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Abstract Streaming applications are becoming widespread across an extensive 
range of business domains as an increasing number of sources continuously produce 
data that need to be processed and analysed in real time. Modern businesses are 
aggressively using streaming data to generate valuable knowledge that can be used to 
automate processes, help decision-making, optimize resource usage, and ultimately 
generate revenue for the organization. Despite their increased adoption and tangible 
benefits, support for the automated deployment and management of streaming appli-
cations is yet to emerge. Although a plethora of stream management systems have 
flooded the open-source community in recent years, all of the existing frameworks 
demand a considerably challenging and lengthy effort from human operators to manu-
ally and continuously tune their configuration and deployment environment in order 
to reach and maintain the desired performance goals. To address these challenges, 
this article proposes a vision for creating Deep Reinforcement Learning (DRL)-based 
methods for transforming stream processing engines into self-managed serverless 
solutions. This will lead to an increase in productivity as engineers can focus on 
the actual development process, an increase in application performance potentially 
leading to reduced response times and more accurate and meaningful results, and a 
considerable decrease in operational costs for organizations.
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1 Introduction 

Traditionally, when developing and deploying applications in the cloud, users are 
required to address several concerns regarding the compute resources running behind 
the scenes. To mitigate the shortcomings associated with this, cloud service providers 
such as Amazon introduced function-as-a-service offerings via products like AWS 
Lambda. Although function-as-a-service is one of the first offerings to realize 
serverless computing in cloud environments, the serverless paradigm continues to 
evolve and encompasses a broad range of cloud services that aim to completely 
hide the complexity of infrastructure and operational management from application 
developers [1]. 

Serverless computing allows developers to focus on application implementation 
and innovation as they no longer have to deal with server administration, performance 
tuning, cluster management, and autoscaling, among others [2]. These responsibili-
ties are delegated to the serverless framework, which receives the application code 
and automatically deploys it in a cloud environment. Relying on this model enables 
organizations to significantly reduce infrastructure costs, release revenue-driving 
applications more quickly into production, and have expert personnel focused on 
developing applications that create value for the organization. 

Streaming applications are at the core of many modern businesses. For example, 
the manufacturing industry relies on streaming data to enhance production lines 
by monitoring performance and predicting faults before they occur [8]; real-time 
network traffic analysis is used to identify and respond to security incidents [3]; 
and financial institutions are processing streams of data to detect changes in stock 
prices and automatically rebalance portfolios [4]. Health, social, and environmental 
use cases are also abundant. For example, physiological data streams of patients 
undergoing anaesthetic can be analysed to raise early warnings [5], data generated 
during and after a disaster can be used to produce warnings through social media 
platforms [6], and live traffic data can be used to optimize traffic flow [7]. 

Streaming applications are represented as graph topologies with multiple inter-
related components. Deployed topologies usually have a complex network of repli-
cated components that are continuously processing vast amounts of data with strin-
gent performance requirements such as millisecond end-to-end latencies [8, 38]. 
They are long-running applications as their lifetime can span days, weeks, or even 
months. In fact, many are required to be deployed for an unlimited period of time, 
just like user-facing web applications. Stream Processing Engines (SPEs) or systems 
[37] are large-scale distributed systems that are designed specifically with the char-
acteristics of streaming applications in mind. Data tuples originating from a stream 
source flow through the system as they are generated, allowing real-time data anal-
ysis without the need of storing data and processing it in batches [14]. There has been 
a considerable influx of SPEs into the open-source community in recent years due to 
the rise in demand for real-time data analysis. Examples include Storm [9], Samza 
[10], Heron [11], Flink [12], and Spark [13]. Still, none of these systems has been 
designed with the purpose of simplifying their use from the application developer’s
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perspective and much of the underlying complexity of the distributed system and the 
distributed infrastructure has been passed on to users to manage. 

As a result, the use of existing SPEs is non-trivial, and application deploy-
ment entails a considerable effort from software engineers who must define values 
for a myriad of performance-affecting configuration parameters and estimate the 
capacity of the compute infrastructure where the SPE will run [15]. More impor-
tantly, choosing appropriate configuration values to achieve a desired level of perfor-
mance demands a thorough understanding of the internal workings of the SPE, the 
infrastructure in which the system is deployed, the dynamics and implementation 
details of the application’s topology, and the rate at which data is generated by 
the source. This process also entails multiple manual trial and error runs repeated 
continuously throughout the lifetime of the application, as external factors such as 
load spikes affect its execution. Hence, current SPEs are prone to SLA violations, 
require constant expert technical personnel on call attending to incidents, and have 
a suboptimal use of resources, all of which lead to increased operational costs and 
decreased application performance. 

We identify challenges in three levels of tuning, currently expected from users by 
existing SPEs: 

System Parameter Tuning: Existing SPEs provide users with a plethora of config-
urable parameters, leaving it up to operators to manually explore different value 
combinations. Furthermore, they leverage container management systems to manage 
cluster resources. This brings another challenge for users, who must define the amount 
of CPU and RAM that are to be used by the application components, which is chal-
lenging as this requires extensive profiling of the application and workload fore-
casting. Values for these parameters have an effect in performance and cost: over-
estimating resources results in higher infrastructure costs, while under-estimating 
results in reduced application throughput and increased end-to-end latencies. 

Application Parameter Tuning: SPEs require users to specify the parallelism, 
or number of replicas, of each component in a topology. More replicas will enable 
components to process higher volumes of data, resulting in higher throughput. Under-
estimating this value leads to a topology riddled with backpressure, while overesti-
mating it leads to low resource utilization. Furthermore, the parallelism of compo-
nents must be adjusted throughout the lifetime of the application to compensate for 
failures, performance variation in compute and network resources, and load spikes. 

Infrastructure Management: Clusters supporting the execution of SPEs can be 
deployed on any distributed environment, but in today’s cloud-dominated era, this 
is almost always a public Infrastructure as a Service provider. Currently, no SPE 
provides cluster autoscaling capabilities to support changing application workloads. 
Instead, users must estimate the capacity of the cluster and (i) overprovision resources 
to account for unforeseen load spikes or (ii) manually adjust the cluster size as 
a reactive measure to a load spike. Overprovisioning results in reduced return on 
investment for an organization and under-provisioning may result in loss of revenue 
due to application downtime. 

Overall, delegating the responsibility of these challenges to application and system 
engineers is inefficient, error prone, and time consuming. It is unrealistic to expect
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Fig. 1 Architectural model from traditional to serverless stream processing engines 

operators to have a comprehensive understanding of all the configurable system 
knobs and explore an immense search space to find a combination that achieves the 
SLOs for the current state of the system and underlying infrastructure. Therefore, 
by leveraging multi-agent reinforcement learning, our proposal aims to offer SPEs 
the ability to automatically adapt in response to environmental changes in order to 
maintain the desired quality of service requirements. Figure 1 illustrates our vision 
for serverless SPEs (on the right) compared to traditional architectures (on the left). 
Along with the application’s topology, users will be able to submit their desired 
SLOs (e.g., throughput), and delegate the responsibility to the self-tuning system 
to determine the system’s and infrastructure’s optimal configuration. Our proposed 
system will have the ability to react to external shocks by automatically scaling and 
reconfiguring itself as needed. It will automatically recover not only from failures 
but also from degradation of system performance. 

2 Significance and Innovation of Our Vision 

Our vision article proposes to create serverless stream processing engines with auto-
nomic capabilities. The proposal is innovative, original, and highlights significant 
problems that need to be overcome:

• Timeliness: Despite their increased adoption and tangible benefits, support for 
the automated deployment and management of streaming applications is yet to 
emerge. In today’s x-as-a-service era, serverless computing is taking the cloud 
computing world by storm, organizations with stream processing needs are also 
seeking for ways to leverage the benefits of infrastructure-unaware and cloud-
managed deployment. The demand for this type of solutions can be seen in 
the increased adoption of “serverless streaming services” offered by many cloud 
providers. Such an approach to stream processing is not based on engines specif-
ically designed with the needs of streaming applications in mind; instead, it
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is based on the integration of existing serverless models such as function-as-
a-service (FaaS) (e.g., AWS Lambda) and backend storage-as-a-service (e.g., 
DynamoDB). The existing FaaS model constrains applications to be stateless, 
forcing topology components to manage state via remote storage systems, which 
greatly impacts performance. Another disadvantage of existing serverless stream 
processing deployments is the lack of support for complex topologies. Distributing 
data to different components based on a tailored function is non-trivial and requires 
additional development effort. Furthermore, using mainstream serverless compo-
nents misses the opportunity to optimize application deployment by taking into 
consideration its very specific set of requirements and stringent performance 
needs. Therefore, although current “serverless streaming services” deliver in their 
promise of automated deployment, the scope of streaming applications that can 
benefit from them is greatly limited by the restrictive serverless model they are 
based on and the simplicity of their data processing graph. Our vision aims to 
transform purposely designed stream processing engines into serverless solutions, 
moving the difficulties of infrastructure management, deployment, and perfor-
mance tuning away from operators. This will enable the essence of serverless 
computing to be met by eliminating infrastructure management responsibilities 
and will ensure that QoS requirements are automatically satisfied and maintained 
throughout the application’s lifetime. In particular, by automating real-time data 
processing systems, these will become more resilient to equipment failure and 
human errors. The self-adapting system we propose will adapt and recover from 
failures affecting the performance of applications and, since the goal is to reduce 
human interaction, human errors will be less likely.

• Originality and Innovation: New advances in Deep Reinforcement Learning 
(DRL) have unlocked the potential of artificial intelligence to a range of domains 
with complex problems that need solving. The super-human performance obtained 
by many algorithms in AI benchmarking applications, such as Go and Atari 
games, suggests that the potential of these techniques must at least be explored 
in different areas. Serverless and stream computing are mainstream technolo-
gies underpinning countless modern businesses and applications, yet there is still 
vast room for improvement in them. They can greatly benefit from the ground-
breaking and rapidly evolving DRL field. Exploring the implementation of a 
Multi-Agent DRL (MADRL) approach to combine them is novel compared to 
existing approaches automating systems from a single isolated perspective (e.g., 
scheduling, autoscaling, parallelism) based on traditional optimisation approaches 
such as greedy heuristics and evolutionary algorithms. Furthermore, enhancing 
SPEs with serverless capabilities as proposed in this vision article is also an inno-
vative idea. It breaks away from the already defined and restrictive serverless 
model offered by cloud providers and acknowledges that it is insufficient to fulfil 
the requirements of streaming applications.

• Advancement of the Discipline: Exploring the intelligent automation of SPEs 
via DRL is a novel approach that has the potential of furthering not only SPEs but 
the cloud and serverless industries as well. Just as SPEs, there are many distributed 
systems whose adoption is rising in cloud and edge/fog environments. They have
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similar requirements to streaming systems and as distributed applications, can 
greatly benefit from better and smarter automation. The proposed vision will 
help in advancing many modern applications by demonstrating the applicability 
of DRL to the automation and resource management optimization problem in 
large-scale distributed systems.

• Significant Business Opportunity: Cisco estimates 500 billion devices to be 
connected to the Internet by 2030 [20]. This exponential growth gives place to 
a new digital era with unprecedented opportunities for organizations around the 
world. Devices such as surveillance cameras, cars, farm machinery, smart TVs, 
toys, and wearables, are examples of appliances that are part of this intercon-
nected era and are continuously producing data. It is estimated that these devices 
will produce approximately 5 quintillion bytes of data everyday [21]. The anal-
ysis of these data is essential to businesses and people to deliver insights that 
enable them to make better and more informed decisions. Real-time data analysis 
is therefore becoming critical for organizations to create, improve, and maintain 
their competitive edge. The challenge is to build the right digital infrastructure 
and enable the right set of applications to harness this data and draw insights. As 
the proposed vision focuses on this particular problem, it will create significant 
business opportunities for organizations by making stream processing engines 
more accessible, efficient, and easier to use. Not only will it do so in the stream 
processing field, but the ideas from this vision article transferable to the server-
less paradigm in general, contributing towards the goals of the next-generation 
cloud computing where cloud resources are better utilized, infrastructure costs are 
reduced, less energy is consumed, and application management and deployment 
is fully automated. 

3 Architectural Framework 

We propose the use of Deep Reinforcement Learning (DRL) to optimize the values 
of different parameters across three different configuration levels (system, applica-
tion, and infrastructure) and determine the set of actions that can be taken to solve 
performance problems that arise in the deployment of streaming applications. Despite 
recent advances in DRL, this approach is yet to be explored in the context of self-
tuning systems and SPEs. The steps for the realization of the proposed vision consist 
of the following:

• Architectural framework for serverless SPEs with the ability to maintain desired 
SLOs;

• Multi-agent DRL approach that enables the automated management of SPEs and 
cluster resources;

• Policies that reduce the exploration cost for RL agents in SPEs deployed in large-
scale distributed platforms;

• Prototype system and demonstrator streaming applications deployed in a Cloud 
computing environment.
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In an RL approach, feedback from the environment determines which action an 
agent will take next, with the agent making value judgements in order to select good 
actions over bad ones. In the context of this proposed vision, the RL agents will 
work towards a user-defined SLO goal, such as maintaining a desired throughput 
rate. The environment corresponds to the state of the deployed SPE, application, 
and compute infrastructure. The actions entail changes to the environment that affect 
the performance of the engine. These include scaling the cluster resources in or out, 
changing the parallelism of one or more components in the application, reconfiguring 
the placement of the components, and changing the values of the SPE’s parameters, 
among others. A reward function measures the effectiveness of an action, or set of 
actions, towards the desired SLO. 

There are multiple challenges when implementing the aforementioned DRL-
based solution. First, the optimization space is broad and complex. To illustrate 
this, consider the case of tuning the parallelism of a topology with 5 components. 
Assume a cluster capable of accommodating a total of 50 component instances; that 
is, it has 45 free slots to accommodate replicas. Exploring the search space would 
involve exploring 49!/45!(4!) = 211, 876 different parallelism combinations. This 
over simplistic scenario is not considering the placement of components within the 
cluster machines, their communication overhead, or the heterogeneity of machines 
and topology components. 

Second, the action space is also extensive. In the above example, actions to tune the 
parallelism of an application could be defined as increasing/decreasing the number 
of replicas of a component by one or leaving it unchanged. This would lead to 35 

= 243 discrete actions for a small topology with 5 components. The system should 
also be capable of considering actions related to the autoscaling of the cluster, the 
placement of components, the allocation of resources within a machine, and the 
values of system parameters. This leads to an action space of significant cardinality, 
which results in the framework requiring a considerable amount of learning time and 
data. 

Third, the state of the system is broad and complex; it is represented by the 
machines in the cluster, the placement of operators within these machines, the 
resource utilization of operators, the values of the SPE’s parameters, the internal 
state of the SPE such as the size of the input and output buffers, the data emission 
rate, and the value of QoS parameters such as throughput and latency. Modelling and 
capturing this state with minimum performance interference and determining what 
is meaningful for the agent to observe requires careful design and evaluation. 

Fourth, balancing the exploration versus exploitation trade-off is particularly 
challenging in distributed systems with real-time processing needs. In this article, 
agents have a restricted ability to freely explore their environment as this can signifi-
cantly hurt performance (e.g., scaling down resources), can be time consuming (e.g., 
provisioning resources and redeploying the topology), and can result in additional 
costs (e.g., scaling out the cluster). Finally, defining functions capable of quanti-
fying the efficiency of an action towards a desired goal is not straightforward. For 
example, although an action is appropriate to eliminate a performance bottleneck in a 
topology’s execution, the performance benefits of such action may only be seen after
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Fig. 2 DRL-based serverless framework for stream processing engines 

a certain amount of time has passed and the system has reached a steady state. In fact, 
performance may first decrease as the topology is redeployed for example. Capturing 
this behaviour in the evaluation mechanisms guiding the rewarding process is a chal-
lenging task. With these challenges in mind, we propose a Multiple Agent Deep 
Reinforcement Learning (MADRL) system as depicted in Fig. 2 to realize server-
less stream computing, with the architectural components discussed in the following 
section. 

4 Research Issues and Envisioned Approaches/Future 
Directions 

4.1 DRL-Based Resource Management Agents 

RL enables agents to learn by trial and error based on rewards obtained from their 
environment. In DRL, this knowledge is built using multi-layer neural networks, 
which progressively extract higher level features from raw input observed by the 
agents. This enables DRL to be applied to high-dimensional problems and hence, 
makes it a promising approach to solving complex real-world problems. We propose 
the use of DRL to compute policies that drive the decision-making process of agents 
managing the deployment of streaming applications and tuning their performance. 
There have been considerable advances in DRL since 2015, when the concept of 
deep Q-networks (DQN) [23] was used to create an agent capable of outperforming 
professional players in Atari games. Following this, DeepMind created AlphaGo [26]
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and AlphaGo Zero [25], two agents combining DRL with Monte Carlo tree search 
capable of defeating professional players on the game of Go. More recently, Deep-
Mind released the A3C algorithm [30], which has demonstrated better performance 
than DQN in different domains, is faster, simpler, and more robust. 

Although both DQN and A3C can be used to train powerful agents, their perfor-
mance may suffer when faced with complex tasks and when there are long delays 
between actions and reward signals. This is the case when reconfiguring an SPE; an 
improvement in the throughput of the application may only be seen after a while when 
the system has stabilized. Also, the model-free approach used by these algorithms, 
even though it leads to better performance, entails agents learning from scratch by 
trial and error. This may not be feasible considering the cost of reconfiguring the 
SPE in monetary and performance terms. Hence, investigating emerging approaches 
combining model-free and model-based techniques is necessary. This will allow 
agents to use a learned model to generate a simulated experience to help train a model-
free policy. Examples of recent algorithms in this area are Imagination-Augmented 
Agents (AI2) [27] and Temporal Difference Model (TDM) [28]. 

Another important factor to consider in the design of the agents is that the goal of 
many DRL approaches is to be general enough so that they can be applied across a 
wide range of domains. As this approach can be unsuitable and as a result, refining 
algorithms so that they are tailored for the specific scenario of SPE auto-management 
will be necessary. Overall, applying suitable DRL concepts and adapting them when 
necessary are key challenges for this critical component of the proposal. 

Also, a single-agent DRL solution entails training a single policy that issues all the 
actions. Considering the complexity and nature of the given problem, a multi-agent 
RL solution offers a more natural decomposition of the problem, the potential for 
more scalable learning, and the flexibility to extend the framework with more agents 
later on. Instead of training a single, super-agent that controls all different aspects 
of performance such as autoscaling, parallelism, and parameter tuning, we propose 
using Multiple Agent Deep Reinforcement Learning (MADRL) to have multiple 
specialized agents focusing on different aspects of the system but working towards 
a common goal. Such decomposition of the action and state space also reduces the 
dimensionality of the problem, addressing two of the main challenges previously 
identified, and the size of the search and action spaces. 

MADRL research supports the idea that collaboration and competition are the 
basics of collective intelligence and have strong connections with single-agent 
DRL, multi-agent systems, game theory, evolutionary computation, and optimiza-
tion theory. DeepMind made another breakthrough in their contribution to AI by 
publishing their experiences building collaboration and competition in DRL agents 
playing Capture the Flag game [31]. Recently, Jaques et al. [29] have extended work 
in the area by proposing an algorithm that allows collaborative and competitive 
dynamics between DRL agents to emerge in ways that even surpass human coun-
terparts. They propose an architecture in which agents are rewarded for having a 
causal influence on other agents’ actions, which allows them to learn to cooperate. 
Their architecture proposes a network that enables an agent to predict the actions 
of every other agent, allowing the agent to simulate and predict how its actions will
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affect other agents. This eliminates the need for centralized training or the sharing 
of reward functions, making it an appealing work to explore as part of the imple-
mentation of our multi-agent system. Given that computational efficiency is essential 
in our system, we propose to improve the cooperation efficiency between multiple 
agents by learning a causal graph between multiple agents instead of using a fully 
connected graph. 

In our MADRL approach, agents work towards a common goal. They learn the 
dynamics of the environment by trial and error while cooperating with other agents. 
In particular, we propose a system with the following agents:

• Cluster Autoscaler: This agent is responsible for managing the capacity of the 
cluster where the SPE is deployed. This entails removing virtual machines if 
the utilization of resources is low for example. If the cluster is overloaded and 
resources are needed to eliminate a bottleneck in the application, then the agent 
should launch new VMs to better cope with the current load. Overall, the goal 
of this agent is the efficient management of the cluster resources with the aim of 
increasing their utilization and reducing cost while maintaining the desired SLOs.

• Parallelism Autoscaler: Tuning the parallelism of a topology is a challenging 
task. The relationship between components means that altering the parallelism of 
a component will almost always require adjusting the parallelism of upstream and 
downstream components for it to have a meaningful impact on the overall perfor-
mance of the application. This agent will automate this process by learning the 
best set of actions to take when a lack of parallelism is affecting the performance 
of an application.

• Scheduler: The agent selects an available resource to deploy a particular instance 
of a component while considering user-defined objectives. For example, for 
throughput maximization, components that communicate with each other should 
be co-located in the same hosts. This however is unachievable in a large-scale 
system and as a result, components should be placed so that the communica-
tion overhead is minimized. Different placement policies can be explored in 
this module as issues like resource utilization, load balancing, data locality, and 
resource consumption of existing containers can be considered.

• Resource Allocator: Allocates a specific amount of resources to components of 
a topology. These resources usually refer to the amount of RAM and CPU an 
instance of a component will use. The agent may decide to increase or decrease 
resources if this means achieving the desired SLOs. For instance, backpressure in 
a topology may be due to a component not having enough resources to process 
tuples fast enough. Increasing these may result in the topology being back in a 
healthy state.

• System Parameter Tuner: This agent is responsible for tuning the configurable 
parameters of the SPE, such as queue capacities, socket buffers, network packet 
sizes, and read/write batch sizes among others.
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4.2 Exploration Aids 

Applying DRL algorithms to real-world problems can be challenging; even when 
the task of the agent is well-defined and there is an explicit reward function. Often, 
it is not possible to let an agent interact freely with its environment due to external 
constraints such as cost and time. In order to deal with these limitations, it is important 
to consider different methods that help agents explore their worlds more efficiently. 

An approach that needs to be investigated to solve this problem is to enhance 
the RL solution with efficient initialization policies that reduce the learning time 
for online decisions. Exploration aids will then use data collected from the execu-
tion of applications with typical configurations and use these sample data to train 
models that allow the agent to predict the performance of applications under similar 
configurations. For example, runtime metrics can be collected by running a variety 
of applications on a given SPE and executing random or deliberate actions to the 
system. This data can then be used to train and initialize the actor and critic neural 
networks used by agents. Based on this initial idea, we will explore counterfactual 
reasoning methods to augment the observational data by sampling from a causal 
generative model [32]. Another option that will be considered here is to use a simu-
lator that mimics the real environment and trains the agents in it. We will develop 
deep transfer learning methods that enable the agents to transfer from the simulation 
environment to the real-world environment. One promising idea is to incorporate 
an encoder that extracts environmental information, which can be used to develop 
environment-adaptive policies. The other way is to learn invariant representations 
that have similar distributions on the simulated and real-world data. In an RL setting 
where gathering experience in the real world is expensive and constrained by perfor-
mance requirements, this approach can be used to apply a policy learnt in a simulation 
environment in a production deployment. 

An additional methodology to be explored in this area is the modelling of the 
dependencies between different configuration parameters and the use of this knowl-
edge by the agents. It has been observed in different contexts [19, 22, 23] that the 
relationship between parameters plays an important role when looking for an optimal 
configuration. This information may aid in reducing the number of reconfigurations 
done by agents before achieving a steady state, reducing the exploration time and cost 
of the proposed solutions. Evaluating the usefulness of these techniques and deter-
mining their effect on the performance of the agents will be an important outcome 
of our vision. 

4.3 Policies for Management of Rewards, States, 
and Enactment 

Given an observation of the system’s state, the reward manager applies different 
evaluation mechanisms that accurately capture and quantify the efficiency of the
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corrective actions taken by the agents. In RL settings, reward functions define the 
goals that need to be achieved by the agents. This can be a rather challenging task 
due to the complexity of the environment as defined in this article. For example, a 
scheduling agent needs to be able to produce conflict-free environments that mini-
mize the communication overhead between components. The reward values need to 
reflect these two objectives as the agent ultimately has a single goal, maximizing the 
expected reward. 

The State Manager accesses relevant metrics and configuration settings and peri-
odically estimates the system’s state. The system’s state may be expressed in terms of 
higher level metrics such as tuple arrival rate, current cost of the leased infrastructure, 
tuple throughput, application latency, existence of data skew, etc. Furthermore, the 
state can include configuration settings relevant to the agents’ goals such as place-
ment configuration, resource allocation, and cluster capacity. The state can also be 
split into multiple partitions, each of which may be relevant to a particular agent. This 
may help in reducing the observation space for individual agents, allowing the RL 
algorithms to perform better and faster. Overall, the role of the State Manager within 
the architectural framework is to enable the seamless integration of different state 
management techniques and to decouple the agents from the raw metric collection 
process. This eliminates the need to restructure or re-implement the Metrics Manager 
if different observation patterns are being trialled when developing the agents. The 
realization of this module requires modelling the state of the system. This is a key 
task that will not only have a direct impact on the behaviour of the DRL agents but 
will also determine which algorithms are suitable to solve the problem at hand, this 
includes defining the dimensionality of the state as well as its continuous or discrete 
representation. Furthermore, this module requires the development of techniques to 
efficiently collect, manage, and aggregate disparate data from heterogeneous sources. 

In our proposed framework, enactors are responsible for carrying out actions as 
determined by different agents. The actions can alter the underlying infrastructure, 
the allocation of resources, and the placement of components through the Infras-
tructure Manager and the configuration of the streaming application through the 
SPE Deployment Manager. To achieve this, we will develop techniques for seamless 
and automatic execution of actions in distributed environments with minimal effect 
on performance. To adjust the parallelism of topology, we will develop algorithms 
that capture the state of the application at runtime and the load of the components’ 
instances to be redistributed without losing the current state of the application and 
redeploying the entire topology. 

4.4 Automated Techniques for Metrics and Configuration 
Management 

The Metrics Manager collects performance, health, load, and other metrics from the 
SPE, the container management system, and the cloud provider. These time series
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data are stored in a repository to be accessed by the State Manager and Exploration 
Aids modules. Examples of measurements recorded from the SPE include input and 
output queue sizes, time spent in garbage collection cycles, whether back pressure 
has been detected, number of acknowledgements, etc. The container management 
system can be queried for the cluster capacity, state of tasks, and resources consumed. 
From the cloud provider, data such as the lease period of virtual machines will be 
obtained. 

The Configuration Manager keeps track of the current system configuration and 
shares this information with the State Manager. An example of a configuration that 
is relevant to the system is the current mapping of components to machines. This 
information should be included as part of the state reported to an agent trying to 
optimize how topology is scheduled in the cluster to minimize communication over 
the network. The agent would then be able to associate a given mapping with a certain 
communication overhead to take appropriate actions towards its goal. 

5 A Case Study—Use Case Scenario: Multi-source Stream 
Video Analytics System 

5.1 Use Case Overview 

Video Feed Sources: To demonstrate the envisioned architectural framework, a 
multi-source streaming video analytics application is considered. This application 
serves as a comprehensive video analytics platform capable of ingesting video data 
from multiple sources. For instance, several cameras in a “Smart Traffic Monitor-
ing” system are possibly placed at traffic intersections or roads, diligently moni-
toring the flow of traffic, potential violations, and other vehicular activities. CCTVs 
in “Surveillance” systems could be strategically placed in public spaces, commercial 
premises, or even private properties. Video may also originate from “Aerial Imagery 
Footage,” where cameras are fixed on aerial vehicles like drones, capturing extensive 
footage from an elevated or bird’s-eye view. The core functionality revolves around 
preprocessing, conditional service distribution, video analysis, and storage. 

Pre-processing and Conditional Distribution: The incoming stream of video 
needs to be preprocessed. The preprocessing stage includes ensuring consistent video 
formats and compatibility with downstream processes, shrinking video sizes by drop-
ping unnecessary frames or reducing frame rates, and ensuring videos adhere to 
the specified width and height specifications. The preprocessed videos are further 
forwarded to a conditional service distribution to route the preprocessed videos to 
different services based on predefined conditions. The examples of predefined condi-
tions can be (a) based on time, where videos are processed at regular time intervals, 
(b) based on the size of the video, where larger videos might be treated differently 
from smaller videos, or (c) based on the source of the video.
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Video Processing: The same video can be sent to multiple independent services at 
the same time. In the current experiment, one service is implemented. This streamed 
video then undergoes a significant transformation in the “Video Grayscale Service”. 
Here, the original video stream is converted into grayscale. The rationale behind 
this is multifold—from conserving storage space and enhancing processing speeds 
to focusing primarily on detecting movement patterns and shapes instead of varied 
colour palettes. 

The implemented service uses Apache Spark1 and its streaming-related compo-
nents. Apache Storm2 and Apache Spark are two popular open-source stream 
processing engines that provide near-real-time latency. Both engines are highly scal-
able and process large volumes of data in a timely manner. In this experiment, Apache 
Spark is used over Apache Storm. This is primarily due to its ability to process data 
using in-memory computation, which makes it faster than Apache Storm [33–35]. 
In-memory computation primarily refers to storing and processing data directly in 
the RAM of the distributed nodes across the cluster, unlike traditional disk-based 
processing, where data needs to be read/write from/to a disk. Additionally, Apache 
Spark is easier to programme and fault-tolerant than Apache Storm, due to its resilient 
distributed datasets (RDDs) and dataset API. The community involved in Apache 
Spark is more active than Apache Storm’s community. This can be observed from 
the frequency of contributions to their respective Github repositories. 

At this stage, the streaming video frames are processed by multiple Spark execu-
tors parallelly for faster processing. These units (executors) work in parallel, each 
handling distinct segments of the video feed. Such a division allows the system 
to achieve heightened processing speeds and efficiency. Each executor uses the 
FFmpeg3 Python library for video-related operations. Upon grayscale conversion, 
the transformed video is labelled as ‘Processed Video’ and is handled by a dedicated 
executor. 

Distributed Computing with Spark and Storage: Fig.  3 shows two crucial 
components related to Spark: the Spark Driver and the Spark Cluster Manager. The 
“Spark Driver” is the central orchestrating process, coordinating various tasks. It 
is responsible for breaking down the application into smaller chunks that can be 
distributed across VMs in the cluster, ensuring that tasks are dispatched to available 
executors in an optimized manner, aggregating the results, and producing the final 
output. On the other hand, Spark Cluster Manager is responsible for managing the 
underlying VMs on which the application runs, allocating resources (e.g., CPU and 
memory) based on the requirements of the tasks or their configuration, monitoring 
the health of the VMs and re-allocating tasks in case of VM failures. Once the video 
segments have been processed through the Spark framework—divided, processed in 
parallel, and aggregated—the results are stored in the MinIO-based4 storage system.

1 https://spark.apache.org/. 
2 https://storm.apache.org/. 
3 https://pypi.org/project/ffmpeg-python/. 
4 https://min.io/. 

https://spark.apache.org/
https://storm.apache.org/
https://pypi.org/project/ffmpeg-python/
https://min.io/
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Fig. 3 Use case overview: streaming video processing 

Fig. 4 Use case implementation and infrastructure details 

MinIO provides an object storage solution that is scalable and compatible with the 
Amazon S35 API, making it a suitable choice for storing large volumes of video data. 

5.2 Use Case Implementation 

Figure 4 shows the implementation architecture of the proposed use case on streaming 
video grayscale and the underlying infrastructure.

5 https://aws.amazon.com/s3/. 

https://aws.amazon.com/s3/
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Table 1 Deployment infrastructure using Kubernetes 

VMs Role OS Flavour Storage Security group 

Master Controller, Worker Ubuntu 20.04 4 vCPU,  8 GB  
RAM 

30 GB Allow-all 

Worker1 Worker Ubuntu 20.04 4 vCPU,  8 GB  
RAM 

30 GB Allow-all 

Worker2 Worker Ubuntu 20.04 4 vCPU,  8 GB  
RAM 

30 GB Allow-all 

Worker3 Worker Ubuntu 20.04 4 vCPU,  8 GB  
RAM 

30 GB Allow-all 

Client User Ubuntu 20.04 2 vCPU,  4 GB  
RAM 

25 GB Allow-all 

5.2.1 Infrastructure Configuration and Toolstack 

The experiment relies on the computing and storage resources provided by the High 
Performance Computing Centre at the University of Tartu6 [C1]. The infrastructure 
consists of four VMs (as shown in Table 1): one acts as the client and the remaining 
three form the computing cluster. Ubuntu 20.04 Operating System (OS) is installed in 
the client VM, and it is equipped with 2 vCPUs, 4 GB of RAM, and 25 GB of storage. 
The client VM serves as a management and user interface for the entire system. The 
Kubernetes cluster consists of three VMs: master, worker1, and worker2, as shown  
in Table 1. Each VM is configured with Ubuntu 20.04 OS, 4 vCPU, 8 GB of RAM, 
and 30 GB of storage. 

As  shown inFig.  4, the use case is deployed atop a Kubernetes cluster and a number 
of tools are used for the overall management. Table 2 shows the list of tools used in 
this implementation, including their version and purpose in this implementation.

k3s7 version 1.27 is used for simplifying the installation and configuration process 
of Kubernetes. The latest Apache Spark v3.4.1 is installed atop the Kubernetes cluster. 
Deploying Spark jobs on Kubernetes pods leverages the platform’s capabilities for 
pod management, scaling, and resource allocation. This integration provides bene-
fits such as dynamic resource allocation, enhanced Spark tasks’ isolation, and seam-
less deployment in cloud-native environments. Listing 1 shows the spark-submit 
command to deploy video grayscale service on the Kubernetes cluster.

6 https://hpc.ut.ee/. 
7 https://k3s.io/. 

https://hpc.ut.ee/
https://k3s.io/


Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 301

Table 2 Toolstack used in implementation 

Tool name Version Purpose 

Kubernetes 
(k3s) 

1.27 An open-source container orchestration system for automating 
application deployment, scaling, and management. Kubernetes is used 
to manage and deploy Docker containers that are created for spark 
executors 

Docker 24.0.5 A platform used to develop, ship, and run applications inside 
containers. This is used to package up the video grayscale application 
and its dependencies together. The developed container image for 
video grayscale is stored in Docker Hub.a This ensures that the 
application runs consistently across different environments 

Apache 
Spark 

3.4.1 An open-source, distributed computing system that can process the 
large amounts of incoming video from multiple sources. It also 
provides an interface for programming entire clusters with implicit 
data parallelism and fault tolerance 

Tensorflow 2.14.0 A popular open-source ML library that comes with Keras API. Keras’ 
simplicity, modularity, and extensibility features are used to develop 
our DRL model 

OpenCV 4.8.0 An open-source computer vision and ML software library for 
preprocessing and processing the video 

NFS v4 NFS (Network File System), a distributed file system protocol that 
allows one executor to access video data over a network as if the 
network devices were attached to its local file system 

TinyDB 4.8.0 A lightweight document-oriented database optimized for use in 
small-scale environments. This is used for logging the DRL agent’s 
actions and execution times of video processing application 

ahttps://hub.docker.com/

Listing 1: Code snippet for deploying the use case on Apache Spark using 
“spark-submit” command 

./bin/spark-submit  --verbose \
--master k8s://http://172.17.67.89:8001     \ 
--deploy-mode client     \ 
--name spark-video-compress     \ 
--conf spark.kubernetes.namespace=default \ 
--conf spark.executor.instances=5     \ 
--conf spark.executor.cores=2 \ 
--conf spark.executor.memory=1000m \ 
--conf spark.dynamicAllocation.enabled=true \ 
--conf spark.kubernetes.container.image=apache/spark-py     \ 
--conf spark.kubernetes.authenticate.driver.serviceAccountName=spark  \ 
-- sfn.mialCemuloVtnetsisrep.semulov.rotucexe.setenrebuk.krapsfnoc -pvc-

volume.options.claimName=my-nfs-pvc \ 
--conf spark.kubernetes.executor.volumes.persistentVolumeClaim.nfs-pvc-volume.mount.path=/tmp \ 
--conf spark.driver.host=172.17.67.89 \ 
./myproj/drl_sspe/video_grayscaller.py

https://hub.docker.com/
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5.2.2 Implementation Description 

This section discusse\s the purpose of each component in demonstrating the video 
grayscale application, as shown in Fig. 4. The demonstration leverages the strengths 
of Kubernetes and Spark within a private cloud framework. 

At the start, we have various video sources, such as smart traffic monitoring 
systems, general surveillance cameras, and aerial imagery footage from devices 
like drones. All these feeds provide real-time video data that is forwarded to the 
Kubernetes-managed environment for processing. Inside this environment, the raw 
video data first goes through the Video Pre-processing Service followed by the Condi-
tional Service Distribution, which determines the route for these videos, as discussed 
before. Spark is tightly integrated into this architecture for distributed computing. 
Each executor is hosted inside a pod with one container. The executor accesses the 
“/tmp/” directory inside the container’s file system to access the video chunk. The 
NFS server is installed on one of the servers for the storage of video data. A persistent 
volume is created in Kubernetes environment with “nfs” storage class. Accordingly, 
a persistent volume claim is created for this application, which will mount the NFS 
directory to the “/tmp/” directory of each executor’s pod. The video grayscale appli-
cation is containerized and the build image is pushed to Docker Hub. The container 
image can be accessed with the name “reachchinu/spark-py:opencv”. The container 
inside each pod is created based on this container image. 

As discussed before, Spark’s driver interacts with Spark’s cluster manager for 
the overall management of application execution. However, the developed DRL-
based algorithm “DRL-SSPE” interacts with Spark’s Driver (through spark-submit 
command) for the resource configuration of the application. The configuration set 
provided by DRL-SSPE includes:

• SPARK_EXECUTOR_CORES: This refers to the number of CPU cores to be 
used by each executor. For instance, if SPARK_EXECUTOR_CORES = 2, then 
each executor will use 2 CPU cores. This directly affects the number of tasks an 
executor can run concurrently.

• SPARK_EXECUTOR_INSTANCES: This defines the total number of executors 
that will run across the cluster for a particular Spark job. For example, setting 
SPARK_EXECUTOR_INSTANCES = 10 means that 10 executor processes will 
be launched across the cluster nodes.

• SPARK_EXECUTOR_MEMORY: This specifies the amount of memory to be used 
by each executor. This memory allocation includes both the memory used by data 
structures inside the application and the overhead memory (memory used by 
Spark’s internal operations). For instance, if SPARK_EXECUTOR_MEMORY 
= 4 g, each executor will get 4 gigabytes of memory. 

DRL-SSPE also communicates with TinyDB for logging the cluster’s perfor-
mance history and events. This includes the configuration provided by DRL-SSPE, 
the number of video data partitions, the size of the batch (video chunk), the number of 
frames present in a batch, timestamp, execution time for each running instance, etc.
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Fig. 5 Execution workflow during training phase 

TinyDB stores the data in JSON format. In the current implementation, the database 
can be accessed from the “/logs/” directory present in Spark’s working directory. 

The DRL-SSPE agent deploys the Spark jobs from the client VM. Using the 
“spark-submit” command, the jobs are deployed in client mode, with the flag 
“–deploy-mode client”, as shown in Listing 1. This indicates that the Spark “driver” 
is deployed on the client machines, while other tasks are deployed on the Kubernetes 
cluster, as shown in Fig. 4. Figure 5 shows the detailed execution flow of DRL-SSPE 
during its training phase. 

The process starts with the invocation of DRL-SSPE. This initiates the 
training process of the agent. The agent explores a different set of configurations 
(SPARK_EXECUTOR_CORES, SPARK_EXECUTOR_INSTANCES, and SPARK_ 
EXECUTOR_MEMORY ) based on its reinforcement learning model to ensure 
optimal performance. For each combination of parameters, the agent invokes a script 
(deploy_application.sh) which will eventually deploy the video grayscale applica-
tion through spark-submit command as given in Listing 1. This also observes the 
execution time and other performance metrics. The agent further uses the metrics to 
update and optimize its policy. 

5.3 DRL-SSPE Implementation for Video Grayscale 

This section discusses the design and development of DRL-based algorithm for the 
optimal allocation of cluster resources for the Spark application. Creating a DRL 
algorithm to optimize the configuration of an Apache Spark application deployed
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on a Kubernetes cluster involves (a) defining the Environment (the state, action, and 
reward for the DRL agent), (b) the agent (implementation of the DRL agent using 
Deep Q-network) and (c) a training phase (training the DRL agent to find the optimal 
configuration). The reward value is inversely proportional to the processing time of 
the video frames. The processing time is measured in milliseconds. The goal of the 
DRL agent is to maximize the reward by minimizing the video processing time by 
tuning the configuration of Spark and the allocation of resources. 

DRL-SSPE implementation environment 

The environment is the Kubernetes cluster where the Apache Spark job is being 
deployed and executed. Every time the DRL agent takes an action by changing 
configuration values, a new Spark job is submitted to the Kubernetes cluster, and the 
execution time is observed. Table 3 outlines the parameters that the DRL agent 
is responsible to tune based on the input video stream and other spark-related 
parameters. 

Table 4 outlines other DRL and application-related parameters. The Gamma value, 
which reflects the discount factor for future rewards, is set at 0.95, suggesting a 
moderate emphasis on future rewards versus immediate ones. With an initial value of 
Epsilon = 1.0, the DRL agent will prioritize exploring the action space. For the explo-
ration rate, we set the minimum value of Epsilon (i.e., Epsilon_min) to 0.01, ensuring 
that the agent retains a minimal level of exploration. The value of Epsilon_decay = 
0.995 will gradually reduce the epsilon value from its initial state to encourage a 
shift from exploration to exploitation of the learned policy. The Learning rate is set 
to 0.001, indicating a cautious approach to updating the agent’s knowledge. The 
agent is configured to go through a maximum of 500 episodes, which are individual 
sequences of interaction with the environment. Related to the video partitioning for 
the Spark environment, the number of partitions ranges between 5 and 8. For each 
partition, we collect a minimum of 10 frames and a maximum of 60 frames before 
forwarding the frames to the Spark environment for compression.

Table 3 Apache spark parameters 

Resource configuration Min. Max. 

SPARK_EXECUTOR_CORES (number of CPU cores per executor) 1 3 

SPARK_EXECUTOR_MEMORY (amount of memory per executor) 500 1000 

SPARK_EXECUTOR_INSTANCES (Total number of executors) 5 8 

Spark container image reachchinu/ 
spark-py:opencva 

Persistent volume type nfs 

Max waiting time (maximum time to wait for an input video to finish 
processing) 

10 min 

ahttps://hub.docker.com/repository/docker/reachchinu/spark-py/general 

https://hub.docker.com/repository/docker/reachchinu/spark-py/general
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Table 4 DRL and 
application-specific 
parameters 

Parameter Value 

Gamma 0.95 

Epsilon 1.0 

Epsilon_min 0.01 

Epsilon_decay 0.995 

Learning rate 0.001 

Episodes 500 (max) 

Number of partitions 5 (min) 8 (max)  

# of frames per partition 10 (min) 60 (max) 

5.4 Results Discussion 

In the above sections, we discussed the implementation of a streaming video compres-
sion application using Apache Spark and presented detailed architecture. For a stream 
of video, the designed DRL algorithm determines the amount of resources to allo-
cate to a given application and accordingly configures Spark to process the incoming 
video stream. In this section, we discuss the observed implementation results in terms 
of video processing time, the performance of the DRL agent, and the computation 
overhead incurred by DRL and Apache Spark. 

5.4.1 Video Processing Time 

Figure 6 provides an empirical comparison between two resource configuration 
strategies for the Spark-based video processing application, as mentioned in previous 
sections. We observed the time taken to process varying numbers of frame rates, 
ranging from 10 to 60 frames per second (fps) under two different scenarios: (a) the 
resource configurations set by a Deep Reinforcement Learning (DRL) agent versus 
(b) configurations determined randomly. As expected, the progression of data points 
indicates an increase in processing time corresponding to the increase in the number 
of fps irrespective of the strategies. It is observed that the DRL agent consistently 
achieves lower processing times across all frame rates. At the lowest observed frame 
rate of 10 fps, the average processing time of a frame with DRL is recorded at 
approximately 419 ms (ms), in contrast to approx. 600 ms when the configuration 
is determined randomly for the same fps. This pattern persists throughout the exper-
iment under different fps rates. Such superior performance by the DRL agent can 
be attributed to its ability to learn and adapt, unlike the random approach, which 
does not consider the system’s performance feedback. The DRL agent likely sets 
suitable configurations in a way that is sufficient for the incoming frames, avoiding 
both excess and deficiency of resources. The random configuration method does not 
have such capacity to learn from the previous experience. A similar pattern is also
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observed when the number of fps increases to 60, where DRL is able to process in 
20% less time compared to a random resource configuration. 

Figure 7 provides insight into the overall resource configuration determined by 
the DRL agent and random approach across all forms of experiments. The resource 
configuration mainly refers to the number of executor instances used, and the 
resources (CPU cores and memory) allocated to those executors. From Fig. 7, we  
can deduce that as the number of fps increases from 10 through 60, there is a corre-
sponding incremental increase in the number of Spark executors, cores, and memory 
allocated by both the DRL agent and the random configuration. 

Figure 7a shows the average number of Spark executor cores used for processing 
video frames under two different resource configuration strategies: Firstly, when 
the DRL agent sets it and secondly, when it is determined randomly. When the fps 
rate is set to its lowest number, i.e., 10 fps, the DRL agent configures the system

Fig. 6 Avg. frames’ processing time 

(a)  (b) (c) 

Fig. 7 Average resource allocation with the DRL method and without DRL or random approach 
a average number of cores assigned to each spark executor b average memory allocated to each 
executor and c average number of executor instances 
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to use an average of one core per executor, while the random configuration sets 
the cores to an average of 1.14 cores per executor. As the frame rate increases to 
60 fps, the DRL agent allocates an average of 1.65 CPU cores, in contrast to the 
random configuration, where an average of 1.52 cores are assigned to each executor. 
Similarly, the average memory in megabytes (MB) allocated to the executors under 
different fps rates is shown in Fig. 7b. In this figure, a clear consistent increasing trend 
in memory allocation with the increase in fps rate is observed. Starting from approx. 
600 MB for 10 FPS, the memory allocation rises consistently to approximately 
1000 MB for 60 FPS as determined by the DRL agent. Such a pattern suggests that 
the DRL agent is trained to scale up memory resources in response to an increase in 
the number of frames being processed each second. On the other hand, an increase 
in memory allocation with rising FPS is also observed when the configuration is 
decided randomly, but the increments do not appear as consistent or as proportionate 
as those of the DRL agent. For instance, at 10 fps, the random configuration begins 
at a lower memory allocation of approx. 500 MB and ends at approx. 800 MB for 
60 FPS, which is significantly less than what is allocated by the DRL agent for the 
same fps rate. While the difference in the number of cores and memory allocation 
between the DRL and random configurations may appear small as in Fig. 7a, b, the 
impact on processing times can be significant, as shown in Fig. 6. 

The time taken to process the streams of video frames is also affected by the 
number of spark executors created to process those frames. The average number of 
executor instances created randomly and by the DRL agent with varied fps rates 
is shown in Fig. 7c. It is observed that as the number of fps increases, the DRL-
configured Spark executor instances also increase. Starting at approximately five 
executors for handling the incoming video at 10 fps, the number of executors rises 
steadily to more than an average of 7.5 when the fps rate increases to 60. This gradual 
increase suggests that the DRL agent actively scales up resources to accommodate 
the higher processing demands that come with increased frame rates, unlike the 
random approach. The random approach shows a less systematic and potentially 
less efficient approach where the required number of executors does not increase in 
direct proportion to the frame rate, resulting in suboptimal performance. The trends 
in Fig. 7 suggest that the DRL agent is more sensitive to the increase in fps rate and 
thus consistently increases resources to handle the additional load, unlike the random 
approach. 

In addition to processing time and average resource configuration, as shown in 
Figs. 6 and 7, we also observed the average resource (CPU cores and memory) 
utilization (in percentage) and presented in Fig. 8. Figure 8a compares average CPU 
utilization between configurations set by a DRL agent and a random approach across 
varying numbers of fps. Similarly, Fig. 8b shows the average memory utilization 
across varying numbers of fps rates. When the DRL agent is used to determine 
the resource allocation, the CPU utilization increases from approx. 30% to 80% 
and memory utilization increases from approx. 9% to 23%, as shown in Fig. 8a, b, 
respectively. On the other hand, under random configuration, a higher CPU utilization 
of approx. 37% and memory utilization of approx. 8% is observed when the fps rate is 
only 10. However, the same rate of increase in resource utilization is not maintained
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while the fps rate increases to 60, where CPU utilization is less than 60% and memory 
utilization is near to 15%. The results in Figs. 6, 7, and 8 indicate the efficiency of 
DRL. It is able to make efficient usage of resources with the right set of configurations 
without compromising the processing time. Such comparison highlights the potential 
advantages of employing DRL for the management of resources in computationally 
intensive applications like video processing using Apache Spark.

5.4.2 DRL Training Performance 

Figure 9 provides an overall performance of the DRL agent at different stages of its 
training process. The learning rate is also set to 0.001, which influences the rate at 
which the agent updates its knowledge base. The X-axis in all subfigures represents 
the number of steps (or iterations) the DRL agent has undergone in the training 
process. We carried out a total of 250 thousand steps with a mixed number of fps 
rates ranging between 10 and 60. With different steps and episodes, the running 
reward average and episodic average of the reward are calculated to observe the 
performance of the training process. A larger number of steps indicates the agent has 
explored and learned the environment better. The rewards in each step are inversely 
proportional to the processing time of the streaming frames. A higher processing 
time will lead to lower reward gain. Figure 9a shows the reward value the agent 
received in each step, which ranges between 2.10E–06 and 1.30E–05. As shown  in  
Fig. 8a, it is observed that the agent received an initial lower reward value, which 
then increases, indicating that the DRL agent is starting to learn from its previous 
experience. As training continues, there is a noticeable fall in the reward, followed 
by a recovery. This is due to unexpected behaviour of the cluster and other tools, 
including Spark, Kubernetes, log manager, and storage server during those steps. 
Such unexpected behaviour of the entire setup could be due to the agent exploring 
less successful strategies or actions.

Similarly, Fig. 9b shows the running average of the reward received by the DRL 
agent over training steps. Initially as training begins, the average reward is low, 
but it quickly rises as the DRL agent starts learning from its interactions with the 
cluster/environment. This initial rapid increase, until approximately 10 thousand 
steps, indicates that the agent is successfully identifying and exploiting strategies 
that yield higher rewards. The plateau phase, where the pattern flattens and the 
average reward becomes stable or has no significant gains, suggests that the agent 
has reached a level of consistent performance and converged reward, which occurs 
approximately after 50 thousand steps. The plateau occurs because, as the agent 
learns more about the environment, the relative improvement in performance for 
each new discovery decreases. In other words, the agent has possibly identified 
and is now exploiting the most rewarding strategies available given the constraints 
and the dynamics of the environment. We also observed the mean episodic average 
reward received by the agent, as presented in Fig. 9c. The mean episodic average 
reward is also known as the average reward the agent receives for every episode, 
where an episode is a set of steps. This metric helps in understanding the agent’s
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(a)    (b)  (c) 

Fig. 9 DRL training performance over time a reward received in each step b Running average 
reward received by agent and c mean episodic reward received by the agent

performance over longer sequences of actions, providing insight into how well the 
agent is learning to configure the resource for a specific fps rate. Each data point on the 
graph in Fig. 9c corresponds to the average reward received by the agent per episode, 
with the number of episodes ranging from 2 to 500. Initially, the mean episodic 
rewards are lower, approximately 4.00E–07, and as the agent continues to learn and 
refine its strategies through thousands of interactions with the spark environment, 
these rewards gradually increase to approximately 6.5E–07 by the time the agent 
has completed all the training steps, e.i. 250,000 or 500 episodes. Similar to Fig. 9b, 
the mean episodic reward in Fig. 9c also suggests the convergence of reward after 
approx. 250 episodes. 

5.4.3 Computation Overhead 

Figure 10 illustrates the time taken by Apache Spark and the DRL agent during and 
after the training process. The results obtained demonstrate the benefits of using 
a DRL agent to optimize resource configuration at the cost of minimal additional 
computation time required by the agent. Figure 10a presents the computational over-
head during the training phase of the DRL agent, comparing it with the overhead of 
the Apache Spark cluster. The x-axis represents the number of frames per second 
(fps), ranging from 10 to 60 fps, while the y-axis displays the computation overhead 
as a percentage. The observed results show that the DRL agent introduces a consis-
tent computational load to the system during its training phase. It is noteworthy that 
the number of frames being processed per second by Spark does not influence this 
overhead. At 60 fps, the DRL agent accounts for less than 20% of the total training 
time, while Spark spends the remaining approximately 80% of the time processing 
the input frames. A similar pattern is observed at 10 fps, where the DRL agent’s 
training consumes less than 15% of the time, and approximately 85% of the time 
is spent processing the input frames with Spark’s resources configured by the DRL 
agent.

In Fig. 10b, the execution time in the testing phase is observed. The graph shows 
a clear and expected trend where the total execution time, including both Spark and
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(a)    (b) 

Fig. 10 Time spent by DRL and apache spark a during training and b after training

DRL processing, increases as the fps rate rises from 10 to 60 fps. For example, at 
10 fps, the average time required to process a frame is approximately 400 ms. This 
processing time climbs to nearly 1000 ms when the system receives input at 60 fps. 
The results indicate that the DRL is responsible for adding approximately 45–55 ms 
to the processing time, irrespective of the input fps rate. When the fps rate is set to 
60, a 5% overhead is attributed to the DRL. Conversely, at 10 fps, a 10% overhead 
by the DRL is observed, demonstrating the DRL agent’s consistent computational 
demand regardless of the frame rate. 

6 Conclusions and Final Remarks 

Heterogeneous data sources continuously generating data are becoming mainstream 
in today’s ubiquitous world. Social media feeds, vital signs measurements, stock 
trades, and mobile call records are all examples of continuous data that is analysed 
by streaming applications to produce meaningful knowledge in real time. These 
insights are key for enterprises worldwide; hence, the ability to efficiently and auto-
matically process this data as proposed by our vision will support these organizations 
and contribute highly towards the global economy. In particular, the outcomes of the 
realization of our proposed vision include (a) a general serverless framework appli-
cable to a range of SPEs deployed in cloud environments, (b) DRL agents capable 
of managing SPEs and their environments to achieve and maintain performance 
goals, (c) principles and solutions to the limited exploration ability of DRL agents 
in large-scale distributed environments, and (d) a MADRL solution to coordinate 
the actions of agents to automate and improve resource management in distributed 
environments. 

As billions of devices such as cars, farm machinery, and surveillance cameras 
will be connected to the Internet by 2030 [20], this will create a digital era with 
extraordinary business opportunities for Australia. It is estimated that these devices 
will produce approximately 5 quintillion bytes of data everyday [21]. Approaches
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proposed in this article will enable the analysis of these data and the delivery of 
insights in a timely manner. 

This vision article’s objective is to propose the creation of Multi-Agent Deep Rein-
forcement Learning (MADRL) solutions for serverless stream processing systems 
with the goal of supporting the automated and efficient deployment of real-time 
data analytics while ensuring Service Level Objectives (SLOs) are met and main-
tained throughout the applications’ lifetime, thus driving commercial and scientific 
advancements. To achieve this objective, our future directions entail the following 
guidelines:

• Propose an architectural framework for Stream Processing Engines (SPEs) with 
the ability to automatically adapt their configuration to maintain SLOs in response 
to changes such as load spikes and performance variation.

• Define the actions, rewards, and states that would enable a multi-agent deep 
reinforcement learning system to efficiently manage the cluster resources while 
working towards achieving and maintaining a user-defined service level objective. 
Agents in the system will have the ability to interact with the cloud environment 
and stream processing system by (a) scaling the cluster resources, (b) scaling the 
parallelism of topology components, (c) tuning system parameters, (d) dynami-
cally configuring the placement of topology components in the cluster machines, 
and (e) dynamically adjusting the amount of resources assigned to containers.

• Investigate the problem of high exploration cost for RL agents in SPEs deployed in 
large-scale distributed platforms and the trade-off between limited or conditioned 
exploration versus agent performance.

• Develop a software platform incorporating the above mechanisms and techniques 
for serverless management of resources in stream processing engines. 
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