
A Deep Reinforcement Learning based Algorithm for Time and Cost
Optimized Scaling of Serverless Applications
Anupama Mampage, Shanika Karunasekera and Rajkumar Buyya
The Quantum Cloud Computing and Distributed Systems (qCLOUDS) Laboratory, School of Computing and Information Systems, The University of
Melbourne, Australia

A R T I C L E I N F O
Keywords:
serverless computing
resource cost efficiency
function scaling
function latency
reinforcement learning

A B S T R A C T
Serverless computing has gained a strong traction in the cloud computing community in recent years.
Among the many benefits of this novel computing model, the rapid auto-scaling capability of user
applications takes prominence. However, the offer of adhoc scaling of user deployments at function
level introduces many complications to serverless systems. The added delay and failures in function
request executions caused by the time consumed for dynamically creating new resources to suit
function workloads, known as the cold-start delay, is one such very prevalent shortcoming. Maintaining
idle resource pools to alleviate this issue often results in wasted resources from the cloud provider
perspective. Existing solutions to address this limitation mostly focus on predicting and understanding
function load levels in order to proactively create required resources. Although these solutions improve
function performance, the lack of understanding on the overall system characteristics in making these
scaling decisions often leads to the sub-optimal usage of system resources. Further, the multi-tenant
nature of serverless systems requires a scalable solution adaptable for multiple co-existing applications,
a limitation seen in most current solutions. In this paper, we introduce a novel multi-agent Deep
Reinforcement Learning based intelligent solution for both horizontal and vertical scaling of function
resources, based on a comprehensive understanding on both function and system requirements. Our
solution elevates function performance reducing cold starts, while also offering the flexibility for
optimizing resource maintenance cost to the service providers. Experiments conducted considering
varying workload scenarios show improvements of up to 23% and 34% in terms of application latency
and request failures, or alternatively saving up to 45% in infrastructure cost for the service providers.

1. Introduction
Serverless computing has been embraced as an appli-

cation deployment model favorable for many application
domains in the current world [1]. The provider centric
resource management model has succeeded in attaining the
"serverless" nature of operations for the end user. However,
the cloud provider is tasked with numerous added responsibil-
ities as never before in achieving this seemingly "serverless"
behavior of cloud systems. Rapid auto-scalability of user
applications in line with load variations, is among the highly
valued distinguishing properties of a serverless computing
platform, which has proven useful under many application
scenarios. The very fine-grained auto-scaling capabilities
in serverless platforms require deployed functions to scale
their resources just-in-time, as user demand varies. As such,
function resources would scale to zero, when there is no
request traffic and scale back up when needed, ensuring high
resource efficiency. Setting up new resources in this manner
on the go, results in a considerable start up time, widely
known as the problem of the ’cold start delay’ in functions
which hinders its performance. Cold start delay in essence,
is a combination of the function runtime environment set
up time (sandbox creation, runtime dependency installation)
and the time spent on application specific code initialization.
This initial delay becomes specially significant for serverless
functions with very low execution times, which is the majority.

ORCID(s):

The situation is further complicated by the existence of mul-
tiple user applications deployed on the same infrastructure,
which require individual attention in their scaling decisions.

A number of existing works have studied the auto-scaling
techniques employed by both the commercial and open
source serverless computing platforms, and how they affect
application performance [2], [3]. [4] compares AWS Lambda,
Google Cloud Functions and Microsoft Azure in terms of
their function cold start delay. These platforms maintain idle
function instances from previous executions for a particular
time duration before recycling, in order to have more ready-
to-serve warm instances for new executions. As per the study
results, AWS and Google have relatively stable cold start
delays while Azure platform showed more varying values at
the time of their experimentation. Relationships also exist
between factors such as the programming language used and
the memory size of a function instance and the resulting re-
source start up delays. The majority of open source serverless
frameworks including Fission [5], Kubeless [6], OpenFaas
[7] and Knative [8] are built utilizing Kubernetes [9] as the
function orchestrator [10]. The auto-scaling functionality of
these frameworks is usually based on a set resource utilization
threshold of the existing function instances or custom metrics
such as the number of requests per second, which determines
the required number of function replicas required to meet the
current load.

Research works which address the issues related to
serverless auto-scaling delays are identified under two cat-
egories. One set of solutions is directed towards reducing
the frequency of the occurrence of cold start delays, while

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 1 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

the other is focused on reducing the measured cold start
delay of an individual function instance [3]. In order to
reduce the delay itself, various techniques are presented to
improve sandbox creation times, including the creation of the
required network elements beforehand, utilizing snapshots
of previously used containers and designing and developing
customized sandbox environments [11], [12], [13]. On the
other hand, minimizing the frequency of cold starts is
achieved by employing techniques for creating pre-warmed
containers, reusing warm containers and adjusting the level
of concurrently served requests by a function instance.
These approaches often times try to predict the arrival
rates and demand levels for individual functions in order
to proactively create the required resources [14], [15], [16].
The techniques used for such predictions mostly incorporate
the resource consumption characteristics of the serverless
functions in order to determine the size of the resource pool
to be maintained. They rarely consider the cluster resource
availability status or the cost of maintaining such idle resource
pools to the serverless resource provider. The distinguished
billing model in serverless platforms favours its end users
by charging them only when the resources are actively being
used with a millisecond level accuracy. This means that
even though additional resource pools are maintained to
meet Quality of Service (QoS) requirements of the user, the
provider is able to recover the costs of such resources only
to the extent of them being used, calculated at a very fine
level. As such, careful calculations are required considering
the status of the platform resources along with function
characteristics, in order to make these scaling decisions.
Moreover, the majority of solutions are limited in their
capability of handling multi-tenancy in the function scaling
process, since their solutions are designed to handle scaling
for specific application functions.

Considering the above highlighted challenges, our work
is focused on carrying out the scaling of function resources
of multiple user applications in a way that would enhance ap-
plication performance, while at the same time, preserving the
optimum usage of cloud provider resources. Further, while
existing solutions are designed to support only horizontal
scaling of function instances, i.e., scaling in or out the number
of function replicas, our solution approach encapsulates both
horizontal and vertical scaling, for better optimizing our
target objectives. Vertical scaling handles scaling up and
down of the cpu and memory capacities of the function
resources. In addition to varying the number of function
instances to meet changing user request rates, adapting
the resource configuration of existing function instances to
handle the incoming traffic in this manner helps in balancing
our dual objectives of function performance and provider
cost optimization.

Deep Reinforcement Learning (DRL) techniques are be-
ing extensively explored for cloud resource management work
from recent times. Experience based learning encouraged in
the RL paradigm makes it a good candidate as a method of
learning the behavior of dynamic serverless workloads with
very short execution durations. In this work, we propose a

DRL based solution which employs multiple learning agents
to determine the optimum level of function scaling to suit
changing demand levels. The key contributions of our work
are as follows:

1. We formulate and present a RL based model of the
function auto-scaling problem in a multi-tenant server-
less computing environment.

2. We propose a novel multi-agent function scaling frame-
work based on the policy gradient algorithm Asyn-
chronous Advantage Actor Critic (A3C), which aims
to attain a balance in optimizing application perfor-
mance and provider resource cost. In essence we focus
on the reduction in function response time and the
infrastructure cost. We adapt the A3C algorithm to suit
a multi-discrete action space required in making the
horizontal and vertical scaling decisions for a multitude
of user applications residing in the platform at a time.

3. We train and evaluate our DRL model in a python based
simulator environment. We also design a practical
testbed based on the open-source serverless platform
Kubeless which is deployed on a Kubernetes cluster.
The simulator replicates the characteristics and behav-
ior of the practical testbed and utilizes function profil-
ing data derived from the same, in all its experiments.

4. We evaluate and compare our approach with baseline
scaling techniques using real world serverless appli-
cations, together with function traces captured from
Microsoft Azure Functions.

The rest of the paper is organized as follows: Section II
reviews relevant literature. Section III presents the sys-
tem model and formulates the function scaling problem
mathematically. Section IV introduces the proposed DRL
oriented scaling framework. Sections V and VI discuss the
design and implementation details of the DRL agent training
environment, evaluation of the proposed technique and the
scope for future work.

2. Related Work
2.1. Serverless Resource Scaling

Scaling of serverless functions could be discussed in
terms of the horizontal and vertical scaling aspects. Hor-
izontal scaling refers to varying the number of instances
of a particular function that is available for request execu-
tion. As demand levels vary for an application with time,
determining the optimum level of replica scaling required
to meet the target objectives is a challenging task. [14]
try to predict the required number of function instances
in order to keep the new request waiting time below a set
threshold, by using a non-coorporative heuristic technique for
resource allocation. They propose pre-warming and reuse of
containers to reduce response time. [15] use an exponentially
weighted moving average model to estimate request arrival
rates. Proactive allocation of sandboxes is done using this
estimate. An oversubscribed static resource pool with pre-
warmed containers of all resource sizes is proposed in [16].

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 2 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

Table 1
Summary of Literature Review

Work Application Model Scaling Scaling Type Decision Parameters Multi VM

Single Function Technique Horizontal Vertical Optimization Objective Workload Overall System Tenancy Heterogeneity

Function Chain Response Time Provider Cost Efficiency Awareness Awareness

[14] ✓ Heuristic ✓ ✓ ✓ ✓ ✓

[16] ✓ Heuristic ✓ ✓

[17] ✓ Heuristic ✓ ✓

[18] ✓ ML ✓ ✓ ✓ ✓

[19] ✓ Heuristic ✓ ✓ ✓ ✓

[20] ✓ Heuristic ✓ ✓ ✓ ✓

[21] ✓ Heuristic ✓ ✓ ✓ ✓

[22] ✓ Q-Learning ✓ ✓

[23] ✓ Q-Learning ✓ ✓

[15] ✓ ✓ Mathematical modelling ✓ ✓ ✓

[24] ✓ Mathematical modelling ✓ ✓ ✓ ✓

[25] ✓ PPO ✓ ✓ ✓ ✓

[26] ✓ Q-Learning ✓ ✓

[27] ✓ Heuristic ✓ ✓ ✓ ✓

[28] ✓ Mathematical Modelling ✓ ✓ ✓

[29] ✓ Q-Learning/DQN ✓ ✓

[30] ✓ Q-Learning ✓ ✓ ✓ ✓

[31] ✓ A2C/Mathematical Modelling ✓ ✓ ✓

[32] ✓ MA-PPO ✓ ✓ ✓ ✓ ✓

[33] ✓ Q-Learning/Heuristic ✓ ✓ ✓ ✓

Our proposed work ✓ ✓ MA-A3C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[19] implement a lightweight middleware which uses the
knowledge of function compositions to trigger cold starts,
leading to provisioning of new containers before they are
required. They embrace the principle that a process which
undergoes cold start at one step is likely to encounter cold
starts in the future too. A container management system with
three distinct queues is introduced in [20]. First is occupied by
cold containers, the second hosts the warm containers, while
the third contains a copy of warm containers for each type of
request currently being processed. [21] tries to mitigate the
cascading effects of serverless cold starts. They propose just
in time resource provisioning techniques specially focused
on chained function executions. [17], [24] and [18] propose
maintaining a pool of function instances to face request
demands. A heuristic solution is given in [27] to adjust the
replica number without compromising on user budget. Time-
series forecasting is used in [28] to determine the request
workload to support the scaling decisions.

Q-Learning based approaches are used in [22], [23] and
[29] to determine the number of function containers to scale-
up/down at each point in time in order to maintain low
application latency and failure rates. [30] use Q-Learning to
decide the optimum level of maximum cpu usage in a function
instance to trigger scaling. In [31] the DRL algorithm A2C
is used to determine the idle time window for a used function
instance and further a time series model is used to predict
future invocations and thereby, create warm containers.

Vertical scaling deals with the up/down scale of the
resource capacities of a function instance. This is seen
as an alternative or used in conjunction with horizontal
scaling in order to meet intended targets, in the face of
changing traffic levels. An actor critic architecture with
Proximal Policy Optimization (PPO) is used in [25] to
harvest idle resources from functions and direct them to
under-provisioned instances. A Q-Learning based solution
is given in [26] to identify the level of concurrency, i.e

the number of concurrent requests served per instance, to
optimize function latency and system throughput. A DRL
based multi-agent (MA) solution is analysed against a single
agent implementation in [32] for the horizontal and vertical
scaling of functions. They focus on function latency and
resource efficiency for users and thereby lack focus on the
overall platform resource utilization. A preliminary study
is done in [33] on using Q-Learning for horizontal scaling
decisions and a heuristic approach for vertical scaling.
2.2. RL Solutions for Serverless Resource

Management
As also discussed above in section II(A), a number of

recent works employ RL techniques for enhancing resource
management in serverless environments. The target areas
of improvement in this manner include resource scheduling,
scaling and modelling of optimum resource configurations
for functions.

A policy gradient algorithm is proposed in [34], to
identify the best node for scheduling a function request. [35]
uses a DRL approach to determine the percentage of user
requests to be processed by the cloud and offloaded to the fog
layer. A distributed task scheduling approach is presented in
[36] for serverless edge computing networks. They explore
a multi-agent dueling Deep Q Learning (DQN) architecture
to assist the edge network in making resource allocation
and scheduling decisions. A distributed, experience-sharing,
function offloading framework for the edge is proposed in
[37]. They suggest an improved actor critic algorithm for
deciding whether to execute functions on the IoT device or on
an edge device. [38] introduce a multi-agent DRL solution for
caching packages required for running serverless functions at
edge nodes, based on their importance and popularity. They
aim to improve per function response time while managing
resources consumed while caching. A multi-step DQN based
solution is proposed in [39] for function scheduling, in a

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 3 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

multi-tenant serverless environment, which aims to optimize
application performance as well as provider resource cost.

We summarize the reviewed works specifically in the area
of serverless resource scaling in Table 1. This comparison
considers the aspects of application model, used technique,
type of scaling, optimization objective, workload-awareness
(consideration for request arrival rate fluctuations), system
awareness (knowledge on individual cluster VM resource
usage metrics), multi-tenancy (adaptability to suit multiple
concurrent applications) and VM heterogeneity. Majority
of existing works propose solutions based on only one
aspect of scaling, either horizontal or vertical, which is not
ideal for optimizing resource cost. Thus such solutions lack
attraction to service providers to be used in their serverless
platforms. Further, many solutions lack overall system status
awareness, and also are not scalable for decision making
under a multi-tenant scenario. Our work contrasts with these
existing works in a few major aspects: the consideration of
the dynamic function workload characteristics as well as
system parameters, rather than the simple function resource
requirements, the adaptability of the developed solution to
suit multi-tenant clusters, the dual optimization objectives
concerning both the user and the provider. The ability to
incorporate such a vast array of state parameters as decision
vectors and also strike a balance between multiple conflicting
objectives has been made possible by the multi-agent DRL
model introduced in the next sections.

3. Adaptive Function Scaling
3.1. System Model

Our system model represents the common serverless
system architecture in use across a majority of open-source
serverless frameworks [7], [8], [5]. The main components of
this architecture include, a cluster of Virtual Machines (VMs),

Fig. 1: The system model of the serverless application execution
environment

a load balancer acting as the entry point for user requests, a
function auto-scaler, a function scheduler and a controller
which coordinates the communication between all the other
functional units. The highlevel system model is illustrated in
Fig. 1.

We consider our worker pool to be composed of a set
of heterogeneous VMs with varying compute and memory
capacities. An instance of a function is deployed in a container
and managed as a single resource unit called a pod. A pod is
able to serve multiple concurrent function requests depending
on its resource capacity. Creation of replicas of the same
function type and adjusting the resource configuration of an
existing instance is triggered by the auto-scalar depending
on the implemented technique of scaling, which is the focus
of this work. Subsequently, the function scheduler selects a
suitable node and schedules the created instance.

User requests enter the system via the load balancer,
which queues them and directs them to existing function
replicas. In the absence of suitable resources, the requests
are dropped after the passage of a certain time duration after
arrival. The load balancer is considered to be distributing the
incoming requests among the existing replicas in a round-
robin manner. Serverless applications are formed of either
a single or multiple functions. Multi function applications
are composed of chained functions which are executed
sequentially. Thus, an instance of a function may serve
requests of multiple user applications. Requests are received
at the deployed functions in a stochastic manner, and thus the
demand levels for a function instance could vary rapidly in a
very short time. Performance degradation caused by cold start
delays are imminent, if the auto-scaling mechanism is not
capable of pro-actively determining the scale up of resources
required on time. At the same time, gross over-estimation of
resources and over-provisioning of the same, lead to massive
inefficiencies in resource maintenance cost for the provider.
Thus at a given time, the auto-scaler needs to decide the
ideal number of replicas and the resource configuration of
each replica of a particular function, that would help reach
a satisfactory balance in function performance and provider
cost.
3.2. Problem Formulation

Suppose 𝑁 is the total number of VMs in a serverless
cluster. Each VM is of varying size in terms of its CPU
(number of vCPU cores) and memory (MB) capacity. 𝑄 is
the total number of different function types deployed in the
cluster. Let 𝑃 𝑘 and 𝑅𝑒𝑞𝑘 denote a pod/instance and a single
request of the 𝑘𝑡ℎ (𝑘 ∈ [1, 𝑄]) function respectively, while
𝑀𝑘(𝑡) is the number of existing pods of the same at time 𝑡.
Each function instance of type 𝑘 has four attributes at time
𝑡, i.e., allocated pod CPU (𝑃 𝑘

𝑐𝑝𝑢(𝑡)), pod memory (𝑃 𝑘
𝑚𝑒𝑚(𝑡)),average CPU and memory consumption of a single request

(𝑅𝑒𝑞𝑘𝑐𝑝𝑢 and 𝑅𝑒𝑞𝑘𝑚𝑒𝑚), standard response time (𝑟𝑘0) and the
arrival rate of requests of the type. The standard response
time for a request refers to the average request response time
for a function when executed in a pre-created pod without
any resource creation delays.

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 4 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

Compute power is often identified to be a main source
of resource pressure in serverless functions, leading to poor
application performance [40]. Based on this logic, the default
horizontal auto-scaler in our system model triggers a new pod
creation and scaling down of existing pods based on a target
average CPU utilization of a pod of that type, 𝑇 𝑘

𝑐𝑝𝑢.𝑢𝑡𝑖𝑙(𝑡). i.e.,
if the number of new pods of type 𝑘 to be created is 𝑁𝑘

Δ and
the maximum allowed number of pods of any type at any
time is 𝑀𝑚𝑎𝑥,

𝑁𝑘
Δ(𝑡) = 𝑚𝑖𝑛[𝑀𝑘(𝑡) ×

𝐶𝑘
𝑐𝑝𝑢.𝑢𝑡𝑖𝑙(𝑡)

𝑇 𝑘
𝑐𝑝𝑢.𝑢𝑡𝑖𝑙(𝑡)

,𝑀𝑚𝑎𝑥] −𝑀𝑘(𝑡) (1)

where 𝐶𝑘
𝑐𝑝𝑢.𝑢𝑡𝑖𝑙(𝑡) refers to the current average pod CPU

utilization. The down scaling logic of pods is designed to
terminate idle pods starting with those residing in active VMs
with the lowest utilization levels in order to release them. Our
task in terms of horizontal scaling is to determine the ideal
𝑇 𝑘
𝑐𝑝𝑢.𝑢𝑡𝑖𝑙(𝑡) value at a given time. Pods which are not currently

being used are scaled down as required where 𝑁𝑘
Δ(𝑡) is a

negative value.
Along with the action of the horizontal scaler, the vertical

auto-scaler needs to determine the best suited levels of CPU
and memory configurations for a function of type 𝑘 at a given
time 𝑡. The incremental/decremental CPU value 𝑐𝑝𝑢𝑘Δ(𝑡) and
the memory value 𝑚𝑒𝑚𝑘

Δ(𝑡) which form the vertical scaling
decision, need to meet a few constraints, i.e,

(1) the resulting resource allocation levels after action
execution need to be within the upper and lower boundaries
of applicable CPU and memory resource limits to a function
instance,

𝑃𝑐𝑝𝑢.𝑚𝑖𝑛 < 𝑃 𝑘
𝑐𝑝𝑢(𝑡) + 𝑐𝑝𝑢𝑘Δ(𝑡) < 𝑃𝑐𝑝𝑢.𝑚𝑎𝑥

𝑃𝑚𝑒𝑚.𝑚𝑖𝑛 < 𝑃 𝑘
𝑚𝑒𝑚(𝑡) + 𝑚𝑒𝑚𝑘

Δ(𝑡) < 𝑃𝑚𝑒𝑚.𝑚𝑎𝑥
(2)

We consider these allocated resources for a function
instance to be hard limits, i.e., these mark upper limits of
resource consumption by a single pod, irrespective of the
traffic levels.

(2) The chosen resource increments need to be compatible
with the available resource levels of VMs holding the existing
function replicas,

[𝑃 𝑘
𝑐𝑝𝑢(𝑡)+𝑐𝑝𝑢

𝑘
Δ(𝑡)]×𝑀

𝑘
𝑣𝑚𝑖 (𝑡) < 𝑣𝑚𝑖

𝑐𝑝𝑢(𝑡) ∀𝑖 ∈ [1, 𝑁] (3)

[𝑃 𝑘
𝑚𝑒𝑚(𝑡)+𝑚𝑒𝑚𝑘

Δ(𝑡)]×𝑀
𝑘
𝑣𝑚𝑖 (𝑡) < 𝑣𝑚𝑖

𝑚𝑒𝑚(𝑡) ∀𝑖 ∈ [1, 𝑁]
(4)

where 𝑀𝑘
𝑣𝑚𝑖 (𝑡) is the number of replicas of 𝑘𝑡ℎ function

residing in 𝑣𝑚𝑖, while 𝑣𝑚𝑖
𝑐𝑝𝑢(𝑡) and 𝑣𝑚𝑖

𝑚𝑒𝑚(𝑡) is the available
CPU and memory of the same at time 𝑡.

Table 2
Definition of Symbols
Symbol Definition
𝑁 Total number of available VMs
𝑄 Total number of deployed functions
𝑃 𝑘
𝑐𝑝𝑢 Allocated CPU for a pod of the 𝑘𝑡ℎ function, 𝑘 ∈ [1, 𝑄]

𝑃 𝑘
𝑚𝑒𝑚 Allocated memory for a pod of the 𝑘𝑡ℎ function, 𝑘 ∈ [1, 𝑄]

𝑀𝑘
𝑣𝑚𝑖

Number of existing pods of the 𝑘𝑡ℎ function residing in 𝑣𝑚𝑖
𝑀𝑚𝑎𝑥 Maximum allowed number of pods of any single function type
𝑃 𝑘𝑗
𝑐𝑝𝑢.𝑢𝑡𝑖𝑙 Cpu utilization of the 𝑗𝑡ℎ pod of function 𝑘, 𝑗 ∈ [1,𝑀𝑘]

𝑃 𝑘𝑗
𝑚𝑒𝑚.𝑢𝑡𝑖𝑙 Memory utilization of the 𝑗𝑡ℎ pod of function 𝑘, 𝑗 ∈ [1,𝑀𝑘]

𝑇 𝑘
𝑐𝑝𝑢.𝑢𝑡𝑖𝑙 Target average CPU utilization of a pod of type 𝑘

𝐶𝑘
𝑐𝑝𝑢.𝑢𝑡𝑖𝑙 Current average CPU utilization of a pod of type 𝑘

𝑁𝑘
Δ Number of new pods of type 𝑘 to be created

𝑐𝑝𝑢𝑘Δ Change in allocated CPU to a pod of type 𝑘
𝑚𝑒𝑚𝑘

Δ Change in allocated memory to a pod of type 𝑘
𝑣𝑚𝑖

𝑐𝑝𝑢 Available cpu in 𝑣𝑚𝑖
𝑣𝑚𝑖

𝑚𝑒𝑚 Available memory in 𝑣𝑚𝑖
𝐴 Total number of user applications deployed
𝑉 𝑏 Number of user requests received by application 𝑏, 𝑏 ∈ [1, 𝐴]
𝑅𝑏
𝑞 The sum of response times of each function relevant to the

𝑞𝑡ℎ request of an application, 𝑞 ∈ [1, 𝑉 𝑏]
𝑅𝑏
𝑞0 Total standard response time of the constituent functions

of the 𝑞𝑡ℎ request of an application
𝑝𝑟𝑖𝑐𝑒𝑖 Unit price of VM, 𝑣𝑖
𝑡𝑖 Total active time of VM, 𝑣𝑖

(3) The resource configuration change in an instance
should not affect the function requests already in execution.
Thus the new resource allocation should not go below the
current resource utilization levels of any pod of the type.

𝑃 𝑘𝑗
𝑐𝑝𝑢.𝑢𝑡𝑖𝑙(𝑡) < [𝑃 𝑘

𝑐𝑝𝑢(𝑡) + 𝑐𝑝𝑢𝑘Δ(𝑡)] ∀𝑗 ∈ [1,𝑀𝑘(𝑡)] (5)

𝑃 𝑘𝑗
𝑚𝑒𝑚.𝑢𝑡𝑖𝑙(𝑡) < [𝑃 𝑘

𝑚𝑒𝑚(𝑡)+𝑐𝑝𝑢𝑘Δ(𝑡)] ∀𝑗 ∈ [1,𝑀𝑘(𝑡)] (6)

where 𝑃 𝑘𝑗
𝑐𝑝𝑢.𝑢𝑡𝑖𝑙 and 𝑃 𝑘𝑗

𝑚𝑒𝑚.𝑢𝑡𝑖𝑙 are the cpu and memory
utilization levels of the 𝑗𝑡ℎ pod of function 𝑘. The time 𝑡 in
the above expressions: (1), (2), (3), (4), (5), and (6) indicates
the time steps in which scaling decisions are taken.

3.3. Optimization Objectives
One target objective of this work is to minimize sub-

optimal application performance caused by the lack of a
proper resource scaling strategy. As mentioned previously,
the resources allocated to function instances are set as hard
limits, which prevents them from causing resource contention
in the host node, with increased traffic levels. Thus, we could
consider that the performance degradation of applications
under such a system model is a direct effect of the absence of
enough ready resources to face request demand levels. Cold
start delays introduced by new resource creation affect request
response times and may also cause request failures. Hence
we consider application response time latency and request
failure rates to be metrics which directly reflect the effects of
the platform scaling decisions.

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 5 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

Let A be the total number of user applications deployed
in the platform. Consider 𝑉 𝑏, 1 ≤ 𝑏 ≤ 𝐴 to be the total
request traffic to 𝑏𝑡ℎ application. The sum of response times
of the constituent functions corresponding to the 𝑞𝑡ℎ request
of application 𝑏 (1 ≤ 𝑞 ≤ 𝑉 𝑏) is 𝑅𝑏

𝑞 . Also, the estimated
total standard response time of the same is denoted by
𝑅𝑏
𝑞0. We define the ratio of 𝑅𝑏

𝑞 and 𝑅𝑏
𝑞0 averaged over the

total number of requests received by an application, as the
average Relative Application Response Time (RART). We
aim to minimize the average RART, calculated across all
the deployed applications over the duration of a workload.
Here we use an ‘average’ response time parameter in the
calculation since we want to improve the overall performance
of functions running on the platform. Also, we define RART
instead of the response time itself, to eliminate any bias in our
optimization objective arising from execution time variations
in serverless functions.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝐴𝑅𝑇 = 1
𝐴

𝐴
∑

𝑏=1

1
𝑉 𝑏

𝑉 𝑏
∑

𝑞=1

𝑅𝑏
𝑞

𝑅𝑏
𝑞0

(7)

The sum of response times of each function which form
the considered execution sequence of an application, is used
for calculating 𝑅𝑏

𝑞 and 𝑅𝑏
𝑞0. The preceding function in a

chained application simply evokes the next function in the
sequence. Hence this calculation is possible as this process is
devoid of any data communication delay. The total standard
response time for an application’s request (𝑅𝑏

𝑞0) is expressed
as a function of 𝑞, since the relevant function sequence is
dependent on the request input.

Further, as part of performance optimization, we aim
to minimize Request Failure Rates (RFR), i.e., the number
of dropped function requests as a ratio of the total requests
received. Accordingly we express our performance optimiza-
tion objective as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶ [𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝐴𝑅𝑇 ,𝑅𝐹𝑅] (8)
In this work we also plan to optimize the infrastructure

cost of the provider. In the calculation of the resource costs we
incorporate VM instance pricing, as we consider a heteroge-
neous serverless cluster composed of VMs of different CPU
and memory sizes. The provider cost optimization objective
is formulated as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶ 𝐶𝑜𝑠𝑡𝑇 𝑜𝑡𝑎𝑙 =
𝑁
∑

𝑖=1
𝑝𝑟𝑖𝑐𝑒𝑖 × 𝑡𝑖 (9)

𝑝𝑟𝑖𝑐𝑒𝑖 is the unit price of VM 𝑣𝑖 and 𝑡𝑖 is the total time
that the 𝑖𝑡ℎ VM was active during workload executions. A
VM is considered to be active, when it is serving requests
of at least one function. Thus resource efficiency is achieved
when active VMs have high utilization levels.

Our primary objectives of minimizing function perfor-
mance degradation and enabling high resource efficiency tend

to be conflicting objectives. Therefore, we utilize a system
parameter 𝛽 ∈ [0, 1], so that users can achieve a sufficient
trade-off between the two. Accordingly, our overall target
objective is as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶ 𝛽 × 𝑆𝑢𝑚 (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝐴𝑅𝑇 + 𝑅𝐹𝑅)+
(1 − 𝛽) × 𝐶𝑜𝑠𝑡𝑇 𝑜𝑡𝑎𝑙

(10)
The incorporation of both vertical and horizontal scaling

decisions in to our solution space ensures that a balance
is achieved between the user objectives. Vertical scaling
of function resources allows for maintaining higher VM
resource efficiency without the need for activating more VMs,
when a scale up of resources is needed to elevate application
performance. Similarly, as user traffic slows down, leading to
a resource down scale, horizontal scaling enables saving up
on VM resource cost by terminating idle pods and shutting
down unused VMs.

Table 2 summarizes the various symbols introduced in
this section.
4. Reinforcement Learning Model
4.1. Learning Model for Function Scaling

RL is a branch of machine learning that encourages an
experience based learning style. A RL agent interacts with its
environment and at each time step takes an action 𝑎𝑡, based
on the current policy 𝜋(𝑎𝑡|𝑠𝑡), where 𝑠𝑡 is the current state of
the environment. A reward 𝑟𝑡+1 is received in turn based on
the ’goodness’ of the action. The RL agent’s final objective
is to learn a policy which maximizes the cumulative reward
over a sequence of actions.

In this work we explore the applicability of the concept of
RL in developing an adaptive scaling policy for applications
in a multi-tenant serverless computing environment. The RL
agent takes the role of forming the basis of scaling each
function, either horizontally or vertically, with variations
in user demand levels. The serverless platform forms the
environment with which the agent communicates and derives
state information at each time step. Time steps in which these
scaling configuration changes are executed, are considered to
happen at regular intervals. The received reward after each
scaling action implementation is dependent on the target level
of optimization of each of the dual objectives discussed above.
The key aspects of the RL model in the context of our problem
are discussed below.

State space: The state information needs to encapsulate
both the resource metrics of the serverless platform infras-
tructure as well as the resource requirements, traffic levels
and the current performance of the function to be scaled.
Accordingly, the state in our environment could be presented
as a 1-dimensional vector, where the first part describes the
cluster VM specifications: [𝑣𝑚𝑖

𝑐𝑝𝑢.𝑢𝑡𝑖𝑙, 𝑣𝑚𝑖
𝑚𝑒𝑚.𝑢𝑡𝑖𝑙, 𝑣𝑚𝑖

𝑐𝑝𝑢.𝑎𝑙𝑙𝑜𝑐 ,
𝑣𝑚𝑖

𝑚𝑒𝑚.𝑎𝑙𝑙𝑜𝑐 , 𝑣𝑚𝑖
𝑐𝑝𝑢.𝑐𝑎𝑝, 𝑣𝑚𝑖

𝑚𝑒𝑚.𝑐𝑎𝑝, 𝑣𝑚𝑖
𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 ]. 𝑣𝑚𝑖

𝑐𝑝𝑢.𝑢𝑡𝑖𝑙 and
𝑣𝑚𝑖

𝑚𝑒𝑚.𝑢𝑡𝑖𝑙 refer to the actual cpu and memory utilization

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 6 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

levels of the VMs, 𝑣𝑚𝑖
𝑐𝑝𝑢.𝑎𝑙𝑙𝑜𝑐 and 𝑣𝑚𝑖

𝑚𝑒𝑚.𝑎𝑙𝑙𝑜𝑐 refer to the per-
centage of cpu and memory that is allocated to pods, 𝑣𝑚𝑖

𝑐𝑝𝑢.𝑐𝑎𝑝
and 𝑣𝑚𝑖

𝑚𝑒𝑚.𝑐𝑎𝑝 denote the cpu and memory capacities (this
is representative of the VM unit prices), while 𝑣𝑚𝑖

𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠represent the number of replicas of the scaling function,
that is currently present in the VM. These VM resource
metrics are gathered for all the cluster VMs to form the state
space. Note that the resource utilization and allocation levels
identify as two separate metrics since although resources
are allocated to function pods, the VM resources actually
utilized depend on the function requests in execution in those
pods. The second part of the state vector is composed of the
function specifications: [𝑃 𝑘

𝑐𝑝𝑢, 𝑃 𝑘
𝑚𝑒𝑚, 𝑅𝑒𝑞𝑘𝑐𝑝𝑢, 𝑅𝑒𝑞𝑘𝑚𝑒𝑚, 𝑃 𝑘

𝑟𝑎𝑡𝑒,
𝑃 𝑘
𝑅𝐹𝑅𝑇 , 𝑃 𝑘

𝑅𝐹𝑅, 𝐶𝑘
𝑐𝑝𝑢.𝑢𝑡𝑖𝑙, 𝐶𝑘

𝑚𝑒𝑚.𝑢𝑡𝑖𝑙]. 𝑃 𝑘
𝑐𝑝𝑢 and 𝑃 𝑘

𝑚𝑒𝑚 represent
the requested cpu and memory by a funciton instance, 𝑅𝑒𝑞𝑘𝑐𝑝𝑢
and 𝑅𝑒𝑞𝑘𝑚𝑒𝑚 represent the average resource consumption of a
single request of the type, 𝑃 𝑘

𝑟𝑎𝑡𝑒 represents the current request
rate, 𝑃 𝑘

𝑅𝐹𝑅𝑇 represent the Relative Function Response Time
(RFRT), which is the ratio of the actual function response time
to the standard response time, 𝑃 𝑘

𝑅𝐹𝑅 represent the function
request failure rate, while 𝐶𝑘

𝑐𝑝𝑢.𝑢𝑡𝑖𝑙 and 𝐶𝑘
𝑚𝑒𝑚.𝑢𝑡𝑖𝑙 represent the

average cpu and memory utilization of all the pods of type
𝑘. These metrics when consolidated, give the RL agent a
comprehensive understanding on the current system status,
in order to reach the best scaling policy with time. At the
start of each time step, the agent gathers the required data and
forms this state vector before determining the scaling action.

Action space: We model the action space in our envi-
ronment as a novel multi-discrete action space where we
need to determine three decision parameters namely, the
target average cpu utilization value for triggering horizontal
function scaling (𝑎1), the change in allocated cpu (𝑎2), and
memory (𝑎3) values for pods of the considered function type.
Since combining the three actions to formulate an action
space with all possible combinations leads to an explosion in
the action space size, we consider the three to be independent
decision variables. Further we discretize each variable to suit
the scale of our modelled environment, where each action
would reflect either an increase, decrease or maintaining the
same level in the particular variable. Accordingly, a complete
action generated by the DRL agent could be presented as [𝑎1,
𝑎2, 𝑎3].

Reward: The reward assigned to the agent at each
step immediately after an action, needs to resonate with
the target objectives of optimization. Since the considered
objectives of performance and provider cost optimization in
this work usually compete with each other and thus could be
conflicting, we define two separate reward structures for the
two. Accordingly, the reward for action 𝑎𝑡 is:

1. 𝑅1: The sum of the average RFRT and RFR of all the
deployed functions in the cluster a set time interval after the
implementation of action 𝑎𝑡. Since application response time
is a function of that of its constituent functions, RFRT acts as
a proxy to measure our performance optimization objective

of RART in Eq.(7). In addition, it is more closely identifiable
with each function scaling decision of the DRL agent.

2. 𝑅2: The difference in the total cluster VM up time
cost (Eq.(9)) just before and a set time interval after the
implementation of action 𝑎𝑡.Since the cumulative of both these reward values at the
end of an episode needs to be minimized in order to reach our
target improvements, we insert a negative sign to motivate
reduction in latency and cost over time. Further, at each step
we normalize the three values of RFRT, RFR, and VM cost
which are in different scales in order to remove any notion of
being biased towards one value, in the process of DRL model
training. We derive the minimum and maximum values for
each of these step rewards after running and observing these
values over many workload scenarios. As such, the awarded
reward to the agent after each scaling decision is as follows:

𝑅𝑒𝑤𝑎𝑟𝑑 = −((𝛽×𝑅1𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑)+((1−𝛽)×𝑅2𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑))
(11)

4.2. Actor-Critic based Multi-agent Scaling
Framework

The objective of a RL algorithm is to find the optimal
policy to take actions, which maximizes the cumulative
reward over time. The two fundamental methods in RL to
find the optimal policy are the value based and policy based
methods. The value based methods work by observing the
’Quality’ or how good a particular state-action pair is, i.e.,
by using the Q function. In policy based methods, we find
the optimal policy without calculating the Q function. Actor-
critic methods take advantage of both the value and policy
based methods in finding the optimal policy. In fact, they
are proven to be able to overcome many shortcomings of
vanilla policy gradient methods. Thus we form the basis of
our scaling framework using the actor-critic algorithm.

Actor-critic technique makes use of two neural networks,
the actor network and the critic network. The actor helps find
the optimal policy 𝜋𝜃(𝑎𝑡|𝑠𝑡), which leads to taking the best
action in each state in order to achieve the desired objectives.
The critic works in a feedback loop evaluating the policy
generated by the actor, leading it to finding the best policy. In
essence, the actor network is a policy network which uses a
policy gradient method to find the optimal policy, while the
critic network is a value network which is trained to estimate
the state-value function, 𝑣𝜋(𝑠𝑡|𝜙). 𝜃 and 𝜙 are the adjustable
parameters of the actor and critic networks respectively.

Actor and critic networks learn by either maximizing
their objective functions or by minimizing the loss functions.
Accordingly, the actor learns the optimal policy by calculating
the policy gradient, i.e., the gradient of the network and
periodically updating the network parameter 𝜃 using gradient
ascent (Eq.(12)).

∇𝜃𝐽 (𝜃) = ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴(𝑠, 𝑎)
𝜃 = 𝜃 + 𝛼∇𝜃𝐽 (𝜃)

(12)

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 7 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

Algorithm 1 Actor-Critic based Multi-agent Scaling Algo-
rithm

1: Initialize the global shared actor and critic network
parameters 𝜃 and 𝜙

2: for worker = 1 to N do
3: Initialize the local actor and critic network parame-

ters 𝜃′ and 𝜙′

4: Initialize the local step counter t = 0
5: Initialize the training parameters 𝛼, 𝛾 and network

update frequency 𝑓
6: Initialize the local training environment for the

worker agent
7: for episode = 1 to E do
8: Reset the environment
9: for step = 1 to T do

10: Input the state 𝑠 of the environment to actor
network 𝜋𝜃′ (𝑎|𝑠)

11: for i = 1 to 3 do
12: Select action 𝑎𝑖 using the marginal distri-

bution 𝜋𝜃′𝑖 (𝑎|𝑠)

13: Execute the combined action (𝑎 = 𝑎1, 𝑎2, 𝑎3),
move to the next state 𝑠′ and observe the reward 𝑟

14: Store the transition (𝑠, 𝑎, 𝑟, 𝑠′) in memory 𝐷
15: if 𝑡%𝑓 == 0 or step = T then
16: for j = 1 to K do
17: Compute the advantage estimates 𝐴1to 𝐴𝐾
18: Compute the loss and the gradients of

the loss of actor ∇𝜃′𝐽 (𝜃′) and critic ∇𝜙′𝐽 (𝜙′) networks
19: Perform asynchronous update of global

actor and critic network parameters 𝜃 and 𝜙
20: Synchronize the local actor and critic

network parameters 𝜃′ and 𝜙′ with 𝜃 and 𝜙
21: Clear memory D
22: 𝑡 ← 𝑡 + 1

return

where 𝐽 (𝜃) is the objective function which aims to
increase the probability of occurrence of the actions which
maximize the expected return of a given trajectory. As seen
in Eq.(12) above, we calculate the policy gradient in the
actor-critic methods using 𝐴(𝑠, 𝑎), the advantage function,
hence the name Advantage Actor Critic (A2C). Expanding
the advantage function;

∇𝜃𝐽 (𝜃) = ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)(𝑟 + 𝛾𝑉𝜙(𝑠′𝑡) − 𝑉𝜙(𝑠𝑡))
𝑠.𝑡. ∶ (2), (3)

(13)

Thus, the advantage function reveals how good action 𝑎
is compared to the average actions in state 𝑠. This essentially
helps actor-critic methods to overcome inefficiencies of
vanilla policy gradient algorithms by reducing the high vari-
ance of policy networks and stabilizing the model. Similarly,
the critic learns by minimizing the loss of the critic network,
i.e., the Temporary Difference (TD) error, which is the

difference between the target value of the state (𝑟 + 𝛾𝑉𝜙(𝑠′𝑡))and the value of the state predicted by the network. During
the course of training, the gradient of the critic network
is calculated and the network parameter is updated using
gradient descent (Eq.(14)), thus allowing the critic to learn
the actual state-value function.

𝐽 (𝜙) = 𝑟 + 𝛾𝑉𝜙(𝑠′𝑡) − 𝑉𝜙(𝑠𝑡)
𝜙 = 𝜙 − 𝛼∇𝜙𝐽 (𝜙)

(14)

DRL techniques trained with a single agent have proven to
be able to provide effective solutions for many single function
scaling scenarios [33], [22], [23]. But serverless platforms
are usually multi-tenant environments with a number of
deployed functions with various resource characteristics co-
existing with each other. Further, these different functions
have dynamically changing workload patterns, lowering the
sample efficiency of many single agent RL solutions in the
context of the multi-tenant scaling problem considered in our
work. Thus in this work, we explore the applicability of the
DRL technique A3C [41], which employs several DRL agents
who engage in learning in parallel, and aggregate the overall
experience. The process of parallel learning helps explore
the combination of state and action spaces much faster.

In A3C we work with two types of networks, the global
network and the local or worker networks. Each worker
agent interacts independently with its own copy of the
environment, and shares the gathered experiences with the
global agent asynchronously. Both the worker agents and the
global agent follow an actor-critic architecture. Under A3C,
in order to encourage sufficient exploration and reaching a
global optimum, we add the term ’entropy’ to the previously
discussed (Eq.(13)) actor loss, i.e.;

𝐽 (𝜃) = 𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)(𝑟 + 𝛾𝑉𝜙(𝑠′𝑡) − 𝑉𝜙(𝑠𝑡)) + 𝛽𝐻(𝜋(𝑠))
(15)

where 𝐻(𝜋) refers to the entropy of the policy while 𝛽
controls the significance of the entropy. As discussed under
section 4.1, we express our action space for scaling as a novel
multi-dimensional discrete action space. We then adapt the
technique described for discretized multi-dimensional action
spaces in [42], to design our actor network architecture.

We assume our normalized initial action space to be
𝐴 = [−1, 1]𝑀 , where 𝑀 represents the number of action
dimensions. If we discretize each of these dimensions into K
equally spaced actions, the set of atomic actions we get for
each dimension 𝑖 is, 𝐴𝑖 = { 2𝑗

𝐾−1−1}
𝐾−1
𝑗=0 . Then we present the

distribution of action space as factorized across dimensions,
in order to tackle the curse of dimensionality. As such, we
consider a marginal distribution 𝜋𝜃𝑖 (𝑎𝑖|𝑠) for each dimension
𝑖, over the set of actions 𝑎𝑖 ∈ 𝐴𝑖, where 𝜃𝑖 is the parameter
of the distribution. Accordingly we get a joint discrete policy
𝜋𝜃(𝑎|𝑠) =

∏𝑀
𝑖=1 𝜋𝜃𝑖 (𝑎𝑖|𝑠), where 𝜃 represents the parameter

of the actor network which takes state 𝑠 as input. After layers

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 8 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

of transformation, the network outputs the log probability
𝐿𝑖𝑗 for the 𝑗𝑡ℎ action in the 𝑖𝑡ℎ dimension, where 𝑖 ∈ [1,𝑀]
and 𝑗 ∈ [1, 𝐾]. Finally, for each dimension 𝑖, the K logits are
combined with soft-max to derive the probability of choosing
action 𝑗, i.e., 𝑝𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑖𝑗). Note that as per the scaling
problem space defined in our work, 𝑀 = 3 and K is chosen
suitably for each action dimension. Each actor in our multi-
agent framework follows this network architecture.

Algorithm 1 presents the pseudo-code for the multi-agent
scaling framework training process flow. We first initialize
the global actor and critic network parameters which would
be shared among and updated by the worker agents during
the training process. Each worker would have its own copy of
the environment and separate actor and critic networks (lines
3-6). At the start of each episode, workers reset their local
environment. At each time step, the agent retrieves the state
information with regard to the platform and the function to
be scaled, and feed it to the local actor network. Next, the
marginal probability distribution for each action dimension
is used to determine the combined action for the current step
(lines 11-12). Upon execution of the generated action, the
environment transitions to a new state, and the agent receives
a reward. All the transition information which includes the
environmental state, executed action, awarded reward, and
the next state are stored in memory (line 14). If the network
update frequency or the maximum step count for an episode
is reached, the agent starts the network parameter sharing
and update process. First the advantage estimates, the loss
and the network gradients are calculated for each transition
stored in memory (lines 16-18). Then each worker agent
asynchronously updates the global actor and critic network
parameters using the calculated gradients. Finally, the local
networks are updated with new weights pulled from the
global model. After each network update, the local memory
is cleared (lines 19-21).

5. Performance Evaluation
5.1. RL Environment Design and Implementation

We implement a practical experimental serverless frame-
work on the Melbourne Research Cloud [43] for preliminary
data collection related to profiling serverless functions and
also for deriving realistic system parameters exhibited during
function executions. The testbed comprises of the Kubeless
[6] open source serverless framework deployed on a 20 node
Kubernetes [9] cluster on top of which the Prometheus [44]
monitoring tool is installed for monitoring cluster metrics.

Following the architecture of this practical testbed, we
have developed a simulation environment for serverless
function execution in Python, which also represents the
system model presented in section III(A). This environment
is integrated with Tensorflow-agents in the backend, which
are developed using Keras and Tensorflow(TF) libraries. The
key features of our developed simulator environment and the
agent training process flow are summarized below:

1. Requests arriving at deployed function instances are
loaded to an event queue in the order of arrival at the
start of the simulation.

2. In the event that a suitable function instance is unavail-
able to accommodate an incoming request, the request
is queued and subsequently dropped, after multiple
scheduling retries at set time intervals.

3. Time steps for scaling decision making for each agent
are scheduled at regular time intervals so that the
agent’s learned policy is capable of supporting proac-
tive scaling of function resources independent of any
workload specifics.

4. At each time step of the DRL agent, the serverless
environment exposes the cluster state metrics which
include the VM resource usage statistics and the
workload nature of the function to be scaled.

5. After the execution of each of the combined horizontal
and vertical scaling actions, the agent waits for a set
time duration for the environment to reflect the action
consequences, before deriving the step reward.

6. Each agent in the implemented multi-agent model,
follows these steps in parallel, on copies of the same
cluster environment.

Although our implemented TF-agents are tasked with
optimizing function performance and cluster resource cost,
the developed simulation environment is capable of exposing
monitoring metrics required for any other extended objectives
and facilitating training for continuous action spaces or
modified DRL agent architectures. Our RL based serverless
environment implementation with TF agents as the back
end called ’Serverless_DRL’, is available as an opensource
software 1.
5.2. Experimental Settings
5.2.1. Cluster Setup

Our simulated VM cluster comprises of 20 heterogeneous
VMs of 4 different vCPU and memory configurations. The
clock speeds of the CPU cores were set to be similar to that
of VMs in AWS Lambda serverless platform as identified
in [4]. We use the AWS instance pricing of EC2 VMs (in
Australia) [45] closely matching the clock speed, vCPU and
RAM configurations, as our pricing model. These cluster
resource details are summarized in Table 3. Our practical
testbed too follows these VM cpu and memory configurations.
We conduct our experiments under two scenarios, letting the
multi-agent model to be comprised of 3 and 5 parallel actor-
learners (agents) under each scenario, in order to observe the
training time and data efficiency in state and action space
exploration with more agents. Each individual agent works
in a cluster environment of similar configuration as above
during training.
5.2.2. Workload Specifications

1https://github.com/Cloudslab/Serverless_DRL

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 9 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

Table 3
Worker Cluster Resource Details

Instance Type vCPU cores Memory(GB) Quantity Price($/hr)
m6g.medium 1 4 5 0.048
t4g.large 2 8 5 0.0848
t4g.xlarge 4 16 5 0.1696
t4g.2xlarge 8 32 5 0.3392

Table 4
Serverless Application Details

Name Resource Sensitivity # of Functions
CPU Memory

Primary High High 1
Float High High 1
Matrix Multiplication High High 1
Linpack High High 1
Load low low 1
Dd High Medium 1
Gzip-compression High Medium 1
Thumbnail Generator Low Medium 2
Facial Recognition Medium Medium 5
Todo API Low Low 5
Image Processing Medium Medium 2
Video Processing High High 2

Serverless Applications: We choose 12 benchmark
applications from ServiBench [46] and FunctionBench [47]
benchmark suites, which are formed of either a single
or a chain of functions. Each of these applications have
varying demands on CPU and memory resources based on
their constituent functions. Thus their diverse sensitivities
to different horizontal and vertical actions in the action
space provide a good learning experience for the DRL
agents. We use our practical setup for conducting function
profiling for all the selected applications. An instance of each
individual function is deployed on a VM in isolation and
the JMeter [48] load generation tool is used for sending a
series of user requests to this instance. The results obtained
from this tool and the cluster data recorded by Prometheus
are averaged across multiple such workload executions to
determine the resource consumption of a single function
request (𝑅𝑒𝑞𝑘𝑐𝑝𝑢(𝑡)𝑎𝑛𝑑𝑅𝑒𝑞𝑘𝑚𝑒𝑚(𝑡)), standard response time
(𝑟𝑘0) of a request and the instance creation time. In the absence
of resources for profiling an application, knowledge on proxy
functions with similar resource requirements could be used.
However, the more accurate the function profiling is, the more
optimal the model results would be. 𝑃 𝑘

𝑐𝑝𝑢 and 𝑃 𝑘
𝑚𝑒𝑚 for each

function is initially set as the resources required to handle
a defined number of requests. Table 4 captures the resource
utilization profile of these benchmark applications.

Workload Creation: We leverage function traces from
the publicly available data set from Microsoft Azure’s
Serverless Platform [49] in order to derive request arrival
patterns when creating the function workloads for both
training and evaluating the DRL agents. In all the experiments,
we maintain request arrival rates at 10-60 requests per second,
maximum compute power and memory allocated to a single

function instance at 1 vCPU core and 3GB respectively and
the execution time of a request below 10 seconds. These
thresholds are defined to suit the scale of our cluster setup.
Accordingly, we analyse the Azure function data collected
over a 24 hour period and filter a set of multi and single
function applications with these characteristics and extract
their request arrival patterns in the workload creation. For
each function the per minute request arrival rates recorded
in Azure traces for a given function is considered as a per
second rate. In a given workload, the function arrival rates
for a single function is fluctuated over time using these
traces. Multiple such function request loads are combined
to form a single workload. A workload consumed by a
single agent is incorporated with traffic from no more than 4
functions at a time in order to maintain a sufficient load in the
cluster for the training process. During each time step, the
function subjected to scaling configuration changes is decided
arbitrarily during the training process while the function with
the highest RFRT is chosen during model evaluation, in order
to attain optimum application performance.
5.2.3. Hyper-parameter Configurations

Hyper-parameters for the actor critic networks of each
worker agent are decided on a trial and error basis. The
discount factor is maintained at a lower value since the
rapidly fluctuating nature of serverless workloads reduce the
relevance of distant rewards towards current actions and thus
a higher discount factor would force irrelevant information
on the agent hindering the learning process. The learning rate
for the actor and critic networks is maintained low enough
so as not to cause a gradient blowup or lead to a sub-optimal
solution too fast, and high enough so as the model converges
with sufficient training. Each action dimension is discretized
in to 11 actions as described under section IV(B). This was
arrived at after a series of initial experiments in order to
maintain action space exploration costs at a manageable level
while reaching good optimization levels for the target metrics.
The maximum number of replicas for a single function at a
time was restricted in order to suit the capacity of a 20 VM
cluster while an upper limit of CPU scaling threshold was
also set to ensure proactive scaling for all functions even at
very low traffic levels. The hyper-parameter settings for the
A3C agents along with these environmental parameters in
use for all the experiments are listed in Table 5.
5.3. Performance Metrics

We use three metrics to evaluate the effectiveness of our
solution noted below:

1. Average Relative Application Response Time ratio
(RART): The sum of the average, relative response
times of all the applications in a workload during
an episode, divided by the number of applications,
calculated using Eq.(7).

2. Request Failure Rate (RFT): The ratio of the number
of dropped function requests to the total number of
requests received in an episode.

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 10 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

Table 5
Hyper-parameters Used for DRL Model Training

Parameter Value
General
Optimization parameter (𝛽) [0.0, 0.25, 0.50, 0.75,

1.00]
Maximum number of concurrent repli-
cas of a function

80

Maximum pod CPU utilization for
horizontal scaling

90%

Neural network parameters
Discount factor (𝛾) 0.6
Learning rate (𝛼) 0.0001
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden layer 150
Optimizer Adam
Network update frequency 30
Action space size for each dimension 11

3. VM Usage Cost: The cost of maintaining the VMs
active during an episode. The calculation of this metric
is as in Eq.(9).

5.4. Baseline Scaling Techniques
We use four baseline scaling techniques to compare the

performance of our proposed solution.
DQN: We use the value based DRL algorithm Deep Q
Learning to arrive at a solution for the function scaling
problem. Here we consider each combination of the actions
from the three discretized action spaces for horizontal scaling,
CPU and memory vertical scaling as a compound action that
the agent chooses. Due to the state action space explosion
that results from combining actions in this way, we limit
the granularity of action discretization to four actions per
dimension resulting in 64 compound actions in total.
Knative: The opensource serverless platform Knative [50]
allows users to set a target pod concurrency value, limiting the
number of concurrent requests handled by a function instance.
Further a target utilization value is set determining the actual
percentage of the target that we should meet. Horizontal
scaling of functions is triggered in order to maintain the set
level of request concurrency and the target utilization (we set
these at 4 and 75%).
Kube-cpu: Kubernetes default horizontal pod auto-scaler
scales function instances based on a set threshold on function
level resource usage metrics. Here we consider scaling
function replicas in order to maintain the average CPU
utilization across all instances of a function at or below the
set value (we set the CPU utilization threshold at 50%).
OpenFaaS: The opensource serverless platform OpenFaas
[51] offers a mix of three modes of scaling to be used based on
the function requirements. For long-running functions which
can handle only a limited number of requests at a time, the
’capacity’ mode triggers scaling based on the number of in-
flight requests (we consider a threshold set at 4). For functions

which execute quickly and have a high throughput, the ’rps’
mode enables scaling based on the number of requests per
second completed by a function replica (threshold set at 8).
All the other workloads which do not support the ’capacity’
and ’rps’ scaling profiles use the ’cpu’ mode which triggers
scaling based on the average CPU utilization (set at 50%)
across pods, similar to Kube-cpu. We dynamically decide on
the scaling mode used for each function type based on their
execution times and request rates. Accordingly, functions
with execution times greater than 2 seconds are scaled using
the ’capacity’ mode, functions with less than 2 seconds
execution time and request rate higher than 20 requests per
second at the time, use ’rps’ mode and the rest are scaled
using the ’cpu’ mode.
5.5. Convergence of the DRL Model

Under each of the multi-agent model scenarios com-
prising of different number of parallel workers, we train 5
variations of the A3C model considering the significance
given to each optimization objective. We use the 𝛽 parameter
to signify the priority assigned to each objective in the agent
reward structure. Accordingly, 𝛽 = 1 refers to a 100% focus
on improving function performance while 𝛽 = 0 indicates
model training leading to infrastructure cost optimization
only. The graphs in Figs. 2 and 3 display the training progress
achieved over time as the agents gradually learn to optimize
the cumulative reward over an episode. The progress is
demonstrated in terms of the episodic reward and the target
optimization metrics themselves, i.e: average relative function
response time (RFRT), request failure rate (RFR) and the VM
cost over each episode. Note that the marked values on the
graphs are averaged values over 10 episodes for clarity in
presentation.

In the first scenario with 3 actor-learners working in
parallel, we train the model with 9 different functions,
deployed in the cluster in total. These are chosen to be a mix
of functions that are common to multiple applications from
Table 4. In the next scenario, we employee 5 actor-learners
in the learning process, in order to analyse the achieved
efficiency in state space exploration with more worker agents.
In this second set of experiments, we deploy 15 different
functions altogether in the cluster and observe the agent
behavior leading to model convergence.

Figs. 2(a) and 3(a) show the convergence of the episodic
reward under each scenario with varying 𝛽 parameters. As
seen from the graphs, all of the models achieve convergence
around the 300𝑡ℎ episode, despite the considerably expanded
state space size in the second scenario. This is due to
the speed-up in data exploration achieved by having more
workers learning in parallel, which results in the global model
reaching its maximum optimization levels faster, effectively
improving both time and data efficiency. Fig. 2(a) also shows
that when 𝛽 = 0, the model convergence happens relatively
faster compared to other scenarios in the set of 3 worker
models. Since 𝛽 = 0 only incentivizes reducing the VM cost,
the agent seems to easily learn to take actions that lead to
maintaining the lowest number of replicas possible in the

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 11 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

(a) Reward Convergence (b) Average Relative Function Response Time (RFRT)

(c) Request Failure Rate (RFR) (d) Provider VM Cost

Fig. 2: Training progress of the 3 worker A3C models in terms of reward, average RFRT, request failure rate, and the total VM cost

(a) Reward Convergence (b) Average Relative Function Response Time (RFRT)

(c) Request Failure Rate (RFR) (d) Provider VM Cost

Fig. 3: Training progress of the 5 worker A3C models in terms of reward, average RFRT, request failure rate, and the total VM cost

cluster while also limiting their CPU and memory capacities.
On the other hand, improving function performance is not
as straightforward for the agent to learn, since expanding the
pool of function replicas or vertically scaling pod resources
would not always lead to the optimum solution. This is
because while horizontal scaling creates new resources for
request execution, it also adds a resource set up delay which
causes increased latency and request failures. Thus a more
intelligent strategy needs to be learned depending on the
cluster state at each scaling step.

Figs. 2(b), 2(c), 2(d) and 3(b), 3(c), 3(d) represent the
average function latency, failure rates and the VM costs

incurred over the corresponding training episodes. The 𝛽 = 1
graphs in both 2(b) and 3(b) maintain a steady decrease in
RFRT with each episode. The 𝛽 = 0.75, 𝛽 = 0.5, 𝛽 = 0.25
graphs too show a gradual decrease in function response
time latency since they too are partially motivated to improve
function performance in the reward. But understandably, they
converge at a higher latency level than when solely focused on
optimizing this feature alone. The 𝛽 = 0 models on the other
hand display a completely opposite trend of increasing latency
with each episode as they simply target resource efficiency
only, and this easily compromises the performance parameter.
The RFR graphs too display a similar trend in all the scenarios.

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 12 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

(a) Average Relative Application Response Time (RART) (b) Request Failure Rate (RFR)

(c) Provider VM Cost

Fig. 4: Comparison of the Average RART, RFR and provider VM cost in the system during an episode, by the 3 worker A3C
models and the baseline algorithms

The VM cost graphs show a clear decrease in VM cost over
time when 𝛽 = 0. The 𝛽 = 0.25, 𝛽 = 0.5, and 𝛽 = 0.75
graphs too show a moderate decline in overall cost for the
provider with time. The 𝛽 = 1 model converges at a high
VM cost as expected, but here we observe considerably lesser
prominence than the decline in function performance we
earlier saw with the 𝛽 = 0 model. A probable cause for this
behavior is likely to be the indirect effect that actions leading
to improved performance seem to have on enhancing resource
efficiency too.
5.6. Analysis of Model Performance on the

Evaluation Data Sets
The performance of our trained multi-agent models

is evaluated and discussed mainly in terms of our target
optimization objectives of serverless application performance
and resource cost efficiency. We extract 1800 function traces
in total from Azure function traces using the procedure
described in section V(B)(2) in creating the evaluation data
set. Our model evaluation is conducted under three request
traffic levels as 5-20, 20-40 and 40-60 requests per second,
for both the 3 and 5 parallel agent scenarios. Accordingly, for
both these scenarios, we create 60 workloads each for the 3
load levels, i.e. a total of 360 workloads. When creating each
workload for evaluating the variations of the models trained
with 3 agents, we include simultaneous user requests from 5
different serverless applications (single and multi-function)
created using the 9 functions used during the training process.
Similarly workloads are created for the 5 agent models

incorporating requests from applications created using 15
different functions. Further, the request arrival rates for a
single application are varied over time in a given workload,
each of which spans over five minutes.

Fig. 4 and 5 demonstrate the performance of our A3C
models against the baseline scaling techniques under the
two agent scenarios. Each bar graph corresponds to the
achieved performance metric derived by averaging over the
60 workload runs under each load level.
5.6.1. Evaluation of application performance

Application performance is evaluated in terms of RFRT
and RFR performance as shown in graphs 4(a), 5(a) and 4(b),
5(b). Overall we can see that the latency and request failure
rates increase gradually with the rise in request rates due
to increased wait times for request executions arising from
resource limitations in the cluster. Also, it is evident from
the plotted graphs that the behavior of the models trained
using both 3 and 5 actor-learner architectures, is similar in
most aspects and thus our discussion below would entail a
common analysis for both scenarios for the most part.

At the lowest traffic level of 5-20 req/sec, we do not
observe a significant improvement from the A3C(𝛽 = 1)
model compared to the rest, where the DQN(𝛽 = 1) and Kube-
cpu models exhibit almost similar or better performance. This
is because, at lower traffic levels, the cluster is less congested
and thus an intelligent function scaling strategy adds less
value to overall performance. However, at high 𝛽 values,
the A3C as well as the DQN models show better function

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 13 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

performance as their learned policy favors performance more
than cost.

As request rates increase to 20-40 req/sec, a more distinct
performance upgrade is seen to be achieved by the trained
models. In both the graphs for RFRT, 4(a) and 5(a) and for
RFR, 4(b), 5(b), we observe the best performance from the
A3C(𝛽 = 1) model. The A3C model outperforms the next
best performing baseline of Kube-cpu by up to 23% in RFRT
and 24% in RFR. Since our models in this case are purely
rewarded for better function performance during the training
process, they learn to maintain lower cpu thresholds for
function scaling, leading to more proactive instance creation.
Further, when an existing instance is reaching its maximum
utilization levels, the agent learns to vertically scale its
capacity after which it could immediately accommodate
more requests without any additional wait times. In this
process, the agent also learns to weigh between horizontal and
vertical scaling as although vertical scaling expands capacity
immediately, it limits future resource expansions. Thus if the
current cluster load could sustain some delays in resource
creation without excessive request failures, horizontal scaling
could lead to long term performance benefits. The DQN(𝛽 =
1) model exhibits next best performance as it too follows
an intelligent scaling policy in contrast to other baselines.
However, the DQN model lacks the fine grained learning
capability of the A3C model for many reasons. As a single
agent model, it lacks the state space exploration capability
even when trained for longer periods of time as we observed
during model training. Also, since we had to create compound
actions out of the 3 action dimensions with high level
discretization, the extensiveness of action space exploration
too was far weaker compared to the A3C model. The Knative,
Kube-cpu and OpenFaas techniques which follow fixed
threshold base scaling, do not perform well in a congested
resource constrained cluster. They apply a blanket threshold
for all the application functions facing varying request rates,
which lead to increasingly poor performance as the cluster
load rises.

At 40-60 req/sec we see even more distinguished perfor-
mance improvements in the A3C models with high 𝛽 values,
with up to 34% reduction in request failures when 𝛽 = 1. We
also note that at times, the A3C(𝛽 = 0.5) model shows slightly
better latency performance than the A3C(𝛽 = 0.75) model
under high traffic levels. When the agent is rewarded equally
to improve both latency and cost (𝛽 = 0.5), it has indirectly
resulted in better function latency than when focused more
on latency itself. This is because, scaling actions which
lead to efficient cluster resource usage could also result in
reduced request wait times and thus latency, which is an
added advantage. The DQN model too shows similar behavior
in the latency and request failure graphs for DQN(𝛽 = 1)
and DQN(𝛽 = 0.75). The A3C(𝛽 = 0) models show worst
performance in terms of application performance.
5.6.2. Evaluation of resource cost efficiency

Resource cost efficiency is evaluated in terms of the
cost incurred by the provider to maintain the VMs while

they contain running function instances. The overall cost of
infrastructure increases as the load levels rise.

In contrast to our observations for latency performance at
lower traffic levels, we see clear cost improvements of upto
45% in the A3C(𝛽 = 0) models trained for that purpose. This
is because with lesser load, if cost is not a concern (i.e. at
higher 𝛽 values), horizontal scaling is encouraged and the
cluster could maintain a lot of idling instances. This leads to
high VM maintenance costs. On other hand, where resource
efficiency is rewarded, the agent learns to take vertical scaling
actions more, which leads to higher utilization levels for the
active VMs. Subsequently, any idling VMs could be switched
off, which saves resource costs. Although not as efficient, the
DQN models too show a decreasing trend in cost with 𝛽 at
low load levels, in the second scenario (Fig. 5(c)), which has
higher multi-tenancy in the cluster with more applications.
Kube-cpu scaling style triggers proactive horizontal scaling
without a deeper understanding on the workload patterns,
thus leading to large resource inefficiencies.

At 20-40 and 40-60 load levels too we observe a sig-
nificant improvement in our A3C(𝛽 = 0) model, although
the opportunity for gaining a huge resource efficiency level
reduces as the cluster utilization levels increase. As expected
, the next best performance is seen in the DQN(𝛽 = 0) model,
as it closely follows the reward structure of the A3C model,
falling only short of the state and action space exploration
capabilities of the actor-critic architecture. A3C(𝛽 = 1),
DQN(𝛽 = 1) agents exhibit worst performance in terms
of cost, closely followed by the Knative, Kube-cpu and
OpenFaas techniques which are unable to handle complex
load scenarios to achieve a particular target.
5.7. DRL Model Inference Overhead

Model inferencing for our DRL algorithm simply refers
to the mapping of current environmental state to an available
action based on the state-action values of the pre-trained
model. This mapping process is observed to consume a
negligible duration of around 40-50 milliseconds on average,
which would be the overhead on the function response time.

6. Conclusions and Future Work
The abstract form of application resource management

in serverless computing completely relieves the end users
from operational responsibilities. However, cloud providers
are still in the process of developing the best strategies to
fulfill this new set of responsibilities. As such, attaining an
optimum level of scaling for function resources of different
applications is still a challenge requiring attention.

In this paper, we proposed a DRL based adaptive solution
using the actor-critic architecture, for taking the horizontal
and vertical resource scaling decisions for applications in a
multi-tenant serverless environment. A successfully scaled
application satisfies both the application owner and the
infrastructure provider. Accordingly, application performance
and the infrastructure maintenance cost for the provider,
were considered as our target optimization objectives for
DRL model training. Our solution offers flexibility for

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 14 of 17



A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

(a) Average Relative Application Response Time (RART) (b) Request Failure Rate (RFR)

(c) Provider VM Cost

Fig. 5: Comparison of the Average RART, RFR and provider VM cost in the system during an episode, by the 5 worker A3C
models and the baseline algorithms

prioritizing either of these objectives, depending on the user
requirements. We conducted and presented details of two sets
of experiments in order to observe data and time efficiency
improvements achieved, when using different numbers of
parallel actor-learners in training our A3C model. Our trained
DRL agents were able to take effective scaling decisions
for functions deployed in serverless platforms, which led to
reduced application latency, request failures and provider side
resource wastage. We employed a trained DQN model, along
with other baselines to evaluate our presented solution. The
results obtained show that our presented intelligent scaling
solution greatly benefits all user categories in meeting their
objectives.

As part of future work, we plan to explore the efficiency of
integrating a time-series regression model with the developed
DRL agent architecture for function scaling, in order to
forecast request traffic patterns. In the current work, the
function applications considered in our experiments are
relatively simple and composed of chained functions which
run in sequence. When they are run in isolation on a VM, a
single request will have a very small resource consumption.
Also, they are not designed to utilize multiple cores available
in a VM, heterogeneity of VMs has no direct impact on
the execution time of a request. By running an application
in isolation, we ensure that the VMs are not overloaded.
This removes any dependency on the application workload
execution time on the CPU or memory availability on a
VM. Therefore, as part of future work, we will explore more
complex applications in the experiments and consider VM

heterogeneity (that is, the capability of VMs with multicores)
and their influence on the execution time of functions. Also,
we plan to extend our scaling techniques to enable vertical
scaling at the individual pod level instead of at function level.
Further, we aim to develop a framework for performance and
cost modeling of functions, incorporating the performance
data obtained in our scaling experiments by varying the
allocated resources to function replicas.

References
[1] A. Mampage, S. Karunasekera, R. Buyya, A holistic view on resource

management in serverless computing environments: Taxonomy and
future directions, ACM Computing Surveys (CSUR) 54 (2022) 1–36.

[2] J. Manner, M. Endreß, T. Heckel, G. Wirtz, Cold start influencing
factors in function as a service, in: Proceedings of the 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion
(UCC Companion), IEEE, 2018, pp. 181–188.

[3] P. Vahidinia, B. Farahani, F. S. Aliee, Cold start in serverless
computing: Current trends and mitigation strategies, in: Proceedings of
the 2020 International Conference on Omni-layer Intelligent Systems
(COINS), IEEE, 2020, pp. 1–7.

[4] L. Wang, M. Li, Y. Zhang, T. Ristenpart, M. Swift, Peeking behind the
curtains of serverless platforms, in: Proceedings of the 2018 USENIX
Annual Technical Conference (USENIX ATC 18), 2018, pp. 133–146.

[5] F. Project, Fission, https://fission.io/, 2022. (Accessed on
04/08/2022).

[6] Kubeless, Kubeless, https://kubeless.io/, 2021. (Accessed on
01/13/2022).

[7] OpenFaaS, Home | openfaas - serverless functions made simple,
https://www.openfaas.com/, 2022. (Accessed on 04/08/2022).

[8] T. K. Authors, Home - knative, https://knative.dev/docs/, 2022.
(Accessed on 04/08/2022).

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 15 of 17

https://fission.io/
https://kubeless.io/
https://www.openfaas.com/
https://knative.dev/docs/


A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

[9] Kubernetes, https://kubernetes.io/, 2022. (Accessed on 04/08/2022).
[10] S. K. Mohanty, G. Premsankar, M. Di Francesco, et al., An evaluation

of open source serverless computing frameworks., CloudCom 2018
(2018) 115–120.

[11] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, V. Sukhomli-
nov, Agile cold starts for scalable serverless, in: Proceedings of the 11th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
19), 2019.

[12] P. Silva, D. Fireman, T. E. Pereira, Prebaking functions to warm
the serverless cold start, in: Proceedings of the 21st International
Middleware Conference, 2020, pp. 1–13.

[13] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,
R. Arpaci-Dusseau, Sock: Rapid task provisioning with serverless-
optimized containers, in: Proceedings of the USENIX Annual
Technical Conference, 2018, pp. 57–70.

[14] M. Stein, The serverless scheduling problem and noah, arXiv preprint
arXiv:1809.06100 (2018).

[15] A. Singhvi, A. Balasubramanian, K. Houck, M. D. Shaikh,
S. Venkataraman, A. Akella, Atoll: A scalable low-latency serverless
platform, in: Proceedings of the ACM Symposium on Cloud
Computing, 2021, pp. 138–152.

[16] W. Ling, L. Ma, C. Tian, Z. Hu, Pigeon: A dynamic and efficient
serverless and faas framework for private cloud, in: Proceedings of
the International Conference on Computational Science and Computa-
tional Intelligence (CSCI), IEEE, 2019, pp. 1416–1421.

[17] P.-M. Lin, A. Glikson, Mitigating cold starts in serverless platforms:
A pool-based approach, arXiv preprint arXiv:1903.12221 (2019).

[18] Z. Xu, H. Zhang, X. Geng, Q. Wu, H. Ma, Adaptive function launching
acceleration in serverless computing platforms, in: Proceedings of
the 25th International Conference on Parallel and Distributed Systems
(ICPADS), IEEE, 2019, pp. 9–16.

[19] D. Bermbach, A.-S. Karakaya, S. Buchholz, Using application
knowledge to reduce cold starts in faas services, in: Proceedings
of the 35th Annual ACM Symposium on Applied Computing, 2020,
pp. 134–143.

[20] K. Solaiman, M. A. Adnan, Wlec: A not so cold architecture to mitigate
cold start problem in serverless computing, in: Proceedings of the
IEEE International Conference on Cloud Engineering (IC2E), IEEE,
2020, pp. 144–153.

[21] N. Daw, U. Bellur, P. Kulkarni, Xanadu: Mitigating cascading cold
starts in serverless function chain deployments, in: Proceedings of the
21st International Middleware Conference, 2020, pp. 356–370.

[22] G. Somma, C. Ayimba, P. Casari, S. P. Romano, V. Mancuso, When
less is more: Core-restricted container provisioning for serverless
computing, in: Proceedings of the IEEE INFOCOM - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS),
IEEE, 2020, pp. 1153–1159.

[23] S. Agarwal, M. A. Rodriguez, R. Buyya, A reinforcement learning
approach to reduce serverless function cold start frequency, in:
Proceedings of the 2021 IEEE/ACM 21st International Symposium
on Cluster, Cloud and Internet Computing (CCGrid), IEEE, 2021, pp.
797–803.

[24] K. Suo, J. Son, D. Cheng, W. Chen, S. Baidya, Tackling cold start
of serverless applications by efficient and adaptive container runtime
reusing, in: Proceedings of the 2021 IEEE International Conference
on Cluster Computing (CLUSTER), IEEE, 2021, pp. 433–443.

[25] H. Yu, H. Wang, J. Li, S.-J. Park, Harvesting idle resources in
serverless computing via reinforcement learning, arXiv preprint
arXiv:2108.12717 (2021).

[26] L. Schuler, S. Jamil, N. Kühl, Ai-based resource allocation: Reinforce-
ment learning for adaptive auto-scaling in serverless environments,
in: Proceedings of the IEEE/ACM 21st International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), IEEE, 2021, pp.
804–811.

[27] X. Li, P. Kang, J. Molone, W. Wang, P. Lama, Kneescale: Efficient
resource scaling for serverless computing at the edge, in: Proceedings
of the 2022 22nd IEEE International Symposium on Cluster, Cloud
and Internet Computing (CCGrid), IEEE, 2022, pp. 180–189.

[28] H.-D. Phung, Y. Kim, A prediction based autoscaling in serverless
computing, in: Proceedings of the 2022 13th International Conference
on Information and Communication Technology Convergence (ICTC),
IEEE, 2022, pp. 763–766.

[29] A. Zafeiropoulos, E. Fotopoulou, N. Filinis, S. Papavassiliou, Re-
inforcement learning-assisted autoscaling mechanisms for serverless
computing platforms, Simulation Modelling Practice and Theory 116
(2022) 102461.

[30] P. Benedetti, M. Femminella, G. Reali, K. Steenhaut, Reinforcement
learning applicability for resource-based auto-scaling in serverless
edge applications, in: Proceedings of the 2022 IEEE International
Conference on Pervasive Computing and Communications Workshops
and other Affiliated Events (PerCom Workshops), IEEE, 2022, pp.
674–679.

[31] P. Vahidinia, B. Farahani, F. S. Aliee, Mitigating cold start problem
in serverless computing: A reinforcement learning approach, IEEE
Internet of Things Journal (2022).

[32] H. Qiu, W. Mao, A. Patke, C. Wang, H. Franke, Z. T. Kalbarczyk,
T. Başar, R. K. Iyer, Reinforcement learning for resource management
in multi-tenant serverless platforms, in: Proceedings of the 2nd
European Workshop on Machine Learning and Systems, 2022, pp.
20–28.

[33] Z. Zhang, T. Wang, A. Li, W. Zhang, Adaptive auto-scaling of
delay-sensitive serverless services with reinforcement learning, in:
Proceedings of the 2022 IEEE 46th Annual Computers, Software, and
Applications Conference (COMPSAC), IEEE, 2022, pp. 866–871.

[34] H. Yu, A. A. Irissappane, H. Wang, W. J. Lloyd, Faasrank: Learning
to schedule functions in serverless platforms, in: Proceedings of the
IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS), IEEE, 2021, pp. 31–40.

[35] C. K. Dehury, S. Poojara, S. N. Srirama, Def-drel: Systematic
deployment of serverless functions in fog and cloud environments
using deep reinforcement learning, arXiv preprint arXiv:2110.15702
(2021).

[36] Q. Tang, R. Xie, F. R. Yu, T. Chen, R. Zhang, T. Huang, Y. Liu,
Distributed task scheduling in serverless edge computing networks for
the internet of things: A learning approach, IEEE Internet of Things
Journal 9 (2022) 19634–19648.

[37] X. Yao, N. Chen, X. Yuan, P. Ou, Performance optimization
of serverless edge computing function offloading based on deep
reinforcement learning, Future Generation Computer Systems 139
(2023) 74–86.

[38] H. Jeon, S. Shin, C. Cho, S. Yoon, Deep reinforcement learning for qos-
aware package caching in serverless edge computing, in: Proceedings
of the 2021 IEEE Global Communications Conference (GLOBECOM),
IEEE, 2021, pp. 1–6.

[39] A. Mampage, S. Karunasekera, R. Buyya, Deep reinforcement learn-
ing for application scheduling in resource-constrained, multi-tenant
serverless computing environments, Future Generation Computer
Systems 143 (2023) 277–292.

[40] A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay,
A. Gandhi, Ensure: Efficient scheduling and autonomous resource
management in serverless environments, in: Proceedings of the
IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS), IEEE, 2020, pp. 1–10.

[41] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforce-
ment learning, in: Proceedings of the International conference on
machine learning, PMLR, 2016, pp. 1928–1937.

[42] Y. Tang, S. Agrawal, Discretizing continuous action space for on-
policy optimization, in: Proceedings of the aaai conference on artificial
intelligence, volume 34, 2020, pp. 5981–5988.

[43] Melbourne research cloud documentation, https://docs.cloud.

unimelb.edu.au/, 2022. (Accessed on 07/22/2022).
[44] Prometheus - monitoring system & time series database, https://

prometheus.io/, 2022. (Accessed on 09/08/2022).
[45] Aws pricing calculator, https://calculator.aws/#/addService/EC2,

2022. (Accessed on 07/25/2022).

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 16 of 17

https://kubernetes.io/
https://docs.cloud.unimelb.edu.au/
https://docs.cloud.unimelb.edu.au/
https://prometheus.io/
https://prometheus.io/
https://calculator.aws/##/addService/EC2


A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications

[46] J. Scheuner, S. Eismann, S. Talluri, E. Van Eyk, C. Abad, P. Leitner,
A. Iosup, Let’s trace it: Fine-grained serverless benchmarking using
synchronous and asynchronous orchestrated applications, arXiv
preprint arXiv:2205.07696 (2022).

[47] J. Kim, K. Lee, Functionbench: A suite of workloads for serverless
cloud function service, in: Proceedings of the IEEE 12th International
Conference on Cloud Computing (CLOUD), IEEE, 2019, pp. 502–504.

[48] A. S. Foundation, Apache jmeter - apache jmeter™, https://jmeter.
apache.org/, 2021. (Accessed on 11/08/2021).

[49] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, R. Bianchini, Serverless
in the wild: Characterizing and optimizing the serverless workload
at a large cloud provider, in: Proceedings of the USENIX Annual
Technical Conference (ATC), 2020, pp. 205–218.

[50] Knative, About autoscaling - knative, https://knative.dev/docs/

serving/autoscaling/, 2023. (Accessed on 04/18/2023).
[51] Autoscaling - openfaas, https://docs.openfaas.com/architecture/

autoscaling/, 2022. (Accessed on 04/19/2023).

A. Mampage, S. Karunasekera, R. Buyya: Preprint submitted to Elsevier Page 17 of 17

https://jmeter.apache.org/
https://jmeter.apache.org/
https://knative.dev/docs/serving/autoscaling/
https://knative.dev/docs/serving/autoscaling/
https://docs.openfaas.com/architecture/autoscaling/
https://docs.openfaas.com/architecture/autoscaling/

