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ABSTRACT
Cost optimization is a common goal of workflow schedulers oper-
ating in cloud computing environments. The use of spot instances
is a potential means of achieving this goal, as they are offered by
cloud providers at discounted prices compared to their on-demand
counterparts in exchange for reduced reliability. This is due to
the fact that spot instances are subjected to interruptions when
spare computing capacity used for provisioning them is needed
back owing to demand variations. Also, the prices of spot instances
are not fixed as pricing is dependent on long term supply and
demand. The possibility of interruptions and pricing variations
associated with spot instances adds a layer of uncertainty to the
general problem of workflow scheduling across cloud computing
environments. These challenges need to be efficiently addressed for
enjoying the cost savings achievable with the use of spot instances
without compromising the underlying business requirements. To
this end, in this paper we use Deep Reinforcement Learning for
developing an autonomous agent capable of scheduling workflows
in a cost efficient manner by using an intelligent mix of spot and
on-demand instances. The proposed solution is implemented in
the open source container native Argo workflow engine that is
widely used for executing industrial workflows. The results of the
experiments demonstrate that the proposed scheduling method is
capable of outperforming the current benchmarks.
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1 INTRODUCTION
Cloud computing leverages virtualization techniques for providing
users with convenient access to a pool of scalable resources [3]. As
opposed to maintaining their own computing infrastructures, the
pay-as-you-go model of cloud computing paradigm enables users
to acquire a diverse range of virtual machines with varying flavors
(CPU, Memory etc.) for meeting business needs in a more cost
effective manner. The flavor of virtualized instances used for exe-
cuting tasks determines the total execution times of the workflows
as well as the associated monetary costs. In order to maximize the
achievable cost savings achievable while also ensuring the perfor-
mance is maintained to a satisfactory level, it is imperative that cost
optimized scheduling strategies are designed and implemented.

In particular, the intelligent use of a mix of on-demand and
spot instances for workflow executions is a potential means of
achieving high cost efficiencies without adversely affecting perfor-
mance expectations. Spot instances are offered by cloud providers
at steep discounts compared to their on-demand counterparts in
exchange for reduced reliability. This is because the cloud providers
utilize spare computing capacities available for provisioning spot
instances, and therefore when the capacity is needed back, the
instances are interrupted. Furthermore,as opposed to on-demand
instances with fixed prices, the prices of spot instances are not guar-
anteed to be fixed, as the pricing is dependent on long term supply
and demand. The possibility of interruptions and pricing variations
adds a layer of complexity that needs to be efficiently handled for
enjoying the cost savings without compromising the underlying
business requirements. Therefore, it is imperative to establish the
right balance between the use of on-demand and spot instances for
workflow executions in cloud computing environments.

The ability of Reinforcement Learning (RL) agents to operate in
stochastic environments, and learn through experience to act in an
optimal manner amid highly dynamic conditions and uncertainties
makes it an ideal candidate for overcoming the aforementioned
challenges. While many heuristics and meta-heuristics have been
proposed for cost optimized workflow scheduling, only very few
works have explored the potential of RL in this area. In particular,
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Deep Reinforcement Learning (DRL) [16] has emerged as an effi-
cient means of solving highly complex problems as evidenced by
the recent successes achieved by DRL agents in complex control
tasks in fields such as robotics, autonomous driving, healthcare and
so on. In this work, we leverage the advanced capabilities of DRL
for designing a cost optimized workflow scheduling framework.

The design of action space is a fundamental characteristic of a
DRL based formulation of a problem. The action spaces of a vast
majority of scheduling problems that are modeled as DRL problems,
include a flat set of actions. The action space may be discrete or
continuous, and the agent selects an action from the action space.
In this work, we propose a novel hierarchical way of designing the
action space of the DRL model such that there is a clear distinc-
tion between on-demand and spot instances in action selection. A
DRL framework comprising multiple actor networks guided by a
common critic network is then designed to select a combination
of actions from the hierarchical action space, to optimize cost of
workflow executions.

Container orchestration engines such as Kubernetes can seam-
lessly operate atop highly distributed and heterogeneous infras-
tructures and abstract away the complex coordination details from
users. This in turn has enabled users to conveniently deploy work-
loads across a variety of cloud deployments ranging from private
and public clouds to hybrid combinations of these. Complementary
frameworks such as Argo workflow engine have emerged to extend
the functionalities of Kubernetes to facilitate the management of
more complex workloads such as Workflows. The schedulers of
these frameworks are pre-configured to follow basic scheduling
policies such as bin-packing. These simple policies are not capable
of satisfying the complex cost optimization requirements of users.
In order to achieve complex user-defined goals it is imperative to
incorporate more advanced scheduling policies in the aforemen-
tioned workflow management engines. These policies should be
capable of adapting to highly stochastic conditions that are inher-
ent in clusters deployed in cloud computing environments. In this
regard, we present an end-to-end means of training and deploying
the DRL agent proposed in this work in the Argo workflow engine.

More specifically, the following summarizes the main contribu-
tions of this work:

• A DRL model for cost optimized scheduling of workflows in
a cloud computing environment with the use of a balanced
mix of on-demand and spot instances.
• A logical organization of the cluster in a hierarchical manner,
along with a novel representation of the action selection
process as a tree structure.
• A RL framework with multiple actors guided by a single
critic network trained with Proximal Policy Optimization
(PPO) algorithm for learning to schedule workflows in the
cluster.
• An end-to-endmeans of training and deploying the proposed
DRL agent in a workflow engine. To the best of our knowl-
edge, this is the first attempt at embedding an intelligent
agent in an open source container-native workflow engine.

2 RELATEDWORK
The use of spot instances for cost optimized workflow scheduling
has been studied in a number of studies [8, 10, 19]. However, the
methods proposed in some of these works are associated with bid-
ding strategies [9, 19] that are of little relevance in current market,
since major cloud providers such as Amazon Web Services (AWS)
have devised new pricing models that simplifies the purchasing
process of spot instances [1]. Accordingly, users are no longer re-
quired to analyze historical price trends and employ strategies for
determining maximum bid prices.

In [18], a join cost and makespan optimization algorithm for
workflow executions in cloud is proposed. Authors integrated the
popular heterogeneous earliest finish time (HEFT) heuristic with
fuzzy dominance sort technique for designing the proposed list
scheduling algorithm. [2] also combines the HEFT heuristic with
Ant Colony Optimization (ACO) technique for optimizing the same
objectives. [17] proposed a makespan and cost aware scheduling
technique for hybrid clouds. A combination of Dynamic Voltage
and Frequency Scaling (DVFS) and approximate computing is used
in [13] for energy efficient and cost optimized workflow scheduling
in cloud computing environments.

In [6], authors incorporate artificial neural network with the
NSGA-II algorithm for optimizing a combination of objectives asso-
ciated with workflow scheduling in cloud computing environments.
In [15], Zhou et. al. proposed optimization framework for HPC
applications deployment on clouds in cost-efficient manner. They
leveraged cloud spot market resources with the goal of minimizing
application cost while ensuring performance constraints.

In [14], a deep Q learning based multi-agent deep reinforcement
learning technique is proposed for optimizing cost and makespan
of workflow scheduling in cloud. The work models multi-agent
collaboration as a Markov game with a correlated equilibrium, so
that themakespan and cost agents are not motivated to deviate from
the joint distribution in a unilateral manner. H. Li et. al [7] proposed
a weighted double deep Q network based reinforcement learning
method for cost and makespan optimized workflow scheduling in
cloud environments. Scheduling process includes two levels, in the
first level a task is selected from amongst all ready tasks. A pointer
network is used for efficiently handling the variable length of the
input state. In the second level a VM is selected for executing the
selected task. A separate sub agent with a separate reward is used
for each objective at each level of the scheduling process. Y. Qin
et. al [11] used Q learning for minimizing makespan and energy
consumption of workflow executions while adhering to a budget
constraint.

3 PROBLEM FORMULATION
The objective of the scheduling framework is minimizing the mon-
etary cost of workflow executions, while also minimizing the ex-
ecution times. The resource requirements in terms of CPU and
memory and the dependencies of workflow tasks are included in
the submitted workflow specifications. In the workflow specifi-
cation submitted by users, a workflow is represented by a DAG,
𝐺 = (𝑉 , 𝐸) where the nodes, 𝑉 = {𝑣0, 𝑣1 ..𝑣𝑛} of the DAG repre-
sent tasks of the workflow, and the edges, 𝐸 = {(𝑣𝑖 , 𝑣 𝑗 ) |𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 }
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Figure 1: System Architecture

of the DAG represent precedence constraints between tasks. The
computation time of a task, 𝑡 𝑗 can be represented as:

𝐶𝑇 (𝑡 𝑗 ) =
𝐿(𝑡 𝑗 )
𝐹

(1)

where 𝐿(𝑡 𝑗 ) is the size of task, 𝑡 𝑗 and 𝐹 is the processing rate
of the node to which is it assigned. All the precedence constraints
of task, 𝑡 𝑗 must be satisfied before its execution commences. Ac-
cordingly, the execution of all the predecessors must be completed,
and the output data required for the execution of 𝑡 𝑗 must be trans-
mitted to the node in which it is scheduled. If 𝑡𝑖 is an immediate
predecessor of 𝑡 𝑗 and the size of data to be transferred from 𝑡𝑖 to 𝑡 𝑗
is 𝐷 (𝑡𝑖 , 𝑡 𝑗 ), then the total transmission time (𝑇𝑇 ) can be denoted as
follows:

𝑇𝑇 (𝑡𝑖 , 𝑡 𝑗 ) =
𝐷 (𝑡𝑖 , 𝑡 𝑗 )

𝐵
(2)

where 𝐵 is the bandwidth between the execution nodes of 𝑡𝑖 and
𝑡 𝑗 . Task execution delay, 𝑇𝐷 (𝑡 𝑗 ) primarily depends on the com-
putation time, 𝐶𝑇 (𝑡 𝑗 ) of the task, and the maximum data transfer
time from predecessor nodes, max𝑡𝑖 ∈𝑝𝑟𝑒𝑑 (𝑡 𝑗 ) 𝑇𝑇 (𝑡𝑖 , 𝑡 𝑗 ). The wait-
ing time,𝑊𝑇 (𝑡 𝑗 ) before a task gets scheduled also contributes to
total execution delay. Accordingly, 𝑇𝐷 (𝑡 𝑗 ) can be represented as:

𝑇𝐷 (𝑡 𝑗 ) = 𝐶𝑇 (𝑡 𝑗 ) +𝑊𝑇 (𝑡 𝑗 ) + max
𝑡𝑖 ∈𝑝𝑟𝑒𝑑 (𝑡 𝑗 )

𝑇𝑇 (𝑡𝑖 , 𝑡 𝑗 ) (3)

The finish time, 𝐹𝑇 (𝑡 𝑗 ) of task, 𝑡 𝑗 that started execution at time,
𝑆𝑇 (𝑡 𝑗 ) can then be expressed as:

𝐹𝑇 (𝑡 𝑗 ) = 𝑆𝑇 (𝑡 𝑗 ) +𝑇𝐷 (𝑡 𝑗 ) (4)
The completion time,𝑀𝑇 of a workflow is equivalent to the time

at which that last task of the workflow completes execution. It can
be denoted as:

𝑀𝑇 = max
𝑡 𝑗 ∈𝑇
(𝐹𝑇 (𝑡 𝑗 )) (5)

where T represents the set of all tasks of the workflow.
The computation cost of 𝑡 𝑗 that executes in a Node with unit

cost per second,𝑈𝐶 can be represented as:

𝐶𝐶 (𝑡 𝑗 ) = 𝐶𝑇 (𝑡 𝑗 ) ∗𝑈𝐶 (6)

The cost of execution, 𝑀𝐶 of a workflow is equivalent to the
sum of execution costs of all tasks, and it can be denoted as follows:

𝑀𝐶 =
∑︁
𝑡 𝑗 ∈𝑇

𝐶𝐶 (𝑡 𝑗 ) (7)

The objective of the scheduling problem is to minimize the cost
of workflow executions, and it can be denoted as follows:

Minimize:
𝑁∑︁
𝑖=1

𝑀𝐶𝑖 (8)

where 𝑁 is the total number of workflows submitted to the
system.

4 BACKGROUND AND PROPOSED APPROACH
In this section, we present a background of the popular container or-
chestration engine Kubernetes and the open-source Argo workflow
engine along with details on how the proposed DRL framework
is implemented in the Argo Workflow engine that runs atop the
Kubernetes cluster. Worker nodes of the Kubernetes cluster are
Virtual Machines with different flavors (compute, memory, and
storage capacity of VM instances). Argo workflow engine is de-
ployed in the Kubernetes cluster for the management of workflows
submitted by users. The scheduler is responsible for selecting the
VMs in which the Pods corresponding to each task of the workflow
will be scheduled. A high level architecture of the system is shown
in Figure 1. A sequence diagram indicating integration between
key components as implemented is shown in Figure 3.

4.1 Kubernetes
Kubernetes is a popular open-source container orchestration engine
that facilitates containerized applications to be deployed, scaled,
and managed in an automated manner. With Kubernetes, container-
ized workloads can be conveniently deployed and managed in any
infrastructure including public clouds and on-site deployments,
as well as hybrid combinations of these as required. Workloads
can be seamlessly deployed across multi-cloud environments thus
enabling the selection of the most appropriate infrastructure for
the execution of different parts of the workload. Furthermore, it fa-
cilitates the up-scaling and down-scaling of clusters to suit demand
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Figure 2: Proposed hierarchical action space and multi-actor DRL model

variations of applications, which in turn helps reduce costs due
to reduced resource wastage. The need for manual intervention is
minimized since Kubernetes monitors the health of the deployment
and redeploys new containers in the event of a failure to restore
operations, and this helps reduce application downtime. Owing
to the multitude of benefits offered by Kubernetes, it has become
the defacto platform for the deployment and management of con-
tainerized workloads. In this work, we extend the capabilities of
the default Kubernetes scheduler by incorporating intelligence into
it with the use of RL techniques.

A Kubernetes cluster consists of a set of virtual or physical ma-
chines which are referred to as Nodes. The smallest unit deployable
in Kubernetes is referred to as a Pod. Pods are hosted by Nodes.
A Pod may comprise one or more tightly coupled containers that
share storage and network resources, it also contains a specifica-
tion of how the containers are to be run. The contents of a Pod
run in a shared context, and are always located and scheduled to-
gether. Pods and Nodes of a Kubernetes cluster are managed by
the control plane. It comprises multiple components that work
together for managing the cluster. Kube-API server exposes the
Kubernetes API that serves as the front end of the Kubernetes con-
trol plane. Cluster data are stored in a key-value store termed etcd.
The kube-controller-manager runs several controller processes that
monitor and regulate the cluster state. Cloud-controller-manager
handles cloud-specific control logic. Kube-scheduler is responsible
for scheduling unassigned Pods to Nodes for execution.

4.2 Argo Workflow Engine
Argo workflow engine is an open-source container-native workflow
engine that facilitates the orchestration of workflows on Kubernetes.
Argo workflows are implemented as a Custom Resource Definition
(CRD) in Kubernetes. This enables Argo workflows to be managed
using kubectl and they integrate natively with Kubernetes services
including secrets, volumes and Role Based Access Control (RBAC).

The workflow engine comprises two main components: the Argo
server and the workflow controller. The Argo API is exposed by
Argo server and the controller performs workflow reconciliation.
In the reconciliation process, the workflows that are queued based
on additions and updates to workflows and workflow pods, are
processed by a set of worker goroutines. The controller processes
one workflow at a time. Both Argo server and controller run in the
Argo Namespace.

Each task of workflow results in the generation of a Pod. Each
pod includes three containers. The main container runs the image
that the user has configured for the task. The init container is an
init container that fetches artifacts and parameters and makes them
available to the main container. Wait container performs tasks
related to clean up including the saving of artifacts and parameters.

Argo provides multiple templates for defining workflow specifi-
cations and dependencies. For example, a workflow can be defined
as a sequence of steps. Alternatively, DAGs can be used for defining
a workflow and its dependencies. As this facilitates the representa-
tion of complex workflows and parallelism, in this work we have
used DAGs for modeling workflows.
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Figure 3: Sequence diagram of DRL based scheduling framework

A workflow specification comprises a set of Argo templates,
each with an optional input section, an optional output section, and
either a list of steps where another template is invoked by each
step or a container invocation (leaf template). The options accepted
by the container section of the workflow specification are the same
options as the container section of a Pod specification.

4.3 Reinforcement Learning
In the RL paradigm, an agent learns in a trial-and-error manner by
interacting with the environment. The agent receives a reward, 𝑟𝑡
when it performs an action, 𝑎𝑡 in a particular state 𝑠𝑡 , and then the
environment transitions to the next state, 𝑠𝑡+1. The process repeats
until the agent encounters the terminal state at which point the
episode terminates. Markov Decision Process (MDP) can be used for
mathematically modeling RL problems. According to the Markov
property, it is considered the next state of the environment and the
reward received depends solely on the current state and the agent’s
action in the current state. The cumulative discounted rewards,𝐺𝑡

at any given timestep, 𝑡 is expressed as:

𝐺𝑡 =

∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (9)

where𝛾 is a discount factor and𝛾 ∈ (0, 1). The RL agent operates
with the goal of maximizing the expected return, 𝐸 [𝐺𝑡 ] from each

state, 𝑠𝑡 . A policy, 𝜋 (𝑎𝑡 |𝑠𝑡 ) is a mapping from the current observa-
tion of the environment to a probability distribution of the actions
that can be taken from the current state. During the training pro-
cess, a traditional RL agent is required to visit all the states of the
problem and store experiences in space-consuming tabular formats.
This is a limitation that makes it infeasible to apply the traditional
RL paradigm to problems with high dimensional states and action
spaces. The integration of Deep Learning with the RL paradigm
gave rise to an efficient means of overcoming the aforementioned
limitation through the use of neural networks as function approxi-
mators for enabling the agent to estimate the value of a state or an
action when it encounters a similar circumstance. In the resulting
Deep Reinforcement Learning (DRL) paradigm, the policy, 𝜋 (𝑎𝑡 |𝑠𝑡 )
is modeled as a parameterized function, 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) where 𝜃 is an
adjustable parameter derived with an RL algorithm.

In value based RL methods, the RL agent attempts to learn a state-
value function, 𝑣𝜋𝜃 (𝑠), or a state-action value function, 𝑄𝜋𝜃 (𝑠, 𝑎).
As the name implies, the state-value function estimates the value
of a state, and it can be expressed in terms of expected return when
following a policy 𝜋𝜃 starting from the state, 𝑠 as shown in Equation
10. Equation 11 indicates the state-action value function which is
the expected return when action, 𝑎𝑡 is taken at state, 𝑠𝑡 , and policy,
𝜋𝜃 is followed afterward.

𝑣𝜋𝜃 (𝑠) = 𝐸𝜋𝜃 [𝐺𝑡 |𝑠𝑡 = 𝑠] (10)
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𝑄𝜋𝜃 (𝑠, 𝑎) = 𝐸𝜋𝜃 [𝐺𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (11)
In policy gradient RLmethods, the agent directly learns the policy,

𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ). Typically gradient-based techniques on the expectation
of returns are used for learning the policy. Equation 12 indicates
the form of the most commonly used gradient estimator.

𝑔 = 𝐸𝑡 [∇𝜃 ln𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )𝐴𝑡 ] (12)
where, 𝐴𝑡 is an estimator of the advantage function at timestep,

𝑡 and 𝜋𝜃 is a stochastic policy. In an RL algorithm that alternately
performs sampling and optimization, the expectation 𝐸𝑡 [..] indi-
cates the empirical average computed over a batch of samples. For
evaluating the performance of the policy, a performance objective
the gradient of which is the policy gradient estimator, 𝑔 is defined.
Accordingly, 𝑔 is obtained by differentiating the objective:

𝐿𝑃𝐺 (𝜃 ) = 𝐸𝑡 [ln𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )𝐴𝑡 ] (13)
Although multiple rounds of optimizations can be performed on

the loss, 𝐿𝑃𝐺 (𝜃 ) defined in Equation 13 using a single trajectory
of experience samples, it is not desirable since that could lead to
adverse consequences such as policy updates that are destructively
large. In order to overcome the aforementioned issue, in Proximal
Policy Optimization [12] method, a clipped surrogate objective is
used. More specifically, the degree to which new policy, 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) is
allowed to change from old policy, 𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 ) is restricted by the
use of a clip function as indicated in Equation 14. The clip function,
clip(𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 removes the desirability of large policy
updates that changes the 𝑟𝑡 (𝜃 ) ratio beyond the interval [1−𝜖, 1+𝜖].

𝐿𝐶𝐿𝐼𝑃 (𝜃 ) = 𝐸𝑡 [min(𝑟𝑡 (𝜃 )𝐴𝑡 , clip(𝑟𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 ]

where 𝑟𝑡 (𝜃 ) =
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜃old (𝑎𝑡 |𝑠𝑡 )

(14)

Actor-critic is a branch of RL algorithms that combines the ad-
vantages of value-based methods and policy gradient RL methods.
The actor is the policy that outputs a probability distribution over
the actions that can be taken in the current state, and the critic is
the value function approximator that evaluates the actions taken
by the actor as per the policy.

4.4 Proposed RL Framework
As previously discussed, the default kube-scheduler takes multiple
factors into account in formulating scheduling decisions including
resource requirements and constraints, specifications of affinity
and anti-affinity, deadlines, and interference caused by co-located
workloads. These policies need to be pre-defined and may suffer
from the general limitations of heuristic scheduling techniques.
In this work, we override the default behavior and incorporate
intelligence into the scheduler by training a DRL agent to select
appropriate scheduling decisions with the objective of achieving a
desired goal.

4.4.1 Agent Environment. The problem of scheduling workflows
in a cloud cluster can be simplified by formulating it as a dependent
task-scheduling problem. In the Argo workflow engine, pods corre-
sponding to independent tasks are scheduled directly in the cluster

for execution, while the tasks with dependencies are not scheduled
until the parent tasks have completed execution. Whenever the
workflow scheduler (RL agent), discovers a pod that is not assigned
to a node, it takes the current state of the environment as input and
outputs the most desirable node for task execution based on the
trained policy. The environment then transitions to the next state.
Accordingly, the timesteps of the proposed RL model are discrete
and event-driven. The state, action, and reward of the RL model are
designed as follows:

State Space: State of the environment comprises of total CPU
and Memory requirements of the task, and nodes together with the
estimated waiting time at each node based on the number of pods
executing in each node.

Action Space: Compared to the problem of scheduling tasks in a
cluster comprising nodes from the same cloud data center, schedul-
ing tasks in a multi-cloud cluster is more challenging since resource
capacities and cost are not the only factors that differentiate nodes.
In such scenarios, the intercloud communication delay is an im-
portant factor that needs to be factored into the formulation of
scheduling decisions. This requirement is further heightened in
workflow scheduling due to the presence of data dependencies
among tasks that may result in costly data transfers if communica-
tion costs among nodes from different clouds are ignored.

In the most straightforward design of the action space, the action
of selecting any one of the nodes in the multi-cloud cluster can
be represented together in a flat action space. In this approach,
the burden of distinguishing nodes from different clouds lies with
the DRL agent. Although the agent may eventually manage to
learn the presence of nodes from multiple clouds based on rewards
and thereby develop an internal representation of the multi-cloud
composition of the nodes, it will inevitably reduce the training
efficiency of the agent. Furthermore, as the size of the cluster grows,
flat action spaces are more prone to the problem of the ’curse of
dimensionality’.

In order to efficiently overcome the aforementioned challenges,
we have designed the action space considering a logical organi-
zation of cluster. In the logical organization, nodes from different
pricing categories are grouped together as shown in Figure 2. Ac-
cordingly, we define a hierarchical action space for the problem as
follows:

𝐴 = {(𝑎1, 𝑎2) |𝑎1 ∈ {𝜋𝜔1 , 𝜋𝜔2 } & 𝑎2 ∈ {1, 2, ..., 𝑁𝑎1 }} (15)

where 𝑁𝑎1 is the total number of nodes in the cluster that belong
to the group given by action 𝑎1. The action, 𝑎1 corresponds to the
selection of a node group, and the action, 𝑎2 corresponds to the
selection of a node from the group. An action at each timestep then
corresponds to the joint action (𝑎1, 𝑎2).

Reward: Reward is the estimated cost of execution at the allocated
node computed with Equation 6.

4.4.2 Multi-Actor RL Algorithm. The hierarchical action space de-
scribed above can be represented as the tree structure in Figure
2. Each level of the tree corresponds to an action selection sub-
problem. The first level of the tree represents the sub-problem of
selecting a node group and the second level represents the sub-
problem of selecting a node. We then adopt the hybrid actor-critic
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Table 1: Resource configurations of Kubernetes cluster

Instance Type CPU Cores Memory(GB) Quantity Price
Spot On-demand Spot On-demand

t4g.large 2 8 2 2 $0.033/h $0.0672/h
t4g.xlarge 4 16 3 2 $0.0857/h $0.1344/h
t4g.2xlarge 8 32 1 1 $0.1589/h $0.2688/h

Algorithm 1 Actor-Critic based Scheduling Framework with PPO
1: Initialize actor networks and critic network with random

weights
2: Initialize the training parameters: 𝛼, 𝛽,𝛾
3: for episode = 1 to 𝑁 do
4: Reset the environment
5: for step = 1 to 𝑇 do
6: Input the state of the environment to actor networks
7: Select action 𝑎1 from 𝜋𝜃
8: Select action 𝑎2 from 𝜋𝜔𝑖

9: Execute the combined action (𝑎1, 𝑎2) and observe the
corresponding reward 𝑟𝑡 and next state of the system
𝑠𝑡+1

10: Store the most recent transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in mem-
ory 𝐷

11: Compute advantage estimates 𝐴1 to 𝐴𝑇
12: for j = 1 to 𝐾 do
13: Randomly sample a mini-batch of samples of size 𝑆 from

𝐷

14: for p = 1 to 𝑆 do
15: Update critic network:

𝜎 ← 𝜎 + 𝛽𝛿𝑡∇𝑣𝜋 (𝑠𝑡 |𝜎)
16: Update first actor network:

𝜃 ← 𝜃 + 𝛼𝐴𝑝∇ ln𝜋 (𝑎1 |𝑠, 𝜃 )
17: Update second actor network:

𝜔 ← 𝜔 + 𝛾𝐴𝑝∇ ln𝜋 (𝑎2 |𝑠, 𝜔)
18: Clear memory 𝐷

return

technique presented in [5] for selecting joint actions from the hi-
erarchical action space. Different from a traditional actor-critic
algorithm which contains a single actor-network and a single critic
network, in the proposed architecture multiple parallel actor net-
works are guided by a common critic network.

As shown in Figure 2 each action-selection sub-problem is han-
dled by a separate actor network. Accordingly, one actor network
learns a stochastic policy for selecting a node group. For each of the
node groups, a separate actor network learns a stochastic policy for
selecting a node from the respective node group. The critic network
estimates the state value function, 𝑉 (𝑠). The advantage function
provided by the critic network is used for updating the stochastic
policies. Actor networks are separately updated at each timestep by
their respective update rules. We used the PPOmethod for updating
the networks. Algorithm 1 summarizes the steps included in the
training process of the DRL agent.

5 PERFORMANCE EVALUATION
In this section we present the details of the experimental testbed
used for evaluating the proposed DRL framework along with the
results of the performance evaluation.

5.1 Experimental Testbed
The resource configurations and composition of the Kubernetes
cluster is shown in Table 1. Argo workflow engine is installed in the
cluster in a separate namespace. A Python client that communicates
with Argo API server was developed for submitting workflows and
querying about the execution statistics of workflows.

5.2 Experimental Dataset
The experimental dataset comprises of a set of Map-Reduce work-
flows. Each map task performs a CPU intensive parallelizable com-
putation that involves finding the sum of the square-roots of num-
bers in a given input range. Experiments were conducted at different
arrival rates drawn from a uniform distribution. Experiments were
also conducted at different task sizes and parallelism levels.

5.3 DRL Scheduler Implementation
The Argo workflow engine uses the default Kubernetes scheduler
for allocating tasks (i.e. pods) to nodes. We have overridden it with
a DRL agent trained according to the proposed DRL framework.
The configurations of all test workflows were updated such that
they are scheduled with the custom DRL scheduler instead of the
default scheduler. Keras library [4] was used for developing the
DRL framework.

Kubernetes metrics server collects resource metrics of the under-
lying nodes from Kubelets and shares it with the Kubernetes API
server via the Metrics API. Therefore, by querying the Kubernetes
API server we were able to retrieve near real-time CPU andMemory
usages of the nodes, which were required to formulate the state
space composition that needs to be provided as the state of the en-
vironment to the agent at each timestep of the episode. At the end
of each episode, the python client queries the Argo API server for
retrieving the execution statistics of workflows including resource
times, start and end times of workflows and success rates which
are then used for computing the resource usages and associated
costs. The client also queries Kubernetes API server for retrieving
node metrics that is required for computing the up times of nodes.

5.4 Comparison Algorithms
The performance of the proposed DRL algorithm was compared
against three scheduling policies. Random policy allocates tasks to
nodes in a Randommanner, and is completely agnostic to pricing as
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(a) Execution cost (b) Execution time (c) Execution interruptions

Figure 4: Comparison of performance of scheduling algorithms on an experimental dataset

well as other resource utilization levels of the cluster. K8-Default
refers to the default scheduling policy of Kubernetes cluster. On-
Demand is a policy that uses Kubernetes default scheduler but the
selection is limited to the on-demand instances.

5.5 Experimental Results
Figure 4a shows the performance of the algorithms on the exper-
imental dataset with respect to monetary cost of workflow exe-
cutions. Random algorithm has incurred the highest cost owing
to the fact that it distributes tasks across multiple instances with-
out trying to optimize resource utilization or cost. In comparison
the Kubernetes scheduler exhibits much better cost savings. By
default, it is designed to select the most appropriate node through
a node filtering and scoring process. In the filtering phase, nodes
that are feasible for executing the pod are selected, and then they
are ranked according to a scoring process. Based on the outcome
of the filtering and scoring process the most appropriate node for
pod execution is selected. Clearly, this process has resulted in much
better resource efficiency and thereby cost savings in comparison
to random allocation. As expected, K8-On-Demand method has in-
curred a higher cost than the default policy since it is only allowed
to make a selection from amongst the on-demand instances which
have a higher unit cost. The proposed method has resulted in the
highest cost savings. The significant reduction in cost is due to the
intelligent cost aware allocation of pods among the instances in
the cluster.

Figure 4b shows a comparison of the execution times of work-
flows scheduledwith different algorithms. Again, the highest amount
of time is taken by Random algorithm. K8-On-Demand has resulted
in higher execution times compared to k8-Default due to the limited
selection of instances available for scheduling. K8-Default has re-
sulted in the least execution time since it distributes pods amongst
multiple high scoring nodes, without considering the respective unit
cost differences. Proposed algorithm has incurred slightly higher
cost since it’s favoring nodes that are of low cost which leads to
more pods being assigned to the same nodes, hence resulting in in-
creased execution times. This is expected since instances with more
vCPUS are more expensive, which results in a trade-off between
execution time and cost.

Figure 4c shows the number of execution failures. Execution fail-
ures in the experimental context are solely due to the interruption
of spot instances which leads to workflows timing out and thereby
failing to complete. As expected the proposed algorithm results
is the highest failures since it is favoring spot instances for task
executions, and the spot instances are subjected to interruptions.
This is a known trade-off associated with the use of spot instances,
therefore it is important to restrict the use of spot instances for
failure tolerant workflows.

6 CONCLUSIONS
In this work, we designed a DRL technique for cost-optimized work-
flow scheduling in Cloud environments by the intelligent use of
spot and on-demand instances. We then designed and implemented
an end-to-end system for integrating and training the DRL agent
in the container-native Argo workflow engine that runs atop Ku-
bernetes. As evidenced by the results of the experiments, higher
cost savings can be achieved by overriding the default schedulers
with intelligent cost-optimized scheduling policies.
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