
Deep Reinforcement Learning
(DRL)-Based Methods for Serverless
Stream Processing Engines: A Vision,
Architectural Elements, and Future
Directions

Maria R. Read, Chinmaya Dehury, Satish Narayana Srirama,
and Rajkumar Buyya

Abstract Streaming applications are becoming widespread across an extensive
range of business domains as an increasing number of sources continuously produce
data that need to be processed and analysed in real time. Modern businesses are
aggressively using streaming data to generate valuable knowledge that can be used to
automate processes, help decision-making, optimize resource usage, and ultimately
generate revenue for the organization. Despite their increased adoption and tangible
benefits, support for the automated deployment and management of streaming appli-
cations is yet to emerge. Although a plethora of stream management systems have
flooded the open-source community in recent years, all of the existing frameworks
demand a considerably challenging and lengthy effort from human operators to manu-
ally and continuously tune their configuration and deployment environment in order
to reach and maintain the desired performance goals. To address these challenges,
this article proposes a vision for creating Deep Reinforcement Learning (DRL)-based
methods for transforming stream processing engines into self-managed serverless
solutions. This will lead to an increase in productivity as engineers can focus on
the actual development process, an increase in application performance potentially
leading to reduced response times and more accurate and meaningful results, and a
considerable decrease in operational costs for organizations.

M. R. Read · R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and
Information Systems, The University of Melbourne, Melbourne, VIC, Australia

C. Dehury (B)
Institute of Computer Science, The University of Tartu, Tartu, Estonia
e-mail: chinmaya.dehury@ut.ee

S. N. Srirama
School of Computer and Information Sciences, The University of Hyderabad, Hyderabad, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
A. Mukherjee et al. (eds.), Resource Management in Distributed Systems, Studies in Big
Data 151, https://doi.org/10.1007/978-981-97-2644-8_14

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-2644-8_14&domain=pdf
mailto:chinmaya.dehury@ut.ee
https://doi.org/10.1007/978-981-97-2644-8_14

286 M. R. Read et al.

1 Introduction

Traditionally, when developing and deploying applications in the cloud, users are
required to address several concerns regarding the compute resources running behind
the scenes. To mitigate the shortcomings associated with this, cloud service providers
such as Amazon introduced function-as-a-service offerings via products like AWS
Lambda. Although function-as-a-service is one of the first offerings to realize
serverless computing in cloud environments, the serverless paradigm continues to
evolve and encompasses a broad range of cloud services that aim to completely
hide the complexity of infrastructure and operational management from application
developers [1].

Serverless computing allows developers to focus on application implementation
and innovation as they no longer have to deal with server administration, performance
tuning, cluster management, and autoscaling, among others [2]. These responsibili-
ties are delegated to the serverless framework, which receives the application code
and automatically deploys it in a cloud environment. Relying on this model enables
organizations to significantly reduce infrastructure costs, release revenue-driving
applications more quickly into production, and have expert personnel focused on
developing applications that create value for the organization.

Streaming applications are at the core of many modern businesses. For example,
the manufacturing industry relies on streaming data to enhance production lines
by monitoring performance and predicting faults before they occur [8]; real-time
network traffic analysis is used to identify and respond to security incidents [3];
and financial institutions are processing streams of data to detect changes in stock
prices and automatically rebalance portfolios [4]. Health, social, and environmental
use cases are also abundant. For example, physiological data streams of patients
undergoing anaesthetic can be analysed to raise early warnings [5], data generated
during and after a disaster can be used to produce warnings through social media
platforms [6], and live traffic data can be used to optimize traffic flow [7].

Streaming applications are represented as graph topologies with multiple inter-
related components. Deployed topologies usually have a complex network of repli-
cated components that are continuously processing vast amounts of data with strin-
gent performance requirements such as millisecond end-to-end latencies [8, 38].
They are long-running applications as their lifetime can span days, weeks, or even
months. In fact, many are required to be deployed for an unlimited period of time,
just like user-facing web applications. Stream Processing Engines (SPEs) or systems
[37] are large-scale distributed systems that are designed specifically with the char-
acteristics of streaming applications in mind. Data tuples originating from a stream
source flow through the system as they are generated, allowing real-time data anal-
ysis without the need of storing data and processing it in batches [14]. There has been
a considerable influx of SPEs into the open-source community in recent years due to
the rise in demand for real-time data analysis. Examples include Storm [9], Samza
[10], Heron [11], Flink [12], and Spark [13]. Still, none of these systems has been
designed with the purpose of simplifying their use from the application developer’s

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 287

perspective and much of the underlying complexity of the distributed system and the
distributed infrastructure has been passed on to users to manage.

As a result, the use of existing SPEs is non-trivial, and application deploy-
ment entails a considerable effort from software engineers who must define values
for a myriad of performance-affecting configuration parameters and estimate the
capacity of the compute infrastructure where the SPE will run [15]. More impor-
tantly, choosing appropriate configuration values to achieve a desired level of perfor-
mance demands a thorough understanding of the internal workings of the SPE, the
infrastructure in which the system is deployed, the dynamics and implementation
details of the application’s topology, and the rate at which data is generated by
the source. This process also entails multiple manual trial and error runs repeated
continuously throughout the lifetime of the application, as external factors such as
load spikes affect its execution. Hence, current SPEs are prone to SLA violations,
require constant expert technical personnel on call attending to incidents, and have
a suboptimal use of resources, all of which lead to increased operational costs and
decreased application performance.

We identify challenges in three levels of tuning, currently expected from users by
existing SPEs:

System Parameter Tuning: Existing SPEs provide users with a plethora of config-
urable parameters, leaving it up to operators to manually explore different value
combinations. Furthermore, they leverage container management systems to manage
cluster resources. This brings another challenge for users, who must define the amount
of CPU and RAM that are to be used by the application components, which is chal-
lenging as this requires extensive profiling of the application and workload fore-
casting. Values for these parameters have an effect in performance and cost: over-
estimating resources results in higher infrastructure costs, while under-estimating
results in reduced application throughput and increased end-to-end latencies.

Application Parameter Tuning: SPEs require users to specify the parallelism,
or number of replicas, of each component in a topology. More replicas will enable
components to process higher volumes of data, resulting in higher throughput. Under-
estimating this value leads to a topology riddled with backpressure, while overesti-
mating it leads to low resource utilization. Furthermore, the parallelism of compo-
nents must be adjusted throughout the lifetime of the application to compensate for
failures, performance variation in compute and network resources, and load spikes.

Infrastructure Management: Clusters supporting the execution of SPEs can be
deployed on any distributed environment, but in today’s cloud-dominated era, this
is almost always a public Infrastructure as a Service provider. Currently, no SPE
provides cluster autoscaling capabilities to support changing application workloads.
Instead, users must estimate the capacity of the cluster and (i) overprovision resources
to account for unforeseen load spikes or (ii) manually adjust the cluster size as
a reactive measure to a load spike. Overprovisioning results in reduced return on
investment for an organization and under-provisioning may result in loss of revenue
due to application downtime.

Overall, delegating the responsibility of these challenges to application and system
engineers is inefficient, error prone, and time consuming. It is unrealistic to expect

288 M. R. Read et al.

Fig. 1 Architectural model from traditional to serverless stream processing engines

operators to have a comprehensive understanding of all the configurable system
knobs and explore an immense search space to find a combination that achieves the
SLOs for the current state of the system and underlying infrastructure. Therefore,
by leveraging multi-agent reinforcement learning, our proposal aims to offer SPEs
the ability to automatically adapt in response to environmental changes in order to
maintain the desired quality of service requirements. Figure 1 illustrates our vision
for serverless SPEs (on the right) compared to traditional architectures (on the left).
Along with the application’s topology, users will be able to submit their desired
SLOs (e.g., throughput), and delegate the responsibility to the self-tuning system
to determine the system’s and infrastructure’s optimal configuration. Our proposed
system will have the ability to react to external shocks by automatically scaling and
reconfiguring itself as needed. It will automatically recover not only from failures
but also from degradation of system performance.

2 Significance and Innovation of Our Vision

Our vision article proposes to create serverless stream processing engines with auto-
nomic capabilities. The proposal is innovative, original, and highlights significant
problems that need to be overcome:

• Timeliness: Despite their increased adoption and tangible benefits, support for
the automated deployment and management of streaming applications is yet to
emerge. In today’s x-as-a-service era, serverless computing is taking the cloud
computing world by storm, organizations with stream processing needs are also
seeking for ways to leverage the benefits of infrastructure-unaware and cloud-
managed deployment. The demand for this type of solutions can be seen in
the increased adoption of “serverless streaming services” offered by many cloud
providers. Such an approach to stream processing is not based on engines specif-
ically designed with the needs of streaming applications in mind; instead, it

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 289

is based on the integration of existing serverless models such as function-as-
a-service (FaaS) (e.g., AWS Lambda) and backend storage-as-a-service (e.g.,
DynamoDB). The existing FaaS model constrains applications to be stateless,
forcing topology components to manage state via remote storage systems, which
greatly impacts performance. Another disadvantage of existing serverless stream
processing deployments is the lack of support for complex topologies. Distributing
data to different components based on a tailored function is non-trivial and requires
additional development effort. Furthermore, using mainstream serverless compo-
nents misses the opportunity to optimize application deployment by taking into
consideration its very specific set of requirements and stringent performance
needs. Therefore, although current “serverless streaming services” deliver in their
promise of automated deployment, the scope of streaming applications that can
benefit from them is greatly limited by the restrictive serverless model they are
based on and the simplicity of their data processing graph. Our vision aims to
transform purposely designed stream processing engines into serverless solutions,
moving the difficulties of infrastructure management, deployment, and perfor-
mance tuning away from operators. This will enable the essence of serverless
computing to be met by eliminating infrastructure management responsibilities
and will ensure that QoS requirements are automatically satisfied and maintained
throughout the application’s lifetime. In particular, by automating real-time data
processing systems, these will become more resilient to equipment failure and
human errors. The self-adapting system we propose will adapt and recover from
failures affecting the performance of applications and, since the goal is to reduce
human interaction, human errors will be less likely.

• Originality and Innovation: New advances in Deep Reinforcement Learning
(DRL) have unlocked the potential of artificial intelligence to a range of domains
with complex problems that need solving. The super-human performance obtained
by many algorithms in AI benchmarking applications, such as Go and Atari
games, suggests that the potential of these techniques must at least be explored
in different areas. Serverless and stream computing are mainstream technolo-
gies underpinning countless modern businesses and applications, yet there is still
vast room for improvement in them. They can greatly benefit from the ground-
breaking and rapidly evolving DRL field. Exploring the implementation of a
Multi-Agent DRL (MADRL) approach to combine them is novel compared to
existing approaches automating systems from a single isolated perspective (e.g.,
scheduling, autoscaling, parallelism) based on traditional optimisation approaches
such as greedy heuristics and evolutionary algorithms. Furthermore, enhancing
SPEs with serverless capabilities as proposed in this vision article is also an inno-
vative idea. It breaks away from the already defined and restrictive serverless
model offered by cloud providers and acknowledges that it is insufficient to fulfil
the requirements of streaming applications.

• Advancement of the Discipline: Exploring the intelligent automation of SPEs
via DRL is a novel approach that has the potential of furthering not only SPEs but
the cloud and serverless industries as well. Just as SPEs, there are many distributed
systems whose adoption is rising in cloud and edge/fog environments. They have

290 M. R. Read et al.

similar requirements to streaming systems and as distributed applications, can
greatly benefit from better and smarter automation. The proposed vision will
help in advancing many modern applications by demonstrating the applicability
of DRL to the automation and resource management optimization problem in
large-scale distributed systems.

• Significant Business Opportunity: Cisco estimates 500 billion devices to be
connected to the Internet by 2030 [20]. This exponential growth gives place to
a new digital era with unprecedented opportunities for organizations around the
world. Devices such as surveillance cameras, cars, farm machinery, smart TVs,
toys, and wearables, are examples of appliances that are part of this intercon-
nected era and are continuously producing data. It is estimated that these devices
will produce approximately 5 quintillion bytes of data everyday [21]. The anal-
ysis of these data is essential to businesses and people to deliver insights that
enable them to make better and more informed decisions. Real-time data analysis
is therefore becoming critical for organizations to create, improve, and maintain
their competitive edge. The challenge is to build the right digital infrastructure
and enable the right set of applications to harness this data and draw insights. As
the proposed vision focuses on this particular problem, it will create significant
business opportunities for organizations by making stream processing engines
more accessible, efficient, and easier to use. Not only will it do so in the stream
processing field, but the ideas from this vision article transferable to the server-
less paradigm in general, contributing towards the goals of the next-generation
cloud computing where cloud resources are better utilized, infrastructure costs are
reduced, less energy is consumed, and application management and deployment
is fully automated.

3 Architectural Framework

We propose the use of Deep Reinforcement Learning (DRL) to optimize the values
of different parameters across three different configuration levels (system, applica-
tion, and infrastructure) and determine the set of actions that can be taken to solve
performance problems that arise in the deployment of streaming applications. Despite
recent advances in DRL, this approach is yet to be explored in the context of self-
tuning systems and SPEs. The steps for the realization of the proposed vision consist
of the following:

• Architectural framework for serverless SPEs with the ability to maintain desired
SLOs;

• Multi-agent DRL approach that enables the automated management of SPEs and
cluster resources;

• Policies that reduce the exploration cost for RL agents in SPEs deployed in large-
scale distributed platforms;

• Prototype system and demonstrator streaming applications deployed in a Cloud
computing environment.

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 291

In an RL approach, feedback from the environment determines which action an
agent will take next, with the agent making value judgements in order to select good
actions over bad ones. In the context of this proposed vision, the RL agents will
work towards a user-defined SLO goal, such as maintaining a desired throughput
rate. The environment corresponds to the state of the deployed SPE, application,
and compute infrastructure. The actions entail changes to the environment that affect
the performance of the engine. These include scaling the cluster resources in or out,
changing the parallelism of one or more components in the application, reconfiguring
the placement of the components, and changing the values of the SPE’s parameters,
among others. A reward function measures the effectiveness of an action, or set of
actions, towards the desired SLO.

There are multiple challenges when implementing the aforementioned DRL-
based solution. First, the optimization space is broad and complex. To illustrate
this, consider the case of tuning the parallelism of a topology with 5 components.
Assume a cluster capable of accommodating a total of 50 component instances; that
is, it has 45 free slots to accommodate replicas. Exploring the search space would
involve exploring 49!/45!(4!) = 211, 876 different parallelism combinations. This
over simplistic scenario is not considering the placement of components within the
cluster machines, their communication overhead, or the heterogeneity of machines
and topology components.

Second, the action space is also extensive. In the above example, actions to tune the
parallelism of an application could be defined as increasing/decreasing the number
of replicas of a component by one or leaving it unchanged. This would lead to 35

= 243 discrete actions for a small topology with 5 components. The system should
also be capable of considering actions related to the autoscaling of the cluster, the
placement of components, the allocation of resources within a machine, and the
values of system parameters. This leads to an action space of significant cardinality,
which results in the framework requiring a considerable amount of learning time and
data.

Third, the state of the system is broad and complex; it is represented by the
machines in the cluster, the placement of operators within these machines, the
resource utilization of operators, the values of the SPE’s parameters, the internal
state of the SPE such as the size of the input and output buffers, the data emission
rate, and the value of QoS parameters such as throughput and latency. Modelling and
capturing this state with minimum performance interference and determining what
is meaningful for the agent to observe requires careful design and evaluation.

Fourth, balancing the exploration versus exploitation trade-off is particularly
challenging in distributed systems with real-time processing needs. In this article,
agents have a restricted ability to freely explore their environment as this can signifi-
cantly hurt performance (e.g., scaling down resources), can be time consuming (e.g.,
provisioning resources and redeploying the topology), and can result in additional
costs (e.g., scaling out the cluster). Finally, defining functions capable of quanti-
fying the efficiency of an action towards a desired goal is not straightforward. For
example, although an action is appropriate to eliminate a performance bottleneck in a
topology’s execution, the performance benefits of such action may only be seen after

292 M. R. Read et al.

Fig. 2 DRL-based serverless framework for stream processing engines

a certain amount of time has passed and the system has reached a steady state. In fact,
performance may first decrease as the topology is redeployed for example. Capturing
this behaviour in the evaluation mechanisms guiding the rewarding process is a chal-
lenging task. With these challenges in mind, we propose a Multiple Agent Deep
Reinforcement Learning (MADRL) system as depicted in Fig. 2 to realize server-
less stream computing, with the architectural components discussed in the following
section.

4 Research Issues and Envisioned Approaches/Future
Directions

4.1 DRL-Based Resource Management Agents

RL enables agents to learn by trial and error based on rewards obtained from their
environment. In DRL, this knowledge is built using multi-layer neural networks,
which progressively extract higher level features from raw input observed by the
agents. This enables DRL to be applied to high-dimensional problems and hence,
makes it a promising approach to solving complex real-world problems. We propose
the use of DRL to compute policies that drive the decision-making process of agents
managing the deployment of streaming applications and tuning their performance.
There have been considerable advances in DRL since 2015, when the concept of
deep Q-networks (DQN) [23] was used to create an agent capable of outperforming
professional players in Atari games. Following this, DeepMind created AlphaGo [26]

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 293

and AlphaGo Zero [25], two agents combining DRL with Monte Carlo tree search
capable of defeating professional players on the game of Go. More recently, Deep-
Mind released the A3C algorithm [30], which has demonstrated better performance
than DQN in different domains, is faster, simpler, and more robust.

Although both DQN and A3C can be used to train powerful agents, their perfor-
mance may suffer when faced with complex tasks and when there are long delays
between actions and reward signals. This is the case when reconfiguring an SPE; an
improvement in the throughput of the application may only be seen after a while when
the system has stabilized. Also, the model-free approach used by these algorithms,
even though it leads to better performance, entails agents learning from scratch by
trial and error. This may not be feasible considering the cost of reconfiguring the
SPE in monetary and performance terms. Hence, investigating emerging approaches
combining model-free and model-based techniques is necessary. This will allow
agents to use a learned model to generate a simulated experience to help train a model-
free policy. Examples of recent algorithms in this area are Imagination-Augmented
Agents (AI2) [27] and Temporal Difference Model (TDM) [28].

Another important factor to consider in the design of the agents is that the goal of
many DRL approaches is to be general enough so that they can be applied across a
wide range of domains. As this approach can be unsuitable and as a result, refining
algorithms so that they are tailored for the specific scenario of SPE auto-management
will be necessary. Overall, applying suitable DRL concepts and adapting them when
necessary are key challenges for this critical component of the proposal.

Also, a single-agent DRL solution entails training a single policy that issues all the
actions. Considering the complexity and nature of the given problem, a multi-agent
RL solution offers a more natural decomposition of the problem, the potential for
more scalable learning, and the flexibility to extend the framework with more agents
later on. Instead of training a single, super-agent that controls all different aspects
of performance such as autoscaling, parallelism, and parameter tuning, we propose
using Multiple Agent Deep Reinforcement Learning (MADRL) to have multiple
specialized agents focusing on different aspects of the system but working towards
a common goal. Such decomposition of the action and state space also reduces the
dimensionality of the problem, addressing two of the main challenges previously
identified, and the size of the search and action spaces.

MADRL research supports the idea that collaboration and competition are the
basics of collective intelligence and have strong connections with single-agent
DRL, multi-agent systems, game theory, evolutionary computation, and optimiza-
tion theory. DeepMind made another breakthrough in their contribution to AI by
publishing their experiences building collaboration and competition in DRL agents
playing Capture the Flag game [31]. Recently, Jaques et al. [29] have extended work
in the area by proposing an algorithm that allows collaborative and competitive
dynamics between DRL agents to emerge in ways that even surpass human coun-
terparts. They propose an architecture in which agents are rewarded for having a
causal influence on other agents’ actions, which allows them to learn to cooperate.
Their architecture proposes a network that enables an agent to predict the actions
of every other agent, allowing the agent to simulate and predict how its actions will

294 M. R. Read et al.

affect other agents. This eliminates the need for centralized training or the sharing
of reward functions, making it an appealing work to explore as part of the imple-
mentation of our multi-agent system. Given that computational efficiency is essential
in our system, we propose to improve the cooperation efficiency between multiple
agents by learning a causal graph between multiple agents instead of using a fully
connected graph.

In our MADRL approach, agents work towards a common goal. They learn the
dynamics of the environment by trial and error while cooperating with other agents.
In particular, we propose a system with the following agents:

• Cluster Autoscaler: This agent is responsible for managing the capacity of the
cluster where the SPE is deployed. This entails removing virtual machines if
the utilization of resources is low for example. If the cluster is overloaded and
resources are needed to eliminate a bottleneck in the application, then the agent
should launch new VMs to better cope with the current load. Overall, the goal
of this agent is the efficient management of the cluster resources with the aim of
increasing their utilization and reducing cost while maintaining the desired SLOs.

• Parallelism Autoscaler: Tuning the parallelism of a topology is a challenging
task. The relationship between components means that altering the parallelism of
a component will almost always require adjusting the parallelism of upstream and
downstream components for it to have a meaningful impact on the overall perfor-
mance of the application. This agent will automate this process by learning the
best set of actions to take when a lack of parallelism is affecting the performance
of an application.

• Scheduler: The agent selects an available resource to deploy a particular instance
of a component while considering user-defined objectives. For example, for
throughput maximization, components that communicate with each other should
be co-located in the same hosts. This however is unachievable in a large-scale
system and as a result, components should be placed so that the communica-
tion overhead is minimized. Different placement policies can be explored in
this module as issues like resource utilization, load balancing, data locality, and
resource consumption of existing containers can be considered.

• Resource Allocator: Allocates a specific amount of resources to components of
a topology. These resources usually refer to the amount of RAM and CPU an
instance of a component will use. The agent may decide to increase or decrease
resources if this means achieving the desired SLOs. For instance, backpressure in
a topology may be due to a component not having enough resources to process
tuples fast enough. Increasing these may result in the topology being back in a
healthy state.

• System Parameter Tuner: This agent is responsible for tuning the configurable
parameters of the SPE, such as queue capacities, socket buffers, network packet
sizes, and read/write batch sizes among others.

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 295

4.2 Exploration Aids

Applying DRL algorithms to real-world problems can be challenging; even when
the task of the agent is well-defined and there is an explicit reward function. Often,
it is not possible to let an agent interact freely with its environment due to external
constraints such as cost and time. In order to deal with these limitations, it is important
to consider different methods that help agents explore their worlds more efficiently.

An approach that needs to be investigated to solve this problem is to enhance
the RL solution with efficient initialization policies that reduce the learning time
for online decisions. Exploration aids will then use data collected from the execu-
tion of applications with typical configurations and use these sample data to train
models that allow the agent to predict the performance of applications under similar
configurations. For example, runtime metrics can be collected by running a variety
of applications on a given SPE and executing random or deliberate actions to the
system. This data can then be used to train and initialize the actor and critic neural
networks used by agents. Based on this initial idea, we will explore counterfactual
reasoning methods to augment the observational data by sampling from a causal
generative model [32]. Another option that will be considered here is to use a simu-
lator that mimics the real environment and trains the agents in it. We will develop
deep transfer learning methods that enable the agents to transfer from the simulation
environment to the real-world environment. One promising idea is to incorporate
an encoder that extracts environmental information, which can be used to develop
environment-adaptive policies. The other way is to learn invariant representations
that have similar distributions on the simulated and real-world data. In an RL setting
where gathering experience in the real world is expensive and constrained by perfor-
mance requirements, this approach can be used to apply a policy learnt in a simulation
environment in a production deployment.

An additional methodology to be explored in this area is the modelling of the
dependencies between different configuration parameters and the use of this knowl-
edge by the agents. It has been observed in different contexts [19, 22, 23] that the
relationship between parameters plays an important role when looking for an optimal
configuration. This information may aid in reducing the number of reconfigurations
done by agents before achieving a steady state, reducing the exploration time and cost
of the proposed solutions. Evaluating the usefulness of these techniques and deter-
mining their effect on the performance of the agents will be an important outcome
of our vision.

4.3 Policies for Management of Rewards, States,
and Enactment

Given an observation of the system’s state, the reward manager applies different
evaluation mechanisms that accurately capture and quantify the efficiency of the

296 M. R. Read et al.

corrective actions taken by the agents. In RL settings, reward functions define the
goals that need to be achieved by the agents. This can be a rather challenging task
due to the complexity of the environment as defined in this article. For example, a
scheduling agent needs to be able to produce conflict-free environments that mini-
mize the communication overhead between components. The reward values need to
reflect these two objectives as the agent ultimately has a single goal, maximizing the
expected reward.

The State Manager accesses relevant metrics and configuration settings and peri-
odically estimates the system’s state. The system’s state may be expressed in terms of
higher level metrics such as tuple arrival rate, current cost of the leased infrastructure,
tuple throughput, application latency, existence of data skew, etc. Furthermore, the
state can include configuration settings relevant to the agents’ goals such as place-
ment configuration, resource allocation, and cluster capacity. The state can also be
split into multiple partitions, each of which may be relevant to a particular agent. This
may help in reducing the observation space for individual agents, allowing the RL
algorithms to perform better and faster. Overall, the role of the State Manager within
the architectural framework is to enable the seamless integration of different state
management techniques and to decouple the agents from the raw metric collection
process. This eliminates the need to restructure or re-implement the Metrics Manager
if different observation patterns are being trialled when developing the agents. The
realization of this module requires modelling the state of the system. This is a key
task that will not only have a direct impact on the behaviour of the DRL agents but
will also determine which algorithms are suitable to solve the problem at hand, this
includes defining the dimensionality of the state as well as its continuous or discrete
representation. Furthermore, this module requires the development of techniques to
efficiently collect, manage, and aggregate disparate data from heterogeneous sources.

In our proposed framework, enactors are responsible for carrying out actions as
determined by different agents. The actions can alter the underlying infrastructure,
the allocation of resources, and the placement of components through the Infras-
tructure Manager and the configuration of the streaming application through the
SPE Deployment Manager. To achieve this, we will develop techniques for seamless
and automatic execution of actions in distributed environments with minimal effect
on performance. To adjust the parallelism of topology, we will develop algorithms
that capture the state of the application at runtime and the load of the components’
instances to be redistributed without losing the current state of the application and
redeploying the entire topology.

4.4 Automated Techniques for Metrics and Configuration
Management

The Metrics Manager collects performance, health, load, and other metrics from the
SPE, the container management system, and the cloud provider. These time series

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 297

data are stored in a repository to be accessed by the State Manager and Exploration
Aids modules. Examples of measurements recorded from the SPE include input and
output queue sizes, time spent in garbage collection cycles, whether back pressure
has been detected, number of acknowledgements, etc. The container management
system can be queried for the cluster capacity, state of tasks, and resources consumed.
From the cloud provider, data such as the lease period of virtual machines will be
obtained.

The Configuration Manager keeps track of the current system configuration and
shares this information with the State Manager. An example of a configuration that
is relevant to the system is the current mapping of components to machines. This
information should be included as part of the state reported to an agent trying to
optimize how topology is scheduled in the cluster to minimize communication over
the network. The agent would then be able to associate a given mapping with a certain
communication overhead to take appropriate actions towards its goal.

5 A Case Study—Use Case Scenario: Multi-source Stream
Video Analytics System

5.1 Use Case Overview

Video Feed Sources: To demonstrate the envisioned architectural framework, a
multi-source streaming video analytics application is considered. This application
serves as a comprehensive video analytics platform capable of ingesting video data
from multiple sources. For instance, several cameras in a “Smart Traffic Monitor-
ing” system are possibly placed at traffic intersections or roads, diligently moni-
toring the flow of traffic, potential violations, and other vehicular activities. CCTVs
in “Surveillance” systems could be strategically placed in public spaces, commercial
premises, or even private properties. Video may also originate from “Aerial Imagery
Footage,” where cameras are fixed on aerial vehicles like drones, capturing extensive
footage from an elevated or bird’s-eye view. The core functionality revolves around
preprocessing, conditional service distribution, video analysis, and storage.

Pre-processing and Conditional Distribution: The incoming stream of video
needs to be preprocessed. The preprocessing stage includes ensuring consistent video
formats and compatibility with downstream processes, shrinking video sizes by drop-
ping unnecessary frames or reducing frame rates, and ensuring videos adhere to
the specified width and height specifications. The preprocessed videos are further
forwarded to a conditional service distribution to route the preprocessed videos to
different services based on predefined conditions. The examples of predefined condi-
tions can be (a) based on time, where videos are processed at regular time intervals,
(b) based on the size of the video, where larger videos might be treated differently
from smaller videos, or (c) based on the source of the video.

298 M. R. Read et al.

Video Processing: The same video can be sent to multiple independent services at
the same time. In the current experiment, one service is implemented. This streamed
video then undergoes a significant transformation in the “Video Grayscale Service”.
Here, the original video stream is converted into grayscale. The rationale behind
this is multifold—from conserving storage space and enhancing processing speeds
to focusing primarily on detecting movement patterns and shapes instead of varied
colour palettes.

The implemented service uses Apache Spark1 and its streaming-related compo-
nents. Apache Storm2 and Apache Spark are two popular open-source stream
processing engines that provide near-real-time latency. Both engines are highly scal-
able and process large volumes of data in a timely manner. In this experiment, Apache
Spark is used over Apache Storm. This is primarily due to its ability to process data
using in-memory computation, which makes it faster than Apache Storm [33–35].
In-memory computation primarily refers to storing and processing data directly in
the RAM of the distributed nodes across the cluster, unlike traditional disk-based
processing, where data needs to be read/write from/to a disk. Additionally, Apache
Spark is easier to programme and fault-tolerant than Apache Storm, due to its resilient
distributed datasets (RDDs) and dataset API. The community involved in Apache
Spark is more active than Apache Storm’s community. This can be observed from
the frequency of contributions to their respective Github repositories.

At this stage, the streaming video frames are processed by multiple Spark execu-
tors parallelly for faster processing. These units (executors) work in parallel, each
handling distinct segments of the video feed. Such a division allows the system
to achieve heightened processing speeds and efficiency. Each executor uses the
FFmpeg3 Python library for video-related operations. Upon grayscale conversion,
the transformed video is labelled as ‘Processed Video’ and is handled by a dedicated
executor.

Distributed Computing with Spark and Storage: Fig. 3 shows two crucial
components related to Spark: the Spark Driver and the Spark Cluster Manager. The
“Spark Driver” is the central orchestrating process, coordinating various tasks. It
is responsible for breaking down the application into smaller chunks that can be
distributed across VMs in the cluster, ensuring that tasks are dispatched to available
executors in an optimized manner, aggregating the results, and producing the final
output. On the other hand, Spark Cluster Manager is responsible for managing the
underlying VMs on which the application runs, allocating resources (e.g., CPU and
memory) based on the requirements of the tasks or their configuration, monitoring
the health of the VMs and re-allocating tasks in case of VM failures. Once the video
segments have been processed through the Spark framework—divided, processed in
parallel, and aggregated—the results are stored in the MinIO-based4 storage system.

1 https://spark.apache.org/.
2 https://storm.apache.org/.
3 https://pypi.org/project/ffmpeg-python/.
4 https://min.io/.

https://spark.apache.org/
https://storm.apache.org/
https://pypi.org/project/ffmpeg-python/
https://min.io/

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 299

Fig. 3 Use case overview: streaming video processing

Fig. 4 Use case implementation and infrastructure details

MinIO provides an object storage solution that is scalable and compatible with the
Amazon S35 API, making it a suitable choice for storing large volumes of video data.

5.2 Use Case Implementation

Figure 4 shows the implementation architecture of the proposed use case on streaming
video grayscale and the underlying infrastructure.

5 https://aws.amazon.com/s3/.

https://aws.amazon.com/s3/

300 M. R. Read et al.

Table 1 Deployment infrastructure using Kubernetes

VMs Role OS Flavour Storage Security group

Master Controller, Worker Ubuntu 20.04 4 vCPU, 8 GB
RAM

30 GB Allow-all

Worker1 Worker Ubuntu 20.04 4 vCPU, 8 GB
RAM

30 GB Allow-all

Worker2 Worker Ubuntu 20.04 4 vCPU, 8 GB
RAM

30 GB Allow-all

Worker3 Worker Ubuntu 20.04 4 vCPU, 8 GB
RAM

30 GB Allow-all

Client User Ubuntu 20.04 2 vCPU, 4 GB
RAM

25 GB Allow-all

5.2.1 Infrastructure Configuration and Toolstack

The experiment relies on the computing and storage resources provided by the High
Performance Computing Centre at the University of Tartu6 [C1]. The infrastructure
consists of four VMs (as shown in Table 1): one acts as the client and the remaining
three form the computing cluster. Ubuntu 20.04 Operating System (OS) is installed in
the client VM, and it is equipped with 2 vCPUs, 4 GB of RAM, and 25 GB of storage.
The client VM serves as a management and user interface for the entire system. The
Kubernetes cluster consists of three VMs: master, worker1, and worker2, as shown
in Table 1. Each VM is configured with Ubuntu 20.04 OS, 4 vCPU, 8 GB of RAM,
and 30 GB of storage.

As shown inFig. 4, the use case is deployed atop a Kubernetes cluster and a number
of tools are used for the overall management. Table 2 shows the list of tools used in
this implementation, including their version and purpose in this implementation.

k3s7 version 1.27 is used for simplifying the installation and configuration process
of Kubernetes. The latest Apache Spark v3.4.1 is installed atop the Kubernetes cluster.
Deploying Spark jobs on Kubernetes pods leverages the platform’s capabilities for
pod management, scaling, and resource allocation. This integration provides bene-
fits such as dynamic resource allocation, enhanced Spark tasks’ isolation, and seam-
less deployment in cloud-native environments. Listing 1 shows the spark-submit
command to deploy video grayscale service on the Kubernetes cluster.

6 https://hpc.ut.ee/.
7 https://k3s.io/.

https://hpc.ut.ee/
https://k3s.io/

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 301

Table 2 Toolstack used in implementation

Tool name Version Purpose

Kubernetes
(k3s)

1.27 An open-source container orchestration system for automating
application deployment, scaling, and management. Kubernetes is used
to manage and deploy Docker containers that are created for spark
executors

Docker 24.0.5 A platform used to develop, ship, and run applications inside
containers. This is used to package up the video grayscale application
and its dependencies together. The developed container image for
video grayscale is stored in Docker Hub.a This ensures that the
application runs consistently across different environments

Apache
Spark

3.4.1 An open-source, distributed computing system that can process the
large amounts of incoming video from multiple sources. It also
provides an interface for programming entire clusters with implicit
data parallelism and fault tolerance

Tensorflow 2.14.0 A popular open-source ML library that comes with Keras API. Keras’
simplicity, modularity, and extensibility features are used to develop
our DRL model

OpenCV 4.8.0 An open-source computer vision and ML software library for
preprocessing and processing the video

NFS v4 NFS (Network File System), a distributed file system protocol that
allows one executor to access video data over a network as if the
network devices were attached to its local file system

TinyDB 4.8.0 A lightweight document-oriented database optimized for use in
small-scale environments. This is used for logging the DRL agent’s
actions and execution times of video processing application

ahttps://hub.docker.com/

Listing 1: Code snippet for deploying the use case on Apache Spark using
“spark-submit” command

./bin/spark-submit --verbose \
--master k8s://http://172.17.67.89:8001 \
--deploy-mode client \
--name spark-video-compress \
--conf spark.kubernetes.namespace=default \
--conf spark.executor.instances=5 \
--conf spark.executor.cores=2 \
--conf spark.executor.memory=1000m \
--conf spark.dynamicAllocation.enabled=true \
--conf spark.kubernetes.container.image=apache/spark-py \
--conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
-- sfn.mialCemuloVtnetsisrep.semulov.rotucexe.setenrebuk.krapsfnoc -pvc-

volume.options.claimName=my-nfs-pvc \
--conf spark.kubernetes.executor.volumes.persistentVolumeClaim.nfs-pvc-volume.mount.path=/tmp \
--conf spark.driver.host=172.17.67.89 \
./myproj/drl_sspe/video_grayscaller.py

https://hub.docker.com/

302 M. R. Read et al.

5.2.2 Implementation Description

This section discusse\s the purpose of each component in demonstrating the video
grayscale application, as shown in Fig. 4. The demonstration leverages the strengths
of Kubernetes and Spark within a private cloud framework.

At the start, we have various video sources, such as smart traffic monitoring
systems, general surveillance cameras, and aerial imagery footage from devices
like drones. All these feeds provide real-time video data that is forwarded to the
Kubernetes-managed environment for processing. Inside this environment, the raw
video data first goes through the Video Pre-processing Service followed by the Condi-
tional Service Distribution, which determines the route for these videos, as discussed
before. Spark is tightly integrated into this architecture for distributed computing.
Each executor is hosted inside a pod with one container. The executor accesses the
“/tmp/” directory inside the container’s file system to access the video chunk. The
NFS server is installed on one of the servers for the storage of video data. A persistent
volume is created in Kubernetes environment with “nfs” storage class. Accordingly,
a persistent volume claim is created for this application, which will mount the NFS
directory to the “/tmp/” directory of each executor’s pod. The video grayscale appli-
cation is containerized and the build image is pushed to Docker Hub. The container
image can be accessed with the name “reachchinu/spark-py:opencv”. The container
inside each pod is created based on this container image.

As discussed before, Spark’s driver interacts with Spark’s cluster manager for
the overall management of application execution. However, the developed DRL-
based algorithm “DRL-SSPE” interacts with Spark’s Driver (through spark-submit
command) for the resource configuration of the application. The configuration set
provided by DRL-SSPE includes:

• SPARK_EXECUTOR_CORES: This refers to the number of CPU cores to be
used by each executor. For instance, if SPARK_EXECUTOR_CORES = 2, then
each executor will use 2 CPU cores. This directly affects the number of tasks an
executor can run concurrently.

• SPARK_EXECUTOR_INSTANCES: This defines the total number of executors
that will run across the cluster for a particular Spark job. For example, setting
SPARK_EXECUTOR_INSTANCES = 10 means that 10 executor processes will
be launched across the cluster nodes.

• SPARK_EXECUTOR_MEMORY: This specifies the amount of memory to be used
by each executor. This memory allocation includes both the memory used by data
structures inside the application and the overhead memory (memory used by
Spark’s internal operations). For instance, if SPARK_EXECUTOR_MEMORY
= 4 g, each executor will get 4 gigabytes of memory.

DRL-SSPE also communicates with TinyDB for logging the cluster’s perfor-
mance history and events. This includes the configuration provided by DRL-SSPE,
the number of video data partitions, the size of the batch (video chunk), the number of
frames present in a batch, timestamp, execution time for each running instance, etc.

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 303

Fig. 5 Execution workflow during training phase

TinyDB stores the data in JSON format. In the current implementation, the database
can be accessed from the “/logs/” directory present in Spark’s working directory.

The DRL-SSPE agent deploys the Spark jobs from the client VM. Using the
“spark-submit” command, the jobs are deployed in client mode, with the flag
“–deploy-mode client”, as shown in Listing 1. This indicates that the Spark “driver”
is deployed on the client machines, while other tasks are deployed on the Kubernetes
cluster, as shown in Fig. 4. Figure 5 shows the detailed execution flow of DRL-SSPE
during its training phase.

The process starts with the invocation of DRL-SSPE. This initiates the
training process of the agent. The agent explores a different set of configurations
(SPARK_EXECUTOR_CORES, SPARK_EXECUTOR_INSTANCES, and SPARK_
EXECUTOR_MEMORY) based on its reinforcement learning model to ensure
optimal performance. For each combination of parameters, the agent invokes a script
(deploy_application.sh) which will eventually deploy the video grayscale applica-
tion through spark-submit command as given in Listing 1. This also observes the
execution time and other performance metrics. The agent further uses the metrics to
update and optimize its policy.

5.3 DRL-SSPE Implementation for Video Grayscale

This section discusses the design and development of DRL-based algorithm for the
optimal allocation of cluster resources for the Spark application. Creating a DRL
algorithm to optimize the configuration of an Apache Spark application deployed

304 M. R. Read et al.

on a Kubernetes cluster involves (a) defining the Environment (the state, action, and
reward for the DRL agent), (b) the agent (implementation of the DRL agent using
Deep Q-network) and (c) a training phase (training the DRL agent to find the optimal
configuration). The reward value is inversely proportional to the processing time of
the video frames. The processing time is measured in milliseconds. The goal of the
DRL agent is to maximize the reward by minimizing the video processing time by
tuning the configuration of Spark and the allocation of resources.

DRL-SSPE implementation environment

The environment is the Kubernetes cluster where the Apache Spark job is being
deployed and executed. Every time the DRL agent takes an action by changing
configuration values, a new Spark job is submitted to the Kubernetes cluster, and the
execution time is observed. Table 3 outlines the parameters that the DRL agent
is responsible to tune based on the input video stream and other spark-related
parameters.

Table 4 outlines other DRL and application-related parameters. The Gamma value,
which reflects the discount factor for future rewards, is set at 0.95, suggesting a
moderate emphasis on future rewards versus immediate ones. With an initial value of
Epsilon = 1.0, the DRL agent will prioritize exploring the action space. For the explo-
ration rate, we set the minimum value of Epsilon (i.e., Epsilon_min) to 0.01, ensuring
that the agent retains a minimal level of exploration. The value of Epsilon_decay =
0.995 will gradually reduce the epsilon value from its initial state to encourage a
shift from exploration to exploitation of the learned policy. The Learning rate is set
to 0.001, indicating a cautious approach to updating the agent’s knowledge. The
agent is configured to go through a maximum of 500 episodes, which are individual
sequences of interaction with the environment. Related to the video partitioning for
the Spark environment, the number of partitions ranges between 5 and 8. For each
partition, we collect a minimum of 10 frames and a maximum of 60 frames before
forwarding the frames to the Spark environment for compression.

Table 3 Apache spark parameters

Resource configuration Min. Max.

SPARK_EXECUTOR_CORES (number of CPU cores per executor) 1 3

SPARK_EXECUTOR_MEMORY (amount of memory per executor) 500 1000

SPARK_EXECUTOR_INSTANCES (Total number of executors) 5 8

Spark container image reachchinu/
spark-py:opencva

Persistent volume type nfs

Max waiting time (maximum time to wait for an input video to finish
processing)

10 min

ahttps://hub.docker.com/repository/docker/reachchinu/spark-py/general

https://hub.docker.com/repository/docker/reachchinu/spark-py/general

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 305

Table 4 DRL and
application-specific
parameters

Parameter Value

Gamma 0.95

Epsilon 1.0

Epsilon_min 0.01

Epsilon_decay 0.995

Learning rate 0.001

Episodes 500 (max)

Number of partitions 5 (min) 8 (max)

of frames per partition 10 (min) 60 (max)

5.4 Results Discussion

In the above sections, we discussed the implementation of a streaming video compres-
sion application using Apache Spark and presented detailed architecture. For a stream
of video, the designed DRL algorithm determines the amount of resources to allo-
cate to a given application and accordingly configures Spark to process the incoming
video stream. In this section, we discuss the observed implementation results in terms
of video processing time, the performance of the DRL agent, and the computation
overhead incurred by DRL and Apache Spark.

5.4.1 Video Processing Time

Figure 6 provides an empirical comparison between two resource configuration
strategies for the Spark-based video processing application, as mentioned in previous
sections. We observed the time taken to process varying numbers of frame rates,
ranging from 10 to 60 frames per second (fps) under two different scenarios: (a) the
resource configurations set by a Deep Reinforcement Learning (DRL) agent versus
(b) configurations determined randomly. As expected, the progression of data points
indicates an increase in processing time corresponding to the increase in the number
of fps irrespective of the strategies. It is observed that the DRL agent consistently
achieves lower processing times across all frame rates. At the lowest observed frame
rate of 10 fps, the average processing time of a frame with DRL is recorded at
approximately 419 ms (ms), in contrast to approx. 600 ms when the configuration
is determined randomly for the same fps. This pattern persists throughout the exper-
iment under different fps rates. Such superior performance by the DRL agent can
be attributed to its ability to learn and adapt, unlike the random approach, which
does not consider the system’s performance feedback. The DRL agent likely sets
suitable configurations in a way that is sufficient for the incoming frames, avoiding
both excess and deficiency of resources. The random configuration method does not
have such capacity to learn from the previous experience. A similar pattern is also

306 M. R. Read et al.

observed when the number of fps increases to 60, where DRL is able to process in
20% less time compared to a random resource configuration.

Figure 7 provides insight into the overall resource configuration determined by
the DRL agent and random approach across all forms of experiments. The resource
configuration mainly refers to the number of executor instances used, and the
resources (CPU cores and memory) allocated to those executors. From Fig. 7, we
can deduce that as the number of fps increases from 10 through 60, there is a corre-
sponding incremental increase in the number of Spark executors, cores, and memory
allocated by both the DRL agent and the random configuration.

Figure 7a shows the average number of Spark executor cores used for processing
video frames under two different resource configuration strategies: Firstly, when
the DRL agent sets it and secondly, when it is determined randomly. When the fps
rate is set to its lowest number, i.e., 10 fps, the DRL agent configures the system

Fig. 6 Avg. frames’ processing time

(a) (b) (c)

Fig. 7 Average resource allocation with the DRL method and without DRL or random approach
a average number of cores assigned to each spark executor b average memory allocated to each
executor and c average number of executor instances

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 307

to use an average of one core per executor, while the random configuration sets
the cores to an average of 1.14 cores per executor. As the frame rate increases to
60 fps, the DRL agent allocates an average of 1.65 CPU cores, in contrast to the
random configuration, where an average of 1.52 cores are assigned to each executor.
Similarly, the average memory in megabytes (MB) allocated to the executors under
different fps rates is shown in Fig. 7b. In this figure, a clear consistent increasing trend
in memory allocation with the increase in fps rate is observed. Starting from approx.
600 MB for 10 FPS, the memory allocation rises consistently to approximately
1000 MB for 60 FPS as determined by the DRL agent. Such a pattern suggests that
the DRL agent is trained to scale up memory resources in response to an increase in
the number of frames being processed each second. On the other hand, an increase
in memory allocation with rising FPS is also observed when the configuration is
decided randomly, but the increments do not appear as consistent or as proportionate
as those of the DRL agent. For instance, at 10 fps, the random configuration begins
at a lower memory allocation of approx. 500 MB and ends at approx. 800 MB for
60 FPS, which is significantly less than what is allocated by the DRL agent for the
same fps rate. While the difference in the number of cores and memory allocation
between the DRL and random configurations may appear small as in Fig. 7a, b, the
impact on processing times can be significant, as shown in Fig. 6.

The time taken to process the streams of video frames is also affected by the
number of spark executors created to process those frames. The average number of
executor instances created randomly and by the DRL agent with varied fps rates
is shown in Fig. 7c. It is observed that as the number of fps increases, the DRL-
configured Spark executor instances also increase. Starting at approximately five
executors for handling the incoming video at 10 fps, the number of executors rises
steadily to more than an average of 7.5 when the fps rate increases to 60. This gradual
increase suggests that the DRL agent actively scales up resources to accommodate
the higher processing demands that come with increased frame rates, unlike the
random approach. The random approach shows a less systematic and potentially
less efficient approach where the required number of executors does not increase in
direct proportion to the frame rate, resulting in suboptimal performance. The trends
in Fig. 7 suggest that the DRL agent is more sensitive to the increase in fps rate and
thus consistently increases resources to handle the additional load, unlike the random
approach.

In addition to processing time and average resource configuration, as shown in
Figs. 6 and 7, we also observed the average resource (CPU cores and memory)
utilization (in percentage) and presented in Fig. 8. Figure 8a compares average CPU
utilization between configurations set by a DRL agent and a random approach across
varying numbers of fps. Similarly, Fig. 8b shows the average memory utilization
across varying numbers of fps rates. When the DRL agent is used to determine
the resource allocation, the CPU utilization increases from approx. 30% to 80%
and memory utilization increases from approx. 9% to 23%, as shown in Fig. 8a, b,
respectively. On the other hand, under random configuration, a higher CPU utilization
of approx. 37% and memory utilization of approx. 8% is observed when the fps rate is
only 10. However, the same rate of increase in resource utilization is not maintained

308 M. R. Read et al.

while the fps rate increases to 60, where CPU utilization is less than 60% and memory
utilization is near to 15%. The results in Figs. 6, 7, and 8 indicate the efficiency of
DRL. It is able to make efficient usage of resources with the right set of configurations
without compromising the processing time. Such comparison highlights the potential
advantages of employing DRL for the management of resources in computationally
intensive applications like video processing using Apache Spark.

5.4.2 DRL Training Performance

Figure 9 provides an overall performance of the DRL agent at different stages of its
training process. The learning rate is also set to 0.001, which influences the rate at
which the agent updates its knowledge base. The X-axis in all subfigures represents
the number of steps (or iterations) the DRL agent has undergone in the training
process. We carried out a total of 250 thousand steps with a mixed number of fps
rates ranging between 10 and 60. With different steps and episodes, the running
reward average and episodic average of the reward are calculated to observe the
performance of the training process. A larger number of steps indicates the agent has
explored and learned the environment better. The rewards in each step are inversely
proportional to the processing time of the streaming frames. A higher processing
time will lead to lower reward gain. Figure 9a shows the reward value the agent
received in each step, which ranges between 2.10E–06 and 1.30E–05. As shown in
Fig. 8a, it is observed that the agent received an initial lower reward value, which
then increases, indicating that the DRL agent is starting to learn from its previous
experience. As training continues, there is a noticeable fall in the reward, followed
by a recovery. This is due to unexpected behaviour of the cluster and other tools,
including Spark, Kubernetes, log manager, and storage server during those steps.
Such unexpected behaviour of the entire setup could be due to the agent exploring
less successful strategies or actions.

Similarly, Fig. 9b shows the running average of the reward received by the DRL
agent over training steps. Initially as training begins, the average reward is low,
but it quickly rises as the DRL agent starts learning from its interactions with the
cluster/environment. This initial rapid increase, until approximately 10 thousand
steps, indicates that the agent is successfully identifying and exploiting strategies
that yield higher rewards. The plateau phase, where the pattern flattens and the
average reward becomes stable or has no significant gains, suggests that the agent
has reached a level of consistent performance and converged reward, which occurs
approximately after 50 thousand steps. The plateau occurs because, as the agent
learns more about the environment, the relative improvement in performance for
each new discovery decreases. In other words, the agent has possibly identified
and is now exploiting the most rewarding strategies available given the constraints
and the dynamics of the environment. We also observed the mean episodic average
reward received by the agent, as presented in Fig. 9c. The mean episodic average
reward is also known as the average reward the agent receives for every episode,
where an episode is a set of steps. This metric helps in understanding the agent’s

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 309

(a
)

(b
)

F
ig
. 8

A
ve
ra
ge
 r
es
ou

rc
e
ut
ili
za
tio

n
w
ith

 D
R
L
 m

et
ho

d
an
d
w
ith

ou
t D

R
L
 o
r
ra
nd

om
 a
pp

ro
ac
h
a
C
PU

 c
or
es
 u
til
iz
at
io
n
an
d
b
m
em

or
y
ut
ili
za
tio

n

310 M. R. Read et al.

(a) (b) (c)

Fig. 9 DRL training performance over time a reward received in each step b Running average
reward received by agent and c mean episodic reward received by the agent

performance over longer sequences of actions, providing insight into how well the
agent is learning to configure the resource for a specific fps rate. Each data point on the
graph in Fig. 9c corresponds to the average reward received by the agent per episode,
with the number of episodes ranging from 2 to 500. Initially, the mean episodic
rewards are lower, approximately 4.00E–07, and as the agent continues to learn and
refine its strategies through thousands of interactions with the spark environment,
these rewards gradually increase to approximately 6.5E–07 by the time the agent
has completed all the training steps, e.i. 250,000 or 500 episodes. Similar to Fig. 9b,
the mean episodic reward in Fig. 9c also suggests the convergence of reward after
approx. 250 episodes.

5.4.3 Computation Overhead

Figure 10 illustrates the time taken by Apache Spark and the DRL agent during and
after the training process. The results obtained demonstrate the benefits of using
a DRL agent to optimize resource configuration at the cost of minimal additional
computation time required by the agent. Figure 10a presents the computational over-
head during the training phase of the DRL agent, comparing it with the overhead of
the Apache Spark cluster. The x-axis represents the number of frames per second
(fps), ranging from 10 to 60 fps, while the y-axis displays the computation overhead
as a percentage. The observed results show that the DRL agent introduces a consis-
tent computational load to the system during its training phase. It is noteworthy that
the number of frames being processed per second by Spark does not influence this
overhead. At 60 fps, the DRL agent accounts for less than 20% of the total training
time, while Spark spends the remaining approximately 80% of the time processing
the input frames. A similar pattern is observed at 10 fps, where the DRL agent’s
training consumes less than 15% of the time, and approximately 85% of the time
is spent processing the input frames with Spark’s resources configured by the DRL
agent.

In Fig. 10b, the execution time in the testing phase is observed. The graph shows
a clear and expected trend where the total execution time, including both Spark and

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 311

(a) (b)

Fig. 10 Time spent by DRL and apache spark a during training and b after training

DRL processing, increases as the fps rate rises from 10 to 60 fps. For example, at
10 fps, the average time required to process a frame is approximately 400 ms. This
processing time climbs to nearly 1000 ms when the system receives input at 60 fps.
The results indicate that the DRL is responsible for adding approximately 45–55 ms
to the processing time, irrespective of the input fps rate. When the fps rate is set to
60, a 5% overhead is attributed to the DRL. Conversely, at 10 fps, a 10% overhead
by the DRL is observed, demonstrating the DRL agent’s consistent computational
demand regardless of the frame rate.

6 Conclusions and Final Remarks

Heterogeneous data sources continuously generating data are becoming mainstream
in today’s ubiquitous world. Social media feeds, vital signs measurements, stock
trades, and mobile call records are all examples of continuous data that is analysed
by streaming applications to produce meaningful knowledge in real time. These
insights are key for enterprises worldwide; hence, the ability to efficiently and auto-
matically process this data as proposed by our vision will support these organizations
and contribute highly towards the global economy. In particular, the outcomes of the
realization of our proposed vision include (a) a general serverless framework appli-
cable to a range of SPEs deployed in cloud environments, (b) DRL agents capable
of managing SPEs and their environments to achieve and maintain performance
goals, (c) principles and solutions to the limited exploration ability of DRL agents
in large-scale distributed environments, and (d) a MADRL solution to coordinate
the actions of agents to automate and improve resource management in distributed
environments.

As billions of devices such as cars, farm machinery, and surveillance cameras
will be connected to the Internet by 2030 [20], this will create a digital era with
extraordinary business opportunities for Australia. It is estimated that these devices
will produce approximately 5 quintillion bytes of data everyday [21]. Approaches

312 M. R. Read et al.

proposed in this article will enable the analysis of these data and the delivery of
insights in a timely manner.

This vision article’s objective is to propose the creation of Multi-Agent Deep Rein-
forcement Learning (MADRL) solutions for serverless stream processing systems
with the goal of supporting the automated and efficient deployment of real-time
data analytics while ensuring Service Level Objectives (SLOs) are met and main-
tained throughout the applications’ lifetime, thus driving commercial and scientific
advancements. To achieve this objective, our future directions entail the following
guidelines:

• Propose an architectural framework for Stream Processing Engines (SPEs) with
the ability to automatically adapt their configuration to maintain SLOs in response
to changes such as load spikes and performance variation.

• Define the actions, rewards, and states that would enable a multi-agent deep
reinforcement learning system to efficiently manage the cluster resources while
working towards achieving and maintaining a user-defined service level objective.
Agents in the system will have the ability to interact with the cloud environment
and stream processing system by (a) scaling the cluster resources, (b) scaling the
parallelism of topology components, (c) tuning system parameters, (d) dynami-
cally configuring the placement of topology components in the cluster machines,
and (e) dynamically adjusting the amount of resources assigned to containers.

• Investigate the problem of high exploration cost for RL agents in SPEs deployed in
large-scale distributed platforms and the trade-off between limited or conditioned
exploration versus agent performance.

• Develop a software platform incorporating the above mechanisms and techniques
for serverless management of resources in stream processing engines.

References

1. Shivananda, R.: Poojara, Chinmaya Kumar Dehury, Pelle Jakovits, Satish Narayana Srirama,
Serverless data pipeline approaches for IoT data in fog and cloud computing. Futur. Gener.
Comput. Syst. 130, 91–105 (2022)

2. Dehury, C.K., Poojara, S., Srirama, S.N.: Def-DReL: towards a sustainable serverless functions
deployment strategy for fog-cloud environments using deep reinforcement learning. Appl. Soft
Comput. 152 (2024)

3. Armbrust, M., Das, T., Torres, J., Yavuz, B., Zhu, S., Xin, R., Ghodsi, A., Stoica, I., Zaharia,
M.: Structured streaming: a declarative API for real-time applications in apache spark. In:
Proceedings of SIGMOD’18, pp. 601–613 (2018)

4. Amazon AWS. (n.d.).: What is Streaming Data. https://aws.amazon.com/streaming-data/
5. Zhang, Q., Pang, C., Mcbride, S., Hansen, D., Cheung, C. and Steyn, M., Towards health data

stream analytics. In: International Conference on Complex Medical Engineering, pp. 282–287.
IEEE (2010)

6. Wladdimiro, D., Gonzalez-Cantergiani, P., Hidalgo, N., Rosas, E.: Disaster management plat-
form to support real-time analytics. Proceedings of International Conference on Information
and Communication Technologies for Disaster Management (ICT-DM), pp. 1–8. IEEE (2016)

https://aws.amazon.com/streaming-data/

Deep Reinforcement Learning (DRL)-Based Methods for Serverless … 313

7. Weißbach, M.: Live traffic data analysis using stream processing. In: Proceedings of
International Conference on UCC Companion, pp. 65–70. IEEE (2018)

8. Corallo, A., Crespino, A., Dibiccari, C., Lazoi, M., Lezzi, M.: Processing big data in streaming
for fault prediction: an industrial application. In: 2018 14th International Conference on Signal-
Image Technology and Internet-Based Systems (SITIS). Las Palmas de Gran Canaria, Spain
(2018)

9. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S., Jackson, J.,
Gade, K., Fu, M., Donham, J., Bhagat, N.: Storm@ twitter. In: Proceedings of ACM SIGMOD
International Conference on Management of Data. Utah, USA (2014)

10. Noghabi, S.A., Paramasivam, K., Pan, Y., Ramesh, N., Bringhurst, J., Gupta, I., Campbell,
R.H.: Samza: stateful scalable stream processing at LinkedIn. Proc. VLDB Endowment 10(12),
1634–1645 (2017)

11. Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., Patel, J.M., Ramasamy,
K., Taneja, S.: Twitter heron: stream processing at scale. In: International Conference on
Management of Data, pp. 239–250 (2015)

12. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache flink:
stream and batch processing in a single engine. IEEE Data Eng. Bull. 36(4) (2015)

13. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J.,
Venkataraman, S., Franklin, M.J., Ghodsi, A.: Apache spark: a unified engine for big data
processing. Commun. ACM. ACM 59(11), 56–65 (2016)

14. Kamburugamuve, S., Fox, G.: Survey of Distributed Stream Processing. Indiana University,
Bloomington (2016)

15. Apache Storm. (n.d.).: Performance Tuning. https://storm.apache.org/releases/current/Perfor
mance.html

16. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R., Shenker, S.,
Stoica, I.: Mesos: a platform for fine-grained resource sharing in the data center. Proc. NSDI
11, 22–22 (2011)

17. Bernstein, D.: Containers and cloud: from LXC to Docker to Kubernetes. IEEE Cloud Comput.
1(3), 81–84 (2014)

18. Floratou, A., Agrawal, A., Graham, B., Rao, S., Ramasamy, K.: Dhalion: self-regulating stream
processing in heron. Proc. VLDB Endowment 10(12), 1825–1836 (2017)

19. Jamshidi, P., Casale, G.: An uncertainty-aware approach to optimal configuration of stream
processing systems. In: Proceedings of International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 39–48. IEEE
(2016)

20. Cisco. (n.d.).: Internet of Things. https://www.cisco.com/c/en/us/products/collateral/se/int
ernet-of-things/at-a-glance-c45-731471.pdf

21. Stack, T.: IoT Data Continues to Explode Exponentially. Who is Using That Data and
How? (2018). https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-exp
lode-exponentially-who-is-using-that-data-and-how

22. Chen, H., Zhang, W., Jiang, G.: Experience transfer for the configuration tuning in large-scale
computing systems. IEEE TKDE 23(3), 388–401 (2010)

23. Zheng, W., Bianchini, R., Nguyen, T.D.: Automatic configuration of internet services. In:
Proceedings of ACM SIGOPS/EuroSys Conference (2007)

24. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,
Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S.: Human-level control through deep
reinforcement learning. Nature 518(7540), 529–533 (2015)

25. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., Chen, Y.: Mastering the game of go without human knowledge.
Nature 550(7676), 354–359 (2017)

26. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.: Mastering the game of Go
with deep neural networks and tree search. Nature 529(7587), 484 (2016)

https://storm.apache.org/releases/current/Performance.html
https://storm.apache.org/releases/current/Performance.html
https://www.cisco.com/c/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how
https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how

314 M. R. Read et al.

27. Racanière, S., Weber, T., Reichert, D., Buesing, L., Guez, A., Jimenez Rezende, D., Puig-
domènech Badia, A., Vinyals, O., Heess, N., Li, Y., Pascanu, R.: Imagination-augmented agents
for deep reinforcement learning. In: Proceedings of NIPS (2017)

28. Pong, V., Gu, S., Dalal, M., Levine, S.: Temporal difference models: model-free deep RL for
model-based control. In: Proceedings of ICLR (2018)

29. Jaques, N., Lazaridou, A., Hughes, E., Gulcehre, C., Ortega, P., Strouse, D.J., Leibo, J.Z., De
Freitas, N.: Social influence as intrinsic motivation for multi-agent deep reinforcement learning.
In: Proceedings of ICML (2019)

30. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu,
K.: Asynchronous methods for deep reinforcement learning. In: Proceedings of International
Conference on Machine Learning (ICML) (2016)

31. Jaderberg, M., Czarnecki, W.M., Dunning, I., Marris, L., Lever, G., Castaneda, A.G., Beattie,
C., Rabinowitz, N.C., Morcos, A.S., Ruderman, A., Sonnerat, N.: Human-level performance
in 3D multiplayer games with population-based reinforcement learning. Science 364(6443),
859–865 (2019)

32. Zhang, K., Gong, M., Stojanov, P., Huang, B., Liu, Q., Glymour, C.: Domain adaptation as a
problem of inference on graphical models. In: Proceedings of NeurIPS (2020)

33. Singh, et al.: A Comparative study of bigdata tools: hadoop versus spark versus storm. In: 2023
IEEE 4th KhPI Week on Advanced Technology (KhPIWeek). Kharkiv, Ukraine (2023)

34. Shaikh, E., Mohiuddin, I., Alufaisan, Y., Nahvi, I.: Apache spark: a big data processing
engine. In: 2019 2nd IEEE Middle East and North Africa COMMunications Conference
(MENACOMM). Manama, Bahrain (2019)

35. Brahmavar, A., Venkatarama, H., Maiya, G.: Mining high utility itemsets with time-aware
scheduling using Apache Spark. Concurrency Comput. Pract. Experience 34(23) (2022)

36. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream processing.
ACM SIGMOD Rec. 34(4), 42–47 (2005)

37. Liu, X., Buyya, R.: Resource management and scheduling in distributed stream processing
systems: a taxonomy, review, and future directions. ACM Comput. Surv.Comput. Surv. 53(3),
1–41 (2020)

38. Dehury, C.K., Srirama, S.N., Chhetri, T.R.: CCoDaMiC: a framework for coherent coordination
of data migration and computation platforms. Futur. Gener. Comput. Syst. 109 (2020)

	 Deep Reinforcement Learning (DRL)-Based Methods for Serverless Stream Processing Engines: A Vision, Architectural Elements, and Future Directions
	1 Introduction
	2 Significance and Innovation of Our Vision
	3 Architectural Framework
	4 Research Issues and Envisioned Approaches/Future Directions
	4.1 DRL-Based Resource Management Agents
	4.2 Exploration Aids
	4.3 Policies for Management of Rewards, States, and Enactment
	4.4 Automated Techniques for Metrics and Configuration Management

	5 A Case Study—Use Case Scenario: Multi-source Stream Video Analytics System
	5.1 Use Case Overview
	5.2 Use Case Implementation
	5.3 DRL-SSPE Implementation for Video Grayscale
	5.4 Results Discussion

	6 Conclusions and Final Remarks
	References

