.

3.3.2. Run-time performance (r-perf)
A real-world system’s run-time performance (r-perf) is affected by many factors, including environmental temperature, system

usage, uptime, co-located SF instances, etc. All these factors have led to the observation of performance fluctuations (e.g., SF
throughput fluctuations and network jitters) over time.

To simulate the performance fluctuations, CloudSimSFC models r-perf with Normal Distribution. To be specific, the MIPS for a
server is described with 𝜇 and 𝜎2, where 𝜇 corresponds to c-perf while 𝜎2 defines the extent of performance fluctuations that will
influence all the co-located tasks (i.e., SFs) on the server. Likely, the network jitters of intra- and inter-domain networks are also
considered. Whenever an SF starts to process a new workload, CloudSimSFC will take a sample from the distribution model as the
value of r-perf. This sampling procedure can be performed at per-second/per-workload/per-event fashion throughout the simulation
duration.

Notably, although there have been studies on the performance instability in cloud and edge computing, precise modeling of the
performance instability is difficult due to multi-tenancy, resource heterogeneity, noisy neighbors, surge in workload and platform
(including both hardware and software levels), etc. [23,24]. [25] reports that random disk I/O and network bandwidth can be
modeled with normal distribution during the interference of colocated VMs, and [8] also use normal distribution to model the
run-time performance of VMs. Therefore, we model the run-time performance with normal distribution in this paper as default.
Users can extend the ‘‘PerformanceJitter’’ module of our proposed simulator to replace such default setting with other distributions.
5
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Table 1
An illustration of the Failure/Recovery events.

Event time Host name Failure time Recovery time

0.1 host01 0.2 100.1
121.3 host11 124.1 201.1
121.3 host03 221 231.1
... ... ... ...

Fig. 4. A logical SFC that contains Ingress nodes from three different edges.

3.3.3. Server failure/recovery
Great efforts have been devoted to pursuing High Availability (HA) to guarantee Service Level Agreement (SLA). Nonetheless,

HA is still non-trivial due to the increasing complexity of hardware and software [26,27]. [28,29] have claimed that server failure
is one of the top causes of service downtime. If a server fails, all the VMs on it will halt accordingly until the server recovers. To
achieve HA, vendors should deploy countermeasures to protect the SFC service from going offline.

CloudSimSFC simulates the failures of physical servers as Failure and Recovery (F/R) events, so that we could evaluate the failure-
handling countermeasures through simulation. We use three parameters to control the timing of F/R events — Server Availability
(SA), Mean Time Between Failure (MTBF) and Mean Time To Recovery (MTTR). Notably, SA could be calculated with MTBF and MTTR
according to:

𝑆𝐴 = 𝑀𝑇𝐵𝐹
𝑀𝑇𝐵𝐹 +𝑀𝑇𝑇𝑅

(1)

When defining a simulation scenario, two parameters among SA, MTBF, and MTTR should be provided (per HMRG), then the
last parameter is calculated according to Equ (1).

The timing for each F/R event is determined by SA, MTBF, MTTR and the simulation duration 𝑇𝑠𝑖𝑚. Specifically, CloudSimSFC
generates Next Time To Failure (NTTF) with exponential distribution and Next Time To Recovery (NTTR) with uniform distribu-
tion [30] for each server as the default settings, using MTBF and MTTR respectively as their expectation 𝜇, using 𝑇𝑠𝑖𝑚 to check the
validity of the time. Exponential- and uniform- distributions are chosen as default distributions to sample the interval between two
F/R events and the duration to recover from a failed status, respectively. In fact, other distributions such as Pareto, Weibull, and
Lognormal may also be used here, and it is easy to switch to other distributions in CloudSimSFC.

Examples of F/R events can be found in Table 1. Each F/R event contains ‘‘host name’’, ‘‘event time’’, ‘‘failure time’’ and ‘‘recovery
time’’. Notably, the ‘‘host name’’ points to the target server, and the ‘‘event time’’ is left for future usage.

3.4. SFC demand and workload

An SFC demand contains ingress and egress nodes, requested SFC policy, average workload rate (e.g., 1MB/s), and the QoS
requirement in terms of latency threshold (if any). Ingress nodes represent the position of user devices (the origination of network
requests), which must be placed at an edge domain. On the other hand, egress nodes represent the termination of an SFC, e.g., the
customer application that serves the network requests, which could be in any domain. Besides, ingress and egress nodes are dummy
nodes that do not consume any resource.

Based on the ‘‘average workload rate" parameter in each SFC demand, Scenario Manager synthesizes a series of SFC workloads
(i.e., network requests) to test the performance of the deployed SFC. The workloads are processed through a series of transmission
6



Simulation Modelling Practice and Theory 120 (2022) 102597J. Sun et al.
Fig. 5. A logical chain may correspond to multiple physical chains according to the number of Ingress nodes.

Fig. 6. The computation model of SF.

and computation tasks. As an example, a request to the chain {Ingress →Firewall →Encoder →Decoder → Egress} contains
four transmission tasks, i.e., {Ingress →Firewall}, {Firewall →Encoder}, {Encoder →Decoder}, {Decoder →Egress} and three
computation tasks on Firewall, Encoder and Decoder respectively.

SFC demands will also be transferred to the Resource Manager to invoke the Deployment Scheduler, where a deployment strategy
will be produced based on the user’s algorithm. During this process, the customer demanded SFC is called Logical Chain (LC), and
the real SFC deployed between a pair of ingress and egress nodes is called Physical Chain (PC).

Demonstrated in Fig. 4, an LC may contain multiple ingress nodes, indicating that the customer application (i.e., the egress) might
be visited by multiple user devices from different edges. On the other hand, a PC only contains one pair of ingress and egress nodes,
as is shown in Fig. 5. Besides, SF instances might be shared among PCs based on the deployment strategy of SFC, e.g., ‘‘𝑃𝐶1,2−𝑆𝐹𝑐 ’’
is shared by ‘‘𝑃𝐶1’’ and ‘‘𝑃𝐶2’’.

4. Simulating service function chain

This section introduces the SF performance model of CloudSimSFC. We focus on the distinctive features (regarding system
components and operational characters) that influence SFC performance. Before introducing these features, we first briefly introduce
the SFC model that we extend from CloudSimSDN-NFV, referred to as the Basic SFC Model.

4.1. Basic SFC model

The Basic SFC model follows the NFV MANO of European Telecommunications Standards Institute (ETSI). In the basic SFC
model, each SF is wrapped into a VM whose resources include CPU (PE) number, CPU speed (MIPS), memory (MB), and bandwidth
(MB/s). The computational complexity (MI/MB) is specified for each type of SF, representing the computational cost of processing
per unit task (e.g., MB workload). The customer SFC policy is maintained as a ServiceFunctionChainPolicy (SFCP). A component
named ServiceFunctionForwarder (Forwarder) steers the target network packets into the chained SFs according to the SFCP to realize
the SFC demand of the customer. Note that during recent years, light-weight virtualization environments such as Docker containers
have been widely adopted in production systems. Using a mixture of VMs and containers to host SFs is also a promising solution,
e.g., as the hybrid SFC described in [31]. However, as for simulation, CloudSimSFC does not need to distinguish between VMs and
containers for hosting SFs. For clarity of expression, we use VM as a general concept to refer to the SF execution environment.
7
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Fig. 7. Illustration of traffic changing effect along an example SFC.

4.2. Packet queue

The throughput of an SF is determined by its computational complexity and resource flavor. The performance is also time-
varying and unpredictable due to the dynamic workload, resource contention of co-located tasks, as well as many stochastic factors.
As a consequence, different SFs in an SFC usually exhibit inconsistent throughput. Consequently, SF (like other high-throughput
networked systems) usually contains a dedicated memory space (i.e, packet queue) to cache packets. Hence, SF’s computation latency
should include both queuing time and processing time. Based on this reason, we introduce packet queue into the SF performance
model. As depicted in Fig. 6, incoming traffic will be cached in the packet queue upon arrival to wait for CPU slots to conduct
packet processing. Network packets are First-Come-First-Served (FCFS) on each SF by default. To support dedicated scenarios, we
can also simulate priority queue that supports preemptive processing.

The queue size is an essential factor for the operation of SFC. Insufficient queue size may lead to packet loss in the case of severe
throughput inconsistency, performance fluctuations, or workload burst. To achieve better QoS, CPU and queue size should be jointly
considered during the scheduling process. In addition, reactive resource reallocation (e.g., SF scale-up [32], migration [33]) could
be applied in case of QoS degradation or packet accumulation (in packet queue).

4.3. Traffic changing effect

The output traffic size of an SF usually deviates from the input size, which has been referred to as the Traffic Changing Effect
(TCE) [34]. For an SF, the TCE is stable in a long-term view [35,36]. For instance, a firewall performs denying/allowing actions
according to the security policy, making the output traffic size less than the input. Citrix WAN optimizer compresses traffic before
sending it to the next hop, reducing the traffic volume by 80% [37]. Redundancy eliminator is observed to shrunk the network
usage between peak and minimum traffic by 52% [38]. Fig. 7 provides an example of the TCE, where the origin input contains
15 unit traffic and keeps changing along the SFC into the final output of 10 unit traffic. We introduce a parameter named traffic
changing ratio, i.e., output traffic size to input traffic size, to denote the TCE of an SF. CloudSimSFC changes the output traffic size
of an SF based on the traffic changing ratio parameter, e.g., using uniform distribution. Notably, TCE will resize the workload for
all subsequent transmission and computation tasks.

It is always rewarding to optimize (i.e., reduce) the inter-domain data transmission volume due to the expensive WAN bandwidth.
Fortunately, the TCE of SFs introduces new opportunities for such optimization. TCE could make a significant influence on the SFC
deployment decision, which has been confirmed by [34,39–41]. As in the example of Fig. 7, the intuitive idea is to place ‘‘SF-A’’
and ‘‘SF-B’’ in the same domain (if possible).

4.4. Service latency

CloudSimSFC uses Cloudlet length to represent the total computation it needs to process a workload and Million Instruction Per-unit
Workload (MIPW) to represent the computational complexity, i.e., Cloudlet length for 1MB workload.

We introduce the underlying mathematics to describe the SFC service latency. Hereafter, capital characters refer to SFC-scope
parameters, and lower-case letters refer to SF-scope or link-scope parameters. For any physical SFC 𝑆𝑖, its length is denoted with
|𝑆𝑖| and it contains SFs 𝑓 𝑖

𝑗 , 𝑗 ∈ [1, |𝑆𝑖|], the type of an SF is given by 𝑡𝑦𝑝𝑒(𝑓 𝑖
𝑗 ). Dummy nodes 𝑓 𝑖

0 and 𝑓 𝑖
|𝑆𝑖|+1

are the endpoints. The
link between 𝑓 𝑖

𝑘 and 𝑓 𝑖
𝑘+1 is 𝑙𝑖𝑘, 𝑘 ∈ [0, |𝑆𝑖|]. For 𝑓 𝑖

𝑗 , the allocated CPU capacity is 𝑐𝑖𝑗 (MIPS), the computational complexity is 𝑝𝑖𝑗
(MI/MB). For link 𝑙𝑖𝑘, the allocated bandwidth is 𝑏𝑖𝑘 (MB/s). Denote a workload of 𝑆𝑖 as 𝑊 𝑖

𝑥 , its initial size (on 𝑓 𝑖
0 and 𝑙𝑖0) is 𝑤𝑖

𝑥.
When 𝑊 traverses the SFC, the workload size on link 𝑙𝑖𝑗−1 and SF 𝑓 𝑖

𝑗 is 𝑤𝑖
𝑥,𝑗 . For clearance, we first assume its size conserves during

the processing (i.e., Non-TCE), then we get:

𝑤𝑖
𝑥,𝑗 = 𝑤𝑖

𝑥, 𝑗 ∈ [1, |𝑆𝑖|],∀𝑖, 𝑥 (2)

Denote the computation time on 𝑓 𝑖
𝑗 as 𝑡𝑐𝑖𝑥,𝑗 , which is the sum of queuing time 𝑡𝑞𝑖𝑥,𝑗 and workload processing time 𝑡𝑝𝑖𝑥,𝑗 , i.e.,

𝑡𝑐𝑖𝑥,𝑗 = 𝑡𝑞𝑖𝑥,𝑗 + 𝑡𝑝𝑖𝑥,𝑗 (3)

Then 𝑡𝑝𝑖𝑗 could be calculated as:

𝑖 𝑖 𝑖 𝑖
8
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The transmission time on 𝑙𝑖𝑗 is 𝑡𝑡𝑖𝑥,𝑗 .

𝑡𝑐𝑖𝑥,𝑗 = 𝑤𝑖
𝑥∕𝑏

𝑖
𝑗 (5)

For workload 𝑊 𝑖
𝑥 , the service time 𝑇 𝑖

𝑥 on 𝑆𝑖 can be calculated with:

𝑇 𝑖
𝑥 =

|𝑆𝑖|
∑

𝑗=1
(𝑡𝑐𝑖𝑥,𝑗 + 𝑡𝑐𝑖𝑥,𝑗 ) (6)

Furthermore, we consider the TCE of SFs. Denote the traffic changing ratio of SF 𝑓 𝑖
𝑗 as 𝑟𝑖𝑗 , then Eq. (2) needs to be replaced by:

𝑤𝑖
𝑥,𝑗 = 𝑤𝑖

𝑥,0 ×
𝑗

∏

𝑘=1
𝑟𝑖𝑘, 𝑗 ∈ [1, |𝑆𝑖|],∀𝑖, 𝑥 (7)

where

𝑤𝑖
𝑥,0 = 𝑤𝑖

𝑥 (8)

Based on these equations, CloudSimSFC could simulate the per-workload, total or average service time, and SFC’s request success
rate (or failure rate).

Note that to achieve configuration simplicity, CloudSimSFC assumes the SF computational complexity 𝑝𝑖𝑗 and traffic changing
ratio 𝑟𝑖𝑗 are only determined by 𝑡𝑦𝑝𝑒(𝑓 𝑖

𝑗 ). While in a real-world system, the situation might be different. For example, in different
SFCs, the deny ratio of a firewall instance often relies on the workload characters and the firewall policy. By this means, users are
encouraged to define per SFC parameters when requiring a more accurate model.

5. Performance evaluation and case studies

Having presented the CloudSimSDN architecture, its resource abstraction and the proposed SF model, we now provide a thorough
evaluation of the simulator. After this, we then demonstrate the primary usage of CloudSimSFC through case studies. We introduce
the simulation scenarios in the case studies and demonstrate the comparison among several scheduling policies in terms of resource
consumption and SFC operational performance (i.e., SFC service latency). All the simulations in this section are conducted on a
hardware system with an Intel Core i7-9750H CPU (6 cores at 2.6 GHz) and 16 GB Memory (2400 MHz DDR4).

5.1. Accuracy evaluation

5.1.1. Settings
As CloudSimSFC aims to simulate the SFC run-time performance, it is important to output credible, accurate results. To test the

simulation accuracy, we implement a prototype that contains a pair of ingress–egress nodes and 5 types of SFs (listed in Table 2).
These are typical SFs that are widely used in many researches [34,37,42,43]. We use the prototype output as a baseline.

Prototype. In the prototype, the egress node emulates a file storage server that receives files from clients and logs the request
completion time. The ingress node is a client that uploads files to the emulated server. Note that in practice, the length of SFC is
usually small (1 to 5) [34,41,44,45]. Hence in this subsection, without lose of generality, we set the chain length to be 3 (shown
in Fig. 8). We then deploy the SFC in five VMs of identical configuration. The VMs are provisioned from our private cloud, which
uses KVM1 as hypervisor and serves hundreds of researchers in our LAB. Currently, a vast range of applications are running on the
private cloud, including long-term database/web services and short-term scientific computation tasks. We consider these applications
as background workloads. We also ensure that in the prototype SFC, each SF uses one dedicated CPU core for workload transmission
and processing. The throughput of each SF is tuned to the value listed in Table 2. The computation complexity of each SF is confirmed
by related work, e.g., [42,46]. Then the MIPS of each SF can be calculated with Eq. (4). As the computation complexity and MIPS
are pure simulation parameters, we denote them as Sim-Complexity and Sim-MIPS respectively in Table 2. We generate a series of
workload files with sizes among [5, 20] MB. The bandwidth of each link is specified in Table 3 and controlled by tc2. Additionally,
we use ntp3 to synchronize the clock of each SF before running each experiment. We believe this prototype is sufficient to reflect
the characteristics of a real world application.

Next, we evaluate the accuracy of CloudSimSFC and CloudSimSDN-NFV. In the first two experiments, we only use Non-TCE SFs
(i.e., the SF whose output traffic size equals the input size) for fairness of comparison, since CloudSimSDN-NFV cannot deal with
TCE. The evaluated SFC is {Ingress →Firewall →Logger →DPI → Egress}. In experiment 3, we change the target SFC to {Ingress
→Firewall →Compressor →Decompressor → Egress}, so as to evaluate CloudSimSFC with TCE SFs. In all the evaluations, we fix
the computation/transmission jitter (the 𝜎) used by CloudSimSFC to the same level.

Experiment 1: Non-TCE SFs with steady workload. In this experiment, we generate 1000 consecutive requests at a rate of
1 request/second. We use steady workload: each request uploads a file of size [6, 15] MB with a mean value of 10MB. Hence the

1 https://www.linux-kvm.org/page/Main_Page
2 https://man7.org/linux/man-pages/man8/tc.8.html
3 http://www.ntp.org/documentation.html
9

https://www.linux-kvm.org/page/Main_Page
https://man7.org/linux/man-pages/man8/tc.8.html
http://www.ntp.org/documentation.html


Simulation Modelling Practice and Theory 120 (2022) 102597J. Sun et al.
Fig. 8. The prototype SFC to evaluate simulation accuracy. Note that SFA, SFB and SFC are chosen from the SFs listed in Table 2. In experiment 1 and 2 of
Section 5.1, SFA, SFB and SFC are Firewall, Logger and DPI respectively. While in experiment 3, we use Compressor and Decompressor as SFB and SFC..

Table 2
The prototype SFs and their corresponding simulation parameters.

Forwarder Logger DPI Compressor Decompressor

TCR (O/I) 1 1 1 1/3 3/1
Throughput (MB/s) 10 10 10 15 5
Queue (MB) 30 30 30 30 30
Sim-Complexity (MI/MB) 100 150 350 150 450
Sim-MIPS 1000 1500 3500 2250 2250

Table 3
The bandwidth settings for accuracy evaluation.

Ingress-SF𝐴 SF𝐴-SF𝐵 SF𝐵 -SF𝐶 SF𝐶 -Egress

Experiment 1 20 MB/s 12.5 MB/s 12.5 MB/s 12.5 MB/s
Experiment 2 20 MB/s 12.5 MB/s 12.5 MB/s 12.5 MB/s
Experiment 3 20 MB/s 16 MB/s 6 MB/s 16 MB/s

Table 4
Simulation accuracy evaluation results. ‘‘✗’’ means the value cannot be acquired in the experiment (since the simulation
feature is not supported.).

Metrics Prototype CloudSimSFC CloudSimSDN-NFV

Experiment 1 Average response time 9.86 9.70 9.48
Failed request (queue overflow) 80 83 ✗

Experiment 2 Average response time 9.91 9.97 14.70
Failed request (queue overflow) 107 108 ✗

Experiment 3 Average response time 7.98 7.64 ✗

Failed request (queue overflow) 94 91 ✗

average request rate is approximately 10 MB/s, which equals to the max throughput capacity of the SFC. The bandwidth settings are
listed in Table 3. We record the request–response time and the amount of failed requests of the prototype as baseline, and compare
them with the simulation results of CloudSimSFC and CloudSimSDN-NFV. We show the results in Fig. 9(a), 9(d) and Table 4.

Experiment 2: Non-TCE SFs with workload surge. Based on experiment 1, we further emulate a workload burst by increasing
the average request rate by 50% for 60 s starting from the 800-th second. Other settings are the same as experiment 1. The results
are shown in Fig. 9(b), 9(e) and Table 4.

Experiment 3: TCE SFs with workload surge. Next, we evaluate the simulation accuracy of CloudSimSFC with TCE SFs. The
target SFC is {Ingress →Firewall →Compressor →Decompressor → Egress}. The resource configuration of each SF and link are
shown in Tables 2 and 3. The workloads remain the same as in experiment 2. We only report the simulation results of CloudSimSFC,
since CloudSimSDN-NFV cannot simulate traffic changing effect. The results are shown in Fig. 9(c), 9(f) and Table 4.

5.1.2. Results
Figs. 9(a), 9(d) and Table 4 indicate that the simulation result of CloudSimSFC in experiment 1 is very close to the baseline.

Particularly, the simulation result of CloudSimSFC achieves 98.4% accuracy for average request–response time and 97%, 98.5%
and 99.1% accuracy respectively for the quartiles (i.e., the 0.25, 0.5, 0.75 percentile response time). The simulation results of
CloudSimSFC are more accurate than CloudSimSDN-NFV, as depicted in Fig. 9(d). This owes to CloudSimSFC’s ability to simulate
performance fluctuations. To validate this hypothesis, we further conduct a comparative test: we disable CloudSimSFC’s performance
fluctuation simulation feature and re-conduct experiment 1. In the comparative test, the overall accuracy decreases to the same level
as CloudSimSDN-NFV. According to Table 4, we also observe 8% request failure (due to queue overflow) with steady workload in
experiment 1, which is quite surprising. We then analyze the logs of the prototype and the simulator for an answer. Consistently,
these logs point to the same twofold-reason: First, performance fluctuations increase the queue backlog on each SF and finally lead
to high possibility of queue overflow. Second, since our request size ranges from 6MB to 15MB, the 1000 requests form a lot of
mini-bursts which could also exhaust the limited queue space.

CloudSimSFC’s simulation result in experiment 2 remains accurate: 99.4% accuracy for the average request–response time and
99.7%, 99.5% and 98.5% accuracy for the 0.25, 0.5 and 0.75 percentiles respectively. On the other hand, the average response time
acquired through CloudSimSDN-NFV is quite accurate when using steady workloads in experiment 1 (97.1%), but the accuracy
decreases to 48% as we introduce a 60-second-long workload surge in experiment 2 (see Figs. 9(b), 9(e) and Table 4). The main
10
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Fig. 9. Simulation accuracy evaluation result. Note that the outliers are not plotted in (d), (e) and (f).
11
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Table 5
Resource scales that we use to evaluate the simulation running time.

Scale 1 (10 servers) Scale 2 (22 servers) Scale 3 (40 servers)

Cloud 2 HMRG * 4 servers 2 HMRG * 8 servers 3 HMRG * 10 servers
Edge 1 HMRG * 2 servers 1 HMRG * 6 servers 1 HMRG * 10 servers

cause is that CloudSimSDN-NFV cannot model the packet queuing behavior. In experiment 2, the average request exceeds the target
SFC’s max throughput by 50% during the 60-second-long workload surge, hence the SFC queue overflow frequency is higher than
that with steady workloads.

As for simulating TCE SFs (experiment 3), Figs. 9(c), 9(f) and Table 4 indicate that CloudSimSFC can achieve 95% accuracy for
verage request–response time, and the quartiles are still very accurate (96.2%, 96% and 96.4% for the 0.25, 0.5 and 0.75 percentile
espectively).

.2. Simulation running time

CloudSimSFC introduces several simulation features to model the performance of SFC. In fact, more features usually imply higher
verhead in terms of event handle and might finally lead to longer simulation running time, especially for discrete event simulators
ike CloudSimSFC. Next, we measure the simulation running time and discuss the simulation overhead.

.2.1. Settings
In this experiment, we measure the simulation running time of the proposed simulator. Since our simulator is extended from

loudSimSDN-NFV, we also measure the simulation running time of the latter as a baseline. We construct an evaluation environment
hat involves an edge and a cloud DC, with three resource scales as shown in Table 5. Additionally, we generate 12 groups of SFC
emands by increasing the amount of demand from 5 to 60 with a step size of 5. The SFC length for each demand is chosen from
1,3], and the mean request rate is 10MB/s. For each SFC demand, we generate 1000 requests. Combining the resource scales with
he SFC demand groups, we get 36 simulation scenarios for this experiment. We generate all the simulation scenarios and requests
y using CloudSimSFC. To ensure accuracy, we run each simulation scenario for ten times and report the average result. The results
re depicted in Fig. 10.

Notably, for the sake of fairness, we use the simplified network model as we introduce in Section 3.2 for both CloudSimSFC and
loudSimSDN-NFV. Besides, the traffic changing effect is enabled since it will not cause any overhead.

.2.2. Results
Simulating performance fluctuation might be expensive, while other features are not. As we simulate performance

fluctuation at per-second frequency, Fig. 10 indicates that it prolongs the simulation running time for 26.1%, 26.1% and 27.4%
with scale 1, scale 2 and scale 3 respectively (see the lines labeled with CloudSimSFC-Jitter). The reason is quite obvious:
CloudSimSFC simulates performance fluctuations with probability distribution models, thus takes a lot of samplings for simulating
the computation/transmission tasks. If we simulate performance fluctuations at per-event level, it will require millions of samplings
in the experiment with 40 servers and 60 SFC demands. As for other simulation features like queue and FR, the overhead is negligible
(9.4%, 2.7% and 1.8% with scale 1, scale 2 and scale 3 respectively) since they barely introduce additional events.

Simulation running time is primarily determined by total SFC demands rather than resource scale. As is depicted in
ig. 10, the simulation running time is always proportional to the amount of SFC demands. As we fix the requests of each SFC
emand to 1000, the total simulation events is proportional to the number of SFC demands, hence it takes more simulation running
ime as the number of demands increases. By contrast, the resource scale only has a marginal impact on simulation running time.
Accuracy or speediness? You can have your own choice. As we have discussed before, simulating performance fluctuations

an cause an overhead that prolongs the simulation running time. However, the performance fluctuations are non-negligible since
hey can make a great influence on system performance [24,47]. This is also echoed by our tests. Therefore, we believe that the
verhead is worth taken. We recommend users to use all the proposed simulation features and set the parameters according to
heir own target physical environment. Again, CloudSimSFC allows users to enable/disable the simulation features through simple
onfiguration.

.3. Case study 1: Traffic changing effect

.3.1. Settings
In this case study, we only focus on the traffic changing effect, so as to achieve clearance of demonstration. Specifically, we

isable the packet queue and performance fluctuation simulation features, and set the availability of each server to 100%.
We use a simple MDSN topo to clarify the demonstration. The MDSN topology contains an edge environment and a cloud DC.

he total server number is 40 and the detailed configurations of HMRG are shown in Fig. 11. We do not limit the bandwidth
apacity of the physical links in this case. As for SFC types, we assume the vendors could provide five kinds of SFs with different
omputational complexities and traffic changing ratios (shown in Table 6). A total of 20 SFC demands are submitted at the beginning
f the simulation. The length of each SFC is evenly distributed in [2, 4] and the average request rate of each SFC demand is evenly
12
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Fig. 10. The simulation running time with 5 to 60 SFC demands with (a) 10 servers, (b) 22 servers and (c) 40 servers in MDSN environment. We evaluate
the simulation running time of CloudSimSFC that disables all advanced features (CloudSimSFC-Basic), CloudSimSDN-NFV, CloudSimSFC with queue-aware SF
model (CloudSimSFC-Queue), CloudSimSFC with computation performance fluctuations and network jitters (CloudSimSFC-Jitter), CloudSimSFC with F/R events
(CloudSimSFC-FR) and the full-fledged CloudSimSFC where all features are enabled(CloudSimSFC-Full).

Fig. 11. The MDSN resource configuration of case study 1.

5.3.2. SFC deployment strategies
To solve the SFC deployment problem, we divide the deployment process into three stages, namely SF placement, SF resource

allocation and link bandwidth allocation. Multiple algorithms are provided for each stage. Note that these algorithms are purely used
to demonstrate the capabilities of CloudSimSFC. Thus we do not claim the superiority of the presented algorithms (over others).

• Stage 1: SF placement. This stage determines the mappings between each SF and the available domain. We propose for this
stage Traffic Changing Effect-aware MDSN placement algorithm (TCE+MDSN) and Cloud Only placement algorithm (CloudOnly). The
TCE+MDSN algorithm leverages TCE to reduce the bandwidth consumption on WAN. On the other hand, CloudOnly deploys
13
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Table 6
The SFs used in case study 1. ‘‘Expanding’’ means the output traffic size (of the SF) exceeds the input
traffic size, while ‘‘Dimmishing’’ means the opposite.

Type Computational complexity Traffic changing ratio (O/I) Traffic changing pattern

SF-A 50 MI/MB 1.5 : 1.0 Expanding
SF-B 80 MI/MB 1.0 : 2.0 Diminishing
SF-C 150 MI/MB 1.0 : 1.5 Diminishing
SF-D 100 MI/MB 2.0 : 1.0 Expanding
SF-E 200 MI/MB 2.0 : 1.2 Expanding

Table 7
The scheduling policies that we use in case study 1.

Policy index SF placement SF resource allocation Link bandwidth allocation

S1–1 TCE+MDSN CPX+WI PerLinkBw
S1–2 TCE+MDSN CPX+WI MaxBw
S1–3 TCE+MDSN CPX+WI IngressBw
S1–4 TCE+MDSN NCPX+WI PerLinkBw
S1–5 CloudOnly CPX+NWI PerLinkBw
S1–6 CloudOnly NCPX+NWI PerLinkBw

all the SFs in cloud DC, such that workloads must be transmitted to the cloud with their original size. As a consequence, this
algorithm may consume more WAN bandwidth.

• Stage 2: SF resource allocation. Computational comPleXity-aware resource allocation algorithm (CPX) and Computational comPleXity
agNostic algorithm (NCPX) are presented. CPX allocates CPU resources according to the computational complexity of SF. On
the other hand, NCPX allocates a fixed flavor to each SF regardless of the computational complexity. In addition, we consider
the two different conditions according to whether the average workload size for each SF is available, namely (has) Workload
Information (WI) and No Workload Information (NWI)

• Stage 3: Link bandwidth allocation. The following policies are considered for bandwidth allocation: traffic changing effect based
Per-Link Bandwidth allocation policy (PerLinkBw), Max-demand based Bandwidth allocation algorithm (MaxBw), and Ingress request
rate based Bandwidth allocation algorithm (IngressBw). PerLinkBw policy allows to separately allocate bandwidth for each virtual
link (i.e., the transmission path from one SF to the next SF in an SFC). MaxBw allocates bandwidth according to the maximum
bandwidth requirement of the virtual links in the SFC, while IngressBW allocates bandwidth according to the average request
rate of the SFC.

In this case study, we compare the six policies shown in Table 7 for SFC deployment.

.3.3. Results
Fig. 12 presents the experimental results of case study 1. Fig. 12(a) shows that ‘‘S1-1’’, ‘‘S1-2’’, ‘‘S1-3’’ and ‘‘S1-4’’ use computation

esources from across the MDSN environment, while ‘‘S1-5’’ and ‘‘S1-6’’ only use resources from the cloud. The average computation
ime and average transmission time are shown in Figs. 12(c) and 12(d), which indicate that ‘‘S1-1’’ and ‘‘S1-2’’ achieve better
erformance in terms of SFC operational efficiency. However, as we can see in Fig. 12(b), policy ‘‘S1-2’’ consumes more WAN
andwidth resources due to the weakness in bandwidth allocation. ‘‘S1-6’’ expresses the worst performance due to insufficient CPU
apacity, which can be inferred from the prolonged computation time as indicated in Fig. 12(c). Moreover, by comparing ‘‘S1-4’’,
‘S1-5’’ and ‘‘S1-6’’ with ‘‘S1-1’’, we could conclude that knowing only one of the two parameters between CPX and WI does not
ecessarily imply a better resource allocation result.

.4. Case study 2: Performance fluctuations

.4.1. Settings
Next, we demonstrate the impact of performance fluctuations on SFC operational efficiency. We enable the performance

luctuation simulation feature and vary the level of performance fluctuations to see how they may influence SFC performance.
ther experimental settings are the same as in case 1. The details for this case are presented in Table 8.

.4.2. SFC deployment strategies
In this case study, we use scheduling policy ‘‘S1-1’’ as the baseline since it achieves the best cost-performance trade-off among

ll the policies in case study 1. In ‘‘S2-1’’, ‘‘S2-2’’, ‘‘S2-3’’ and ‘‘S2-4’’, we allocate resources according to the baseline policy. While
n ‘‘S2-5’’, ‘‘S2-6’’, ‘‘S2-7’’ and ‘‘S2-8’’, we allocate 20% more resources to the SF CPU and link bandwidth than the baseline. We
ary the level of performance fluctuations (in terms of percentage of c-perf) and plot the results in Fig. 13.
14
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Fig. 12. The experimental results of case study 1. We compare (a) CPU consumption, (b) WAN bandwidth consumption, (c) average computation time and (d)
verage transmission time among the six policies.

Table 8
The experimental settings of case study 2. ‘‘Baseline’’ refers to the resource
allocation policy introduced in ‘‘S1-1’’.

Index Jitter level SF resource Bandwidth allocation

S2–1 1% Baseline Baseline
S2–2 5% Baseline Baseline
S2–3 10% Baseline Baseline
S2–4 20% Baseline Baseline
S2–5 1% 1.2 × Baseline 1.2 × Baseline
S2–6 5% 1.2 × Baseline 1.2 × Baseline
S2–7 10% 1.2 × Baseline 1.2 × Baseline
S2–8 20% 1.2 × Baseline 1.2 × Baseline

5.4.3. Results
As is shown in Fig. 13, performance fluctuations have a clear correlation to the request–response time of SFC. Fig. 13(a) shows

hat the request–response time of the selected SFC is severely affected by the jitter level. As we allocate more resources to the
FC, the impact becomes smaller (see Fig. 13(b)). At the same time, Figs. 13(c) and 13(d) indicate the same result for the overall
erformance of the 20 SFCs. Based on these findings, we conclude that performance fluctuations must be accounted for to guarantee
he SFC QoS when designing scheduling algorithms. Our simulation results suggest to reserve a certain amount of resource for the
FC to tolerate performance fluctuations.

. Related work

Network Simulators. NS-2 [2] is a discrete event simulator. It is widely used in network research of routing policies, TCP
nd multicast protocols, etc., over several kinds of wired and wireless (local and satellite) networks. The NS-3 simulator [3] is
nother network simulator that supports multiple programming languages such as Python and C++. With the provided Application
rogramming Interfaces(API), NS-3 can execute AI algorithms based on the prevailing AI frameworks such as TensorFlow and
15
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Fig. 13. The experimental results of case study 2.

Table 9
A comparative analysis of related work including DynamicCloudSim [8], FTCloudSim [9], CloudSimSDN [7], CEPSim [12], CloudSimNFV [10], ACE [11],
CloudSimSDN-NFV [6] and CloudSimSFC (Our work).

Simulators DynamicCloudSim FTCloudSim CloudSimSDN CEPSim CloudSimNFV ACE CloudSimSDN-NFV CloudSimSFC

First publication 2013 2013 2015 2015 2015 2018 2019 2021 (this paper)
Open source ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Performance instability ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Server F/R ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓

Workflow model ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

NFV support ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓

Queue ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Traffic changing effect ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

PyTorch. OMNeT++ [4] is a general network simulation framework that supports to model communication networks, protocols,
multiprocessors and distributed hardware systems. GloMoSiM [5] is a library-based simulator aimed purely at wireless network
simulation.

Cloud Computing Simulators. CloudSim [18] is an open-source simulator for cloud computing systems that is capable of
modeling the workload assignment and execution on a cloud infrastructure. Many simulators [6–12] are developed based on
CloudSim. Among them, FTCloudSim [9] models the failure and recovery (F/R) of workloads (i.e., cloudlet) in cloud computing
platforms. However, it overlooks the F/R of physical hosts, which is the most common cause of faults in commercial cloud computing
platforms. ACE [11] provides an availability-aware extension to CloudSim. It considers HA metrics and failure/redundancy/inter-
dependency models to conduct HA-aware simulation. DynamicCloudSim [8] contains a comprehensive performance model which
allows simulating various computation tasks with different characteristics (CPU-, I/O-, bandwidth-bound). In addition, it considers
the performance instability, including task stragglers and failures, to present a more realistic simulation result. CEPSim [12] extends
CloudSim with the ability to simulate the scalability and performance of complex event processing systems. It supports to compare
the performance of query processing strategies in multi-domain environments.
16
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SDN and NFV Simulators. CloudSimSDN [7] supports the simulation of SDN-enabled cloud computing environments, including
cloud data centers, physical machines, switches and network links. It could be used to tune the scheduling of computation and
network resources. CloudSimNFV [10] aims to support NFV scenarios. Meanwhile, CloudSimSDN-NFV [6] shares a similar goal
with CloudSimNFV. It facilitates fine-grained SDN control (extended from CloudSimSDN) and load balance among multiple SF
replicas. To conclude, we conduct a comparative analysis on related work concerning the following aspects: (1) basic information
such as the year of publication and the accessibility of source code, (2) performance instability simulation features such as performance
luctuations and server failures, (3) advanced simulation features such as the modeling for workflow task and NFV (4) SFC distinctive
eatures including packet queue and traffic changing effect. Table 9 shows the analysis.
New Trends on Service Function Chains. Recently, a lot of SFC variants emerged. For example, [48,49] proposes an SFC

ariant named hybrid SFC, where different SFs are used in the forward and backward directions. [50] introduces a variant of SFC
here part of the network functions may be provided by dedicated physical hardware while the remainders are provided using
irtual instances. Also, a mixture of containers and VMs could be used together to host SF instances, allowing SFC to leverage
he collective benefits of different virtualization technologies [31]. Besides, multiple SFs can be executed in parallel when their
perations do not conflict, thus providing a better SFC execution model through task parallelization [51]. In this paper, our focus
s on the general SFC topology, the advanced features that influence SFC’s runtime performance, as well as the MDSN environment
esource abstraction. We leave the discussion of these SFC variants for future work.

. Conclusions and future work

We propose CloudSimSFC, a toolkit for simulating SFC in an MDSN environment. To model the resource features in the MDSN
nvironment, CloudSimSFC considers the heterogeneity and the performance instability of the underlying environment. Besides,
loudSimSFC models the operation of SFC as a series of computation and transmission tasks, and addresses the distinctive features
f SFC, such as CPU, packet queue, and traffic changing effect, which are critical for SFC performance simulation. Additionally,
loudSimSFC uses resource abstraction to simplify the definition of new simulation scenarios. Based on these designs, CloudSimSFC

s capable of simulating the policies, actions and events regarding the placement and operating of SFCs. We evaluate the simulation
ccuracy and simulation running time of CloudSimSFC through comparative analysis. Finally, the primary usage of CloudSimSFC is
emonstrated through case studies.

Currently, CloudSimSFC uses configuration files to define simulation scenarios. In the future, we will implement a Graphical
ser Interface (GUI) to simplify the configuration. We also plan to support the new SFC variants in the future.

Software availability: We release CloudSimSFC on repository ‘‘https://github.com/JasonatBuaa/CloudSimSFC/".
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