
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, 20XX 1

Deep Reinforcement Learning for Scheduling
Applications in Serverless and Serverful Hybrid

Computing Environments
Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya

Abstract—Serverless computing has gained popularity as a novel
cloud execution model for applications in recent times. Businesses
constantly try to leverage this new paradigm to add value to their
revenue streams. The serverless eco-system accommodates many
application domains successfully. However, its inherent properties
such as cold start delays and relatively high per unit charges
appear as a shortcoming for certain application workloads, when
compared to a traditional Virtual Machine (VM) based execution
scenario. A few research works exist, that study how serverless
computing could be used to mitigate the challenges in a VM
based cluster environment, for certain applications. In contrast,
this work proposes a generalized framework for determining
which workloads are best able to reap benefits of a serverless
computing environment. In essence, we present a potential
hybrid scheduling solution for exploiting the benefits of both
a serverless and a VM based serverful computing environment.
Our proposed framework leverages the actor-critic based deep
reinforcement learning architecture coupled with the proximal
policy optimization technique, in determining the best scheduling
decision for workload executions. Extensive experiments conducted
demonstrate the effectiveness of such a solution, in terms of user
cost and application performance, with improvements of up to
44% and 11% respectively.

Index Terms—serverless computing, serverful computing, ap-
plication scheduling, reinforcement learning, user cost efficiency,
function latency

I. INTRODUCTION

SERVERLESS computing has attracted the attention of
majority of cloud users with its distinguished properties

which elevate the efficiency of the entire process of application
deployment and their subsequent operations. As a result, many
new applications are designed to suit the stateless, short running
nature of serverless functions, for easy transition in to this novel
computing paradigm. Nevertheless, even when an application in
its design is fully compatible with a serverless architecture, the
nature of the application workload may render it unsuitable for
execution in this environment. A key feature of any serverless
platform is its ability to auto-scale the deployed application
at a very granular level, with scaling to zero at its extreme
[1]. Achieving such optimal resource efficiency is paramount
to the successful operation of this provider managed multi-
tenant computing platform. This distinct function level auto-
scaling property is established by closely following the demand

The authors are with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, School of Computing and Information Systems, The
University of Melbourne, Australia.
E-mail: mampage@student.unimelb.edu.au,
karus@unimelb.edu.au, rbuyya@unimelb.edu.au

patterns and scaling up and down function resources just-
in-time as required. With such an adhoc scaling policy, the
occurrence of certain delays in user request executions due to
time taken for resource creation known as cold start delays,
is unavoidable. While for some applications, this occasional
and rather small delay could be deemed insignificant, a latency
sensitive application with a very short runtime could face
detrimental effects from such unprecedented delays [2].

Serverless platforms charge their users only for the resources
consumed for application execution, calculated with a millisec-
ond accuracy [3]. To the service provider this may incur a
loss at times when load levels tend to be irregular, since their
infrastructure would need to stay alive throughout, including
the idling periods. In order to compensate for this potential
unrecoverable cost, it is observed that the per unit billing
rates for serverless services are considerably higher compared
to traditional VMs [2]. Thus, if an application sustains a
constant high level of traffic, the feasibility of using a serverless
deployment need to be studied. However, if the load levels
are irregular with sudden bursts of traffic, using serverless
functions and paying for only the resource consumed time
would be understandably cheaper.

On the other hand, a VM when rented out, could be used for
a longer period without facing adhoc resource creation times.
As long as the application is having a regular high traffic level
to keep the resources busy, the usage of a VM based set up
could prove to be much more cost effective compared to a
serverless execution [4]. In contrast, if load fluctuations are
high with long periods of little or no traffic, maintaining a
VM resource would not be as meaningful cost-wise. An on-off
mechanism for VMs is also not viable considering the relatively
high start up times.

In addition to the initial decision on determining the
execution platform, the subsequent decision on choosing a host
node on the selected platform too has implications on both
time and cost factors for the users [5]. While on the serverless
platforms, choosing a host node with warm function instances
saves up on request waiting times, careful load balancing on
Infrastructure-as-a-Service (IaaS) clusters is directly related to
maximizing rented resource utilization and in turn earning cost
savings.

Considering the aforementioned facts, it is useful to be able
to understand the workload patterns for an application and come
up with a suitable schedule for executing user requests, targeting
both time and cost effectiveness. A few existing research
works have initiated the first steps in this regard, mostly by

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, 20XX 2

exploring how serveress computing can be used as an add-
on to mitigate various shortcomings of a VM based serverful
deployment [6], [7], [2]. The majority of these works target
specific application scenarios such as web-services and High
Performance Computing (HPC) workloads and try to determine
at which point, a switch to a serverless execution would be
useful. In our work, we aim to provide a fully generalized
intelligent solution for request scheduling, which extracts the
best in both a serverless and a serverful infrastructure. Our
proposed framework is capable of determining not only the
deployment environment, but also the specific resource in that
environment that is ideal for running a particular user request
considering both application performance and user cost. A fully
automated hybrid framework such as this could be a potential
offering by cloud service providers which would have many
use cases.

Deep Reinforcement Learning (DRL) is very popular among
researchers nowadays for solving cloud resource management
related problems due to its experience based learning strategy
which is proven to be effective in exploring dynamic cloud
computing scenarios. Our proposed solution employs an actor-
critic architecture enhanced with a hierarchical action space
which first determines the ideal deployment environment after
which the most suitable cluster node is selected. The key
contributions of our work are as follows:

1) We formulate the problem of scheduling an application
request on a serverless and serverful hybrid cluster
environment, based on RL.

2) We propose a novel actor-critic architecture with a
hierarchical action space which is capable of decision
making at two levels. The mode of deployment is decided
in the first level while the node for scheduling within
the selected cluster is decided in the second. The DRL
agent is trained to reach the best optimization levels in
terms of application performance and user cost for a
given workload.

3) The DRL agent is modeled to capture application
workload as well as the serverless and serverful cluster
resource details and behavioral patterns in order to gain a
comprehensive understanding on its action environment.

4) We evaluate and compare our approach with baseline
scaling techniques using real world applications, together
with function traces captured from Microsoft Azure
Functions.

The rest of the paper is organized as follows: Section 2
highlights existing relevant literature. Section 3 describes our
system model and presents the mathematical formulation of
our problem. Followed by this, section 4 describes the DRL
based hybrid scheduling framework. Section 5 presents the
details of the DRL agent training environment and discusses
the performance of our proposed solution. Finally, section 6
explains plans for future work.

II. RELATED WORK

A. Serverless and Serverful hybrid scheduling

The concept of utilizing a hybrid serverless and VM based
environment for application execution is still at its inception. A

few works exist in literature which have attempted to explore
this hybrid approach for various use cases.

[2] study how a serverless deployment could help alleviate
shortcomings of VM auto-scaling for Machine Learning (ML)
inference services. They propose a framework which uses
serverless functions whenever VMs with free resources are not
available. The required VM instances are then spawned based
on either a reactive or predictive scaling policy. Load balancing
on VMs is done using a bin-packing method. However, they
use dedicated VM clusters for serving different ML models
and the heuristics used for execution node selection are not
ideal for optimizing user cost. Another approach of using cloud
functions for interim processing while VMs are being launched
is discussed in [4]. [7] present a system to dynamically switch
a micro-service deployment between functions and VMs. They
mainly focus on resource contention that could occur among
serverless functions and use input from a contention monitor
when taking a decision to switch an application load from IaaS
based deployment. They handle resource scaling by always
directing traffic to one deployment mode and reactively creating
the required resources on the other. With highly dynamic
workload patterns, this may not result in the ideal usage of
resources in both platforms. A time series analysis and a
classification algorithm is used in [8] for deciding the best
deployment environment for a given time range. An initial
study on determining for which workload scenarios, a hybrid
deployment approach would be beneficial is conducted in [9].
A solution for leveraging serverless computing for executing
HPC workflows is presented in [6]. In order to determine
which environment is ideal for running each task, they run
everything on VMs and then on a serverless platform. The I/O
overhead and the execution time on each platform are taken
in to consideration for decision making. Cost efficiency is not
included in the scope of their work. They suggest a heuristic
for mitigating container cold-start delay, but do not account
for VM start up delays.

B. Serverless Resource Management with RL

RL has been used successfully in a number of research
works in recent times for enhancing resource management in
serverless computing environments. The provided solutions
mostly address function scheduling, scaling problems or used
for determining optimum resources allocations for a function.

A multi-step DQN solution and a policy gradient algorithm
are discussed in [10] and [11] for determining the ideal cloud
based host node for running a serverless function. A number
of DRL based frameworks are presented in [12], [13], [14],
and [15] for serverless cloud-edge computing environments.
Q-Learning solutions are presented in [16], [17] and [18] for
horizontally scaling serverless functions. Further, DRL and RL
implementations are also proposed for combined horizontal
and vertical scaling decision frameworks in [19] and [20].

A summary of related works in literature, which explore
the space of serverless and IaaS cluster hybrid scheduling, is
provided in Table I. The existing studies are compared in terms
of their provided solution scope, used technique, the objectives
of optimization, awareness on various system parameters, gen-

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, 20XX 3

Table I: Summary of Literature Review

Work Decision Level Technique Decision Parameters Generalizability VM
Deployment Scheduling Optimization Objective Container & VM Cold Start Workload Overall System Heterogeneity

Mode Node Response Time User Cost Awareness Awareness Awareness

[2] ✓ Heuristic/Linear Regression ✓ ✓ ✓ ✓ ✓

[4] ✓ Heuristic ✓ ✓ ✓ ✓

[7] ✓ Queueing Theory/Heuristic ✓ ✓ ✓ ✓ ✓

[8] ✓ ML ✓ ✓ ✓

[6] ✓ Heuristic ✓ ✓ ✓ ✓

Our proposed work ✓ ✓ DRL(A2C-PPO) ✓ ✓ ✓ ✓ ✓ ✓ ✓

eralizability (adaptability for multiple application workloads)
and consideration for VM heterogeneity in the serverful cluster.

III. HYBRID SCHEDULING

A. System Model

Our system model is primarily composed of two service
clusters, one for serverless deployments and one for a serverful
(IaaS) deployment. A global load balancer and a resource
manager component handles the forwarding of user requests to
one of the clusters for execution. Fig. 1 illustrates the system
model of our proposed hybrid execution engine.

User requests are received at the hybrid load balancer
as shown in the diagram. This global load balancer is the
decision making body which outputs the best deployment
mode/environment and also the specific scheduling node for
an application request. Articulating the functionality of this
novel functional component is the focus of this work. The
hybrid resource manager is a database server which periodically
derives and updates the resource as well as behavioral metrics
of both the service clusters.

The serverless cluster is comprised of a set of invokers which
host the containers for function execution. These could be
servers or VMs, and referred to as ’nodes’ from here onwards
in the paper. The cluster controller acts as the governing
body which coordinates the communication and overlooks
the actions of all the other functional components. It is also
the entry point to the cluster. Any new request that is decided
to be deployed in a serverless environment, is received at
the controller along with the selected node information for
scheduling the same. The resource monitor is a monitoring
tool which scrapes cluster metrics including resource details of
nodes and function containers and also the performance data of
the requests in execution and passes on to the global resource
manager. Upon receipt of a new request, the controller checks
if the selected node contains warm function instances for the
request type. If so, the request is forwarded to an existing ready
container. In case such idling instances are not available, the
function scaler spawns a new container in the preferred node
and deploys the function code along with any dependencies.
Then the request is forwarded to the new instance. This results
in a ’cold start’ delay for the request. To have more warm
instances in order to minimize this delay, the scale-in process
allows a set idle time for the resource, once a request finishes
its execution. The function executions are charged as per the
billing model in commercial serverless platforms, i.e. at a GB-
second rate with a millisecond (ms) granularity in addition to
a per request rate.

Figure 1: The system model of the hybrid application execution
environment

The IaaS cluster is composed of rented VM resources with
varying cpu and memory capacities, from a cloud provider un-
der the IaaS model. We consider resources similar to on-demand
EC2 VMs from Amazon [21], which are recommended for
short term, unpredictable workloads that cannot be interrupted.
Users are charged per second of usage derived from the hourly
rate. The resource monitor gathers cluster metrics similar to
that in the serverless cluster. The VM scaler is equipped with
a cpu-threshold based scaling policy following Amazon EC2
auto scaling [22]. Accordingly, VMs are scaled out in order
to maintain the average cpu utilization at the given threshold.
Once a VM is freed after all the executions, it is scaled-in
only after staying idle for a set time duration, so that the
frequency of cold starting instances is minimized. We define
a maximum cluster size, and maintain a record of the VMs
that are active, stopped, and pending creation at a given time.
Once a request arrives at the controller with an associated VM
id, if the particular resource is already running, the request is
forwarded to it. If it is pending creation, the request is queued
until the resource comes alive.

B. Problem Formulation

Consider N = {n1, n2,, nQ} to be the set of nodes in a
serverless computing environment. Each node has a cpu and
memory capacity measured in terms of vCPU cores and Mega
Bytes (MBs). The unallocated, available cpu and memory
values of node ni, 1 ≤ i ≤ Q at time t is nc

i(t) and nm
i(t)

respectively. Cj is the container running the jth (1 ≤ j ≤ B,
B being the total number of requests for the function) request
of an application/function deployed in the cluster. Following

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, 20XX 4

resource demand and capacity constraints need to be satisfied
for Cj to be deployed on node ni at time t.

Cc
j ≤ nc

i (t), Cm
j ≤ nm

i (t) (1)

where Cc
j and Cm

j identify the requested resources by the
container. Similarly, suppose V = {v1, v2,, vM} represent
the cluster of VMs in the IaaS cluster. Any request to be
executed in a VM needs to meet its resource availability. Going
by the above notation, if Rj is the jth request of an application
and 1 ≤ l ≤ M ,

Rc
j ≤ vcl (t), Rm

j ≤ vml (t) (2)

A key metric that we target to improve in this work is
application performance in terms of execution time latency.
In order to not allow request processing time variations in
different applications to hinder the overall performance tracking,
we consider a relative response time parameter of a request
when measuring performance. Relative Request Response Time
(RRRT) is defined as the ratio between the standard (Rr0

j)
and the actual response time (Rr

j) of a request. Standard
response time is the time to response when the request is
run in an isolated environment on a readily available resource.
Accordingly, over the course of an application request workload,
we target to minimize the average Relative Request Response
Time (RRRT) ratio, i.e.,

Minimize : Average RRRT =
1

B

B∑
j=1

Rr
j

Rr0
j

(3)

In addition to the performance goal, an equally important
parameters for end users in any cloud service offering is the
cost. Thus optimizing the overall infrastructure cost of running
an application workload is our second key target. The cloud
service provider cost model is different under a serverless and
a serverful deployment model.

Existing commercial serverless platforms charge users based
on the memory allocated (in MB) to the function instance
(Cm

j), the execution time (in ms) of a request (Ej), and the
number of requests received by the application (B). Thus if
the charge per MB for 1 ms is W , and the charge per request
is L, the total cost of executing an application workload on
the serverless platform is,

Costs =

B∑
j=1

(Cm
j × Ej ×W) + L (4)

An IaaS platform on the other hand charges users for the
whole period that the infrastructure is rented out. If tl is the
time period (in seconds) that vl was rented and pl is the price
per second for the same,

CostVM =

M∑
i=1

pl × tl (5)

Thus the infrastructure cost optimization objective could be
stated as below:

Table II: Definition of Symbols

Symbol Definition
N Set of nodes in the serverless cluster
V Set of VMs in the serverful cluster
Q Total number of deployed functions
nc
i(t)

Available CPU in ith node, i ∈ [1, Q]

nm
i(t)

Available memory in ith node, i ∈ [1, Q]

vc
l(t)

Available CPU in lth VM, l ∈ [1,M]

vm
l(t)

Available memory in lth VM, l ∈ [1,M]

Rj The jth request of an application, j ∈ [1, B]
Cj Container running the jth request of an application
Cc

j Requested CPU by the jth container
Cjm Requested memory by the jth container
Rr0

j Standard response time of the jth request
Rr

j Actual response time of the jth request
Ej Execution time of request, Ej

W Per MB/s charge for serverless executions
L Charge per request for serverless executions
pi Unit price of VM, vl
tl Total active time of VM, vl

Minimize : CostTotal = Costs + CostVM (6)

Accordingly our overall target objective is summarized
below:

Minimize : Average RRRT + CostTotal (7)

IV. DEEP REINFORCEMENT LEARNING MODEL

A. Learning Model for Hybrid Scheduling

RL is a form of machine learning which predominantly works
by learning through experience gathered by actively interacting
with the problem environment. Based on the preferred outcome,
the learning agent is rewarded whenever a ’better’ action is
taken. With enough experience, the agent ultimately learns
to take actions leading to maximizing the cumulative reward
along experience trajectories.

In this work, the RL agent is tasked with traversing a
serverless and VM based hybrid computing environment, in
order to determine a request scheduling policy for application
workloads. Each time step of the agent corresponds to the
event of receiving a user request at the hybrid load balancer
discussed under the system model. The policy to be developed
is aimed at achieving our objectives of time and cost. The key
elements of the RL model are discussed below.

State space: The state space captures the important metrics
in both the serverless and VM based environments in addition
to the workload characteristics. Accordingly, the first part of
the state vector carries the serverless cluster node specifications:
[nc

i , nm
i , nidle

i], which identify the free cpu, memory capacities
and the number of idle (warm) containers in each node. The
second part includes the request details: [Rc

j , Rm
j , Rrate

j ,
Rd

j], representing the requested cpu, memory, moving average
arrival rate and the deployment mode of the previous request,
respectively. The moving average rate of arrival is calculated
over a time frame which captures the total of the set up and the
set idle time of a VM in the serverful cluster, which helps the

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, 20XX 5

model to gain an understanding on the historical load level as
well as its duration. The mode of deployment in the preceding
step gives an indication of the availability of warm/active
instances, and thus is helpful in decision making. The final
portion of the state vector is composed of details of the IaaS
cluster: [vcl , vml , vsl , vtl], referring to cpu, memory capacities,
VM live status and the request waiting time for scheduling if
selected. The last metric identifies how long it takes for the
VM to come to ’ready’ status and is calculated by the average
time taken for a VM to start up and the remaining time since
initializing the ’start’ process.

Action space: Our action space takes a hierarchical form
with two levels of decision making. The first level determines
the deployment environment for the request while level two
specifies the node of execution within the selected cluster.
Accordingly, a complete action A can be represented as below:

A = [a1, a2]

{
a1 ∈ {serverless, serverful}
a2 ∈ {n1, n2,, nQ}/{v1, v2,, vM}

(8)
Compared to a combinatorial action space which does not

distinguish between the two deployment modes, the RL agent is
able to explore and learn the behavior of the hybrid environment
faster with this formulation.

Reward: The step reward awarded to the agent after each
action is aligned with the performance and cost objectives. We
device two reward elements as below for action At:
R1: The waiting time for the request to be scheduled. This is

the resource creation time relevant as per the selected combined
action. For a request directed to a node in the serverless
platform, this would be equal to zero if there is any ready
instance or one if a new container is to be created. If the VM
cluster is selected for execution, this would either be zero or
one for active or stopped VMs, else the remaining time for
initializing as a fraction of the total, for a VM pending creation.
R2: An approximation of the effective cost of running the

request in the selected infrastructure. In the serverless cluster,
this is the charge per request calculated as per (4). For the
VM based cluster, we use an approximate value calculated
as the cost of keeping the selected VM active during the
execution time of the request, multiplied by the percentage of
free resources in the VM at the time.

The total reward is the aggregate of both R1 and R2 above.
Since we need to minimize the cumulative of these rewards in
order to reach our targets, we insert a negative sign for this
reward value when training the agent. Further, since R1 and
R1 are in two different scales, we normalize them at each step.

B. Actor-critic based Hierarchical Scheduling Framework

Actor-critic methods in reinforcement learning make use
of both the basic techniques of value based and policy based
methods of finding the optimal policy for a given problem.
Its fundamental architecture is designed with the use of two
neural networks, the actor and the critic network. The actor is a
policy network which uses an optimization method to train the
network in the direction of the desired policy. Critic is driven

by a value network which evaluates the policy generated by
the actor.

Traditionally, actor-critic algorithms are implemented with
one actor and one critic network. For our proposed hierarchical
action space described above in section IV(A), we design a
network architecture with two actor networks and one critic
network adapting the hybrid actor-critic architecture presented
in [23] for parameterized action spaces. The two parallel
actors work together to generate a complete action. The first
actor performs the first level of action selection by learning a
stochastic policy πθ1 , while the second actor learns a policy
πθ2 in order to select the second action.

The policy optimization in the actor networks could utilize
any policy gradient algorithm which works with discrete
environments and suits the basic actor-critic architecture, such
as Trust Region Policy Optimization (TRPO) and Proximal
Policy Optimization (PPO). Since TRPO is computationally
intensive, we choose PPO for policy optimization in both the
actor networks. It is proven to be an improved version of TRPO
in terms of generalizability and its simplicity. PPO learns a
stochastic policy πθ by including a clipping function in its
objective function and minimizing it.

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1−ϵ, 1+ϵ)At] (9)

where rt(θ) identifies the probability ratio between the old
policy and the new policy while ϵ is a hyper-parameter used
to clip the objective function. The clipped function in PPO
helps to keep the divergence of the old policy and the new
policy within the trust region without having to use a constraint
like in TRPO. In our proposed architecture, the two discrete
policies πθ1 and πθ2 are updated separately by minimizing
their respective clipped objectives during training.

The single critic network estimates the state-value function,
vπ(st|ϕ) and learns by minimizing the difference between the
target (r + γVϕ(s

′
t)) and predicted values of the state, also

known as the advantage function A(s, a) as shown below.

J(ϕ) = r + γVϕ(s
′
t)− Vϕ(st)

ϕ = ϕ− α∇ϕJ(ϕ)
(10)

where ϕ is the critic network parameter and ∇ϕJ(ϕ) is
the gradient of the network which is updated using gradient
descent.

Algorithm 1 illustrates the pseudocode of the learning pro-
cess of the proposed actor-critic based hierarchical scheduling
framework. First we initialize the actor networks and the critic
network with random weights and set the hyperparameters
for model training (lines 1-2). At the start of each scheduling
episode, the environment is reset. At each time step, the agent
retrieves the state of the environment and feeds it to the first
and second actor networks. The first actor maps the request to
either the serverless or VM based environment, after which the
second actor determines a scheduling node in that environment.
Once the request is forwarded for execution, the agent receives
a reward and the environment transitions to the next state. The
transition data are stored in a memory buffer (lines 5-9). When
an episode comes to an end, we train the networks S times by

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, 20XX 6

Algorithm 1 Actor-Critic based Hierarchical Scheduling
Algorithm

1: Initialize the two actor network and critic network param-
eters θ1, θ2 and ϕ

2: Initialize the training parameters α, β, and γ
3: for episode = 1 to E do
4: Reset the environment
5: for step = 1 to T do
6: Input the state s of the environment to actor

networks πθ1(a|s) and πθ2(a|s)
7: Select action a1 and a2 using using the first and

second actor networks
8: Execute the combined action A = (a1, a2), move

to the next state s′ and observe the reward r
9: Store the transition (s, a, r, s′) in memory D

10: for j = 1 to S do
11: Randomly sample a mini-batch of samples of size

K from memory D
12: for sample i = 1 to K do
13: Compute the loss and the gradients of the loss

of the two actor ∇θ1J(θ1), ∇θ2J(θ2) and critic ∇ϕJ(ϕ)
networks

14: Update actor and critic network parameters θ1, θ2
and ϕ

15: Clear memory D
return

sampling a batch of step data from the memory, computing
the network losses for each step and by updating the network
parameters (lines 10-14). Finally the memory is cleared before
the start of the next episode.

V. PERFORMANCE EVALUATION

A. RL Environment Design and Implementation

We build a serverless testbed with the Kubeless [24] open
source serverless framework deployed on a Kubernetes [25]
cluster, set up on the Melbourne Research Cloud [26]. This
prototype environment is used to do initial resource profiling for
the applications used in our experiments in addition to gathering
various system behavioral parameters such as container creation
(cold start) times etc.

Following the system architecture in our serverless prototype
described above and the overall system model presented under
section III (A), we have developed a simulation environment
for serverless and serverful hybrid scheduling of applications.
The serverful/VM based functionalities in the simulator are
based on Amazon EC2 VM instances. Further, this event-
based simulator written in python is integrated with Keras
[27] and Tensorflow(TF) [28] libraries in order to support our
DRL model training. Although in this work we explore only
scheduling techniques, our simulator is capable of evaluating
novel RL-based solutions for many resource management
related tasks including resource provisioning, scheduling, and
scaling etc. As mentioned above, it supports applications
deployed in a serverless, VM based or a hybrid environment

and the source code is publicly available as an open-source
software, ’Hybrid_DRL1’.

B. Experimental Settings

1) Cluster Setup: Our experiments are designed to include
20 nodes in the simulated serverless cluster. The processing
power of each of these node vCPUs is considered to follow the
clock speeds of the AWS Lambda invokers identified in [3],
with 4 different vCPU count and memory configurations. The
simulated serverful cluster is also composed of 20 VMs and
their configurations are derived from the Amazon EC2 VMs (in
Australia) closely matching the clock speed, vCPU and RAM
configurations of the serverless nodes. The pricing model of
these VMs are set as per the instance pricing model of the EC2
VMs, while AWS Lambda GB-second and per request rates
are utilized for the serverless cluster cost calculations. The
VM-based cluster resource details are summarized in Table III.

2) Workload Specifications:
Serverless Applications: We select 10 applications from

ServiBench [29] and FunctionBench [30] benchmark suites
which are formed of a single function. These applications
were chosen so that they have varying execution times which
determine their sensitivity to cold start latencies. Further, each
of them have different resource requirements and thus provides
a diverse learning experience to the DRL agent, specially
in terms of managing idling resources in the VM cluster.
Our practical testbed is initially utilized for deriving resource
metrics for the selected applications. A series of requests
is sent to a ready instance of each application deployed in
isolation, using the JMeter [31] load generation tool. The results
from these tests collected by monitoring tools and averaged
over multiple iterations are used to determine the resource
consumption of a single function request (Rc

j , Rm
j) and its

standard response time (Rr0
j). Table IV summarizes the nature

of the selected benchmark applications.
Workload Creation: We utilize metrics from function traces

exposed by Azure Functions [32] for a set of single function
applications, when creating the training workloads. The per
hour arrival rates for a particular function are extracted as
the request rates, and a poisson distribution is followed when
determining the inter arrival times of requests. Each workload
is created with a single application receiving requests at
fluctuating arrival rates, with each rate prevailing for different
time durations. The DRL agent is trained with workloads of
multiple applications with high and low request rates lasting
for both short and long durations. In all the experiments, we
maintain request arrival rates at 5-60 requests per second.

1https://github.com/Cloudslab/Hybrid_DRL

Table III: VM-based Cluster Resource Details

Instance Type vCPU cores Memory(GB) Quantity Price($/hr)
m6a.large 2 8 5 0.108
t4g.xlarge 4 16 5 0.1696
m5.2xlarge 8 32 5 0.48
m5a.4xlarge 16 64 5 0.864

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, 20XX 7

3) Hyper-parameter Configurations: Neural network train-
ing parameters for both the actor networks and also the critic
network are decided on a trial and error basis. The discount
factor is maintained at a high value since the scheduling
decisions made over a period of time affect the success of
the agent’s decision making in terms of both the mode of
deployment as well as the execution nodes. The second actor
initially has a higher learning rate, so that the agent learns to
take better node selection decisions during initial iterations,
without which the first level decision of environment selection
too will have no value. A decay factor is used to gradually
bring down this learning rate to match that of the first actor
subsequently. The critic constantly maintains a relatively higher
discount rate since in the actor-critic architecture, the actors
largely rely on the feedback and guidance of the critic network.
These neural network parameters, and the other settings for
training the DRL agent are listed in Table V.

C. Performance Metrics

We use two metrics to evaluate the effectiveness of our
solution noted below:

1) Average Relative Request Response Time (RRRT):
The average, relative request response time of an ap-
plication workload during an episode, calculated using
(3).

2) User Cost: The total cost of running an application work-
load in the hybrid cluster environment. The calculation
of this metric is as in (6).

D. Baseline Scaling Techniques

We use three baseline techniques to compare the performance
of our proposed solution.
VM-only: The entire workload execution takes place on a
VM-based cluster.
S-Only: The entire workload execution takes place on a
serverless cluster.
Std-A2C: DRL model trained with the standard actor-critic
network architecture with a single actor network. The two
levels of decision making are accommodated by composing a

Table IV: Application Details

Name Resource Sensitivity
CPU Memory

Primary High High
Float High High
Matrix Multiplication High High
Linpack High High
Load low low
Dd High Medium
Gzip-compression High Medium
Thumbnail Generator Low Medium
Image Processing Medium Medium
Video Processing High High

Table V: Hyper-parameters Used for DRL Model Training

Parameter Value
General
Discount factor (γ) 0.99
Mini-batch size (K) 128
No. of training iterations per episode (S) 50
Optimizer Adam
First Actor network parameters
Learning rate (α1) 1.00E-06
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden layer 150
Second Actor network parameters
Learning rate (α2) 1.00E-05
No. of input layers 2
No. of output layers 2
No. of hidden layers 4
No. of neurons in each hidden layer 150
Critic network parameters
Learning rate (β) 5.00E-06
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden layer 150

combinatorial action space where each action has two decision
elements.

E. Convergence of the DRL Model

The graphs in Fig. 2 illustrate the step-by-step training
progress achieved by the hierarchical actor-critic agent, H-
A2C across iterations. We demonstrate the progress in terms
of the cumulative reward over an episode, the average RRRT
experienced and the average user cost incurred for executing a
request during an episode. Note that each marked value in the
graphs corresponds to the average over 10 episodes for better
readability and ease of understanding.

It is clear that the model reaches convergence around the
900th iteration, after which the achieved progress is maintained.
Fig. 2(a) shows how the episodic reward gradually improves
and reaches convergence, as the agent learns a policy that is able
to take decisions that optimize the constituents of the reward
metric at each scheduling step. Figs. 2(b) and 2(c) illustrate
the gradual reduction in overall RRRT and the incurred cost
for requests with convergence, respectively. The logic behind
this achievement is two-fold, since the agent has a hierarchical
decision structure. The first actor network learns to select a
deployment environment that leads to lower relative response
times by targeting lesser frequency in cold starts, considering
the nature of the application specially in terms of its execution
time. The cold starts refer to the container creation time in
a serverless execution as well as the time for setting up new
resources in a VM setting if all active resources are exhausted.
While aiming for a reduced RRRT, the model also learns to aim
for an environment where the marginal cost for each request
would be minimal. This could be based on the availability
of warm function instances in a serverless setting or active
VMs with free resources in a VM setting. Subsequent to the
first actor’s decision, the second actor uses its learned policy

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, 20XX 8

(a) Average Rewards (b) Average Relative Request Response Time (RRRT)

(c) Average User Cost per request ($)

Figure 2: Training progress of the DRL agent in terms of the agent rewards, average RRRT, and the average user cost per
request

to select an execution node in the selected environment, that
further elevates the target metrics. A node with ready instances
could be the better choice in a serverless setting, while an
active VM with higher utilization levels which leads to lesser
idling times, could be selected in a VM-based setting.

F. Analysis of Model Performance on the Evaluation Data Sets

The trained model is evaluated in terms of the response
time and user cost performance achieved over the evaluation
workloads. The workloads for these experiments are created
by following trace snippets from Wikipedia [33] to simulate
request arrival times. The Figs. 3(a) and (b) show the results
averaged over five different workloads, run for each of the
applications float, load and image processing, which have been

selected out of the ten applications used in the experiments, due
to space limitations. These three applications were specifically
chosen for demonstration of model performance due to their
distinction in resource consumption and execution times.
Further, Figs. 4 and 5 illustrate the behavior of the agent
decision model for two of the evaluation workloads, with the
points of switching deployments between the serverless and
IaaS clusters.

1) Evaluation of application performance: Application
performance is evaluated in terms of the achieved average
RRRT (Fig. 3 (a)) for each application by following the trained
policy of our hierarchical A2C (H-A2C) model and the other
baseline algorithms, for scheduling workload requests.

Our H-A2C model is able to demonstrate the best perfor-

(a) Average Relative Request Response Time (RRRT) (b) Total User Cost ($)

Figure 3: Comparison of the average RRRT and the total user cost incurred by different application workloads, achieved by the
H-A2C model and the baseline algorithms

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, 20XX 9

mance for all three applications, with overall relative response
time improvements of up to 11%. This is achieved by carefully
directing each request to the execution environment that is
more likely to have ready resources for the upcoming request
traffic as shown in Figs. 4 and 5. Once the deployment mode
is decided, the trained agent is also able to choose the best out
of the available cluster nodes. Both these decisions are taken
to suit each phase of the workload considering the prevailing
traffic patterns. The trained S-A2C model shows the next best
performance, but fails to capture the fine details of each cluster
environment, that is enabled by the hierarchical nature of the
H-A2C model.

The float application has the highest CPU and memory
consumption and the longest execution time out of the three.
Thus when the requests are scheduled solely on a VM cluster,
it is able to maintain a relatively high utilization level in the
rented resources even at low load levels, in the long term.
This triggers auto-scaling of VM resources in the cluster,
leading to lesser request latency effects arising from new VM
initialization. However, when the entire workload is executed as
serverless functions, due to the high application response time,
the availability of warm idling containers is often limited. Thus
the s-only execution shows the worst performance resulting
from frequent cold start of instances (first graph of Fig. 3 (a)).
To overcome the shortcomings of both these scenarios, our
H-A2C model resorts to serverless deployments during periods
of very low and fluctuating traffic levels, and switches to the
VM cluster as the load starts to increase and then stabilizes,
as seen in the graphs 4(a) and 5(a).

In contrast, the load application results in the need for
frequent startup of new VMs in the IaaS cluster to accommodate
new requests. This is due to its very low execution time and
resource requirements. For the same reasons, the effect of these
added latencies on the relative response time too is high for
the load application. This situation escalates during periods
of low and irregular traffic patterns, when VMs are switched
on and off often due to idling. On the other hand, the s-only
execution performance is not much different from the float
application scenario since the increase in latency is mostly only
due to the higher relative effect of the cold start delays, arising
from the low application response time. In comparison to these
two strategies, we can see that the H-A2c model leverages
both these clusters by executing the application requests as
functions for the majority of the workload, while utilizing the
VM cluster only during periods of lasting high traffic levels

(Figs. 4(c) and 5(c)). During these traffic bursts, the load level
seems to be sufficient to maintain a set of ready VMs, thus
compensating for the cold start latencies that the serverless
execution would otherwise entail.

The image processing application possesses a median re-
sponse time and resource needs. Thus its relative latency effects
are less evident and more prominent compared to that of the
load and float applications respectively.

2) Evaluation of incurred user cost: The cost charged to
the user is measured as the total billed amount for the rented
VM resources and function executions, by each application
over the duration of the workload. Fig. 3(b) shows that the
scheduling decisions made using the H-A2C model result in
the least cost charged to the user for all three applications, with
the load application attaining a cost reduction of approximately
44%. The trained policy is equipped with knowledge on the
workload and system behavioural patterns, so as to make
informed decisions on when to switch deployments to each
cluster environment, that are cost efficient. The reduction in
VM idling time and maximizing the usage of the serverful
cluster by maintaining just the right amount of resources active,
is the key enabler for overall user cost minimization. Since the
per request charge for a serverless function execution is quite
high, the scheduler chooses to use it only during periods of
fluctuating and low load levels, during which the use of rented
VMs results in cost inefficiencies. The lowest overall cost
under the H-A2C model is incurred by the image processing
application due to its better use of both the environments
compared to the load application, in addition to the lower
actual resource consumption than the float application. The
Std-A2c model too follows this cost pattern.

The VM-only deployment results in worst performance for
the load application due to high VM idling times, with the
highest incurred cost for the workload execution out of all
the applications. The S-only execution cost difference for the
three applications is only dependent on the consumed level
of resources and the workload execution times, as per the
serverless billing model.

VI. CONCLUSIONS AND FUTURE WORK

With the increased adoption of the serverless cloud model
for different application domains, studies have shown that
limitations also exist in these environments that hinder the
achievement of the best possible performance for certain
workloads.

(a) Float (b) Image Processing (c) Load

Figure 4: Workload-1: Deployment switch between Serverless and IaaS clusters for the three applications

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, 20XX 10

(a) Float (b) Image Processing (c) Load

Figure 5: Workload-2: Deployment switch between Serverless and IaaS clusters for the three applications

In this paper, we presented a DRL based hybrid execu-
tion model for application workloads, which utilizes both a
serverless and a serverful cluster environment. The proposed
scheduling framework involves a hierarchical decision model,
where the DRL agent first learns to choose the best mode of
execution for an application request. Thereafter, it proceeds to
decide the node that is most suitable for the request execution
within the selected cluster environment. The DRL agent follows
an actor-critic architecture and the reward model is set targeting
relative application latency and the resource cost charged to
the user as the optimization objectives. The model evaluation
experiments show that the users are able to avoid application
latencies arising from frequent container cold starts in a
serverless environment, as well as the problem of over/under
utilization of rented infrastructure in a VM setting, by adopting
a carefully designed hybrid system architecture.

As part of future work, we plan to expand our proposed
hybrid scheduling framework to support multi-function appli-
cations with Directed Acyclic Graph (DAG) based workflow
structures. In such a scenario, each request would contain
multiple sub-tasks, each of which would require hierarchical
decision making for environmental and node selection for its de-
ployment. Each sub-task would have dependency relationships
with each other, which need significant attention in the decision
making process. In addition, the treatment for data transfer
latencies among tasks would need to be carefully investigated
depending on the deployment cluster. The DRL agent holds
the responsibility of learning these complex task dependencies
as well as input and output data requirements for each request
component.

REFERENCES

[1] A. Mampage, S. Karunasekera, and R. Buyya, “A holistic view on
resource management in serverless computing environments: Taxonomy
and future directions,” ACM Computing Surveys (CSUR), vol. 54, no.
11s, pp. 1–36, 2022.

[2] J. R. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar,
G. Kesidis, and C. Das, “Spock: Exploiting serverless functions for slo
and cost aware resource procurement in public cloud,” in Proceedings of
the IEEE 12th International Conference on Cloud Computing (CLOUD).
IEEE, 2019, pp. 199–208.

[3] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proceedings of the 2018 USENIX
Annual Technical Conference (USENIX ATC 18), 2018, pp. 133–146.

[4] J. H. Novak, S. K. Kasera, and R. Stutsman, “Cloud functions for fast and
robust resource auto-scaling,” in Proceedings of the 11th International
Conference on Communication Systems & Networks (COMSNETS).
IEEE, 2019, pp. 133–140.

[5] A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay,
and A. Gandhi, “Ensure: Efficient scheduling and autonomous resource
management in serverless environments,” in Proceedings of the IEEE
International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS). IEEE, 2020, pp. 1–10.

[6] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, “Mashup: making
serverless computing useful for hpc workflows via hybrid execution,” in
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2022, pp. 46–60.

[7] Z. Li, Q. Chen, S. Xue, T. Ma, Y. Yang, Z. Song, and M. Guo,
“Amoeba: Qos-awareness and reduced resource usage of microservices
with serverless computing,” in Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2020,
pp. 399–408.

[8] S. Horovitz, R. Amos, O. Baruch, T. Cohen, T. Oyar, and A. Deri,
“Faastest-machine learning based cost and performance faas optimization,”
in Proceedings of the Economics of Grids, Clouds, Systems, and Services:
15th International Conference, GECON 2018, Pisa, Italy, September 18–
20, 2018, Proceedings 15. Springer, 2019, pp. 171–186.

[9] A. Reuter, T. Back, and V. Andrikopoulos, “Cost efficiency under
mixed serverless and serverful deployments,” in Proceedings of the
46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, 2020, pp. 242–245.

[10] A. Mampage, S. Karunasekera, and R. Buyya, “Deep reinforcement
learning for application scheduling in resource-constrained, multi-tenant
serverless computing environments,” Future Generation Computer Sys-
tems, vol. 143, pp. 277–292, 2023.

[11] H. Yu, A. A. Irissappane, H. Wang, and W. J. Lloyd, “Faasrank: Learning
to schedule functions in serverless platforms,” in Proceedings of the IEEE
International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS). IEEE, 2021, pp. 31–40.

[12] C. K. Dehury, S. Poojara, and S. N. Srirama, “Def-drel: Systematic
deployment of serverless functions in fog and cloud environments using
deep reinforcement learning,” arXiv preprint arXiv:2110.15702, 2021.

[13] X. Yao, N. Chen, X. Yuan, and P. Ou, “Performance optimization of
serverless edge computing function offloading based on deep reinforce-
ment learning,” Future Generation Computer Systems, vol. 139, pp.
74–86, 2023.

[14] Q. Tang, R. Xie, F. R. Yu, T. Chen, R. Zhang, T. Huang, and Y. Liu,
“Distributed task scheduling in serverless edge computing networks for
the internet of things: A learning approach,” IEEE Internet of Things
Journal, 2022.

[15] H. Jeon, S. Shin, C. Cho, and S. Yoon, “Deep reinforcement learning for
qos-aware package caching in serverless edge computing,” in Proceedings
of the 2021 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2021, pp. 1–6.

[16] G. Somma, C. Ayimba, P. Casari, S. P. Romano, and V. Mancuso,
“When less is more: Core-restricted container provisioning for serverless
computing,” in Proceedings of the IEEE INFOCOM - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
2020, pp. 1153–1159.

[17] A. Zafeiropoulos, E. Fotopoulou, N. Filinis, and S. Papavassiliou,
“Reinforcement learning-assisted autoscaling mechanisms for serverless
computing platforms,” Simulation Modelling Practice and Theory, vol.
116, p. 102461, 2022.

[18] P. Vahidinia, B. Farahani, and F. S. Aliee, “Mitigating cold start problem
in serverless computing: A reinforcement learning approach,” IEEE
Internet of Things Journal, 2022.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. X, 20XX 11

[19] H. Qiu, W. Mao, A. Patke, C. Wang, H. Franke, Z. T. Kalbarczyk, T. Başar,
and R. K. Iyer, “Reinforcement learning for resource management in
multi-tenant serverless platforms,” in Proceedings of the 2nd European
Workshop on Machine Learning and Systems, 2022, pp. 20–28.

[20] Z. Zhang, T. Wang, A. Li, and W. Zhang, “Adaptive auto-scaling of delay-
sensitive serverless services with reinforcement learning,” in Proceedings
of the 2022 IEEE 46th Annual Computers, Software, and Applications
Conference (COMPSAC). IEEE, 2022, pp. 866–871.

[21] “Ec2 on-demand instance pricing – amazon web services,” https://aws.
amazon.com/ec2/pricing/on-demand/, 2023, (Accessed on 07/07/2023).

[22] “Instance auto scaling - amazon ec2 autoscaling - aws,” https://aws.
amazon.com/ec2/autoscaling/, 2023, (Accessed on 07/07/2023).

[23] Z. Fan, R. Su, W. Zhang, and Y. Yu, “Hybrid actor-critic reinforcement
learning in parameterized action space,” in Proceedings of the 28th
International Joint Conference on Artificial Intelligence, 2019, pp. 2279–
2285.

[24] Kubeless, “Kubeless,” https://kubeless.io/, 2021, (Accessed on
01/13/2022).

[25] “Kubernetes,” https://kubernetes.io/, 2022, (Accessed on 04/08/2022).
[26] “Melbourne research cloud documentation,” https://docs.cloud.unimelb.

edu.au/, 2022, (Accessed on 07/22/2022).
[27] Keras, “Keras: the python deep learning api,” https://keras.io/, 2021,

(Accessed on 01/20/2022).
[28] TensorFlow, “Tensorflow,” https://www.tensorflow.org/, 2021, (Accessed

on 01/20/2022).
[29] J. Scheuner, S. Eismann, S. Talluri, E. Van Eyk, C. Abad, P. Leitner, and

A. Iosup, “Let’s trace it: Fine-grained serverless benchmarking using
synchronous and asynchronous orchestrated applications,” arXiv preprint
arXiv:2205.07696, 2022.

[30] J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in Proceedings of the IEEE 12th International
Conference on Cloud Computing (CLOUD). IEEE, 2019, pp. 502–504.

[31] A. S. Foundation, “Apache jmeter - apache jmeter™,” https://jmeter.
apache.org/, 2021, (Accessed on 11/08/2021).

[32] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in Proceedings of the USENIX Annual Technical
Conference (ATC), 2020, pp. 205–218.

[33] “Wikipedia access traces | wikibench,” http://www.wikibench.eu/?page_
id=60, 2020, (Accessed on 12/02/2020).

Anupama Mampage is a PhD student at the Cloud
Computing and Distributed Systems (CLOUDS) Lab-
oratory, Department of Computing and Information
Systems, The University of Melbourne, Australia.
She received her BSc Engineering (Hons) degree,
specialized in Electronic and Telecommunication
Engineering from the University of Moratuwa, Sri
Lanka, in 2017. Her research interests include Server-
less Computing, Internet of Things (IoT), Distributed
Systems and Reinforcement Learning.

Shanika Karunasekera is currently a Professor in
the School of Computing and Information Systems
and the Deputy Dean (Academic) in the Faculty
of Engineeering and IT, University of Melbourne,
Australia. She received her BSc degree in Electronic
and Telecommunications Engineering from the Uni-
versity of Moratuwa, Sri Lanka, in 1990 and the PhD
degree in electrical engineering from the University
of Cambridge, U.K., in 1995. Her research interests
include distributed computing, mobile computing,
and social media analytics.

Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory at
the University of Melbourne, Australia. He has
authored over 625 publications and seven text books
including "Mastering Cloud Computing" published
by McGraw Hill, China Machine Press, and Morgan
Kaufmann for Indian, Chinese and international
markets respectively. He is one of the highly cited
authors in computer science and software engineer-
ing worldwide (h-index=160, g-index=345, 137100+

citations).

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/autoscaling/
https://aws.amazon.com/ec2/autoscaling/
https://kubeless.io/
https://kubernetes.io/
https://docs.cloud.unimelb.edu.au/
https://docs.cloud.unimelb.edu.au/
https://keras.io/
https://www.tensorflow.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
http://www.wikibench.eu/?page_id=60
http://www.wikibench.eu/?page_id=60

	Introduction
	Related Work
	Serverless and Serverful hybrid scheduling
	Serverless Resource Management with RL

	Hybrid Scheduling
	System Model
	Problem Formulation

	Deep Reinforcement Learning Model
	Learning Model for Hybrid Scheduling
	Actor-critic based Hierarchical Scheduling Framework

	Performance Evaluation
	RL Environment Design and Implementation
	Experimental Settings
	Cluster Setup
	Workload Specifications
	Hyper-parameter Configurations

	Performance Metrics
	Baseline Scaling Techniques
	Convergence of the DRL Model
	Analysis of Model Performance on the Evaluation Data Sets
	Evaluation of application performance
	Evaluation of incurred user cost

	Conclusions and Future Work
	References
	Biographies
	Anupama Mampage
	Shanika Karunasekera
	Rajkumar Buyya

