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Abstract
Load imbalance severely affects cluster performance, and the polarization of 
resources due to load skewing leads to further worsening of system throughput and 
latency problems. The proliferation of tasks to be processed in the big data era leads 
to more severe load skewing. How to cope with the surge of skewed data stream in 
the context of big data is a new challenge now. In this paper, we propose a coor-
dinated load balancing strategy on skewed data streams (referred to as St-Stream), 
which is a two-tier hierarchical system for handling data streams. The proposed 
strategy is characterized by performing a migration pairing strategy for resources at 
the task allocation stage by cutting and moving out the tasks of high-load nodes in 
a hierarchical manner, and the moved-out operators are placed in the routing table, 
and the routing table operators are moved out to these nodes sequentially according 
to the tasks required by low-load nodes. We further design a two-tier coordination 
scheme for the resource allocation problem, which can adjust the skewed load from 
within the nodes and then dynamically restore the balance between the nodes. We 
implemented St-Stream on Apache Storm, which achieves a 21% coordination in 
processing CPU utilization, a 17.6% reduction in latency, and a 0.3 improvement 
in load balance recovery compared to the baseline design. Our experimental results 
demonstrate that the proposed load balancing strategy better balances the cluster 
load and improves the performance of the stream processing system.
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1  Introduction

Data streams processing has become an essential component of Big Data, which 
mainly provides a millisecond response for processing continuous and unbounded 
data. However, data with the same characteristics are aggregated to the same task 
for processing, which may lead to uneven distribution of data between tasks and 
further cause the so called data stream skewing phenomenon. Skewed data stream 
is one of the main factors causing the load imbalance problem and affecting the per-
formance of distributed processing systems [1–3]. In addition, the unpredictable size 
and speed of the data received by the stream processing system leads to its process-
ing in a very unstable manner [4, 5] causing load fluctuations in the system. Thus, 
the skewed data streams can incur two problems: (1) From the perspective of exter-
nal data stream into the processing system, the arrival of large-scale uncontrollable 
skewed data streams has different capacities within the cluster to withstand the load 
[6, 7], leading to the paralysis or even collapse of the whole system. (2) From the 
perspective of the system, data are randomly assigned to nodes [8], and the com-
munication overhead between nodes varies due to the different speed and capacity of 
each node to handle the task [9], making the skewed data streams enter the system at 
different scales leading to system crashes.

At this stage, the impact of skew load on data stream on latency, CPU utilization 
and node overhead is not sufficient. Combining big data technology with load bal-
ancing technology can further provide specialized services that guarantee network 
security, improve network efficiency, and reduce network latency [10]. [11] present 
two path selection solutions based on the overall load of the network to find the 
optimal paths considering the network state. When dealing with large-scale data, 
according to its characteristics and the rich computing power of the stream com-
puting strategy [12], it is not enough to consider only a single-tier scheduling of 
resources. Instance scheduling within a node is related to data stream scheduling, 
and data streams are associated with other relevant nodes. Therefore, considering 
only the instance scheduling within a node may produce isolated resources due to 
the ignorance of other nodes’ resource load. Moreover, considering only inter-node 
scheduling without instance scheduling cannot sufficiently exploit the performance 
of the system. All these factors inspire us to propose a two-tier scheduling strategy 
as an effective solution to the current problems. In a distributed environment, the 
utilization of resources such as memory, CPU, and disk by nodes in a cluster is the 
main basis for load balancing of the system. Each node in the system has different 
capacity and speed to handle tasks [13], and the allocation to them is random, which 
can lead to some nodes running under high load for a long time and another part of 
the nodes’ resources being idle for a long time, generating a load skewing phenom-
enon, as shown in Fig. 1 The density curve of skewed load is concave and convex, 
and the more convex at the highest point represents a more serious load skewing 
situation of the cluster, while a balanced load density curve presents a smooth and 
dispersed state, so the load skewing situation is expressed by the load density.

Stream computing systems have been an important part of research and are 
applied to multi-domain processing problems. To ensure the data processing 
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capability of the online distance education platform, the cloud computing archi-
tecture is used to solve the bottleneck problem of data processing [14] and 
improve the stability of data and user experience. In [15], a stream computing-
based approach is proposed for in-situ sensors and remote sensing observations, 
which can provide timely decisions for natural disaster management and imple-
mentation computation for heap flooding information.

Load balancing strategies have been extensively studied in distributed sys-
tems. In [16], the authors explore the relationship between linear time series and 
load and find that load has a high correlation over time, which suggests that load 
can be predicted using time as a scalar. In [17], while satisfying the persistence, 
dynamics and unpredictability of data streams, the authors find that the commu-
nication overhead from load migration can be minimized by selectively activating 
data at high-load nodes and replicating them at low-load nodes; Another Hot-
Key-based approach is [18], which proposes a novel load balancing mechanism, 
fish, where the authors find that the time-varying Key of a data stream can form a 
skewed distribution within a fixed time interval.

The network data transfer rate is also closely related to the workload, and the 
proposal in [19] fixes the routing path at the beginning of the transfer phase and 
migrates many data streams on the network to the unused heavy resource net-
work by balancing detection, but it only considers a single-layer migration strat-
egy, which is not sufficient when resource allocation problems occur. Because 
the requests produced by IoT devices may vary over time and we need to find a 
dynamical policy one which can tell how to allocate resources in different time 
periods [20].

To summary in the proposed St-Stream strategy, we focus on dynamic pairwise 
migration of skewed data streams, considering a two-tier coordination strategy 
within and between nodes to handle the skewed load.

Fig. 1   Skewed density curve
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1.1 � Motivation

In a distributed environment, the resource utilization of nodes in a cluster such as 
memory, CPU, disk, etc. is the main basis of whether the system load is balanced 
or not, while the uneven deployment of massive data in a cluster will lead to some 
nodes running under high load for a long time and another part of node resources 
being idle for a long time. In addition, our experiments show that the system has a 
relatively good performance under balanced load on the system. However, the sys-
tem has a longer response time and lower throughput, when there is a skewed data 
stream causing an unbalanced load.

Some scheduling algorithms [4, 21] attempt to balance the resource load in the 
cluster by scheduling the deployed tasks. However, balancing the resource load by 
scheduling tasks brings an additional costly overhead to the system. To address 
this problem, recent works [22–24] propose a data stream scheduling to reduce the 
scheduler’s overhead. These efforts attempt to balance the resource load between 
deployed tasks, but they ignore the fact that the nodes running multiple tasks have 
different processing capacities, resulting in unbalanced resource load in the cluster.

In a skewed data stream environment, it is not enough to only consider the bal-
anced resource load between nodes, because unbalanced load on different tasks of 
the same node can increase the system response time. The compute node acquired 
by tasks is a multi-core environment. If there is load imbalance between tasks 
deployed on the same compute node, the tasks with high load may suffer data 
loss and have longer queuing time, which in turn affects the performance of sys-
tem. Moreover, when severe load imbalance is sustained over a long period of time, 
the tasks with high load may experience downtime. Therefore, the load imbalance 
between tasks on the same compute node can affect the performance of system. It 
is also not enough to only consider the balanced load between tasks of one node, 
because unbalanced load between nodes can also affect the performance of the sys-
tem. So, a two-tier coordinated load balancing Strategy is needed by considering 
both the intra-node and inter-node load balancing so that the full potential of the 
system computing resource can be reached.

1.2 � Contributions

In view of the state-of-the-art solutions and associated problems, we propose a two-
tier coordination load balancing strategy over skewed data streams to solve the load 
balancing problem in distributed stream computing systems due to skewed data 
streams. In this paper, we make the following contributions. 

(1)	 We have conducted a comprehensive investigation of the factors that affect the 
system load, based on the skewed data, and proposed a load estimation criterion 
based on CPU utilization.

(2)	 The St-Stream optimization algorithm is proposed to use a migration strategy 
for intra-node and inter-node arithmetic to balance the load between nodes.
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(3)	 We evaluate the throughput and latency of St-Stream’s runtime policy. The 
experimental results show that coordination in processing increases the CPU 
utilization by 21%, reduces the latency by 17.6% and improves the load balance 
recovery by 0.3 compared to the baseline design.

The rest of the paper is organized as follows. Section  3 defines the communica-
tion model, resource load model and load offset repair model. The implementation 
method and algorithm of St-Stream are proposed in Sect. 4. Section 5 describes the 
experimental environment, parameter settings and performance evaluation of St-
Stream. Finally, conclusions are presented.

2 � Related work

In this section, we review recent work in two related areas: load balancing of nodes 
and data stream partitioning strategies. The comparison between our work and other 
closely related work is summarized in Table 1.

2.1 � Load balancing

Load balancing between nodes in distributed systems plays an important role for 
improving the performance of system. Finding an optimal schedule for load balanc-
ing between nodes is proved to be NP-hard [28]. Because of its theoretical and prac-
tical importance, it has been studied extensively over the years and continues to be a 
topic of research.

Cluster load imbalance may be caused by the scheduler ignoring the allocation 
dependency between time slots. In [26], the authors assigned time slots uniformly 
to multiple topologies in the cluster and used a merge factor to eliminate failures 
and restore the cluster balance. If this approach is used to handle the data after iso-
lated scheduling, load skewing still occurs and this problem has not been adequately 
addressed.

To implement load balancing in distributed stream computing environments, a 
TTNS algorithm [29] was proposed to increase the utilization of cluster resources. It 

Table 1   Related work comparison

Related work

 Parameter [20] [23] [24] [25] [26] [27] St-stream

Prediction modeling ✗ ✔ ✔ ✔ ✗ ✗ ✔
Performance modeling ✔ ✔ ✔ ✔ ✔ ✔ ✔
Multi-level coordination strategy ✗ ✗ ✗ ✗ ✗ ✗ ✔
Reource saving ✔ ✔ ✔ ✔ ✔ ✔ ✔
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mainly balances the load between nodes by classifying task types and dynamically 
monitoring node resources.

To distribute workload upon nodes evenly, a resource-oriented load balancing 
task scheduling (RoLBTS) mechanism [30] for distributed stream computing sys-
tems was proposed. Based on the barrel principle, it respectively selects the memory 
and the bandwidth to model the resource occupancy ratio of the physical node and 
that of the physical link. Based on the self-recursive calling, the RoLBTS algorithm 
is applied for task resource scheduling.

To solve the problem that the load of nodes in stream computing system fluctu-
ates drastically, a load prediction-based elastic resource scheduling strategy [31] was 
proposed. It first identifies the performance bottleneck and resource redundancy of 
the cluster and proposes a resource scheduling algorithm to draw up the reschedul-
ing plan. An online load migration algorithm is then executed to adjust and migrate 
the processing load of nodes.

In conclusion, if only considering the load balance between nodes, it is not 
enough to improve the performance of system. The above solutions provide valuable 
insights into the challenges of load balancing in a distributed stream environment. 
However, in the era of big data, new approaches must be developed to deal with 
the unique challenges, and some characteristics specific to distributed stream system 
need to be considered.

2.2 � Data partitioning

Data partitioning means that data tuples are scheduled to tasks in random or hash 
ways. A poor data partitioning strategy has a negative impact on the performance of 
system. Therefore, load balancing of data partitioning between parallel instances in 
distributed stream computing systems has been widely studies in recent years.

To deal with the uneven load caused by skewed data, PKG [27] used both key-
value partitioning and local load evaluation solutions to adapt to the skewed data 
streams. It first maps the tuple using two Hash functions to select two candidate 
downstream tasks. Next, the tuple is emitted to a less loaded task using local load 
evaluation. When the load of both candidate tasks is high, it is not efficient to solve 
the unbalanced load between tasks because the load of the other tasks may be low. 
In [32], the authors proposed to allocate hot keys and automatically adjust hot keys 
without routing tables to maximize the memory and computational cost of replica-
tion and ground to ensure load balancing.

To implement the load balancing of inter-task, difference-aware load of task in 
distributed stream processing systems [33] was proposed. It uses the random par-
titioning to assign the tuples with high frequency and the hash function to assign 
the tuples with low frequency. The tuples with high frequency can be identified by 
weighted probability counts and the estimated tuple probability can change with 
time.

In [34], a sketch-based pre-filtered partitioning algorithm (PFG) was proposed. 
On one hand, to ensure better load balancing for the skewed data streams, the 
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detected hot keys are directed to more than two candidate tasks randomly. On the 
other hand, for less frequent keys, the proposed solution explores the principle of 
the power of two choices to distribute load. For the less frequent tuples, they are 
assigned directly to the two candidate instances. PFG uses local load estimation to 
select the target task with the least data to be processed. PFG uses local load estima-
tion to select the target task, whose load is the lowest.

However, when the tuples with low frequency are aggregated to the same com-
pute node, load imbalance between nodes can be caused. Therefore, it is necessary 
to implement a two-tier load balancing strategy to balance the load between and 
within nodes.

3 � System model

This section focuses on the communication modes, resource load model and load 
offset repair model. For the sake of clarity, in Table 2, we summarize the main nota-
tions used throughout the paper.

3.1 � Communication model

A streaming application can be modeled as a directed acyclic graph (DAG). A task 
emits its processed data to the direct successor tasks by random or key-value group-
ing. There are communications between the task and the successors. Moreover, 
the communication between tasks is different because of skewed data streams. In 
stream computing systems, large-scale data of all types often enter the system very 
erratically at an unpredictable scale and speed, and this data may lead to load skew-
ing of the entire system [35]. The efficiency of load balancing algorithms depends 
heavily on the nature of the tasks handled by the system. The communication over-
head between nodes and the resource consumption within the nodes have a signifi-
cant impact on the performance of Storm [36], the higher the load on the nodes, 
the longer the average processing time of the graph elements and the corresponding 
decrease in the performance of the system.

The distributed system randomly allocates resources to each node, each node pro-
cesses data at different rates, and individual nodes generate unbalanced loads, which 

Table 2   Description of main 
symbols

Symbol Description

Si  The ith compute node
M(fik)  The kth CPU frequency in node Si
M(mi)  Memory size of node Si
L(Si)  Resource load of node Si
W(Si)  Load weight of node Si
�i  Offset degree of node
�  Load range constraint threshold
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may lead to system crashes. As shown in Fig. 2, there are two main cases that cause the 
unbalanced load on the nodes. (1) If the task distributes data by Key value, the distribu-
tion of data will be uneven due to the differences in the data properties. It further leads 
to generating unbalanced load in intra-nodes and inter-nodes. (2) If the tasks distribute 
the data evenly, unbalanced loads in intra-nodes and inter-nodes may also be generated 
because of the fact that the computational resources consumed by each piece of data 
are different. In addition, the computational resources consumed by each piece of data 
are difficult to predict and control. If the system is not intervened at runtime, the load 
skewing occurrence in the cluster is unavoidable.

3.2 � Resource load model

The existing load metrics handle data in small scale with fixed algorithms [37], and the 
research on load balancing focuses on how to handle the fixed load of nodes in the clus-
ter with high subsequent maintenance cost. Considering the current load of each node 
in the cluster, the system makes load decisions for each node based on the feedback 
information from the nodes in the cluster [38]. The data processing time of nodes can 
be affected by their CPU utilization and memory usage [39]. Therefore, the resource 
consumption of nodes is measured based on these metrics. In addition, these nodes 
with high resource consumption can reduce the throughput and increase the response 
time of the system [16]. With limited computing resources, making the cluster handle 
huge amounts of data is a challenge. Previous studies [17, 18, 40] also demonstrated 
that reducing the difference in CPU utilization and memory consumption among nodes 
could effectively address this problem. Therefore, the analysis of these performance 
metrics is necessary for solving the uneven load problem caused by skewed data stream 
in the cluster.

Each load within the cluster is monitored using CPU utilization and memory size. 
Let the size of cluster be n, the number of CPU cores of each node be u, the CPU fre-
quency of node Si be M

(

fiu
)

 and the memory size of node Si be M
(

mi

)

 , then the perfor-
mance of node Si is represented by (1), where i = 1, 2, ..., n.

(1)M
(

Si
)

= u ⋅M
(

fij
)

+M
(

mi

)

e1

e2

NodeA NodeB

e1

e2

e3

e4

NodeC

e1

e2

e3

Task Communication between tasks

Fig. 2   Intra-node and Inter-node communication
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Let the CPU usage frequency be L
(

fi
)

 and the memory usage frequency be L
(

mi

)

 , 
then the load of node Si is expressed by (2), where i = 1, 2, ..., n.

From (1) and (2), the load weight W
(

Si
)

 of a node can be defined as the ratio of node 
load to node performance, expressed by (3).

The difference of the node load is the product of the difference between the load 
weight of the node before optimization and the load weight after optimization and 
the performance of the node. The larger the difference of the node load, the better 
the optimized load balancing method is indicated, expressed in (4).

When massive data are processed and stored on a large-scale, the goal is often to 
have lower cost and higher efficiency, so the resource allocation and data schedul-
ing problems are significant. Rational distribution of data streams is to distribute 
the large-scale data streams to each node in the cluster as evenly as possible, so that 
the load of each node in the cluster is not very different from the perspective of task 
allocation, so that the load can be reasonably distributed and the resources in the 
cluster can be better utilized. Load balancing is to find a reasonable way to solve 
the data storage problem, resource allocation problem and task scheduling problem 
in a cluster to achieve efficient and optimal resource utilization. The essence of the 
resource allocation problem of load balancing is to select the most suitable resource 
among multiple resources for allocation to meet the current task demand and to 
achieve the condition of load balancing within the cluster.

3.3 � Load offset repair model

Due to the nature of random distribution of node loads, a portion of nodes fluctuate 
during cluster operation due to the arrival of data streams, and the loads of these 
nodes rise steeply [35], creating a skewed phenomenon compared to other nodes. 
The load variation trend of nodes is closely related to time [41], and when large-
scale skewed data arrives, the system distributes these data equally according to the 
order of input, but the actual size of resources occupied by these data within the 
nodes varies, and in the limit some nodes’ resources are idle for a long time [42], 
which is the skew phenomenon. Load balancing is required to find out the nodes that 
produce the offset phenomenon and correct the resources that are offset in time to 
restore the normal range of resource usage.

The way to deal with this problem is to correct the offset load in time and restore 
the balance of resources within the node so that subsequent resources are allocated 
normally. The more resources occupied inside the node, the more serious the offset 

(2)L
(

Si
)

= L
(

fi
)

+ L
(

mi

)

(3)W
(

Si
)

=
L
(

Si
)

M
(

Si
)

(4)ΔL
(

Si
)

=
(

Wbefore −W
(

Si
))

⋅M
(

Si
)
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degree is, and the less resources occupied, the more balanced the resource allocation 
is. Define the degree of balance of resources inside the node by the offset degree � . 
Define Sx as the ratio of key values with high occupied slot to all key values within 
the node, which is the current degree of aggregation of key values. Define Sy as 
the ratio of all data occupying key values with high slot to all data within the node. 
Then the offset � can be calculated by Equation (5).

Where the larger the offset � represents the more offset the current resources are, 
that is, the load distribution is not balanced.

By adjusting the number of nodes and offset to observe the load of the cluster, 
then the degree of load balance L of each node is expressed as the product of the 
number of nodes and the degree of load balance, and the smaller L means that the 
cluster load distribution is more balanced. It can be described by the Equation (6).

The change of node load ΔL(Si) is the difference between the load weights of node 
before and after optimization multiplied by the performance of node, which can be 
described by Equation (7).

where q and p denote the weight between CPU frequency and memory, respectively. 
Moreover, the larger the ΔL

(

Si
)

 , the more even the load and the more stable the per-
formance for the optimized cluster.

4 � St‑stream: architecture and optimizer

In this section, we focus on the proposed St-Stream architecture and the two-tier 
coordination strategy.

4.1 � St‑stream architecture

The St-Stream system is designed to handle skewed data streams using a two-tier 
independent coordination load balancing strategy for big data scenarios, thereby 
optimizing the load of the distributed stream computing system from intra-node to 
inter-node.

The St-Stream system consists of four components, as shown in Fig.  3. The 
Ganglia collection system and the database are the data collection compo-
nents, which are responsible for data collection and initialization. The Nimbus 

(5)� =
Sy

Sx

(6)L =

j
∑

t=1

(

LJ +

n
∑

i=1

(

�i ⋅ Lj−1 +
(

1 − �i

)

⋅ Δt
)

)

(7)ΔL
(

Si
)

=

(

Wbefore −
q ⋅ L

(

fi
)

+ (1 − q) ⋅ L
(

mi

)

p ⋅ u ⋅M
(

fij
)

+ (1 − p) ⋅M
(

mi

)

)

⋅M
(

Si
)



21038	 D. Sun et al.

1 3

subsystem is used to receive tasks submitted by users and assign these tasks to 
the supervisors. The Zookeeper subsystem is responsible for performing the com-
munication between Nimbus and Supervisor and monitoring the survival status 
of nodes in the cluster. The Supervisor subsystem is used to receive the tasks 
assigned by Nimbus and to manage the worker processes so that Executor traf-
fic exchange takes place in the slots, reducing traffic interaction and communica-
tion latency. The worker nodes in the Supervisor are divided into three parts: the 
data allocation initialization processing unit; the load migration module, which is 
responsible for dynamically allocating resources and restoring the cluster to nor-
mal operation; and the clock monitoring module. The load migration module; and 
the clock monitoring module, which periodically determines whether migration 
operations are required to ensure that there is no uneven load while processing 
tasks.

So, the load problem is handled in two phases in St-Stream. The first phase 
passes the initialized data from the database and the Ganglia system into the 

Fig. 3   St-stream architecture
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system and restores the overloaded data inside the nodes to the basic range of 
the load for the difference in the internal processing data capacity of the nodes. 
[42]. In the second phase the load skewing between individual nodes still occurs, 
and the skewed load between nodes is optimized to operate without affecting the 
processing capacity of the system in order to achieve system load balancing and 
improve the throughput.

4.2 � Two‑tier coordination of resource allocation

The two-tier coordination strategy can better consider the recovery balance of the 
skewed load. When the cluster is running, the load variation of the nodes presents a 
random distribution. Most of the nodes may have little difference in resource load, 
but there are some nodes that have a steep increase in resource load due to fluc-
tuations in data stream. When starting to input data to the system, the overall sys-
tem resource load is very low, so the initial load range needs to be given. Since 
the arrival rate of the data stream is dynamically changing, the normal range of the 
system load should be dynamically adjustable. The maximum load threshold Lmax 
satisfies equation (8) and the minimum Load Threshold Satisfies equation (9)

where � denotes the load range constraint threshold.
(a) Intra-node load balancing. For the resources within the working nodes, the 

massively skewed data streams are distributed according to the hash distribution 
strategy, and different slots within the nodes are allocated according to different key 
values to complete the initial data distribution.

The key to effectively reduce node utilization is to select the operator that occu-
pies the most CPU resources for migration. Set the estimation condition: CPU uti-
lization is in the low load state between [0,Lmin ], in the general case between ( Lmin

,Lmax ], and in the high load state between ( Lmax,1].
The initialized data from the upstream input are distributed to the downstream 

tasks by default using a hash allocation policy, which allocates the same slots within 
the node for the same key values. If the clock monitoring module detects a skewed 
cluster load within a clock cycle, St-Stream will migrate and adjust these resources 
according to the pairing principle to eliminate the uneven distribution of resources 
generated by the overload. The load skew situation is handled as follows:

(1) Direct move out: Processing units that exceed the high load threshold Lmax are 
directly moved out and placed in the temporary routing table R, as shown in Fig. 4.

(8)
�≤

Lmax − Lavg

Lavg

⇒ Lmax≤� ⋅ Lavg + Lavg

(9)
�≤

Lavg − Lmin

Lavg

⇒ Lmin≥ Lavg − � ⋅ Lavg
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(2) Direct migration: The outgoing processing units stored in the routing table are 
migrated sequentially into the low-use slots that handle the same tasks, as shown in 
Fig. 5.

(3) Split migration: If the Lmax is still exceeded after the direct migration, the 
direct migration operation cannot be performed, and the processing unit needs to be 
split, and the split processing unit will be put into the routing table in order for the 
indirect migration operation, as shown in Fig. 6.

(10)ki1 = ∀l
i=1

(

ki − Lmax

)

(11)ki2 = ∀l
i=1

(

ki − ki1 −

l−1
∑

i=1

ki

)

(12)S(1,2,...l) = asc
(

∀l
i=1

(

ki1, ki2
))

Fig. 4   Direct move out diagram and Move in routing table

Fig. 5   Move in the key in the routing table
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After the move in/out operation of the processing unit within one clock cycle T, all 
slots inside the node should be below the Lmax threshold, and the balance is restored 
from the load skew state inside the node to resume the distribution of upstream data.

The intra-node load balancing algorithm is described in Algorithm 1. Overloaded 
processing units are directly paired and moved to the routing table by steps 1–7. 
The critical processing units are split according to task size and placed in the rout-
ing table by steps 8–10. Sort the routing table and migrate into the low-load routing 
table by steps 11–14. After completing one clock cycle of migration adjustment, the 
data processing continues for the next moment according to the task state of the cur-
rent processing unit. The time complexity of algorithm 1 is O(k ⋅ h) , where k is the 
number of high-load processing units and h is the number of other processing units.

(13)Mi(1,2,...,l) = ∀l
i=1

(

T − Si
)
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(b) Inter-node load balancing. For the resource imbalance among Work Nodes, 
it shows that the load resources of some nodes are in the balanced range, while the 
resources of other nodes are below the minimum threshold Lmin to produce the load 
imbalance among nodes. Proposes an inter-point tuning strategy for this phenome-
non to ensure that the degree of resource allocation among nodes is not significantly 
different and there are no nodes below the threshold Lmin.

The resource utilization of each node is sorted and divided into two groups 
according to the threshold value, and the nodes in the general load group are paired 
with the nodes in the below-threshold group one by one for migration operations, 
and polled until all the nodes below the normal range are in the normal range.

(1) The number of low-load nodes is smaller than the number of normal nodes. 
Pair migration is performed in the following manner: positive order for low-load 
nodes and backward classification for normal-load nodes.

(2) The number of low-load nodes is greater than the number of normal nodes. 
Pair migration is performed in the following manner: positive order for low-load 
nodes and backward classification for normal-load nodes, as shown in Fig. 7.

The low-load nodes that become general load nodes after tuning are added to the 
general load node queue and continue to participate in pair migration until there are 
no nodes below Lmin in the cluster.

(3) If the pair migration makes the general load node exceed the Lmax value called 
high load node, then it abandons the pairing of the current node and selects the next 
node in the queue for pairing operation with the current low load node, as shown in 
Fig. 8.

After intra-node resource migration, the operators within the nodes of the entire 
cluster are in a relatively load balanced state, and the cluster no longer has nodes above 
the Lmin value. Inter-node load balancing algorithm is described in Algorithm 2. Sort 
and pair two sets of nodes by step 4. Handle critical nodes by steps 5–10. The tuned 
pair of nodes is put into the corresponding queue according to the load by steps 12–16, 
and repeat the above operations until the load is balanced between the nodes. And the 
above operation is repeated before the load is balanced between the nodes. The time 
complexity of algorithm 2 is O(m), where m is the number of nodes with their load in 
normal range.

Fig. 6   Splitting key migration into routing table and Move in the key in the routing table
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The St-Stream resource allocation algorithm is an arithmetic migration operation 
within the node according to the degree of load skew, divided into three cases: direct 
migration c out, direct migration in, and tangential migration in, with a temporary rout-
ing table to store the migrated processing units. The above algorithm is repeated in one 

Fig. 7   Point-to-point matching and migration
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clock cycle until the balance is restored from the load skewing case to achieve the effect 
of load balancing within the node. The Inter-node tuning strategy is used to further per-
form inter-node tuning for each node after the above load balancing until there are no 
nodes in the cluster with skew conditions outside the Lmin range and restore the balance 
of the cluster. Finally, the load balancing of the whole cluster is achieved.

5 � Performance evaluation

The proposed St-Stream system is developed based on Storm 2.2.0, and installed 
on top of CentOS 7.0, load monitoring using Ganglia Web 3.7.2. The cluster 
consists of 8 machines, with one machine designated as the master node running 
storm nimbus and the remaining 7 machines working as supervisor nodes. We 
use Ganglia to collect the CPU utilization of each node. The software configura-
tion of St-Stream platform is shown in Table  3. The hardware configuration of 
St-Stream platform is shown in Table 4. In addition, Apache Storm platform is 
one of the most popular open-source stream computing systems for big data. It 
has been used by many well-known companies and organizations, such as Twitter 
and Alibaba, and widely adopted by researchers for comparison purposes [4]. We 
select Storm as the baseline for testing and analysis.

A wordCount stream application is constructed for experimental testing. The 
logic graphs of wordCount are shown in Fig.  9. The vertex functions and the 
number of instances are shown in table 5. In real-world scenarios, skewed data 
streams occur frequently. For example, a large e-commerce platform needs to 
compute the consumption statistics of multiple regions in the country. Different 

Fig. 8   Recovering erroneous migration operators
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population and consumption levels in each region lead to skewed aggregations 
of data, which are unbalanced loads on the cluster. To implement a skewed data 
stream, we partially label the prepared test data and implement a grouping policy 
based on Apache Storm’s built-in interface CustomStreamGrouping. The same 
labeled data are aggregated to the same nodes, creating an unbalanced load on 
the cluster. Under the unbalanced load, we then observe three main evaluation 
criteria including CPU utilization, intra-node slots usage and latency, and the 
effectiveness of our proposed strategy. The WordCount topology is computation-
Intensive, which heavily consumes the CPU resources of compute nodes. On our 
experimental platform, the storage space of compute nodes is relatively large 
and memory overload is not observed. Therefore, only the CPU load of nodes is 
analyzed.

5.1 � Inter‑node CPU utilization

System CPU utilization reflects the usage of each node, and if the difference in CPU 
utilization of each node represents the distribution of resources and load within the 
cluster. The smaller the difference in CPU utilization per node represents a more 

Table 3   Software configuration 
of the St-Stream

Software Version Description

Centos 7.7.1908 Operating system
Apache storm 2.2.0 Stream computing engine
JDK 1.8 Java environment
Apache zookeeper 3.4.6 Collaboration services required

by storm
Ganglia 3.7.2 Cluster resource monitoring

framework
Redis 2.8.2103 Database
Apache kafka 2.11−2.1.1 Middleware

Table 4   Hardware configuration of the St-Stream

Server no. Configuration information

CPU Memory Hard disk NIC

NODE-1,2 Intel(R) Xeon(R) CPU
X5650 2.67GHz 4 cores

8GB 80GB 1000Mbps

NODE-3,4 Intel(R) Xeon(R) CPU
X5650 2.67GHz 2 cores

4GB 40GB 1000Mbps

NODE-5,6 Intel(R) Xeon(R) CPU
X5650 2.67GHz 2 cores

4GB 40GB 1000Mbps

NODE-7,8 Intel(R) Xeon(R) CPU
X5650 2.67GHz 2 cores

4GB 40GB 1000Mbps
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even distribution of resources within the cluster and a more balanced load. Send 
labeled data to seven nodes in the frequency range of (500,3500) and observe the 
load change of these nodes. Unbalanced load of cluster is achieved because of 
skewed data stream. Figure 10 shows the CPU utilization of the seven nodes before 
using St-Stream.

From this figure, we can observe that the CPU utilization of S4 node is between 
80% and 90% for a long period of time, which can lead to a long-term skewing of 
the system load toward S7 node. While the resources of some nodes are idle for a 

Fig. 9   Topology of wordCount

Table 5   Vertex functions of 
Top_N

Vertex Function

v
1

Read words from Kafka
v
2

Split words
v
3

Count words
v
4

Put the results into the 
Redis database
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long time, the CPU utilization of S1 node is between 10% and 15% for a long time, 
which leads to the skewed system load. The CPU utilization of each node is differ-
ent, with approx. 70% difference between the minimum and maximum.

The use of St-Stream strategy can split a part of the tasks of S7 node to S1 node, 
S7 is reduced from a long-term high load state to a general load, the free resources 
within S1 node are utilized and recovered from a super low load state to a general 
load condition, thus the load of each node gradually recovers from a skewed state 
to a balanced state and is in the range of load balancing for a long time. In Fig. 11, 
starting from 240 s, the CPU utilization of each node is between 40% and 60%, and 
no node’s load exceeds 60% or is lower than 40%, and the cluster is in and remains 
in a relatively balanced state for a long time. St-Stream narrows the gap between 
nodes’ resource loads and tries to stabilize them.

Compared with storm, the CPU resource utilization of each node in St-stream is 
in a small tilt range, and there is no ultra-high peak or high difference.

As shown in Fig. 12a, it can be observed that the CPU utilization of S1 and S2 
are below the minimum threshold (default 30%), triggering a small skewed load in 
the system. The experimental results show that the CPU utilization of S1 and S2 are 
11.25% and 21.2%, respectively, which are less than 30%. However, the CPU utiliza-
tion of the highest load node S7 in the cluster is about 88.5%, which is 77.25% more 

Fig. 10   System CPU utilization curve
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than that of S1. After applying the two-tier collaborative load balancing strategy, the 
loads of S1 and S2 resume to approx. 35.6% and 40%, respectively, both in the nor-
mal load range. It can be seen that our proposed strategy can effectively address the 
load skewing situation generated by lower-loaded nodes. Idle resources are avoided 
to some extent.

As shown in Fig.  12b, it can be observed that the CPU utilization of S7 is 
above the maximum threshold, increasing the risk of node downtime. The experi-
mental results show that the CPU utilization of S7 is 88.5%. As the nodes with 
high resource consumption can affect the response time of system, it is essential 
to reduce their high CPU consumption. After applying our proposed strategy, the 
loads of node S6 and S7 are adjusted to approx. 54% and 57%, respectively. At 
this time, S7 is only 21% more than S1. Our proposed strategy is proved to be 
effective for dealing with the skewed load.

5.2 � Intra‑node slots usage

The resource usage of slots within a node reflects the trend of load before and 
after each node. The more unbalanced the resource allocation is, the larger 
the difference in actual slots usage is after intra-node operator migration and 

Fig. 11   System CPU utilization after restoring balance
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inter-node load optimization. It is only necessary to check the difference between 
the before and after slots utilization to know whether the nodes within the cluster 
can recover from the unbalanced state to balance, and the difference in change is 
denoted by �.

Fig. 12   System CPU utilization threshold comparison chart
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As can be seen from Fig. 13, the slots usage of St-Stream is gradually at a sta-
ble level compared to Storm. Taking S1 as an example, the difference is 24.375% 
after using St-Stream, and the point returns from the very low load state to within 
the general load range, indicating that nearly 24% of the resources are utilized. 
Taking point S5 as an example, the difference is only 3.75%, saying that the node 
itself is in a load balanced state and only a very small number of resources are 
given up. The use of resources in all the nodes in the cluster has improved after 
using St-Stream. The more unbalanced the load is, the stronger the improvement 
is.

5.3 � System latency

Due to the real-time nature of the data stream, the data gradually decreases in value 
over time and needs to reflect system performance through latency. The longer the 
time, the lower the latency, the better the system performance.

From Fig.  14, we can notice that after submitting the topology, the latency of 
St-Stream is significantly lower compared to Storm, at 200 s the latency of Storm 
is 17 milliseconds, while the latency of St-Stream is 14 milliseconds, the latency is 
reduced by 17.6%. St-Stream has a lower response time because it migrates comput-
ing resources from the nodes with high resource consumption to the nodes with low 
resource consumption, in order to maintain a balanced resource load in the system. 

Fig. 13   Before and after comparison of in-point slots usage balance
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Therefore, the proposed strategy of balancing the lightweight load resources can bet-
ter balance the cluster load and improve the cluster performance.

5.4 � Load recovery rate

The load skew density distribution curve with axis whisker can visually reflect the 
distribution pattern of load samples, where the whisker indicates the frequency of 
data distribution. According to the defined load range, the thinner and higher den-
sity curve represents the more concentrated load distribution in a certain part, and 
the fatter and lower density curve represents the more dispersed load distribution. If 
multiple density load curves show a scattered distribution, it indicates that there is a 
skewed load in the cluster and the extremum of loads of these nodes differ greatly. 
And the loads of nodes need to be adjusted to make the peaks of all density distribu-
tion curves concentrate in a small range relatively.

Figure 15 shows the skewed load density distribution curves. The seven nodes in 
the cluster are scattered in different load ranges and the axes whisker presents the 
characteristics of distribution coefficients. According to the given load range, it is 
found that S1 and S2 density curves are in the low load range, and S6 and S7 density 
curves are out of the specified load range. Therefore, there is a load skew situation 
between these curves. The density curves with skewed load in Fig. 15 are adjusted 

Fig. 14   System Latency balance before and after comparison chart
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to make the cluster load recover to a balanced state. After using the two-tier coor-
dination load balancing strategy, the load density distribution curve of the cluster 
is shown in Fig. 16. In this chart, most of the axial whisker curves are densely dis-
tributed in the middle region, and only a few of them are scattered at the two ends. 
In addition, the peaks of each density curve are relatively concentrated in the load 
range (40, 60) and exhibit a compact distribution and shows a compact distribution 
characteristic.

As shown in Fig. 17, the load of all nodes in the cluster is between 0.3 and 0.6 
after St-Stream optimization, and the load balance trend line area is stable. From 
the change of offset of the current cluster, we can see that the load balance degree b 
is reduced from 1.738 to 1.4401, which means that the current cluster is restored to 
balance from imbalance, and the load balance restoration rate is 82.86%, compared 
with Storm, the cluster load is obviously restored to balance from imbalance.

Fig. 15   Skewed load density distribution curves
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6 � Conclusions and future work

In this paper, based on the study of load balancing methods for existing stream pro-
cessing systems, we propose a two-tier Coordination load balancing strategy over 
skewed data Streams. By analyzing the close relationship between the load variation 
of each node and time after the input data stream of the cluster and the difference of 
each node’s ability to handle the load, perform the corresponding move out and cut 
migration operations on the slots of overloaded nodes and perform point-to-point 
optimization for skewed load and resources below the minimum load range so that 
the load of the cluster can recover from fluctuations to balance. Our experiments and 
comparative analysis show that the proposed St-Stream strategy can reduce latency, 
balance cluster load, and improve throughput.

Future work will focus on the following two aspects. (1) Considering the une-
ven distribution of cluster resources caused by data stream fluctuations in hetero-
geneous clusters, and ensuring cluster load balancing by classifying and grouping 
processing according to the different resource allocation methods. (2) We will 
consider the impact of other aspects such as network, memory, and I/O devices 
on cluster load.

Fig. 16   Balanced load density distribution curves
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