
19
DEADLINE/BUDGET-BASED
SCHEDULING OF WORKFLOWS
ON UTILITY GRIDS

JIA YU, KOTAGIRI RAMAMOHANARAO, AND RAJKUMAR BUYYA

Grid technologies provide the basis for creating a service-oriented paradigm that

enables a new way of service provisioning based on utility computing models. For

typical utility computing-based services, users are charged for consuming services on

the basis of their usage and QoS level required. Therefore, while scheduling work-

flows on utility Grids, service price must be considered while optimizing the

execution performance.

In this chapter, the characteristics of utilityGrids and the corresponding scheduling

problems are discussed, followed by descriptions of two scheduling heuristics based

on two QoS constraints: deadline and budget. Two different workflow structures and

experiment settings are also presented for evaluation of the proposed scheduling

heuristics.

19.1 INTRODUCTION

Utility computing [19] has emerged as a new service provisioning model [6] and is

capable of supporting diverse computing services such as servers, storage, network,

and applications for e-business and e-science over a global network. For utility

computing-based services, users consume required services, and pay only for what

they use. With economic incentive, utility computing encourages organizations to

Market-Oriented Grid and Utility Computing Edited by Rajkumar Buyya and Kris Bubendorfer
Copyright � 2010 John Wiley & Sons, Inc.

427

offer their specialized applications and other computing utilities as services so that

other individuals/organizations can access these resources remotely. Therefore, it

facilitates individuals/organizations to develop their own core activities without

maintaining and developing fundamental computing infrastructure. In the more

recent past, providing utility computing services has been reinforced by service-

oriented Grid computing, which creates an infrastructure for enabling users to

consume services transparently over a secure, shared, scalable, sustainable, and

standard worldwide network environment.

Table 19.1 shows different aspects between community Grids and utility Grids in

terms of availability, quality of services (QoS), and pricing. In utility Grids, users can

make a reservation with a service provider in advance to ensure service availability,

and users can also negotiate service level agreements with service providers for the

required QoS. Compared with utility Grids, service availability and QoS in com-

munity Grids may not be guaranteed. However, community Grids provide access

based onmutual agreement driven by partnership (LHCGrid [23]) or free access (e.g.,

SETI@Home [24]), whereas in utility Grids users need to pay for service access. In

general, the service pricing in utility Grids is based on theQoS level expected by users

and market supply and demand for services.

Typically, service providers charge higher prices for higher QoS. Therefore users

do not always need to complete workflows earlier than they require. They sometimes

prefer to use cheaper services with a lower QoS that is sufficient to meet their

requirements. Given this motivation, cost-based workflow scheduling is developed to

schedule workflow tasks on utility Grids according to users’ QoS constraints such as

deadline and budget.

19.2 GRID WORKFLOW MANAGEMENT SYSTEM

Scientific communities such as high-energy physics, gravitational-wave physics,

geophysics, astronomy, and bioinformatics, are utilizing Grids to share, manage, and

process large datasets [18]. In order to support complex scientific experiments,

distributed resources such as computational devices, data, applications, and scientific

instruments need to be orchestrated while managing the application operations

within Grid environments [13]. A workflow expresses an automation of procedures

wherein files and data are passed between procedures applications according to a

defined set of rules, to achieve an overall goal [10]. Aworkflow management system

defines, manages, and executes workflows on computing resources. The use of the

TABLE 19.1 Community Grids versus Utility Grids

Attributes Community Grids Utility Grids

Availability Best effort Advanced reservation

QoS Best effort Contract/service-level Agreement (SLA)

Pricing Not considered or free access Usage, QoS level, market supply and demand

428 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

workflow paradigm for application composition on Grids offers several advan-

tages [17], such as

. Ability to build dynamic applications and orchestrate the use of distributed

resources

. Utilization of resources that are located in a suitable domain to increase

throughput or reduce execution costs

. Execution spanning multiple administrative domains to obtain specific proces-

sing capabilities

. Integration of multiple teams involved in managing different parts of the

experiment workflow—thus promoting interorganizational collaborations

Realizing workflow management for Grid computing requires a number of

challenges to be overcome. They include workflow application modeling, workflow

scheduling, resource discovery, information services, data management, and fault

management. However, from the users’ perspective, two important barriers that need

to be overcome are (1) the complexity of developing and deploying workflow

applications and (2) their scheduling on heterogeneous and distributed resources to

enhance the utility of resources and meet user quality-of-service (QoS) demands.

19.3 WORKFLOW SCHEDULING

Workflow scheduling is one of the key issues in the management of workflow

execution. Scheduling is a process that maps and manages execution of inter-

dependent tasks on distributed resources. It introduces allocating suitable resources

toworkflow tasks so that the execution can be completed to satisfy objective functions

specified by users. Proper scheduling can have a significant impact on the perfor-

mance of the system. In general, the problem of mapping tasks on distributed

resources belongs to a class of problems known as “NP-hard problems” [8]. For

such problems, no known algorithms are able to generate the optimal solution within

polynomial time. Even though the workflow scheduling problem can be solved by

using exhaustive search, the time taken for generating the solution is very high.

Scheduling decisions must be made in the shortest time possible in Grid environ-

ments, because there are many users competing for resources, so timeslots desired by

one user could be taken by another user at any moment.

A number of best-effort scheduling heuristics [2,12,21] such as min–min (mini-

mum–minimum) and heterogeneous earliest finish time (HEFT) have been developed

and applied to schedule Grid workflows. These best-effort scheduling algorithms

attempt to complete execution within the shortest time possible. They neither have any

provision for users to specify their QoS requirements nor any specific support to meet

them. However, many workflow applications in both scientific and business domains

require some certain assurance of QoS (see Fig. 19.1). For example, a workflow

application formaxillofacial surgery planning [10] needs results to be delivered before

a certain time. For these applications, the workflow scheduling applied should be able

WORKFLOW SCHEDULING 429

to analyze users’ QoS requirements and map workflow tasks onto suitable resources

such that the workflow execution can be completed to satisfy their requirements.

Several new challenges are presented while scheduling workflows with QoS

constraints for Grid computing. A Grid environment consists of large number of

resources owned by different organizations or providers with varying functionalities

and able to guarantee differing QoS levels. Unlike best-effort scheduling algorithms,

which consider only one factor (e.g., execution time), multiple criteria must be

considered to optimize the execution performance of QoS constrained workflows.

In addition to execution time, monetary execution cost is also an important factor

that determines quality of scheduling algorithms, because service providers may

charge differently for different levels of QoS [3]. Therefore, a scheduler cannot always

assign tasks onto services with the highest QoS levels. Instead, it may use cheaper

services with lower QoS that is sufficient to meet the requirements of the users.

Also, completing the execution within a specified QoS (e.g., time and budget)

constraints depends not only on the global scheduling decision of the workflow

scheduler but also on the local resource allocation model of each execution site. If

the execution of every single task in theworkflow cannot be completed as expected by

thescheduler, it is impossible toguaranteeQoSlevels fortheentireworkflow.Therefore,

schedulers should be able to interact with service providers to ensure resource avail-

ability and QoS levels. It is required that the scheduler be able to determine QoS

requirements for each task and negotiate with service providers to establish a service-

Figure 19.1 A high-level view of a Grid workflow execution environment.

430 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

level agreement (SLA), which is a contract specifying the minimum expectations and

obligations between service providers and consumers.

This chapter presents a number of workflow scheduling algorithms based on QoS

constraints such as deadline and budget while taking into account the costs and

capabilities of Grid services.

19.4 QoS-BASED WORKFLOW SCHEDULING

19.4.1 Problem Description

Aworkflow application can be modeled as a directed acyclic graph (DAG). Let G be

the finite set of tasks Tið1 � i � nÞ. Let L be the set of directed edges. Each edge is

denoted by (Ti, Tj), where Ti is an immediate parent task of Tj and Tj is the immediate

child task of Ti. A child task cannot be executed until all of its parent tasks have been

completed. There is a transmission time and cost associated with each edge. In a

workflow graph, a task that does not have any parent task is called an entry task,

denoted as Tentry, and a task that does not have any child task is called an exit task,

denoted as Texit. In this thesis, we assume there is only one Tentry and Texit in the

workflow graph. If there are multiple entry tasks and exit tasks in a workflow, we can

connect them to a zero-cost pseudoentry or exit task.

The execution requirements for tasks in a workflow could be heterogeneous.

A servicemay be able to execute some ofworkflow tasks. The set of services capable

of executing task Ti is denoted as Si, and each task is assigned for execution on only

one service. Services have varied processing capability delivered at different prices.

The task runtimes on all service and input data transfer times are assumed to be

known. The estimation of task runtime is presented in Section 19.4.2. The data

transfer time can be computed using bandwidth and latency information between

the services. t
j
i is the sum of the processing time and input data transmission time,

and c
j
i is the sum of the service price and data transmission cost for processing Ti on

service s
j
ið1 � j � jSijÞ.

Let B be the cost constraint (budget) and D be the time constraint (deadline)

specified by a user for workflow execution. The budget-constrained scheduling

problem is to map every Ti onto a suitable service to minimize the execution

time of the workflow and complete it with the total cost less than B. The deadline

constrained scheduling problem is tomap every Ti onto a suitable service tominimize

the execution cost of the workflow and complete it before deadline D.

19.4.2 Performance Estimation

Performance estimation is the prediction of performance of task execution on services

and is crucial for generating an efficient schedule for advance reservations. Different

performance estimation approaches can be applied to different types of utility

services. We classify existing utility services as either resource services, application

services, or information service.

Resource services provide hardware resources such as computing processors,

network resources, storage, and memory, as a service for remote clients. To submit

QoS-BASED WORKFLOW SCHEDULING 431

tasks to resource services, the scheduler needs to determine the number of resources

and duration required to run tasks on the discovered services. The performance

estimation for resource services can be achieved by using existing performance

estimation techniques (e.g., analytical modeling, empirical and historical data) to

predict task execution time on every discovered resource service.

Application services allow remote clients to use their specialized applications,

while information services provide information for the users. Unlike resource

services, application and information services are capable of providing estimated

service times on the basis of the metadata of users’ service requests. As a result, the

task execution time can be obtained by the providers.

19.5 WORKFLOW SCHEDULING HEURISTICS

Workflow scheduling focuses on mapping and managing the execution of interde-

pendent tasks on diverse utility services. In this section, two heuristics are provided as

a baseline for cost-based workflow scheduling problems. The heuristics follow the

divide-and-conquer technique, and the steps in the methodology are listed below:

1. Discover available services and predict execution time for every task.

2. Distribute users’ overall deadline or budget into every task.

3. Query available timeslots, generate an optimized schedule plan, and make

advance reservations on the basis of the local optimal solution of every task

partition.

19.5.1 Deadline-Constrained Scheduling

The proposed deadline constrained scheduling heuristic is called greedy cost–time

distribution (GreedyCost-TD). In order to produce an efficient schedule,GreedyCost-

TD groups workflow tasks into task partitions and assigns subdeadlines to each task

according to their workload and dependences. At runtime, a task is scheduled on a

service, which is able to complete it within its assigned subdeadline at the lowest cost.

19.5.1.1 Workflow Task Partitioning. In workflow task partitioning, workflow

tasks are first categorized as either synchronization tasks or simple tasks. A

synchronization task is defined as a task that has more than one parent or child

task. In Figure 19.2, T1, T10, and T14 are synchronization tasks. Other tasks that have

only one parent task and child task are simple tasks.

In Figure 19.2, T2�T9 and T11�T13 are simple tasks. Simple tasks are then

clustered into a branch, which is a set of interdependent simple tasks that are

executed sequentially between two synchronization tasks. For example, the branches

in Figure 19.1b are fT2; T3; T4g, fT5; T6g,fT7g, fT8; T9g, fT11g, and fT12; T13g.
After task partitioning, workflow tasks G are then clustered into partitions. As

shown in Figure 19.2b, a partition Við1 � i � kÞ is either a branch or a set of one

432 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

synchronization task, where k is the total number of branches and synchronization

tasks in theworkflow. For a given workflowWðG;LÞ, the corresponding task partition
graph W0ðG0;L0Þ is created as follows

G0 ¼ fVijVi is a partition inW; where 1 � i � kg
L0 ¼ fðvi;wÞjv 2 Vi;w 2 Vj; and ðv;wÞ 2 Lg

(

where G0 is a set of task partitions and L0 is the set of directed edges of the form

ðVi; VjÞ, and Vi is a parent task partition of Vj and Vj is a child task partition of Vi.

19.5.1.2 Deadline Distribution. After workflow task partitioning, the overall

deadline is distributed over each Vi in W0. The deadline assigned to any Vi is

called a subdeadline of the overall deadline D. The deadline assignment strategy

considers the following facts:

P1. The cumulative expected execution time of any simple path between two

synchronization tasks must be the same.A simple path inW0 is a sequence of
task partitions such that there is a directed edge from every task partition (in

the simple path) to its child, where none of the task partitions in the simple path

is repeated. For example, {V1,V3,V9} and {V1,V6,V5,V7, V9} are two simple

paths between V1 and V9. A synchronization task cannot be executed until all

tasks in its parent task partitions are completed. Thus, instead of waiting for

other simple paths to be completed, a path capable of being finished earlier can

be executed on slower but cheaper services. For example, the deadline

assigned to fT8; T9g is the same as fT7g in Figure 19.2. Similarly, deadlines

assigned tofT2; T3; T4g, fT5; T6g, and {fT7g,fT10g, fT12; T13g} are the same.

P2. The cumulative expected execution time of any path from ViðTentry 2 ViÞ to
VjðTexit 2 VjÞ is equal to the overall deadline D. P2 ensures that once every

Figure 19.2 Workflow task partition: (a) before partitioning; (b) after partitioning.

WORKFLOW SCHEDULING HEURISTICS 433

task partition is computed within its assigned deadline, the whole workflow

execution can satisfy the user’s required deadline.

P3. Any assigned subdeadline must be greater than or equal to the minimum

processing time of the corresponding task partition. If the assigned subdead-

line is less than the minimum processing time of a task partition, its expected

execution timewill exceed thecapability that its execution services canprovide.

P4. The overall deadline is divided over task partitions in proportion to their

minimum processing time. The execution times of tasks in workflows vary;

some tasks may only need 20 min to be completed, and others may need

at least one hour. Thus, the deadline distribution for a task partition should

be based on its execution time. Since there are multiple possible processing

times for every task, we use the minimum processing time to distribute the

deadline.

The deadline assignment strategy on the task partition graph is implemented by

combining breadth-first search (BFS) and depth-first search (DFS) algorithms with

critical-path analysis to compute start times, proportion, and deadlines of every task

partition. After distributing overall deadline into task partitions, each task partition is

assigned a deadline. There are three attributes associated with a task partition Vi:

deadline (dl½Vi�), ready time (rt½Vi�), and expected execution time (eet½Vi�). The ready
time of Vi is the earliest time when its first task can be executed. It can be computed

according to its parent partitions and defined by

rt½Vi� ¼
0 Tentry 2 Vi

max
Vj2PVi

dl½Vj� otherwise

(
ð19:1Þ

where PVi is the set of parent task partitions of Vi. The relation between three

attributes of a task partition Vi follows that

eet½Vi� ¼ dl½Vi��rt½Vi� ð19:2Þ

After deadline distribution over task partitions, a subdeadline is assigned to each

task. If the task is a synchronization task, its subdeadline is equal to the deadline of its

task partition.However, if a task is a simple task of a branch, its subdeadline is assigned

by dividing the deadline of its partition according to its processing time. Let Pi be the

set of parent tasks of Ti. The assigned deadline of task Ti in partition V is defined by

dl½Ti� ¼ eet½Ti� þ rt½V� ð19:3Þ

where

eet Ti½ � ¼
min
1�j�jSi j

t
j
iP

Tk2V
min

1�l�jSk j
t l
k

�eet V½ � ð19:4Þ

434 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

rt½Ti� ¼
0 Ti ¼ Tentry

max
Tj2Pi

dl½Tj� otherwise

(
ð19:5Þ

19.5.1.3 Greedy Cost–Time Distribution (TD). Once each task has its own

subdeadline, a local optimal schedule can be generated for each task. If each local

schedule guarantees that their task execution can be completed within their

subdeadline, the whole workflow execution will be completed within the overall

deadline. Similarly, the result of the cost minimization solution for each task leads to

an optimized cost solution for the entire workflow. Therefore, an optimized workflow

schedule can be constructed from all local optimal schedules. The schedule allocates

every workflow task to a selected service such that they can meet its assigned

subdeadline at low execution cost. Let CostðTiÞ be the sum of data transmission cost

and service cost for processing Ti. The objective for scheduling task Ti is

Minimize CostðTiÞ ¼ min
1�j�jSi j

c
j
i

subject to t
j
i � eet½Ti�

ð19:6Þ

The details of GreedyCost-TD heuristic are presented in Algorithm 19.1. It first

partitions workflow tasks and distributes overall deadline over each task partition and

Input: A workflow graph �ð�;�Þ, deadline D

Output: A schedule for all workflow tasks

1 Request processing time and price from available services for

8T 2 G

2 Convert W into task partition graph W0ðG0;L0Þ
3 Distribute deadline D over 8Vi 2 G0 and assign a sub-deadline to

each task

4 Put the entry task into ready task queue Q

5 while there are ready tasks in Q do

6 Sort all tasks in Q

7 Ti the first task from Q

8 Compute ready time of Ti
9 Query available time slots during ready time and

sub-deadline

10 S a service which meets Equation 4-6

11 if S ¼ � then

12 S S
j
i such that j ¼ arg min

1�j�jSi j
t
j
i

13 end if

14 Make advance reservations of Ti on S

15 Put ready child tasks into Q whose parent tasks have been

scheduled

16 end while

Algorithm 19.1 Greedy cost–time distribution heuristic.

WORKFLOW SCHEDULING HEURISTICS 435

then divides the deadline of each partition into each single task. Unscheduled tasks are

queued in the ready queue waiting to be scheduled. The order of tasks in the ready

queue is sorted by a ranking strategy that is described in Section 19.5.3. The scheduler

schedules tasks in the ready queue one by one. The entry task is the first task that is put

into the ready task and scheduled. Once all parents of a task have been scheduled, the

task becomes ready for scheduling and is put into the ready queue (line 15). The ready

time of each task is computed at the time it is scheduled (line 9). After obtaining all

available timeslots (line 9) on the basis of the ready time and subdeadline of current

scheduling tasks, the task is scheduled on a service that can meet the scheduling

objective. If no such service is available, the service that can complete the task at

earliest time is selected to satisfy the overall time constraint (lines 11–12).

19.5.2 Budget-Constrained Scheduling

The proposed budget-constrained scheduling heuristic is called greedy time–cost

distribution (GreedyTime-CD). It distributes portions of the overall budget to each

task in the workflow. At runtime, a task is scheduled on a service that is able to

complete it with less cost than its assigned subbudget at the earliest time.

19.5.2.1 Budget Distribution. The budget distribution process is to distribute the

overall budget over tasks. In the budget distribution, both workload and dependencies

between tasks are considered when assigning subbudgets to tasks. There are two

major steps:

Step 1: Assigning Portions of the Overall Budget to Each Task. In this step, an

initial subbudget is assigned to tasks according to their average execution and

data transmission cost. In a workflow, tasks may require different types of

services with various price rates, and their computational workload and

required I/O data transmission may vary. Therefore, the portion of the overall

budget each task obtains should be based on the proportion of their expense

requirements. Since there are multiple possible services and data links for

executing a task, their average cost values are used for measuring their expense

requirements. The expected budget for task Ti is defined by

eec Ti½ � ¼ avgCost½Ti�P
Ti2G

avgCost½Ti� � B ð19:7Þ

where

avgCost Ti½ � ¼

P
1� j�jSi j

c
j
i

jSij

Step 2: Adjusting Initial Subbudget Assigned to Each Task by Considering Their

Task Dependences. The subbudget of a task assigned in the first step is based

only on its average cost without considering its execution time. However, some

tasks could be completed at earliest time using more expensive services based

436 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

on their local budget, but its child tasks cannot start execution until other parent

tasks have been completed. Therefore, it is necessary to consider task depen-

dences for assigning a subbudget to a task. In the second step, the initial assigned

subbudgets of tasks are adjusted. It first computes the approximate execution

time on the basis of its initial expected execution budget and its unit time per

cost so that the approximate start and end times of each task partition can be

calculated. The approximate execution time of task Ti is defined by

aet Ti½ � ¼ eec Ti½ � � avgTime½Ti�
avgCost½Ti� ð19:8Þ

where

avgTime Ti½ � ¼

P
1� j�jSi j

t
j
i

jSij
Then it partitionsworkflow tasks and computes approximate start and end times

of each partition. If the end time of a task partition is earlier than the start time of

its child partition, it is assumed that the initial subbudget of this partition is

higher than what it really requires and its subbudget is reduced. The spare

budget produced by reducing initial subbudgets is calculated and is defined by

spareBudget ¼ B�
X
Ti2G

eec½Ti� ð19:9Þ

Finally, the spare budget is distributed to each task on the basis of their assigned

subbudgets. The final expected budget assigned to each task is

eec Ti½ � ¼ eec Ti½ � þ spareBudget� eec½Ti�P
Ti2G

eec½Ti� ð19:10Þ

19.5.2.2 Greedy Time–Cost Distribution (CD). After budget distribution, CD

attempts to allocate the fastest service to each task among those services that are

able to complete the task execution within its assigned budget. Let TimeðTiÞ be the
completion time of Ti. The objective for scheduling task Ti is

Minimize TimeðTiÞ ¼ min
1�j�jSi j

t
j
i

subject to c
j
i � eec½Ti�

ð19:11Þ

The details of greedy time–cost distribution are presented inAlgorithm19.2. It first

distributes the overall budget to all tasks. After that, it starts to schedule first-level

tasks of theworkflow. Once all parents of a task have been scheduled, the task is ready

for scheduling and then the scheduler put it into a ready queue (line 17). The order of

WORKFLOW SCHEDULING HEURISTICS 437

tasks in the ready queue is sorted by a ranking strategy (see Section 19.5.3). The actual

costs of allocated tasks and their planned costs are also computed successively at

runtime (lines 15–16). If the aggregated actual cost is less than the aggregated planned

cost, the scheduler adds the unspent aggregated budget to subbudget of the current

scheduling task (line 9). A service is selected if it satisfies the scheduling objective;

otherwise, a service with the least execution cost is selected in order to meet the

overall cost constraint.

19.5.3 Ranking Strategy for Parallel Tasks

In a large-scaleworkflow,manyparallel tasks could compete for timeslots on the same

service. For example, in Figure 19.2, after T1 is scheduled, T2, T5, T7, and T8 become

ready tasks and are put into the ready task queue. The scheduling order of these tasks

may impact on performance significantly.

Eight strategies are developed and investigated for sorting ready tasks in the ready

queue:

1. MaxMin-Time—obtains the minimum execution time and data transmission

time of executing each task on all their available services and sets higher

scheduling priority to tasks which that longer minimum processing time.

Input: A workflow graph VðG;LÞ, budget B

Output: A schedule for all workflow tasks

1 Request processing time and price from available services for

8Ti 2 G
2 Distribute budget B over 8Ti 2 G
3 PlannedCost=0; acturalCost =0

4 Put the entry task into ready task queue Q

5 while there are ready tasks in Q do

6 Sort all tasks in Q

7 S the first task from Q

8 Compute start time of Ti and query available time

slots

9 eec[Ti]=PlannedCost-acturalCost +eec[Ti]

10 S a service which meets Equation 4-11

11 if S¼ � then

12 S S
j
i such that j ¼ arg min

1�j�jSi j
t
j
i

13 end if

14 Make advance reservations with of Ti on S
15 acturalCost = acturalCost +c

j
i

16 PlannedCost = PlannedCost +eec[Ti]

17 Put ready child tasks into Q whose parent tasks have been

scheduled

18 end while

Algorithm 19.2 Greedy time–cost distribution heuristic.

438 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

2. MaxMin-Cost—obtains the minimum execution cost and data transmission

cost of executing each task on all their available services and sets higher

scheduling priority to tasks that require more monetary expense.

3. MinMin-Time—obtainsminimumexecution time and data transmission time of

executing each task on all their available services and sets higher scheduling

priority to tasks that have shorter minimum processing time.

4. MinMin-Cost—obtains minimum execution cost and data transmission cost of

executing each task on all their available services and sets higher scheduling

priority to tasks that require less monetary expense.

5. Upward ranking—sorts tasks on the basis of upward ranking [20]. The higher

upward rank value, the higher scheduling priority. The upward rank of task Ti is

recursively defined by

RankðTiÞ ¼ �wi þ max
Tj2succðTiÞ

ð �cij þ rankðTjÞÞ

RankðTexitÞ¼ 0

where �wi is the average execution time of executing task Ti on all its available
services and �cij is the average transmission time of transfering intermediate
data from Ti to Tj.

6. First Come—First Serve (FCFS)—sorts tasks according to their available time;

the earlier available time, the higher the scheduling priority.

7. MissingDeadlineFirst—sets higher scheduling priority to tasks that have ear-

lier subdeadlines.

8. MissingBudgetFirst—sets higher scheduling priority to tasks that have fewer

subbudgets.

19.6 WORKFLOW APPLICATIONS

Given that different workflow applications may have different impacts on the

performance of the scheduling algorithms, a task graph generator is developed to

automatically generate a workflow with respect to the specified workflow structure,

the range of task workload, and the I/O data. Since the execution requirements for

tasks in scientific workflows are heterogeneous, the service-type attribute is used to

represent different types of service. The range of service types in theworkflow can be

specified. The width and depth of the workflow can also be adjusted in order to

generate workflow graphs of different sizes.

According to many Grid workflow projects [2,11,21], workflow application

structures can be categorized as either balanced or unbalanced structure. Examples

of balanced structure include neuroscience application workflows [22] and EMAN

(Electron Micrograph Analysis) refinement workflows [12], while examples of

unbalanced structure include protein annotation workflows [4] and montage work-

flows [2]. Figure 19.3 shows twoworkflow structures, a balanced-structure application

and an unbalanced-structure application, used in our experiments. As shown in

WORKFLOWAPPLICATIONS 439

Figure 19.3a, the balanced-structure application consists of several parallel pipelines,

which require the same types of service but process different datasets. In Figure 19.3b,

the structure of the unbalanced-structure application is more complex. Unlike the

balanced-structure application, many parallel tasks in the unbalanced structure require

different types of service, and their workload and I/O data vary significantly.

19.7 OTHER HEURISTICS

In order to evaluate the cost-based scheduling proposed in this chapter, two other

heuristics that are derived from existingwork are implemented and comparedwith the

TD and CD.

19.7.1 Greedy Time and Greedy Cost

Greedy time and greedy cost are derived from the cost and deadline optimization

algorithms in Nimrod/G [1], which is initially designed for scheduling independent

tasks on Grids. Greedy time is used for solving the time optimization problem with a

budget. It sorts services by their processing times and assigns as many tasks as

possible to the fastest services without exceeding the budget. Greedy cost is used for

solving the cost optimization problem within the deadline. It sorts services by their

processing prices and assigns as many tasks as possible to cheapest services without

exceeding the deadline.

19.7.2 Backtracking

Backtracking (BT) is proposed by Menasce and Casalicchio [14]. It assigns ready

tasks to least expensive computing resources. The heuristic repeats the procedure

Figure 19.3 Small portion of workflow applications: (a) balanced-structure application;

(b) unbalanced-structure application.

440 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

until all tasks have been mapped. After each iterative step, the execution time of the

current assignment is computed. If the execution time exceeds the deadline,

the heuristic backtracks to the previous step and removes the least expensive

resource from its resource list and reassigns tasks with the reduced resource set. If

the resource list is empty, the heuristic continues to backtrack to the previous step.

It reduces the corresponding resource list and then reassigns the tasks. The back-

tracking method is also extended to support optimizing cost while meeting budget

constraints. Budget-constrained backtracking assigns ready tasks to fastest comput-

ing resources.

19.8 PERFORMANCE EVALUATION

19.8.1 Experimental Setup

GridSim [4] is used to simulate a Grid environment for experiments. Figure 19.4

shows the simulation environment, in which simulated services are discovered by

querying the GridSim index service (GIS). Every service is able to provide free slot

query, and handle reservation request and reservation commitment.

There are 15 types of serviceswith various price rates in the simulatedGrid testbed,

each of which was supported by 10 service providers with various processing

capabilities. The topology of the system is such that all services are connected to

one another, and the available network bandwidths between services are 100, 200,

512, and 1024Mbps (megabits per second).

For the experiments, the cost that a user needs to pay for a workflow execution

consists of two parts: processing cost and data transmission cost. Table 19.2 shows an

example of processing cost, while Table 19.3 shows an example of data transmission

cost. It can be seen that the processing cost and transmission cost are inversely

proportional to the processing time and transmission time, respectively.

In order to evaluate algorithms on reasonable budget and deadline constraints, we

also implemented a time optimization algorithm, heterogeneous earliest finish time

(HEFT) [20], and a cost optimization algorithm, greedy cost (GC). The HEFT

Figure 19.4 Simulation environment.

PERFORMANCE EVALUATION 441

algorithm is a list scheduling algorithm that attempts to schedule DAG tasks at

minimum execution time on a heterogeneous environment. The GC approach is to

minimize workflow execution cost by assigning tasks to services of lowest cost. The

deadline and budget used for the experiments are based on the results of these two

algorithms. Let Cmin and Cmax be the total monetary cost produced by GC and HEFT,

respectively, and Tmax and Tmin be their corresponding total execution time. Deadline

D is defined by

D ¼ Tminþ kðTmax�TminÞ ð19:12Þ

and budget B is defined by

B ¼ Cminþ kðCmax�CminÞ ð19:13Þ

The value of k varies between 0 and 10 to evaluate the algorithm performance

from tight constraint to relaxed constraint. As k increases, the constraint is more

relaxed.

19.8.2 Results

In this section, CD and TD are compared with greedy time, greedy cost, and

backtracking on the two workflow applications: balanced and unbalanced. In order

to show the results more clearly, we normalize the execution time and cost. Let Cvalue

and Tvalue be the execution time and the monetary cost generated by the algorithms in

the experiments, respectively. For the case of budget-constrained problems, the

execution cost is normalized by using Cvalue=B, and the execution time by using

Tvalue=Tmin. The normalized values of the execution cost should be no greater than one

TABLE 19.3 Transmission Bandwidth and Corresponding Price

Bandwidth (Mbps) Cost (G$/s)

100 1

200 2

512 5.12

1024 10.24

TABLE 19.2 Service Speed and Corresponding Price for Executing a Task

Service ID Processing Time (s) Cost (G$/s)

1 1200 300

2 600 600

3 400 900

4 300 1200

442 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

(�1) if the algorithms meet their budget constraints. Therefore, it is easy to recognize

whether the algorithms achieve the budget constraints. By using the normalized

execution time value, it is also easy to recognize whether the algorithms produce an

optimal solution when the budget is high. In the same way, the normalized execution

time and the execution cost are normalized for the deadline constraint case by using

Tvalue=D and Cvalue=Cmin, respectively.

19.8.2.1 Cost Optimization within a Set Deadline. A comparison of the execution

time and cost results of the three deadline-constrained scheduling methods for the

balanced-structure application and unbalanced-structure application is shown in

Figures 19.5 and 19.6, respectively. The ranking strategy used for TD is FCFS.

From Figure 19.5, we can see that it is hard for greedy cost to meet deadlines when

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

1086420

E
xe

cu
tio

n
T

im
e/

D
ea

dl
in

e

User Deadline (k)

Balanced Structure (Execution Time)

GreedyCost
TD
BT

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1086420

E
xe

cu
tio

n
T

im
e/

D
ea

dl
in

e

User Deadline (k)

Unbalanced Structure (Execution Time)

GreedyCost
TD
BT

(b)(a)

Figure 19.5 Execution time for scheduling balanced-structure (a) and unbalanced-structure

(b) applications.

 1

 2

 3

 4

 5

 6

 7

 8

1086420

E
xe

cu
tio

n
T

im
e/

D
ea

dl
in

e

User Deadline (k)

(a) (b)

Balanced Structure (Execution Cost)

GreedyCost
TD
BT

 1

 2

 3

 4

 5

 6

 7

1086420

E
xe

cu
tio

n
C

os
t/C

he
ap

es
t C

os
t

User Deadline (k)

Unbalanced Structure (Execution Cost)

GreedyCost
TD
BT

Figure 19.6 Execution cost for scheduling balanced-structure (a) and unbalanced-structure

(b) applications.

PERFORMANCE EVALUATION 443

they are tight, TD slightly exceeds deadline when k ¼ 0, while BT can satisfy

deadlines each time. For execution cost required by the three approaches shown in

Figure 19.6, greedy cost performs worst while TD performs best. Even though the

processing time of the greedy cost is longer thanTD, its corresponding processing cost

is much higher. Compared with BT, TD saves almost 50% execution cost when

deadlines are relatively low. However, the three approaches produce similar results

when deadline is greatly relaxed.

Figure 19.7 shows scheduling running time for three approaches. In order to show

the results clearly, the scheduling time of BTand TD is normalized by the scheduling

time of greedy cost. We can observe that greedy cost requires the least scheduling

time, since the normalized values ofBTandTDare higher than 1. The scheduling time

required by TD is slightly higher than greedy cost but much lower than BT. As the

deadline varies, BT requires more running time when deadlines are relatively tight.

For example, scheduling times at k ¼ 0; 2; 4 are much longer than at k ¼ 6; 8; 10.
This is because it needs to backtrack for more iterations to adjust previous task

assignments in order to meet tight deadlines.

19.8.2.2 Budget-Constrained Heuristics. The execution cost and time results of

three budget-constrained scheduling methods for the balanced-structure and

unbalanced-structure applications are compared in Figures 19.8 and 19.9,

respectively. Greedy time can meet budgets only when the budgets are very

relaxed. It is also hard for CD to meet budgets when the budgets are very tight

(i.e., k ¼ 10). However, CD outperforms BT and greedy time as the budget

increases. For scheduling the balanced-structure application (see Figs. 19.8a

and 19.9a), greedy time and BT also incur significantly longer execution times

even though they use higher budgets to complete executions. For scheduling the

unbalanced-structure application (see Figs. 19.8b and 19.9b), CD produces a

schedule more than 50% faster than that of BT by using similar budgets.

However, CD performs worse than BT and greedy time when the budget is very

relaxed (i.e., k ¼ 10).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10

N
or

m
al

iz
ed

 S
ch

ed
ul

in
g

T
im

e

User Deadline (k)

(a) (b)

Balanced-structure application (Scheduling Overhead)

TD vs. GreedyCost
BT vs. GreedyCost

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

N
or

m
al

iz
ed

 S
ch

ed
ul

in
g

T
im

e

User Deadline (k)

Unbalanced-structure application (Scheduling Overhead)

TD vs. GreedyCost
BT vs. GreedyCost

Figure 19.7 Normalized scheduling overhead for deadline-constrained scheduling:

(a) balanced-structure application; (b) unbalanced-structure application.

444 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

Figure 19.10 shows scheduling runtime for three approaches: greedy time, CD, and

BT. In order to show the results clearly, we normalize the scheduling time of BT and

CD by using the scheduling time of greedy time. We can observe that greedy time

requires the least scheduling time, since the normalized values of BT and CD exceed

1. The scheduling time required by CD is slightly higher than that of greedy time but

much lower than that of BT. Similar to the deadline constrained cases, the runtime of

BT decreases as the budget increases.

19.8.2.3 Impact of Ranking Strategy. The FCFS strategy is used as the ranking

strategy for the experiments comparing CD and TD with other heuristics. In order to

investigate the impact of different ranking strategies, experiments comparing five

different ranking strategies for each constrained problem are conducted. In these

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

1086420

E
xe

cu
tio

n
C

os
t/B

ud
ge

t

User Budget (k)

Balanced Structure (Execution Cost)

GreedyTime
CD
BT

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

1086420

E
xe

cu
tio

n
C

os
t/B

ud
ge

t

User Budget (k)

Unbalanced Structure (Execution Cost)

GreedyTime
CD
BT

(a) (b)

Figure 19.8 Execution cost for scheduling balanced-structure (a) and unbalanced-structure

(b) applications.

 1

 2

 3

 4

 5

 6

 7

 8

 9

1086420

E
xe

cu
tio

n
T

im
e/

F
as

te
st

 T
im

e

User Budget (k)

Unbalanced Structure (Execution Time)

GreedyTime
CD
BT

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1086420

E
xe

cu
tio

n
T

im
e/

F
as

te
st

 T
im

e

User Budget (k)

(a) (b)

Balanced Structure (Execution Time)

GreedyTime
CD
BT

Figure 19.9 Execution time for scheduling balanced-structure (a) and unbalanced-structure

(b) applications.

PERFORMANCE EVALUATION 445

experiments, each ranking strategy is carried out to schedule 30 random generated

balanced-structure and unbalanced-structure workflow applications. The average

values are used to report the results.

Figure 19.11 shows the total execution costs of TD by employing different ranking

strategies: MaxMinCost, MinMinCost, HEFT ranking, FCFS, and Missing-

DeadlineFirst. Their cost optimization performances are measured by the

average normalized cost (ANC) which is the average value of execution cost for

executing 30 different randomly generated workflow graphs. The execution cost is

normalized by the cheapest cost generated by greedy cost (GC).

For the balanced-structure (see Fig. 19.11a) application, five ranking strategies

produce similar results. However, for the unbalanced-structure (see Fig. 19.11b),

application, MinMinCost performs better than others while MissingDeadline

incurs significantly higher cost. The scheduling running time is also investigated and

showed in Figure 19.12. Among five strategies, HEFT ranking produces highest

complexity,whileFCFSandMissingDeadlineFirstproducelowestcomplexity.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

N
or

m
al

iz
ed

 S
ch

ed
ul

in
g

T
im

e

User Budget (k)

(a) (b)

Balanced-structure application (Scheduling Overhead)

CD vs. GreedyTime
BT vs. GreedyTime

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 2 4 6 8 10

N
or

m
al

iz
ed

 S
ch

ed
ul

in
g

T
im

e

User Budget (k)

Unbalanced-structure application (Scheduling Overhead)

CD vs. GreedyTime
BT vs. GreedyTime

Figure 19.10 Normalized scheduling overhead for budget-constrained scheduling:

(a) balanced-structure application; (b) unbalanced-structure application.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 2 3 4 5 6 7 8

A
N

C

User Deadline (k)

(a) (b)

Balanced-structure application (Execution Cost)

MaxMinCost
MinMinCost

HEFT Ranking
FCFS

MissingDeadlineFirst

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 2 3 4 5 6 7 8

A
N

C

User Deadline (k)

Unbalanced-structure application (Execution Cost)

MaxMinCost
MinMinCost

HEFT Ranking
FCFS

MissingDeadlineFirst

Figure 19.11 Comparison of execution costs among five different ranking strategies for

scheduling deadline-constrainedworkflow: (a) balanced-structure application; (b) unbalanced-

structure application.

446 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

The scheduling running time of MinMinCost is slightly higher than that of Max-

MinCost for balanced-structure applications, but they are similar for the unbalanced-

structure applications. Therefore, FCFS and MissingDeadlineFirst are good

enough for scheduling balanced-structure applications, since they incur similar execu-

tion cost but less scheduling running time.

Figure 19.13 shows the total execution time of CD employing different ranking

strategies: MaxMinTime, MinMinTime, HEFT ranking, FCFS, and Missing-

BudgetFirst. Their time optimization performances are measured by the average

normalized time (ANT),which is the average value of execution time for executing 30

different random generated workflow applications. The execution time is normalized

by the fastest time generated by HEFT.

For the balanced-structure application (see Fig. 19.13a), five ranking strategies

produce similar results. However, for the unbalanced-structure application

(see Fig. 19.13b), HEFT ranking produces faster schedules while MinMinTime

performs slightly worse than MaxMinTime, FCFS, and MissingBudgetFirst.

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8

 2 3 4 5 6 7 8

A
ve

ra
ge

 S
ch

ed
ul

in
g

T
im

e
(S

ec
.)

User Deadline (k)

Balanced-structure application (Scheduling Overhead)

MaxMinCost
MinMinCost

HEFT Ranking
FCFS

MissingDeadlineFirst

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 3 4 5 6 7 8

A
ve

ra
ge

 S
ch

ed
ul

in
g

T
im

e
(S

ec
.)

User Deadline

Unbalanced-structure application (Scheduling Overhead)

MaxMinCost
MinMinCost

HEFT Ranking
FCFS

MissingDeadlineFirst

(a) (b)

Figure 19.12 Scheduling overhead of five deadline-constrained ranking strategies: (a)

balanced-structure application; (b) unbalanced-structure application.

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

 2 3 4 5 6 7 8

A
N

T

User Budget (k)

Balanced-structure application (Execution Time)

MaxMinTime
MinMinTime

HEFT Ranking
FCFS

MissingBudgetFirst

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 3 4 5 6 7 8

A
N

T

User Budget

Unbalanced-structure application (Execution Time)

MaxMinTime
MinMinTime

HEFT Ranking
FCFS

MissingBudgetFirst

(a) (b)

Figure 19.13 Comparison of execution costs among five different ranking strategies for

scheduling budget-constrained workflow: (a) balanced-structure application; (b) unbalanced-

structure application.

PERFORMANCE EVALUATION 447

However, as shown in Figure 19.14, it also takes longer for HEFT ranking to return the

results.

19.9 RELATED WORK

Many heuristics have been investigated by several projects for scheduling workflows

on Grids. The heuristics can be classified as either task level or workflow level. Task-

level heuristics scheduling decisions are based only on the information on a task or

a set of independent tasks, while workflow-level heuristics take into account the

information of the entireworkflow.Min-Min,Max-Min, and Sufferage are threemajor

task level heuristics employed for scheduling workflows on Grids. They have been

used by Mandal et al. [12] to schedule EMAN bioimaging applications. Blythe

et al. [2] developed a workflow-level scheduling algorithm based on the greedy

randomized adaptive search procedure (GRASP) [7] and compared it with Min-Min

in compute- and data-intensive scenarios. Another twoworkflow level heuristics have

been employed by the ASKALON project [15,21]. One is based on genetic algo-

rithms, and the other is a heterogeneous earliest finish time (HEFT) algorithm [20].

Sakellariou and Zhao [16] developed a low-cost rescheduling policy. It intends to

reduce the rescheduling overhead by conducting rescheduling only when the delay of

a task impacts on the entireworkflowexecution.However, theseworks only attempt to

minimizeworkflow execution time and do not consider other factors such asmonetary

execution cost.

Several strategies have been proposed to address scheduling problems based on

users’ deadline and budget constraints. Nimrod/G [1] schedules independent tasks for

parameter sweep applications to meet users’ budget. A market-based workflow

management system proposed by Geppert et al. [9] locates an optimal bid based

on the budget of the current task in the workflow. However, the work discussed in this

chapter schedules a workflow that consists of a set of interdependent tasks, according

to a specified budget and deadline of the entire workflow.

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

A
ve

ra
ge

 S
ch

ed
ul

in
g

T
im

e
(S

ec
.)

User Budget (k)

Balanced-structure application (Scheduling Overhead)

MaxMinTime
MinMinTime

HEFT Ranking
FCFS

MissingBudgetFirst

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 3 4 5 6 7 8

A
ve

ra
ge

 S
ch

ed
ul

in
g

T
im

e
(S

ec
.)

User Budget (k)

Unbalanced-structure application (Scheduling Overhead)

MaxMinTime
MinMinTime

HEFT Ranking
FCFS

MissingBudgetFirst

(b)(a)

Figure 19.14 Scheduling overhead of five budget-constrained ranking strategies:

(a) balanced-structure application; (b) unbalanced-structure application.

448 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

19.10 SUMMARY

Utility Grids enable users to consume utility services transparently over a secure,

shared, scalable, and standard worldwide network environment. Users are required to

pay for access services according to their usage and the level of QoS provided. In such

“pay per use” Grids, workflow execution cost must be considered during scheduling

on the basis of users’ QoS constraints.

This chapter has presented characteristics of utility Grids and modeled their

workflow scheduling problems formally. Deadline- and budget-constrained schedul-

ing heuristics have also been investigated. Deadline-constrained scheduling is

designed for time-critical applications. It attempts to minimize the monetary cost

while delivering the results to users before a specified deadline. Budget-constrained

scheduling is intended to complete workflow executions according to the budget

available for users.

The heuristics discussed in this chapter distributes overall deadline and budget

over each task and then optimizes the execution performance of each task according to

their assigned subdeadline and subbudget. The heuristics have been evaluated against

others, including greedy time, greedy cost, and backtracking heuristics through

simulation in terms of performance and scheduling time.

REFERENCES

1. D. Abramson, R. Buyya, and J. Giddy, A computational economy for Grid computing and

its implementation in the Nimrod-G resource broker, Future Generation Computer

Systems 18(8):1061–1074 (Oct. 2002).

2. J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy, Task

scheduling strategies for workflow-based applications in Grids, Proc. 5th IEEE

International Symp. Cluster Computing and the Grid (CCGrid’05), Cardiff, UK, 2005.

3. R. Buyya, D, Abramson, and J. Giddy, Nimrod/G: An architecture of a resource

management and scheduling system in a global computational Grid, Proc. 4th

International Conf. High Performance Computing in Asia-Pacific Region (HPC Asia

2000), Beijing, China, May 2000.

4. R. Buyya and M. Murshed, GridSim: A toolkit for the modeling and simulation of

distributed resource management and scheduling for Grid computing, Concurrency and

Computation: Practice and Experience 14(13–15):1175–1220 (Nov.–Dec. 2002).

5. A. O’Brien, S. Newhouse, and J. Darlington, Mapping of scientific workflow within the

e-Protein project to distributed resources, Proc. UK e-Science All Hands Meeting,

Nottingham, UK, 2004.

6. T. Eilam, K. Appleby, J. Breh, G. Breiter, H. Daur, S. A. Fakhouri, G. D. H. Hunt, T. Lu, S.

D. Miller, L. B. Mummert, J. A. Pershing, and H. Wagner, Using a utility computing

framework to develop utility systems, IBM System Journal 43:97–120 (2004).

7. T. A. Feo and M. G. C. Resende, Greedy randomized adaptive search procedures, Journal

of Global Optimization 6:109–133, (1995).

8. D. Fern�andez-Baca, Allocating modules to processors in a distributed system, IEEE

Transactions on Software Engineering 15(11):1427–1436 (Nov. 1989).

REFERENCES 449

9. A. Geppert, M. Kradolfer, and D. Tombros, Market-based workflow management,

International Journal of Cooperative Information Systems 7(4):297–314 (Dec. 1998).

10. T. Hierl, G. Wollny, G. Berti, J. Fingberg, J. G. Schmidt, and T. Schulz, Grid-enabled

medical simulation services (GEMSS) in oral & maxillofacial surgery, Jahrestagung der

Deutschen Gesellschaft f€ur Computer- und Roboterassistierte Chirurgie (CURAC 2004),

Munich, Germany, 2004.

11. D. Hollinsworth, The Workflow Reference Model, Workflow Management Coalition,

TC00-1003, 1994.

12. A. Mandal, K. Kennedy, C. Koelbel, G. Marin, B. Liu, L. Johnsson, and J. Mellor-

Crummey, Scheduling strategies for mapping application workflows onto the Grid, Proc.

IEEE International Symp. High Performance Distributed Computing (HPDC 2005),

Research Triangle Park, NC, 2005.

13. Mayer, S. McGough, N. Furmento,W. Lee, M. Gulamali, S. Newhouse, and J. Darlington,

Workflow expression: Comparison of spatial and temporal approaches, Proc. Workflow in

Grid Systems Workshop (GGF-10), Berlin, March 9, 2004.

14. D.A.Menasce and E. Casalicchio, A framework for resource allocation in grid computing,

Proc. IEEE Computer Society 12th Annual International Symp. Modeling, Analysis, and

Simulation of Computer and Telecommunications Systems, Volendam, The Netherlands,

Oct. 5–7, 2004.

15. R. Prodan and T. Fahringer, Dynamic scheduling of scientific workflow applications on

the Grid: A case study, Proc. 20th Annual ACM Symp. Applied Computing (SAC 2005),

New Mexico, ACM Press, New York, March 2005.

16. R. Sakellariou and H. Zhao, A low-cost rescheduling policy for efficient mapping of

workflows on Grid systems, Scientific Programming 12(4):253–262 (Dec. 2004).

17. D. P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd, Performance-aware workflow

management for Grid computing, The Computer Journal 48(3):347–357 (May 2005).

18. I. Tayler, E. Deelman, D. Gannon, and M. Shields, eds., Workflows for E-Science:

Scientific Workflows for Grids, Springer-Verlag, London, Dec. 2006.

19. G. Thickins, Utlity computing: The next new IT model, Darwin Magazine (April 2003).

20. H. Topcuouglu, S. Hariri, and M. Wu, Performance-effective and low-complexity task

scheduling for heterogeneous computing, IEEE Transactions on Parallel Distributed

Systems, 13:260–274 (2002).

21. M. Wieczorek, R. Prodan, and T. Fahringer, Scheduling of scientific workflows in the

ASKALON Grid environment, ACM SIGMOD Record 34:56–62 (2005).

22. Y. Zhao, M. Wilde, I. Foster, J. Voeckler, T. Jordan, E. Quigg, and J. Dobson, Grid

middleware services for virtual data discovery, composition, and integration, Proc. 2nd

Workshop on Middleware for Grid Computing, Toronto, Ontario, Canada, 2004.

23. W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger, Data

management in an international data Grid project, Proc. 1st IEEE/ACM International

Workshop on Grid Computing, India, Springer-Verlag Press, Germany, 2000.

24. W. T. Sullivan, III, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and D. Anderson, A new

major SETI project based on Project Serendip data and 100,000 personal computers,Proc.

5th International Conf. Bioastronomy, Bologna, Italy, 1997.

450 DEADLINE/BUDGET-BASED SCHEDULING OF WORKFLOWS ON UTILITY GRIDS

