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A B S T R A C T

As one of the most computationally intensive operations in stream processing applications, join operation can
cause severe load imbalance problem when dealing with skewed data. Most of the popular solutions focused on
monitoring-based dynamic balancing strategies, making it difficult to quickly adapt to the changing frequency
of data stream, and sometimes failing the balancing strategies that try to address the skewed load in the cluster.
To address these issues, we propose to use the prediction results of a deep reinforcement learning model and
adjust the grouping strategy in advance before the frequency change of data stream. It will enable the system
to quickly adapt to data stream fluctuation, while managing the resources for effective resource utilization.
The following contributions are made in this paper: 1) Explore the main factors that trigger the load skewness
problem in distributed stream join systems and carefully model the load balancing problem at the application
level. 2) Develop a Gated Recurrent Unit Sequence to Sequence model to predict key frequency distribution of
streams, and propose a dynamic grouping algorithm and a feedback-based resource elasticity scaling algorithm
to solve the load imbalance problem caused by hot keys in real time. 3) Design and implement an adaptive
stream join system Aj-Stream based on the prediction model and the proposed algorithm on Apache Storm.
4) Evaluate the system performance through extensive experiments on a large scale real-world dataset and
multiple synthetic datasets. The experimental results demonstrate that the Aj-Stream proposed in this paper
exhibits stable throughput and latency performance with both static data streams of varying skewnesses and
dynamic data streams. In comparison to existing stream-connected systems, Aj-Stream demonstrated a 22.1%
increase in system throughput and a 45.5% decrease in system latency when dealing with frequently fluctuating
data streams.
1. Introduction

Stream computing is widely used in areas such as social networking,
Internet of Things (IoT) [1] and real-time monitoring [2]. In the era of
Big Data, the number of Internet users and IoT devices is increasing
and the amount of data to be processed in real time are growing
exponentially. In some enterprises, the volume of data can even peak
at hundreds of millions messages per second. As the size of enterprise
clusters grows and the volume of data increases, the challenges of
stream computing become more acute. In this case, low-latency and
high-throughput distributed stream processing systems (DSPSs) are
required to handle dynamic and volatile data streams in real-time [3].
Popular DSPSs used in enterprises include Apache Storm [4], Apache
Flink [5], Spark Streaming [6] and Apache Samza [7].
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In DSPSs, the basic data unit in an input stream is called a tuple
which consists of a key and a corresponding value. Join is a common
operation originally used in traditional databases to join data from
multiple static data tables. While in stream computing, the join opera-
tion faces unbounded data. In each stream join operation, the keys of
multiple tuples are compared and the corresponding calculation result
is produced according to the business logic set in code when certain
conditions are satisfied. Join operations are designed to extract and
match information across different streams, but the complex design of
join operations in a stream processing environment often increases the
latency of processing. Stream join models are primarily designed to
optimize complex join operations and are widely used for processing
data streams such as click streams, order streams and monitoring
streams.
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Fig. 1. The structure of topology based on the join-biclique model.

Current research on stream join models can be divided into two
ain categories: join-matrix model [8–10] and join-biclique model

11–13]. The join-matrix model randomly divides the input streams of
n application into multiple sub-streams without intersection.

Assume we have two input streams 𝑅 and 𝑆; 𝑅 and 𝑆 are divided
into 𝑚 and 𝑛 sub-streams, respectively. The stream joins of 𝑅 and 𝑆
form an 𝑚 ∗ 𝑛 two-dimensional matrix, with the elements of the matrix
representing the sub-operations of the stream joins.

In DSPSs, join operators in the join-matrix model are usually applied
to arbitrary join predicates, to guarantee the integrity of the join result.
Each sub-operation takes a pair of sub-streams from 𝑅 and 𝑆 for
join calculation. No matter how the partitioning schemes vary, the
joining of 𝑅 and 𝑆 has to be computed 𝑚 ∗ 𝑛 times to complete the
computation. As can be seen, it consumes considerable memory and
computational overhead. Therefore, it is not conducive to performing
join computation for large-scale data streams. Moreover, when dealing
with skewed data, as each sub-stream is sent to at least one instance
for computation, it is difficult to rebalance the load or provide elastic
scaling with a lightweight solution when certain instances experience
overload problems.

Similar to join-matrix, join-biclique model also divides the input
streams into multiple sub-streams, but join-biclique organizes all the
processing units (i.e. instances) of the stream application into a bipar-
tite graph. We still assume that there are two input streams 𝑅 and 𝑆,
and they are divided into 𝑚 and 𝑛 sub-streams, respectively. For one
side of the bipartite graph, the 𝑚 sub-streams of stream 𝑅 are stored
on the corresponding instances of stream 𝑅. Simultaneously, they are
sent to join the sub-streams with the same key stored on the instances
of stream 𝑆. During the computation, the stream application does not
store any copy of the data and the number of joins per sub-stream is
lowered at the same time, significantly reducing memory requirements
and computational costs.

In the join-biclique model, tuples with hot keys (i.e., the frequently
appearing part of the key set) in stream 𝑆 can be easily matched to
those with the same key in stream 𝑅 by comparison, while the cold keys
(i.e., the seldom appearing part of the key set) needs more comparisons.
Therefore, the processing of hot keys becomes a potential bottleneck
for DSPSs. When the keys in data stream are evenly distributed, Key
Grouping can perfectly solve this problem, because the same keys in
stream 𝑅 and stream 𝑆 are sent to the same instance by the hash func-
tion and the workload of each instance is approximately the same. The
topology based on the join-biclique model is used in our experiment.
Its topology structure is shown in Fig. 1.

However, it is common that real-world data streams are skewed.
We count 300 million taxi tracks in a large-scale dataset provided by
Didi Chuxing [14] and generate a probability curve of the keys. As
139
Fig. 2. Probability curve of keys in Didi Chuxing dataset.

Fig. 3. Latency variation of instances in wordcount application.

shown in Fig. 2, the data exhibit a clear long-tailed distribution. In this
case, if keys are grouped by fields, as shown in Fig. 3, the workload
of one instance may be much greater than those of other instances or
the queue length may reach the upper limit. It will trigger the back
pressure mechanism and cause the upstream instances to halt, leading
to lower system throughput and higher processing latency. In this paper
we argue that the key frequency distribution is one critical cause of
overload in downstream instances, which are commonly referred to as
hot keys or ‘‘heavy hitters’’.

In order to address the problems caused by the skewed data, we
can use key frequency to divide the data stream into sub-streams, but
how to efficiently and dynamically calculate the frequency of keys is
still a problem for online grouping strategies in data stream processing.
To collect the statistics of key frequency online, real-time monitoring
is required. Due to the limitation of memory capacity and storage
time, it is impossible to store the frequency of all keys in the system.
Therefore, it is necessary to estimate the key frequency. Real-time data
stream has the characteristics of fast transmission speed and unlimited
data, making the key frequency estimation challenging. There are two
requirements to satisfy: firstly, the estimation needs to be accurate
enough; Secondly, the memory usage for data processing must be
sufficiently small. The most common method is using sketch [15,16]

for stream frequency estimation.
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With the development of artificial intelligence (AI) algorithms, more
and more works [17–19] are beginning to use AI algorithms to make
online adjustments to grouping strategies. After training the AI algo-
rithms have a faster response time and are able to process and analyze
changing data in the environment in real time, thus dynamically adjust-
ing the grouping algorithm to adapt to changes in the environment.
However, AI algorithms often require a large amount of historical
data for training, otherwise their analysis results may be inaccurate,
resulting in poor grouping strategy adjustment. In addition, due to the
exponential growth in the calculation of all possible scenarios where
a batch of tuples could be allocated to a compute node, resulting in
a substantial decision space, the application of AI algorithms at the
decision-making stage becomes challenging.

Based on the problem analysis, we summarize the following chal-
lenges to load balancing of DSPSs with dynamic stewed data: (1) As the
stream content keeps changing, the previously generated distribution
strategies might no longer be applicable for the next time window,
and may even aggravate the overload of some compute nodes. (2) The
training of a AI model takes time, so it is impossible to collect large-
scale data for training at runtime. But in scenarios involving streams
with changes in their underlying key distribution or concept drift,
relying solely on a pre-trained model can result in outdated information
and, consequently, lead to poor suboptimal balancing decisions. (3)
As the application scenarios and objectives of AI algorithms vary at
different stages of data processing, the use of AI algorithms requires
careful consideration and selection of the appropriate stage in the data
processing pipeline, taking into account specific business requirements
and the nature of data processing processes.

To tackle these challenges, this paper proposes and implements
an adaptive load balancing strategy for stream joining system. The
strategy involves several key components: analyzing the relationship
between key frequencies in data and processing instance loads, identi-
fying load imbalances caused by differences in high and low-frequency
key-generated loads; establishing a stream topology model and quan-
tifying load models for parallel instances based on topology; introduc-
ing a prediction-based grouping strategy for dynamic load balancing
adjustments; utilizing a GRU sequence-to-sequence model with atten-
tion mechanism to predict key frequency distribution in future data
stream time windows; and suggesting a feedback-based resource scaling
strategy to counter resource-induced load imbalance. The method, Aj-
Stream, is developed and integrated into Apache Storm. Its effectiveness
is demonstrated through experiments on the DiDi Chuxing dataset,
showcasing its capability in mitigating load imbalance arising from
high-frequency keys in stream joining.

The remainder of this paper is organized as follows. In Section 2,
we present a model for the load balancing problem caused by dynamic
skewed data. Section 3 describes the architecture and design of our
Aj-Stream system. Section 4 evaluates the performance of Aj-Stream
through extensive experiments. Section 5 reviews related work on
stream grouping strategies and elastic scaling strategies. Finally, in
Section 6 we summarize our work and discuss the future work.

2. Problem statement

In this section, we describe the research problem and formulate the
stream topology model, load quantification model and key distribution
prediction model for stream computing environments.

2.1. Problem description

Load variance between processing instances is one of the key factors
influencing the system performance. Most stream applications have to
face load imbalance problem due to data skewness. A small square
in Fig. 4 represents a Tuple in the data stream, where different pat-
terns represent different keys. The dashed box indicates the set of
downstream instances that are logically associated with the upstream
140
Fig. 4. Stream application with different grouping strategies.

instances in terms of code processing. Data flows through the upstream
instance to the downstream instance. As shown in Fig. 4(a), for a stream
application, if Shuffle Grouping strategy is used, the upstream instance
will send tuples to downstream instances in a round-robin manner.
Although load balancing between each instance can be guaranteed,
we seldom use this strategy for tuple allocation in stateful operations
because an aggregation instance has to be set up for result aggregation.

In Fig. 4(b), Key Grouping strategy groups tuples with the same key
to the same downstream instance. It eliminates the need for aggrega-
tion, but if the data stream is severely skewed, some instances may have
a long queue (i.e. overloaded). In this case, the underloaded instances
will stop working until the overloaded instances’ states are eased. This
may cause back pressure or tuple missing problems.

2.2. Stream topology model

A stream topology in DSPS can be represented by a directed acyclic
graph (DAG) [20], defined as 𝐺 = (𝑉 ,𝐸). A topology defines all the
necessary components for running a stream application, mainly includ-
ing sources, processing operators and the relationship between sources
and processing operators. We define the set of 𝑛 vertices in a DAG as
𝑉 = {𝑣1, 𝑣2, 𝑣3,… , 𝑣𝑛}. Each vertex of the DAG consists of several task
instances, which can be represented as 𝐼(𝑣𝑖) = {𝑖1, 𝑖2,… , 𝑖𝑚}. The code
of the stream application is actually executed by these instances. 𝐸 is
a set of directed edges, each element of which corresponds to a pair
of vertices in 𝑉 and can be expressed as 𝐸 = {𝑒𝑖𝑗 |𝑖, 𝑗 ∈ 𝑛}. Edge 𝑒𝑖𝑗
denotes the direction of data stream from vertex 𝑣𝑖 to vertex 𝑣𝑗 in the
DAG. Its value indicates the associated weight (e.g. computational or
communication cost).

2.3. Load quantification model

In DSPSs, it is necessary to distinguish between overloaded and
underloaded instances by quantifying the workload of each instance,
so as to facilitate the subsequent load balancing procedure. Tasks are
the executor of application code and each task carries an instance
of sources or processing operators. The group of each upstream in-
stance can only allocate tuples to different downstream instances. This
tuple-instance allocation scheme has a direct impact on the system
performance. Stream grouping algorithms can be used to globally load
balance the downstream operators.

For a stream join system with join-biclique model, the process to
consume tuples is mainly as follows: tuples of stream 𝑆 are routed to
𝐼𝑆𝑗

(i.e., the 𝑗th instance of stream 𝑆) for storage; meanwhile, they
are sent to all the instances of 𝑅 to compare with the tuples stored
in 𝐼𝑅𝑖

(i.e., the 𝑖th instance of stream 𝑅). Similarly, the process in
another group of joining instances is the same, so in this paper we only
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Fig. 5. The average throughput variation of a join instance as resources increase over
time.

discuss one group of join instances. From the above process, it can be
learned that the workload 𝐿𝑅𝑖

on instance 𝐼𝑅𝑖
can be referred to as

the product of the total number of tuples (denoted as 𝑅𝑖) stored on 𝐼𝑅𝑖
and the tuple queue length of stream 𝑆 waiting for processing on 𝐼𝑅𝑖
(denoted as 𝛥𝑆𝑖). Note that since each comparison incurs a different
overhead, for ease of modeling we assume that each tuple comparison
takes the same amount of time, i.e., the average of the time required for
all comparisons is used as the time for each comparison. Our revised
explanation explicitly states that the Load quantification model assumes
a representative average for the comparison overheads, acknowledging
that in practical scenarios, variations in comparison times might exist
due to the complexity of if statements and other factors.

𝐿𝑅𝑖
= 𝑅𝑖 ∗ 𝛥𝑆𝑖, 𝑖 ∈ (1, 2,… , 𝑛) (1)

The system performance often depends on the number of parallel
instances with the heaviest load, thus we define the degree of load
imbalance 𝐿𝐼 as follows,

𝐿𝐼 =
𝑚𝑎𝑥

(

𝐿𝑅𝑖

)

− 𝑎𝑣𝑔
(

𝐿𝑅𝑖

)

𝑎𝑣𝑔
(

𝐿𝑅𝑖

) , 𝑖 ∈ (1, 2,… , 𝑛) (2)

For stream 𝑅, we use 𝑚𝑎𝑥(𝐿𝑅𝑖
) to denote the heaviest loaded instance

and 𝑎𝑣𝑔(𝐿𝑅𝑖
) = 1

𝑛
∑𝑛

𝑖=1 𝐿𝑅𝑖
to denote the average workload of all

nstances. Since 𝑚𝑎𝑥(𝐿𝑅𝑖
) can be equal to or greater than 𝑎𝑣𝑔(𝐿𝑅𝑖

), and
𝐼 can be equal to or greater than zero, it can be concluded that the

arger 𝐿𝐼 is, the more severe the load imbalance is.
Let the instantaneous load generated by key 𝑘 in instance 𝑅𝑖 at

ime 𝑡0 be 𝐿𝑘
𝑖 (𝑡0), then 𝑓 (𝑡) = ∫ 𝐿𝑘

𝑖 (𝑡)𝑑𝑡 is the total load over time as
a function of time 𝑡. Assuming that 𝑘 is all sent to a join instance, if

e treat the number of tuples 𝑅𝑘
𝑖 stored in the instance with key 𝑘 as

constant, we can obtain the following equation by Eq. (1),

𝐿𝑘
𝑖 (𝑡)𝑑𝑡 = 𝑅𝑘

𝑖 ∗ 𝛥𝑆𝑘
𝑖

= 𝑅𝑘
𝑖 ∫ 𝑣𝑘𝑆𝑖

(𝑡)𝑑𝑡
(3)

here we define the processing rate of a tuple in stream 𝑆 as a
unction 𝑣𝑆𝑖

(𝑡) with respect to 𝑡. Deriving both sides of Eq. (3) yields
he following expression for the instantaneous load 𝐿𝑘

𝑡 ,

𝑘
𝑖 (𝑡) = 𝑅𝑘

𝑖 ∗ 𝑣𝑘𝑆𝑖
(𝑡) (4)

It can be seen that the instantaneous workload generated by key 𝑘
is related to the total number of its tuples and the processing rate of
the instance. Similarly we can induce that the instantaneous workload
141
Fig. 6. Structure of Aj-Stream.

of instance 𝑅𝑖 is related to its memory capacity and CPU resources.
Fig. 5 records the average throughput variation of a join instance per
minute. One of the join instances was monitored for 30 min after the
topology was stable, and the CPU and memory resources of this join
instance were increased in equal amounts every 5 min. The data shows
that the more memory and CPU resources an instance has, the higher
its throughput will be.

In fact, there are many factors affecting the load limit of an instance.
E.g., besides of memory and CPU, there are also bandwidth and transfer
latency, etc. Moreover, the instance with the lowest load ceiling can
easily become a performance bottleneck for the whole system. For
memory and CPU resources, we can solve this by using elastic scaling
and allocating more resources to the instance. Our elastic scaling strat-
egy prioritizes vertical scaling, i.e., increasing the resources allocated
to workers. For transfer latency, adjacent upstream and downstream
instances can be placed on the same worker through the task scheduler
at the time of application deployment, avoiding the situation where
two instances that are far apart communicate. For bandwidth resources,
we did not intend to scale them in our design, as bandwidth resources
will not become a bottleneck for system throughput in most cases.
In our experiments, we provide sufficient bandwidth and ensure that
applications do not over consume the bandwidth of the cluster.

3. Aj-stream overview

In this section, we first give an overview of Aj-Stream, then present
the algorithms for key frequency distribution prediction, key selec-
tion and migration. Finally, the feedback-based migration and scaling
strategies are discussed.

3.1. System architecture

A fast and efficient stream join system is expected to support
high throughput, low latency and memory cost, and scalability while
ensuring the completeness of the results. We design an adaptive stream
joining system, Aj-Stream, based on the join-biclique model. It has a
key frequency distribution prediction model and a feedback module,
and has been implemented on Apache Storm.

As shown in Fig. 6, Aj-Stream consists of a prediction module, a
feedback module and a stream join calculation module. The prediction
module is composed of a predictor and a task scheduler, where the
predictor takes on the task of predicting the frequency distribution of
keys and sends the prediction results to the task scheduler. The task
scheduler divides each key 𝑘 into 𝑁𝑘 sub-streams according to the
prediction-based grouping algorithm. As fluctuations of data stream can

be seen as a moving average model with a persistent decline after a
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peak is detected, the allocation of tuples alone cannot solve the load
skewness problem.

Therefore, we design a feedback module to balance the system load
by scaling the operators elastically based on the feedback information.
In the feedback module, we set up two monitors monitoring the input
stream rate and performance information of Joiner-R and Joiner-S
operators respectively, and feed this information into the resource
scheduler. The resource scheduler adjusts the resources of Joiner-R
and Joiner-S based on the feedback information and the elastic scaling
algorithm. Note that the scaling of the system can be divided into
two scalability options: horizontal and vertical. Horizontal implies an
increase in the number of workers, and vertical implies an increase in
the resources allocated to workers [21]. Our elastic scaling strategy
prioritizes vertical scaling, aiming to increase the resources allocated
to workers. While both horizontal and vertical scaling approaches are
supported, we emphasize the advantages of vertical scaling due to the
significant migration and aggregation costs associated with frequent
adjustments to operator parallelism.

Aj-Stream is built on top of the Apache Storm architecture. Storm
consists of a Nimbus subsystem, a Zookeeper subsystem and a Super-
visor subsystem. As the master node in the cluster, Nimbus creates
stream applications based on the logic of code and deploys each stream
application to an appropriate Supervisor subsystem with the help of
scheduling algorithm. The configurations in storm.yaml (the configura-
tion file of Storm platform) can be customized to specify the employed
scheduling strategy. As the components in a Storm cluster do not store
the state information, we store the state information in Zookeeper to
ensure the stability of the cluster. Zookeeper is also responsible for
the communication between Nimbus subsystems and Supervisor sub-
systems in the cluster for cluster coordination. The Supervisor node can
start and stop worker processes as needed. In this way, the operators
assigned to this node are managed.

3.2. Prediction model

To support a better load balance on dynamic data, predicting the
data stream distribution for the next time window in advance can be
an effective method. We can adjust the grouping strategy for the next
time window based on the prediction to enable a faster response to data
fluctuations.

In our study, we primarily utilize time-based windows to partition
the incoming data stream for predictive purposes. This approach in-
volves dividing the continuous data stream into discrete time intervals,
allowing us to analyze and predict trends within specific temporal
contexts. By opting for time-based windows, we aim to capture the tem-
poral dependencies inherent in the data, which is crucial for accurate
predictions in dynamic environments.

Regarding the specific behavior of our windows, we adopt a sliding
window strategy. This strategy entails overlapping consecutive win-
dows, enabling us to continuously process and predict based on the
most recent data while retaining historical context. This sliding window
mechanism offers a balance between capturing short-term patterns
and considering longer-term trends, enhancing the robustness of our
predictive model.

The determination of window size, advance and offset is a mul-
tifaceted decision-making process. Based on the characteristics of the
Aj-Stream and Didi datasets, the size of the time window used in this
paper is 10 min, and also, since the prediction is a real-time prediction,
we set the offset to zero and the advance to 10 min.

The serial characteristic of data streams and the strong autocorre-
lation of the vast majority of real-world datasets allow us to analyze
and model stream data using time series processing models such as
Autoregressive Integrated Moving Average (ARIMA) [22]. In this paper,
we use a Gated Recurrent Unit (GRU)-based seq2seq model [23] to
model and predict data stream for the following reasons: (1) Recurrent
142

Neural Networks (RNN) [24] is an algorithm that extends the ARIMA
Fig. 7. Relationship between gates in GRU.

model and can easily identify relevant exogenous features. (2) GRU is
an expansion of RNN. It uses gate structure regulation to overcome
the effects of short-term memory. (3) seq2seq has no input/output
constraints and is more flexible than simply RNN prediction. Note that
in seq2seq, each decoding of the decoder is used as input for the next
decoding, and errors at each step of the training process will accumu-
late, making the training result error increasingly large. To solve this
problem, we have added an attention mechanism to the model. In this
paper, the encoder and decoder use the same structure (i.e. GRU), and
the update can be represented by Eq. (5). In our prediction model, the
encoding vector is first computed by the encoder and then injected into
the decoder for the prediction result.

ℎ𝑡 =
(

1 − 𝑧𝑡
)

∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̂𝑡 (5)

Given input streams 𝑅 = (𝑟1, 𝑟2, 𝑟3,… , 𝑟𝑇 ) in 𝑇 historical time
windows, the data streams in each window are counted and generate
a key frequency distribution. The set of key frequency distributions for
the full time window can then be expressed as  = (1,2,3,… ,𝑇 )
for each time window. Let the set of keys be 𝐾 = (𝑘1, 𝑘2, 𝑘3,… , 𝑘𝑛), then
he key frequency distribution for the tth time window can be expressed
s 𝑡 = (𝑓𝑘1 , 𝑓𝑘2 , 𝑓𝑘3 ,… , 𝑓𝑘𝑛 ), 𝑡 ∈ [1, 𝑇 ]. The 𝑓𝑘𝑖 represents the frequency
f occurrence of 𝑖th key. We use 𝑡 as the input data to the prediction
odel, and the update process on the encoder side can be represented

y the following Eqs. (6)–(8), where ℎ𝑡 is the hidden state transferred
rom the previous GRU node, 𝑟𝑡 is the reset gate, 𝑧𝑡 is the update gate,
nd ℎ̂𝑡 is the hidden state after the reset. The relationship between gates
n GRU is shown in Fig. 7.

The prediction process of this prediction model is that the state
ector is first computed by the encoder and then injected into the
ecoder to obtain the prediction result.

The update process at the encoder side is simply the use of reset
ates and update gates to control the output hidden state or candidate
idden state, using the key frequency distribution of the 𝑡th time
indow as the input data in the update process.

𝑡 = 𝜎
(

𝑊𝑟
[

ℎ𝑡−1, 𝑥𝑡
])

(6)

𝑧𝑡 = 𝜎
(

𝑊𝑧
[

ℎ𝑡−1, 𝑥𝑡
])

(7)

ℎ̂𝑡 = 𝑡𝑎𝑛ℎ
(

𝑊ℎ̂
[

𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡
])

(8)

The decoder utilizes the attention mechanism to compute a context
vector 𝑎𝑡, representing a weighted average of the input sequence, based
on the current state 𝑐𝑡 and all the hidden states of the encoder. The
computation of 𝑎𝑡 is shown in Eqs. (9)–(11), where 𝛼𝑡𝑖 is the attention
weight and e is the attention score.

𝑎𝑡 =
𝑇
∑

𝛼𝑡𝑖ℎ𝑖. (9)

𝑖=1
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𝛼𝑡𝑖 =
𝑒𝑥𝑝(𝑒𝑡𝑖)

∑𝑇
𝑘=1 𝑒𝑥𝑝(𝑒𝑡𝑘)

. (10)

𝑡𝑖 = 𝑣𝑇 𝑡𝑎𝑛ℎ(𝑤ℎℎ𝑖 +𝑤𝑐𝑐𝑡). (11)

The decoder stitches together the state vector 𝑐𝑡 and the context
ector 𝑎𝑡 to get the prediction result for the current time window
hrough the linear and softmax layers. Finally, the prediction result of
he current time window is taken as the output and used as the input
f the next time window 𝑦𝑡+1.

.3. Candidate key selection

In streaming applications, a heavy hitter can cause a skewed work-
oad for downstream instances, so effectively dividing out the headers
f data is essential to a dynamic grouping strategy. In the solution
xplored in this paper, we first identify the head of data based on the
rediction results and add them to the candidate key set , then we
se a different scheme for them than for the tails when assigning them
o downstream instances. An instance load threshold is set to control
he instance load and determine the number of these heavy hitters
i.e. the size of H, ||). We divide the grouping strategy into two parts:
andidate key selection and prediction-based grouping. The first part is
escribed in Algorithm 1.

Algorithm 1 Candidate key selection algorithm
Input: candidate key set , prediction result  , routing table 𝐴, work-

load threshold 𝜃𝐿, memory size of the instance 𝑀𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, size of each
tuple 𝑚𝑡𝑢𝑝𝑙𝑒

Output: updated candidate key set 
1: Get the candidate key set for the last time window 
2: Get the predicted results for next time window  < 𝑘𝑒𝑦, 𝑟𝑎𝑡𝑖𝑜 >
3: Get the current routing table 𝐴
4: Sort  in descending order of 𝑟𝑎𝑡𝑖𝑜
5: Calculate the size of candidate key set || by Eq. (12)
6: if the routing table 𝐴 is empty then
7: for each key 𝑘 in the predicted results  do
8: Add the top || keys of  to 
9: end for
0: else if the size of routing table 𝐴 is less than || then
1: for each key 𝑘 in the predicted results  do
2: if 𝑘 does not exist in the routing table 𝐴 then

13: Add 𝑘 to candidate key set 
4: end if
5: end for
6: else
7: return candidate key set 
8: end if
9: return candidate key set 

(a) Based on the definition of workload in Section 2.3, we define the
pper load limit for each instance as a threshold 𝜃𝐿 ∈ (0, 1). Its default

value is 0.8 in this paper. User can modify this threshold. Based on
the instance load threshold 𝜃𝐿, the size of tuple head || is calculated
according to Eq. (12), where 𝑀𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 is the memory size of the instance
eing set in the configuration file, and 𝑚𝑡𝑢𝑝𝑙𝑒 denotes the size of each
uple. The tuple size can be obtained from the pre-processor in this
aper.

| =
𝜃𝐿𝑀𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

𝑚𝑡𝑢𝑝𝑙𝑒
(12)

(b) Obtain the predicted frequency distribution 𝑡+1 for the next
time window after the start of t-th time window. When the routing
table is empty, the top || keys in the predicted results are selected
and added to the candidate key set . When the routing table is not
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empty and the number of entries in the routing table is less than ||,
the predicted results will be checked in turn, and the keys that do not
exist in the routing table will be selected as candidate keys and added
to the set of candidate keys. There is also a case where the number of
routing table entries is greater than or equal to ||, in which case the
algorithm will skip the candidate key update process for the current
time window and wait for the next time window to receive new results
of prediction.

3.4. Prediction based grouping

Inevitably, in the allocation process, some keys may have a pre-
dicted volume greater than the threshold we set. This case requires
subsequent adjustment. Our proposal is to split these heavy hitters
using the idea of Partial Key grouping (PKG) [25].

After the candidate keys have been selected, the grouping scheduler
needs to split and add all the keys to the candidate key set in the
routing table. In the prediction-based grouping algorithm as described
in Algorithm 2, we split the number of candidate keys and use the first-
fit method to assign each key to the appropriate destination. When the
system is running, for the keys that are not in the routing table, the
scheduler uses a hash function to assign their tuples. For each key 𝑘 in
the routing table, the scheduler distributes its tuples to the destinations
using a round-robin method. The main steps of the prediction-based
grouping algorithm are described as follows.

(a) Create a routing table. In Eq. (13), |𝐼𝑅| represents the number of
joiner-R, 𝑡+1 (𝑘) is the predicted value of the frequency of key 𝑘 in the
prediction result. First, the number of splits 𝑁𝑘 for each candidate key 𝑘
s determined according to computing the integer part of the product of
𝐼𝑅| and 𝑡+1 (𝑘). The destination instance of each split is determined
sing the first-fit method and added to the routing table, while 𝑘 is
emoved from the set of candidate keys. Note that in the routing table,
ach entry consists of a key and multiple destinations.

𝑘 = ⌊|𝐼𝑅| ∗ 𝑡+1 (𝑘)⌋ (13)

(b) Update the routing table. As the frequency prediction result of
ach key may change, we need to update the number of splits of heavy
itters. Use Eq. (13) to calculate the new splits number of the key 𝑘
nd record it as 𝑁 ′

𝑘. The difference 𝛥𝑁𝑘 between the numbers of splits
efore and after the update is produced by Eq. (14). Thereafter, we can
djust the entries of heavy hitters in the routing table according to the
ifference 𝛥𝑁𝑘. For example, if 𝛥𝑁𝑘 = −1, we only need to delete one
estination from the routing table for key 𝑘. If 𝛥𝑁𝑘 = 2, we use the
irst-fit method to select two suitable destinations for the split of key k
nd add them to the routing table. If 𝛥𝑁𝑘 = 0, no need to update the
ntries for key 𝑘 in the routing table.

𝑁𝑘 = 𝑁 ′
𝑘 −𝑁𝑘 (14)

When a decision is made to reassign the ownership of a particular
ey to a different processing unit due to load balancing or skewness
itigation, the system identifies this change. The state associated with

he key is captured and serialized. This includes all relevant data, meta-
ata, and any intermediate results associated with the key’s processing.
he serialized state is securely transmitted from the previous key owner
o the new key owner. This communication ensures that the state is
ransferred intact and without corruption.

The transfer process is designed to be atomic and consistent. This
eans that either the entire state is successfully transferred and in-

egrated into the new owner’s processing context, or the transfer is
ot executed at all. This prevents data inconsistencies or partial states.
nce the state is received by the new key owner, a verification and
alidation process is performed to ensure the integrity and accuracy of
he transferred state. This involves checksums, validation checks, and
econciliation with any updates that might have occurred during the
ransfer. In case of any issues during the transfer or validation process,

rollback mechanism is in place to revert to the previous state and
nsure that the system remains in a consistent state.
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Algorithm 2 Prediction-based grouping algorithm
Input: candidate key set , prediction result  , routing table 𝐴
Output: routing table 𝐴
1: Get 𝐼𝑅, the instance set in Stream 𝑅
2: Get |𝐼𝑅|, the number of instances in 𝐼𝑅
3: for key 𝑘 in routing table 𝐴 do
4: Get 𝑁𝑘, the size of 𝐴(𝑘).𝐷𝑒𝑠𝑡
5: Update the number of splits for 𝑘 to 𝑁 ′

𝑘 by Eq. (13)
6: 𝛥𝑁𝑘 ← 𝑁 ′

𝑘 −𝑁𝑘
7: if 𝛥𝑁𝑘 > 0 then
8: for each instance 𝑑 in instance set 𝐼𝑅 and 𝛥𝑁𝑘 ≠ 0 do
9: if 𝑑 does not exist in 𝐴(𝑘).𝐷𝑒𝑠𝑡 and a split of 𝑘 is suitable

for instance 𝑑 then
10: Add 𝑑 into 𝐴(𝑘).𝐷𝑒𝑠𝑡
11: 𝛥𝑁𝑘 ← 𝛥𝑁𝑘 − 1
12: end if
13: end for
14: else if 𝛥𝑁𝑘 < 0 then
15: Delete |𝛥𝑁𝑘| destinations from 𝐴(𝑘).𝐷𝑒𝑠𝑡
16: else
17: Break
18: end if
19: if 𝐴(𝑘).𝐷𝑒𝑠𝑡 is empty then
20: Delete 𝑘 and 𝐷𝑒𝑠𝑡 from routing table 𝐴
21: end if
22: end for
23: for key 𝑘 in candidate key set  do
24: Initialize an empty instance set 𝐷𝑒𝑠𝑡
25: Add 𝑘 and 𝐷𝑒𝑠𝑡 into routing table 𝐴
26: Delete 𝑘 from candidate key set 
27: Calculate the number of splits 𝑁𝑘 by Eq. (13)
28: 𝑛 ← 𝑁𝑘
29: for each instance 𝑑 in instance set 𝐼𝑅 and 𝑛 ≠ 0 do
30: if 𝑑 does not exist in 𝐴(𝑘).𝐷𝑒𝑠𝑡 and a split of 𝑘 is suitable for

instance 𝑑 then
31: Add instance 𝑑 into 𝐴(𝑘).𝐷𝑒𝑠𝑡
32: 𝑛 ← 𝑛 − 1
33: end if
34: end for
35: end for
36: return the routing table 𝐴

3.5. Feedback based scaling

Considerable prior studies have investigated dynamic grouping
strategies to improve the adaptation to skewed stream data. However,
dynamic grouping strategies often incur heavy migration costs. A dy-
namic grouping strategy alone is not a good solution to load skewness
under dynamic data. To reduce the migration costs and improve the
system adaptability, we use an elastic scaling method in the feedback
scheduler, in addition to the periodic adjustment of the stream grouping
strategy approach. In the feedback scheduler, we set up two monitoring
components to collect performance and load information of the streams
and feed it into the elastic scaling component. A heuristic algorithm is
proposed to compute a resource allocation scheme in conjunction with
a stream grouping strategy to solve the dynamic load skewing prob-
lem. The basic idea is working out an approximate optimal resource
allocation scheme based on the feedback received.

We identify the lag instances in the stream join application based
on the processing latency information 𝐷𝑒𝑙𝑎𝑦𝑅 = {𝑑𝑟1, 𝑑𝑟2, 𝑑𝑟3,… , 𝑑𝑟𝑁}
in the feedback message. The processing latency represents the time
taken by the instance from the time it receives a unique tuple to the
time the tuple is processed, which gives a clear indication of the lag
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of the instance. When the average processing latency 𝑑𝑟𝑖 of 𝐼𝑅𝑖
satisfies
Eq. (15), 𝐼𝑅𝑖
can be considered as a lagging instance, otherwise it is a

normal instance. Then we get the resource allocation for each instance
𝑅𝐴𝑡𝑅 = {𝑟𝑎𝑟1, 𝑟𝑎𝑟2, 𝑟𝑎𝑟3,… , 𝑟𝑎𝑟𝑁} and calculate the available resources
by Eq. (16).

In this paper we use (𝑐, 𝑚) to denote resources, where 𝑐 ∈ (0, 1) is
defined as the percentage of allocated CPU resources to the total CPU,
and 𝑚 as the amount of memory resources in megabytes.

𝑑𝑟𝑖 ≥
𝜃
𝑁

𝑁
∑

𝑖=1
𝑑𝑟𝑖 (15)

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑡𝑜𝑡𝑎𝑙 −
𝑁
∑

𝑖=1
𝑟𝑎𝑟𝑖 (16)

The data input rate 𝑑𝑖𝑟𝑟𝑖 for each instance can be obtained from
he feedback information. The resource allocation plan 𝑅𝐴𝑝𝑅 = {𝛥𝑟𝑎𝑟1,
𝑟𝑎𝑟2, 𝛥𝑟𝑎𝑟3,… , 𝛥𝑟𝑎𝑟𝑁} is determined by Eq. (17), where (𝑐0, 𝑚0) denotes

the preset resource allocation unit. To avoid a too-fast resource adjust-
ment, we set a threshold 𝜆 that will be used as a coefficient in the
calculation when the coefficient of (𝑐0, 𝑚0) exceeds the threshold. We
set an appropriate value for 𝜆 in our experiments. The elastic scaling
algorithm will release a portion of instance’s resources in each round
of resource allocation to avoid resource waste. Specifically, when the
data input rate of an instance is less than the average, the calculated
resource allocation plan is negative and the corresponding instance
will release the corresponding resources when it receives a resource
scaling command. This feedback based scaling algorithm is described
in Algorithm 3.

In this algorithm, the input data includes all the resources in-
formation of the cluster, allocation plan, feedback and 𝐷𝐴𝐺 graph
information. The output data is the resource allocation plan. In line 1,
a collection of resource allocation plans is first initialized. In lines 2–4,
the algorithm identifies the instances with high latency in the 𝐷𝐴𝐺
graph, which are saved in the variable , and calculates the current
available resources, which are saved in 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒. In lines 5–11, the
computation of the resource allocation plan is performed without 
being empty, It first obtains the input stream rate, then calculates the
resource allocation 𝛥𝑟𝑎𝑟𝑖 for each instance in  based on the input
stream rate, and finally adds 𝛥𝑟𝑎𝑟𝑖 to the resource allocation plan.

𝛥𝑟𝑎𝑟𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆(𝑐0, 𝑚0) 𝜆 < 𝜆∗

𝜆∗(𝑐0, 𝑚0) 𝜆 ≥ 𝜆∗

,

where 𝜆 =
𝑁𝑑𝑖𝑟𝑟𝑖 −

∑𝑁
𝑖=1 𝑑𝑖𝑟𝑟𝑖

∑𝑁
𝑖=1 𝑑𝑖𝑟𝑟𝑖

(17)

4. Performance evaluation

We implement Aj-Stream on Storm platform using Kafka, a dis-
tributed messaging system [26], as the message queue for stream
applications. Extensive experiments are conducted on a large-scale
real-world dataset. In this section, we first discuss the experimental
environment settings, and then analyze the prediction accuracy and
system performance.

To implement the prediction module, we need a data stream pre-
processing component and a prediction component external to the
stream join system. Data stream from the source goes through Apache
Kafka to the stream join system, then is sent to the data preprocessing
part for analysis. The data stream preprocessing component examines
data distribution within the current time window and forwards this
information to the prediction component, which subsequently stores
the predictions in the database. In the feedback module, a monitoring
component tracks and stores system info in the database, oversees

resource monitoring of joining instances, processes data for resource
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Algorithm 3 Feedback Based Scaling Algorithm
Input: total resource 𝑡𝑜𝑡𝑎𝑙, allocation scheme 𝑅𝐴𝑡𝑅, feedback message

𝐹𝑏𝑚 , DAG.
Output: allocation plan 𝑅𝐴𝑝𝑅.
1: 𝑅𝐴𝑝𝑅 ← Initialize an empty set
2: if 𝑡𝑜𝑡𝑎𝑙 is not empty then
3:  ← Identify the lagging instance in DAG by Eq. (15)
4: 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ← Calculate the available resource by Eq. (16)
5: if  is not empty then
6: for i in 1 to N do
7: 𝑑𝑖𝑟𝑟𝑖 ← data input rate in 𝐼𝑅𝑖
8: 𝛥𝑟𝑎𝑟𝑖 ← Calculate the resource allocation plan by Eq. (17)
9: 𝑅𝐴𝑝𝑅.add(𝛥𝑟𝑎𝑟𝑖)

10: end for
11: else
12: return 𝑅𝐴𝑝𝑅
13: end if
14: return 𝑅𝐴𝑝𝑅
15: end if
16: return 𝑅𝐴𝑝𝑅

Fig. 8. Experimental topology.

scaling, and utilizes Storm’s Metrics API to capture status information
of the stream join system. It also stores ID-info pairs in the database.

Aj-Stream employs Redis, a high-performance in-memory database,
as both the streaming application data source and intermediate storage.
Redis boasts speed, supports various data types, offers robust data
manipulation commands, and provides persistence. Its distributed func-
tionality enhances data processing and concurrency, making it suitable
for distributed streaming applications. To utilize Redis in streaming
applications, Storm offers RedisBolt for writing Tuple data to Redis and
RedisLookupBolt for querying and sending data downstream as Tuples.

4.1. Experimental environment

We deploy Aj-Stream and BiStream on a cluster of the Ali Cloud
computing platform. As shown in Fig. 8, the cluster consists of 1 Nim-
bus node and 27 Supervisor nodes, each of which is equipped with a
two-core 2.67 GHz Intel Xeon CPU, 2 GB RAM and a 100 Mbps Ethernet
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Table 1
Software configuration of Aj-Stream.

Software Version

OS Ubuntu 20.04.1 64 bit
Storm Apache-Storm-2.1.0
JDK JDK 1.8 64 bit
Python Python 2.7.2
Zookeeper Zookeeper-3.4.14
Kafka Kafka-2.3.0
Redis Redis-6.0.5

interface card. The same software settings are configured on each node,
including Java JDK 1.8 64 bit on top of Ubuntu 20.04.1 64 bit and
Storm 2.1.0. In addition, Zookeeper 3.4.14 runs on 3 machines for
cluster management and Kafka 2.3.0 on 2 machines as the message
queue for the applications. Details are shown in Table 1 .

In our experiments, we use both the real-world data and synthetic
data to validate the performance and use Kafka to control the data rates
for real input fluctuation simulation. The real-world dataset includes
all the Didi online taxi tracks (3 billion) and order data (7 million)
in city Chengdu, China during November 2016. The track data is a
combination of track records of each taxi, recorded periodically and
independently by each taxi, and driver ID, order ID, location infor-
mation and a timestamp. The order data is a collection of user order
information, including order ID, timestamp and location information.
We use the location information as the join key in our experiments, and
the join operation is to output all the taxis near the passenger’s location
and all the passengers near the taxi’s location. Moreover, we add a data
generation source to our Aj-Stream topology to generate synthetic data
using real-world data for arbitrary domain sizes with varying skewness.
In the synthetic data, the tuples follow Zipf distributions controlled by
the skewness parameter −𝑧, and the scale is controlled by the parameter
𝑠𝑖𝑧𝑒. We employ the −𝑓𝑙𝑢𝑐 parameter to control the rate fluctuation
of data stream that is input into the data source component. This
fluctuation adheres to the range specified by −𝑓𝑙𝑢𝑐. Since the data is
not uniformly distributed in the data stream, the data sub-streams of
two neighboring time windows in the data stream may have different
skewness. Therefore, the two parameters −𝑧 and −𝑓𝑙𝑢𝑐 can be used to
simulate the skewness and stream rate fluctuation of real-world data.

In addition, the experiments are built upon a sliding window strat-
egy that is the core of the evaluation methodology. This strategy
involves overlapping consecutive windows, allowing for a continu-
ous processing flow and facilitating forecasts based on the most cur-
rent data, while retaining the historical context. The sliding window
mechanism effectively manages the capture of short-term patterns and
considers longer-term trends. This balance considerably enhances the
robustness and reliability of our forecasting model, making it highly
suitable for handling dynamic data streams and evolving patterns.

4.2. Throughput and latency

Throughput and latency are two critical performance metrics for
DSPSs. Average throughput is a metric of the system’s processing
power (i.e. the speed of processing), defined as the rate at which all
join instances in the system generate results. The higher the average
throughput, the better the processing performance. Latency represents
the length of time it takes for a tuple to be processed in the join
instance, defined as the processing time for the tuple to arrive at a join
instance until it completes its computation. The lower the latency, the
better the processing capability. For real-time stream applications, it is
essential to provide millisecond level latency within acceptable limits,
while providing the highest possible throughput at the same time. A
monitor is designed to monitor the system throughput and latency.
When the system is running, the metric values are captured every 60 s.

We first characterize the overall system throughput and latency per-
formance of Aj-Stream, then compare the gain achieved with BiStream
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Fig. 9. Throughput variation of BiStream, BiStream-ContRand and Aj-Stream with 24
join instances.

Fig. 10. Latency variation of BiStream, BiStream-ContRand and Aj-Stream with 24 join
instances.

Fig. 11. Throughput variation of BiStream, BiStream-ContRand and Aj-Stream with 48
oin instances.
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Fig. 12. Latency variation of BiStream, BiStream-ContRand and Aj-Stream with 48 join
instances.

Fig. 13. Average throughput of BiStream, BiStream-ContRand and Aj-Stream with
different data skewnesses.

Fig. 14. Average latency of BiStream, BiStream-ContRand and Aj-Stream with different
data skewnesses.
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Fig. 15. Throughput variation of BiStream, BiStream-ContRand and Aj-Stream with
dynamic data.

Fig. 16. Latency variation of BiStream, BiStream-ContRand and Aj-Stream with
dynamic data.

and BiStream-ContRand. For the parameter settings, data stream rate
is 1000 tuples/s, number of join instances is 24 and 48 (equal num-
bers of joiner-R and joiner-S), data size is 30G, application runs for
60 min when metric data is recorded. Figs. 9–12 show the variation
of throughput and latency over time by BiStream, BiStream-ContRand
and Aj-Stream running with a join instance number of 24 (Figs. 9
and 10) and with a join instance number of 48 (Figs. 11 and 12),
respectively. In Figs. 9 and 11, the throughput of all methods improve
when computational resources are increased. Besides, it can be seen
that the throughput of Aj-Stream is higher than those of BiStream and
ContRand under both resource conditions. It is due to the fact that
under the prediction based grouping algorithm and feedback based
scaling algorithm, the workloads of the individual parallel join in-
stances of Aj-Stream are more balanced, resulting in better throughput
performance. At the same time, as shown in Figs. 10 and 12, the
increase in computational resources leads to an increase in latency.
This is because increasing the number of instances increases the risk of
imbalance, and the greater the skewness of data, the more significant
the impact of this risk. In summary, our Aj-Stream produces excellent
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performance, compared with the other two schemes.
To verify the performance of Aj-Stream under different data skew-
nesses, we compare the throughput and latency of BiStream, BiStream-
ContRand and Aj-Stream on synthetic datasets. For the parameter
settings, data stream rate is 1000 tuples/s, number of join instances
is 24, and data size is 30 G. The application runs for 60 min with the
same size and different skewness of data. To obtain stable throughput
and latency, we use data during 31 to 60 min and calculate the average
value. Figs. 13 and 14 show the average throughput and latency of
the stream joining application under different skewness and BiStream
without the ContRand scheme are significantly affected when the data
skewness becomes higher. The BiStream-ContRand shows some degra-
dation in both the throughput and latency under higher data skewness.
Our scheme performs well under all the data skewness.

In addition, we use the −𝑓𝑙𝑢𝑐 parameter to control the rate of
the data stream to vary dynamically within a range every 10 min
to simulate real-world data streams and to verify the throughput and
latency performance when processing dynamic data. For the parameter
settings, initial rate is 1000 tuples/s, number of join instances is 24
and Didi dataset is used as the input. The application runs for 60 min
on the same scaled data, and the metric data is recorded every 60 s.
As shown in Figs. 15 and 16, our scheme produces good performance
under various skewness and is impacted less on both throughput and
latency with the scaling algorithm.

4.3. Load-balancing capability

Since only random routing strategies are available in BiStream with-
out the ContRand solution, in our experiments to verify load balancing
performance we only compare with the BiStream-ContRand with a
mixed routing strategy built in. We use the degree of load imbalance
defined in Eq. (2) to measure the load balancing performance. To verify
the load balancing capability under dynamic data, we first set the num-
ber of join instances to 24, the data stream rate to 1000 tuples/s and
use the Didi dataset, then compare the workload imbalance between Aj-
Stream and BiStream-ContRand under different dataset sizes. The data
stream rate is set to 1000 tuples/s and a subset of Didi dataset with size
of 70G is used as input to compare the workload imbalance between
Aj-Stream and BiStream-ContRand with different numbers of instances.
The variation of load imbalance for BiStream-ContRand in Fig. 17
indicates that the smaller the dataset size is, the more imbalanced
the system tends to be. This is because the system is more prone to
producing imbalance allocation with a smaller scale of key set. Whereas
Aj-Stream significantly improves the balancing performance at different
data sizes. Fig. 18 shows that the workload imbalance is also related
to the number of join instances. With additional instances, there is a
significant increase in load imbalance for BiStream-ContRand, while Aj-
Stream has the better load balancing performance with both instance
numbers.

4.4. Prediction model accuracy

To evaluate the accuracy of the prediction model in predicting key
frequency distributions, we used the Didi dataset as a data stream with
a prediction interval of 1 s in our experiments. First, a monitor is
implemented to record the frequency variations of key 𝑘 in the input
stream. Then, the prediction module is used to generate the predictions
and fit them to the actual values. The predicted and true values for
20 min of input are collected consecutively and subjected to error
analysis. Figs. 19 and 20 show the fit and error analysis of the predicted
and true values, respectively. As can be seen in Fig. 19, our prediction
method can accurately predict the trend of key frequency changes
most of the time. Meanwhile, in Fig. 20, by using the mean absolute
error(MAE) to evaluate the predicted values, our prediction method

gives good prediction accuracy.
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Fig. 17. Real-time degree of load imbalance on different sized datasets.

Fig. 18. Real-time degree of load imbalance under different numbers of join instance.

Fig. 19. True value and predicted value of data stream rate.
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Fig. 20. Mean absolute error of predicted value.

Table 2
Comparison of Aj-Stream and related work.

Parameter Related work Aj-Stream

[12] [27] [11] [22] [28]

Performance modeling ✓ ✓ ✓ ✓ ✓ ✓

Optimization of stream join ✓ ✓ ✓ × × ✓

Skewed data ✓ ✓ × × × ✓

Prediction × × × × × ✓

Elasticity × × × × × ✓

5. Related work

In this section, we review two broad categories of related works:
stream grouping strategies and elastic scaling strategies, as well as com-
paring our work with the closely related papers as shown in Table 2.

5.1. Stream grouping strategy

Among the variety of partitioning strategies used in existing DSPSs,
shuffle grouping and key grouping are the two most commonly used.
Shuffle grouping strategy distributes data to all downstream instances
in a polling manner. As the data are divided randomly, this strategy
does not retain the data states and can only be used to process stateless
data. Key grouping uses hash function to route data to a specific
downstream instance, so it can ensure the data with the same key be
distributed to the same downstream instance. This strategy works best
when the frequency of each key is not of much difference. However,
the real-world data are often skewed. There are always some keys
that are more popular than the others. When processing this type of
data, this key grouping strategy will cause some downstream instances
overloaded, leading to back pressure and performance bottleneck.

To solve the above problems, many works proposed grouping strate-
gies based on key partitioning. The difficulty of this type of strategies
is how to divide the stream into sub-streams. Nasir et al. proposed
PKG [25] and a ‘‘Two Choices’’ strategy [29] to allow hot key selection
for multiple instances on the basis of PKG. However, these two methods
only consider load balancing. When the application topology is large
(e.g., the number of workers exceeds 50), there still exists a load imbal-
ance problem. Chen et al. proposed a Popularity-aware heterogeneous
DSPS [30]. It uses an ingenious "coin experiment" method to determine
potential hot keys. This work defines a key as a hot key if the number
of coin flips that result in a 1 is greater than a threshold. This method
can quickly adapt to the key frequency changes of highly dynamic data
streams. Aslam et al. implemented a pre-filtering-based stream division
method in Pre-filtering [31]. It uses pre-filtering to identify hot keys
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and to assign multiple instances to them. However, since the filtering
is performed in real time, it may increase the data processing delay.

Because a DSPS analyzes and calculates the data that enters the
system at any time (that is, operate on the data in units of tuples), it
makes the system very sensitive to the real-time distribution of data
streams. When a large amount of data streams enter DSPS, even small
rate changes can impact the system performance. The number of tuples
of a key in a real-time data stream is likely to increase or decrease
rapidly in a short period of time. In this case, the static stream grouping
strategy often does not work well. If the data partitioning strategy is not
adjusted dynamically, once the key frequency is changed in the next
time period, there may be a sudden load increase in a downstream
instance, making it a performance bottleneck. At the same time, a
single key-based partitioning method cannot handle the load balancing
problem well. Meanwhile, this method increases the cost of aggregation
by destroying the operational semantics of key-based grouping.

More work focused on the mixed strategy of stream grouping.
This method uses the key-based partitioning strategy while considering
other factors that cause load imbalance. It is possible to compensate
for the shortcomings of key segmentation methods to varying degrees
while taking full advantage of the flexible character of key partitioning.

Katsipoulakis et al. [32] considered both the load and the aggre-
gation cost, and minimized the load tilt with a lower aggregation cost.
Pacaci et al. [33] proposed a mixed stream partition strategy. The head
of the data stream is controlled by a routing table. Window semantics
are introduced to keep the size of routing table small, and a hash
function is used to divide the tail.

Fang et al. [34] designed a framework that combines load balancing
and fault tolerance mechanisms at the same time to achieve load
balancing and fault tolerance under the premise of low computing
costs. They also proposed a hybrid strategy [35], which considers the
migration cost on the basis of key partitioning. Even if a workload vari-
ance becomes greater, the application can be rebalanced at a smaller
migration cost.

Although mixed strategies can dynamically adjust the routing of
keys, most hybrid strategies require high migration costs for dynamic
adjustment, and a certain amount of memory for the routing table used
for migration. Therefore, how to solve the dynamic stream grouping
problem at lower memory and migration costs is a major challenge.

Some work used machine learning or reinforcement learning meth-
ods to optimize data stream grouping. A common approach is to rely
on deep learning to distinguish high-frequency and low-frequency keys,
and then use the idea of PKG for stream division.

The DKG [36] proposed by Rivetti et al. learns stream distribution
and uses the learned knowledge to construct a global map for key
grouping. However, the learning algorithm used in that method is
offline and not suitable for real-time scenarios.

Liu et al. in SP-Partitioner [37] rely on learning a batch of data to
predict the data distribution of the next batch, and generate a reference
table based on the prediction results to guide the data distribution of
the next batch. Abdelhamid et al. proposed a data grouping method
PartLy based on reinforcement learning [28]. This method can provide
effective load balancing data partitions and reduce counting overhead.

5.2. Elastic scaling strategy

In a data stream computing system, elastic scaling strategy is also a
key to lowering the system latency and improving throughput [38–44].
With the demand for real-time data processing, distributed real-time
computing platforms such as Samza have been proposed. They are
highly scalable and fault-tolerant, and meet the need for low latency
and high throughput. However, due to the lack of online elastic re-
source management mechanisms, they all rely on manual changes
to configuration files for resource scheduling. In order to maintain
high availability and performance at runtime, many papers proposed
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different optimization schemes in terms of computation or memory, etc.
Jyoti et al. [45] proposed a heterogeneity-aware efficient elastic
scaling strategy based on cloud platform. It uses a horizontal hybrid
auto-scaling approach to perform scaling operations in both the local
and global dimensions. Both the overall resource utilization and the
performance of each operator are monitored. It takes into account the
structure of the streaming platform and the characteristics of the cloud
environment when making scaling decisions, allowing better allocation
of resources across dynamic data streams and effectively improving
system performance compared to a single dimensional scaling strategy.

In [39], this paper introduces a method for elastic stateful stream
processing in Storm, which can dynamically adjust the topology struc-
ture and resource allocation according to the changes of data streams.
The method utilizes Storm’s distributed cache mechanism and state
checkpoint mechanism to achieve lossless state migration and recov-
ery. The method also proposes an elastic control strategy based on
load prediction and cost–benefit analysis, which can reduce resource
consumption while meeting the quality of service requirements.

In [46], This paper proposes an adaptive topology decomposition
method, which can optimize the topology structure and task allocation
according to the characteristics and load conditions of Storm appli-
cations. The method first divides the operators in Storm applications
into different groups by cluster analysis, and deploys each group as a
sub-topology on a cluster node. Then, the method dynamically adjusts
the connection relationship between sub-topologies by monitoring the
data transmission volume and delay between them, and performs load
balancing according to the network bandwidth between nodes. Finally,
the method evaluates the parallelism and processing capacity of oper-
ators within sub-topologies, and reduces resource consumption while
ensuring quality of service requirements.

All the above elastic scaling strategy methods have certain ad-
vantages in DSPSs, but the elastic scaling strategy and strategies for
grouping and scheduling is rarely considered. Moreover, these articles
are lacking in their consideration of the impact of heterogeneous cloud
resources.

6. Conclusions and future work

The problem of load balancing is a key issue in achieving low system
latency and high system throughput for stream computing systems. In
the face of data streams with rapidly fluctuating frequency distributions
and rates, most solutions in current work cannot quickly and adaptively
adjust the system configuration to a well-balanced state. This paper
proposes an adaptive stream join system, Aj-Stream, to address this
problem. It focuses on how to keep the load balancing across parallel
instances in a hash stream join systems under dynamic data streams.

We develop a prediction model to predict the key frequency distri-
bution of data streams. Two algorithms are proposed: the prediction-
based dynamic grouping algorithm and the feedback-based resource
elasticity scaling algorithm. The former is used for grouping strategy
adjustment before data stream fluctuation. It ensures that the system
maintains low workload imbalance under dynamic data streams; the
latter tracks system operator performance and available resources to
adjust system resource allocation and to improve resource utiliza-
tion. Experimental results on Apache Storm platform show that Aj-
Stream improves the system throughput and latency performance and
significantly reduces system imbalance compared to existing solutions.

Our future work will be focusing on:
(1) Deploying Aj-Stream in large heterogeneous clusters to test the

system latency and throughput by processing real dynamic data streams
and comparing with existing stream join systems in a heterogeneous
cluster environment.

(2) Using reinforcement learning methods to support decision mak-
ing and to investigate more effective ways of solving the load balancing

problem in big data streaming computing systems.
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