
DRLQ: A Deep Reinforcement Learning-based
Task Placement for Quantum Cloud Computing

Hoa T. Nguyen1, Muhammad Usman2,3, and Rajkumar Buyya1

1Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
School of Computing and Information Systems, The University of Melbourne, Parkville, 3052, Victoria, Australia

2School of Physics, The University of Melbourne, Parkville, 3052, Victoria, Australia
3Data61, CSIRO, Clayton, 3168, Victoria, Australia

thanhhoan@student.unimelb.edu.au, {muhammad.usman, rbuyya}@unimelb.edu.au

Abstract—The quantum cloud computing paradigm presents
unique challenges in task placement due to the dynamic and
heterogeneous nature of quantum computation resources. Tra-
ditional heuristic approaches fall short in adapting to the
rapidly evolving landscape of quantum computing. This paper
proposes DRLQ, a novel Deep Reinforcement Learning (DRL)-
based technique for task placement in quantum cloud computing
environments, addressing the optimization of task completion
time and quantum task scheduling efficiency. It leverages the
Deep Q Network (DQN) architecture, enhanced with the Rainbow
DQN approach, to create a dynamic task placement strategy. This
approach is one of the first in the field of quantum cloud resource
management, enabling adaptive learning and decision-making
for quantum cloud environments and effectively optimizing task
placement based on changing conditions and resource availability.
We conduct extensive experiments using the QSimPy simulation
toolkit to evaluate the performance of our method, demonstrating
substantial improvements in task execution efficiency and a
reduction in the need to reschedule quantum tasks. Our results
show that utilizing the DRLQ approach for task placement
can significantly reduce total quantum task completion time
by 37.81% to 72.93% and prevent task rescheduling attempts
compared to other heuristic approaches.

Index Terms—quantum cloud, task placement, resource man-
agement, reinforcement learning, quantum cloud scheduling.

I. INTRODUCTION

Quantum computing is at the forefront of technological
innovation, with the potential to drive advances in fields such
as cryptography [1], finance [2], machine learning [3], and
complex chemical simulation [4]. It has the capability to solve
numerous problems that are currently intractable by classical
computers. Besides, the emergence of quantum cloud comput-
ing [5] represents a major advancement in providing access
to the computational capabilities of quantum computing. This
integration enables users worldwide to execute quantum al-
gorithms on remotely accessible quantum computers, thereby
overcoming the significant barriers of cost and physical access
associated with quantum hardware [6]. The quantum cloud
paradigm has not only extended the accessibility of quan-
tum computing but has also presented new challenges and
opportunities in optimizing the utilization of these cloud-based
quantum computation resources.

Despite its significant potential, the efficient utilization of
quantum cloud computing resources faces substantial chal-
lenges, particularly in the context of quantum cloud resource

Fig. 1: Overview of the system model for the task placement
problem in quantum cloud environments

orchestration. Specifically, quantum task placement, i.e., se-
lecting an appropriate quantum backend or physical hardware
and associated parameters for executing quantum tasks, is
crucial for the performance and reliability of quantum com-
putations [7]. However, the current landscape of quantum task
placement is denoted by dependence on heuristic approaches
or manually crafted policies [8]. Although practical in certain
contexts, these approaches do not take full advantage of the dy-
namic capabilities of quantum cloud computing environments.
They lack the flexibility and adaptability required to optimize
performance in the face of ongoing advancements in quantum
hardware and the increasing complexity of practical quantum
applications. [9].

This scenario underscores the critical need for novel, adap-
tive techniques in resource management capable of harness-
ing the potential of quantum cloud computing. Integrating
deep reinforcement learning (DRL) into the quantum task
placement process presents a promising approach to address
these challenges. By incorporating the principles of DRL,
which is well-suited for navigating complex and dynamic
environments such as cloud-edge in the classical domain with
several successful examples such as [10]–[12], a DRL-based
task placement strategy can potentially enhance quantum cloud
resource management. As far as we know, this study is the
first attempt to apply a deep reinforcement learning-based
technique designed for the task placement problem in quantum
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cloud computing environments [5]. Our approach aims to navi-
gate the complexities of quantum systems dynamics, balancing
performance metrics and adaptively learning the optimal task
placement policy through continuous interactions with the
quantum computing environment. Our proposed methodology
leveraging Deep Q Networks (DQN) architecture and em-
powered by Rainbow DQN approach [13], which combines
advantages of different DQN algorithms, including Double
DQN, Prioritized Replay, Multi-step learning, Distributional
RL, and Noisy Nets, seeks to optimize task placement in
quantum cloud computing environment.

The major contributions and novelty of our work are:
• We propose one of the first applications of DRL tech-

niques to address the task placement problem in quantum
cloud computing, leveraging the enhanced combining
improvement of the Rainbow DQN technique [13] for
robust and adaptive decision-making.

• Through extensive experimentation, we have shown that
our DRLQ approaches can significantly reduce the total
completion time by 37.81% to 72.93% and minimize the
need for task rescheduling compared to other popular
heuristic-based approaches.

• Our findings emphasize a possible method for tackling
the problem of quantum task placement in order to opti-
mize resource management in quantum cloud computing
environments. This provides a starting point for additional
thorough research that considers more quantum-specific
properties, such as execution accuracy, quantum circuit
transpilation, and quantum error rates.

The rest of the paper is organized as follows: Section II
reviews related work, identifying gaps our research addresses.
Section III describes the system model and problem formu-
lation for task placement in quantum cloud computing, then
explains our DRL model, focusing on the DQN architecture
and Rainbow approach. Section IV evaluates our method’s per-
formance through simulations and discusses the implications
of our findings. Section V concludes the paper by summarizing
our contributions along with future work.

II. RELATED WORK

The literature on task placement in quantum cloud com-
puting is nascent, with only few works beginning to address
the unique challenges posed by this emerging paradigm. This
section briefly reviews the existing studies, highlighting the
pioneering efforts in task placement within quantum cloud
computing and the potential of DRL to innovate in this area.
We summarise several related works in the quantum cloud
domain and representative works in the classical cloud-edge
domain in Table I.

The traditional task placement strategies used in classical
cloud computing cannot be directly applied to the quantum
context due to differences in quantum computational tasks
and resource characteristics. For example, the fundamental
difference between the characteristics of a quantum task and
a classical task is their information unit, i.e., quantum bits
and classical bits [17]. Besides, current quantum computation

TABLE I: Representative works related to our study

References Resource Management
Problem Environment Approach

[14] Task Placement Classical Cloud DRL
[12] Task Placement Classical Edge DRL
[8] Task Placement Quantum Cloud Heuristics
[15] Qubit allocation Quantum Cloud Heuristics
[16] Resource Allocation Quantum Network Heuristics
Our work Task Placement Quantum Cloud DRL

processors can be characterized by different benchmarking
metrics, such as circuit layer operations per seconds (CLOPS)
and quantum volume (QV) [18]. Meanwhile, applying deep
reinforcement learning (DRL) in optimizing such tasks rep-
resents a potential approach in similar resource management
problems in the classical domain [12], [14]. It offers promising
yet unexplored solutions for dynamic and efficient resource
management in quantum cloud environments.

A few studies have focused on heuristic approaches to de-
signing quantum cloud resource management policies. Ravi et
al. [19] analyzed quantum job characteristics of IBM Quantum
cloud systems and then proposed an adaptive job scheduling
approach based on a basic statistical analysis of historical data
in their subsequent work [8]. Ngoenriang et al. [20] proposed
a two-stage stochastic programming technique to allocate
resources for distributed quantum computing. The technique
aims to minimize the deployment cost and maximize quantum
resource utilization while accounting for uncertainties like
quantum task demands and computation power. Kaewpuang
et al. [15] proposed a new method for allocating qubits in
a quantum cloud that considers the uncertainties of quantum
circuit requirements and expected waiting time. The method
consists of two stages: reservation and on-demand. In the
reservation stage, historical data is used to determine the
allocation of resources, while in the on-demand stage, actual
requirements are considered. Cicconetti et al. [16] proposed
a resource allocation technique for distributed quantum com-
puting, focusing on quantum network aspects. They used the
Weighted Round Robin algorithm to assign network resources
based on pre-calculated traffic flow weights. They developed a
network provisioning simulator for evaluation, showing trade-
offs between fairness and time complexity.

However, these existing works do not consider the char-
acteristics of heterogeneous quantum computing systems and
circuit-based metrics of quantum tasks when designing the
scheduling algorithm [5]. Furthermore, none of the existing
works leverage machine learning-based approaches for quan-
tum task placement problems in cloud-based environments.
Our paper fills this important gap and contributes to the
foundational knowledge and advancement of task placement
strategies in the quantum cloud computing domain.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Figure 1 represents an overview of our system model in
quantum cloud computing environments, which is derived
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from our studies on the QSimPy [21] toolkit for quantum cloud
resource management. Since quantum applications cannot be
permanently installed in a quantum computer, classical cloud
resources are required to host these applications. Additionally,
these applications can be made available as a service [7]. Users
send task requests from their local devices to the classical
cloud layer, where the quantum application is deployed. A
corresponding quantum task (QTask), which comprises single
or multiple quantum circuits, will be created for each incoming
request. The broker (or scheduler) then makes a placement de-
cision for each QTask based on its requirement and the current
state of available quantum cloud computation resources.

Quantum Nodes: The set of available quantum computa-
tion nodes (QNodes) at a quantum data center is defined as
Q = q1, q2, ..., qm, where m = |Q| indicates the number of
available QNodes. We assume that each QNode has a single
quantum processing unit (QPU), reflecting the current state
of available quantum computers. Each QNode has different
properties, such as qubit number (qw), quantum volume (QV)
(qv) [22], circuit layer operation per second (CLOPS) (qs)
[18], supported gates (qg), and qubit topology (qt).

Quantum Tasks: We consider each quantum task (QTask)
to comprise a gate-based quantum circuit. Thus, a set of in-
coming quantum tasks can be defined as Θ = {θ1, θ2, ..., θn},
where n = |Θ| is the number of QTasks. Each QTask θi has
various properties, such as qubit number (θw), circuit depth
(θd), used quantum gates (θg), number of shots (θs), qubit
topology (θt), and arrival time (θa). The circuit depth (θd) of
a quantum circuit is defined as depth-1 circuit layer, where the
depth of the following components can be considered as 1: a)
a single-qubit gate from native gate set, b) a measurement, c)
a reset, d) a 2-qubit gate from native gate set [18].

B. Problem Formulation

The placement configuration of QTask θi ∈ Θ can be define
as ξi = {θi, qj} where qj ∈ Q and 1 ≤ j ≤ |Q| is the selected
quantum node index. If the placement fails due to a violation
of resource constraints, such as placing a task to a QNode
that does not have enough qubits, the broker needs to do the
replacement (or rescheduling) to find another suitable QNode
for the task execution.

Completion Time Model: The total completion time (or the
makespan) represents the total waiting time for each request
from the submission to the completion, including executing
time and queueing time as follows:

tθi = twait
θi + texecθi (1)

where twait
θi

is the queuing time (from the arrival time till
the execution start time) and texecθi

is the quantum execution
time. The execution time of a quantum task depends on the
corresponding computer’s required quantum circuit layer and
QPU speed (CLOPS). Based on IBM Quantum study [18], we
use depth-1 circuit layer operation per second (D1CPS) instead
of CLOPS for qs, which is used to measure the number of
depth-1 circuit layers (or circuit depth) of a quantum circuit

that can be executed per second. The execution time of a
QTask θi in QNode qj can be estimated as follows:

texecθi =
θdi × θsi

qsj
(2)

where θdi is the circuit depth (or number of depth-1 circuit
layers), θsi is the number of shots to be executed, and qsj is
D1CPS of the QNode.

Problem Statement: Given a data center with heteroge-
neous quantum computation nodes (QNodes) and a continuous
incoming workload (QTasks), design the task placement policy
to select the most appropriate QNode for each incoming QTask
object to minimize the total response time of all QTasks and
mitigate the replacement frequency due to violation of the
execution constraints. The objective can be defined as:

Ω(Ξ) = min

n∑
i=1

tθi (3)

s.t.
C1 : Size(θi) = 1,∀θi ∈ Θ (4)

C2 : tstartθj ≥ tstartθh
+ tθh ,∀θh, θj ∈ Θ, h < j ≤ |Θ| (5)

C3 : θwi ≤ qwj ,∀θi ∈ Θ, qj ∈ Q (6)

where C1 specifies that each QTask can only be assigned to
one QNode at the time for the execution; C2 indicates that the
QTask θj can only be executed in the selected QNode after the
completion of its predecessor at the same QNode (QTask θh);
and C3 requires the selected QNode qj need to have enough
qubit for the execution of QTask θi. If the QNode does not
have enough qubits, the placement will fail and rescheduling
will be necessary.

C. Deep Reinforcement Learning Model

Deep Reinforcement Learning (DRL) employs deep neural
networks to tackle decision-making with high-dimensional
states, formulated as Markov Decision Processes (MDP) [23].
An MDP is denoted as (S,A,P,R, γ), with S and A repre-
senting the sets of states and actions, respectively. P defines
the transition probabilities, R is the reward function, and
γ ∈ [0, 1] is the discount factor, indicating the preference
for future rewards. During discrete time steps t, a DRL
agent observes a state st, selects an action at from policy
π(at|st), and transitions to a new state st+1, receiving a
reward rt. The agent aims to maximize the expected return
Vπ(st) = Eπ[

∑
t γ

trt], t ∈ T, the sum of discounted rewards
obtained by following policy π from st. The policy, often
a neural network, is refined through training to optimize
performance.

State Space S: A state of the agent’s observation from
the quantum cloud computing environment, which includes
1) information on all available QNodes and 2) information on
current QTasks to be placed (or scheduled).

The feature vector of m quantum nodes in Q, each quantum
node has o features, at time step t can be presented as:

FQ
t = {fqzi |∀qi ∈ Q, 1 ≤ i ≤ m, 1 ≤ z ≤ o} (7)
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where i is the index of a quantum node, and z is the index of
a quantum node’s feature.

The feature vector of the current quantum task θj in Θ, with
p features at time step t can be presented as:

Fθj
t = {fθk

j |θj ∈ Θ, 1 ≤ k ≤ p} (8)

where k is the index of the current quantum task’s feature.
All features of quantum nodes and quantum tasks are

described in Section III-A. Each QTask specification is only
sent to the DRLQ agent as part of the state after its arrival.
Therefore, the State space of the system can be defined as:

S = {st|st = (FQ
t ,Fθj

t ),∀t ∈ T} (9)

Action Space A: An action can be defined as the placement
of a QTask on an available quantum node. The action at at
time step t is an placement of QTask θj to quantum node qi
can be defined as

at = ξi = {qi, θj}, qi ∈ Q, θj ∈ Θ (10)

Thus, the Action space is equivalent to the set of all available
quantum nodes at the data center:

A = Q (11)

Reward Function R: The main goal is to minimize the
total completion of all incoming tasks. Besides, we also aim
to mitigate task replacement attempts (or maximise the success
rate of the task placement). To achieve these objectives, we
define the reward rt at time step t as follows:

rt =


1

tθi
× (1− ακ) if done = 1

∆× (1 + ακ) if done = 0
(12)

where tθi is the total completion time of QTask θi, α is the
penalty factor, and κ is the replacement count. If the QTask is
successful (done = 1), the inverse value of its total completion
time is assigned for the reward to encourage the policy to find
a better placement that has a shorter total completion time to
get a higher reward rt. Otherwise, if the task execution fails
for any reason, we apply a large negative value ∆ for penalty
and advise the policy to avoid similar action in the future.
Besides, we also consider κ - the number of replacements
(or rescheduling attempts) of QTask θi and define a penalty
factor α when assigning the reward in order to mitigate the
replacement. The penalty factor acts as an additional discount
factor when a QTask needs more than one placement to be
successful and also magnifies the penalty if that QTask fails
multiple times. Thus, our reward function can be used to
achieve the main objective of minimizing the total completion
time and reducing the number of task replacements.

D. DRLQ Framework

Our DRLQ framework employs an enhanced deep reinforce-
ment learning technique, combining Deep Q-Networks (DQN)
and the Rainbow approach [13] to optimize task placement in
quantum cloud computing environments.

The Deep Q-Network (DQN) algorithm, introduced by
Mnih et al. [23], [24], represents a significant advancement
in reinforcement learning, utilizing deep neural networks to
approximate the action-value function Q(s, a; θ). The objec-
tive is to minimize the loss function:

L(θ) = E
[(

r + γmax
a′

Q(s′, a′; θ−)−Q(s, a; θ)
)2

]
(13)

where yi = r + γmaxa′ Q(s′, a′; θ−) defines the target for
a state-action pair (s, a), with r as the immediate reward, γ as
the discount factor, s′ as the subsequent state, and θ− denotes
the parameters of a target network that is periodically updated
to stabilize the learning process. The overall process of the
DRLQ framework can be represented in the Algorithm 1.

Algorithm 1: DRLQ Framework for QTask Placement

1 Initialize the quantum cloud environment in QSimPy;
2 Loading dataset for the QTask generator module;
3 Register the environment with Ray;
4 Initialize replay buffer D to capacity N and priority

replay configuration;
5 Initialize action-value policy Q with random weights;
6 for each hyperparameter configuration do
7 Set hyperparameters using Ray Tune;
8 for episode = 1,M do
9 Perform DQN process, defined in [24];

10 Adjust rewards and transitions for n-step;
11 Add parameter noise to network weights for

exploration;
12 Update Q using a distributional approach;
13 end
14 end
15 Select the best configuration from Ray Tune results;

First, we initialize the quantum cloud environment following
the reinforcement learning setting. Due to the limitation of
managing the practical quantum cloud environment setup, we
utilize a simulated quantum cloud environment by utilizing
the QSimPy simulator [21] and a quantum application dataset,
such as MQTBench [25], for generating the synthetic QTask
data for the environment. Then, we register the environment
with Ray [26], a comprehensive machine-learning framework
for managing the training and tuning. We utilize a replay buffer
to enhance learning efficiency by decoupling consecutive train-
ing samples, thereby providing a diverse set of experiences
for more robust neural network training. The replay buffer
configuration and other training hyperparameters need to be
defined for the hyperparameter tuning process. We leverage the
Rainbow DQN approaches [13] to combine all the advantages
of the different DQN approaches, such as Multi-step Learning
[27], Distributional RL [28], Prioritized Replay [29], and
Noisy Nets [30]. These enhancements of DQN can collectively
improve the training efficiency and effectiveness in quantum
task placement, offering a potential approach to learning in
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the complex and dynamic environments of quantum cloud
computing. Finally, we determine the best hyperparameter
configuration based on the tuning process using Ray Tune [31].

IV. PERFORMANCE EVALUATION

A. Environment Setup

To evaluate the performance of our DRLQ technique, we set
up a simulated environment that reflects the actual quantum
cloud environment due to current limitations on accessing and
managing a quantum data center. We use QSimPy [21], a
learning-centric framework derived from the iQuantum toolkit
[32], to create the quantum cloud environment. All experi-
ments are conducted on a computation instance with 16 vCPUs
and 64GB of RAM at the Melbourne Research Cloud.

We model a quantum data center with 10 heteroge-
neous quantum nodes, ranging from 16 qubits to 127
qubits, using quantum benchmarking metrics [18] from IBM
Quantum and backend instances in Qiskit. The modeled
quantum nodes included ibm sherbrooke, ibm washington,
ibm brisbane, ibm osaka, ibm nazca, ibm kyoto, ibm cusco,
ibm kolkata, ibm hanoi, ibm guadalupe. We used Qiskit [33]
for the transpilation of circuits in incoming QTasks to the
selected QNode and extracted the circuit metrics after transpi-
lation to mimic the process when a quantum circuit reaches
the quantum node for further execution. To simulate stochastic
incoming quantum tasks with metrics from actual quantum
applications, we selected 12 quantum applications from the
MQTBench dataset [25], which contains quantum circuits in
QASM files ranging from 2 to 50 qubits each. The selected
quantum applications from the MQTBench dataset include:

1) Amplitude Estimation (AE)
2) Deutsch-Jozsa algorithm
3) Greenberger–Horne–Zeilinger (GHZ) state
4) Quantum Fourier Transformation
5) Entangled Quantum Fourier Transformation
6) Quantum Neural Network (QNN)
7) Quantum Phase Estimation (QPE) exact
8) Quantum Phase Estimation (QPE) inexact
9) Random circuits

10) Real Amplitudes ansatz with Random Parameters
11) Efficient SU2 ansatz with Random Parameters
12) Two Local ansatz with random parameters

The number of shots is set to 1024 by default. We randomly
select QTasks for each episode in the reinforcement learning
process from the synthetic QTask dataset. The QTask arrival
times were generated following a Poisson distribution.

After setting up the Gymnasium-based environment for
the quantum cloud, we used Ray RLlib [34], an industry-
grade reinforcement learning framework, to implement the
proposed method of DRLQ and several baseline algorithms
for performance comparison. We evaluated the performance of
DRLQ against other popular heuristic approaches, including:

• Greedy: QTasks are greedily assigned to the QNode with
the shortest waiting time, similar to an approach in [7].

If these tasks fail, they are assigned to the most powerful
QNode (i.e., the one with the largest number of qubits).

• Round Robin: QTasks are assigned to QNodes in a cyclic
order, ensuring a balanced distribution of tasks across all
available QNodes.

• Random: QTasks are randomly assigned to QNodes.

B. Evaluation and Discussion

We used a similar evaluation approach following other
DRL-based task scheduling works in classical computing, such
as [12], [35], to evaluate the performance of our framework us-
ing reward values after 100 training iterations, which involves
100,000 time steps. We conducted extensive experiments and
used Ray Tune [31] to optimize hyperparameters through the
grid search method. The results of the best configuration of
DRLQ are shown in Figure 2.

Fig. 2: Episode reward means and episode lengths during the
training of the DRLQ policy over 100,000 time steps, total
training time is 8.34 hours. Each episode consists of 60 random
QTasks that arrive randomly within a 1-minute time window.
The tuned hyperparameters are set as follows: learning rate
(lr) = 0.01, number of atoms = 10, train batch size = 180,
n step = 3, v min = -10, v max = 10, penalty (∆) = -10, and
penalty factor (α) = 0.1.

Our main objective is to minimize the total completion time
and the number of task rescheduling (or replacement) attempts.
Figure 2 clearly demonstrates the efficient learning process of
the DRLQ method. As the reward is inversely proportional
to the total completion time, the upward trend in the reward
indicates a reduction in total completion time during the
training episodes. The reward continuously increases after
the first 20 training iterations, reaching convergence after 90
training iterations (each iteration consists of 1,000 time steps).
Simultaneously, the episode length significantly reduces and
converges around 60, which is the minimum length of an
episode, after the first 25 training iterations. We then exported
the trained policy after 100 training iterations for evaluation on
different QTask workload datasets to compare the effectiveness
of DRLQ against other heuristic approaches.
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(a) Total completion time of all QTasks in each episode during the evaluation.
(b) Average values of total completion time of all
QTasks over 100 evaluation episodes.

Fig. 3: Total completion times of all QTask over 100 evaluation episodes among DRLQ and other heuristic approaches.

Figure 3a compares DRLQ with other baseline techniques
for QTask placements, considering the total completion time
of all QTasks over 100 episodes, each consisting of 60 random
incoming QTasks different from the training set of DRLQ. The
average total completion times of all QTasks in each episode
after 100 evaluation episodes across DRLQ and other baselines
are shown in Figure 3b. Our evaluation results indicate that the
DRLQ algorithm significantly improves efficiency by minimiz-
ing the total completion time. It achieves a 37.81% reduction
in the total completion time compared to the Greedy algorithm,
a 72.93% reduction compared to the Random approach, and
a 70.71% reduction compared to the Round Robin algorithm
over 100 evaluation episodes.

We also evaluate the performance of DRLQ by considering
the number of task rescheduling attempts per episode. Figure 4
shows the average number of task rescheduling attempts over
100 evaluation episodes for all approaches.

Fig. 4: Average number of task rescheduling attempts after
100 evaluation episodes of DRLQ and other approaches

The results show that our DRLQ approach significantly
outperforms other methods in mitigating task reschedul-
ing attempts. Specifically, DRLQ achieves zero reschedul-

ing attempts, which is a substantial improvement over the
Greedy, Random, and Round Robin approaches, with average
rescheduling attempts of 26.95, 7.88, and 8.11, respectively.
These improvements are especially important in quantum
cloud computing environments, where minimizing task com-
pletion time is crucial due to the high costs of quantum re-
sources and the inherent variability of quantum computations.

V. CONCLUSIONS AND FUTURE WORK

In this study, we have explored the effectiveness and po-
tential of utilizing a deep reinforcement learning approach in
proposing a novel DRLQ framework for task placement in
quantum cloud computing environments. Our results showcase
the significant improvement of the DRLQ technique in quan-
tum task placement compared to other heuristic approaches.
It highlights the potential of using a DRL-based approach as
a robust quantum cloud resource management. Our work is
one of the first studies on the resource management problem
of quantum cloud computing, which requests more attention
from the research community in the quantum cloud domain.

Our future research directions will focus on several aspects
to improve the potential of this approach. We are leveraging
more advanced deep reinforcement learning techniques to
improve performance in diverse quantum computing contexts.
Besides, we aim to evaluate DRLQ in real quantum cloud
systems to verify its practicality and fine-tune its application.
We are also considering other properties of NISQ devices, such
as error rates and quantum coherence, to explore the potential
impacts of quantum mechanics on computational outcomes.
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