
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 1

Clouds on the Road: A Software-Defined Fog
Computing Framework for Intelligent Resource

Management in Vehicular Ad-hoc Networks
Ankur Nahar, Student Member, IEEE, Koustav Kumar Mondal, Debasis Das, Senior Member, IEEE,

Rajkumar Buyya, Fellow, IEEE

Abstract—The integration of software-defined networking (SDN) and cloud radio access networks (CRANs) into vehicular ad hoc
networks (VANETs) presents intricate challenges to achieving stringent service level objectives (SLOs). These objectives include
optimizing data flow and resource management, achieving low latency and rapid response times, and ensuring network resilience
under fluctuating conditions. Traditional load balancing and clustering approaches, designed for more static environments, fall short in
the dynamic and variable context of VANETs. This necessitates a paradigm shift towards more adaptive and robust strategies to meet
these advanced SLOs reliably. This paper proposes a software-defined vehicular fog computing (SDFC) framework that refines
resource allocation in VANETs. Our SDFC framework utilizes an intelligent controller placement that strategically positions
decision-making entities within the network to optimize data flow and resource distribution. This placement is governed by a dynamic
clustering algorithm that responds to variable network conditions, an advancement over the static mappings used by traditional
methods. By incorporating parallel processing principles, the framework ensures that computational tasks are distributed effectively
across network nodes, reducing bottlenecks and enhancing overall network agility. Empirical evaluations (testbed) and simulation
results of our framework indicate a substantial increase in network efficiency: a 28% improvement in average response time, a 23%
decrease in network latency, and a 25% faster convergence to optimal resource distribution compared to state-of-the-art methods.
These improvements testify to the framework’s ability to support the escalating demands of intelligent transportation systems and
underscore its potential to refine operational efficacy within VANETs.

Index Terms—Software defined networking, vehicular ad hoc networks, fog computing, controller placement, load balancing.

✦

1 INTRODUCTION

The implementation of intelligent transportation systems
(ITS) is a critical component in the advancement of smart
city infrastructure [1]. Vehicular ad-hoc networks (VANETs)
constitute a pivotal element for ITS, enabling communi-
cation between vehicles and roadside units [2]. VANETs,
characterized by their high mobility and rapid changes in
network topology, require robust and dynamic solutions for
effective communication management, resource allocation,
and load balancing [3]. Traditional methodologies, which
are predominantly static and centralized, often need to be
revised for the dynamic requirements of VANETs, thus
restricting their effectiveness and scalability [4], [5].

Recent technological developments in software-defined
networking (SDN) and cloud radio access networks (CRAN)
have emerged as critical enablers for optimizing VANET
resource management [6]. SDN introduces a centralized
control mechanism and management of network resources.
Simultaneously, CRAN provides a cloud-based framework
for overseeing radio access networks. However, these ad-

• A.Nahar and D.Das is with the Department of Computer Science and
Engineering, Indian Institute of Technology Jodhpur, India, 342030.
K.K.Mondal is with the Department of IDRP:IoT and Applications, Indian
Institute of Technology Jodhpur, India, 342030.
E-mail: nahar.1@iitj.ac.in, mondal.4@iitj.ac.in, debasis@iitj.ac.in

• R.Buyya is with the Cloud Computing and Distributed Systems
(CLOUDS) Lab, School of Computing and Information Systems, The
University of Melbourne, Australia. E-mail: rbuyya@unimelb.edu.au

Manuscript received April. XX, 2024.

vancements face limitations, particularly due to frequent
vehicular handovers in mobile networks, posing challenges
to service continuity and network stability [7]–[9].

To address these limitations, we propose integrating
fog computing infrastructures. This approach reduces han-
dover frequency and enhances resource allocation through
strategic controller placement [10]–[12]. Our novel software-
defined fog computing (SDFC) framework, tailored for
VANETs, exemplifies this integration by:

1) Adoption of Fog Computing for Edge Proximity:
Fog computing minimizes latency and optimizes
bandwidth utilization by decentralizing data pro-
cessing and storage to the network’s edge. However,
a significant challenge involves orchestrating dis-
tributed fog nodes to ensure data consistency and
synchronization.

2) Parallel Dynamic Clustering (PDC) Algorithm:
Drawing on the principles of Hadoop’s MapReduce,
the PDC algorithm implements a hierarchical clus-
tering approach to refine resource management in
distributed computing environments. It promotes
rapid convergence, precise resource allocation con-
trol, increased scalability, efficient data aggregation
and task distribution.

3) Integration of Flow Based Load Balancing: The de-
ployment of a flow-based load balancer essential for
continuous service delivery. It intelligently reallo-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 2

Load Balancing and 
Resource Management

Network Monitoring 
and Vehicle Status

Open Flow, Road Side 
Units, On-Board Units

Load Balancing

Cloud Server

Fog Orchestrator

Road Side
Units

Software Defined 
Fog

Application Plane

Control Plane

Data Plane

Dynamic 
Clustering

Orientational 
Similarity

Vehicle-to-Vehicle Communication

Fig. 1. Software-Defined Fog Architecture

cates incoming requests across fog nodes according
to the current network load and topology, ensuring
optimal load distribution.

4) Intelligent Controller Placement Methodology:
This approach strategically positions controllers
within the network to improve response times and
decrease communication overhead. This is crucial
for managing interactions between fog nodes and
cloud services effectively.

Each component of our framework contributes to a co-
hesive solution that substantially improves the quality of
service in VANETs. The SDFC framework is systematically
structured into three hierarchical layers as depicted in Fig.
1: the cloud layer, responsible for centralized computation
and storage capabilities; the fog layer, a distributed compu-
tation platform providing immediate, low-latency services;
and the edge layer, which encompasses the vehicular and
roadside units (RSUs) engaged in data generation and initial
processing.

1.1 Motivation
Recognizing the insufficiency of cloud-based models [13],
[14], our research focuses on developing a dynamic frame-
work that adapts to the variable scale and high mobility
inherent in VANETs [15]. This research is specifically moti-
vated to address advanced SLOs, i.e., optimized data flow,
efficient resource management, low latency, rapid response
times, and resilience to network variability. Therefore, we
bound parallelization strategies with clustering to man-
age the computational demands and accelerate the con-
vergence of dynamic clusters, ensuring the system’s scal-
ability [16], [17]. The inherent variability of VANET traffic
further prompts us to explore sophisticated load balancing
techniques, necessitating a shift towards flow-based mech-
anisms that can adeptly manage the sporadic data flows
[10], [18]. Moreover, controllers’ strategic placement aims to
enhance network performance, reduce operational latency,
and improve resource management in real-time communi-
cation. These motivations collectively contribute to forming
a robust framework capable of upholding the demanding
requirements of modern vehicular networks, particularly
addressing the gaps in cloud-based models.

1.2 Guiding Principles and Rationale
Our SDFC framework integrates foundational principles to
address the unique challenges of VANETs. This method-

ological approach is rooted in a blend of theoretical knowl-
edge and empirical evidence, as follows:

Dynamic Clustering Algorithm: We incorporate a dy-
namic clustering algorithm (based on Lagrange Multipliers),
pivotal for real-time adaptability within VANETs. This al-
gorithm is designed to cluster vehicles and infrastructure
based on communication frequency and geographical prox-
imity. The rationale behind this choice is underscored by
the dynamic clustering ability to enhance coordination and
communication in the face of topology changes.

Parallel Processing Integration: Recognizing the com-
putational demands of dynamic clustering, we integrate
parallel processing (Hadoop’s Map-Reduce) to expedite
convergence. This strategy, inspired by successful imple-
mentations in distributed computing environments, dis-
tributes the clustering workload across multiple nodes,
curtailing processing time for the rapid operational rate of
VANETs.

Flow-Based Load Balancing: To ensure equitable dis-
tribution of network traffic and to mitigate congestion, we
employ a flow-based load-balancing scheme called Traefik
with Proportional-Integral-Derivatives (PID). Network flow
theories inform this approach, optimizing throughput in
high-velocity data networks.

Intelligent Controller Placement: For the strategic
placement of controllers, we utilize integer programming
and a greedy approach, a decision influenced by its preci-
sion and robustness in network optimization under variable
conditions. This method has been selected for its proven
capacity to enhance network responsiveness and maintain
optimal performance despite changes in the network state.
In the subsequent section 5, we provide a comprehensive
exposition of these strategic components, detailing the pro-
cesses and algorithms that constitute our framework.

The structure of this paper is as follows: Section 2
surveys the latest advancements in fog, SDN, and edge
computing. Section 3 unveils the architectural blueprint of
our SDFC framework. Section 4 delves into the problem
statement and foundational concepts. Section 5 elucidates
our solution and the technical facets. Section 6 presents
empirical and simulated results, and Section 7 concludes
the paper and suggests future directives.

2 RELATED WORK

In this section, we review recent developments in SDN
and CRAN, which have markedly enhanced resource man-
agement in VANETs. We emphasize on the significant or-
chestration of IoT applications, edge-centric load balancing,
resource allocation, and the management of incentives for
resource orchestration.

2.1 Edge Orchestration in Streaming IoT Applications

Internet of Things (IoT) scheduling applications domain has
benefited from innovative advances. Goudarzi et al. [29]
presented a detailed taxonomy covering design, environ-
ment modeling, optimization, decision engines, and perfor-
mance metrics. Del et al. [30] developed a robust schedul-
ing system for edge and fog computing environments that
struggle with dynamic environmental changes. A weighted

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 3

TABLE 1
A Summary of Related Works Based on Characteristics

Scheme

Environmental Properties Objectives Workload Evaluation Approach

Cloud Edge Vehicular
Fog / Fog

Mobility
Support

Resource
Manage-
ment

Load Bal-
ancing

Controller
Placement

Real
Time

Batch Empirical Simulation

[3] ✓ ✓ × ✓ ✓ × NA ✓ × × ✓

[4] ✓ ✓ × ✓ ✓ ✓ × ✓ × ✓ ×
[6] × ✓ × ✓ × × × NA NA × ✓

[10] ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ × ✓

[11] ✓ ✓ × ✓ ✓ × NA ✓ NA ✓ ×
[19] × ✓ × ✓ ✓ × × NA NA × ✓

[20] × ✓ × ✓ ✓ × × ✓ ✓ ✓ ×
[13] × ✓ × ✓ ✓ × NA NA NA × ✓

[14] × ✓ × ✓ ✓ × NA NA NA × ✓

[18] ✓ ✓ ✓ × ✓ × ✓ × ✓ × ✓

[21] ✓ ✓ ✓ × × × ✓ ✓ × ✓ ×
[22] × ✓ ✓ × ✓ × NA NA NA × ✓

[23] ✓ ✓ ✓ × NA NA NA NA NA × ✓

[24] × ✓ ✓ × × ✓ NA ✓ ✓ × ✓

[25] × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ×
[26] ✓ ✓ ✓ ✓ ✓ ✓ NA × ✓ × ✓

[27] × ✓ × ✓ ✓ × NA NA NA ✓ ×
[28] × ✓ × ✓ ✓ × NA NA NA × ✓

Our
Work

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

actor-learner architecture for deployment decisions in edge
scenarios was explored by Goudarzi et al. [21], but their
architecture necessitates more refined exploration strategies
in mobile environments. Liao et al. [22] proposed a cognitive
plane architecture utilizing cognitive fog resources, which
suffered from resource over-provisioning. Okegbile et al.
[23] presented a strategy combining stochastic geometry and
queuing theory, although its complexity and I/O interfer-
ence risks are non-trivial. Goudarzi et al. [18] recommended
a memetic algorithm-based cost model, which is less effec-
tive in dynamic networks.

The literature indicates challenges such as adaptability to
environmental changes, sophisticated exploration in mobile
environments, resource wastage, system complexity, and
limitations in dynamic settings. Our approach addresses
these by embracing adaptability and reducing the risk of
I/O interference by employing a simplified yet effective
load-balancing strategy.

2.2 Load Balancing Intricacies in Edge Computing
The field of distributed load balancing has seen advance-
ments such as Proietti et al., [24] latency-centric method
using a continuous-time model and an adaptive heuristic
approach. However, it needs to improve with varying mi-
gration ratios. Rehman et al. [10] proposed a four-layer data
transmission architecture from vehicles to edge devices,
relying on microservice access management but contingent
on optimal controller placement and load balancing. He et
al. [4] introduced an intent-based framework, yet traditional

virtual network embedding methods lag in execution times.
Duan et al. [25] offered a workload distribution solution
across edge servers; however, the variability in vehicle data
processing affects workload distribution. The author in [31],
utilized Markov predictors for mobility management and
simulated annealing for dynamic controller placement. In
the same direction, in [32], authors utilized existing urban
infrastructure for placing cloudlets, which is cost-effective
and leveraged widespread existing assets like street lamps.
Although it reduces installation costs and uses familiar
urban elements, the technique faces challenges against dy-
namicity and is not adaptable to traffic conditions.

Existing research reveals a dependence on stable mi-
gration ratios and precise controller placement for load
balancing. Our method mitigates these issues with an ap-
proach less affected by migration fluctuations and improved
network embedding for execution efficiency.

2.3 Edge Intelligence Based Resource Allocation
Kumar et al. [26] introduced a policy for resource allocation
in electric vehicle-adapted fog environments. Nonetheless,
their random resource selection leads to inefficient alloca-
tion. Bahreini et al. [20] created a strategy to utilize process-
ing power effectively, though vehicle unpredictability limits
its effectiveness. Slamnik et al. [11] outlined a replacement
target node to optimize the deployment of edge vehicle-
to-everything (V2X) applications. However, it faced prac-
tical implementation challenges. Mittal et al. [19] utilized
a resource augmentation technique, providing supplemen-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 4

tary support for vehicular applications, with performance
dependent on the number of edge nodes. Xiao et al. [13]
developed a vehicle role assignment technique for federated
learning. However, distortions, noise, and inflections occur-
ring when vehicles are in motion compromise sensor data
quality. Zhao et al. [6] employed Geohash for traffic data
analysis, although their learning machine’s random input
weights introduce prediction uncertainties.

The literature points to shortcomings like inefficient re-
source allocation and vehicle participation unpredictability.
Our methodology circumvents these by not solely relying
on edge node quantity but on the efficacious use of available
nodes, lessening the performance impact of network size.

2.4 Incentive Based Edge Resource Orchestration

In the domain of resource management for vehicular edge
computing, noteworthy contributions have been made to
improve resource allocation mechanisms. Zhu et al. [27] pro-
posed an incentive model to boost a vehicular edge comput-
ing (VEC) server’s role in allocation, but this led to increased
server load and potential instability due to lower unit pric-
ing. Building on this, Ng et al. [28] presented a dual auction
mechanism to distribute server resources for coded com-
puting tasks, though balancing recovery thresholds against
communication costs has proven to be a delicate endeavor.
In parallel, Hu et al. [3] introduced a decentralized auction-
bid system that allows RSUs to assign tasks dynamically to
mobile units, although fluctuating processing demands pose
substantial execution hurdles. Fan et al. [14] have explored a
joint outsourcing approach utilizing reinforcement learning
with gradient-based methods, but their model’s efficiency is
adversely affected by high vehicular speeds.

These studies reveal challenges such as increased server
traffic due to pricing models and the intricate balance
needed between recovery thresholds and communication
costs in resource allocation. Our approach seeks to over-
come these issues by implementing an optimized controller
placement strategy that dynamically adjusts to communi-
cation costs, thus ensuring a well-calibrated and resource-
efficient system. For clarity, Table 1 summarizes the related
work, highlighting their innovations and the challenges they
present.

3 ARCHITECTURAL MODEL

In our proposed research, we introduce a hierarchical SDFC
architecture as illustrated in Fig. 1. This architecture enables
seamless interaction between vehicular entities and comput-
ing resources across different layers.
Cloud Layer: This layer hosts a VMware ESXi server hosting
multiple virtual machines (VMs) equipped with multi-core
CPUs, high-speed SSDs, and extensive RAM. These VMs
are pivotal for handling intensive data processing tasks
and large-scale storage, thus serving as the backbone for
advanced services in the VANET.
Fog Computing Layer: Here, nodes are envisioned as
high-performance computation servers. Each node’s high-
core processors and agile network interfaces are specifi-
cally chosen to ensure prompt data processing and rapid
data relay. We utilize Docker for containerization, creating

isolated application environments that boost operational
efficiency. Dedicated fog nodes, acting as cluster controllers,
are responsible for managing communication and resource
allocation within their clusters. These nodes are crucial
for reducing data processing latency and improving the
responsiveness of the network.
Edge Layer: This layer comprises vehicles equipped with
on-board units (OBUs) and RSUs, adhering to IEEE
802.11p/WAVE standards. The integration of global posi-
tioning system (GPS) and V2X transceivers (Uu (for inter-
face between vehicle and cellular network) and PC5 (for
vehicle-to-vehicle and vehicle-to-infrastructure communica-
tion)), alongside 4G/5G modules, facilitates effective vehic-
ular communication and improves connectivity. This layer
is critical for collecting real-time data and serving as the
network’s sensory interface.
SDN Integration: An SDN controller, placed within the fog
layer, is instrumental for network programmability and con-
trol. Utilizing an Open Network Operating System (ONOS),
the controller oversees network functionalities, ensuring
streamlined communication and resource management. The
controller’s role is to adapt network configurations based on
real-time vehicular data dynamically. A traffic engineering
server in the cloud layer also employs live traffic data from
Google Maps to make informed routing decisions. Its inte-
gration with the SDN controller ensures network resources
are optimally utilized and vehicle-to-RSU communication is
maintained with minimal latency.

4 PROBLEM DEFINITION

This research seeks to address the problems of efficient re-
source allocation and the dynamic placement of controllers
in VANETs. The following problems are addressed explicitly
in this research:

Parallel Dynamic Clustering: Parallel clustering in-
volves dividing the vehicles in the network into multiple
subgroups and performing the clustering task indepen-
dently for each subgroup in parallel. Let V = {v1, v2, ..., vn}
be the set of n vehicles in the network, C = {c1, c2, ..., ck}
be the set of k clusters, and S = {s1, s2, ..., sm} be the set
of m non-overlapping subnetwork of vehicles, where each
subnetwork contains a subset of the vehicles in V . Parallel
clustering aims to assign each vehicle vj to a cluster in ci
such that the intra-cluster similarity is maximized and the
inter-cluster similarity is minimized. This is formulated as
an optimization problem:

maximize
k∑

i=1

∑
vj∈ci

sim(vj , ci), (1)

Subject to Constraints:{∑k
i=1 I(vj ∈ ci) = 1,∀j = 1, 2, ..., n,∑n
j=1 I(vj ∈ Sx) = z,∀x = 1, 2, ...,m.

(2)

where sim(vj , ci) is the similarity between vehicle vj and
cluster ci characteristics (based on proximity), and I(vj ∈
ci) is a binary variable that indicates whether vehicle vj is
assigned to cluster ci. The first constraint ensures that each
vehicle is assigned to exactly one cluster, and the second
constraint ensures each subnetwork contains z vehicles. The

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 5

optimization problem is then solved independently for each
subnetwork Sx in parallel to implement parallel clustering.
The final clustering results are obtained by combining the
results from all subnetworks.

Load balancing: Once cluster formation is completed,
a flow-based load balancing algorithm is utilized to allo-
cate resources and determine the optimal placement for
controllers [24]. The core objective is to minimize the total
resource utilization Rv across all vehicles v in the network,
formulated as:

min
∑
v∈V

Rv. (3)

This objective is subject to a set of constraints:∑
vj∈V

Rv ≤ Rmax, ∀j ∈ [1, n],

∑
j∈[1,n]

vj ∈ V ;CnTl, l = 1,

∑
l∈[1,z]

CnTl ∈ ci, i = 1,∀ci ∈ C.

(4)

These constraints ensure that the resource allocation per
vehicle does not exceed a specified maximum, each vehicle
is uniquely assigned to one controller, and every controller
is linked to at least one cluster, thus facilitating balanced
load distribution. The constraints are designed to ensure
that resources are allocated within the network’s operational
limits:

• The first constraint ensures equitable resource distri-
bution by limiting the resources for each vehicle to a
maximum capacity Rmax.

• The second constraint guarantees a one-to-one rela-
tionship between each vehicle vj and a controller,
denoted by CnTl, where l = 1 signifies this exclusive
association. This condition reduces control complex-
ity and aids in streamlined communication.

• The third constraint mandates that each controller
actively manages at least one cluster, as indicated by
CnTl ∈ ci, where i = 1 signifies at least one active
assignment. This condition guarantees the effective
utilization of controllers and prevents underutiliza-
tion.

Load balancing is achieved by minimizing the variance
of resource utilization Var(Rv) → min{Rv}, aiming for
each Rv to approach the mean resource utilization. This
minimization indicates an equitable load distribution across
the network. The constraints are pivotal in ensuring that
resources are neither overly concentrated nor underutilized
in any part of the network, leading to an optimal balance.

Controller Placement: The final step involves the dy-
namic placement of controllers within the network to ensure
efficient communication and resource allocation [15]. The
dynamic controller placement problem is an NP-hard prob-
lem and requires an efficient algorithm to solve it optimally
or approximately. Let xi be the binary variable that denotes
whether a controller is placed in the i-th cluster, where
xi = 1 if a controller is placed in the i-th cluster and 0
otherwise. The objective of dynamic controller placement

is to minimize the total cost of controller placement, subject
to the following constraints:

• At least one controller should cover each node in the
network:

∑n
j=1 xi ∗ vj ≥ V

• The total number of controllers placed in the network
should be less than or equal to the maximum number
of controllers available,

∑k
i=1 xi ≤ m

In our proposed method, we use an integer programming
and greedy method to solve the dynamic controller place-
ment problem efficiently.

5 SOFTWARE-DEFINED FOG FRAMEWORK FOR
VANETS

The forthcoming subsections provide an in-depth exposition
of the strategic components embedded within our approach,
delineating the process of creating a robust, scalable, and
responsive solution designed to thrive in rapidly evolving
network conditions.

5.1 Dynamic Clustering Mechanism

Our approach incorporates a dynamic clustering algorithm
that categorizes vehicles and infrastructure based on prox-
imity and communication frequency.

We employ decentralized clustering, allowing cluster
modifications according to traffic patterns and network ar-
chitecture. This methodology enhances resource allocation
and load balancing within clusters, with gossip protocol
(Ref. Section 5.2) aiding inter-node communication and co-
ordination. The matrix D represents the distances between
all pairs of vehicles in the network, where D(i, j) denotes
the distance between vehicles vi and vj . This measure relies
on the physical distance and quality of communication
links. The algorithm begins by calculating pairwise dis-
tances, forming a dendrogram through hierarchical cluster-
ing. The optimal number of clusters and data partitioning
are ascertained at each dendrogram level using distance
metrics. Let us denote the objective function as:

J =
∑
i<j

d(i, j)[ci ̸= cj ], (5)

In which ci and cj symbolize the clusters for vehicles vi
and vj , and d(i, j) signifies the distance between these
vehicles. The term [ci ̸= cj] ensures the summation only
includes pairs of vehicle distances from differing clusters.
To minimize J concerning the constraint that the distance
between any two vehicles in the same cluster does not
exceed Th (Here, Th, the threshold distance is calculated
statistically using the Elbow method after finding the opti-
mal number of clusters), we apply Lagrange multipliers to
form a Lagrangian function:

L = J + λ
∑
i<j

[ci = cj ](Th− d(i, j)), (6)

To find the optimal solution, we differentiate L with respect
to d(i, j) for vehicle pairs in different clusters:

∂L

∂d(i, j)
= −λ[ci = cj ] for ci ̸= cj , (7)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 6

and set it equal to zero to solve for λ. This gives us:

λ =

∑
i<j,ci=cj

(Th− d(i, j))∑
i<j [ci = cj ]

, (8)

Substituting λ into L, we obtain:

L = J +
∑
i<j

[ci = cj ](Th− d(i, j)). (9)

Next, to minimize L, we differentiate it concerning the
cluster assignment ci and equate it to zero:

∂L

∂ci
=
∑
j

d(i, j)[ci ̸= cj ]− λ
∑
j

[ci = cj ] = 0, (10)

Solving for ci gives us the cluster assignment for each
vehicle vi:

ci = argminc
∑
j

d(i, j)[c = cj ]. (11)

Equation (11) assigns vehicle vi to the cluster whose centroid
is closest. The algorithm recursively partitions data objects
into smaller clusters until it achieves the desired granular-
ity. At each level, optimal partitioning is ascertained by
selecting the cluster that maximizes the quality function
Q(C). This algorithm offers several advantages over tradi-
tional clustering methods, such as K-means and hierarchical
clustering with a fixed number of clusters, by adapting to
dynamic VANETs, providing a hierarchical structure for
resource allocation and load balancing, and incorporating
domain-specific knowledge and constraints into the cluster-
ing process.� �

# Input: Vehicles V with geographical locations
# Output: Clusters of vehicles

# Initialize centroids based on the Elbow method
def init centroids(V, K):

centroids = select initial centroids(V, K)
return centroids

# Hierarchical clustering to construct a dendrogram
def hier clustering(V, centroids):

D = compute pairwise distances(V)
dendrogram = build dendrogram(D)
return dendrogram

# Apply Lagrangian optimization for cluster refinement
def optimize clusters(dendrogram, Th):

for level in dendrogram:
optimal clusters, L = form lagrangian function(level, Th)
centroids, cluster assignments = up clusters(optimal clusters, L)

return centroids, cluster assignments

# Main clustering algorithm
def dynamic clustering(V):

K = determine optimal K(V)
centroids = init centroids(V, K)
dendrogram = hier clustering(V, centroids)

# Threshold distance for intra−cluster vehicle distance
Th = calculate threshold distance(dendrogram)

centroids, cluster assignments = optimize clusters(dendrogram, Th)

while not convergence(centroids, cluster assignments):
centroids, cluster assignments = refine cluster assign(V, centroids)

return cluster assignments
 	
The algorithm commences by calculating pairwise dis-

tances D between all vehicles in the network. Utilizing
these distances, a dendrogram is constructed through hi-
erarchical clustering. The algorithm then iteratively assesses

each dendrogram level to determine the optimal number
of clusters and their respective partitions using distance
metrics. This step is crucial for identifying cohesive, well-
defined clusters that can efficiently manage communication
and resource demands. To minimize inter-cluster distances
while ensuring that vehicles within the same cluster remain
within a predefined threshold distance (Th), we define an
objective function J . Optimization is achieved through the
application of Lagrange multipliers, creating a Lagrangian
function L. The algorithm then assigns each vehicle to the
nearest cluster centroid, as determined by minimizing the
Lagrangian function concerning cluster assignments. This
process continues recursively, partitioning the network data
into increasingly granular clusters until the desired level of
detail and optimization is achieved.

5.2 Gossip Protocol

Gossip protocol emulates how information is disseminated,
where vehicles communicate with peers to spread and up-
date information throughout the network. It is chosen for
VANETs due to their robustness and scalability, making
them suitable for vehicular networks’ highly dynamic and
distributed nature. In our SDFC framework, each vehicle pe-
riodically broadcasts a status message containing its current
state, including position, velocity, and other pertinent con-
textual information. Neighboring nodes receive this mes-
sage within a certain radius and then relay the information
to their neighbors, propagating the data throughout the net-
work. A control mechanism is employed to prevent network
congestion, based on a combination of sequence numbers
and timestamps that determines the necessity of retransmit-
ting messages only if they contain newer or significantly
different information than previously disseminated. The
effectiveness of gossip protocol is quantitatively assessed
by modeling the probability of information dissemination.
Let Pg(t) denote the probability that a information has been
gossiped to all nodes within the network after t rounds:

Pg(t) = 1−
(
1−

(
1

n

)t
)n

, (12)

Where n is the number of nodes within the broadcast
radius of a single gossip event, this probability approaches 1
as t increases, indicating successful dissemination across the
network. The gossip protocol directly informs the dynamic
clustering process. As nodes receive updated information
about their neighbors, they can make informed decisions
about cluster membership. Here, we leverages Lagrangian
relaxation for constraint handling alongside a cosine simi-
larity framework from our previous work [33], [34]. Cosine
similarity assess the angle between non-zero vectors in
multidimensional space, encompassing attributes, position
coordinates, speed, and direction. The cosine similarity be-
tween vectors vi and vj , denoted as cos(θij), is defined as:

cos(θij) =
vi · vj

∥vi∥∥vj∥
, (13)

where vi · vj represents the dot product and ∥vi∥
signifies the magnitude of the vectors. Employing cosine
similarity, our clustering optimization framework seeks to

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 7

maximize intra-cluster similarity while minimizing inter-
cluster similarity, thereby enhancing both cluster coherence
and separation. This objective is formulated as:

max
C

k∑
i=1

∑
vj∈ci

cos(θj,ci)

− λ

∑
i ̸=j

cos(θci,cj )


Here, cos(θj,ci) denotes the cosine similarity between a

vehicle vj and its own cluster centroid ci, while cos(θci,cj )
quantifies the similarity between different cluster centroids
ci and cj . The parameter λ serves as a balancing factor
between these objectives, with C = {c1, c2, . . . , ck} rep-
resenting the cluster set. To solve the optimization prob-
lem, we initiate by assigning vehicles to clusters based on
geographical proximity. Subsequently, we compute cosine
similarity for each vehicle with every cluster centroid, assign
vehicles to the cluster with the highest cosine similarity,
recalculate centroids based on the reassigned vehicles, and
enhance inter-cluster dissimilarity by penalizing high simi-
larity scores between clusters using the regularization term
λ. This iterative process continues until convergence, where
further reallocations do not substantially affect the objective
function, ensuring both stability and optimality in cluster
assignments. Further, determining the optimal λ value in-
volves experimental tuning, calibrated to the framework’s
resilience across varying network conditions.

5.3 Parallelization
Distributed clustering algorithms provide significant advan-
tages, yet they considered computationally demanding and
present extended convergence times. To overcome this, our
method incorporates a parallelization strategy, disseminat-
ing clustering tasks across diverse nodes in the network to
hasten convergence. The foundation of our technique lies in
Hadoop’s MapReduce framework, an approach extensively
utilized in big data contexts.

Subnetwork {t1}

Subnetwork {tn}

Granualize 
Subnetwork {t1}

Granualize 
Subnetwork {tn}

Find Centroid {t1}

Find Centroid {t1}

Merge 
Centroids

Mapper Reducer

Fig. 2. Map-Reduce Function for Parallelization Technique

As demonstrated in Fig. 2, parallelization is realized by
dividing the network into several subnetworks, each un-
dergoing independent processing. The clustering algorithm
functions parallel across each subnetwork, amalgamating
the results to form the final cluster. The network’s divi-
sion results in smaller subnetworks, each with an assigned
cluster head who coordinates the subnetwork’s clustering
process. These cluster heads sustain communication to syn-
chronize the clustering process across the entire network.
The MapReduce algorithm is implemented using (14) for
the map stage and (15) for reduce stage:

ci = argmin
∑
j

d(i, j)[cj is a centroid], (14)

µk =
1

|Ck|
∑
x∈Ck

xCk = x|x is closest to µk, (15)

Here, ci is the cluster identifier for data point i, cj represents
the centroid of cluster j, µk is the new centroid of cluster k,
Ck is the set of data points in cluster k, and |Ck| is the size
of cluster k. MapReduce is parallelized across numerous
nodes, each processing a subset of the data, yielding faster
processing times and improved scalability for large datasets.
The clustering process occurs parallel within each subnet-
work, sx, with a unique cluster head for each subnetwork,
denoted as ci. This parallelization technique involves the
following:

• Division of the network into subnetworks based on
network topology and proximity.

• Assignment of a cluster head to each subnetwork.
• Parallel execution of the clustering process within

each subnetwork, coordinated by the cluster head.
• Communication among cluster heads to ensure syn-

chronization of the clustering process across the en-
tire network.

The parallel clustering process persists until convergence,
signified by no further cluster changes. Upon convergence,
cluster information is disseminated in the network, enabling
nodes to identify its cluster membership, a prerequisite for
determining the network’s optimal controller placement.

5.4 Load-Balancing Process

Our framework, as depicted in Fig. 3, leverages hierarchi-
cal clustering and Traefik for flow-based load balancing.
Herein, L represents the set of all data points and the clus-
ters identified post clustering. Each ci cluster encompasses
a subset of data points for which a corresponding front-end
fi is assigned, handling requests for data points within that
cluster.

Treafik
Load Balancer

Dockered

Dockered

Dockered

Resource 
Orchestrator

Fog Layer

Container Services
&

Resources

Fig. 3. Loadbalancer Framework using Traefik

The implementation of our load balancer entails the
following procedures:

Containerization: Individual application components
are encapsulated within discrete containers as docker con-
tainers, facilitating easy deployment and management.

Service Discovery: Utilizing Consul, a service discovery
mechanism, service endpoints (SD = sd1, sd2, . . . , sdn) are
registered and discovered.

Traefik Configuration: traffic load balancing is config-
ured within Traefik, utilizing front-end and back-end con-
cepts to achieve flow-based load balancing.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 8

Front-end Configuration: A unique front-end (F =
f1, f2, . . . , fk), each with a distinct domain name and port
number, is created for each cluster and mapped accordingly.
Each front-end fi for a given cluster ci is defined as:

fi = cj ∈ C|xi,j ∈ ci. (16)

Thus, front-end fi encompasses all containerized com-
ponents capable of handling data points within cluster ci.

Back-end Configuration: Traefik is configured to dis-
cover endpoints via service discovery dynamically. For each
front-end fi, a corresponding back-end (B = b1, b2, . . . , bk)
is established. Each back-end bi is defined as:

bi = sdj ∈ SD|ck ∈ fi, sdj can handle ck. (17)

Hence, the back-end bi comprises all endpoints that can
handle the containerized components within front-end fi.

Load Balancing: Traefik balances incoming traffic, q,
belonging to data point xq based on the flow. The front-
end fi capable of handling xq is determined by solving the
optimization problem:

min
1≤i≤k

d(xq, ci). (18)

Upon identification of the appropriate front-end, Trae-
fik redirects the request to the corresponding back-end bi.
Within bi, the suitable endpoint sdj to handle xq is deter-
mined by:

min
sdj∈bi

Ld(sdj). (19)

The load function Ld(sdj) is defined based on specific
application requirements:

Ld(sdj) =
number of active connections on sdj

maximum number of connections on sdj
. (20)

Endpoints with the most negligible load are thus chosen
to manage the requests.

Updating the Load Balancing in Real-Time: The Trae-
fik load balancer implements a flow-based load balancing
mechanism. This approach centers on intelligent network
traffic management by methodically segregating and cate-
gorizing data packets into distinct ’flows.’ These flows are
identified based on shared characteristics like IP addresses
and port numbers. The efficacy of this system lies in its
precise traffic analysis and distribution capabilities, ensur-
ing that each flow is routed optimally based on its unique
requirements and characteristics. Doing so significantly en-
hances the efficiency of data handling and transmission
across the network, leading to improved response times
and a more balanced utilization of network resources. The
process involves:

1) Traefik actively monitors service endpoints, assess-
ing health and performance metrics like response
times and resource utilization.

2) It integrates with service discovery tools (e.g., Con-
sul, etcd) to remain updated on the network state,
allowing for immediate routing configuration ad-
justments.

3) Service instances are dynamically assigned weights
based on real-time load and performance, influenc-
ing the distribution of incoming requests.

4) Traefik recalibrates its configurations in real-time
when performance thresholds are crossed, ensuring
optimal request distribution.

5) Consequently, requests are redistributed according
to the updated weights, balancing the load relative
to each service instance’s current capacity.

Consider the incoming request rate Rr, and let N be the
number of service instances. For each instance i at time t,
define Cpi as the capacity, Ldi(t) as the current load, and
Wei(t) as the assigned weight. Traefik’s load balancing aims
to minimize the difference between the actual load and the
desired load distribution, formulated as:

min
We(t)

N∑
i=1

∣∣∣∣∣Ldi(t)− Wei(t)∑N
j=1 Wej(t)

·Rr

∣∣∣∣∣ , (21)

subject to 0 ≤ Wei(t) ≤ 1 for all i, with the sum of all
weights equal to 1, and ensuring Ldi(t) plus the proportion
of Rr assigned to each instance does not exceed Cpi.

Traefik employs a Proportional-Integral-Derivative (PID)
controller for real-time weight adjustment based on the
current load Ldi(t), incoming request rate Rr, and each
instance’s capacity Cpi. The PID controller computes a
correction factor using the historical error (integral), the
current error (proportional), and the rate of change of error
(derivative).

5.5 Intelligent Controller Placement
Controller placement in our approach depends on re-
sponse time and communication overhead. The set of
fog nodes within the SDFC architecture is represented by
FG = {Fg1, Fg2, ..., Fgn}. The hierarchical clustering is
performed on vehicle-generated data points, yielding a set
of clusters. Each cluster is linked to a front-end fi and a
back-end Bi. The optimal controller number and location
are identified by the integer programming representation of
the optimization problem as follows:

min
k,P |pk

k∑
i=1

Ti +
n∑

j=1

k∑
i=1

COijxij , (22)

Here, k denotes the controller count, P signifies the con-
troller location set, Ti represents the response time of fog
nodes in cluster ci, COij is the communication overhead
between fog node Fgj and controller pi, and xij is a binary
variable indicating if fog node Fgj is assigned to controller
pi. The response time Ti is determined by the processing
time of data in cluster ci and the latency of the communi-
cation channel between the fog nodes and controllers. The
communication overhead COij is calculated based on the
distance between fog node Fgj and controller pi or the
bandwidth and latency of the communication channel. The
optimization problem is subject to:

∑k
i=1 xij = 1; ∀j ∈ 1, 2, ..., n,∑n
j=1 xij ≤ Mi; ∀i ∈ 1, 2, ..., k,

Iij ∈ 0, 1; ∀i ∈ 1, 2, ..., k, j ∈ 1, 2, ..., n,

k ∈ Z+,

Mi ∈ Z+

(23)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 9

In this equation, Mi is an integer variable signifying the
maximum number of fog nodes assigned to controller pi.
The first constraint guarantees that each fog node is as-
signed exactly one controller. The second constraint ensures
that the number of fog nodes assigned to each controller
does not exceed Mi. The third constraint stipulates that
the decision variables Iij are binary. The fourth and fifth
constraints require the controller count and the maximum
number of fog nodes per controller to be integer values.

We utilize a Greedy Algorithm designed for real-time
adaptability. This algorithm swiftly identifies the most
strategic locations for controller placement to minimize to-
tal response time and communication overhead across the
network. Given a set of fog nodes fgj and a predetermined
number of clusters ci, the algorithm iteratively selects fog
nodes to act as controllers based on their potential to reduce
the overall network latency and load. At each iteration, for
each cluster ci ∈ C , the algorithm evaluates each fog node
Fgj ∈ ci to determine the reduction in total response time
and communication overhead, denoted as ∆Tij +∆COij , if
Fgj were selected as a controller. The fog node yielding the
maximum reduction is chosen as a controller for that itera-
tion. The selection criterion at each iteration is represented
as:

max
Fgj∈FG

(∆Tij +∆COij), (24)

where ∆Tij signifies the anticipated reduction in response
time, and ∆COij represents the decrease in communication
overhead when Fgj is designated as a controller. The al-
gorithm places controllers until the predetermined number
of controllers M is reached or no further significant reduc-
tions in response time and communication overhead are
achievable. This process ensures a rapid and computation-
ally efficient solution to the controller placement problem,
which is vital in the dynamic and fast-paced environment
of VANETs. Our Greedy Algorithm offers a pragmatic bal-
ance between computational efficiency and solution qual-
ity. While it may not always provide the globally optimal
solution, its speed and simplicity make it particularly suit-
able for real-time applications in VANETs, where network
conditions can rapidly change, and quick decision-making
is crucial. The algorithm’s performance, evaluated in terms
of improved response times and reduced communication
overhead, demonstrates its effectiveness in enhancing the
overall efficiency and reliability of the VANET. Once the op-
timal location and the number of controllers are ascertained,
the Traefik-based flow-based load balancing configuration
is updated to guide requests to the appropriate controller
and front end based on the clustering and controller place-
ment. This allows load balancing to adapt automatically to
changes in the architecture.

6 PERFORMANCE EVALUATION

Our evaluation of the proposed framework’s performance
utilizes a combination of simulation and practical test-bed
experiments. We have developed a sophisticated test bed
that yields synthetic but realistic data sets to inform our
simulations, ensuring they mirror actual conditions closely.
Further sections will elaborate on our experimental infras-
tructure, detailing the technical specifications, simulation

variables, data analysis techniques, and the findings derived
from these experiments.

6.1 Test-Bed Setup and Parameters
Our experimental test bed consists a network of Raspberry
Pi 4 Model B+ units, 1.5GHz quad-core ARMv8 CPU and
equipped with 4GB LPDDR4-3200 SDRAM. These devices,
configured as network nodes, utilize a dual-band wireless
interface with 2.4 GHz and 5.0 GHz IEEE 802.11ac frequen-
cies, in compliance with the IEEE 802.11p/WAVE standard
for vehicular communications and are equipped with GPS
units to simulate vehicle movement. On the server side,
we employ an Intel Xeon 4212-equipped server with 62
cores and 352 GB of RAM to host 10 virtual machines.
Each VM is allocated four CPU cores, 8GB of RAM, and
100GB of storage. Network traffic is efficiently managed
across these VMs by the Traefik load balancer, preventing
potential bottlenecks. The Apache Bench utility is engaged
for HTTP load testing, inducing significant network traffic
to test system performance under strenuous conditions.
The Hadoop MapReduce framework is deployed for data
processing, with 100 Mapper nodes classifying vehicles into
clusters by geographic proximity and 10 Reducer nodes
amalgamating this data, facilitating the determination of
the most suitable controller placement. Each Docker con-
tainer has 1 CPU core, 2GB of RAM, and 50GB of storage.
Traefik also serves as an edge router and load balancer for
these containers, ensuring even network traffic distribution.
The cAdvisor tool is integrated to monitor container-level
metrics such as CPU, memory usage, and network traffic.
These Docker containers, representing virtual vehicles, dis-
patch 82,750 data packets, encompassing critical informa-
tion like longitude, latitude, velocity, vehicle ID, and direc-
tion. Monitoring and data aggregation are conducted via
Grafana and Prometheus, with Grafana providing real-time
visualization of key metrics like network latency, packet
loss, and controller placement efficacy. Prometheus archives
this data within a time-series database. Additionally, Node-
exporter accumulates system-level metrics, including CPU,
memory, and disk usage, rounding out our comprehensive
monitoring suite.

6.2 Empirical Results
The empirical evidence obtained from our test-bed inves-
tigations provides substantial insight into the CPU perfor-
mance within a fog computing framework. Fig. 4 displays
the CPU utilization per vehicle during data transmission,
which includes essential information such as geographical
coordinates, speed, identification, and trajectory to the fog
nodes. This figure assigns unique identifiers to each vehicle,
enabling a detailed examination of the pattern of CPU
usage.

The graph indicates that the maximum CPU usage ob-
served in our experiment is approximately 0.256%. This
minimal utilization suggests that the fog computing in-
frastructure is proficient in processing data with nominal
resource employment. Moreover, the CPU load during the
data transfer process was consistent and moderate across
all vehicles, with observed values ranging between 0.215%
to 0.257%. This uniform distribution of CPU usage implies

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 10

Blank Template

Fig. 4. CPU Usage per Vehicle in the System

that the fog nodes effectively balance the computational
demands, leading to an equitable distribution of system
resources. The stability of CPU usage across various vehicles
underscores the scalability and robustness of the fog com-
puting system, indicating its capacity to handle extensive
vehicular communications without degradation in perfor-
mance. Fig. 5 illustrates the data transfer rates and network
utilization for each vehicle within the fog computing envi-
ronment. It is imperative to note that maintaining optimal
network utilization in fog computing is challenging due to
the dynamic and varied nature of the network nodes and
the substantial volume of data transmitted.

Blank Template

Fig. 5. Network Traffic per Vehicle

The figure shows that the peak network usage reached
approximately 675 B/s. This data emphasizes the efficiency
of the fog computing framework in managing data transfers,
thus ensuring effective and optimal network utilization.
Furthermore, the network usage per vehicle, ranging from
616 B/s to 675 B/s, indicates a steady and manageable load
on the network’s infrastructure. The clustering results, de-
rived from processing 82,750 packets from various vehicles,
assert the resilience of our proposed fog computing model.
Employing the Elbow Method, a recognized heuristic for
determining the ideal cluster count, we discerned the most
appropriate number of distinct clusters. This approach,
rooted in the concept of diminishing marginal gains, iden-
tifies the ’elbow’ point where the reduction in the sum of
squared distances within clusters becomes less pronounced.
Additionally, we have evaluated the time dynamics as-
sociated with the clustering process. The mean duration
required for cluster formation was 4.5 seconds, indicative of
the framework’s capability for swift data segmentation and
processing, which is crucial for real-time vehicular network
applications necessitating immediate data handling.

The experiment also recorded a moderate mean CPU
utilization of 59.2% and memory usage of 57.3%, thus sub-
stantiating the hypothesis that our system can manage large
data volumes while ensuring resource conservation.

Fig. 6. Average Time Taken to Form Clusters in Experiments

6.3 Simulation Setup

Our simulation framework precisely models an urban con-
text (Jodhpur, India), employing OMNeT++ [35] to simu-
late traffic dynamics and OpenStreetMap [36] for accurate
geographical replication. We utilize the SUMO tool [37]
to generate detailed road networks and manage synthetic
traffic flows, encompassing vehicle densities ranging from
50 to 250 vehicles per km2 and speeds from 30 km/h in
urban to 120 km/h on highways. Communication spans
between vehicles extend from 300 to 500 meters. In our
simulation, we compare our framework against state-of-
the-art methodologies including JDGO [12], which utilizes
a dynamic, time-adaptive channel model; OJTR [14], which
integrates generalized bender decomposition with reformu-
lation linearization techniques for optimization; and MLML
[25], which focuses on load balancing across edge comput-
ing nodes. Additionally, BBO [16] arranges vehicles into
cooperative edge servers, optimizing resources and connec-
tivity, while Kar et al. [9] concentrate on minimizing QoS
violation probabilities. We also consider the greedy con-
troller placement strategies of GSCORE [32] and Mobiplace
[31]. Although our methodology diverges at some points
from those in the cited works, we have assimilated core
components from these studies to enhance the realism and
effectiveness of our experimental setup.

6.4 Simulation Results

We assess the efficacy of our framework by measuring
entropy, a metric that quantifies the uniformity of load
distribution across network nodes. The results, presented
in Fig. 7a and 7b, demonstrate effectiveness in achieving
equitable load balancing. A direct correlation exists between
the volume of requests and entropy values, with entropy
increasing from 2.7 to 4.3 as requests escalate from 10,000
to 100,000. This increase substantiates our framework’s ca-
pacity to handle significant request volumes, evenly dis-
tribute load, and prevent node over-reliance and bottle-
necks. Conventional random distribution methods, which
often overlook node capacity and current load, typically
lead to uneven resource utilization. In contrast, our ap-
proach integrates dynamic clustering with flow-based load
balancing, resulting in higher entropy values and indicating
a more uniform load distribution across the network. The
GDGO model employs a dynamic vehicular-to-edge server
channel, which suffers from brief channel coherence times
and extended offloading durations. OTJR restricts vehicles
to offload tasks exclusively to designated service nodes.
While approaches like BBO and Kar et al. utilize static

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 11

clustering methods and lack comprehensive load balancing
mechanisms, leading to suboptimal entropy performance in
variable network conditions. Our method, which enhances
dynamic clustering and adaptive resource scheduling, ex-
cels in adapting to changing network topologies and traffic
patterns, thereby enabling more strategic resource allocation
and improved response times, significantly enhancing load-
balancing efficiency.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

100.3

100.4

100.5

100.6

Number of Requests

En
tr

op
y

Number of Requests vs. Entropy

JDGO OJTR
MLML BBO

Kar et al. [9] Proposed

(a)

10 20 30 40 50 60 70 80 90 100
10−0.4

10−0.2

100

Time Instant (t) (Sec.)

En
tr

op
y

Time instant vs. Entropy

JDGO OJTR
MLML BBO

Kar et al. [9] Proposed

(b)

Fig. 7. Load Balancing Analysis Over Time and Number of Requests

We also evaluate system response times by analyzing
variables such as workload intensity, inherent network de-
lays, and changes in vehicular speed and concentration.
Response times are directly correlated with traffic load,
measured in requests per second, reveals that as workload
intensifies, the system’s ability to process concurrent re-
quests diminishes, thereby extending response times. Fig. 8a
illustrates a proportional increase in response time as system
load escalates, highlighting the limitations in processing
capabilities despite our system’s proficiency in resource
allocation and load balancing. Even under high demand,
our framework surpasses traditional models in deliver-
ing expedited response times. BBO focuses on distributed
clustering without addressing dynamic controller realloca-
tion based on real-time network changes. In contrast, our
framework incorporates a greedy algorithm for adaptive
recalibration of controller nodes in response to network dy-
namics, ensuring continuous optimal performance. Unlike
the static cloudlet placement in GSCORE, which struggles
with VANET mobility, and MobiPlace, which concentrates
on static network snapshots for controller placement, our
approach allows for ongoing adjustments, enhancing scala-
bility and adaptability. This dynamic adaptation aligns with
Amdahl’s Law, suggesting that the speed-up of process
parallelization is limited by the segment of the process that
must occur sequentially.

1 2 3 4

·104

200

400

600

800

1,000

1,200

1,400

Workload (Kbps)

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e

(m
s)

Average Response Time vs. Workload

MobiPlace GSCORE
MLML BBO

Kar et al. [9] Proposed

(a)

40 60 80 100
200

300

400

500

600

700

800

900

Network Latency (ms)

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e

(m
s)

Average Response Time vs. Network Latency (ms)

Mobiplace GSCORE
MLML BBO

Kar et al. [9]

(b)

Fig. 8. Network Constraint Effects on Response Time

Further, Fig. 8b depicts how increased network latency
elevates response times, illustrating the delay in data trans-
mission between the source and destination. Our framework
mitigates this by enabling data processing closer to the net-
work’s edge, reducing traversal distance and thus reducing
the impact of latency, in line with distributed computing
principles. Nevertheless, the efficacy of our framework and
state-of-the-art algorithms varies.

The robustness of our approach against diverse network
conditions is validated in Fig. 9a and Fig. 9b, where it
consistently exhibits high entropy levels, reflective of equi-
table data distribution across varying vehicle densities and
velocities. This resilience highlights adeptness at proficient
resource allocation across multiple scenarios. The imple-
mentation of flow-based load balancing promotes an equi-
table distribution of network traffic, effectively mitigating
potential congestion within the network.

Vehicle Density

50 75 100125150 175 200 225 250

Sp
ee

d

40

60
80

100
120

En
tro

py

10

20

30

40

50

60

(a)

Vehicular Density (vehicles/km^2)

50 75 100 125 150 175 200 225 250

Ve
hic

ula
r S

pe
ed

 (k
m/h)

40

60

80

100

120

Re
sp

on
se

 T
im

e 
(s

)

4
6
8
10
12
14
16
18

Response Time based on Vehicular Density and Speed

4

6

8

10

12

14

16

(b)

Fig. 9. Effect of Vehicular Density and Velocity on Load Balancing and
Response Time

Fig. 9b demonstrates the impact of vehicle velocity and
density on system response times. An observable correlation
shows that higher vehicular speeds lead to increased re-
sponse times, primarily due to frequent topological changes
within the network that necessitate continual updates, thus
extending response duration’s. Our framework effectively
manages these dynamics through dynamic clustering tech-
niques. Conversely, vehicle density exerts a dual effect on
response times. At lower densities, an increase in vehicles
results in reduced response times. However, at higher den-
sities, additional vehicles induce network congestion and
signal interference, which extend response times. To address
these challenges, our model employs a flow-based load-
balancing strategy, which adeptly manages network traffic
according to traffic flow characteristics, thus preventing
network saturation and enhancing the allocation of network
resources.

Figure 10 presents the convergence time of our model,
a crucial metric for evaluating the effectiveness of our
parallelization strategy. Our analysis reveals a proportional
relationship between the number of tasks and convergence
time, indicating that an increase in tasks amplifies the de-
mands on processing and communication resources, thereby
extending the time required for task distribution and stabi-
lization. An improved convergence is observed in our model
attributed to the implementation of dynamic clustering,
which optimizes resource distribution and load manage-
ment by strategically grouping vehicles based on proximity
and interaction frequency. This is further supported by the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 12

Number of Nodes

20
40

60
80

100

Num
be

r o
f Ta

sks

2000

4000

6000

8000

10000

Co
nv

er
ge

nc
e 

Ti
m

e 
(s

)

100
150
200
250
300
350
400
450

Convergence Time based on Number of Nodes and Tasks

100

150

200

250

300

350

400

450

Fig. 10. Convergence Analysis Over Time and Number of Vehicles

MapReduce framework, which efficiently partitions com-
putational loads across a network of nodes, a mechanism
particularly beneficial in dynamic VANET environments.
Additionally, Lagrangian optimization is employed to refine
clustering configurations, ensuring optimal resource utiliza-
tion and system performance.

Fig. 11a illustrates the effectiveness of our method in
uniformly distributing network demands across controllers.
The horizontal axis identifies the network controllers, while
the vertical axis measures the load each bears, quantified by
the number of queries processed. The observed load distri-
bution validates our dynamic aggregation and flow-based
load balancing strategy, resulting in an equitable distribu-
tion across controllers. Furthermore, Fig. 11b evaluates the
response times associated with various controller placement
strategies under different controller counts and network
load conditions. The analysis reveals that response times
escalate with network load across all strategies, indicative of
increased computational or communication latency under
more substantial loads. Notably, the rate of this increase
varies among the techniques, serving as a measure of their
relative efficiency. GSCORE and MobiPlace exhibit a moder-
ate rise in response time with higher loads and an increased
number of controllers. In contrast, BBO demonstrates the
most pronounced increase, particularly when controller
numbers are high, suggesting its inefficiency in managing
heavy network loads and complex controller coordination.

Con
tro

ller
 1

Con
tro

ller
 2

Con
tro

ller
 3

Con
tro

ller
 4

Con
tro

ller
 5

Con
tro

ller
 6

Con
tro

ller
 7

Con
tro

ller
 8

Con
tro

ller
 9

Con
tro

ller
 10

Controller

0

20000

40000

60000

80000

Lo
ad

Controller Load Distribution

(a)

Number of Controllers

2
4

6
8

10

Netw
ork

 Lo
ad

200
400

600
800

1000

Re
sp

on
se

 T
im

e 
(m

s)

25
50
75
100
125
150
175

Response Time vs. Number of Controllers vs. Network Load
proposed
GSCORE
Mobiplace
BBO

(b)

Fig. 11. Load Distribution Graph Analysis

Our architecture employs dynamic clustering of vehi-
cles and roadside infrastructure based on proximity, re-
sulting in variable vehicle allocations per controller and
asymmetric load distribution. By integrating a flow-based
load balancing mechanism, our system adeptly distributes

network traffic among controllers, tailored to the proper-
ties of the traffic flow. The variations in load distribution,
as illustrated in the results, underscore the intrinsic dy-
namism of VANETs. Changes in vehicular positions lead
to transformations in network topology, thereby influenc-
ing the load borne by controllers. Our system promptly
adjusts to these shifts, recalibrating controller assignments
to ensure continuous and efficient load dispersion across
the network. We have also incorporated a detailed table
(Ref. Table 2) presenting experimental results for urban
and highway scenarios. The urban and highway scenarios
quantifying critical aspects such as vehicle density - 200 to
300 vehicles/km2 : 50 to 150 vehicles/km2, Average Vehicle
Speed - 10 to 40 km/h : 100 to 120 km/h, Intersection
Density - 4 to 10 intersections/km : 0.1 intersections/km,
Signal Obstruction Level - high : low, and Network Topol-
ogy Changes Rate - High : low. The reduction in average
response time and network latency across both scenarios is
attributed to the SDFC’s dynamic resource allocation and
intelligent controller placement. This optimization is par-
ticularly critical in urban environments, where the frame-
work adeptly navigates complex intersection patterns and
frequent signal obstructions, enhancing the reliability and
efficiency of vehicular communications. Conversely, in high-
way scenarios, where vehicle speeds are consistently higher
and network changes are more predictable, the framework
leverages these conditions to maintain seamless connectivity
and rapid data processing, demonstrating its versatility.
Moreover, the convergence rate towards optimal resource
distribution signifies the framework’s capacity to quickly
adapt to changing network conditions.

TABLE 2
Performance Evaluation in Urban and Highway Scenarios

Metric Scenario SDFC JDGO OJTR MLML Average
Baseline Improvement

Average Response Time Urban 210 ms 310 ms 290 ms 275 ms 291.67 ms 28% reduction
Highway 180 ms 255 ms 245 ms 250 ms 250 ms 28% reduction

Network Latency Urban 75 ms 105 ms 98 ms 90 ms 97.67 ms 23% decrease
Highway 65 ms 87 ms 82 ms 84 ms 84.33 ms 23% decrease

Resource Distribution
Convergence Rate

Urban 3.75 s 5.2 s 5 s 4.8 s 5 s 25% faster
Highway 3.25 s 4.5 s 4.3 s 4.2 s 4.33 s 25% faster

In our investigation into the comparative performance
of cloud-based architectures versus SDFC in VANET sce-
narios, we focused on three critical metrics: discovery time,
network change detection, and end-to-end latency. The
findings, as summarized in Table 3, reveal significant dis-
tinctions between the two architectures, underscoring the
efficacy of SDFC in dynamic vehicular environments.

TABLE 3
Comparison for Different Traffic Scenarios in Cloud and Software

Defined Fog Architecture

Architecture Vehicles Discovery Time Network Change End-to-End Latency
Best Average Worst

Cloud 50 11.65 ms 4.76 ms 15.642 ms 19.476 ms 24.785
100 25.18 ms 5.24 ms 22.854 ms 27.154 ms 36.951 ms
150 34.87 ms 7.11 ms 32.956 ms 35.481 ms 41.563 ms
200 48.93 ms 9.66 ms 42.875 ms 48.174 ms 55.851 ms

SDFC 50 1.43 ms 2.22 ms 7.164 ms 9.170 ms 12.587 ms
100 7.65 ms 3.43 ms 13.696 ms 16.691 ms 20.336 ms
150 13.15 ms 4.65 ms 19.298 ms 22.175 ms 25.572 ms
200 19.45 ms 6.26 ms 24.915 ms 28.127 ms 32.483 ms

The discovery time, pivotal in registering new nodes and
responding to network topology changes, was markedly
lower in the SDFC architecture across all vehicle volumes.
For instance, with 200 vehicles, the discovery time in the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 13

cloud architecture was 48.93 ms compared to 19.45 ms in
the SDFC setup. This reduction is crucial in VANETs, where
rapid adaptation to new nodes and conditions is essential
for network stability and safety. Similarly, network change
detection, a measure of how swiftly the system identifies
alterations in the network, showed a consistent advantage
for the SDFC architecture. Let Gt = (Vt, Et) represent the
network at time t. A change in the network is detected
by comparing Gt with Gt−1. Mathematically, a change is
detected if:

Gt ̸= Gt−1. (25)

At 200 vehicles, the network change detection time was 9.66
ms for the cloud architecture, whereas the SDFC framework
registered a faster response at 6.26 ms. This faster detection
allows for more agile routing and network management ad-
justments in response to real-time conditions. Finally, end-
to-end latency, a critical measure of network responsiveness,
exhibited notable differences. We analyze the network’s
end-to-end latency (Le2e) as follows:

Le2e = Lprop + Ltrans + Lproc + Lque, (26)

Where Lprop is the latency due to signal propagation, Ltrans

is the latency introduced by the time taken to push the
data onto the link. The SDN controller’s role is pivotal
in optimizing Lproc (packet header processing time) and
Lque (queueing time at routing points), aspects that are
not directly impacted by the cloud center’s computational
prowess. The SDFC architecture consistently outperformed
the cloud setup regarding best, average, and worst latency
values. Notably, in high-density scenarios with 200 vehicles,
the SDFC framework achieved a best-case latency of 24.915
ms compared to the cloud’s 42.875 ms.

6.5 Sensitivity Analysis

The sensitivity analysis illustrates the framework’s adapt-
ability to fluctuating conditions, such as variations in vehicle
density and network traffic, without straining computa-
tional resources. The results, depicted in Fig. 12a and 12b,
affirm the framework’s robustness in managing increased
computational demands associated with higher vehicle den-
sities. As vehicle density escalates, there is an increase in
CPU utilization, a consequence of increased data generation
and processing requirements in denser vehicular settings.
The clustering algorithm optimizes the distribution and
management of computational tasks throughout the net-
work. This capability is evidenced by a steady increase in
CPU utilization corresponding with rising vehicle densi-
ties, demonstrating the framework’s efficiency in managing
increased computational loads without substantial perfor-
mance compromises. Moreover, network traffic significantly
impacts CPU utilization; as network traffic intensifies, the
requisite computational resources for data management and
processing also expand, as reflected in the patterns of CPU

The results displayed in Fig. 13a and 13b allow us
to evaluate the efficacy of our clustering mechanism and
MapReduce-based parallelization strategy. Increased vehicle
density elevates the complexity of clustering due to more
vehicles and complex inter-vehicle dynamics, manifesting as
prolonged cluster formation times under dense conditions.

50.0 72.22 94.44 116.67 138.89 161.11 183.33 205.56 227.78 250.0
Vehicle Density (vehicles/km^2)

600

650

700

750

800

Ne
tw

or
k 

Tr
af

fic
 (B

/s
) [

Co
ns

ta
nt

 p
er

 R
ow

]

CPU Utilization Heatmap

0.22

0.24

0.26

0.28

CP
U 

Ut
iliz

at
io

n 
(%

)

(a)

Vehicle Density (vehicles/km^2)

50
75

100
125

150
175

200
225

250

Netw
ork

 Tr
aff

ic (
B/s)

600
625

650
675

700
725

750
775

800

CP
U 

Ut
iliz

at
io

n 
(%

)

0.22

0.24

0.26

0.28

3D Surface Plot of CPU Utilization

0.23

0.24

0.25

0.26

0.27

0.28

(b)

Fig. 12. Sensitivity Analysis for CPU Utilization

Concurrently, escalated network traffic amplifies the data
processing load, with high-traffic scenarios requiring en-
hanced computational resources to manage extensive data
exchanges among vehicles. The MapReduce-based paral-
lelization strategy adeptly distributes the clustering work-
load across multiple nodes, facilitating rapid processing
and ensuring scalability. Such parallel processing not only
accelerates the clustering operation but also sustains frame-
work performance under challenging network conditions.
Furthermore, the analysis reveals a critical observation:
clustering time begins to stabilize when vehicle density and
network traffic exceed certain thresholds. This stabilization
indicates an optimal utilization of parallel processing capa-
bilities inherent in the MapReduce framework, effectively
countering the increased complexity.

50.0 72.22 94.44 116.67 138.89 161.11 183.33 205.56 227.78 250.0
Vehicle Density (vehicles/km^2)

600

650

700

750

800

Ne
tw

or
k 

Tr
af

fic
 (B

/s
) [

Co
ns

ta
nt

 p
er

 R
ow

]

Heatmap of Cluster Formation Time

3.25

3.50

3.75

4.00

4.25

4.50

4.75

Cl
us

te
r F

or
m

at
io

n 
Ti

m
e 

(m
s)

(a)

Vehicle Density (vehicles/km^2)

50
75

100
125

150
175

200
225

250

Netw
ork

 Tr
aff

ic (
B/s)

600
625

650
675

700
725

750
775

800

Cl
us

te
r F

or
m

at
io

n 
Ti

m
e 

(m
s)

3.25

3.50

3.75

4.00

4.25

4.50

4.75

3D Surface Plot of Cluster Formation Time

3.6

3.8

4.0

4.2

4.4

(b)

Fig. 13. Sensitivity Analysis for Cluster Formation

Our framework employs a Traefik-based load balancing
mechanism, crucial for managing varying network traffic
and maintaining balanced loads across network nodes, as
evidenced by CPU usage patterns depicted in Fig. 4 for
vehicle densities ranging from 50 to 250 vehicles/ km2

under diverse network conditions. These conditions reflect
different levels of data demand. The results demonstrate
that our framework’s load-balancing efficiency remains con-
sistently high across various scenarios, affirming the robust-
ness of the Traefik load balancer. Traefik’s flow-based load
balancing, dynamically adapted to the evolving network
structure, ensures optimal resource utilization and prevents
the overloading of any single node. Moreover, the frame-
work’s intelligent controller placement optimizes data flow
and resource distribution. This strategic placement, aligned
with the decentralized nature of fog computing, enhances
processing proximity to the network edge, thereby reducing
latency and alleviating bandwidth constraints, contributing
to overall network efficiency and performance.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 14

50.0 72.22 94.44 116.67 138.89 161.11 183.33 205.56 227.78 250.0
Vehicle Density (vehicles/km^2)

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Scenario 9

Scenario 10

Sc
en

ar
io

s

Heatmap of Load Balancing Efficiency

75

80

85

90

95

Lo
ad

 B
al

an
cin

g 
Ef

fic
ie

nc
y 

(%
)

(a)

Vehicle Density (vehicles/km^2)

50
75

100
125

150
175

200
225

250

Sc
en

ari
os

2

4

6

8

10

Ef
fic

ie
nc

y 
(%

)

75

80

85

90

95

3D Area Plot of Load Balancing Efficiency

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

(b)

Fig. 14. Sensitivity Analysis for Load Balancing

7 CONCLUSIONS AND FUTURE WORK

Our paper introduces a novel methodology for resource
allocation and controller placement in VANETs, harnessing
the capabilities of SDFC, dynamic clustering, and flow-
based load balancing. Our framework ensures efficient re-
source distribution and load management by dynamically
clustering vehicles according to proximity and communi-
cation patterns. The utilization of MapReduce for parallel
processing significantly reduces convergence time. Further-
more, integrating the Traefik load balancer within our flow-
based architecture guarantees uniform distribution of net-
work traffic across controllers, effectively mitigating con-
gestion risks. The strategic placement of controllers, op-
timized via integer linear programming, enhances system
efficacy. Empirical evidence supports the effectiveness of
our methodology, marking significant progress in VANET
management with enhanced efficiency, responsiveness, and
reliability. Despite the computational intensity of the NP-
hard controller placement problem, integer programming
facilitates finding optimal or near-optimal solutions, though
time complexity remains a concern for expansive networks.
Despite advancement, future research explores the scope to
integrate quantum computing at both cloud and edge levels
to radically boost computational speeds, potentially creating
a paradigm shift towards near-instantaneous transport net-
work services. This exploration aims to guide in a new era of
network management tailored for the increasing demands
of modern vehicular networks.

REFERENCES

[1] S. A. Celtek and A. Durdu, “A novel adaptive traffic signal control
based on cloud/fog/edge computing,” International Journal of In-
telligent Transportation Systems Research, vol. 20, no. 3, pp. 639–650,
2022.

[2] F. Busacca, C. Grasso, S. Palazzo, and G. Schembra, “A smart
roadside unit in a microeolic box to provide edge computing for
vehicular applications,” IEEE Transactions on Green Communications
and Networking, 2022.

[3] B. Hu, Y. Shi, and Z. Cao, “Adaptive energy-minimized scheduling
of real-time applications in vehicular edge computing,” IEEE
Transactions on Industrial Informatics, 2022.

[4] T. He, A. N. Toosi, N. Akbari, M. T. Islam, and M. A. Cheema, “An
intent-based framework for vehicular edge computing,” in 2023
IEEE International Conference on Pervasive Computing and Communi-
cations (PerCom). IEEE, 2023, pp. 121–130.

[5] R. Meneguette, R. De Grande, J. Ueyama, G. P. R. Filho, and
E. Madeira, “Vehicular edge computing: architecture, resource
management, security, and challenges,” ACM Computing Surveys
(CSUR), vol. 55, no. 1, pp. 1–46, 2021.

[6] L. Zhao, W. Zhao, A. Hawbani, A. Y. Al-Dubai, G. Min, A. Y.
Zomaya, and C. Gong, “Novel online sequential learning-based
adaptive routing for edge software-defined vehicular networks,”
IEEE Transactions on Wireless Communications, vol. 20, no. 5, pp.
2991–3004, 2020.

[7] S. Yu, Y. Guo, N. Li, D. Xue, and C. Liu, “Dynamic resource allo-
cation on vehicular edge computing and communication,” in 2022
the 8th International Conference on Communication and Information
Processing, 2022, pp. 205–211.

[8] H. Peng, H. Wu, and X. S. Shen, “Edge intelligence for multi-
dimensional resource management in aerial-assisted vehicular
networks,” IEEE Wireless Communications, vol. 28, no. 5, pp. 59–
65, 2021.

[9] B. Kar, K.-M. Shieh, Y.-C. Lai, Y.-D. Lin, and H.-W. Ferng, “Qos
violation probability minimization in federating vehicular-fogs
with cloud and edge systems,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 12, pp. 13 270–13 280, 2021.

[10] M. A. U. Rehman, S. Mastorakis, B.-S. Kim et al., “Foggyedge:
An information-centric computation offloading and management
framework for edge-based vehicular fog computing,” IEEE Intelli-
gent Transportation Systems Magazine, 2023.

[11] N. Slamnik-Kriještorac, M. C. Botero, L. Cominardi, S. Latré, and
J. M. Marquez-Barja, “An ml-driven framework for edge orches-
tration in a vehicular nfv mano environment,” in 2023 IEEE 20th
Consumer Communications & Networking Conference (CCNC). IEEE,
2023, pp. 728–733.

[12] J. Gao, Z. Kuang, J. Gao, and L. Zhao, “Joint offloading scheduling
and resource allocation in vehicular edge computing: A two layer
solution,” IEEE Transactions on Vehicular Technology, 2022.

[13] H. Xiao, J. Zhao, Q. Pei, J. Feng, L. Liu, and W. Shi, “Vehicle selec-
tion and resource optimization for federated learning in vehicular
edge computing,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 8, pp. 11 073–11 087, 2021.

[14] W. Fan, Y. Su, J. Liu, S. Li, W. Huang, F. Wu, and Y. Liu, “Joint task
offloading and resource allocation for vehicular edge computing
based on v2i and v2v modes,” IEEE Transactions on Intelligent
Transportation Systems, 2023.

[15] L. Chang, X. Deng, J. Pan, and Y. Zhang, “Edge server placement
for vehicular ad hoc networks in metropolitans,” IEEE Internet of
Things Journal, vol. 9, no. 2, pp. 1575–1590, 2021.

[16] J. Wang, K. Zhu, B. Chen, and Z. Han, “Distributed clustering-
based cooperative vehicular edge computing for real-time offload-
ing requests,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 1, pp. 653–669, 2021.

[17] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “ifogsim2:
An extended ifogsim simulator for mobility, clustering, and mi-
croservice management in edge and fog computing environ-
ments,” Journal of Systems and Software, vol. 190, p. 111351, 2022.

[18] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An appli-
cation placement technique for concurrent iot applications in edge
and fog computing environments,” IEEE Transactions on Mobile
Computing, vol. 20, no. 4, pp. 1298–1311, 2020.

[19] S. Mittal, D. Garg, R. S. Bali, and G. S. Aujla, “Edge computing
based resource supplementation for software defined vehicular
networks,” in 2022 IEEE Globecom Workshops (GC Wkshps). IEEE,
2022, pp. 1693–1698.

[20] T. Bahreini, M. Brocanelli, and D. Grosu, “Vecman: A framework
for energy-aware resource management in vehicular edge com-
puting systems,” IEEE Transactions on Mobile Computing, vol. 22,
no. 2, pp. 1231–1245, 2023.

[21] M. Goudarzi, M. S. Palaniswami, and R. Buyya, “A distributed
deep reinforcement learning technique for application placement
in edge and fog computing environments,” IEEE Transactions on
Mobile Computing, vol. 22, no. 5, pp. 2491–2505, 2023.

[22] S. Liao, J. Wu, S. Mumtaz, J. Li, R. Morello, and M. Guizani,
“Cognitive balance for fog computing resource in the internet of
things: An edge learning approach,” IEEE Transactions on Mobile
Computing, vol. 21, no. 5, pp. 1596–1608, 2020.

[23] S. D. Okegbile, B. T. Maharaj, and A. S. Alfa, “A multi-user
tasks offloading scheme for integrated edge-fog-cloud computing
environments,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 7, pp. 7487–7502, 2022.

[24] G. Proietti Mattia, M. Magnani, and R. Beraldi, “A latency-
levelling load balancing algorithm for fog and edge computing,”
in Proceedings of the 25th International ACM Conference on Modeling
Analysis and Simulation of Wireless and Mobile Systems, 2022, pp.
5–14.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXX 20XX 15

[25] W. Duan, X. Gu, M. Wen, Y. Ji, J. Ge, and G. Zhang, “Resource
management for intelligent vehicular edge computing networks,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7,
pp. 9797–9808, 2021.

[26] N. Kumar, T. Dhand, A. Jindal, G. S. Aujla, H. Cao, and L. Yang,
“An edge-fog computing framework for the cloud of things in
vehicle to grid environment,” in 2020 IEEE 21st International
Symposium on” A World of Wireless, Mobile and Multimedia Net-
works”(WoWMoM). IEEE, 2020, pp. 354–359.

[27] X. Zhu, Y. Luo, A. Liu, N. N. Xiong, M. Dong, and S. Zhang, “A
deep reinforcement learning-based resource management game
in vehicular edge computing,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 3, pp. 2422–2433, 2021.

[28] J. S. Ng, W. Y. B. Lim, Z. Xiong, D. Niyato, C. Leung, and
C. Miao, “A double auction mechanism for resource allocation in
coded vehicular edge computing,” IEEE Transactions on Vehicular
Technology, vol. 71, no. 2, pp. 1832–1845, 2021.

[29] M. Goudarzi, M. Palaniswami, and R. Buyya, “Scheduling iot ap-
plications in edge and fog computing environments: a taxonomy
and future directions,” ACM Computing Surveys, vol. 55, no. 7, pp.
1–41, 2022.

[30] E. Del-Pozo-Puñal, F. Garcı́a-Carballeira, and D. Camarmas-
Alonso, “A scalable simulator for cloud, fog and edge comput-
ing platforms with mobility support,” Future Generation Computer
Systems, vol. 144, pp. 117–130, 2023.

[31] I. Maity, R. Dhiman, and S. Misra, “Mobiplace: Mobility-aware
controller placement in software-defined vehicular networks,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 957–
966, 2021.

[32] J. Gedeon, M. Stein, J. Krisztinkovics, P. Felka, K. Keller,
C. Meurisch, L. Wang, and M. Mühlhäuser, “From cell towers to
smart street lamps: Placing cloudlets on existing urban infrastruc-
tures,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC).
IEEE, 2018, pp. 187–202.

[33] A. Nahar, H. Sikarwar, and D. Das, “Csbr: A cosine similarity
based selective broadcast routing protocol for vehicular ad-hoc
networks,” in 2020 IFIP networking conference (networking). IEEE,
2020, pp. 404–412.

[34] A. Nahar, D. Das, and S. K. Das, “Obqr: orientation-based source
qos routing in vanets,” in Proceedings of the 23rd international ACM
conference on modeling, analysis and simulation of wireless and mobile
systems, 2020, pp. 199–206.

[35] A. Varga, “Omnet++,” in Modeling and tools for network simulation.
Springer, 2010, pp. 35–59.

[36] M. Haklay and P. Weber, “Openstreetmap: User-generated street
maps,” IEEE Pervasive computing, vol. 7, no. 4, pp. 12–18, 2008.

[37] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of sumo-simulation of urban mo-
bility,” International journal on advances in systems and measurements,
vol. 5, no. 3&4, 2012.

Ankur Nahar is currently pursuing a Ph.D. in
Computer Science and Engineering at the In-
dian Institute of Technology Jodhpur, focusing
on Routing Optimization and Fast Message Dis-
semination in Vehicular Ad-hoc Networks. His
scholarly achievements include recognition as
a BRICS Young Scientist in 2023. He is in-
terested in vehicular ad-hoc networks, vehicu-
lar edge computing, fifth-generation cellular net-
works, and routing optimization.

Koustav Kumar Mondal is pursuing his Ph.D.
under the Inter-Disciplinary Research Division -
IoT and Application at Indian Institute of Tech-
nology Jodhpur. He has completed his M.Tech
in the Internet of Things from the Maulana Abul
Kalam Azad University of Technology, and his
research interests include AI-empowered mobile
Edge Computing, IoT, IoV, Machine Learning,
Deep Learning, and Blockchain.

Dr. Debasis Das is an Associate Professor in
the Department of Computer Science and Engi-
neering and the School of Artificial Intelligence
and Data Science (AIDE) at the Indian Institute
of Technology (IIT) Jodhpur, Rajasthan, India.
His research interests include vehicular ad hoc
networks (VANETs), blockchain, the Internet of
Things (IoT), machine learning (ML), and artifi-
cial intelligence (AI). He has been awarded the
Early Career Research(ECR) Award and BRICS
Young Scientist Award from the Science & Engi-

neering Research Board (SERB), Department of Science & Technology,
Govt. of India. He is a senior member of IEEE and VTS and a profes-
sional member of ACM.

Prof. Rajkumar Buyya is a Redmond Barry Dis-
tinguished Professor and Director of the Cloud
Computing and Distributed Systems (CLOUDS)
Laboratory at the University of Melbourne, Aus-
tralia. He has authored over 850 publications
and seven textbooks, including ”Mastering Cloud
Computing,” published by McGraw Hill, China
Machine Press, and Morgan Kaufmann for In-
dian, Chinese, and international markets, re-
spectively. Dr. Buyya is recognized as a ”Web
of Science Highly Cited Researcher” for six

consecutive years since 2016, a Fellow of IEEE, Foreign Fellow of
Academia Europaea, Scopus Researcher of the Year 2017 with Excel-
lence in Innovative Research Award by Elsevier and ”Lifetime Achieve-
ment Awards” from two Indian universities for his outstanding contribu-
tions to Cloud computing and distributed systems. He has been recog-
nized as the ”Best of the World” twice for research fields (in Computing
Systems in 2019 and Software Systems in 2021) as well as ”Lifetime
Achiever” and ”Superstar of Research” in ”Engineering and Computer
Science” discipline twice (2019 and 2021) by the Australian Research
Review.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3419016

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on July 31,2024 at 01:59:27 UTC from IEEE Xplore.  Restrictions apply. 


