
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 1

UMPIPE: Unequal Microbatches-based Pipeline
Parallelism for DNN Training

Guangyao Zhou∗, Wenhong Tian Member, IEEE, Rajkumar Buyya Fellow, IEEE, Kui Wu Member, IEEE

Abstract—The increasing need for large-scale deep neural
networks (DNN) has made parallel training an area of intensive
focus. One effective method, microbatch-based pipeline paral-
lelism (notably GPipe), accelerates parallel training in various
architectures. However, existing parallel training architectures
normally use equal data partitioning (EDP), where each layer’s
process maintains identical microbatch-sizes. EDP may hinder
training speed because different processes often require varying
optimal microbatch-sizes. To address this, we introduce UMPIPE,
a novel framework for unequal microbatches-based pipeline
parallelism. UMPIPE enables unequal data partitions (UEDP)
across processes to optimize resource utilization. We develop
a recurrence formula to calculate the time cost in UMPIPE
by considering both computation and communication processes.
To further enhance UMPIPE’s efficiency, we propose the Dual-
Chromosome Genetic Algorithm for UMPIPE (DGAP) that
accounts for the independent time costs of forward and backward
propagation. Furthermore, we present TiDGAP, a two-level im-
provement on DGAP. TiDGAP accelerates the process by simul-
taneously calculating the end time for multiple individuals and
microbatches using matrix operations. Our extensive experiments
validate the dual-chromosome strategy’s optimization benefits
and TiDGAP’s acceleration capabilities. TiDGAP can achieve
better training schemes than baselines, such as the local greedy
algorithm and the global greedy-based dynamic programming.
Compared to (GPipe, PipeDream), UMPIPE achieves increases
in training speed: (13.89, 11.09)% for GPT1-14, (17.11, 7.96)%
for VGG16 and ≥ (170%, 100%) for simulation networks.

Index Terms—Parallel Training, Data Parallelism, Unequal
Data Partitions, Pipeline Parallelism, Genetic Algorithm

I. INTRODUCTION

THE advancement of intelligent technology has signifi-
cantly increased the application of deep neural networks

(DNNs) in various domains, such as image processing [1],
[2] and natural language processing (NLP) [3]. DNNs come
in diverse structures, such as Convolutional Neural Networks
(CNN) [4], transformer layer-based networks [5], [6], and
Graph Neural Networks [7], [8]. The advent of large language
models (LLMs) has led to an exponential growth in parameter
scale. Consequently, parallel training on distributed systems,
such as GPU clusters, has emerged as a crucial approach and a
focal point of research to overcome these challenges in large-
scale DNNs [9], [4], [10]

Guangyao Zhou (guangyao zhou@std.uestc.edu.cn) and Wenhong Tian
(tian wenhong@uestc.edu.cn) are with School of Information and Software
Engineering, University of Electronic Science and Technology of China,
China.

Rajkumar Buyya (rbuyya@unimelb.edu.au) is with Cloud Computing and
Distributed Systems (CLOUDS) Laboratory, Department of Computing and
Information Systems, the University of Melbourne, Australia.

Kui Wu (wkui@uvic.ca) is with the Department of Computer Science, the
University of Victoria, Canada.

Data Parallelism (DP), Tensor Model Parallelism (TMP),
and Pipeline Model Parallelism (PMP) are three founda-
tional parallel modes for training DNNs on distributed sys-
tems [11], [12], [6], [13]. PMP and TMP, in particular,
often leverage a combination with DP to enhance their ar-
chitectures. Renowned PMP architectures include GPipe [14],
PipeDream [15], Dapple [16], and Hpipe [11], while TMP
is represented by Megatron-LM [5] and Tofu [17]. Further,
hybrid 3D parallelism models integrating DP, TMP, and PMP,
like FOLD3D [18] and Merak [13], have significantly boosted
parallel training performance. These existing architectures all
rely on microbatch-based data parallelism. In the parallel
training, forward propagation (FP) and backward propagation
(BP) comprise computation and communication processes. A
notable challenge is the “bubbles” or idle times each device
experiences while waiting for preceding processes on other
devices to complete [16], [19]. Reducing bubbles and increas-
ing the overlap between computation and communication is a
key focus in optimizing parallel training [18]. Techniques such
as dynamic programming [20], linear programming [21], and
recurrence methods [22] are developed to mitigate bubbles.

Despite the above progress, Equal Data Partitioning (EDP)
remains a significant limitation across most parallelism. EDP
means that all processes of computations and communica-
tions, must handle the same number of microbatches within
a minibatch [23], [24]. This limitation caused by EDP is
prevalent in almost all existing parallel architectures that
rely on microbatch-based data parallelism (e.g., GPipe [14],
PipeDream [15], Dapple [16], Terapipe [6]). In the dynamic
landscape of DNNs, layer heterogeneity significantly impacts
computation and communication times, which are not nec-
essarily proportional to the microbatch-size [25], [26], [27].
This heterogeneity suggests that optimal partition numbers
for different processes might vary. Hence, EDP may result
in inefficiencies.

Motivated by this observation, we propose UMPIPE, a novel
pipeline parallel structure utilizing unequal microbatches. This
approach allows for unequal data partitioning (UEDP) across
both computation and communication processes in DNNs.
UMPIPE represents the first exploration into unequal par-
titioning within parallel training and effectively harnesses
the heterogeneous time consumption characteristics of DNN
layers. We develop a general recurrence formula and conduct
an in-depth analysis of UMPIPE’s optimality. Our findings
indicate that UMPIPE’s optimal scheme is at least as efficient,
if not more so, than existing methods like GPipe.

To obtain the optimization scheme of UMPIPE, we propose
a dual-chromosome genetic algorithm (DGAP), leveraging the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 2

independence of data partitions of forward propagation and
backward propagation. However, since the microbatch-sizes
for processes in UMPIPE can be different, the formula of
estimating training time in GPipe [28], [29], [6] does not apply
to UMPIPE, and it is a challenge to obtain the explicit expres-
sions of training time in UMPIPE. It significantly complicates
the computational process in determining UMPIPE’s optimal
training scheme using recurrence formulas. To address this
challenge, we propose a two-level improvement method based
on matrix operations, which expedites calculations by simul-
taneously processing multiple individuals and microbatches.
We integrate this method with DGAP to form the Two-level
Improved Dual-Chromosome Genetic Algorithm (TiDGAP).

Our contributions are summarized as follows:
(1) UMPIPE: Our approach considers not just the compu-

tation and communication simultaneously but also their
nonlinear time consumption relative to microbatch-size.
We propose UMPIPE, a UEDP-based pipeline parallelism
framework. This innovation allows different microbatch-
sizes for processes within DNNs, thereby accelerating
parallel training. We derive a recurrence formula and
conduct a comprehensive theoretical analysis for UMPIPE.

(2) DGAP: Recognizing that time costs for FP and BP are
independent in UMPIPE, we develop Dual-Chromosome
Genetic Algorithm (DGAP) to identify the optimal
scheme. Our theoretical analysis of the dual-chromosome
strategy highlights its statistical advantages in efficiently
resolving UMPIPE’s unique scheme requirements.

(3) TiDGAP: Addressing the challenges in calculating
UMPIPE’s training time due to UEDP, we conduct theoret-
ical derivation and propose TiDGAP, a matrix operation-
based two-level improved method to accelerate DGAP.
With the two-level improved method, TiDGAP can simul-
taneously calculate the end time corresponding to mul-
tiple individuals and multiple microbatches, substantially
boosting DGAP’s search capability.

(4) Experiments: Extensive experimental evaluations demon-
strate the fast speed and optimality of TiDGAP com-
pared to baseline methods. Additionally, results con-
firm that UMPIPE achieves a faster training speed
than baseline parallelism without compromising the
training convergence of DNNs. Compared to (GPipe,
PipeDream), UMPIPE achieves (13.89, 11.09)% improve-
ment in GPT1-14, (17.11, 7.96)% in VGG16, and ≥
(170%, 100%) in simulation networks.

The rest of this paper is organized as follows. We review the
related work in Section II. The UMPIPE parallelism is pre-
sented in Section III. The DGAP and TiDGAP are presented
in Section IV. The experiment evaluations are presented in
Section V. Finally, we conclude this paper in Section VI.

II. RELATED WORK

A. Parallelism for training DNNs
Data parallelism (DP), tensor model parallelism (TMP) and

pipeline model parallelism (PMP) are three basic architectures
to train large-scale DNNs [18], [13].

Data level parallelism generally divides the data into multi-
ple parts for time-sharing or equipment-sharing training [30],

[31]. Joshua Romero et al. [12] implemented a lightweight
decentralized coordination strategy by utilizing a response
cache to accelerate collective communication in data parallel
training. Lei Guan et al. [32] proposed pdlADMM that splits
the optimization problem into sub-problems to train the fully
connected DNN in a data-parallel manner.

Tensor model parallelism divides layers of DNN into mul-
tiple parts from the dimension of tensor operations [11], [29].
Based on model parallelism, Deepak Narayanan et al. [5]
proposed Megatron-LM to divide the self-attention layer into a
multi-tensor operation model, which allowed the self-attention
layer to be put on different devices.

Pipeline-related parallelism, which is usually combined with
DP and TMP, is an important method in parallel training.
GPipe [14] split the training minibatch into multiple micro-
batches and utilized the pipeline to train each part of the
model on its corresponding distributed node. Terapipe [6]
followed the pipeline of GPipe and improved the pipelining
granularity to reduce the pipeline bubbles of the transformer-
based NLP model by proposing a new dimension, i.e. token di-
mension. Based on GPipe, PipeDream [15] shifted the gradient
backward-propagation (BP) of each microbatch earlier to the
moment immediately after its last part of forward. Dapple [16]
followed PipeDream and shifted the BP of other sub-model
nodes to earlier besides that of the last sub-model node for
the same minibatch [16].

Hybrid 3D parallelism, which integrates DP, PMP, and
TMP, is currently an effective framework for high training
efficiency [18], [13]. Fanxin Li et al. [18] proposed FOLD3D
to slice a DNN into multiple segments, which allowed the
computations in the same segment to be scheduled together.
Zhiquan Lai et al. [13] proposed Merak that can automatically
deploy 3D parallelism. Some other hybrid parallelism includes
EffTra [28], ParaDL [33] and PipePar [34].

Other strategies to improve the performance of parallel
training include momentum-driven adaptive synchronization
model [35], NeoFlow (flexible framework for enabling effi-
cient compilation) [36], PaSE parallelization [22], etc.

B. Optimization Methods
The parallel architecture needs optimization methods to

determine the optimal parallel training schemes. Because the
cost model was generally non-analytical or recursive, dy-
namic programming is a suitable and widely used method
to obtain the optimal partition of data parallelism or model
parallelism [20]. Some examples using dynamic program-
ming include PipeDream [16], Dapple [16], Terapipe [6],
EffTra [28], PaSE [22], PipePar [34] et al. Linear programming
is also a frequently-used method in parallel training [21], [31],
[4]. Some examples include NetPlacer [21], HGP4CNN [4],
DPDA [31]. Other partition methods include off-the-shelf
graph partitioning algorithms [7], recurrence [22], grouping
genetic algorithm [37], and near-optimal layer partition of
local search method [38].

C. Difference of Our Solution
From the reviewed literature, how to construct a well-

performed parallel training architecture to accelerate training



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 3

speed by reducing pipeline bubbles and redundant communica-
tion is an urgent topic. The existing DP and TMP frameworks
rely on equal partitioning. However, the optimal partitioning
numbers of layers in DNN may differ, and equal partitioning
will restrict the optimization boundary of parallelism.

The notable feature of our proposed UMPIPE is unequal
data partitioning (UEDP). In UMPIPE, communication and
computation time are non-negligible and are not necessarily
proportional to the microbatch-size. These properties indicate
that the targeted scenarios of our proposed UMPIPE are far
more realistic. Our TiDGAP is also significantly different
from existing algorithms due to UMPIPE. Although TiDGAP
still relies on recurrence formulas, its calculation process has
been improved through matrix operations based on theoretical
derivation. Matrix operation-based formulas enable TiDGAP
to obtain schemes of UMPIPE in the order of seconds.

TABLE I
NOTATIONS AND DESCRIPTIONS.

Notation Description
N Number of stages
pk Number of microbatch in the k-th forward process
qk Number of microbatch in the k-th backward process
P Minibatch-size
FP
i (p) The forward compute time of one microbatch in the i-th stage

when partitioning the minibatch into p microbatches
FM
i (p) The forward communication time of one microbatch

BP
i (p) The backward compute time of one microbatch

BM
i (p) The backward communication time of one microbatch

Fk(pk) The time cost of one microbatch in the k-th forward process
Ekj The end time of the j-th data of the k-th forward process
Tki The begin time of the i-th microbatch in the k-th process
Bk(qk) The time cost of one microbatch in the k-th backward process
Rkj The end time of the j-th data of the k-th backward process

III. UMPIPE PARALLELISM AND COST MODEL

A. Architecture of UMPIPE Parallelism

For the sake of presenting UMPIPE’s architecture and cost
model, we list notations in Table I. In one epoch of training
DNNs, a dataset is divided into multiple minibatches and
each minibatch needs to start after the previous minibatch
ends. The process undergoing one FP and one BP using a
minibatch as the input data is one training iteration of the
DNN on the minibatch. Minimizing the total training time
can be equivalently converted to minimizing the time for
training one iteration of one minibatch. It can be set that the
minibatch-size of training DNN is P , which means training
P pieces of data simultaneously in one minibatch. These P
data can be set as {d1, d2, . . . , dP }. To reduce parallel training
time, the existing microbatch-based pipeline parallelism (e.g.,
GPipe) partitions a minibatch into multiple microbatches. As
GPipe makes a constraint that each layer has the same number
of microbatches (equal data partitioning, EDP), some time-
consuming processes (computation or communication) may
limit the optimization of the total training time.

To reduce the training time, UMPIPE introduces unequal
data partitioning (UEDP) into microbatch-based pipeline par-
allelism. In UMPIPE, different processes in DNN can have
different microbatch-sizes. UEDP is beneficial for layers’

processes flexibly selecting appropriate numbers of data par-
titions. For the convenience of discussion, we regard all
computations and communications in training DNN to belong
to a set of processes. Based on the characteristics of training
DNN, there are 4N − 2 processes for N stages, marked as
κ = ⟨κ1, κ2, . . . , κ4N−2⟩ according to the order of execution.
Therefore, we can obtain that for k ≤ 2N−1, κk corresponds
to the forward computation of the (k + 1)/2-th stage if k is
an odd number, else it is the forward communication process
between the k/2-th and the

(
k
2 + 1

)
-th stages. It is similar to

backward propagation. Assuming the number of microbatches
in the k-th forward process is pk and that in the k-th backward
process is qk, the relationships can be obtained as Eq. 1.

Fk(pk) =

FP
k+1
2

(pk), k mod 2 = 1

FM
k
2
(pk), otherwise

Bk(qk) =

BP
N− k−1

2

(qk), k mod 2 = 0

BM
N− k

2
(qk), otherwise

(1)

With pk and qk, we can give the mathematical definitions
of GPipe and UMPIPE to highlight their differences.

• In GPipe, pk and qk must satisfy that for 0 ≤ ∀i ≤ ∀j ≤
2N − 1, pi = pj = qi = qj = p.

• In UMPIPE, it is allowed that ∃i, j s.t. pi ̸= pj , or qi ̸=
qj , or pi ̸= qj .

As mentioned above, some time-consuming processes in
GPipe slow down the entire training. It is mainly because
Fk (or Bk) and pk (or qk) are not necessarily inversely
proportional in actual training. In some cases, there may exist
a number p s.t. that Fk(x) = Fk(y) for ∀x > y ≥ p. A similar
phenomenon appears in Bk. If different processes choose
different partitions in this case (i.e., applying UMPIPE), it may
further reduce the total training time, which will be better than
all partition schemes of GPipe.

To illustrate the advantages of UEDP between different pro-
cesses in forward propagation, Fig. 1 provides an example for
forward propagation with two stages to present the differences
between EDP-based pipeline (GPipe) and UMPIPE. Paying at-
tention to the fact that ∃p s.t. Fk(x) = Fk(y) for ∀x > y ≥ p
in some cases, the example in Fig. 1 sets a non-linear time
function for the first layer: when p ≥ 2, the computation time
of each microbatch in the first layer will no longer decrease
correspondingly, i.e., FP

1 (2) = FP
1 (4). In such cases, parallel

training adhering to EDP will be slowed down by the non-
linear time-consuming process that will become the bottleneck
process of the entire EDP-based parallelism In Fig. 1(a) and
Fig. 1(b), two schemes of GPipe, dividing one minibatch
into two microbatches and four microbatches respectively,
correspond to 8t and 10t training time. Due to the existence
of non-linear time-consuming process, EDP-based parallelism
cannot fully unleash the potential of parallel training. Using
UEDP, UMPIPE in Fig. 1(c) can achieve less training time as
7t, accelerating the speed by 14.29% compared to GPipe.

UEDP between forward propagation and backward propa-
gation can also reduce training time. An example is shown in
Fig. 2 which also takes nonlinear time-consuming processes



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 4

GPU0

CAL.

COM.

1st mbh: 2t

GPU1
CAL.

Total Time = 8t

2nd mbh: 2t

1st mbh: 2t

d1d2 d3 d4

d1d2 d3 d4 d5 d6 d7 d8

2nd mbh: 2t

d5 d6 d7 d8

1st mbh: 2t 2nd mbh: 2t

d1d2 d3 d4 d5 d6 d7 d8

(a) GPipe (2 microbatches): 8t

GPU0

CAL.
COM.

1st: 2t

GPU1
CAL.

Total Time = 10t

2nd: 2t

1st: t

d1d2

d1 d2 d3 d4

3rd: 2t

d5 d6

4th: 2t

d7 d8

2nd: t

d3d4

3rd: t

d5d6

4th: t

d7d8

d1d2

1st: t

d3d4

2nd: t

d5d6

3rd: t

d7d8

4th: t

(b) GPipe (4 microbatches): 10t

GPU0

CAL.
COM.

GPU1
CAL.

Total Time = 7t

1st: t

d1d2

2nd: t

d3d4

3rd: t

d5d6

4th: t

d7d8

d1d2

1st: t

d3d4

2nd: t

d5d6

3rd: t

d7d8

4th: t

1st: 2t 2nd: 2t

d1d2 d3 d4 d5 d6 d7 d8

(c) UMPIPE (2-4-4 microbatches): 7t

Fig. 1. FP timeline for an example of a network under GPipe and UMPIPE in
two stages with time functions as: FP

1 (2) = FP
1 (4) = 2t (non-linear time-

consuming process), FM
1 (2) = 2FM

1 (4) = 2t, FP
2 (2) = 2FP

2 (4) = 2t,
FP
1 (1) = FM

1 (1) = FP
2 (1) = 4t. Mbh means microbatch.

into account by setting FP
1 (2) = FP

1 (4), FM
1 (2) = FM

1 (4),
and FP

2 (2) = FP
2 (4). It can be noted that the training time for

executing the BP in Fig. 2(b) is 6t less than that in Fig. 2(a).
Thus, if combining the scheme of forward propagation in
Fig. 2(a) and the scheme of backward propagation in Fig. 2(b),
a better scheme of UMPIPE can be obtained as Fig. 2(c).
According to Fig. 2(c), the training time under UMPIPE
parallelism is 14t better than the best scheme of GPipe.

These two examples demonstrate that unequal data parti-
tioning of UMPIPE can introduce better solutions than EDP,
which can further improve the speed of parallel training.
Data parallelism is one of the foundations of most existing
parallel architectures. Therefore, UEDP, which improves data
parallelism, is significant for parallel training.

B. Formulas for UMPIPE

Due to the introduction of UEDP, the training time of
DNN using UMPIPE is not as easy to derive as using GPipe.
However, solving optimization solutions requires evaluation of
the optimized solutions inevitably. Therefore, in this section,
we present a recurrence formula and provide a time-consuming
recurrence calculation algorithm.

Setting the begin time of the i-th microbatch in the k-th
process is Tki, a recurrence formula for UMPIPE is

Tki = max
(
T(k−1)xi

+ Fk−1, Tk(i−1) + Fk

)
(2)

where xi = ⌈(ipk−1)/pk⌉ where ⌈·⌉ is upward rounding
function. It is complex to derive its analytical expression of

GPU0

CAL.

COM.

1st: 2t

GPU1
CAL.

Total Time = 8t+8t=16t

2nd: 2t

1st: 2t

d1d2 d3 d4

d1d2 d3 d4 d5 d6 d7 d8

2nd: 2t

d5 d6 d7 d8

1st: 2t 2nd: 2t

d1d2 d3 d4 d5 d6 d7 d8

Forward 
Propagation

Backward 
Propagation

1st: 2t 2nd: 2t

d1d2 d3 d4 d5 d6 d7 d8

1st: 2t

d1d2 d3 d4

2nd: 2t

d5 d6 d7 d8

1st: 2t 2nd: 2t

d1d2 d3 d4 d5 d6 d7 d8

(a) GPipe (2 microbatches): 8t+ 8t = 16t

GPU0

CAL.

COM.

1st: 2t

GPU1
CAL.

Total Time = 12t+6t=18t

1st: 2t

FP BP
d1 d2

2nd: 2t

d3 d4

3rd: 2t

d5 d6

4th: 2t

d7 d8

d1 d2

2nd: 2t

d3 d4

3rd: 2t

d5 d6

4th: 2t

d7 d8

1st: 2t

d1 d2

2nd: 2t

d3 d4

3rd: 2t

d5 d6

4th: 2t

d7 d8

t

d1d2

t

d3d4

t

d5d6

t

d7d8

t

d1d2

t

d3d4

t

d5d6

t

d7d8

t

d1d2

t

d3d4

t

d5d6

t

d7d8

(b) GPipe (4 microbatches): 12t+ 6t = 18t

GPU0

CAL.

COM.

1st: 2t

GPU1
CAL.

Total Time = 8t+6t=14t

2nd: 2t

1st: 2t

d1d2 d3 d4

d1d2 d3 d4 d5 d6 d7 d8

2nd: 2t

d5 d6 d7 d8

1st: 2t 2nd: 2t

d1d2 d3 d4 d5 d6 d7 d8

FP BP

t

d1d2

t

d3d4

t

d5d6

t

d7d8

t

d1d2

t

d3d4

t

d5d6

t

d7d8

t

d1d2

t

d3d4

t

d5d6

t

d7d8

(c) UMPIPE (FP: 2 microbatches, BP: 4 microbatches): 8t+
6t = 14t

Fig. 2. Timeline with FP and BP for an example of a network under GPipe
and UMPIPE in two stages with time functions as:: FP

1 (2) = FP
1 (4) = 2t,

FM
1 (2) = FM

1 (4) = 2t, FP
2 (2) = FP

2 (4) = 2t and BP
1 (2) = 2BP

1 (4) =
2t, BM

1 (2) = 2BM
1 (4) = 2t, BP

2 (2) = 2BP
2 (4) = 2t.

the training time. In practice, we can calculate the end time
of each data based on the dependencies between each data in
each process of DNN. Denoting the end time of the j-th data
in the k-th process as Ekj , the formula of dependencies is:

Ekj = max
(
E(k−1)zkj

, Ekykj

)
+ Fk (3)

where ykj = pk · (⌈j/pk⌉ − 1) and zkj = min (pk + ykj , P ).
According to the Eq. 3, Ekj is only determined by E(k−1)j

and Ekykj
. Thus, we can use the recurrence formula with two

layers of loops to calculate the training time under UMPIPE
as Algorithm 1 assuming Fk is known.

Algorithm 1: Recurrence algorithm for the forward
training time of one minibatch under UMPIPE
Input : Fk(pk) and pk for ∀k, minibatch-size P
Output: Ekj for 1 ≤ k ≤ 2N − 1 and 1 ≤ j ≤ P

1 Initial Ekj = 0 for 0 ≤ k ≤ 2N − 1 and 0 ≤ j ≤ P
2 for k ∈ [1, 2N − 1] do
3 for j ∈ [1, P ] do
4 Calculate zkj and ykj
5 Calculate Ekj according to Eq. 3

As the backward propagation under UMPIPE parallelism
has a similar process with forward propagation, Algorithm
1 also applies to backward propagation, which only needs
to replace Ekj by Rkj , Fk by Bk and pk by qk. Although
Algorithm 1 can be utilized to obtain the training time under
UMPIPE parallelism, it will consume a plethora of computa-
tional time due to its two layers of loops, especially in the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 5

genetic algorithm. In the next section, when introducing the
optimization algorithm for solving UMPIPE’s scheme, we will
detail the improvement methods for Algorithm 1 to accelerate
the calculation of training time.

When Fk and Bk are given for ∀k and ∀pk,
⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩ will determine the
final training time under UMPIPE parallelism. Therefore,
⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩ can be regarded as
the solution of UMPIPE’s scheme. Then, we can obtain the
optimization problem of UMPIPE as

minω = E(2N−1)P +R(2N−1)P (4)

where E(2N−1)P is determined by ⟨p1, p2, . . . , p2N−1⟩ and
R(2N−1)P by ⟨q1, q2, . . . , q2N−1⟩.

C. Analysis for Optimality of UMPIPE

According to properties of basic functions and GPipe, we
can obtain a theorem about the optimal partition number.

Theorem 1: Assuming the set of optional partitions is
⟨β1, β2, . . . , βη⟩ where β1 = 1 < β2 < · · · < βη = P
and the optimal partition number of GPipe is βα where
α < η, that means pk = βα for ∀k, there must exist γ s.t.
Fγ(βα) = Fγ(βα+1).

Theorem 1 can be proved by contradiction.
Proof 1: According to the property of basic function, the

following relationship is tenable for ∀γ.

Fγ(βα) ≥ Fγ(βα+1)

If Fγ(βα) > Fγ(βα+1), it can be derived that the partition
βα+1 is better than βα. It contradicts that βα is the optimal
partition number. Thus, Theorem 1 is proved.

With Theorem 1, we can obtain a relationship between the
optimal solutions of GPipe and UMPIPE.

Theorem 2: (1) If Fγ(βα−1) > Fγ(βα) = Fγ(βα+1) for ∀γ,
then pk = βα is also the optimal solution of UMPIPE, and
the best scheme of GPipe equals to that of UMPIPE. (2) If
pk is the optimal solution of UMPIPE and better than GPipe,
then there must exist i ̸= j s.t. pi ̸= pj .

Theorem 2 reveals that the theoretical optimal training
scheme of UMPIPE must be no worse than that of GPipe.

Proof 2: For the first property of Theorem 2, we use
the inductive method to prove it. Assuming the number of
processes in DNN is M , for M = 1, the first property of
Theorem 2 is obviously tenable. For M = 2, it can be assumed
that the optimal solution of UMPIPE is ⟨p1 = a1, p2 = a2⟩.
As the GPipe belongs to UMPIPE, the solution of UMPIPE
must be no worse than GPipe. When a1 = a2, the optimal
solution of UMPIPE is also that of GPipe. In this case,
Theorem 2 is tenable. For a1 ̸= a2, when only one of a1, a2
equals to βα, it can be set a1 = βα and a2 ̸= βα. As
Fγ(βα−1) > Fγ(βα) = Fγ(βα+1), thus it can be derived
that ⟨p1 = a1, p2 = a2⟩ is worse than p1 = βα = p2. When
a1 ̸= βα and a2 ̸= βα, it can be proved that p1 = a1, p2 = a2
must be worse than (p1 = βα, p2 = a2) or (p1 = a1, p2 =
βα). (p1 = βα, p2 = a2) or (p1 = a1, p2 = βα) are both
worse than (p1 = βα, p2 = βα). Thus, (p1 = a1, p2 = a2) is

worse than (p1 = βα, p2 = βα). Therefore, the first property
is tenable for M = 2.

Assuming the first property of Theorem 2 is tenable for
∀M ≤ K − 1. For M = K, we can assume there exists
a solution of UMPIPE better than pk = βα. Thus, there
must exist one piece of data at one process with an earlier
ending time in the scheme of UMPIPE than that of GPipe
and its previous microbatches all have the same ending time
in UMPIPE as that of GPipe. It can be set that the index of
this process is l ≤ K. Thus, for ∀k ≤ l − 1, pk = βα and
pl ̸= βα according to the assumption that Theorem 2 is tenable
for ∀M ≤ K − 1. As Fγ(βα−1) > Fγ(βα) = Fγ(βα+1), thus
∀pl ̸= βα the ending time of any piece data in the l-th process
must be not earlier than that of pl = βα. Thus, Theorem 2 is
tenable for M = K. Thus, the first property is proved.

As the first property is tenable, the second property clearly
holds, otherwise, it contradicts the condition that the solution
of UMPIPE is better than that of GPipe.

In fact, all the training schemes of GPipe are special cases
of UMPIPE, which means the schemes of UMPIPE include
that of GPipe. Therefore, our subsequent algorithm considers
using the optimal solution of GPipe as the initial solution. This
setting ensures that the obtained scheme of UMPIPE must be
not inferior to GPipe.

IV. IMPROVED GENETIC ALGORITHM FOR UMPIPE

This paper focuses on the improvement of unequal data
partitioning and optimization algorithm, therefore mainly con-
sidering optimization of data partitioning without considering
the model partitioning optimization problem of PMP. It can be
assumed that the minibatch-size P has Q possible cases for
partitioning. Therefore, GPipe also has Q feasible solutions
as it requires EDP. As UMPIPE allows UEDP for different
processes, it has Q4N−2 feasible solutions, which are far more
than that of GPipe and increase exponentially with the number
of stages. In the previous section, we analyze that as the
solution set expands, UMPIPE has a better theoretical opti-
mal solution. Leveraging dynamic programming, recurrence
algorithm or enumerate algorithm requires large computational
complexity. Thus, one of the keys is to find an algorithm with
acceptable complexity that can find a better solution than the
GPipe optimal solution.

As ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩ can be regarded
as the solution of UMPIPE, we consider using the genetic
algorithm to search the optimal solution of Eq. 4. In genetic al-
gorithms, the fitness of each individual is related to the training
time corresponding to its solution. According to Algorithm 1,
calculating the fitness of all individuals in each generation will
require three layers of loops, which consume a large amount of
time. Therefore, we also propose a method to eliminate loops
through GPU-based matrix operations, significantly improving
the search speed of genetic algorithms.

A. DGAP: Dual Chromosomes-based Genetic Algorithm

Referring to the existing terms of genetic algorithms [39],
[40], the base components of DGAP are set as:



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 6

(1) Gene, Chromosome and Individual: we regard the
partition number pk or qk of each process as a gene.
We set each individual has two chromosomes: first is
a vector C = ⟨p1, p2, . . . , p2N−1⟩ and the second is a
vector D = ⟨q1, q2, . . . , q2N−1⟩ both with 2N − 1 genes
corresponding to a data partition scheme of the UMPIPE.

(2) Fitness and Chromosomes selector: An individual’s
fitness equals the training time of DNN corresponding
to individual’s genes-determined partition scheme under
UMPIPE parallelism (called time corresponding to the
individual). The fitness of the chromosome C is equal
to its corresponding forward propagation time E(2N−1)P

and that of D is to backward time R(2N−1)P . DGAP sorts
the two sets of chromosomes of all individuals separately
and then selects better parts of each set of chromosomes
in pairing and crossover respectively.

(3) Crossover: In this paper, we set the crossover to oc-
cur between four chromosomes Cα, Cβ , Dγ , Dη . Their
crossover is defined as separately extracting a part of genes
from them to gain two new chromosomes C(new) and
D(new) to construct the children individual.

(4) Mutation: Mutation is replacing some elements of a
chromosome by randomly generated genes.

(5) Population regeneration mechanism: The genetic algo-
rithm for UMPIPE applies elitist strategy [40] to combine
the parent individuals with their children individuals to
jointly compete to produce the next generation.

Then, we can present the dual-chromosome genetic algo-
rithm for UMPIPE in Algorithm 2.

Algorithm 2: Dual-chromosome genetic algorithm for
UMPIPE (DGAP)

Input : Fk(p) and Bk(q) for ∀k, p, q. P , Np, Ng and Nc.
W = [w0, w1, . . . , wQ−1] of optional partitions,
i.e., p ∈ W and q ∈ W .

Output: ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩
1 Set Q individuals both with UEDP and randomly initial the

rest Np −Q individuals
2 for generation ∈ [1, Ng] do
3 for i ∈ [1, Np] do
4 Call Algorithm 1 to obtain the fitness of the i-th

individual
5 for i ∈ [1, Nc] do
6 Select and Pair chromosomes Cα, Cβ , Dγ and Dη

7 Execute crossover and mutation to generate children
chromosomes C(new) and D(new)

8 Call Algorithm 1 to obtain the fitness of the i-th
children individual

9 Sort children and parents, and retain the best Np

individuals as the next generation
10 Set the genes of the individuals with the best fitness as

solution ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩

Algorithm 2 is a version calling Algorithm 1 to calculate
the fitness (i.e., training time) of each individual, it requires
four layers of loops, including loop in generation index, loop
in individual index i, loop in DNN’s process index k and
loop in input data index j. Due to too many loop layers,
Algorithm 2 will take a long time to search for an optimal solu-
tion with time complexity O(Ng · P · (Np +Nc) · (4N − 2)),

which is mainly consumed in the calculation of fitness. To
enable genetic algorithms feasible to solve the optimal data
partitioning ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩ in practical
applications, it is necessary to reduce the time spent on
each iteration of the genetic algorithm. We will introduce the
improvement way to accelerate DGAP subsequently. Before
that, we analyze the convergence of the dual chromosome
strategy theoretically.

B. Analysis of Convergence for Dual-Chromosomes Strategy

In one minibatch, all the backward propagation need to start
after the ending of all forward propagation, so the optimization
of ω in Eq. 4 can be divided into two independent objectives
minE(2n−1)P and minR(2n−1)P . Correspondingly, we set
one individual to have two chromosomes C and D in DGAP.

Next, we can analyze the convergence probability in each
generation to demonstrate the superiority of two chromosomes
compared to using one chromosome.

It can be obtained that the number of feasible solutions
for UMPIPE is Q4N−2. We can set all genes of individuals
in each generation to be randomly generated again without
considering the evolutionary ability of the crossover and
mutation in genetic algorithms. Then, the probability of ob-
taining the theoretically optimal individual in one generation is
ϕ1 = Np/Q

4N−2 assuming each generation has Np different
individuals and there is only one theoretical solution. Thus,
for one chromosome, the probability of obtaining the global
optimal solution at the g-th generation is (1− ϕ1)

g−1 · ϕ1.
Therefore, the expectation of generations required to achieve
theoretically optimal individuals is Q4N−2/Np.

For two chromosomes, the probabilities of obtaining the
theoretically optimal C and D in one generation are both ϕ2 =
Np/Q

2N−1. The probability of obtaining the global optimal C
at the g-th generation is (1− ϕ2)

g−1 ·ϕ2, which is same to D.
Therefore, the expectation of generations required to achieve
theoretical optimal C chromosome is 1/ϕ2. As C and D are
independent, the expectation of generations required to both
achieve theoretical optimal individual for dual-chromosomes-
based genetic algorithm (DGAP) is 2Q2N−1/Np which is far
less than that of one-chromosome-based genetic algorithm.

This conclusion is also valid when considering the evolu-
tionary ability of crossover and mutation in genetic algorithms.
For the general situation considering crossover and mutation,
it can be proved that the dual-chromosome-based genetic
algorithm has a higher probability of reaching the optimal
solution for each generation than the one-chromosome-based
genetic algorithm. Therefore, the solution of DGAP in each
generation will be statistically superior to GAP.

C. OiDGAP: One-level improved DGAP

To accelerate DGA for UMPIPE, we improve Algorithm
2 from two aspects, including eliminating the loop in the
individuals’ index (the “for loop” of line 3 and line 5 in
Algorithm 2) and eliminating the loop in input data’s index
(the “for loop” of line 3 in Algorithm 1).

Eliminating the loop in the individual index indicates
simultaneously calculating the training time corresponding



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 7

to multiple individuals. It can be set that the available
partition numbers construct a one-dimensional array W =
[w0, w1, . . . , wQ−1]; the corresponding time functions of each
process in DNN construct two arrays F = {fkj}(2N−1)×Q

and B = {bkj}(2N−1)×Q with two-dimensions where fkj =

Fk+1 (wj) and bkj = Bk+1 (wj) for 0 ≤ k < 2N − 1 and
0 ≤ j < Q; the indexes for all individuals’ genes in array
W construct a two-dimensional array G = {gik}Np×(4N−2)

which means the partition number of the (k + 1)-th process
determined by the (i+ 1)-th individual’ genes is

W [gik] = wgik =

{
p(i+1)(k+1), if k < 2N − 1

q(i+1)(k+2−2N), others
(5)

Therefore, when W is given, the array G is equivalent to
genes in the genetic algorithm. As the calculations for the
training time of FP and BP have similarities, we only discuss
the calculation for the training time of FP. The array, composed
of the k-th gene of all individuals, can be obtained as G[:, k]
where 0 ≤ k < 2N − 1, thus the array of its corresponding
time functions of all individuals are F [k,G[:, k]] and that of
the partition numbers are W [G[:, k]]. The microbatch-sizes of
the k-th process for all individuals are

⌈
P

W [G[:,k]]

⌉
. It can be

assumed that the end time of the j-th data in the k-th forward
process for the (i+1)-th individual is eijk which can construct
a three-dimensional array E = {eijk}Np×(P+1)×2N . Thus, the
recurrence relationship for calculating the fitness of multiple
individuals simultaneously can be derived as Eq. 6 where the
array Z(b) indicates the starting index of data whose initial
value is [1, 1, . . . , 1]Np

and Z(e) is end index.y

Z(e) = min
(
Z(b) + ⌈P/W [G[:, k]]⌉ , P + 1

)
E
[
:, Z(b)[:] : Z(e)[:], k

]
= F [k,G[:, k]]

+ max
(
E
[
:, Z(e)[:]− 1, k − 1

]
, E

[
:, Z(b)[:]− 1, k

])
Z(b) = Z(e)

⟲

(6)
Due to the possible differences in the number of partitions

corresponding to the same process for multiple individuals, the
number of columns required to be broadcast in each row of the
second formula of Eq. 6 will be different. It can be achieved
by using matrix multiplication if the programming with array
operation does not support imbalanced broadcasting. Then, the
genetic algorithm for UMPIPE after one level of improvement
can be shown in Algorithm 3. Assuming executed on one or
multiple GPUs with sufficient parallel capability, Algorithm 3
has the time complexity as O(Ng · P · (4N − 2)).

D. TiDGAP: Two-level improved DGAP

Eliminating the loop in input data indicates simultaneously
calculating the end time of multiple microbatches (all data in
one minibatch of the k-th process), i.e., obtaining E[i, :, k]
after one set of operations without loop.

As shown in Eq. 3, the start time of the j-th data in the
k-th process mainly depends on the maximum end time
between the zkj-th data in the (k − 1)-th process (called
preprocess baseline) and the ykj-th data in the k-th process

Algorithm 3: One-level improved DGA for UMPIPE
(OiDGAP): simultaneously calculating the training
time corresponding to multiple individuals

Input : F = {fkj}(2N−1)×Q, B = {bkj}(2N−1)×Q, P ,
W = [w0, w1, . . . , wQ−1]. Np, Ng and Nc.

Output: G
[
argmin

(
H(C) +H(D)

)]
1 Set Q individuals both with UEDP and randomly initial the

rest Np −Q individuals
2 Set T = {tij = j}Np×(P+1), E = {eijk = 0}Np×(P+1)×2N

and R = {rijk = 0}Np×(P+1)×2N

3 for k ∈ [0, 2N − 2] do
4 Initial Z(b) = [1, 1, . . . , 1]Np

5 while min
(
Z(b)

)
< P + 1 do

6 Calculate Z(b) and Z(e) according to Eq. 6

7 Use the similar way as line 3-6 to calculate R

8 Obtain the arrays of fitness of H(C) = E [:, P + 1, 2N ] and
H(D) = R [:, P + 1, 2N ]

9 for generation ∈ [1, Ng] do
10 for i ∈ [1, Nc] do
11 Execute crossover and mutation to obtain children Ḡ

12 Obtain H̄(C) and H̄(D) of children with similar way as
line 3-8 ; // Two-layer loops

13 Concatenate children and parent individuals as
G = concat

(
G, Ḡ

)
, H(C) = concat

(
H(C), H̄(C)

)
,

H(D) = concat
(
H(D), H̄(D)

)
14 Update population as: U = argsort

(
H(C) +H(D)

)
,

G = G [Sort [: Np]] with its fitness
H(C) = H(C) [U [: Np]] and H(D) = H(D) [U [: Np]]

(called preorder baseline). Therefore, we can divide the start
time of data in the k-th process into pk parts (corresponding
to pk microbatches), where all data in the same part has the
same start time. Thus, we only need to quickly calculate the
start time of one data in each part to know the start time of
other data in the same part. Assuming the end time of each
data in the (k − 1)-th process is known, we can obtain the
preprocess baseline for each microbatch in the k-th process is[
E
[
i, ⌈ P

pk
⌉, k − 1

]
, E

[
i, 2⌈ P

pk
⌉, k − 1

]
, . . . , E [i, P, k − 1]

]
that can be set as [η1, η2, . . . , ηpk

] for the sake of presentation.
Therefore, the start time of the 1st microbatch in the k-
th process is η1, and that of the 2nd microbatch is
max (η1 + f, η2) where f means the time function. By
mathematical induction, we derive a provable property that
the start time of the j-th microbatch in the k-th process is

j
max
l=1

(ηl + (j − l)f) =
j

max
l=1

(ηl − lf) + jf (7)

Thus, we only need to calculate maxjl=1 (ηl − lf)
for each j. We can construct a array as PB =
[η1 − f, η2 − 2f, . . . , ηj − jf, . . . , ηpk

− pkf ]. Significantly,
maxjl=1 (ηl − lf) is exactly the maximum value of the first j
items for the array PB, which can be quickly obtained by
calling the ‘cummax’ function of array operation or using
upper triangular matrix (if without ‘cummax’ function). Then,
cummax(PB) + [1, 2, . . . , pk] f is the array composed of the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 8

start time of each microbatch in the k-th process.
This approach still applies to calculating the starting time

of multiple data of multiple individuals simultaneously by
combining with Algorithm 3, which can simultaneously elim-
inate two layers of loops in Algorithm 2 including the loop
in the individuals’ index (the “for loop” of line 3 and line
5 in Algorithm 2) and the loop in input data’s index (the
“for loop” of line 3 in Algorithm 1). Then, the two-level
improved DGA for UMPIPE simultaneously calculating the
starting time of multiple data and multiple individuals can be
seen in Algorithm 4. The time complexity of Algorithm 4 is
O(Ng · (4N − 2)) which is approximately 1

P of Algorithm 3.

Algorithm 4: Two-level improved DGA for UMPIPE
(TiDGAP): simultaneously calculating the starting time
of multiple data and multiple individuals

Input : F , B, P , W . Np, Ng and Nc.
Output: G

[
argmin

(
H(C) +H(D)

)]
1 Set Q individuals both with UEDP and randomly initialize

the rest Np −Q individuals
2 Set T = {tij = j}Np×(P+1), E = {eijk = 0}Np×(P+1)×2N

and R = {rijk = 0}Np×(P+1)×2N ,
Zr = {tij = i}Np×(P+1) .reshape(shape = (−1, ))

3 for k ∈ [0, 2N − 2] do
4 Set A = {0}Np×(P+1) and M = ⌈T/W [G[:, k]]⌉
5 Obtain the index of the reference end time in the

previous process as Z = M ∗ (W [G[:, k]])
6 Calculate the basic time for each individual of current

pk as M1 = M ∗ (F [k,G[:, k]])
7 Obtain the array of PB as PB =

E[k][Zr, Z].reshape(shape = (Np, P + 1))−M1

8 A[:, 1 :] = cummax (PB[:, 1 :], dim = 1)
9 E [k + 1]+ = A+ (M + 1) ∗ F [k,G[:, k]]

10 Use the similar way as line 3-9 to calculate R

11 Obtain the arrays of fitness of H(C) = E [:, P + 1, 2N ] and
H(D) = R [:, P + 1, 2N ]

12 for generation ∈ [1, Ng] do
13 Use array operation to execute the crossover and

mutation to generate children Ḡ
14 Obtain fitness H̄(C) and H̄(D) of children with similar

way as line 3-9 ; // One loop
15 Concatenate children and parents, update individuals ;

// Same as line 13-14 of Algorithm 3

Our proposed TiDGAP has a much lower time complexity
that provides a method to quickly calculate the training time
corresponding to different data partitioning schemes and al-
lows UMPIPE (unequal data partitions for microbatch-based
pipeline parallelism) to apply in the practical optimization
and acceleration of parallel training. With the increase of
Np and P , the execution time of TiDGAP in real GPU
devices will also increase slowly, while it is still small enough
for optimization of parallel training for large-scale DNN. In
subsequent experiments, we will also evaluate the execution
time of TiDGAP compared to DGAP and OiDGAP.

V. PERFORMANCE EVALUATION

A. Experiment Settings
For the sake of the comprehensive evaluations of the

unequal data partitions-based parallelism (i.e., UMPIPE)

and two-level improved dual-chromosome genetic algorithm
(TiDGAP), we carry out four groups of experiments from
various aspects including:
(1) EX1: Comparing TiDGAP with TiGAP to demonstrate the

optimization effect of dual-chromosome strategy;
(2) EX2: Comparing TiDGAP with OiDGAP and DGAP to demon-

strate the acceleration effect on the evolution of two-level im-
provement with array operation;

(3) EX3: Comparing TiDGAP with baselines local greedy algorithm
and global greedy-based dynamic programming to demonstrate
the optimality of DGAP for UMPIPE.

(4) EX4: Comparing UMPIPE with GPipe, UMPipeDream and
PipeDream to demonstrate the superiority of UEDP.

EX1 and EX2 are conducted on a randomly generated
simulation dataset, which is beneficial for executing sufficient
experiments. EX3 and EX4 are conducted on real parallel
training in multiple GPUs, which is conducive to demon-
strating the advantages and feasibility simultaneously of our
proposed UMPIPE architecture and TiDGAP algorithm. The
baseline algorithms in EX3 represent that:
(1) Local Greedy Algorithm for UMPIPE (LG): For each

process, select the number of partitions that make the
current process have the earliest end time. The algorithm
can be seen in Algorithm 5.

(2) Global Greedy-based Dynamic Programming for UMPIPE
(also called global greedy algorithm, GG): For each pro-
cess, selecting the number of partitions that make the last
process have the earliest end time, whose algorithm can
be seen in Algorithm 6. In Algorithm 6, the parameter
‘rounds’ can be flexibly set and can also be replaced by
that ∄C ′ better than C which is a convergence condition
of Algorithm 6.

Algorithm 5: Local greedy for UMPIPE (LG)
Input : Fk(p), Bk(q); P ; W = [w0, w1, . . . , wQ−1]
Output: ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩

1 for k ∈ [0, 4N − 3] do
2 if k < 2N − 1 then
3 Choose the pk in W which makes EkP to take

the minimum value
4 else
5 Choose the qk in W which makes RkP to take

the minimum value

Each group of experiments adopts the control variables
to ensure the reliability of comparisons. In EX1, the indi-
cators are the optimization results over generations and the
probability of finding the global optimal solution over gen-
erations to demonstrate the convergence of dual-chromosome
strategy, where the optimization results present the parallel
training time corresponding to the optimization solutions.
EX2 is mainly used to observe the execution time of different
algorithms controlling the number of individuals (Np) and
generations (Ng) in different scales. EX3 is to observe the
stable optimization results of the different algorithms. EX4

is to observe the optimal training time and convergence under
UMPIPE parallelism, compared with other parallelism. We test
a large number of instances in each group of experiments, and



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 9

Algorithm 6: Global greedy-based dynamic program-
ming for UMPIPE (GG)

Input : Fk(p), Bk(q); P ; W = [w0, w1, . . . , wQ−1]
Output: ⟨p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1⟩

1 (Randomly or specifically) initial a partition scheme as
C = ⟨p1, . . . , p2N−1⟩ and D = ⟨q1, . . . , q2N−1⟩

2 for i < rounds do
3 for k ∈ [0, 4N − 3] do
4 if k < 2N − 1 then
5 Choose the p′k in W s.t. E(2N−1)P (C ′) =

Q−1

min
l=0

(
E(2N−1)P (C|pk=wl

)
)

where
C|pk=wl

means only changing the
partition number of the k-th process to wl

6 Update pk = p′k, C = C ′

7 else
8 Choose the q′k in W to make

R(2N−1)P (D′) take the minimum value
9 Update qk = q′k, D = D′

instances from the same group of experiments point to similar
conclusions. Therefore, we only provide a subset of them in
this paper. Then, the optimization algorithm is launched on a
desktop and the realistic parallel training is launched on the
servers. The configurations of them are as follows.

• Program version: Python 3.7 + Pytorch 1.13.1;
• Desktop: NVIDIA GeForce RTX 3060 Ti @ 8GB;
• Servers: NVIDIA TESLA V100 @ 32GB × 2.

B. EX1: Evaluation of Dual-Chromosome Strategy of
TiDGAP Compared with TiGAP

To observe the optimization effect of the dual-chromosome
strategy, we compare TiDGAP with TiGAP in the simulation
scenarios. In the simulation scenarios, we randomly generate
F = {fkj}(2N−1)×Q and B = {bkj}(2N−1)×Q. As the out-
comes from different random distributions echo the consistent
trends and results, we only present the results obtained from
the uniform distribution U = [1, 100] ∩ N∗.

Firstly, we observe the trends of optimization results over
generations in several scenarios, including (N = 10, P = 64),
(N = 10, P = 512), (N = 20, P = 512) and (N = 100, P =
1024). In experiments, we set the number of individuals as
Np = 100, and the number of generations as Ng = 100, and
the algorithms don’t set equal partitions into initial states (i.e.,
random initialization). Then, we plot the results in Fig. 3.

From Fig. 3, the curves of TiDGAP with dual-chromosome
strategy remain lower than that of TiGAP. The unique dif-
ference between TiDGAP and TiGAP is the number of chro-
mosomes per individual in genetic algorithms. TiDGAP and
TiGAP both have 4N − 2 genes in one individual. The two
chromosomes of the individual in TiDGAP are composed of
2N−1 genes respectively, while the individual in TiGAP only
has one chromosome. The comparative results in Fig. 3 show
that the usage of the dual-chromosome strategy is beneficial
for improving convergence of GAP, which is consistent with

 TiGAP
 TiDGAP

(a) (N = 10, P = 64)

 TiGAP
 TiDGAP

(b) (N = 10, P = 512)

 TiGAP
 TiDGAP

(c) (N = 20, P = 512)

 TiGAP
 TiDGAP

(d) (N = 100, P = 1024)

Fig. 3. The optimization results (corresponding to time for training one mini-
batch) over generations in randomly generated basic time arrays comparing
TiDGAP with TiGAP, where: Np = 100, Ng = 100, F,B ∼ U = [1, 100],
randomly initializing Np individuals.

the analysis in Section IV-B. The time costs of forward and
backward propagation in UMPIPE are independent mutually.
Therefore, setting two chromosomes to represent forward
propagation and backward propagation respectively has lower
expected generations than the single-chromosome to achieve
the optimal solution of UMPIPE. The statistical indicator
(lower expected generations) points to better optimization
results (corresponding to lower training time under UMPIPE
parallelism) over the generation as Fig. 3. For the sake of
observation of the quantitative comparison between TiDGAP
and TiGAP in Fig. 3, we have listed the optimization results
of TiDGAP and TiGAP at the 100-th generation in Table
II where εTiGAP

TiDGAP = TiGAP−TiDGAP
TiGAP means the reduction

magnitude of TiDGAP in training time compared to TiGAP.
From Table II, TiDGAP within 100 generations reduces the
training time under UMPIPE by 18.33%, 64.02%, 47.88% and
20.60% compared to TiGAP.

TABLE II
THE QUANTITATIVE OPTIMIZATION RESULTS OF TIDGAP AND TIGAP AT

THE 100-TH GENERATION IN THE EXPERIMENTS OF FIG. 3.

Scenarios TiDGAP TiGAP εTiGAP
TiDGAP

(N = 10, P = 64) 833 1020 18.33%
(N = 10, P = 512) 671 1865 64.02%
(N = 20, P = 512) 3601 6909 47.88%

(N = 100, P = 1024) 75765 95419 20.60%

The experiments in Fig. 3 do not set the solution of GPipe as
one of the initial individuals. To verify the advantages of dual-
chromosome strategy for UMPIPE over single chromosome
have universality, we carry out experiments in two combina-
tions of (N = 10, P = 64) and (N = 10, P = 512) by setting
equal partitions into initial states as the line 1 in Algorithm
4. Then, we plot the optimization results over generations of
TiDGAP and TiGAP in Fig. 4. In Fig. 4, we also draw a
straight line paralleling to the horizontal axis to represent the
optimal training time of DNN under GPipe parallelism. From
Fig. 4, the convergence of TiDGAP to solve the scheme of
UMPIPE is still better than that of TiGAP. This also confirms
once again that the dual-chromosome strategy is more suitable



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 10

for UMPIPE than the single-chromosome. Moreover, the so-
lutions of TiDGAP and TiGAP are both better than those of
GPipe, which proves that the UMPIPE architecture is superior
to GPipe in the randomly generated basic time functions.
This phenomenon can reflect the significance of UMPIPE. In
order to evaluate the performance of TiDGAP and UMPIPE
in this scenario, we list the optimization results at the 100-
th generation in Table III where ϵGPipe

TiDGAP = GPipe−TiDGAP
TiDGAP

means the improvement ratio of TiDGAP (also representing
UMPIPE) in training speed compared to GPipe.

 TiGAP
 TiDGAP
 GPipe

(a) (N = 10, P = 64)

 TiGAP
 TiDGAP
 GPipe

(b) (N = 10, P = 512)

Fig. 4. The optimization results (corresponding to training time for one mini-
batch) over generations in randomly generated basic time arrays comparing
TiDGAP with TiGAP, where: Np = 100, Ng = 100, F,B ∼ U = [1, 100],
using the optimal GPipe solution as the initial individuals.

TABLE III
THE QUANTITATIVE OPTIMIZATION RESULTS OF TIDGAP, TIGAP AT THE

100-TH GENERATION AND THAT OF GPIPE IN THE EXPERIMENTS OF
FIG. 4 FOR N = 10, SETTING EQUAL PARTITIONS INTO INITIAL STATES.

Scenarios GPipe TiDGAP TiGAP εTiGAP
TiDGAP ϵGPipe

TiDGAP
P = 64 2158 926 1129 17.98% 1.33×
P = 512 1863 498 1142 56.39% 2.74×

 TiGAP
 TiDGAP

(a) (N = 2, P = 512)

 TiGAP
 TiDGAP

(b) (N = 3, P = 64)

 TiGAP
 TiDGAP

(c) (N = 5, P = 8)

 TiGAP
 TiDGAP

(d) (N = 12, P = 2)

Fig. 5. The probabilities of achieving global optimization (PAGO) over
generations in randomly generated basic time arrays comparing TiDGAP with
TiGAP, where: Np = 100, Ng = 100, F,B ∼ U = [1, 100], randomly
initializing Np individuals.

From Table III, the parallel training scheme of UMPIPE
solved by the TiDGAP algorithm has a speed increase of
1.33× and 2.74× respectively in (N = 10, P = 64) and
(N = 10, P = 512) compared to GPipe, which is consistent
with the analysis of UMPIPE’s optimality in Section III-C.

To further evaluate the convergence of TiDGAP, we carry
out experiments in small-scale scenarios including (N =
2, P = 512), (N = 3, P = 64), (N = 5, P = 8),

(N = 12, P = 2). We use an enumerated algorithm to obtain
the theoretical optimal solution of UMPIPE. In each scenario,
we execute 100 instances, record the generations when the
algorithm reaches the theoretical optimal for each instance,
and calculate the probability of achieving global optimization
over generations. The genetic algorithm in GAP preserves the
current best individual to the next generation, so if the algo-
rithm reaches theoretical optimal in a certain generation, it will
remain theoretically optimal in all subsequent generations, and
hence the count of achieving theoretical optimal in subsequent
generations will be increased by 1. Then, we plot the results
in Fig. 5. Obviously, TiDGAP has higher probabilities than
TiGAP to obtain the theoretical optimal solution within the
same generations in Fig. 5, which also proves the superiority
of the dual-chromosome strategy.

C. EX2: Evaluation of Two-level improvement of TiDGAP
Compared with OiDGAP and DGAP

To observe the acceleration effect of the two-level improve-
ment, we compare TiDGAP with OiDGAP and DGAP in the
simulation scenarios with random basic time functions. As
the two-level improvement of TiDGAP mainly eliminates two
layers of loops, including the loop in the individuals’ index
and the loop in the input data’s index, we execute experiments
in four configurations with varying minibatch-size or number
of individuals as follows:

• (N = 10, P ∈ [1, 32]× 16), (Np = 100, Ng = 100);
• (N = 20, P ∈ [1, 32]× 16), (Np = 100, Ng = 100);
• (N = 10, P = 512, (Np ∈ [1, 10]× 10, Ng = 100);
• (N = 20, P = 512, (Np ∈ [1, 10]× 10, Ng = 100).

These algorithms are executed on the Desktop.
Using the changed parameters as the abscissa and the

algorithm execution time as the ordinate, we plot the execution
time of TiDGAP, OiDGAP and DGAP in Fig. 6.

 DGAP
 OiDGAP
 TiDGAP

(a) (N = 10, P ∈ [1, 32] × 16),
(Np = 100, Ng = 100)

 DGAP
 OiDGAP
 TiDGAP

(b) (N = 20, P ∈ [1, 32] × 16),
(Np = 100, Ng = 100)

 DGAP
 OiDGAP
 TiDGAP

(c) (N = 10, P = 512, (Np ∈
[1, 10]× 10, Ng = 100)

 DGAP
 OiDGAP
 TiDGAP

(d) (N = 20, P = 512, (Np ∈
[1, 10]× 10, Ng = 100)

Fig. 6. The execution time of TiDGAP, OiDGAP and DGAP for solving
UMPIPE in simulated scenarios launched on GeForce RTX 3060 Ti.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 11

Firstly, the execution time of TiDGAP in Fig. 6 is sig-
nificantly smaller in magnitude than OiDGAP and DGAP.
Concretely, for N = 10 and Ng = 100 of Fig. 6(a) and 6(c),
The execution time of TiDGAP is about [0.8s, 0.9s] less than
1s; and that of OiDGAP and DGAP are respectively [1s, 150s]
and [100s, 1800s]. For N = 20 and Ng = 100 of Fig. 6(b)
and 6(d), that of TiDGAP is about [1.5s, 1.8s] less than 2s;
and that of OiDGAP and DGAP are respectively [2s, 400s]
and [300s, 4000s]. Secondly, comparing OiDGAP to DGAP
can demonstrate the effectiveness of improvement to simul-
taneously calculate the end time corresponding to multiple
individuals, as well as comparing TiDGAP to OiDGAP can
demonstrate the effectiveness of improvement to simultane-
ously calculate the end time of multiple microbatches. Lastly,
the execution time of OiDGAP is approximately proportional
to both minibatch-size P and the number of individuals
Np, i.e., linearly increasing with the increase of P and Np.
DGAP also has the same phenomenon. Unlike OiDGAP and
DGAP, in the scenarios of Fig. 6, the execution time of
TiDGAP remains relatively stable without increasing with P
and Np. These are generally consistent with the theoretical
time complexities. This indicates that within a certain range
of parameters, the computing speed of TiDGAP can be main-
tained unaffected by P and Np beneficial from the parallel
computing ability of GPU. In detail, according to the results
of Fig. 6(c) and 6(d),, the execution speeds of TiDGAP are
(162.86×, 226.36×) of OiDGAP, and (1590.23×, 2473.02×)
of DGAP in (N = 10, N = 20) for P = 512 and Np = 100.

However, the execution time of OiDGAP in Fig. 6(c) and
6(d) is directly proportional to the number of individuals
Np which seems to contradict the theoretical complexity of
OiDGAP but actually not. Theoretical complexity assumes
that the ideal GPU has sufficient parallel capability, while the
parallel capability of GPUs is not infinite in reality. When the
computational complexity reaches a certain level that exceeds
the maximum value that the GPU’s parallel cores can carry,
its computational complexity will also increase with the Np.
This property will also apply to TiDGAP. To further evaluate
the execution time of TiDGAP with respect to the number of
individuals, we conduct experiments in simulated scenarios
of Np ∈ [10, 1000] and Np ∈ [1000, 20000] both with
(N = 10, P = 512, Ng = 100). Then, we plot the execution
time of TiDGAP in Fig. 7.

 TiDGAP

(a) Np ∈ [10, 1000]

 TiDGAP

(b) Np ∈ [1000, 20000]

Fig. 7. The execution time of TiDGAP for solving UMPIPE in simulated
scenarios where (N = 10, P = 512, Ng = 100).

In Fig. 7, we can observe that when the number of indi-
viduals is large enough, the execution time of TiDGAP will
also linearly increase with the number of individuals Np.
However, the slope of TiDGAP is still much smaller than

that of OiDGAP and DGAP. It is worth emphasizing that,
the execution time of TiDGAP in Np = 1000 is only 1.68s
for N = 10 and that in Np = 20000 is only 19.24s. In the
experiments of Fig. 3 and Fig. 4, 100 individuals are enough to
obtain competitive optimal solutions. This strongly validates
the rapidity of TiDGAP with the two-level improvement based
on matrix operations on GPU. Similarly, when minibatch-size
P is large enough, the execution time of TiDGAP will also
linearly increase with P , while with a far smaller slope than
that of OiDGAP and DGAP. The speed of TiDGAP is adequate
to meet the requirements of current realistic large-scale DNNs.

D. EX3: Evaluation of TiDGAP for UMPIPE Compared with
Local Greedy Algorithm and Dynamic Programming

To additionally demonstrate the superiority and feasibility
of our proposed TiDGAP for UMPIPE, we choose two typical
neural networks (VGG16 and GPT-1) and some self-designed
networks, and then execute the experiments in realistic envi-
ronments. VGG16 (trained in MNist dataset) and GPT-1 (in
WikiText-2 dataset) are respectively typical CNN-based DNN
in CV and transformer-based DNN in NLP. Then self-designed
DNNs are based on CNN, whose configuration can be seen
in Table IV. In order to compare algorithms at the same
computational speed level, we apply our proposed two-level
improvements to the baseline algorithms to greatly improve
their computational speed. As the local greedy algorithm does
not have continuous search capability, we use its convergence
solution to supplement the curve of subsequent time.

TABLE IV
DETAIL OF SELF-DESIGNED CNNS.

Layer Types Input Channel Output Channel Kernel
L1 CNN In1 = 1 Ou1 = U(20, 50)

3× 3Lx CNN Inx = Oux−1 Oux = U(20, 50)
LK FC InK = OuK−1 OuK = 10

For VGG16 and GPT-1, we carry out the training on the
servers with multiple Tesla V100 GPUs and obtain the basic
time functions. We do not use the solution of GPipe as the
initial solution of these algorithms, i.e., the initial states of the
algorithms participating in the comparison are all randomly
generated. Then, the optimal results over the execution time
of TiDGAP and baselines (local greedy and global greedy) are
plotted in Fig. 8. From the overall trends in Fig. 8, it can be
seen that solutions of TiDGAP are better than baselines over
time. When the time is long enough, TiDGAP achieves the best
convergence solutions in both VGG16 and GPT-1 followed by
global greedy and local greedy. Although the global greedy
algorithm also has search-ability, each search step in it requires
calculating the overall training time corresponding to the
current optimization solution, which consequently consumes
redundant computational complexities. Moreover, the global
greedy algorithm can only search for one solution at a time.
TiDGAP, based on the individual evolution strategy of the
genetic algorithm, can solve multiple solutions simultaneously,
which makes it less likely to fall into local optima. The optimal
solutions of TiDGAP at the 100-th generation and the solutions



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 12

of baselines at the corresponding time point are listed in Table
V. Concretely, the optimization results of TiDGAP are 171.59s
and 7.06s respectively for GPT-1 and VGG16, reducing the
training time by (3.31, 17.78)% compared to global greedy
and by (21.49, 24.68)% compared to local greedy algorithm.

 TiDGAP
 Local Greedy
 Global Greedy

(a) GPT-1, minibatch-size is 512

 TiDGAP
 Local Greedy
 Global Greedy

(b) VGG16, minibatch-size is 64

Fig. 8. The optimization results (i.e., time for training one minibatch) over
times in realistic environments for GPT-1 and VGG16 comparing TiDGAP
with local greedy and global greedy algorithms with randomly generated
initial solutions, where: Np = 100, Ng = 100, under distributed systems
with Tesla V100 GPUs, randomly initializing Np individuals.

TABLE V
THE QUANTITATIVE OPTIMIZATION RESULTS OF TIDGAP, LOCAL GREEDY
(LG) AND GLOBAL GREEDY (GG) IN THE EXPERIMENTS OF FIG. 8 WITH

RANDOMLY GENERATED INITIAL SOLUTIONS.

Scenarios TiDGAP LG GG εLG
TiDGAP εGG

TiDGAP
GPT-1 171.59 218.56 177.47 21.49% 3.31%

VGG-16 7.06 9.37 8.80 24.68% 17.78%

In fact, global greedy and TiDGAP can be combined to
establish a growable genetic algorithm using global greedy
as the growth route of TiDGAP, which will have improved
performances in terms of convergence and optimality. The
growable genetic algorithm is an innovative framework that
allows different algorithms to serve as growth routes to solve
corresponding optimization problems [41]. As this paper fo-
cuses on proposing the novel UMPIPE parallel architecture
and its corresponding optimization algorithm with two-level
improvement to accelerate DGAP, we do not delve into the
discussion of the growable genetic algorithm for UMPIPE.

In order to increase the comprehensiveness of the validation
scenario, we perform training of self-designed DNNs on RTX
3060Ti GPUs to obtain the basic time functions. In self-
designed DNNs, we change the number of layers to observe
the trend of algorithms. We use the stable convergence solution
as the ordinate. Then, the optimal results and relative reduction
with different numbers of layers are plotted in Fig. 9.

 TiDGAP
 Local Greedy
 Global Greedy

(a) Optimization training time

 R1

 R2

(b) Relative reduction in training time

Fig. 9. The results of self-designed CNN-based networks for 100 minibatches
with different numbers of layers in realistic environments comparing TiDGAP
with local greedy and global greedy algorithms, where Np = 100, Ng = 100,
randomly initializing Np individuals. R1 = εLG

TiDGAP, R2 = εGG
TiDGAP.

In Fig. 9(a), the curves of TiDGAP remain the lowest
followed by global greedy and local greedy. The performance

ranking is consistent with that of Fig. 8. Combined with
Fig. 9(a), the results validate the advantages of our proposed
TiDGAP are universal. From Fig. 9(a), it can be seen that
as the number of layers increases, the absolute differences
between our proposed TiDGAP and the comparison baselines
become increasingly larger. In Fig. 9(b), εLGTiDGAP shows
an increasing trend from 0.1 to 0.5 with the number of
layers. This is because the feasible solution space of UMPIPE
increases exponentially with the number of layers increases,
which leads to a decrease in the algorithm’s solving ability.
LG does not have search capability and decreases faster than
TiDGAP. Additionally, εGG

TiDGAP fluctuates between 0 and 0.2.
TiDGAP can maintain its advantage of around 10%.

E. EX4: Evaluation of UEDP Compared UMPIPE with State-
of-the-Art Parallelism

To demonstrate the superiority of our proposed parallelism
UMPIPE and UEDP, we compare it to GPipe and PipeDream
in this group of experiments.

To further verify the potential of UEDP for various parallel
architectures based on the control variable method, we also
include the architecture that combines UEDP with pipedream
(called UMPipeDream referring to the naming convention
of UMPIPE where UMPipeDream = UMPIPE + 1F1B =
PipeDream + UEDP) in the comparison. Due to the lack of
fast calculation formulas for PipeDream and UMPipeDream,
our experiments use recursive algorithms to calculate the
training time corresponding to the data partitioning scheme
of PipeDream or UMPipeDream to support the optimization.
In experiments, the optimal data partitioning schemes of
GPipe and PipeDream are obtained through the enumeration
method, as EDP allows enumeration; that of UMPIPE and
UMPipeDream are solved by the genetic algorithm with 4000
generations (for the sake of obtaining sufficiently optimized
results to reflect the inherent performance of the architec-
tures themselves). Experiments include two representative
networks VGG16 (with CNN layers, minibatch-size is 64)
and GPT-14 (with transformer layers, minibatch-size is 512)
in realistic environments executed with multiple Tesla V100
GPUs, as well as multiple simulation networks generated by
realistic devices-based random simulation environments. The
optimization results (corresponding to training time) for each
architecture in different scenarios are shown in Table VI.

From Table VI, UMPIPE is generally superior to GPipe
and PipeDream, indicating UMPIPE has certain advantages
as a new parallel architecture. The comparison between
UMPIPE and GPipe demonstrates that UEDP can improve
the speed of AFAB (all forward all backward) architectures.
Compared with PipeDream, UMPipeDream achieves faster
training speed, indicating that UEDP also has a positive
effect on accelerating 1F1B (one forward one backward)
architectures such as PipeDream. Moreover, UMPipeDream
overall achieved the best results, indicating the potential of
extending UEDP to other parallel architectures. In GPT-
1 and VGG16, UMPIPE accelerates the training speed by
(13.89, 11.09)% and (17.11, 7.96)% respectively compared
with (GPipe, PipeDrea); UMPipeDream accelerates the train-
ing speed by 13.49% and 17.95% respectively compared with



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 13

TABLE VI
THE COMPARISON OF VARIOUS PARALLEL ARCHITECTURES (GPIPE, UMPIPE, PIPEDREAM, UMPIPEDREAM) IN DIFFERENT SCENARIOS.

Scenarios Networks Training Time (s) for One Minibatch
ϵGPipe
UMPIPE ϵPipeDream

UMPIPE
ϵPipeDream
UM−PipeDreamUMPIPE GPipe PipeDream UMPipeDream

Typical Networks GPT-1 (N = 14, P = 512) 167.939 191.264 186.568 164.389 13.89% 11.09% 13.49%
VGG16 (N = 16, P = 64) 7.060 8.268 7.622 6.462 17.11% 7.96% 17.95%

Simulation Networks

(N = 2, P = 512) 97 271 203 67 178.38% 109.28% 202.98%
(N = 2, P = 1024) 103 595 456 81 477.67% 342.72% 462.96%
(N = 5, P = 512) 207 1141 957 170 451.21% 362.32% 462.94%
(N = 5, P = 1024) 254 1058 894 211 316.54% 251.97% 323.70%
(N = 10, P = 512) 616 2007 1911 482 225.81% 210.22% 296.47%
(N = 10, P = 1024) 478 2220 2024 398 364.44% 323.43% 408.54%
(N = 20, P = 512) 786 3855 3759 722 390.46% 378.24% 420.64%
(N = 20, P = 1024) 1000 4055 3961 895 305.50% 296.10% 342.57%
(N = 50, P = 512) 2297 9963 9865 2150 333.74% 329.47% 358.84%
(N = 50, P = 1024) 2102 9853 9645 1987 368.74% 358.85% 385.41%

Note: ϵGPipe
UMPIPE =

GPipetraining time−UMPIPEtraining time

UMPIPEtraining time
means the ratio of improvement in training speed of UMPIPE compared to GPipe. Using recursive

algorithms to obtain optimized 1F1B schemes for PipeDream and UMPipeDream; using the enumeration to obtain optimized EDP schemes for GPipe and
PipeDream; using genetic algorithm (through 4000 generations for the sake of sufficient optimization) to obtain the optimized UEDP schemes for UMPIPE
and UMPipeDream; using the training time of optimized training scheme solved as the representative of the corresponding architecture’s performance.

PipeDream. In the simulation scenarios, the heterogeneity of
the network layer is more apparent. Thus, UEDP-based paral-
lel architectures (UMPIPE and UMPipeDream) have a greater
improvement on the basis of EDP-based parallel architectures
(GPipe, PipeDream), with an improvement ≥ (170%, 100%)
in terms of training speed.

When evaluating the optimization scheme under the 1F1B
architecture in experiments, we calculated the optimal 1F1B
scheme under the given data partition as its evaluation value.
Therefore, the optimization results of PipeDream in the ex-
periment represent the performance of architectures such as
PipeDream and Dapple [15], [16]. Therefore, the above results
can not only demonstrate the significance of UMPIPE in
reducing the training time under microbatch-based pipeline
parallelism in AFAB, but also reveal the potential of UEDP in
improving various architectures in 1F1B such as PipeDream
and Dapple. It is notable that the UMPIPE architecture can be
further improved, because adding 1F1B strategy on the basis
of UMPIPE (i.e., UMPipeDream) can enhance the training
speed on the basis of UMPIPE according to the experimental
results in Table VI. This paper addresses a challenge: for
UMPIPE with the addition of UEDP on the basis of GPipe, we
propose the matrix operations-based fast calculation formulas
(i.e., Eq. 6 and Eq. 7) to simultaneously evaluate multiple
training schemes of UMPIPE, which allows optimization al-
gorithms to complete the search for optimization solutions
of data partitioning in a short period of time. However,
for UMPipeDream (UMPipeDream = UMPIPE + 1F1B =
PipeDream + UEDP = GPipe + UEDP+ 1F1B), the com-
bination of UEDP and 1F1B strategies cause a more complex
calculation process for the training time corresponding to the
scheme. The recursive algorithm chosen in experiments for
UMPipeDream consumes a significant amount of computation
time, which also inspires future work to focus on deriving fast
calculation formulas for UMPipeDream (i.e., the further ex-
tension of UMPIPE). In addition, UEDP will bring additional
programming work and data-switching processes in parallel
architecture, which require further research on generalization.

In order to supplement the practical application significance

TABLE VII
THE CONFIGURES OF NETWORKS FOR MNIST AND CIFAR10 DATASET

WITH THEIR DATA PARTITIONING SCHEMES OF PARALLELISM.

Dataset Layers Type Data Partitions Schemes
Or. GPipe-2 U 1 U 2 U 3 U 4 U 5

MNist

1 C(1, 20) 1 2 2 2 2 2 4
2 C(20, 40) 1 2 2 2 2 8 2
3 C(40, 80) 1 2 2 1 2 4 4
4 C(80, 160) 1 2 1 2 2 1 8
5 FC(160, 10) 1 2 2 1 4 1 1

CIFAR10

1 C(3, 16) 1 2 2 2 2 8 2
2 C(16, 32) 1 2 2 2 1 2 2
3 C(32, 64) 1 2 1 1 2 1 4
4 C(64, 128) 1 2 2 1 2 1 2
5 FC(128, 10) 1 2 2 2 1 1 2

of UMPIPE, we need to verify that the UEDP of UMPIPE
does not worsen the DNNs’ accuracy over epochs during the
training process. We choose two self-designed CNN-based
networks with 5 layers and carry out the training respectively
in MNist dataset and CIFAR10 dataset. The configures of
networks and data partitioning schemes of UMPIPE are listed
in Table VII, where “U 1” means UMPIPE 1 (the scheme of
UMPIPE with index of 1), the column “Or”. means the original
structure without data partitions, GPipe-2 means dividing the
minibatch into two microbatches for all layers in GPipe, and
type of layer C(1, 20) means CNN layer with the input channel
as 1 and output channels as 20, and FC(160, 10) means full
connection layer with input neurons as 160 and output neurons
as 10. The minibatch-sizes of Table VII are both 64, and the
convolution kernels are all 3×3. For the sake of presentation,
we use the power of 2 as the number of microbatches for
each layer. UMPIPEs with different subscripts correspond to
different UEDP schemes. As communication doesn’t affect the
accuracy of over epochs, we don’t consider the data partitions
of communication processes. In this set of experiments, for-
ward propagation and backward propagation in the same layer
have the same number of data partitions, which does not affect
the experimental conclusion, because the main process that
determines the convergence of network training is the gradient



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 14

descent in backward propagation. Then, we plot the training
accuracy and testing accuracy within 20 training epochs in
Fig. 10. The results of Fig. 10 show that the accuracy trends of
UMPIPE with UEDP do not lag behind the original or GPipe-
2. This demonstrates that UMPIPE will not worsen the DNNs’
accuracy over epochs. With less time per epoch, UMPIPE will
have better convergence over time than GPipe.

 Original
 GPipe-2
 UMPIPE_1
 UMPIPE_2
 UMPIPE_3
 UMPIPE_4
 UMPIPE_5

(a) Training Accuracy in MNist

 UMPIPE_3
 UMPIPE_4
 UMPIPE_5

(b) Testing Accuracy in MNist

 Original
 GPipe-2
 BABYPIPE_1
 BABYPIPE_2
 BABYPIPE_3
 BABYPIPE_4
 BABYPIPE_5

(c) Training Accuracy in CIFAR10

 UMPIPE_1
 UMPIPE_2
 UMPIPE_3
 UMPIPE_4
 UMPIPE_5

(d) Testing Accuracy in CIFAR10

Fig. 10. The accuracy over epochs in self-designed CNN-based networks in
MNist and CIFAR10 dataset comparing UMPIPE with GPipe, where the data
partitioning schemes of UMPIPE are listed in Table VII, minibatch-size is 64.

VI. CONCLUSION AND FUTURE WORK

Based on the microbatch-based pipeline parallelism, this
paper proposes unequal microbatches-based (i.e., unequal data
partitions-based) pipeline parallelism (UMPIPE), not only
considering computation time and communication time simul-
taneously, but also considering them probably nonlinear with
data size. This paper derives the recurrence formula for the
training time of DNN under UMPIPE parallelism and proves
the optimality of UMPIPE in theory.

To obtain the optimization scheme of UMPIPE, this paper
proposes the dual-chromosome genetic algorithm (DGAP).
Dual-chromosome is proved with better convergence than the
single chromosome for solving training scheme of UMPIPE.
Aiming at accelerating DGAP algorithm, we further delve into
theoretical derivations of the recurrence formula for UMPIPE
and propose the two-level improved DGAP (TiDGAP).
TiDGAP can simultaneously calculate the end time of multi-
schemes and multi-microbatches for UMPIPE.

The experimental results comprehensively get corroboration
to our theoretical analysis, demonstrating the advantages of
dual-chromosome strategy and matrix operation-based two-
level improvement method of TiDGAP. Compared with base-
line optimization methods (local greedy and global greedy),
TiDGAP has better convergence and optimality. Compared
with baseline parallelism (GPipe and PipeDream), UMPIPE
achieves less training time. Compared to (GPipe, PipeDream),
UMPIPE improves training speed by (13.89, 11.09)% in
GPT1-14, (17.11, 7.96)% in VGG16, and ≥ (170%, 100%)
in other simulation networks.

As part of future work, we will extend UEDP to other
parallel architectures, as well as study the matrix-based fast

calculation formulas for UMPipeDream and other UEDP-
based parallelism. In this paper, UMPIPE mainly considers the
optimization of training speed, without specifically considering
memory. Introducing multi-objective optimization algorithms
to simultaneously optimize the speed and memory of UEDP-
based parallelism is also a potential new direction.

ACKNOWLEDGMENTS

This research is partially supported by National Key Re-
search and Development Program of China with Grant ID
2018AAA0103203, Project of Key Research and Development
Program of Sichuan Province with Grant ID 2021YFG0325.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

[2] F. Xue, Q. Wang, and G. Guo, “Transfer: Learning relation-aware facial
expression representations with transformers,” in IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pp. 3581–3590.

[3] J. E. Zini and M. Awad, “On the explainability of natural language
processing deep models,” ACM Comput. Surv., vol. 55, no. 5, pp. 103:1–
103:31, 2023.

[4] H. Fu, S. Tang, B. He et al., “HGP4CNN: an efficient parallelization
framework for training convolutional neural networks on modern gpus,”
J. Supercomput., vol. 77, no. 11, pp. 12 741–12 770, 2021.

[5] D. Narayanan, M. Shoeybi, J. Casper et al., “Efficient large-scale
language model training on GPU clusters using megatron-lm,” in SC
’21: The International Conference for High Performance Computing,
Networking, Storage and Analysis, St. Louis, Missouri, USA, November
14 - 19, 2021, pp. 58:1–58:15.

[6] Z. Li, S. Zhuang, S. Guo et al., “Terapipe: Token-level pipeline par-
allelism for training large-scale language models,” in Proceedings of
the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, ser. Proceedings of Machine Learning
Research, vol. 139, pp. 6543–6552.

[7] Y. Lee, J. Chung, and M. Rhu, “Smartsage: training large-scale graph
neural networks using in-storage processing architectures,” in ISCA ’22:
The 49th Annual International Symposium on Computer Architecture,
New York, New York, USA, June 18 - 22, 2022, pp. 932–945.

[8] T. Rao, J. Li, X. Wang et al., “Facial expression recognition with
multiscale graph convolutional networks,” IEEE Multim., vol. 28, no. 2,
pp. 11–19, 2021.

[9] H. Wang, Z. Qu, Q. Zhou et al., “A comprehensive survey on training
acceleration for large machine learning models in iot,” IEEE Internet
Things J., vol. 9, no. 2, pp. 939–963, 2022.

[10] Z. Li, V. Chang, H. Hu et al., “Optimizing makespan and resource
utilization for multi-dnn training in GPU cluster,” Future Gener. Comput.
Syst., vol. 125, pp. 206–220, 2021.

[11] X. Ye, Z. Lai, S. Li et al., “Hippie: A data-paralleled pipeline approach
to improve memory-efficiency and scalability for large DNN training,”
in ICPP 2021: 50th International Conference on Parallel Processing,
Lemont, IL, USA, August 9 - 12, 2021, pp. 71:1–71:10.

[12] J. Romero, J. Yin, N. Laanait et al., “Accelerating collective communi-
cation in data parallel training across deep learning frameworks,” in 19th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2022, Renton, WA, USA, April 4-6, 2022, pp. 1027–1040.

[13] Z. Lai, S. Li, X. Tang et al., “Merak: An efficient distributed DNN
training framework with automated 3d parallelism for giant foundation
models,” IEEE Trans. Parallel Distributed Syst., vol. 34, no. 5, pp. 1466–
1478, 2023.

[14] Y. Huang, Y. Cheng, A. Bapna et al., “Gpipe: Efficient training of
giant neural networks using pipeline parallelism,” in Advances in Neural
Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, 2019, pp. 103–112.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 202X 15

[15] D. Narayanan, A. Harlap, A. Phanishayee et al., “Pipedream: generalized
pipeline parallelism for DNN training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP 2019, Huntsville,
ON, Canada, October 27-30, 2019, T. Brecht and C. Williamson, Eds.,
pp. 1–15.

[16] S. Fan, Y. Rong, C. Meng et al., “DAPPLE: a pipelined data parallel
approach for training large models,” in PPoPP ’21: 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Virtual
Event, Republic of Korea, February 27- March 3, 2021, pp. 431–445.

[17] M. Wang, C. Huang, and J. Li, “Supporting very large models using
automatic dataflow graph partitioning,” in Proceedings of the Fourteenth
EuroSys Conference 2019, Dresden, Germany, March 25-28, 2019, pp.
26:1–26:17.

[18] F. Li, S. Zhao, Y. Qing et al., “Fold3d: Rethinking and parallelizing
computational and communicational tasks in the training of large DNN
models,” IEEE Trans. Parallel Distributed Syst., vol. 34, no. 5, pp. 1432–
1449, 2023.

[19] X. Ye, Z. Lai, S. Li et al., “Hippie: A data-paralleled pipeline approach
to improve memory-efficiency and scalability for large DNN training,”
in ICPP 2021: 50th International Conference on Parallel Processing,
Lemont, IL, USA, August 9 - 12, 2021, pp. 71:1–71:10.

[20] S. Ouyang, D. Dong, Y. Xu et al., “Communication optimization
strategies for distributed deep neural network training: A survey,” J.
Parallel Distributed Comput., vol. 149, pp. 52–65, 2021.

[21] Z. Zhang, J. Chen, and B. Hu, “The optimization of model parallelization
strategies for multi-gpu training,” in IEEE Global Communications
Conference, GLOBECOM 2021, Madrid, Spain, December 7-11, 2021,
pp. 1–6.

[22] V. Elango, “Pase: Parallelization strategies for efficient DNN training,”
in 35th IEEE International Parallel and Distributed Processing Sympo-
sium, IPDPS 2021, Portland, OR, USA, May 17-21, 2021, pp. 1025–
1034.

[23] L. Cui, Z. Qu, G. Zhang et al., “A bidirectional DNN partition mecha-
nism for efficient pipeline parallel training in cloud,” J. Cloud Comput.,
vol. 12, no. 1, p. 22, 2023.

[24] W. Liu, Z. Lai, S. Li et al., “Autopipe: A fast pipeline parallelism
approach with balanced partitioning and micro-batch slicing,” in IEEE
International Conference on Cluster Computing, CLUSTER 2022, Hei-
delberg, Germany, September 5-8, 2022, pp. 301–312.

[25] J. Xu, J. Wang, Q. Qi et al., “Effective scheduler for distributed DNN
training based on mapreduce and GPU cluster,” J. Grid Comput., vol. 19,
no. 1, p. 8, 2021.

[26] J. Dong, Z. Cao, T. Zhang et al., “Eflops: Algorithm and system
co-design for a high performance distributed training platform,” in
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 610–622.

[27] G. Zhou, H. Lan, Y. Xie et al., “CSIMD: cross-search algorithm with
improved multi-dimensional dichotomy for micro-batch-based pipeline
parallel training in DNN,” in Euro-Par 2024: Parallel Processing - 30th
European Conference on Parallel and Distributed Processing, Madrid,
Spain, August 26-30, 2024, Proceedings, Part II, ser. Lecture Notes in
Computer Science, vol. 14802. Springer, 2024, pp. 288–301.

[28] Z. Zeng, C. Liu, Z. Tang et al., “Training acceleration for deep neural
networks: A hybrid parallelization strategy,” in 58th ACM/IEEE Design
Automation Conference, DAC 2021, San Francisco, CA, USA, December
5-9, 2021, pp. 1165–1170.

[29] L. Zheng, Z. Li, H. Zhang et al., “Alpa: Automating inter- and intra-
operator parallelism for distributed deep learning,” in 16th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2022, Carlsbad, CA, USA, July 11-13, 2022, pp. 559–578.

[30] Z. Han, G. Qu, B. Liu et al., “Exploit the data level parallelism and
schedule dependent tasks on the multi-core processors,” Inf. Sci., vol.
585, pp. 382–394, 2022.

[31] Y. Li, Z. Zeng, J. Li et al., “Distributed model training based on data
parallelism in edge computing-enabled elastic optical networks,” IEEE
Commun. Lett., vol. 25, no. 4, pp. 1241–1244, 2021.

[32] L. Guan, Z. Yang, D. Li, and X. Lu, “pdladmm: An admm-based
framework for parallel deep learning training with efficiency,” Neuro-
computing, vol. 435, pp. 264–272, 2021.

[33] A. N. Kahira, T. T. Nguyen, L. Bautista-Gomez et al., “An oracle
for guiding large-scale model/hybrid parallel training of convolutional
neural networks,” in HPDC ’21: The 30th International Symposium on
High-Performance Parallel and Distributed Computing, Virtual Event,
Sweden, June 21-25, 2021, pp. 161–173.

[34] J. Zhang, G. Niu, Q. Dai et al., “Pipepar: Enabling fast DNN pipeline
parallel training in heterogeneous GPU clusters,” Neurocomputing, vol.
555, p. 126661, 2023.

[35] Z. Zhang, Z. Ji, and C. Wang, “Momentum-driven adaptive synchroniza-
tion model for distributed DNN training on HPC clusters,” J. Parallel
Distributed Comput., vol. 159, pp. 65–84, 2022.

[36] S. Zheng, R. Chen, Y. Jin et al., “Neoflow: A flexible framework for
enabling efficient compilation for high performance DNN training,”
IEEE Trans. Parallel Distributed Syst., vol. 33, no. 11, pp. 3220–3232,
2022.

[37] R. Gu, Y. Chen, S. Liu et al., “Liquid: Intelligent resource estimation
and network-efficient scheduling for deep learning jobs on distributed
GPU clusters,” IEEE Trans. Parallel Distributed Syst., vol. 33, no. 11,
pp. 2808–2820, 2022.

[38] S. Zhao, F. Li, X. Chen et al., “vpipe: A virtualized acceleration system
for achieving efficient and scalable pipeline parallel DNN training,”
IEEE Trans. Parallel Distributed Syst., vol. 33, no. 3, pp. 489–506,
2022.

[39] K. S. Pal and P. P. Wang, “Genetic algorithms for pattern recognition,”
CRC Press, Inc., 1996.

[40] K. Deb, S. Agrawal, A. Pratap et al., “A fast and elitist multiobjective
genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2,
pp. 182–197, 2002.

[41] G. Zhou, W. Tian, R. Buyya, and K. Wu, “Growable genetic algo-
rithm with heuristic-based local search for multi-dimensional resources
scheduling of cloud computing,” Appl. Soft Comput., vol. 136, p.
110027, 2023.

Guangyao Zhou received Bachelor’s degree and
Master’s degree from School of architectural engi-
neering, Tianjin University, China. He received Ph.D
degree from School of information and software
engineering, University of Electronic Science and
Technology of China. His research interests include
scheduling algorithms in Cloud Computing or Edge
Computing, image recognition especially facial ex-
pression recognition, parallel training of large-scale
model and evolution algorithms.

Wenhong Tian received a Ph.D. degree from the
Department of Computer Science, North Carolina
State University, Raleigh, NC, USA. He is now a
professor at the University of Electronic Science
and Technology of China (UESTC). His research
interests include scheduling in Cloud computing
and Bigdata platforms, image recognition by deep
learning, algorithmic theory of machine learning,
parallel training of large-scale model and evolution
algorithms.

Rajkumar Buyya is a Redmond Barry Distin-
guished Professor and Director of the Cloud Com-
puting and Distributed Systems (CLOUDS) Labora-
tory at the University of Melbourne, Australia. He is
also serving as the founding CEO of Manjrasoft, a
spin-off company of the University, commercializing
its innovations in Cloud Computing. He served as a
Future Fellow of the Australian Research Council
during 2012-2016. He has authored over 750 publi-
cations and seven text books. He is one of the highly
cited authors in computer science and software en-

gineering worldwide (h-index=169, gindex=373, 153200+ citations). He is
recognized as a “Web of Science Highly Cited Researcher” for six consecutive
years since 2016, and Scopus Researcher of the Year 2017 with Excellence
in Innovative Research Award by Elsevier for his outstanding contributions
to Cloud Computing and distributed systems.

Kui Wu received the B.Sc. and M.Sc. degrees in
computer science from Wuhan University, Wuhan,
China, in 1990 and 1993, respectively, and the Ph.D.
degree in computing science from the University of
Alberta, Edmonton, AB, Canada, in 2002. In 2002,
he joined the Department of Computer Science,
University of Victoria, Victoria, BC, Canada, where
he is currently a professor. His current research in-
terests include network performance analysis, online
social networks, Internet of Things, and parallel and
distributed algorithms.


	Introduction
	Related Work
	Parallelism for training DNNs
	Optimization Methods
	Difference of Our Solution

	UMPIPE Parallelism and Cost Model
	Architecture of UMPIPE Parallelism
	Formulas for UMPIPE
	Analysis for Optimality of UMPIPE

	Improved Genetic Algorithm for UMPIPE
	DGAP: Dual Chromosomes-based Genetic Algorithm
	Analysis of Convergence for Dual-Chromosomes Strategy
	OiDGAP: One-level improved DGAP
	TiDGAP: Two-level improved DGAP

	Performance Evaluation
	Experiment Settings
	EX_1: Evaluation of Dual-Chromosome Strategy of TiDGAP Compared with TiGAP
	EX_2: Evaluation of Two-level improvement of TiDGAP Compared with OiDGAP and DGAP
	EX_3: Evaluation of TiDGAP for UMPIPE Compared with Local Greedy Algorithm and Dynamic Programming
	EX_4: Evaluation of UEDP Compared UMPIPE with State-of-the-Art Parallelism

	Conclusion and Future Work
	References
	Biographies
	Guangyao Zhou
	Wenhong Tian
	Rajkumar Buyya
	Kui Wu


