
On-demand Cold Start Frequency Reduction with
Off-Policy Reinforcement Learning in Serverless

Computing

Siddharth Agarwal1, Maria A. Rodriguez1, and Rajkumar Buyya1

Cloud Computing and Distributed Systems Laboratory
School of Computing and Information Systems

The University of Melbourne, Australia
siddhartha@student.unimelb.edu.au
{maria.read,rbuyya}@unimelb.edu.au

Abstract. Function-as-a-Service (FaaS) is a cloud computing paradigm
offering an event-driven execution model to applications. It features ‘server-
less’ attributes by eliminating resource management responsibilities from
developers, and offers transparent and on-demand scalability of applica-
tions. To provide seamless on-demand scalability, new function instances
are prepared to serve the incoming workload in the absence or unavail-
ability of function instances. However, FaaS platforms are known to
suffer from cold starts, where this function provisioning process intro-
duces a non-negligible delay in function response and reduces the end-
user experience. Therefore, the presented work focuses on reducing the
frequent, on-demand cold starts on the platform by using Reinforce-
ment Learning(RL). The proposed approach uses model-free Q-learning
that consider function metrics such as CPU utilization, existing function
instances, and response failure rate, to proactively initialize functions,
in advance, based on the expected demand. The proposed solution is
implemented on Kubeless and evaluated using an open-source function
invocation trace applied to a matrix multiplication function. The evalua-
tion results demonstrate a favourable performance of the RL-based agent
when compared to Kubeless’ default policy and a function keep-alive pol-
icy by improving throughput by up to 8.81% and reducing computation
load and resource wastage by up to 55% and 37%, respectively, that is a
direct outcome of reduced cold starts.

Keywords: Cold start · Function-as-a-Service · Reinforcement Learning
· Serverless computing

1 Introduction

In cloud computing, a serverless deployment model removes the burden of man-
aging and provisioning resources from the developers, allowing them to focus
solely on the application development process. The term serverless, interchange-
ably used with Function-as-a-Service (FaaS), does not imply an absence of



2 S. Agarwal et al.

servers, but instead, accentuates delegating the responsibility of complex re-
source management tasks to cloud service providers (CSP) [16], [13]. The FaaS
paradigm puts forward an event-driven, serverless computing model with fine-
grained pay-per-use pricing where resources are billed based on their actual ser-
vice time. Functions (i.e., a fragment of code containing business logic) are de-
signed to scale on demand; they are stateless, short-lived, and run on lightweight
containers or virtual machines (VMs) in response to a triggering event. Such an
abstraction increases agility in application development, offering lower admin-
istrative and ownership costs. The FaaS model has attracted a wide range of
applications such as IoT services, REST APIs, stream processing and predic-
tion services, which have strict availability and quality of service requirements
in terms of response time. Conceptually, the FaaS model is designed to spin a
new function instance for each demand request and shut down the instance after
service [13]. However, in practice, commercial FaaS offerings like AWS Lambda,
Azure Functions, and Google Cloud Function may choose to re-use a function
instance or keep the instance running for a limited time to serve subsequent re-
quests [32]. Some open source serverless frameworks like Kubeless [1] and Kna-
tive, have similar implementations to re-use an instance of a function to serve
subsequent requests.

An increase in workload demand leads to an instantiation process involving
the creation of new function containers and the initialisation of the function’s
environment within those containers, after which incoming requests are served.
Such a process usually requires downloading the client code, setting up code de-
pendencies and the runtime environment, setting up container networking, and
finally executing the code to handle the incoming request. Hence, instantiating
a function’s container introduces a non-negligible time latency, known as cold
start, and gives rise to a challenge for serverless platforms [35], [15], [10], [26].
Some application-specific factors such as programming language, runtime envi-
ronment and code deployment size as well as function requirements like CPU and
memory, affect the cold start of a function [26], [21], [19], [30]. To automate the
process of creating new function instances and reusing existing ones, serverless
frameworks usually rely on resource-based (CPU or memory) horizontal scaling,
known as horizontal pod auto-scaling (HPA) in Kubernetes-based frameworks
like Kubeless, to respond to incoming requests. Resource-based scaling policies
implement a reactive approach and instantiate new functions only when resource
usage rises above a pre-defined threshold, thus leading to cold start latencies and
an increase in the number of unsuccessful requests.

Threshold-based scaling decisions fail to consider factors like varying appli-
cation load and platform throughput and hence, pose an opportunity to explore
dynamic techniques that analyse these factors to address cold starts. This work
presents a model-free Q-learning agent to exploit resource utilization, available
function instances, and platform response failure rate to reduce the number
of cold starts for CPU-intensive serverless functions. We define a reward func-
tion for the RL agent to dynamically establish the required number of function
instances for a given workload demand based on expected average CPU utilisa-



On-demand Cold Start Frequency Reduction with Off-Policy RL 3

tion and response failure rate. The RL-based agent interacts with the serverless
environment by performing scaling actions and learns through trial and error
during multiple iterations. The agent receives delayed feedback, either positive
or negative, based upon the observed state, and consequently learns the appro-
priate number of function instances to fit the workload demand. This strategy
uses no prior knowledge about the environment, demand pattern or workload,
and dynamically adjusts to the changes for preparing required functions in ad-
vance to reduce cold starts. The proposed work scales the number of function
instances by proactively estimating the number of functions that are needed to
serve incoming workload to reduce the frequent cold starts. It utilizes a practical
workload of matrix multiplication involved in an image processing task, serving
as a sample real-world function request pattern [27], and formally presents the
cold start as an optimisation problem. Also, we structure the Q-learning compo-
nents around the function metrics such as average CPU utilisation and response
failure rate and evaluate our approach against the default resource-based policy
and commercially accepted function keep-alive technique.

In summary, the key contributions of our work are:
1. We analyze function resource metrics such as CPU utilization, available in-

stances, and the proportion of unsuccessful responses to propose a Q-learning
model that dynamically analyses the application request pattern and im-
proves function throughput by reducing frequent cold starts on the platform.

2. We present a brief overview of explored solutions to address function cold
starts and highlight the differences between contrasting approaches to the
proposed agent.

3. We perform our experiments on a real-world system setup and evaluate the
proposed RL-based agent against the default resource-based policy and a
baseline keep-alive technique.

The rest of the paper is organised as follows. Section 2 highlights related re-
search studies. In Section 3 we present the system model and formulate the prob-
lem statement. Section 4 outlines the proposed agent’s workflow and describes
the implementation hypothesis and assumptions. In Section 5 we evaluate our
technique with the baseline approach and highlight training results and discuss
about performance in Section 6. Section 7 concludes the paper and highlights
future research directions.

2 Related Work

In this section, we briefly discuss about the Function-as-a-Service paradigm in
serverless computing and elaborate on the current function cold start mitigation
techniques and approaches.

2.1 Serverless Computing or Function-as-a-Service

Serverless computing offers a cloud service model wherein the server management
or resource management responsibility lies with the CSP. In [13], the authors dis-
cussed the potential of this new, less complex computing model introduced by



4 S. Agarwal et al.

Table 1. Related work summary

Work Name Platform Solution Focus Strategy Application Type
[32] - AWS Lambda Cold start latency Optimising environ-

ments & function
pinging

Concurrent & sequential
CPU & I/O intensive

[35] AWU &
ACPS

Kubernetes Cold start latency &
resource wastage

Invocation prediction
(LSTM) & Container
pool

Function chain model

[15] - Knative Cold start frequency Container pool & pod
migration

Single function model

[10] Naïve,
Extended
& Global
Approach

AWS
Lambda,
Apache Open
Whisk

Cold start frequency Orchestration middle-
ware

Function chain model

[21] Pause
Con-
tainer
Pool
Manager

Apache Open-
Whisk

Cold start latency Container Pool Function chain model

[30] WLEC OpenLambda Cold start latency Container Pool Single function model
[18] - AWS Cold start latency Container migration &

content similarity
Single function model

[25] - Knative Cold start frequency AI-based container
concurrency

Emulated CPU & I/O
intensive

[29] Prebaking OpenFaas Cold start latency CRIU process snap-
shot

Single function model

[33] - OpenWhisk Cold start frequency RL-based idle window
& LSTM based con-
tainer pre-warming

Single function model

[9] - OpenFaas Function Scaling RL & SLA-based con-
figuration

Single function model

Our
work

- Kubeless Cold start frequency AI-based function &
throughput metrics

Single function model

Amazon in 2014. They explain a function-based, serverless commercial offer-
ing of AWS Lambda, i.e., the Function-as-a-Service platform. They highlighted
three primary differences between traditional cloud computing and serverless
computing as follows: decoupled computation and storage, code execution with-
out resource management, and paying in proportion to the resources used.The
research posits that the serverless or FaaS model promotes business growth,
making the use of the cloud easier.

Baldini et al. [8] introduced the emerging paradigm of FaaS as an applica-
tion development architecture that allows the execution of a piece of code in
the cloud without control over underlying resources. They identified containers
and the emergence of microservices architecture as the promoter of FaaS model
in serverless. They used FaaS and serverless interchangeably and defines it as



On-demand Cold Start Frequency Reduction with Off-Policy RL 5

a ‘stripped down’ programming model that executes stateless functions as its
deployment unit.

Since the inception of serverless computing, there have been many commer-
cial and open-source offerings such as AWS Lambda, Microsoft Azure Functions,
Google Cloud Functions, Fission, and OpenWhisk. These platforms represent
FaaS as an emerging technology but Hellerstein et al. [12] put together gaps
that furnish serverless as a bad fit for cloud innovations. The authors criticized
the current developments of cloud computing and state that the potential of
cloud resources is yet to be harnessed. On the contrary, the work in [26] ar-
gued that serverless offerings are economical and affordable as they remove the
responsibility of resource management and complexity of deployments from con-
sumers. It presented the opportunities offered by multiple FaaS offerings and
gives an overview of other existing challenges and indicates potential approaches
for future work.

A Microsoft work [23] estimated that there will be near 500 million new ap-
plications in the subsequent 5 years, and it would be difficult for the current
development models to support such large expansions. Another recent study by
Datadog [2], publishes that over 70% organisations using AWS cloud services,
50% organisations using Microsoft Azure services and Google Cloud platform
have adopted serverless computing into their architectures. FaaS is designed to
increase development agility, reduce the cost of ownership, and decrease over-
heads related to servers and other cloud resources. The term ’serverless’ has been
in the industry since the introduction of Backend-as-a-Service (BaaS). Despite
the serverless benefits, FaaS experiences two major challenges, which are cat-
egorized as (i) system-level and (ii) programming and DevOps challenges [13],
[8], [23]. The former identifies the cost of services, security, resource limits, and
cold start while scaling, and the latter focuses on tools and IDEs, deployment,
statelessness, and code granularity in the serverless model.

2.2 Function Cold Start and Mitigation

Researchers in [32] described function cold start as the time taken to execute
a function. This process involves assigning a container to a function, accessing
the code package and copying the function image, loading the image into mem-
ory, unpacking it, and executing the function handler. It broadly classified the
approaches to deal with function cold start in, environment optimization, and
pinging. The former approach acts either by reducing container preparation time
or decreasing the delay in loading function libraries, while the latter technique
continuously monitors the functions and periodically pings them to keep the
instances warm or running.

An adaptive container warm-up technique to reduce the cold start latency
and a container pool strategy to reduce resource wastage is introduced in [35].
The proposed solution leverages a Long-Short Term Memory (LSTM) network
to predict function invocation times and non-first functions in a chain to keep a
warm queue of function containers ready. Although both the discussed techniques
work in synchronization, the first function in the chain suffered from a cold start.



6 S. Agarwal et al.

The research in [15] explained platform-dependent overheads like pod pro-
visioning and application implementation-dependent overheads. It presented a
pool-based pre-warmed container technique, marked with selector ‘app-label’ to
deal with the function cold start problem. To tackle the incoming demand, a con-
tainer pool is checked first for existing pre-warmed containers, or the platform
requests new containers as per the demand.

Another study [18] exploited the data similarity to reduce the function cold
start. It criticized the current container deployment technique of pulling new con-
tainer images from the storage bucket and introduced a live container migration
over a peer-to-peer network. Similarly, [10] aimed to reduce the number of cold
start occurrences by utilizing the function composition knowledge. It presented
an application-side solution based on lightweight middleware. This middleware
enable the developers to control the frequency of cold start by treating the FaaS
platform as a black box.

Based on the investigation in [21], network creation and initialization were
found to be the prime contributors to the cold start latency. The study expressed
that cold starts are caused due to work and wait times involved in various set-up
processes like initializing networking elements. The study explained the stages
of the container lifecycle and states that the clean-up stage demands cycles from
the underlying containerization daemon, hindering other processes. Therefore, a
paused container pool manager is proposed to pre-create a network for function
containers and attach the new function containers to configured IP and network
when required.

Some studies [26], [19], [12] have identified significant factors that affect the
cold start of a function. These include runtime environment, CPU and memory
requirements, code dependency setting, workload concurrency, and container
networking requirements. Most works [28], [14], [34], [20], [17] focus on commer-
cial FaaS platforms like AWS Lambda, Azure Functions, Google Cloud Functions
and fall short to evaluate open source serverless platforms like OpenLambda, Fis-
sion, Kubeless, etc. Very few studies [30], [24], [22] have successfully performed
analysis on an open-source serverless platform and provided possible solution by
targeting the container level fine-grained control of the platform.

Recent research works [25], [33], [9], [5] introduce the paradigm of RL to
the FaaS platforms in different ways. [25] focuses on request-based provisioning
of VMs or containers on the Knative platform. The authors demonstrated a
correlation between latency and throughput with function concurrency levels and
thus propose a Q-Learning model to determine the optimal concurrency level of
a function for a single workload. [33] proposed a two-layer adaptive approach,an
RL algorithm to predict the best idle-container window, and an LSTM network
to predict future invocation times to keep the pre-warmed containers ready.

The study demonstrated the advantages of the proposed solution on the
OpenWhisk platform using a simple HTTP-based workload and a synthetic de-
mand pattern. Another research [9] focused on resource-based scaling configu-
ration (CPU utilisation) of OpenFaaS and adjusts the HPA settings using an
RL-based agent. They assumed a serverless-edge application scenario and a syn-



On-demand Cold Start Frequency Reduction with Off-Policy RL 7

thetic demand pattern for the experimentation and present their preliminary
findings based on latency as SLA.

Agarwal et al.[5] introduced the idea of Q-learning to ascertain the appro-
priate amount of resources to reduce frequent cold starts. The authors shared
the preliminary training results with an attempt to show the applicability of
reinforcement learning to the serverless environment. They utilised the platform
exposed resource metrics to experiment with a synthetic workload trace, i.e.
Fibonacci series calculation, to simulate a compute-intensive application and
predict the required resources.

Fig. 1. System Model

Our proposed work introduces a Q-Learning strategy to reduce frequent cold
starts in the FaaS environment. Contrasting existing solutions, we apply the
model-free Q-Learning to determine required number of function instances for
the workload demand that eventually reduces number of on-demand cold starts.
Furthermore, the existing solutions takes advantage of either continuous ping-
ing, pool-based approaches, container migration and network building or exploit
platform-specific implementations like provisioned concurrency while failing to
experiment with CPU-intensive real-world application workloads. Similar to [5],
our work utilizes available resource-based metrics and response failure rate to
accomplish the learning, but improves over the discussed approach. Contrast-
ing to their model, we formulate the problem of cold starts as an optimisation



8 S. Agarwal et al.

approach to proactively spawn the required function instances and minimize
frequent, on-demand cold starts.

As part of their Q-learning model, the study used fixed-value constants in the
reward modelling and we address this issue by carefully analysing the problem
and curate it as a threshold-based reward system. Additionally, we experiment
with matrix multiplication function, that can be used as part of image processing
pipeline, to train and evaluate our agent and utilise the open-sourced function
invocation trace [27] by Azure. Further we describe our design decisions and
utilize constants based upon the trial-error analyses. The successful learning of
the agent resulted in the preparation of near to optimal function instances in a
timeframe to reduce the on-demand function creation or cold starts and improve
the platform’s throughput. A summary of related works is presented in Table 1.

3 System Model and Problem Formulation

FaaS is an event-driven cloud service model that allows stateless function de-
ployment. It delivers high scalability and scale-to-zero feature being economical
to infrequent demand patterns. New functions ni, where 1 ≤ ni ≤ N and N
is the maximum scale, are instantiated on-demand to serve the incoming load
(scale up) and removed (scale down) when not in use after a certain time span
or below a configured, resource-based threshold metric value for every i iteration
window. The preparation time of function containers i.e., cold start Ct, adds to
the execution time of a request. These frequent on-demand cold starts result
in an increased computation pressure on existing resources, neglecting expected
average CPU utilisation (ϕo), and expected request failure rate (τo). Therefore,
an intelligent, learning-based solution is proposed to address them.

In this study, we consider Kubeless, an open-source Kubernetes-native server-
less platform that leverages Kubernetes primitives to provide serverless abstrac-
tion. It wraps function code inside a docker container with pre-defined resource
requirements i.e. RRf = (cpuf ,memf , toutf ) and schedules them on worker
nodes. Similar to commercial FaaS providers, Kubeless has an idle-container
window of 5 minutes to re-use functions and scales down to a minimum of one
function if the collected metrics (default 15 seconds window) are below the set
threshold. We take into account the general illustration of FaaS platform and
consider a stochastic incoming request pattern D = {d1, d2, . . . , di} with di re-
quests in ith iteration window. We analyze the request pattern for a timeframe
T divided in i iteration windows of duration ti. The system model of the exam-
ined scenario is depicted in Fig. 1. The workflow of the potential cold start is
explained in Fig. 2.

3.1 Problem Formulation

We formulate the function cold start as an optimization problem aimed at min-
imizing the number of cold starts (Eq. 1) by preparing required instances, be-
forehand and aid the agent in learning a policy to reduce the request failure rate



On-demand Cold Start Frequency Reduction with Off-Policy RL 9

while maintaining average CPU utilisation.

min
ϕ,τ,di

(ni) (1)

such that

τdi
< τo; ϕdi

< ϕo (2)

A cold start happens when there are no function instances available on the
platform to deal with the incoming request and a new function instance is re-
quested from the platform. FaaS services scale horizontally as per resource-based
thresholds to be agile, usually considering the function’s average CPU utilisation.
Therefore, the goal of optimization is to assess the incoming request pattern di
for an application task in ith iteration window and configure a policy to prepare
functions beforehand, considering actual and expected average CPU utilisation
(ϕdi

&ϕo) and request failure rate (τdi
&τo). Since the preparation time, Ct re-

mains similar for individual function containers, we focus on optimizing the
frequency of cold start ni for an individual iteration window.

With easy to implement and economical service model, enterprises are ac-
commodating critical tasks like user verification, media processing, parallel sci-
entific computations, anomaly detection and event-driven video streaming into
the serverless paradigm. To assess the necessity of a dynamic solution, we con-
sider matrix multiplication as workload, which is an important task in image
processing workflow.

Reinforcement Learning model In a model-free Q-Learning process, the
agent learns by exploring the environment and exploiting the acquired infor-
mation. The core components of the environment are state, action, reward and
agent. The environment state represents the current visibility of the agent and
is defined as a Markov Decision Process (MDP) [31], [7] where future environ-
ment state is independent of past states, given the present state information.
Actions are the possible set of operations that the agent can perform in a par-
ticular state. Additionally, rewards are the guiding signals that lead the agent
towards the desired goal by performing actions and transitioning between en-
vironment states. The agent maintains a Q-value table to assess the quality of
action through obtained reward for the respective state and utilize it for future
learning. Therefore, we propose a modelling scheme for the RL environment that
is leveraged by a Q-Learning agent to learn a policy for function preparation.

We model the RL environment’s state as si = (n̂i, ϕdi
, τdi

) where ϕdi
repre-

sents the average CPU utilisation of the available n̂i function instances, τdi repre-
sents the response failure rate, and i is the iteration window during a timeframe
T . The agent’s task is to prepare the estimated number of function instances
in the upcoming iteration window either by exploring or exploiting the suitable
actions. These actions of adding or adjusting the number of function instances,
compensate for any expected cold starts from the incoming demand and help to
improve the throughput of the system. Therefore, we define the agent’s action



10 S. Agarwal et al.

Fig. 2. Function Warm Start & Cold Start workflow

as the number of function instances, ni, to be added or removed from currently
available functions n̂i−1 and represent it as a set ai = {ni|1 ≤ (n̂i−1+ai) ≤ N}.
This heuristic helps the agent to control the degree of exploration by main-
taining the number of functions within the threshold N , that is adapted based
on deployed infrastructure capacity. Hence, we map the function resources and
relevant metrics to RL environment primitives.

The motive of the RL-based agent is to learn an optimal policy, and we
structure the rewards over resource-based metrics ϕdi

, function response failure
rate τdi , and expected threshold values (ϕo and τo). It evaluates the quality of
action ai in state si by keeping a value-based table, i.e., Q-table, that captures
this information for every (si, ai) pair. After executing the action, the agent
waits for the duration of the iteration window and receives a delayed reward ri,
expressed based on the difference between the expected and actual utilisation
and failure rate values, as shown in Eq. 3.

ri =
(ϕo − ϕdi

) + (τo − τdi
)

n̂i
(3)

and the Q-table is represented as a matrix (Eq. 4) of dimension S ×A.

Q(Sn×Am) =

s1, a1 . . . s1, am
...

. . .
...

sn, a1 . . . sn, am

 (4)



On-demand Cold Start Frequency Reduction with Off-Policy RL 11

4 Q-Learning for Cold Start Reduction

In this work, we apply model-free Q-learning algorithm in FaaS paradigm to
reduce frequent on-demand function cold starts. We select this algorithm due
to its simple and easy implementation, model interpretability, strong theoreti-
cal convergence guarantees, ability to process the perceived information quickly
using the Bellman equation and its adaptability to other advanced algorithms
like Deep Q-Learning (DQN). As discussed in Section 3, we model the process
of creating required function instances as an MDP and map the serverless com-
puting primitives to RL agent’s environment, state and actions. We explore and
exploit an off-policy RL algorithm to reduce the on-demand function cold starts
and determine the required function instances with the intuition of it being easy,
simple to implement, less complex with stable convergence in a discrete action
space. The proposed approach has two phases: an agent training phase and a
testing phase. Algorithm 1 demonstrates the agent training workflow. The en-
vironment setup process precedes the agent training, where the agent interacts
with the environment and obtains information. After initial setup, the agent is
trained for multiple epochs or timeframes where it assesses the function demand
di over individual iteration windows i and ascertains appropriate function in-
stances. During an iteration window i, the agent observes the environment state
si, selects an action ai according to ϵ-greedy policy. This greedy policy helps
the agent to control its exploration and selects a random action with ϵ prob-
ability, otherwise exploiting the obtained information. This exploration rate is
a dynamic value and decays with ongoing learning to prioritise the acquired
information.

Algorithm 1 Q-Learning for Cold Start Reduction
Require: Initialise Environment variables
Ensure: Initialise Q-Table, decayRate, ϵ, epoch

ϵ = 0.01 + 0.99e(−decayRate×epoch)

Repeat for each TrainingEpoch
epoch← epoch+ 1
while telapsed < T do

si ← currentState(n̂i, ϕdi , τdi , i)
ai ← choose using ϵ-greedy policy from Q-Table
Scale & wait for ith iteration window
ri ← calculateReward(ϕdi , τdi)
si+1 ← getNewState(n̂i+1, ϕdi+1 , τdi+1 , i+ 1)
Q(si, ai)← (1− α)Q(si, ai + α(ri + γmaxa Q(si+1, ai))
telapsed = telapsed + ti

end while

After performing the selected action, the agent waits for duration ti of an
iteration window to obtain the delayed reward ri, calculated using the relevant
resource-based metrics ϕdi

and function failure rate τdi
. This reward helps the



12 S. Agarwal et al.

agent in action quality assessment, and it combines the acquired knowledge over
previous iterations using the Bellman Equation (Eq. 5). It is the core compo-
nent in learning as it aids Q-value or Q-table updates and improves the agent’s
value-based decision-making capability. The equation uses two hyper-parameters
learning rate, α and discount factor, γ. The learning rate signifies the speed of
learning and accumulating new information, and the discount factor balances
the importance of immediate and future rewards.

Q(si, ai) = (1− α)Q(si, ai) + α(ri + γmax
a

Q(si+1, ai)) (5)

The agent then evaluates and adjusts the Q-value in Q-Table based upon the
delayed reward for the corresponding (si, ai) pair. The agent continues to analyse
the demand over multiple iteration windows, selecting and performing actions,
evaluating delayed rewards, assessing the quality of action and accumulating
the information in Q-table, and repeating this process over multiple epochs for
learning. Once the agent is trained for sufficient epochs and the exploration rate
has decayed significantly, we can exploit obtained knowledge in the testing phase.

In the testing phase, the agent is evaluated using a demand pattern for the
matrix multiplication function and the Q-table values guide the agent in tak-
ing informed actions. The agent determines the current environment state and
obtains the best possible action i.e. action with the highest Q-value for the cor-
responding state, and adjusts the required number of functions based on its
understanding of the demand. We hypothesise that there exists a relationship
between throughput and function availability to serve incoming requests. There-
fore, we evaluate the agent’s performance by considering metrics such as system
throughput, function resource utilisation and available function instances. We
further hypothesise that the RL-based agent learns to prepare and adjust re-
quired number of functions beforehand and improve the throughput while keep-
ing the function’s resource utilisation below the expected threshold.

Table 2. System Setup Parameter values

Parameter Name Value
Kubernetes version v1.18.6
Kubeless version v1.0.6

Nodes 4
OS Ubuntu 18.04 LTS

vCPU 4
RAM 16 GB

Workload Matrix Multiplication (m×m)
m 1024



On-demand Cold Start Frequency Reduction with Off-Policy RL 13

5 Performance Evaluation

In this section, we provide the experimental setup and parameters, and perform
an analysis of our agent compared to other complementary solutions.

5.1 System Setup

We set up our experimental test-bed as discussed in Section 3, using NeCTAR
(Australian National Research Cloud Infrastructure) services on the Melbourne
Research Cloud. We configure Kubernetes (v1.18.6) and Kubeless (v1.0.6) on a
service cluster of 4 nodes, each with Ubuntu (18.04 LTS) OS image, 4 vCPUs, 16
GB RAM, and 30 GB of disk storage to perform the relevant experiments. Typi-
cal serverless applications expect high scalability for their changing demands and
can be compute-intensive, demanding a considerable amount of resources such as
CPU, memory, or time to execute. These factors add to frequent cold starts on
the platform by keeping the available functions or resources busy while request-
ing new functions for the subsequent workload demand. We use Python-based
matrix multiplication (1024 pixels x 1024 pixels) to mimic the image processing
task as our latency-critical application to deploy serverless functions.

The experimental setup mimics real-time application demand experienced in
commercial FaaS platforms [11], [27]. We consider a single function invocation
trace from the open-source Azure function data [27] and downsize it according
to our resource capacity. We deploy the Apache JMeter load testing tool to
generate the HTTP-based requests and randomize its request ramp-up period
to guarantee the changing demand pattern for our workload. Also, we collect
the relevant resource-based metrics and throughput information via Kubernetes
APIs. Table 2 summarises the parameters used for system set-up.

0
10
20
30
40
50
60
70
80
90

Fa
il R

ate
 SL

A

Epochs

Iteration 1

Fig. 3. Training iteration 1

5.2 RL Environment Setup

To initialize the proposed RL-based environment, we first analyze and set up the
function requirements according to deployed resource limits. After preliminary



14 S. Agarwal et al.

0
10
20
30
40
50
60
70
80
90

Fa
il R

ate
 SL

A
Epochs

Iteration 2

Fig. 4. Training iteration 2

0

20

40

60

80

100

Fa
il 

Ra
te

 S
LA

Epochs

Iteration 3

Fig. 5. Training iteration 3

analysis, we configure the function requirements as 1 vCPU, 128 MB memory,
and 60 seconds function timeout, where timeout represents the maximum exe-
cution period for a function until failure. To experiment we assume a timeframe
of 10 minutes to analyse the demand pattern of 100 requests during 5 iteration
windows of 2 minutes. Based on the resource analysis and underlying Kuber-
netes assets we assume the function limit N = 7. These constraints allow us
to put a considerable load or pressure on the different techniques discussed and
effectively evaluate them against each other.

As discussed in Section 3, the RL-environment components depend upon re-
source metrics (average CPU utilisation), response failure rate, number of avail-
able functions and expected threshold values, summarized in Table 3. Since the
proposed agent maintains a Q-table, these considerations help to minimise the
risk of state-space explosion related to Q-Learning. The actions signify the ad-
dition or removal of functions based upon the function limit and the reward
is modelled around the expected threshold values. We configure the Bellman
Equation hyper-parameters: learning rate and discount factor as 0.9 and 0.99,
respectively, based on the results of hyper-parameter tuning in [5]. The agent
is structured to explore the environment and exploit the acquired knowledge.
We use ϵ-greedy action selection policy to randomly select an action with initial
ϵ = 1 probability and exploit this information with a decay rate of 0.0025. These



On-demand Cold Start Frequency Reduction with Off-Policy RL 15

0

20

40

60

80

100

Fa
il 

Ra
te

 S
LA

Epochs

Iteration 4

Fig. 6. Training iteration 4

0

20

40

60

80

100

Fa
il 

Ra
te

 S
LA

Epochs

Iteration 5

Fig. 7. Training iteration 5

RL system parameter values were chosen after careful consideration of discussed
workload and invocation pattern, according to the underlying resource capacity,
and to showcase the applicability of RL-based agent in a serverless environment.

Table 3. RL-Environment parameter values

Parameter Value
cpuf ,memf , toutf 1, 128M, 60 seconds

N 7
T 10 minutes
i 5
ti 2 minutes
ϕo 75%
τo 20%
α 0.9
γ 0.99
ϵ 1

decayRate 0.0025



16 S. Agarwal et al.

5.3 Q-Learning Agent Evaluation

We train the RL-based agent for a timeframe of 10 minutes over 500 epochs
to analyze an application demand and learn the ideal number of functions to
reduce frequent cold starts. The agent is structured according to the RL-based
environment design explained in section 3 and around the implementation con-
straints. The quality of the RL-based agent is evaluated during a 2-hour period
to reduce the effect of any bias and performance bottlenecks.

We assess the effectiveness of our approach against the default scaling policy
and commercially used function keep-alive policy on the serverless platform.
Kubeless leverages the default resource-based scaling (HPA) implemented as a
control loop that checks for the specific target metrics to adjust the function
replicas. HPA has a default query period of 15 seconds to check and control the
deployment based on the target metrics like average CPU utilization. Therefore,
the HPA controller fetches the specific metrics from the underlying API and
calculates the average metric values for the available function instances. The
controller adjusts the desired number of instances based on threshold violation
but is unaware of the demand and only scales after a 15-second metric collection
window. The expected threshold for function average CPU utilisation is set to be
75% with maximum scaling up to 7 instances. Therefore, whenever the average
CPU utilisation of the function violates the threshold, new function instances
are provisioned in real-time, representing a potential cold start in the system.

Also, HPA has a 5-minute down-scaling window and during that period re-
sources are bound to the platform irrespective of incoming demand which rep-
resents potential resource wastage. Therefore, it is worthwhile to analyse the
performance of the RL-based agent against the function queuing or keep-alive
approach that keeps enough resources bound to itself for an idle-container win-
dow.

Fig. 3,4,5,6,7 illustrates the learning curve of the agent over multiple epochs
and we observe that the agent continuously attempts to meet the expected
thresholds. This highlights the agent’s capability to obtain positive rewards and
move towards the desired configuration. We compare the RL-based agent with
HPA and successfully demonstrate the agent’s ability to improve the function
throughput i.e., reduce the failure rate by up to 8.81%, Fig. 8. The RL-based
agent further targets to maintain the expected CPU utilisation thresholds, Fig.
9, by reducing CPU stress up to 55% while determining the required function
instances in Fig. 10. For example, in Fig. 10 during iteration windows 1 and 2,
the HPA scales functions based on CPU utilisation threshold, unaware of the
actual requirement for upcoming iteration and results in resource wastage. Sim-
ilarly, Fig. 10, illustrates the resource wastage by HPA during iterations 3 and
4.

Similar results are observed against function queuing or keep-alive policy,
where we evaluate two queues with N = 4 and N = 7. The RL-based agent
scales and prepares the function according to demand needs while the queue
results in resource wastage of up to 37%, as shown in Fig. 11. Although the
queuing policy manages to reduce the request failure rate to zero, it is due to



On-demand Cold Start Frequency Reduction with Off-Policy RL 17

extra resources available, as depicted in Fig. 12, but can not be precisely captured
by HPA metrics and shows over CPU utilisation of up to 50% in Fig. 13. The
proposed agent analysed the demand pattern by consuming sufficient function
resources, preparing the ideal number of functions and trying to keep the desired
CPU utilisation under control. Hence, the learning and testing analysis support
our hypothesis that reducing on-demand cold starts can be directly linked to the
throughput improvement.

Fig. 8. RL Agent v/s HPA: Failure Rate

Fig. 9. RL Agent v/s HPA: CPU Utilisation

6 Discussion

Function cold start is an inherent shortcoming of the serverless execution model.
Thus, we have proposed an RL-based technique to investigate the demand pat-
tern of the application and attempt to reduce the frequency of function cold
starts. The proposed agent performs better than the baseline approaches under



18 S. Agarwal et al.

Fig. 10. HPA: Function Provision

Fig. 11. Function Queue: Function Provision

Fig. 12. RL Agent v/s Function Queue: Failure Rate



On-demand Cold Start Frequency Reduction with Off-Policy RL 19

Fig. 13. RL Agent v/s Function Queue: CPU Utilisation

a controlled experimental environment. But there are certain points to recollect
associated with the real-time appropriateness of the proposed solution.

We leverage the RL environment modelling, specifically Q-Learning con-
straints [31], [36], and in general, these algorithms are expensive in terms of
data and time. The agent interacts with the modelled environment to acquire
relevant information over multiple epochs that signify a higher degree of ex-
ploration. Hence, as evidenced in the proposed work, for an RL-based agent to
outperform a baseline technique, a training period of 500 epochs is exploited
for satisfactorily analyzing the workload demand for a timeframe (10 minutes).
Therefore, RL-based approaches are considerably expensive in practical applica-
tions with stringent optimization requirements.

A classical Q-Learning approach is applied to discrete environment variables
[31]. To constrain the serverless environment within the requirements of the Q-
Learning algorithm, we consider the discrete variables to model cold starts. The
size of the Q-table is large and is a function of state space and action space. But
with the expansion of state space or the action space, the size of the Q-table
grows exponentially [31], [36]. Therefore, Q-Learning experiences state explosion,
making it infeasible to perform updates on Q-values and degraded space and time
complexity.

The proposed agent analyzes individual application demand, so the learning
can’t be generalized for other demand patterns and requires respective train-
ing to be commissioned. Furthermore, the agent is trained for 500 iterations and
evaluated, but the chance of exploring every state is bleak with limited iterations
of training. Therefore, the agent expects to be guided by certain approximations
to avoid acting randomly. The agent utilizes resource-based metrics that affect
the cold starts, so the availability of relevant tools and techniques to collect in-
stantaneous metrics is essential. Also, the respective platform implementation of
a serverless environment, such as metrics collection frequency, function concur-
rency policy, and request queuing, can extend support to the analyses.

The difference between the approaches can be attributed to the following
characteristics of the proposed RL-based agent –



20 S. Agarwal et al.

1. The process of elimination of invalid states during the RL environment setup
and lazy loading of Python, helps the agent to productively use the acquired
information about the environment.

2. Although the RL-based agent outperforms HPA and function queue policy,
there is a lack of function container concurrency policy. The CPU-intensive
function workload is configured with an execution time of 60 seconds and
thus affected by the concurrency control of the instance.

3. The composition of state space and reward function incorporates the effect
of failures during the training, and therefore, the agent tries to compensate
for the failures in consequent steps of learning by exploiting the acquired
knowledge.

On the account of the performance evaluation results, we can adequately con-
clude that the proposed agent successfully outperforms competing policies for the
given workload and experiment settings. We strengthen this claim by analysing
the training and testing outcomes of the RL-based agent, focused on examining
the workload pattern to reduce request failure which is a direct consequence of
appropriate function instances representing reduced function cold starts.

7 Conclusions and Future Works

FaaS model executes the piece of code inside a container, known as a function and
prepares new function containers on demand. New function containers undergo
an initialisation process that puts together all the essential components before
executing the function handler. This bootstrapping process consumes time in
the order of a few seconds, known as function cold start and introduces a delay
in the response of the function container.

This work visits the problem of function cold start by addressing frequent
cold starts and analysing the application demand through an RL technique. We
leverage the services of Apache JMeter to produce varying incoming request
patterns and a CPU-intensive function workload to complement the invocation
pattern and observe relevant cold starts. The system is set up using the Kube-
less framework and the RL environment is modelled for the agent to examine
the necessary metrics to make guided decisions in provisioning an appropriate
number of function instances.

We present an evidence of leveraging Q-Learning to address cold starts on
FaaS platforms and verify it with improved platform throughput, reduced re-
source wastage while maintaining expected thresholds, during the iterations.
We evaluate the performance of our proposed agent against the HPA policy and
function queue policy. We successfully observe the RL-based agent outperforming
comparing techniques after a training of 500 epochs that verifies our hypothesis
of strong association between success rate and reduced number of cold starts on
the platform. After the test analyses, the Q-Learning agent successfully improves
throughput by up to 8.81% and reduces resource wastage by up to 37% while
preparing sufficient functions to reduce cold starts.



On-demand Cold Start Frequency Reduction with Off-Policy RL 21

As part of future work, impact of other important aspects such as function
memory allocation, language runtime, deployment size, programming conven-
tion and function characteristics in conjunction with different techniques can be
explored as discussed below -

– In the industrial works like [3], [4], an insight is provided for the serverless
AWS Lambda functions and how an improvement can be made to its cold
start latencies and operating costs with careful function initialisation phase
consideration.

– An in-depth analysis of function fusion or monolithic function development
on resource requirements and cold start of function workflows can also be
explored with respect to the performance and run-time costs of the function.

– Furthermore, a trade-off analysis of techniques like function pre-baking, pro-
visioned concurrency and reserved concurrency can also be valuable in per-
formance optimisation of serverless function and associated application work-
flows.

– In addition to CPU-intensive functions, impact of cold start on different
classes of functions like memory-intensive, I/O-intensive and network-intensive
functions, utilised for application domains such as AI/ML model training and
inference, and media processing, can also be explored.

– Consequently, a cost and performance analysis of RL-based agents can also
be made for the function cold start reduction in these application cases.
Similar to Q-Learning, the application of other policy-based techniques such
as SARSA, which is known to converge faster than Q-Learning, can also be
experimented with in the domain of the cold start problem. As an adaptation
of Q-Learning, the proposed solution includes discrete values over continuous
values for state representation. In this context, to avoid the problem of state
space explosion, function approximation techniques such as DQNs, Proximal
Policy Optimization (PPO) and other complex deep learning methods such
as Soft-Actor-Critic (SAC) or Recurrent models [6] can also be leveraged to
estimate the information about optimal actions.

– To further explore the evolving technological space, an integration of Gener-
ative Adversarial Networks for synthetic training data generation or Large-
Language-Models can be explored for pro-active cold start reduction using
the historical data.

References

1. Kubeless-kubernetes native serverless. https://kubeless.io/docs/, [Online]; Ac-
cessed 2021

2. Datadog, the state of serverless. 2022. https://www.datadoghq.com/state-of-
serverless-2022/ (June 2022), [Online]; Accessed 2023

3. Operating lambda: Performance optimization - part 1.
https://aws.amazon.com/blogs/compute/operating-lambda-performance-
optimization-part-1/ (May 2021), [Online]; Accessed 2024



22 S. Agarwal et al.

4. Operating lambda: Performance optimization - part 2.
https://aws.amazon.com/blogs/compute/operating-lambda-performance-
optimization-part-2/ (May 2021), [Online]; Accessed 2024

5. Agarwal, S., Rodriguez, M.A., Buyya, R.: A reinforcement learning approach
to reduce serverless function cold start frequency. In: Proceedings of the 21st
IEEE/ACM International Symposium on Cluster, Cloud and Internet Comput-
ing (CCGrid). pp. 797–803. IEEE (2021)

6. Agarwal, S., Rodriguez, M.A., Buyya, R.: A deep recurrent-reinforcement learning
method for intelligent autoscaling of serverless functions. IEEE Transactions on
Services Computing pp. 1–12 (2024). https://doi.org/10.1109/TSC.2024.3387661

7. Ashraf, M.: Reinforcement learning demystified: Markov decision processes (part
1). Towards Data Science (2018)

8. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N.,
Muthusamy, V., Rabbah, R., Slominski, A., et al.: Serverless computing: Current
trends and open problems. In: Research advances in cloud computing, pp. 1–20.
Springer (2017)

9. Benedetti, P., Femminella, M., Reali, G., Steenhaut, K.: Reinforcement learning
applicability for resource-based auto-scaling in serverless edge applications. In:
Proceedings of the IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerCom Workshops).
pp. 674–679. IEEE (2022)

10. Bermbach, D., Karakaya, A.S., Buchholz, S.: Using application knowledge to reduce
cold starts in faas services. In: Proceedings of the 35th Annual ACM Symposium
on Applied Computing. pp. 134–143 (2020)

11. Galstyan, A., Czajkowski, K., Lerman, K.: Resource allocation in the grid using
reinforcement learning. In: Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004. vol. 1, pp.
1314–1315. IEEE Computer Society (2004)

12. Hellerstein, J.M., Faleiro, J., Gonzalez, J.E., Schleier-Smith, J., Sreekanti, V., Tu-
manov, A., Wu, C.: Serverless computing: One step forward, two steps back. arXiv
preprint arXiv:1812.03651 (2018)

13. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.C., Khandelwal, A., Pu,
Q., Shankar, V., Carreira, J., Krauth, K., Yadwadkar, N., et al.: Cloud pro-
gramming simplified: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383 (2019)

14. Lee, H., Satyam, K., Fox, G.: Evaluation of production serverless computing en-
vironments. In: Proceedings of the IEEE 11th International Conference on Cloud
Computing (CLOUD). pp. 442–450. IEEE (2018)

15. Lin, P.M., Glikson, A.: Mitigating cold starts in serverless platforms: A pool-based
approach. arXiv preprint arXiv:1903.12221 (2019)

16. Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., Pallickara, S.: Serverless com-
puting: An investigation of factors influencing microservice performance. In: Pro-
ceedings of the IEEE International Conference on Cloud Engineering (IC2E). pp.
159–169. IEEE (2018)

17. Lynn, T., Rosati, P., Lejeune, A., Emeakaroha, V.: A preliminary review of enter-
prise serverless cloud computing (function-as-a-service) platforms. In: Proceedings
of the IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). pp. 162–169. IEEE (2017)

18. Mahajan, K., Mahajan, S., Misra, V., Rubenstein, D.: Exploiting content simi-
larity to address cold start in container deployments. In: Proceedings of the 15th



On-demand Cold Start Frequency Reduction with Off-Policy RL 23

International Conference on emerging Networking Experiments and Technologies.
pp. 37–39 (2019)

19. Manner, J., Endreß, M., Heckel, T., Wirtz, G.: Cold start influencing factors in
function as a service. In: Proceedings of the IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion). pp. 181–188.
IEEE (2018)

20. McGrath, G., Brenner, P.R.: Serverless computing: Design, implementation, and
performance. In: Proceedings of the 37th IEEE International Conference on Dis-
tributed Computing Systems Workshops (ICDCSW). pp. 405–410. IEEE (2017)

21. Mohan, A., Sane, H., Doshi, K., Edupuganti, S., Nayak, N., Sukhomlinov, V.: Agile
cold starts for scalable serverless. In: Proceedings of the 11th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 19) (2019)

22. Mohanty, S.K., Premsankar, G., Di Francesco, M., et al.: An evaluation of open
source serverless computing frameworks. in Proceedings of the IEEE International
Conference on Cloud Computing Technology and Science (CloudCom) pp. 115–120
(2018)

23. Rosenbaum, E.: Next frontier in microsoft, google, amazon cloud battle is
over a world without code. https://www.cnbc.com/2020/04/01/new-microsoft-
google-amazon-cloud-battle-over-world-without-code.html (April, 2020), [Online];
Accessed 01-09-2021

24. Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Towards network-aware re-
source provisioning in kubernetes for fog computing applications. In: Proceedings
of the IEEE Conference on Network Softwarization (NetSoft). pp. 351–359. IEEE
(2019)

25. Schuler, L., Jamil, S., Kühl, N.: Ai-based resource allocation: Reinforcement learn-
ing for adaptive auto-scaling in serverless environments. In: Proceedings of the
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Com-
puting (CCGrid). pp. 804–811. IEEE (2021)

26. Shafiei, H., Khonsari, A., Mousavi, P.: Serverless computing: A survey of opportu-
nities, challenges, and applications. ACM Computing Surveys (CSUR) (2019)

27. Shahrad, M., Fonseca, R., Goiri, Í., Chaudhry, G., Batum, P., Cooke, J., Lau-
reano, E., Tresness, C., Russinovich, M., Bianchini, R.: Serverless in the wild:
Characterizing and optimizing the serverless workload at a large cloud provider.
In: Proceedings of the USENIX Annual Technical Conference (USENIX ATC 20).
pp. 205–218 (2020)

28. Shilkov, M.: Comparison of cold starts in serverless functions across aws, azure,
and gcp. https://mikhail.io/serverless/coldstarts/big3/ (January, 2021), [Online];
Accessed 2021

29. Silva, P., Fireman, D., Pereira, T.E.: Prebaking functions to warm the serverless
cold start. In: Proceedings of the 21st International Middleware Conference. pp.
1–13 (2020)

30. Solaiman, K., Adnan, M.A.: Wlec: A not so cold architecture to mitigate cold
start problem in serverless computing. In: Proceedings of the IEEE International
Conference on Cloud Engineering (IC2E). pp. 144–153. IEEE (2020)

31. Sutton, R.S.: Reinforcement learning: Past, present and future. In: Asia-Pacific
Conference on Simulated Evolution and Learning. pp. 195–197. Springer (1998)

32. Vahidinia, P., Farahani, B., Aliee, F.S.: Cold start in serverless computing: Current
trends and mitigation strategies. In: Proceedings of the International Conference
on Omni-layer Intelligent Systems (COINS). pp. 1–7. IEEE (2020)



24 S. Agarwal et al.

33. Vahidinia, P., Farahani, B., Aliee, F.S.: Mitigating cold start problem in serverless
computing: A reinforcement learning approach. Proceedings of the IEEE Internet
of Things Journal (2022)

34. Wang, L., Li, M., Zhang, Y., Ristenpart, T., Swift, M.: Peeking behind the cur-
tains of serverless platforms. In: Proceedings of the USENIX Annual Technical
Conference (USENIX ATC 18). pp. 133–146 (2018)

35. Xu, Z., Zhang, H., Geng, X., Wu, Q., Ma, H.: Adaptive function launching ac-
celeration in serverless computing platforms. In: Proceedings of the IEEE 25th
International Conference on Parallel and Distributed Systems (ICPADS). pp. 9–
16. IEEE (2019)

36. Zychlinski, S.: Qrash course: Reinforcement learning 101 deep q networks in 10
minutes. https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-
ground-up-1bbda41d3677 (10 January, 2019), [Online]; Accessed 2020.


