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Abstract—Microservices have transformed monolithic appli-
cations into lightweight, self-contained, and isolated application
components, establishing themselves as a dominant paradigm
for application development and deployment in public clouds
such as Google and Alibaba. Autoscaling emerges as an efficient
strategy for managing resources allocated to microservices’
replicas. However, the dynamic and intricate dependencies within
microservice chains present challenges to the effective man-
agement of scaled microservices. Additionally, the centralized
autoscaling approach can encounter scalability issues, especially
in the management of large-scale microservice-based clusters.
To address these challenges and enhance scalability, we propose
an innovative distributed resource provisioning approach for mi-
croservices based on the Twin Delayed Deep Deterministic Policy
Gradient algorithm. This approach enables effective autoscaling
decisions and decentralizes responsibilities from a central node
to distributed nodes. Comparative results with state-of-the-art
approaches, obtained from a realistic testbed and traces, indicate
that our approach reduces the average response time by 15%
and the number of failed requests by 24%, validating improved
scalability as the number of requests increases.

Index Terms—Cloud computing, Kubernetes, microservice,
reinforcement learning, distributed resources management

I. INTRODUCTION

Microservice architecture has emerged as a transformative
approach in the field of software design and development. It
is characterized by its modular and decentralized structure,
where complex applications are broken down into smaller,
independently deployable services [1] [2]. Each microservice
focuses on a specific business capability, allowing teams to
work on distinct components simultaneously and enabling
rapid development, deployment, and scalability. This archi-
tecture promotes flexibility, resilience, and maintainability by
minimizing the impact of changes within one service on the
overall system [3]. As microservices communicate through
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well-defined APIs, they facilitate seamless integration and
support heterogeneous technology stacks. The cloud service
providers, such as Amazon, Google, Microsoft, and Alibaba,
have embraced microservice to develop and deploy their
applications in cloud computing environment [4].

The rapid growth of the microservices paradigm has in-
troduced challenges in resource management [5]. As the
number of microservices increases within a system, ensuring
optimal resource allocation and utilization becomes complex.
Microservices autoscaling has emerged as a viable solution to
address these challenges [6]. Autoscaling involves dynamically
adjusting the number of instances or resources allocated to
microservices based on real-time demand, ensuring efficient
resource utilization while maintaining desired performance
levels [7]. This technique encompasses both horizontal scaling,
which involves adding or removing replicas of a service,
and vertical scaling, which involves adjusting the resources
allocated to each instance. Autoscaling mechanisms utilize
various metrics and triggers, such as CPU usage, memory
consumption, and request rates, to make decisions about scal-
ing actions [8]. Implementing effective autoscaling strategies
enhances system responsiveness, minimizes operational costs,
and optimizes resource allocation in dynamic and unpre-
dictable environments.

Moreover, the intricate interdependencies among microser-
vices often give rise to critical paths and key nodes that
significantly impact performance. Efficiently implementing
autoscaling for microservices is confronted with its own set
of challenges and intricacies. The dynamic nature of these
dependencies necessitates a profound understanding of the
application’s behavior, workload patterns, and their implica-
tions for system performance. Identifying the optimal scaling
strategy, striking a balance in resource allocation across inter-
connected services while maintaining overall system stability,
proves to be a non-trivial undertaking [9]. Additionally, the
real-time nature of scaling decisions and the imperative to
minimize disruptions to service quality and user experience
further contribute to the complexity.

Reinforcement learning (RL) [10] has the potential to
optimize the scaling of microservices, taking into account
their intricate interdependencies. Nevertheless, the majority of
RL solutions adopt a centralized decision-making approach,
which poses scalability challenges. This centralized structure
encounters difficulties with the increasing complexity and
interdependencies of microservices, resulting in adverse effects
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on scalability, response times, and reliability. Centralized man-
agement approaches such as Borg [11] permit users to over-
provision resources while assigning jobs to machines, leading
to resource wastage and consequently diminishing overall
performance in resource-limited environments. In addition,
centralized approaches can compromise system performance
as microservices scale up, given the continuous communica-
tion between huge amount of services and the central node
may introduce bottlenecks and latency.

In this paper, we explore novel approaches to address these
limitations and propose a distributed reinforcement learning
framework for microservices automatic scaling. This frame-
work aims to enhance scalability, improve decision-making
efficiency, and ensure the adaptability of microservices scaling
strategies to dynamic and evolving environments. By decen-
tralizing the decision-making process, we aim to mitigate the
challenges associated with centralized approaches and unlock
the full potential of RL in optimizing microservices resource
allocation and scalability.

The main contributions of this paper can be summarized
as follows:

• We design a distributed reinforcement learning frame-
work for resource provisioning for container-based au-
toscaling (DRPC). This framework facilitates precise
modelling of system resources and their scalable allo-
cation to address the dynamic demands of microservices.

• We propose a method for selecting optimization strate-
gies based on reinforcement learning and a distributed
algorithm that incorporates domain knowledge through
deep imitation learning. This approach facilitates efficient
and adaptive decision-making, optimizing the choice of
scaling strategies across clusters of microservices.

• We perform comprehensive testing and validation of our
proposed model and policies, utilizing real-world traces
and a dedicated testing platform. These experiments are
conducted to thoroughly assess the effectiveness and
performance of our distributed reinforcement learning
framework for microservices autoscaling.

II. RELATED WORK

In this section, we discuss the current autoscaling methods
for microservices, categorizing them into three groups accord-
ing to their key mechanisms: threshold-based and heuristic
approaches, machine learning (ML) based approaches, and
deep learning (DL) based approaches.

A. Threshold-based and Heuristic Autoscaling

The threshold-based heuristic approach for microservice
resource allocation relies on predefined rules, scaling resources
up when utilization surpasses a predetermined threshold (e.g.,
75%). This method proves efficient in scenarios with abundant
resources and stable request patterns. He et al. [12] lever-
aged both genetic and heuristic algorithms to determine the
optimized microservice deployment location within an edge-
cloud environment. Horizontal pod auto-scaler (HPA) [13] is
a scaling technique adopted in Kubernetes, primarily focusing
on horizontal scaling. It is capable of dynamically adjusting

the number of replicas based on resource variations, such as
CPU and memory, within the existing servers. The primary
objective of HPA is to determine the number of replicas to
be added or removed based on system running status. Kannan
et al. [14] conceptualized multi-stage tasks using a Directed
Acyclic Graph (DAG). By leveraging the DAG, they could pre-
dict the task’s completion duration. Their method continually
adapts thresholds and algorithms for each microservice. As a
result, every microservice can manage its loads autonomously,
incurring minimal communication expenses.

B. Machine Learning based Autoscaling

The ML-based autoscaling for microservices dynamically
adjusts resources through ML algorithms that analyze his-
torical data and workload patterns. This method optimizes
resource utilization and ensures consistent performance by
scaling services as required. Hou et al. [15] proposed an
autoscaling approach that emphasizes both power and latency
considerations for resource provisioning at micro and macro
levels. By employing decision trees and a tagging methodol-
ogy, they were able to expedite the resource-matching process.
Yu et al. [16] introduced a framework called Microscaler that
utilizes a service mesh to monitor resource usage patterns.
By integrating online learning and heuristic methods, the
framework achieves near-optimal solutions to satisfy resource
needs and quality of service (QoS) requirements. Liu et al.
[17] undertook a detailed analysis of bottlenecks in prevalent
microservice applications and incorporated various machine
learning models to facilitate resource scheduling. Meanwhile,
Gan et al. [18] harnessed predictive methodologies to detect
QoS violations. They leveraged a combination of machine
learning models and expansive historical data to pinpoint the
microservices responsible for these QoS infractions, enabling
better resource reallocation to mitigate QoS degradation.

C. Deep Learning based Autoscaling

The emphasis has shifted towards employing DL for mi-
croservice autoscaling, utilizing neural networks for decision-
making and pattern analysis. This approach dynamically ad-
justs resource allocation based on real-time demand and
optimizes provisioning by learning from historical and cur-
rent data, thereby minimizing resource wastage. Autopilot
[19] accumulates historical server data and then utilizes two
scheduling techniques: the sliding window algorithm based
on past data, and the meta-algorithm inspired by RL. CoScal
[20] classifies resource usage into four representative levels.
It then applies an approximated Q-learning algorithm to these
segments, establishing an estimated policy. This policy encom-
passes horizontal and vertical scaling, as well as brownout [24]
capabilities that can dynamically activate and deactivate appli-
cation component. With gated recurrent unit (GRU), CoScal
predicts upcoming workloads and refers to the trained lookup
table to determine the suitable scaling action for each pod,
ensuring optimization across all pods. FIRM [21] employs a
systematic approach to allocating resources in cloud systems.
It pinpoints the crucial path in the microservice dependency
by carefully examining the connections between components.
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TABLE 1: Comparison of related work

Approach Scaling Techniques Workload Prediction Scheduling Mechanism Decision-making Pattern
Vertical Horizontal Brownout Linear Non-Linear Heuristic Machine Learning Deep Learning Distributed Centralised

He et al. [12] ✓ ✓ ✓ ✓
Burns et al. [13] ✓ ✓ ✓

Kannan et al. [14] ✓ ✓ ✓ ✓
Hou et al. [15] ✓ ✓ ✓ ✓
Yu et al. [16] ✓ ✓ ✓ ✓
Liu et al. [17] ✓ ✓ ✓ ✓
Gan et al. [18] ✓ ✓ ✓ ✓

Rzadca et al. [19] ✓ ✓ ✓ ✓ ✓
Xu et al. [20] ✓ ✓ ✓ ✓ ✓ ✓
Qiu et al. [21] ✓ ✓ ✓

Zhang et al. [22] ✓ ✓ ✓
Rossi et al. [23] ✓ ✓ ✓ ✓ ✓

Our method (DRPC) ✓ ✓ ✓ ✓ ✓ ✓

Once this path is identified, FIRM employs a specialized
Support Vector Machine (SVM) tailored to operate on both
a per-critical-path and per-micro-service-instance basis. This
helps in identifying specific microservice instances that require
optimization. Zhang et al. [22] introduced a predictive RL
algorithm for horizontal container scaling, which combines the
Autoregressive Integrated Moving Average (ARIMA) model
with a neural network model, ensures the predictability and
precision of the scaling procedure. Rossi et al. [23] developed
RL-based strategies to manage both horizontal and vertical
scaling for containers. This approach enhances system adapt-
ability in the face of fluctuating workloads and hastens the
learning phase by harnessing varying levels of environmental
knowledge.

D. Critical Analysis

Although the existing representative methods have brought
valuable contributions, our proposed method advances the
relevant area in several key points. First, unlike HPA and
other threshold-based approaches that primarily focus on hor-
izontal scaling, our approach leverages multi-faceted scaling
approaches (horizontal, vertical and brownout that can dynam-
ically activate or deactivate optional microservices [24]), en-
suring optimal resource allocation even during non-overload-
states. Second, compared with the machine learning-based
approach, we have applied deep learning to capture the fea-
tures of workloads and utilized RL to make scaling decisions
to achieve more accurate and efficient resource provisioning
decisions. The compared differences with the related work are
highlighted in Table 1.

Our approach is most similar to CoScal [20] and FIRM [21]
based on RL to auto-scale microservices while having signif-
icant differences compared with them. In contrast to CoScal’s
large-grained segmentation of system states, our method em-
ploys a deep neural network, offering nuanced decision-
making and the capability for simultaneous multiple scaling
actions, crucial for sudden load changes. Compared to FIRM,
which focuses on optimizing resources of the critical path
and nodes, our method ensures comprehensive optimization,
with the advantage of supporting both horizontal and vertical
scaling, and brownout. Furthermore, our advanced resource
allocation framework provides precise solutions, overcoming
the scalability limitations inherent in FIRM’s centralized rein-

forcement learning approach, especially under a high volume
of requests.

III. MOTIVATION

In this section, we perform motivational experiments with a
use case that requests increase quickly to explore the system
scalability under a centralized design, such as the central-
ized database capturing the dynamic change of microservices
(FIRM) [21] and the centralized RL-based approach (CoScal)
[20]. The investigation focuses on response time as the number
of requests significantly increases. For these experiments, we
utilize the TrainTicket [25] microservice application compris-
ing approximately 40 services, including user, station, price,
and route. The experiments are conducted on two nodes: one
for the initial TrainTicket deployment and another for scaling,
with a configuration of up to 8 CPU cores and 8 GB memory.

Fig. 1 shows the performance of FIRM and CoScal when
the number of requests increases from 200 to 800 per second
within a short time (e.g. 1 minute), and we can notice
apparent performance fluctuations. For instance, for the FIRM
approach, the response time increases from 160 ms to 290
ms when requests increase from 200 to 400 per second. This
resulted from the limitation of the centralized design of FIRM
in that its central node contains functionalities including data
collection, training, inference, and service provisioning. The
CoScal based on centralized RL design also suffers from the
same issue when the number of requests increases significantly
within a short time, CoScal might over-provision into the sys-
tem to ensure response time but also incurs resource wastage.
For instance, several replicas are added to provision resources
when the number of requests increases and the response time
is also reduced.

In this work, our objective is to provision resources effi-
ciently via an RL-based approach, and utilize a distributed
framework to overcome the limitation of centralized design,
e.g. system performance bottleneck. A centralized module
responsible for data collection and inference can exhibit draw-
backs such as unreliability under a container-based environ-
ment, slow performance, and inability to adjust system re-
sources asynchronously. The system could also potentially fail
to adjust resources if the central nodes experience performance
degradation. Hence, we propose a distributed framework utiliz-
ing multiple lightweight neural networks on distributed nodes
to execute the operations sent from the central node to relieve
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Fig. 1: Response time of centralized approaches when the
number of requests increases significantly

the burden of the central node. This approach can poten-
tially hasten resource allocation, and provide a more accurate
resource usage prediction of the cloud system’s behaviour.
Moreover, it could facilitate differential resource adjustment,
accommodating services with rapid changes more frequently
than others. In the subsequent sections, we will introduce our
detailed solution.

IV. SYSTEM MODEL

In this section, we will introduce the system model of
DRPC, which adheres to the Monitor-Analyze-Plan-Execute
framework over a shared Knowledge pool (MAPE-K), as
depicted in Fig. 2. The model is composed of three key
components: (1) a Workload Processor and Predictor that
preprocess the raw workloads and predicts the future work-
loads, (2) a Central Teacher Network that aims to learn the
globally optimal policy, and (3) a Per-Deployment1 Distributed
Student Network responsible for data collection as well as
asynchronous for imitation learning.

A. Workload Processor and Predictor

The Workload Processor is composed of key components
including a Workload Preprocessor, a Load Generator (e.g.
Locust [26]), and a Historical Database containing historical
workloads. It functions to extract necessary workload data
and attributes from the Historical Database, preprocesses the
dataset via Workload Preprocessor, and handles realistic user
interactions with the Load Generator. It transforms these
interactions into requests allocated to the microservice-based
cluster. The Historical Database stores the historical data
derived from realistic traces (e.g. Alibaba traces [27]). Detailed
dataset information such as timestamps, machine identifiers
and different types of resources are contained in these work-
loads.

The Workload Predictor is a critical component, respon-
sible for forecasting future loads coming into the system. It
communicates to the auto-scaler about the required amount

1Please note that the term Per-Deployment is inherited the naming conven-
tions module of Kubernetes, which consists a set of pods to run an application
workload, usually does not need to maintain state.

of resources to be scaled-in or scaled-out. The Workload Pre-
dictor obtains preprocessed workload data from the Workload
Processor and employs predictive models such as Long Short-
Term Memory (LSTM) [28] or Gated Recurrent Unit (GRU) to
forecast future workloads. The responsibilities of the Workload
Predictor include managing the training process of the model,
updating the trained model when necessary, and deploying the
trained models in their final stages. This module interacts with
the Workload Analyzer and Workload Generator, receiving
historical system data as input.

B. Central Teacher Network

The use of multi-agent RL often achieves sub-optimal
solutions [29], indicating a need for a central agent (“teacher”)
module that suggests actions to another agent (“student”)
[30]. This module investigates the global state, formulating an
optimal policy function to enhance system performance. The
collected data is employed to train the decentralized student
network via the technique of imitation learning [31].

Existing performance modelling-based or heuristic-based
strategies suffer several limitations, including struggles with
model reconstruction and retraining due to their inability to
adapt to dynamic system statuses [32]. These strategies require
considerable expert knowledge [33], demanding extensive
efforts for the interpretation of microservice workloads and
infrastructure. Compared with them, RL is suitable for for-
mulating resource provisioning policies due to its capabilities
of offering a close feedback loop, exploring scaling actions,
and formulating optimal policies independent of erroneous
assumptions. This allows for learning directly from actual var-
ious workloads and operational conditions, providing deeper
insights into how changes in low-level resources influence
application performance. We have incorporated two techniques
below to achieve our objective:

1) Twin Delayed Deep Deterministic Policy Gradient (TD3)
[34] : To overcome the limitation of overestimation of Q
value due to the flexible cloud environment, we utilize the TD3
algorithm, an advanced model-free, actor-critic RL framework.
Our RL formulation provides two distinct advantages:

• The model-free RL eliminates the need for precise mod-
elling of the complete distribution of states or the en-
vironment dynamics (transitions between states). In the
event of microservice updates, the simulations of state
transitions used in model-based RL become inefficient.

• The actor-critic framework, merging policy-based and
value-based methods, is suitable for continuous stochas-
tic environments. This accelerates convergence, reduces
variance, and provides a robust and efficient solution
for managing the dynamic nature of container-based
environments.

2) Retraining Notifier: The Retraining Notifier signals
when the system requires retraining. There are instances
where the imitation learner might not make efficient decisions,
triggering the Retraining Notifier and initiating a retraining
state. This is typically initiated by the following scenarios:

• Insufficient exploration by the teacher network: If the
teacher network encounters a rarely seen state about
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Fig. 2: System Model of DRPC

which it lacks confidence, it might fail to guide the stu-
dent appropriately. This can potentially result in the cloud
service scaler misjudging the system’s scaling needs.

• Sub-optimal learning state of the student deployment
network: In this case, despite the central network learning
an optimal policy function, the distributed deployment
network fails to establish a correlation between the op-
timal policy and the domain information it possesses.
This can occur if the information provided by the central
teacher network is over-complex, requiring an adjustment
in the number of epochs that the distributed deployment
net runs to achieve convergence.

• Outdated knowledge held by the student deployment
network: For instance, if the majority of users previously
searched for tickets, the student net may over-rely on
this pattern. If the request composition changes, such as
users predominantly purchasing tickets, the deployment
of student nets would require retraining.

C. Distributed Student Deployment Network

The Distributed Student Deployment Network module op-
erates in a distributed fashion, enabling the parallel execution
of scaling actions for microservices. Rather than maintaining
global states, it relies on local information to function. This
module consists of two key components: the Deployment
Buffer, which stores the policies communicated by the teacher
node for training the student network, and the Imitation
Learner, which scales each deployment independently.

1) Deployment Buffer: It maintains the policy transmitted
by the Central Module, and stores the state of the deployment
when the policy is recorded. This policy-state pairing is
utilized to train the Deployment Student Network via imitation
learning, which aims to ensure replicas’ successful behaviours
in a given context.

2) Imitation Learner: The Distributed Student Deployment
Net is characterized by its lightweight nature and lower
resource requirements compared to the Central Teacher Net-
work. This characteristic facilitates more frequent and adapt-
able decision-making. The system operates in two distinct
modes: learning mode, where it receives guidance from the
Central Network, and acting mode, where it autonomously
makes decisions based on its state, including factors like
resource utilization. This dual-mode configuration enables
continuous learning and adaptation, leading to optimized re-
source allocation and enhanced system performance.

V. DISTRIBUTED RL ALGORITHM FOR SCALING
MICROSERVICE

In this section, we introduce the algorithm design of our pro-
posed DRPC approach, which can achieve efficient distributed
decisions.

In DRPC, the RL-based resources provisioning is modelled
as a Markov Decision Process, it views the state st ∈ S
as the current microservices system status and interprets the
action a ∈ A as a scaling operation modifying system status
and allocated resources. We use M = (m1,m2, . . . , mi) to
denote the physical machines provisioning resources for the
microservices in our system. For each physical machine, say
mi, the amount of resources that can be allocated are denoted
as Ri = (ri,1, ri,2, . . . , ri,j), where the j represents the type
of resources, such as CPU and memory. Finally, the set of
actions that can be performed on each physical machine is
denoted as Ai = (ai,1, ai,2, . . . , ai,k). The actions indicate
the amount of resources that can be altered on each machine.
The supported actions are Horizontal scaling, CPU scaling,
Memory scaling, and Brownout. A positive or negative sign
before an action implies the addition or reduction of resources
to a specific machine, respectively. The term ’Brownout’ is
a binary indicator for whether a brownout can be triggered
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Algorithm 1: DRPC: System-wide Action Execution
Input : A central module for controlling scaling

actions
Output: None

1 Initialize trainingMode as True or False based on the
system state;

2 while True do
3 if trainingMode then
4 // Stage 1: The central module explores the

state and chooses actions actions = central
module.detection();

5 centralModule.Scale(actions) based on Alg. 2;
6 foreach deploymentAction in

getActionByDeployment(actions) do
7 // Training deployment networks

deployment.train(deploymentAction);
8 end
9 else

10 // Stage 2: Deployments make independent
scaling decisions foreach deployment in
allDeployments do

11 deployment.Scale() based on Alg. 2;
12 end
13 end
14 // Check if the retraining notifier is triggered and

update trainingMode trainingMode =
retrainingNotifier();

15 end

on the machine. If this value is set to True, the minimum
allowable replicas for horizontal scaling would be set to 0. The
collective action space for the system, A =

∏I
i=1

∏k
k=1 A

i,k,
is the product of the action spaces for each machine.

A. System-wide Action Execution

As illustrated in Algorithm 1, the execution of the system-
wide action plan progresses through two distinct stages: an
exploration phase and a distributed provision phase.

In Stage 1, the exploration phase, (lines 3-9), the cen-
tral teacher node explores the state space, choosing multi-
dimensional scaling actions (horizontal, CPU, memory scaling,
or maintaining the current state) for each deployment as
described in the section V-C. Simultaneously, deployment-
level networks initiate training.

In Stage 2, the distributed provision phase, (lines 10-
12), decision-making transitions to deployment-level networks
once the central node’s exploration is deemed sufficient, with
the same scaling options. This phase continually updates the
teacher network’s buffer with action-state pairs, as described
in section V-E. The system alternates between these stages
based on the retraining notifier (line 14), enabling the central
node to re-explore states or delegate decision-making based
on its readiness.

Algorithm 2 illustrates the general scaling procedure of
DRPC. The algorithm seeks advice from the Scaling Agent to

TABLE 2: Workloads Prediction Accuracy

Predicted length (mins) 5 10 15 20 25
MSE 0.0025 0.0027 0.0033 0.0049 0.0057

obtain Q-values that guide resource adjustments (line 1). This
includes CPU usage (lines 2-4), and memory utilization (lines
5-7). Such guidance manifests as actions within the DRPC
framework. If the recommended scaling for CPU or memory
is significant, adjustments are made proportionally to ensure
system stability or enhance efficiency. Adding or removing
replicas (lines 9-13) follows a similar process as above, except
if a microservice is pre-configured to support brownout, the
minimum number of replicas can be set to 0.

B. Workload Processor and Predictor

The connection between different levels of resource usage
and workloads is determined using a deep neural network
model for the workload analysis, as shown in Fig. 2. To mimic
realistic resource utilization, we apply data from Alibaba
traces, which contain workload traces from 4000 machines,
encompassing eight days of resource usage data. The perfor-
mance profiling procedure is as follows: we define a schedul-
ing interval of 5 minutes, over which we gradually increase
the number of requests, with each test case comprising 200
requests sent to the host. A three-layer Multi-Layer Perceptron
(MLP) is applied to the profiling data, thereby efficiently
representing this relationship. Consequently, we can translate
the host utilization into the number of requests to our system
for any given level of utilization. Then, our workload generator
produces these requests in accordance with the current user
type composition.

We employ multivariate time series forecasting (MTFS),
which converts MTFS problem into a supervised learning task.
The Gated Recurrent Unit (GRU) [35], a type of recurrent
neural network (RNN), is then used as the prediction method,
as it has been validated with good performance in [36]
for MTFS. The GRU solves the vanishing gradient problem
encountered in conventional RNNs through the utilization of
gating mechanisms.

Table 2 shows the mean square errors (MSE) of actual
utilization versus predicted utilization for Alibaba workloads
over different predicted length. With MSE values ranging
between 0.002 and 0.006, it shows that the workload prediction
algorithm can achieve good performance in resource utilization
prediction.

C. Central Module

Conventional RL models such as Sarsa [37] and Q-learning
encounter challenges when dealing with infinite or continu-
ous states and actions, a common scenario in microservices
characterized by variable CPU and memory usage. To address
this issue, we employ the TD3 algorithm, a more sophisticated
approach well-suited for continuous, high-dimensional spaces.
TD3 utilizes twin critic networks to reduce bias, incorporates
delayed policy updates for stable learning, and employs target
policy smoothing to prevent overfitting. These attributes render
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Algorithm 2: DRPC: General Scaling Procedure
Input: Scaling Agent: Agent, CPU usage:

Cpu usage, Memory usage: memory usage,
number of replicas: replicas, step size for
CPU: Cpu step, step size for memory:
Memory step, Microservice state:
thisMicroservice.Brownout

Output: Updated Cpu usage, memory usage,
replicas

1 [Cpu Scaling, Memory Scaling,
Horizontal Scaling] ← Agent.getQvalue()

2 if |Cpu Scaling| > 0.5 then
3 Cpu usage← Cpu usage+

Cpu Scaling.Clip(−1, 1)× Cpu step
4 end
5 if |Memory Scaling| > 0.5 then
6 memory usage← memory usage+

Memory Scaling.Clip(−1, 1)×Memory step
7 end
8 if |Horizontal Scaling| > 0.5 then
9 if replicas+ ⌈Horizontal Scaling⌉ < 0 and

thisMicroservice.Brownout == False then
10 exit
11 else
12 replicas← replicas+ ⌈Horizontal Scaling⌉
13 end
14 end

TD3 robust and efficient, making it an ideal choice for opti-
mizing autoscaling in dynamic microservices environments.

1) TD3 modelling: Our dual objectives are improving
the Quality of Service (QoS) and maximizing the utilization
of physical machines. Our reward model, encompassing
response time Rqos(rt) and resource utilization Rutil(u) are
accordingly formulated in Equations (1) and (2):

Rqos(rt) =

{
e−( rt−RTmax

RTmax
)2 , rt > RTmax

1 , rt ≤ RTmax,
(1)

where the maximum tolerant latency, RTmax, is pre-defined
into the QoS reward function. Normal system operation re-
wards 1, while performance that exceeds RTmax is penalized,
gradually approaching 0, thus discouraging SLO violation.

Resource utilization Rutil(u), measured using a devised
model shown in Equation (2),

Rutil(u) =


∑K

k=1

∑R
r=1(U

pred
r,k −ur,k)

3

K + 1 , urk ≤ Upred
r,k∑K

k=1

∑R
r=1(ur,k−Upred

r,k )3

K + 1 , ur,k > Upred
r,k ,

(2)
which guides the system towards resource conservation.
Here, K and R represent the kth physical machine and
rth resource type residual on the kth physical machine,
respectively, for example, the u1,1 indicate the 1st adjustable
resources on the 1st machine. Upred

r,k , the predefined utility,

Algorithm 3: DRPC: TD3 Algorithm
Result: TD3 (Twin Delayed Deep Deterministic policy

gradient)
1 Initialize actor network π and critic networks Qθ1 , Qθ2

with random parameters θ, θ1, θ2
2 Initialize target networks π′ and Q′ with weights

π′ ← π,Q′
θ1′
← Qθ1 , Q

′
θ2′
← Qθ2

3 Initialize replay buffer R
4 for episode = 1 to M do
5 Observe state s
6 for t = 1 to T do
7 Select action

a = clip(π(s) + ϵ, aHigh, aLow) where ϵ ∼ N
and execute it

8 Observe next state s′, reward r and done signal
d to end episode

9 Store (s, a, r, s′, d) in R
10 if it is time to update then
11 Sample a batch B of transitions

(s, a, r, s′, d) from R
12 a′ ←

clip(π′(s′) + clip(ϵ,−c, c), aHigh, aLow)
13 y ← r + γ(1− d)mini=1,2 Q

′
θi′

(s′, a′)

14 Update Qθi by minimizing the loss:
L(θi) =

1
|B|

∑
(s,a,r,s′,d)∈B(Qθi(s, a)−y)2

15 if t mod policy update == 0 then
16 Update π by one step gradient ascent

using the loss:
L(θ) = 1

|B|
∑

s∈B −Qθ1(s, π(s))

17 Soft update the target networks:
θi′ ← ρθi′ + (1− ρ)θi (for both actor
and critic)

18 end
19 end
20 s← s′

21 end
22 end

represents the ideal utility for a certain resource type r on
machine k. Proximity to this ideal utilization is rewarded;
under-provisioning or wastage is discouraged.

The final reward value as shown in Equation (3) is a
combination of both response time and resource utilization,
The objective is:

r(st, at) =
Rqos(rt)

Rutil(u)
. (3)

The final objective is to decrease the response time while
keeping the system running in a stable state Upred as shown
in Equation (4).

min
u∈Total Resources

|Upred −Rutil(u)| ∧ min
rt∈RT

Rqos(rt). (4)
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2) TD3 Implementation Details: As shown in Algorithm 3,
TD3 begins by initializing the actor and critic networks, as
well as the replay buffer (lines 1-3). It then selects an action
from the actor network, executes the action, and observes the
subsequent state, reward, and episode termination status (lines
4-8). This tuple (s, a, r, s′, d) is stored in the replay buffer (line
9). Once enough data has accumulated and it is time for an
update, TD3 samples a batch of transitions from the buffer,
which includes data from both the central and distributed
modules (lines 10-11). In certain instances, scale-out may
considerably diminish the SLO violation, while scale-in, by
circumventing the communication time, could realize superior
response times after several scaling operations. The robust
reward resulting from scale-out might engender a fragile, or
erroneous, ”sharp peak,” potentially obscuring our model’s
capacity to investigate the long-term impact of Scale-in. Fur-
thermore, due to the dynamic nature of cloud environments,
where internet connections fluctuate, some reallocation actions
may reduce QoS violations more effectively than anticipated.
Ultimately, this can lead to an overestimation of Q values.
To alleviate this, a clipped (limits values to a range) colour
black noise, between bound −c and c, ϵ is incorporated into
the target policy π′(s′) to get a final policy a′ and that policy
is ensured to lie within aLow and aHigh as shown in Equation
(5) (line 12).

a′ ← clip(π′(s′) + clip(ϵ,−c, c), aHigh, aLow), (5)

where both Q-functions employ a singular target. Moreover,
as microservices are deployed in a distributed manner and
communicate via cable, certain scaling actions may lead to a
significant reduction in communication time due to internet
fluctuations, ultimately generating a substantial reward. To
circumvent the overestimation of rewards, Clipped double-
Q learning is employed. Both Q-functions utilize a singular
target y(r, s′, d), calculated by summing the immediate reward
r and the minimum value obtained from the two Q-functions
Q′

θi′
(s′, a′), multiplied by the discount factor γ. If the sub-

sequent state is a terminal state (d = 1), no future reward is
considered (line 13) as shown in Equation (6):

y(r, s′, d)← r + γ(1− d) min
i=1,2

Q′
θi′

(s′, a′). (6)

The loss indicated as L(θi) in line 14, for the ith critic
network, is calculated as the average mean of the sum of
squared differences between the target Q-value y, and the critic
network predicted Q-value Qθi(s, a), across a mini-batch ex-
periences B containing a set of (s, a, r, s′, d) experience. The
number of such experiences is denoted by |B| as formulated
in Equation (7):

L(θi) =
1

|B|
∑

(s,a,r,s′,d)∈B

(Qθi(s, a)− y)2. (7)

To minimize the variability in microservice communica-
tion and to learn a more stable Q function, the policy will
only be updated by one step of gradient ascent once every
policy update (line 15) times using the loss function (line
16) with Equation (8):

L(θ) =
1

|B|
∑
s∈B

−Qθ1(s, π(s)). (8)

Finally, the target network will be updated (lines 17-20).

D. Deployment Unit with Imitation Learning

Imitation learning involves training an agent to perform
tasks by emulating the actions of an expert. This approach
has gained popularity due to its capability to teach complex
behaviors without the need for explicit programming or heavy
reliance on reward signals, which is common in traditional RL.
In our scenario, the deployment unit utilizes its information
to imitate the resource adjustment actions of the Central
module. This objective, as shown in Eq. (9), is accomplished
by minimizing the mean square error between the Q-values
QCtr(s) generated by the central network and those QDtr(s)
produced by the distributed network under the same state s.

min (QCtr(s)−QDtr(s))
2 (9)

When the retraining notifier signals deployment readiness,
scaling actions, guided by human knowledge-driven frequency,
are executed simultaneously and asynchronously. State-action-
reward pairs are then gathered, combined with data from other
deployments, and utilized to fine-tune the policy of the central
network.

E. Retraining Notifier

When the RL-based model needs to be re-trained based on
the conditions as introduced in Section IV.B, the Retraining
Notifier as shown in Algorithm 4 informs the teacher network
to repeat the training phase whenever the student network faces
insufficient information or the average reward from recent
actions falls below a predetermined threshold. It initializes
an array, rewardHistory, to record the last npr rewards
and the iterator number iter; continuously, the algorithm
calculates the current action’s reward, storing it cyclically in
rewardHistory (lines 1-7). If collected rewards are below
the defined number npr, retraining will not be triggered
due to insufficient data (line 8). However, if the average of
rewardHistory drops below the threshold TH , the retraining
process will be triggered, indicating suboptimal performance
(lines 10-12). Otherwise, the system continues its distributional
operations (lines 13-15).

VI. PERFORMANCE EVALUATIONS

To assess the efficacy of DRPC in the autoscaling of
microservices, we conduct experiments on a realistic testbed
based on Kubernetes. We detail the experimental settings,
benchmarks, and a comprehensive analysis of the results. The
primary objective is to verify that a distributed asynchronous
framework can improve performance, potentially offering po-
tential directions for future research.
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(a) Number of success requests (b) Number of failure requests (c) Average response time (d) Transactions per second

Fig. 3: Performance comparison of KuScal, FIRM, CoScal, and DRPC

Algorithm 4: DRPC: Retraining Notifier
Input : Retraining Threshold TH , number of past

rewards to monitor npr, action sets
at = {aik(t)|i ∈ {0, 1, . . . , I},
k ∈ {1, 2, . . . ,K}}

Output: Boolean indicating whether retraining mode
is triggered

1 Initialize an array rewardHistory of size npr to store
the rewards from past actions;

2 Initialize an Iterator iter = 0;
3 while True do
4 Calculate the current action reward

currentReward using get reward(at);
5 Store the current reward at the position iter % npr

in rewardHistory;
6 rewardHistory[iter%npr] = currentReward;
7 iter ++;
8 if iter < npr then
9 // Not enough data gathered yet, do not trigger

retraining return False;
10 if average(rewardHistory) < TH then
11 // The average reward is below the threshold,

trigger retraining return True;
12 else
13 // The average reward is above the threshold,

do not trigger retraining return False;
14 end
15 end

A. Experimental Setup

We utilize TrainTicket as a testbed in our motivational
example in Section III. It provides functionalities such as
ticket purchases, availability checks, cancellations, and news
browsing, simulating backend processes like verification code
generation, user login checks, and database ticket availability
searches. The platform establishes latency-measuring chains
using domain name service for service connectivity. Load
balancers or service routers based on cloud server tests are em-
ployed. Each TrainTicket microservice has its own database,
reducing wait times and facilitating scheduling for developers.

We use a cluster with five machines (one master and four
workers) for microservice-based cluster. Each machine has 8
CPU and 8GB memory. This prototype system is implemented

using a suite of toolkits, including Cgroup v2, Python, Ten-
sorFlow, PyTorch, Sklearn, and Locust, which support deep
learning and reinforcement learning environments.

We simulate four user types (Normal Query Users, Ticket
Buyers, Cancel Ticket Users, and Admin Users) with various
ratios in our cluster using the Alibaba work trace, each as-
signed with a unique ID for tracking. This emulates real-world
user behavior dynamics, where service requests fluctuate over
time. Data is collected every 200 milliseconds and averaged
over 1000-minute intervals in accordance with the existing
work [20] [21].

B. Baselines

Several state-of-the-art approaches from both industry and
academia have been selected as baselines.

KuScal [13] is a Kubernetes mechanism using horizontal
scaling to adjust replicas dynamically. It determines replica
quantity based on resource fluctuations, adjusting microservice
numbers via continuous real-time resource utilization tracking
and predefined CPU utilization thresholds. The threshold is
set to be 75% as it is evaluated as the most effective in some
existing work surveyed in [38].

CoScal [20] divides resource usage into quarterlies, applies
an approximated Q-learning algorithm to devise a policy,
and supports horizontal, vertical scaling, and brownout. Using
the GRU unit for workload prediction, it forecasts workload,
consulting a trained table to guide pod-level scaling actions,
and even optimizing non-critical path pods.

FIRM [21] systematically allocates cloud resources by
identifying the critical microservice path and using machine
learning to target specific instances needing optimization. The
process strategically moves from the longest to the shortest
chain, prioritizing longer chains to reduce microservice time
delays and boost efficiency.

C. Experiment Analysis

Several widely used metrics, including the number of suc-
cess requests, failure rate and response time have been utilized
to evaluate the performance of our proposed approach and the
baselines.

1) Computation Efficiency Analysis: Based on the efficient
design of our distributed student network, DRPC necessi-
tates considerably fewer computational resources compared to
FIRM, with trainable parameters being 643 for our model and
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(a) CDF of response time (b) Scalability comparison (c) Reward convergence of DRPC

Fig. 4: CDF comparison and reward convergence

11,352 for FIRM. DRPC utilizes only 6×10−5 of CPU time to
determine the subsequent action, compared to 4× 10−3 taken
by FIRM. Our model also showcases superior efficiency, with
a peak CPU utilization of 0.8 as opposed to FIRM’s maximum
usage of 2.0. This illustrates that our approach is markedly
more resource-efficient than FIRM. DRPC incorporates 40
services, and enables simultaneous application of CPU, mem-
ory, and horizontal scaling for each deployment, executing
up to 120 actions per time step. KuScal ranks second, when
CPU utilization for all services surpasses the threshold, and
all services undergo horizontal scaling. However, FIRM can
only scale one resource type per step, as FIRM’s Actor-critic
network estimates the Q-value for scaling actions and applies
the action with the highest Q-value.

The offline training phase required approximately 10 days
to converge, with the majority of this time dedicated to the
data collection process within the cluster. However, once the
initial training is completed, the model can be fine-tuned
within minutes via online learning to adapt to changes in the
composition of user requests, which can handle the significant
changes in realistic system.

2) Comparison of the Number of Success Requests per
Second : Fig. 3a presents the requests per second processed
by four distinct algorithms. We partitioned the 5000-minute
data into five time periods, with each period representing the
average results over the corresponding period. We observed
that, across the five time periods, FIRM is capable of pro-
cessing a higher number of requests compared to our method
during the initial periods. However, our method outperformed
FIRM over the subsequent four periods. Likewise, CoScal
also demonstrated the ability to adapt and improve over time,
but it did not outperform our method or FIRM consistently.
Furthermore, the difference between our method, CoScal, and
FIRM was relatively small during the initial periods, until
our method started surpassing them. It can be also reasoned
that a scheduling algorithm solely reliant on the longest chain
becomes increasingly challenging to handle workloads under
significant variances in request rate over time. This might
be caused by the longest chain typically signifying more
requests at the onset of the scenario when chain variations are
minimal. However, as the load changes over time, the chains
experiencing high loads, which may not necessarily be the
longest chains, become the actual targets for optimization. In

summary, FIRM and Coscal have achieved good performance
in handling requests successfully. Compared to FIRM, DRPC
improves the success rate of requests by around 2%.

3) Comparison of Failure Rate: As shown in Fig. 3b,
DRPC has a failure rate of 4.5%, which is notably lower
than FIRM’s 5.9%, CoScal’s 8.2%, and Kuscal’s significantly
high rate with 29%. When we evaluate the improvement of
DRPC over the other methods, it reduced the failure requests
by 24% compared to FIRM, 44% in relation to CoScal, and
exhibited an impressive 85% reduction when compared to
KuScal. In summary, DRPC demonstrates a significant perfor-
mance improvement over the benchmarks. This enhancement
is attributed to our design’s ability to adjust deployments
more frequently, thereby reducing the likelihood of failures
compared to other methods.

4) Comparison of Response Time: Fig. 3c demonstrates the
average response time for the four algorithms under the same
configurations. KuScal shows the longest average response
time across all five periods, being three to four times longer
than others, as its inability to predict forthcoming requests
inhibits it from conducting pre-emptive horizontal scaling to
accommodate these incoming requests. In contrast, CoScal
performs better than KuScal but trails behind FIRM and
DRPC. The CoScal model demonstrates an average response
time that is generally similar to that of FIRM, except for the
last two time periods, where FIRM shows a slight gap. We
observed that the DRPC achieves the shortest response time,
typically ranging between 40 ms and 70 ms, for most of the
time intervals, thereby reducing the average response time by
around 15% compared to FIRM and 24% compared to Coscal.
Remarkably, it reduces the response time by 72.4% compared
to Kuscal.

5) Scalability Analysis: In comparing the transactions per
second (TPS) of distributed networks with a centralized
teacher network (as shown in Figure 3d), it was observed that
asynchronous, frequently updated distributed models consis-
tently surpass the teacher model (centralized) in performance.
These models not only emulate the teacher network’s patterns
but also demonstrate reduced volatility. In Figure 4b, an
analysis shows that as request numbers significantly increase,
our method outperforms FIRM with 30% improvement in
terms of response time in average. Additionally, DRPC’s lower
quadratic coefficient in fitted line than FIRM confirms its
effectiveness, scalability, and stability.
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TABLE 4: Response time at different percentile

50th 66th 75th 80th 90th 95th 99th 99.99th
FIRM 9 10 12 15 45 120 360 2900
CoScal 22 36 51 63 95 180 510 1800
DRPC 11 17 23 28 44 84 210 900
Kuscal 240 660 960 1100 1700 2300 3900 7900

6) Cumulative Distribution Function (CDF) of Response
Time Analysis: We also utilize the CDF in Table 4 to high-
light the differences between different approaches, as well
as the results in Figure 4a. Until the 90th percentile, the
CDF curve of FIRM consistently outperforms DRPC. This
difference appears because FIRM allocates requests to specific
nodes rather than central ones. Our approach, which releases
resources on non-critical chains or nodes, introduces delays
on these nodes. Since FIRM does not allocate resources to
these nodes, resulting in over-provisioning, it handles certain
simple requests more quickly than our method. However,
beyond the 90th percentile, our strategy efficiently redistributes
the released resources to nodes critical for QoS enhance-
ment. In summary, DRPC significantly reduces tail latency
by reallocating resources to nodes crucial for enhancing QoS,
outperforming baselines consistently.

7) Reinforcement Learning Convergence Analysis: As il-
lustrated in Figure 4c, the system requires approximately 300
episodes to reach convergence. Beyond this point, the reward
per action experiences no significant increase, prompting us
to halt the operation. The reward coverage settles at ap-
proximately 0.7, as seen from the figure. This indicates that
CPU, memory usage, and latency are approaching an optimal
configuration by analyzing the reward function. In terms of
actual performance, memory utilization is around 75%, while
CPU utilization is approximately 60%. The QoS is guaranteed,
ensuring that 99% of requests can be handled within 210 ms.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a novel framework for dis-
tributed resource provisioning, named DRPC. By adopting
an asynchronous, parallel, and differential approach, DRPC
facilitates the global optimal allocation of resources. This
accommodates the dynamic nature of microservice-based clus-
ters while ensuring QoS. Notably, DRPC incorporates DL
methodologies for workload prediction, achieving a higher
level of accuracy compared to conventional gradient-based
methods. Additionally, it leverages a distributed RL algorithm
to make informed decisions on scaling strategies, effectively
managing the infinite action-states space associated with mi-
croservices. The results, based on realistic testing and compar-
isons with state-of-the-art algorithms, demonstrate that DRPC
outperforms the baselines in terms of successful request rate
and average response time, particularly under significantly
increased requests.

The limitation of this approach is that it increases network
usage due to the essential communication of distributed RL.
Future research will focus on automating the asynchronous
updating process, which currently requires manual setting
of timing intervals for specific microservices, to improve

system efficiency. In addition, we would like to explore
anomaly-aware workloads management under container-based
environment, and incorporate our approach into large-scale
and production environment (e.g. Alibaba Cloud) with further
validations.

SOFTWARE AVAILABILITY

The codes have been open-sourced to https://github.com/
vincent-haoy/DRPC for research usage.
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