
Future Generation Computer Systems 26 (2010) 753–768
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Cooperative and decentralized workflow scheduling in global grids
Mustafizur Rahman ∗, Rajiv Ranjan, Rajkumar Buyya
Grid Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Parkville, VIC 3010,
Australia

a r t i c l e i n f o

Article history:
Received 12 August 2008
Received in revised form
26 March 2009
Accepted 13 July 2009
Available online 24 July 2009

Keywords:
Workflow scheduling
Decentralized coordination
Peer-to-peer systems
Global grids

a b s t r a c t

Existing Grid scheduling systems, such as e-Science workflow brokers operate in tandem but lack the
notion of cooperation mechanism that can lead to efficient application schedules across distributed
resources. Lack of coordination exacerbates the utilization of various resources including computing
cycles and network bandwidth. Moreover, current brokering systems have evolved around centralized
client/server or hierarchical models. The responsibilities of the key functionalities such as resource
discovery are delegated to the centralized server machines. Centralized models have well-known
drawbacks regarding scalability, single point of failure, and network congestion at links leading to the
server.
To overcome these problems, this paper proposes a novel approach for decentralized and cooperative

workflow scheduling in a dynamic and distributed Grid resource sharing environment. The participants in
the system, such as the workflow brokers, resources, and users who belong to multiple control domains,
work together to enable a single cooperative resource sharing environment. The proposed approach
derives from a Distributed Hash Table (DHT) based d-dimensional logical index space with regard to
resource discovery, coordination and overall system decentralization. The DHT-based d-dimensional
index space serves as a blackboard system, where distributed participants can post and search complex
coordination objects that regulate system wide scheduling decision making. With the implementation
of our approach, not only the performance bottlenecks are likely to be eliminated but also efficient
scheduling with enhanced scalability will be achieved. We evaluate and prove the feasibility of our
approach through an extensive trace-driven simulation. In order to show the performance of the proposed
approach against non-cooperative scheduling approach, we conduct experiment for different sizes of
workflow. The results show that our scheduling technique can reduce the makespan up to 25% and
demonstrates improved load balancing capability. We also compare the performance of the proposed
approach against a centralized coordination technique and show that our approach is as efficient as the
centralized technique with respect to achieving coordinated schedules.

Crown Copyright© 2009 Published by Elsevier B.V. All rights reserved.
l

1. Introduction

Distributed resource sharing systems such as Grids [1] and
PlanetLabs [2] often exhibit the classical economics paradox called
‘‘tragedy of commons’’ during the period of high demand. Study
undertaken in [3], confirms that PlanetLab environment often
experiences the problem of flash crowd where a growing number
of users simultaneously request ‘‘slices’’ on arbitrarily selected
nodes to host their experiments on various scientific applications
such as e-Science workflows. Such bursty behaviour of users often
lead to poor system performance. Under the current PlanetLab
resource management setting, nodes schedule the user requests
locally, without any provision to discover the usage status of

∗ Corresponding author. Tel.: +61 3 8344 1355; fax: +61 3 9348 1184.
E-mail addresses:mmrahman@csse.unimelb.edu.au (M. Rahman),

rranjan@csse.unimelb.edu.au (R. Ranjan), raj@csse.unimelb.edu.au (R. Buyya).

0167-739X/$ – see front matter Crown Copyright© 2009 Published by Elsevier B.V. A
doi:10.1016/j.future.2009.07.002
other nodes in the system or coordinate the local resource usage
across the system. Similarly, users have no means to coordinate
their resource demands with other users in the system leading to
over-utilization of particular set of nodes. Further, the users who
cannot successfully finish their experiments due to competing or
conflicting requests in the system tend to retry their experiments
which further aggravate the situation.
Workflow scheduling is a process of finding the efficient

mapping of tasks in a workflow to the suitable resources so that
the execution can be completed with the satisfaction of objective
functions such as execution time minimization as specified by
Grid users. Therefore, the efficiency of the workflow scheduling
algorithm directly affects the performance of the system with
respect to delivered Quality of Service (QoS), utilization, and
system performance. Majority of existing approaches to workflow
scheduling are non-coordinated (refer to Section 2). Workflow
brokers perform scheduling related activities independent of
the other brokers in the system. They directly submit their

l rights reserved.

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:mmrahman@csse.unimelb.edu.au
mailto:rranjan@csse.unimelb.edu.au
mailto:raj@csse.unimelb.edu.au
http://dx.doi.org/10.1016/j.future.2009.07.002

754 M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768
applications to the underlying resources without taking into
account the current load, priorities, utilization scenarios of other
application level schedulers. Clearly, this leads to over-utilization
or a bottleneck on some valuable resources while leaving others
largely underutilized. Furthermore, these brokers do not have a
coordinationmechanism and this exacerbates the load sharing and
utilization problems of distributed resources.
Another major drawback associated with the current workflow

scheduling approaches is that the existing workflow brokers
rely on the centralized or semi-centralized hierarchical resource
information services such as MDS-2,3,4 [4]. Current studies have
shown that [5] existing centralized model for information services
do not scale well as the number of users, brokers and resource
providers increase in the system. Hence in case, the centralized
links leading to these services fail, then no broker in the system
can undertake scheduling related activities due to the lack of up-
to-date resource information.
Further, Grids are heterogeneous and dynamic environments

consisting of computing, storage and network resources with
different capability and availability. In [6], it is shown that the
dynamic scheduling algorithms based on heuristics adapt to the
changing resource conditions of Grids by performing just-in-time
scheduling (generating schedules that map the tasks dynamically).
But the workflow brokers, running these dynamic algorithms, still
need to be coordinated in order to avoid any conflict and generate
schedule globally.
To overcome the limitations of existing approaches, we pro-

pose a fully decentralized and cooperative workflow scheduling
approach based on DHT-based coordination space [7,8] that pro-
vides a global virtual shared space. This space can be concurrently
and associatively accessed by all participants in the system and the
access is independent of the actual physical or topological proxim-
ity of the objects or hosts. NewgenerationDHT-based routing algo-
rithms [9,10] form the basis for organizing the coordination space.
In the proposed approach, workflow brokers post their resource
demands by injecting a Resource Claim object into the DHT-based
decentralized coordination space, while resource providers update
the resource information by injecting a Resource Ticket object.
These objects are mapped to the DHT-based coordination space

using a spatial hashing technique [11], the details of which is
given in Section 3.3.3. Once a resource ticket matches with one
or more resource claims, the coordination space sends notification
messages to the resource claimers such that it does not lead to
the overloading of the concerned resource ticket issuer. Thus,
this mechanism prevents the workflow brokers from overloading
the same resource. DHT-based coordination space is managed
by a software service (a component of Grid workflow broker
service) called coordination service. It undertakes activities related
to decentralized load balancing, coordination space management
etc. With the implementation of our approach, not only the
performance bottlenecks are likely to be eliminated but also
efficient schedulingwith enhanced scalabilitywill be achieved. Our
main contributions in this paper are as follows:
(i) a novel decentralized and cooperative workflow scheduling
approach.

(ii) a methodology for utilizing the DHT-based d-dimensional
spatial index for managing complex coordination objects and
decentralizing the system.

(iii) a decentralized resource provisioning algorithm for mapping
the tasks to the resources by the DHT-based coordination
space.

(iv) a comprehensive simulation-based study of the proposed
scheduling approach and analyze different performance
metrics to demonstrate that our approach is scalable in
terms of schedulingmessage complexity andmakespan of the
workflow.
(v) an evaluation of the proposed scheduling techniquemeasured
along two performance dimensions (load balancing and
coordination efficiency) as compared to non-cooperative
scheduling and centralized coordination techniques.

The rest of this paper is organized as follows. In the next section,
we describe the related work that are focused on decentralized
and cooperative workflow scheduling. Section 3 provides a brief
description of the systemmodels used in our scheduling approach.
In Section 4, we present the details of our proposed algorithms
for task scheduling, resource provisioning and coordination.
Simulation setups, and the findings of the experiments performed
are analyzed, compared and discussed in Section 5. Finally, we
conclude the paper with the direction for future work in Section 6.

2. Related work

The main focus of this section is to compare the novelty of the
proposed work with respect to the existing systems. We classify
the related research in two main areas:

2.1. Scheduling infrastructure

With the increasing interest in Grid workflows, many Grid
workflow systems such as Pegasus [12], Triana [13], Taverna [14],
Condor DAGMan [15], Kepler [16], SwinDeW-G [17], Gridbus [18]
and Askalon [19] have been developed in recent years. Among
these systems, in terms of workflow scheduling infrastructure,
SwinDeW-G and Triana utilize decentralized P2P-based technique.
However, the P2P communication in SwinDeW-G and Triana is
implemented by JXTA protocol, which uses a broadcast technique.
In this work, we use a DHT (such as Chord) based P2P system
for handling resource discovery and scheduling coordination. The
employment of DHT gives the system the ability to perform
deterministic discovery of resources and produce controllable
number of messages in comparison to using JXTA.
Condor system [20] implements a matchmaking algorithm

that utilizes classified advertisements (ClassAds) mechanism
for mapping user’s applications to suitable server machines.
In this system, server machines advertise their capability and
constraints to central Matchmaker by encapsulating the resource
characteristics (such as CPU type and speed, memory, load)
in ticket ClassAds. Accordingly, users express the resource
preferences by submitting a claim ClassAds to the Matchmaker.
Following that, the Matchmaker executes as generic matchmaking
algorithm to create ticket to claim matches incorporating the
constraints and preferences. In this paper, following the same
terminologies, ticket is used for updating a Grid resources’
information to the decentralized coordination space and claim is
used for referring to the user’s lookup requests. Additionally, our
approach applies a fully decentralized and distributed algorithm
for mapping tickets to claims, which guarantees high scalability
and negates single point of failure in large scale federation of Grids.

2.2. Coordination mechanism

In [18], a workflow enactment engine, with a just-in-time
scheduling system using tuple space, is proposed to manage
the execution of scientific workflow applications. In this system,
every task has its own scheduler called Task Manager (TM),
which implements a scheduling algorithm and handles the
processing of tasks. The TMs are controlled by a Workflow
Coordinator (WC). Besides, an event-driven mechanism with
subscription–notification methods supported by the tuple space
model is used to control and manage scheduling activities. In this
work, although the task managers are working in a distributed

M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768 755
fashion, they communicate with each other through the tuple
space which is implemented based on a client–server-based
centralized technology. Further, the WC in this system does not
communicate with other WCs, managing workflow applications
in the Grid. In contrast to this work, we propose a completely
decentralized workflow coordinator based on a scalable P2P
network model.
Yao et al. [21] have extended the aforementioned architec-

ture with an additive Reinforcement Learning Agent (RLA) to
perform the Decentralized Dynamic Workflow Scheduling using
Reinforcement Learning (DDWS-RL) algorithm. DDWS-RL-enabled
TMs query information from the RLA and make decision on re-
source selection at the time of task execution. Thus, RLA is used in
the tuple space to facilitate the scheduling algorithm to bemore ef-
ficient. However, this approach also involves the same architecture
as the other approach, stated above, which is based on centralized
client–server model with respect to resource discovery and coor-
dination space management. In contrast, with our approach there
is no central component that can prove to be a bottleneck.
In [22], Chen et al. proposed a policy-based coordination

mechanism to manage the services provided by the peers in the
Federated Service Providing (FSP) system. Peers in FSP system
share the computation resources for offering domain specific
services. When a peer receives a service request that cannot be
processed by itself (because either it is busy or the service type
is different), it tries to find other peer in the system capable of
processing the request. In order to regulate the interactions among
the peers, they have proposed a recruiting protocol and a policy-
driven architecture is also introduced to control the decision
making process of each peer. On the other hand, all the peers in our
Grid-federation system offer similar services and the coordination
among the peers ismanaged by utilizing a DHT-based coordination
service.

3. Systemmodels

3.1. Grid model

The proposed workflow scheduling algorithm utilizes the Grid-
Federation [23] model with regard to resource organization and
Grid networking. Grid-Federation aggregates distributed resource
brokering and allocation services as part of a cooperative resource
sharing environment. Table 1 shows the notations for Resource,
Workflow and Index models.

Definition 3.1 (Grid-Federation). The Grid-Federation, GF =

{R1, R2, . . . , Rn}, consists of a number of sites, n, with each site
contributing its resource to the federation. Every site in the
federation has its own resource description Ri which contains
the definition of the resource that it is willing to contribute. Ri,
can include information about the CPU architecture, number of
processors, memory size, secondary storage size, operating system
type, etc.

In this work, Ri = (pi, xi, µi, øi), which includes the number
of processors pi, processor architecture xi, their speed µi, and
installed operating system type øi.
Resource brokering, indexing and allocation in Grid-Federation

are facilitated by a Resource Management System (RMS) known
as Grid-Federation Agent (GFA). Fig. 1 shows an example Grid-
Federation resource sharing model consisting of Internet-wide
distributed parallel resources. Every contributing sitemaintains its
own GFA service. GFA service is composed of 3 software entities:
Grid Resource Manager (GRM), Local Resource Management
System (LRMS) andDistributed InformationManager (DIM) or Grid
Peer.
Table 1
Notations: Resource, workflow, and index models.

Symbol Meaning

Resource

r Number of resources or GFAs in the Grid system
ri ith Resource in the system
Ri Configuration of the ith resource in the system.
Gi ith GFA in the system
tp Number of task executions per processor
xi Processor architecture for resource at GFA i.
pi Number of processors for resource at GFA i.
φi Operating system type for resource at GFA i.
µi Processor-speed at GFA i.

Workflow

t Number of tasks in a workflow.
T Total number of tasks in the system.
e Total number of inter-task dependencies in a workflow.
l Number of levels in a workflow.
w Width of a fork-join workflow.
α Number of tasks in a level that can be executed

concurrently.
Wi,j,k ith workflow from the jth user of kth GFA in the system.
Txi,j,k xth task of the workflow,Wi,j,k .
µxi,j,k Processor-speed required by the task Txi,j,k .
pxi,j,k Number of processors required by the task Txi,j,k .
xxi,j,k Processor architecture required by the task Txi,j,k .
φxi,j,k Operating system required by the task Txi,j,k .

Index

rxi,j,k A claim posted for task Txi,j,k .
ui A ticket issued by the ith GFA/broker.
dim Dimensionality or number of attributes in the Cartesian

space.
fmin Minimum division level of d-dimensional index tree.

TheGRMcomponent of GFA exports a Grid site to the federation
and is responsible for coordinating federation wide application
scheduling and resource allocation. The GRM is responsible for
scheduling locally submitted jobs (workflows) in the federation.
Further, it also manages the execution of remote jobs (workflows)
in conjunction with the local resource management system. The
LRMS software module can be realized using systems such as
PBS [24] and SGE [25]. Additionally, LRMS performs other activities
for facilitating federation wide job submission and migration
process such as answering the GRM queries related to local
job queue length, expected response time, and current resource
utilization status.
The Grid peer module in conjunction with publish/subscribe

indexing service performs tasks related to decentralized resource
lookups and updates. A Grid Peer service generates two basic
types of objects with respect to coordinated resource brokering:
(i) a claim, is an object sent by a broker service to the P2P
space for locating the resources that match the user’s application
requirements and (ii) a ticket, is an update object sent by a Grid
site mentioning about the underlying resource conditions. Since, a
Grid resource is identified by more than one attribute, a claim or
ticket is always d-dimensional. Further, both of these queries can
specify different kinds of constraints on the attribute values. If a
query specifies a fixed value for each attribute then it is referred
to as a d-dimensional Point Query (DPQ). However, if the query
specifies a range of values for the attributes, then it is referred to
as a d-Dimensional Window Query (DWQ) or a d-Dimensional Range
Query (DRQ) [26]. Thus the Grid peer component of a GFA service is
responsible for ticket publication, claim subscription, and overlay
management processes.

3.2. Application model

In this work, we consider the Scientific workflow applications
as the case study for the proposed scheduling approach. A Scientific

756 M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768
Fig. 1. Grid-Federation.
workflow application can modeled as a Directed Acyclic Graph
(DAG),where the tasks in theworkflow are represented as nodes in
the graph and the dependencies among the tasks are represented
as the directed arcs among the nodes. In general, a task in a
workflow is a set of instructions that can be executed on a single
processing element of a computing resource [27]. Examples of such
workflow applications are [28–32].

Definition 3.2 (Scientific Workflows). Scientific workflows de-
scribe a series of large number of structured activities and compu-
tations that arise in scientific problem solving. Usually, scientific
workflows are data or computation intensive and the activities in
the workflow have data or control dependencies among them.

Example 3.1. Let Vi,j,k be the finite set of tasks {T1, T2, . . . ,
Tx, . . . , Ty, Tm } for the ith submitted workflow from the jth user
of kth workflow broker (GFA) and Ei,j,k be the set of dependencies
of the form {Txi,j,k , Tyi,j,k} where, Txi,j,k is the parent task of Tyi,j,k .
Thus, the ith submittedworkflow from the jth user of kthworkflow
broker in the system can be represented as,

Wi,j,k = {Vi,j,k, Ei,j,k}.

In a workflow, we call a task that does not have any parent task,
an entry task and a task that does not have any child task, an exit
task. We also assume that a child task cannot be executed until all
of its parent tasks are completed. At any time of scheduling, the
task that has all of its parent tasks finished, is called a ‘ready’ task.

3.3. Coordination space model

In this section, we first describe the communication, coordina-
tion and indexingmodels that are utilized to facilitate the P2P coor-
dination space. Then,we present the composition of objects, access
primitives that form the basis for coordinating application sched-
ules among distributed GFAs/brokers.

3.3.1. Layered design of the coordination service
We design and architect the coordination service based on

a layered approach. The architecture consists of three layers:
the Application layer, Core Services layer and Connectivity layer. Grid
Services such as workflow brokers work at the Application layer
and insert objects (claims/tickets) via the Core Services layer. In
the context of a GFA, the GRM software module operates at the
Application layer.
We use the Coordination service as a sub-layer of the Core

Services layer. The Coordination service accepts the application
objects such as claims/tickets. These objects encapsulate coordi-
nation logic, which in this case is the resource provisioning logic.
Fig. 2. Layered design of the coordination model.

These objects are managed by the coordination service. The calls
between the Coordination service and Resource Discovery service
are made through the standard publish/subscribe technique. The
Resource Discovery service is responsible for managing the logical
index space and communicating with the Connectivity layer. The
calls between Core Services layer and Connectivity layer are made
through standard DHT primitives such as put(), get() that are de-
fined in the P2P CommonApplication Programming Interface spec-
ification [33]. As shown in Fig. 2, Core Services layer is managed by
the Grid Peer module of a GFA service.
The Connectivity layer is responsible for undertaking key-Based

routing in the DHT space such as Chord, CAN, Pastry etc. In
this paper, for simulation, we model the Chord substrate at the
Connectivity layer. Chord hashes the peers and objects (such as
fileIds, logical indices, etc) to the circular identifier space and the
average lookup complexity is O(log r) steps with high probability.
Each peer in the Chord network is required to maintain routing
table state of O(log r) other peers, where r is the total number of
Grid peers in the system.

M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768 757
Fig. 3. Resource allocation and application scheduling coordination across Grid
sites.

3.3.2. Coordination objects
This section gives details about the resource claim and ticket

objects that form the basis for enabling decentralized coordination
mechanism among the brokers/GFAs in the Grid-Federation
system. These coordination objects include Resource Claim and
Resource Ticket.
Every GFA in the federation posts its resource ticket through

the local Coordination service. A resource ticket object ui or update
query consists of a resource description Ri, for a resource i.

Example 3.2 (Resource Ticket). Total-Processors = 100 &&
Processor-Arch = Pentium && Processor-Speed = 2 GHz && Op-
erating System= Linux && Utilization= 0.80.

A resource claim or lookup object encapsulates the resource
configuration requirements of a task in the workflow submitted
by the users. In this work, we focus on the workflows for
which the requirements are confined to a computational Grid or
PlanetLab resources. Users submit their workflow application’s
resource requirements to the local GFA. The corresponding GFA
service is responsible for searching the suitable resources in the
federated system. A GFA aggregates the characteristics of a task
including the number of processors, processor architecture, and
installed operating system with constraint on maximum speed,
and resource utilization into a resource claim object, ri,j,k.

Example 3.3 (Resource claim). Total-Processors≥70&&Processor-
Arch = Pentium && 2 GHz ≤ Processor-Speed ≤ 5GHz &&
Operating System= Solaris && 0.0≤ Utilization≤ 0.90.

The GRM module of a GFA passes the resource ticket and
claim object to the coordination service operating at the Core
services layer. Recall that, the Core Services layer is managed by
the Grid peer module, which interacts with the DHT-based overlay
network. The operation between Grid peermodule and DHT-based
overlay is transparent to the GRM. In other words, a GRM is not
aware of how the Grid peer module is routing, searching, and
matching the objects in the system. It is the responsibility of a
Grid peer module to implement specific communication and data
Table 2
Claims stored with the coordination service at time τ .

Time Claim ID µxi,j,k pxi,j,k xxi,j,k φxi,j,k Rank

200 Claim 1 >800 1 Intel Linux 0.2
350 Claim 2 >1200 1 Intel Linux 0.3
500 Claim 3 >700 1 Sparc Solaris 0.1
700 Claim 4 >1500 1 Intel Windows XP 0.4

Table 3
Ticket published to the coordination service at time τ .

Time GFA ID µi pi pi avail xi φi

900 GFA-8 1400 3 2 Intel Linux

organization methods, which can provide desired functionality
to the Application layer services such as a GRM. In order to
efficiently route, search, and match the d-dimensional claim and
ticket objects, the Grid peer module embeds a logical spatial data-
structure over the DHT overlay space. More details on this spatial
data-structure is given in Section 3.3.3.
The resource ticket and claim objects are spatially hashed to an

index cell i in the d-dimensional coordination space. Similarly, the
coordination services of the resource sites in theGrid network hash
themselves into this coordination space using the overlay hashing
function (SHA-1 in the case of Chord and Pastry). In Fig. 3, resource
claim objects issued by site p and l are mapped to the index cell i
and these claim objects are currently hashed to the site s. Thus site
s is responsible for coordinating the resource sharing among all the
resource claims that are mapped to the cell i. Subsequently, site u
issues a resource ticket (shown as small dark circles in Fig. 3) that
falls under a region of the space currently required by users at site
p and l. In this case, the coordination service of site s has to decide,
which of the sites (i.e. either l or p or both) will be allowed to claim
the ticket issued by site u. This load-distribution decision is based
on the fact that it should not lead to over-provisioning of resources
at site u.
In Table 2, we show an example list of claim objects that are

stored with a coordination service at time t = 900 s. Essentially,
the claims in the list arrived at a time ≤900 and are waiting for
a suitable ticket object that can meet its resource configuration
requirements. While Table 3 depicts the list of ticket objects that
have arrived at t = 900 s. Following the ticket arrival event,
the coordination service undertakes a procedure that divides this
ticket object among the list of claims. Based on the resource
attribute specification and availability, only Claim 1 and Claim 2
matches the ticket’s resource configuration. As specified in the
ticket object, there are currently 2 processors are availablewith the
GFA 8, which is equal to the sum of processors required by Claim 1
and 2 (i.e., 2). Hence in this case the coordination service, based
on the priority of the task (rank), first notifies the GFA that has
posted Claim 2 and follows it with the GFA responsible for Claim 1.
However, Claim 3 and 4 have to wait for the arrival of tickets that
can match their required resource configuration.
Once a resource ticket matches with one or more resource

claims, a coordination service sends notification messages to the
resource claimers such that it does not lead to the overloading
of the concerned resource ticket issuer. Thus, this mechanism
prevents the workflow brokers from overloading the same
resource. As a result, the problem of conflicting schedules is
overcome.
This paper focuses on scheduling of workflow application,

which consists of a collection of tasks. Our approach supports
allocation of different tasks in a workflow across multiple sites
in the Grid-Federation (as shown in Fig. 4), if the total number
of processors needed for executing all the tasks in a workflow
are not available within a single Grid site. As discussed earlier,

758 M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768
Fig. 4. Multi-Site allocation of workflow tasks.

in our application model, each task needs availability of only one
processorwithin a Grid site (refer to Section 3.2). Thus the resource
claim object for a task encapsulates request for a single processor,
i.e. the requirement of the number of processors available is 1
(see Table 2). In case, at any given instance of time, if no resource
ticket is able to offer single processor as requested by a resource
claim object then the claim object is stored in the coordination
spaced until one of the Grid site publishes a resource ticket offering
one available processor. Grid sites publish resource tickets after a
certain interval of time, which we model as the exponential time
distribution in our experiments.
In addition, our cooperative and decentralized scheduling

approach can also support mapping of Message Passing Interface
(MPI) type of applications [34] that require multiple processors
based on parallelism and granularity of the application. These
processors can be acquired from a single Grid site or multiple Grid
sites depending on resource availability across the environment.
A resource claim object for a MPI application can encapsulate
request for multiple processors, which can be matched against
one resource ticket (single-site allocation) or multiple resource
tickets (multi-site allocation). Hence, if the resource claim cannot
bematched to any resource ticket as its resource requirement, such
as the number of processors is too large to be satisfied by one Grid
site then multiple tickets can be aggregated to meet the processor
requirement, requested by the claim object. However, multi-site
scheduling of a MPI application that has run time communication
dependency requires handling of additional complexities related
to co-allocation, and synchronization [34]. Supporting different
aspects of scheduling for this kind of applications in decentralized
anddistributedmulti-site environments is beyond the scope of this
work as we focus on workflow applications in this paper.

3.3.3. D-dimensional coordination object mapping and routing
1-dimensional hashing, provided by current implementation

of DHTs are insufficient to manage complex objects such as
resource tickets and claims. DHTs generally hash a given unique
value/identifier (e.g. a file name) to a 1-dimensional DHT key space
and hence they cannot support mapping and lookups for complex
objects. Management of these objects whose extents lie in the d-
dimensional space requires embedding of a logical index structure
over the 1-dimensional DHT key space [35].
We now describe the features of the P2P-based spatial index

that we utilize for mapping the d-dimensional claim and ticket
objects over the DHT space. Providing the background and details
on this topic is beyond the scope of this paper; here we only give
a high level view. The spatial index that we consider in this work,
assigns regions of space to the Grid peers in the Grid-Federation
Claim Z

0

hyperplane
Diagonal Grid peer v

Grid peer s

Claim Y

Claim X

Ticket N

Claim W

Grid peer u

Control point C Ticket M

Chord Ring2 dimensional Cordination Space

2 – 1
t

Grid peer t

A

DC

O

B

Fig. 5. Spatial resource claims {W , X, Y , Z}, cell control points {A, B, C,D}, point
resource tickets {M,N} and some of the spacial hashings (dotted lines) to the Chord,
i.e., the d-dimensional coordinate values of a cell’s control point is used as the DHT
key and hashed on to the Chord ring. For this figure, fmin = 2, dim = 2.

system. If a Grid peer is assigned a region of d-dimensional space,
then it is responsible for handling query computation associated
with the claim and ticket objects that intersect this region, as
well as storing the objects that are associated with the region.
Fig. 5 depicts a 2-dimensional Grid resource attribute space for
mapping claim and ticket objects. The attribute space has a grid-
like structure due to its recursive division process. The index
cells, resulted from this process, remain constant throughout the
life of the d-dimensional attribute space and serve as the entry
points for subsequent mapping of claim and ticket objects. The
number of index cells produced at the minimum division level,
fmin is always equal to (fmin)dim, where dim is the dimensionality
of the Cartesian space. These index cells are called base index
cells and they are computed when the Grid peers bootstrap to
the coordination network. Finer details on recursive sub-division
technique can be found in [11]. Every Grid peer in the network has
the basic information about the Cartesian space coordinate values,
dimensions and minimum division level.
Every cell at the fmin level is uniquely identified by its centroid,

termed as a control point. Fig. 5 depicts four control points A, B, C
and D. A DHT hashingmethod such as the Chordmethod is utilized
to hash these control points. So the responsibility for managing an
index cell is associated with a Grid peer in the system. In Fig. 5,
control point C is hashed to the Grid peer t , which is responsible
for managing all claim and ticket objects that are stored with that
control point (Claim X, Z and Ticket M).
For mapping claim objects, the process of mapping index cells

to the Grid peers depends on whether it is a DPQ or DRQ. For
a DPQ type query, the mapping is simple since every point is
mapped to only one cell in the Cartesian space. For a DRQ type
query, mapping is not always singular because a range lookup can
cross more than one cell. To avoid mapping a DRQ to all the cells
that it crosses (which can create many unnecessary duplicates),
a mapping strategy based on diagonal hyperplane [36] of the
Cartesian space is utilized. This mapping involves feeding a DRQ
candidate index cell as an input into a mapping function, Fmap.
This function returns the IDs of index cells to which the given
DRQ should be mapped. Spatial hashing is performed on these IDs
(which returns keys for Chord space) to identify the current Grid
peers responsible for managing the given keys. A Grid peer service
uses the index cell(s) currently assigned to it and a set of known
base index cells obtained at initialization as the candidate index
cells.
Similarly, the mapping process of a ticket also involves the

identification of the cell in the Cartesian space. A ticket is always
associated with a region [36] and all cells that fall fully or partially
within that region will be selected to receive the corresponding
ticket. The calculation of the region is based upon the diagonal
hyperplane of the Cartesian space.

M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768 759
Table 4
Notations: Scheduling and network models.

Symbol Meaning

Scheduling

CD Average coordination delay per task in the system.
RT Average response time per task.
MS Average makespan per workflow.
NT Total number of notifications for all tasks.
HP Average number of routing hops per claim/ticket.
CL Total number of claims in the system.
E(Txi,j,k) Execution time for task Txi,j,k .
D(T(xy)i,j,k) Data transfer time from task Txi,j,k to Tyi,j,k .
Rank(Txi,j,k) Rank value of task Txi,j,k .

Network

λin Total incoming rate a Chord service from the network queue.
λout Outgoing claim/ticket rate at a network queue.
µn Average network queue service rate at a Grid peer.
µr Average query reply rate for index service at GFA.
λint Incoming ticket rate at a index service.
λinc Incoming claim rate at a index service.
λina Incoming query rate at a DHT routing service from the local

index service.
λinindex Incoming index query rate at a index service from its local DHT

routing service.
K Network queue size.

4. Proposed algorithms

In this section, we provide the description of the algorithms
that have been developed for: (i) task scheduling; (ii) resource
provisioning; and (iii) resource coordination. In Table 4, we show
the model parameters related to scheduling and peer-to-peer
coordination network.

4.1. Scheduling and provisioning algorithm

4.1.1. Task scheduling

Algorithm 1 Task Scheduling at GFA
1: PROCEDURE: Initialize Task Priority
2: Input: WorkflowWijk
3: begin
4: for all t ∈ TaskList of workflowWijk
5: Calculate execution time for t according to (1)
6: end for
7: for all e ∈ EdgeList of workflowWijk
8: Calculate data transfer time for e according to (2)
9: end for
10: Run BFS following reverse task dependency and calculate
rank value for each task according to (3) (4)

11: end
12: PROCEDURE: Event User Workflow Submit
13: Input: WorkflowWijk
14: begin
15: Initialize Task Priority (Wijk)
16: Generate Ready TaskList forWijk
17: Submit Ready tasks for execution
18: end
19: PROCEDURE: Event Task Finish Notification
20: Input: Task Txijk
21: begin
22: Update dependency list of each task in TaskList
23: Generate Ready TaskList forWijk
24: Submit Ready tasks for execution
25: end
Here, we discuss about the task scheduling algorithm (refer to
Algorithm 1) that is undertaken by a GFA in the Grid-Federation
system on the arrival of a job or workflow. When a user submits
a workflow application, Wi,j,k to a GFA, the GFA calculates the
priority of each task (line 12–15). Earliest Finish Time (EFT)
heuristic is used to calculate task priorities. This heuristic first
computes the execution time for each task and communication
time between resources of two successive tasks in the workflow
(line 1–9). Let |Txi,j,k |, be the size of task Txi,j,k , submitted to GFAi
and Ri be the local resource with the processing power, |Ri|. Thus
the execution time of the task is defined as,

E(Txi,j,k) =
|Txi,j,k |

|Ri|
. (1)

Let T (xy)i,j,k , be the size of data to be transferred between task
Txi,j,k and Tyi,j,k , submitted to GFAi and Ri be the local resource with
the data processing capacity, Ri. Thus the execution time of the task
is defined as,

D(Txyi,j,k) =
T xyi,j,k
Ri

. (2)

E(Txi,j,k) and D(T(xy)i,j,k) are used to calculate the rank of a task.
For an exit task, the rank value is,

rank(Txi,j,k) = E(Txi,j,k). (3)

Now, the rank values of other tasks in the workflow can be
computed recursively based on Eqs. (1)–(3) and is represented as,

rank(Txi,j,k) = max
Tyi,j,k ∈ succ(Tyi,j,k)

(D(T(xy)i,j,k))

+ rank(Tyi,j,k)+ E(Txi,j,k). (4)

Since a workflow is represented as a DAG, the rank values of
the tasks are calculated (line 10) by traversing the task graph in a
Breadth First Search (BFS) manner in the reverse direction of task
dependencies (i.e. starting from the exit tasks).
Once the rank values are calculated, the GFA generates the

‘ready’ tasks in the TaskList based on the dependency of each task
and put them into the Ready TaskList (line 16). Finally, the GFA
submits the ‘ready’ tasks for execution (line 17). Further, when the
GFA receives a notification message stating task, Txi,j,k has finished
execution, it first updates the dependency lists of the tasks that are
dependent on Txi,j,k (line 19–22); then it computes the ‘ready’ tasks
at that moment and submits them for execution (line 23–24).

4.1.2. Resource provisioning
The details of the decentralized resource provisioning algo-

rithm (refer to Algorithm 2) that is undertaken by the P2P coordi-
nation space is presented here. When a resource claim object, rxijk
arrives at the coordination service, it is added to the existing claim
list, ClaimList by the coordination service (line 16–20). When a re-
source ticket object, ui arrives at the coordination service, the list of
resource claims that overlap ormatchwith the submitted resource
ticket object in the d-dimensional space is computed (line 21–25).
The overlap signifies that the task associated with the given claim
object can be executed on the ticket issuer’s resource subject to its
availability.
In order to get the matches, the coordination service first,

sorts the claim objects in the ClaimList in descending order
according to their rank value (line 4–5); then from this list, the
number of claims that overlap with the ticket are selected to the
ClaimListm (line 6–13). From the ClaimListm, the resource claimers
are selected one by one based on their rank value (higher rank first)
and the resource claimers are notified about the resource ticket
match until the ticket issuer is not over-provisioned (line 25–30).

760 M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768
The coordination procedure can utilize the dynamic resource
parameters such as the number of available processors, queue
length etc. as the over-provision indicator. These over-provision
indicators are encapsulated with the resource ticket object by the
GFAs.

4.2. Coordination algorithm

This section provides the description of the algorithm (refer
to Algorithm 3) for coordinating the interactions among different
entities in the system. When a GFA, Gj intends to submit a task,
Txijk for execution, it compiles a resource claim object, rxijk for
the task and posts it to the P2P coordination space (line 1–6).
On the other hand, the GFA, Gi compiles the resource ticket
object, ui for resource, Ri and publishes it to the P2P coordination
space periodically depending on the ticket injection rate (refer to
Section 5.2.3). Besides, whenever the resource condition changes
such as a task completion event happens, theGFA also posts a ticket
object for the corresponding resource immediately (line 7–12).
Once there is a match between a ticket object, ui and a claim

object, rxijk , the coordination service sends a ticket redemption
request for task, Txijk to ticket issuer GFA, Gi(line 13–17). The
request message contains the information that task, Txijk is
submitted by GFA, Gj. After notifying the resource claimer GFA, the
coordination service unsubscribes the resource claim for that task
from the P2P coordination space.
When the ticket issuer GFA,Gi receives the notification ofmatch

from the coordination service, it sends a Reply to the resource
claimer GFA, Gj. If the task can be executed in the local resource
at that time, it sends a positive reply; otherwise it sends a negative

Algorithm 2 Resource Provisioning at Coordination Space
1: PROCEDURE: Match
2: Input: Ticket ui from Resource Ri
3: begin
4: Obtain rank value of each task in the ClaimList
5: Sort ClaimList in descending order of task’s rank value
6: index← 0
7: ClaimListm ← Φ

8: while ClaimList[index] 6= null do
9: rxijk ← ClaimList[index]
10: if rxijk ∩ ui 6= null then
11: ClaimListm ← ClaimListm ∪ rxijk
12: end if
13: index← index+ 1
14: end
15: return ClaimListm
16: end
17: PROCEDURE: Event Resource Claim Submit
18: Input: Claim rxijk
19: begin
20: ClaimList ← ClaimList ∪ rxijk
21: end
22: PROCEDURE: Event Resource Ticket Submit
23: Input: Ticket ui from Resource Ri
24: begin
25: ClaimListm←Match(ui)
26: index← 0
27: while Ri is not over-provisioned do
28: Send notification of match event to resource claimer
ClaimListm[index]

29: Remove ClaimListm[index]
30: index← index+ 1
31: end
32: end
reply to the claimer GFA (line 18–26). If the Reply is ‘accept’, then
the claimer GFA, Gj transfers the locally submitted task, Txijk to
the ticket issuer GFA and unsubscribes the claim object from the
coordination space to remove duplicates (line 27–32). However,
if the ticket issuer GFA fails to grant access due to local resource
sharing policy (i.e. Reply is ‘reject’), then the claimer GFA reposts
the resource claim object for that task to the coordination space for
future notifications (line 33–34). The interaction between different
entities in the system is depicted in Fig. 6.
An example scenario of the process of task scheduling, resource

provisioning and coordination is illustrated in Fig. 7.

4.3. Time complexity

Let us consider r number of Grid resources. Thus there are r
number of GFAs in the system. Let, each user associated with a
GFA submits a workflow consisting of t number of tasks and e
number of dependencies among the tasks. Then the complexity of
calculating execution times of the tasks in theworkflow isO(t) and
data transfer times for the dependencies in the workflow is O(e).
Further, the complexity of running BFS to compute the rank values
of all the tasks is O(e+ t) and if an adjacency list is used to handle
the dependencies, then the complexity of generating ‘ready’ tasks
is O(e). Therefore, the overall time complexity of Algorithm 1 is
O(e+ t).

Algorithm 3 Resource Coordination
1: PROCEDURE: Event Task Submit
2: Input: Task Tijk
3: begin
4: Encapsulate claim object rxijk for task Txijk
5: Subscribe rxijk to coordination space
6: end
7: PROCEDURE: Event Resource Status Changed
8: Input: Resource Ri
9: begin
10: Encapsulate ticket object ui for resource Ri
11: Publish ui to coordination space
12: end
13: PROCEDURE: Event Ticket Redemption Request
14: Input: Task Txijk , GFA Gi
15: begin
16: Send ticket redemption Request for task Txijk to

GFA Gi; Request message implies Gj
17: end
18: PROCEDURE: Event Ticket Redemption Reply
19: Input: Task Txijk , GFA Gj
20: begin
21: if Txijk can be executed in local resource then
22: Send Reply "accept" to GFA Gj
23: else
24: Send Reply "reject" to GFA Gj
25: endif
26: end
27: PROCEDURE: Event Ticket Redemption Reply Action
28: Input: Task Txijk , GFA Gi, Reply
29: begin
30: if Reply is "accept" then
31: Send Txijk to accepting GFA Gi for execution
32: Unsubscribes the claim object for Txijk
33: else
34: Subscribe claim object rxijk to coordination space
35: endif
36: end

M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768 761
Fig. 6. Interaction between various entities in the system during resource
coordination.

In worst case, ClaimList in the Algorithm 2 can contain r.t
number of tasks. So the complexity of sorting the ClaimList is
O((r.t) log(r.t)) and finding out the total number of matches
is O(r.t). Calculating the number of resource claimers to be
notified about thematches also requires O(r.t) steps in worst case.
Thus the overall complexity of Resource Provisioning algorithm is
O((r.t) log(r.t)).
The time complexity of resource coordination algorithm isO(1).

5. Performance evaluation

5.1. Network model
The network model, considered for the simulation study is

an interconnected network of r Grid peers, where a Grid peer
node (through its Chord routing service) is connected to an
networkmessage queue and an incoming link from the Internet (as
shown in Fig. 8). The networkmessage queue accepts the following
two types of incoming messages from: (i) other Grid peers on
the Chord overlay; and (ii) the local Chord service. The Chord
service receives messages from local publish/subscribe index
service (at rate λina) and the network message queue (at rate
λin). These messages are processed as soon as they arrive at the
Chord routing service. After processing, Chord routing service
queues the messages in the local network message queue at a
rate, λout . We denote the message processing rate of network
message queue by µn. Basically, this queue models the network
latencies that a message encounters as it is transferred from
one Chord routing service to another on the Grid-Federation
overlay. The distributions for the delays (including queuing and
processing) encountered in a network message queue are given by
the M/M/1/K queue steady state probabilities.
We denote the rates for claim and ticket object by λinc and λ

in
t

respectively. The queries are directly sent to the local index service
which first processes them and then forwards them to the local
Chord routing service. Although, we consider a message queue for
the index service but we do not take into account the queuing
and processing delays as it is in microseconds. Index service also
receives messages from the Chord routing service at a rate λinindex.
The index messages include the claims and tickets that map to the
control area currently owned by the Grid peer, and the notification
messages arriving from the network. The local index service sends
message to its Chord service at a rate, λina . The index service sends
notification messages (claim-ticket match message) to its broker
service at a rate, µr .

5.2. Simulation setup

Our simulation infrastructure is created by combining two dis-
crete event simulators namely GridSim [37], and PlanetSim [38].
GridSim offers a concrete base framework for simulation of dif-
ferent kinds of heterogeneous resources, services and application
types. PlanetSim is an event-based overlay network simulator that
can simulate both unstructured and structured overlays.

5.2.1. Workload configuration
We implement a workflow generator that creates various

formats of weighted pseudo-application workflows. The following
input parameters are used to create a workflow.
Fig. 7. Example of the process of task scheduling, resource provisioning, and coordination: (1) user1 submits the workflow,W1 to the local broker, GFA1; (2) GFA1 ranks the
tasks in the workflow using EFT heuristic; (3) GFA1 picks the ready task with higher rank (T1) and posts or subscribes a resource claim to the coordination space; (4) all the
GFAs in the system sends or publish the resource ticket or Resource Update Query (RUQ) to the P2P coordination space; (5) in the P2P coordination space, resource ticket of
GFA3 matches with the resource claim of GFA1; (6) GFA1 receives the notification message of resource matching (GFA3) from the coordination space; (7) GFA1 submits task
T1 to GFA3; (8) T1 is executed in Resource3 and GFA3 notifies GFA1 of task completion; steps 4–8 continues until all the tasks inW1 have been finished execution.

762 M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768
Broker
Service

Chord
Service

Index
Service

Grid peer r

Network

Network

Network

queue

queue

queue

Network
messages

M/M/1/K

Index queue

Internet

Grid peer 1

Grid peer 2

fromother
Grid peers
(Internet)

Fig. 8. Network message queuing model at a Grid peer.
Fig. 9. A fork-join workflow.

- t , the total number of tasks in the workflow.
- l, the total number of levels in the workflow. l represents the
ratio of the total number of tasks to the width (i.e. maximum

number of tasks in a level). Hence, width:w = t−1− l−12
l−1
2
.

In this study, we consider fork-join workflow (refer to Fig. 9)
and an example of such workflow is WIEN2K [28], which is a
quantum chemistry application developed at Vienna University of
Technology. In this kind of workflow, forks of tasks are created and
then joined, such that there can be only one entry task and one exit
task. But the number of tasks at each level depends on total number
of tasks and thewidth of that level,w. We vary the number of tasks
in a workflow over the interval [50, 500] and the size of each task
is randomly generated form a uniform distribution between 50000
MI (Million Instruction) to 500000 MI. Further, we assume that
workflows are computation intensive. Thus, the data dependency
among the tasks in the workflow is negligible.

5.2.2. Network configuration
The experiments run a Chord overlay with 32 bit configuration,

i.e. number of bits utilized to generate node and key ids. The
GFA/broker network size r is fixed to 100. Further, network queue
message processing rate, µn, is fixed at 4000 messages per second
and message queue size, K is fixed at 104.

5.2.3. Resource claim and ticket injection rate
The GFAs inject the ticket objects based on the exponential

inter-arrival time distribution. The injection rate (i.e. RUQ rate),λint ,
for the resource tickets is distributed over the interval [100, 300]
in step of 100 s. Note that, the inter-arrival delay between injecting
the ticket objects is modeled to be the same for all the GFAs
in the system. At the beginning of the simulation, the resource
claims for the entry tasks of all the workflows in the system
are injected. Subsequently, when these tasks finish, then the
resource claims for the successive tasks in theworkfloware posted.
This process is repeated until all the tasks in the workflow are
successfully completed. Spatial extent of both resource claims
and ticket objects lie in a 4-dimensional attribute space. These
attribute dimensions include the number of processors, pi, their
speed,mi, their architecture, xi, and operating system type, φi. The
distribution for these resource dimensions is generated by utilizing
the configuration of resources that are deployed in the various
Grids including NorduGrid, AuverGrid, Grid5000, NaregiGrid, and
SHARCNET.1

5.2.4. Spatial index configuration
In this simulation, the fmin of logical d-dimensional spatial index

is set to 4. The index space resembles a Grid-like structure, where
each index cell is randomly hashed to a Grid peer based on its
control point value. With dim = 4, total of 256 index cells were
produced at the fmin level. Hence in a network that consisted of 100
GFAs, on an average the responsibility of managing 2.5 index cells
were assigned to each GFA.

5.2.5. Resource load indicator
The GFAs/brokers encode the metric ‘‘number of available

processors’’ at time τ with the resource ticket object, ui. A
coordination service utilizes this metric as the indicator for the
current load on a resource, Ri. In other words, a coordination
service stops sending the notifications as the number of processors
available with a ticket issuer approaches zero.

5.3. Results and observations

In our simulation, we vary the resource ticket update (RUQ)
inter-arrival delay over the interval [100, 300] in steps of 100 s
and the size of the workflow from 50 to 500 tasks. The graphs in
Figs. 10 and 11 show the performance of the proposed scheduling
algorithm in terms of scheduling and coordination perspective,
respectively.

5.3.1. Scheduling perspective
As a measurement of the scheduling performance, we use the

following metrics namely, average makespan, average coordination
delay, average response time, and average number of notifications.
The metric coordination delay sums up the latencies for: (i)

resource claim to reach the index cell, (ii) waiting time till a
resource ticket matches with the claim, and (iii) notification delay
fromcoordination service to the relevantGFA. CPU time for a task is
defined as the time, a task takes to actually execute on a processor.
Response time for a task is the delay between the submission time
and the arrival time of execution output. Effectively, the response
time includes the latencies for coordination and the CPU time.
Makespan is measured as the response time of a whole workflow,
which equals the difference between the submission time of the
entry task in the workflow and the output arrival time of the
exit task in that workflow. Note that, these measurements (except

1 http://gwa.ewi.tudelft.nl/.

http://gwa.ewi.tudelft.nl/

M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768 763
(a) Number of tasks vs. Coordination delay. (b) Number of tasks vs. Response time.

(c) Number of tasks vs. Makespan. (d) Number of tasks vs. Number of notifications.

Fig. 10. Effect of workflow size and resource information update interval on different performance metrics (scheduling perspective).
(a) Number of tasks vs. Number of hops. (b) Number of tasks vs. Number of claims.

(c) Number of tasks vs. Number of tickets. (d) Number of tasks vs. Number of messages.

Fig. 11. Effect of workflow size and resource information update interval on different performance metrics (coordination perspective).
makespan) are collected by averaging the values obtained for each
task in the system. The measurement of makespan is taken by
averaging over all the workflows in the system.
Fig. 10(a) presents the results of average coordination delay for

a task with respect to the increase of the number of tasks in a
workflow for different inter-arrival delays of resource information
update (ticket posting frequency). The results show that at higher
inter-arrival delay of tickets, the tasks in a workflow experience
increased coordination delay. This happens due to the reason that
in this case, the resource claim objects of the corresponding tasks
have to wait for longer period of time before they are hit by ticket
objects. As the task processing time (CPU time) is not affected by
the ticket posting frequency, the average response time for a task
shows (refer to Fig. 10(b)) the similar trend as coordination delay
with the changes of resource information update delay. However,
when the number of tasks in the workflow increases, the resource

764 M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768
claim to ticket ratio in the system also increases. This leads to
increased coordination delay for each task due to longer waiting
period. Therefore, the response time of a task in the workflow is
also increased, while the size of workflow increases.
The average makespan of the workflows also shows (see

Fig. 10(c)) similar growth over the number of tasks and ticket
inter-arrival delay as reflected in coordination delay or response
time. Thus in our proposed scheduling environment, if the
resources update their availability information frequently, then the
workflows submitted by the users will be completed early.
The proposed scheduling approach is also highly successful

in reducing the number of negotiations undertaken for the
successful submission of a task (see Fig. 10(d)). In a centralized
scheduling technique, it requires few negotiation iterations to
successfully submit a task, while in this case, the average number
of negotiations (notification messages) per task is about one.

Discussion: Let us consider, r number of Grid resources.
Therefore, there are r number of GFAs in the system. Now if each
user associated with the GFA submits a workflow that consists of
t number of tasks, then the total number of tasks executed in the
system are,
T = r.t. (5)
Let, CDij is the coordination delay of ith task, submitted by jth

GFA in the system. Then the average coordination delay per task is,

CD =

∑
1≤i≤r
1≤j≤t

CDij

r.t
. (6)

The latency for the claim object of a task, to reach the index cell
(refer to Section 3.3.3) and the notification delay for that task are
negligible. Thus the coordination delay of a taskmainly depends on
thewaiting time (in the ClaimList queue) for the claimobject of that
task to be matched with a ticket object. In worst case, the length of
the ClaimList queue equals the total number of tasks in the system.
Therefore, for a fixed resource information update interval (RUQ),
the waiting time of a task depends on T and we can write,
CD = O(r.t)
= O(t). (7)
In Fig. 10(a), for a particular RUQ, it is also evident that the

average coordination delay of a task in the system is bounded by
the number of tasks in the workflow.
The response time of a task is the summation of coordination

delay and execution time of that task. Thus, the average response
time of a task is,
RT = CD+ Avg. CPU time

= CD+
Avg. task size

Avg. processing power of resources

= CD+ c1 ; c1 is a constant
= O(CD)

= O(t); as CD = O(t). (8)
Therefore, the average response time of a task in the system is

also linearly dependent on the number of tasks in that workflow,
which is shown in Fig. 10(b).
The average makespan of a fork-join workflow (see Fig. 9)

consisting of t tasks and l levels, can be represented as,

MS = l.α.RT (9)
where, the value of α depends on the number of tasks in a
level (known as width, w), which can be concurrently executed
depending on the availability of resources and

α =

{1 in best case
w/2 in average cases
w in worst case.
As α = O(t), RT = O(t) and in our experiments, l = 10, so we
can write,

MS = O(t). (10)
Therefore, the average makespan of a fork-join workflow in the

system linearly depends on the number of tasks in that workflow,
which is also depicted in Fig. 10(c).
Moreover, for most of the tasks, the GFAs/brokers in the system

receive 1 notification message from the coordination service. Thus
total number of notifications for all the tasks in the system are,
NT = r.t + β; β is a constant and β ≤ t.
Average number of notifications per task,

NT =
r.t
r.t
+
β

r.t
= 1+ c3; c3 is a constant
= O(1). (11)
This suggests that the negotiation or notification complexity

involvedwith this scheduling technique is O(1), whichwe can also
see in Fig. 10(d).

5.3.2. Coordination perspective
Here, we analyze the performance overhead of the DHT-

based coordination space with regard to facilitating coordinated
scheduling among the distributed GFAs. For that, we measure
the following metrics: (i) number of routing hops, undertaken
per task to map claim and ticket objects to index cells; (ii)
total number of tickets or claims, produced in the system; and (iii)
total number of messages, generated for the successfully mapping
the coordination objects (tickets and claims) and receiving
notifications.
Fig. 11(a) shows the number of routing hops, undertaken at

different ticket injection rates for ticket and claim object across
the GFAs in the system for different sizes of workflow. From the
figure, it is evident that the number of routing hops is not changed
significantly with the increase of the ticket injection rate or the
size of the workflow. Here, the average number of routing hops for
mapping ticket or claim objects is around 3.62.
However, the number of claims, generated during the simula-

tion, remains the same with the variation of ticket inter-arrival
delay (refer to Fig. 11(b)). But it shows a linear growth over the
increase in the number of tasks in the workflow.
In Fig. 11(c) and (d), we show the message overhead, involved

with the inter-arrival delay of ticket objects. Fig. 11(c) depicts the
total number of ticket objects, posted by all GFAs in the system
with respect to increasing workflow size and ticket inter-arrival
delay. In Fig. 11(d), we can see that as ticket inter-arrival delay and
size of the workflow increase, the number of messages generated
during simulation period increases. For instance,when ticket inter-
arrival delay is 100 s and each workflow consists of 500 tasks,
72754 tickets as well as 2904113 messages are generated in the
system. Thus if the GFAs publish tickets at relatively faster rate,
the message overhead of the system increases substantially. But
in this case, average coordination delays per task also decreases
moderately (see Fig. 10(a)). Therefore, the ticket inter-arrival
delay should be chosen in such a way that a balance between
coordination delay and message overhead can exist in the system.
In addition, from Fig. 11(d), it is evident that our system is scalable
since the total number of messages is increased linearly with
respect to the number of tasks in the workflow.

Discussion: In our experiment, the average number of routing
hops per claim or per ticket is,
HP = 3.62; refer to Fig. 11(a)
= 6.64− 3.02
= log 100− c4; c4 is a constant
= O(log r); here, r = 100. (12)

M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768 765
(a) Task waiting time vs. Number of tasks. (b) Makespan vs. Number of tasks.

Fig. 12. Performance comparison of cooperative approach against non-cooperative approach with varying workflow size.
This shows that the number of routing hops for mapping
claim/ticket object is as expected in a Chord-based routing space,
i.e. bounded by the function O(log r).
The GFAs in the system post one claim object for each task in

the workflow. Thus the total number of claim objects generated in
the system is,

CL = r.t
= O(t). (13)

Fig. 11(b) shows that the total number of claims generated in
the system is linearly dependent on the number of tasks in the
workflow.
According to [8], in a federation of r heterogeneous resources,

on average, a task requires HP (see Eq. (12)) messages to be sent
in the network in order to map a task to a resource. Hence given
r workflows each having t tasks, the total number of messages
generated tomap all tasks to resources is bounded byO((r.t) log r).
Further if GFAs posts 1

λint
tickets over a time period, then the

average-case message complexity involved with mapping the
ticket objects to Grid peers in the federation is bounded by the
functionO(E[query paths]. 1

λint
. log r), where E[query paths] denotes

the mean number of disjoint query paths taken to map a ticket
object to a Grid peer. Thus, the total number ofmessages generated
in the system as a result of successfully scheduling all tasks of
workflows in the system is,

O((r.t) log r)+ O
(
E[query paths].

1
λint
. log r

)
.

5.4. Comparison

5.4.1. Cooperative vs. non-cooperative load balancing
In this section, we present the details and simulation results

related to how our proposed decentralized and cooperative
scheduling approach is effective in solving load balancing problem
in mapping workflow tasks to distributed Grid resources. The
effectiveness of the proposed approach as regards to load balancing
is proven by conducting a comparative evaluation against a
traditional non-cooperative workflow task mapping approach.
In non-cooperative approach, workflow brokers operate in an
independent and non-cooperative manner by submitting all the
matched tasks to the first matched Grid resource, suggested by the
decentralized resource discovery service in response to a resource
lookup request. Further, unlike the proposed approach, the non-
cooperative scheduler does not take into account the dynamic
resource conditions (utilization, queue length) and priorities of
other workflow brokers in the environment.
To show the performance gain achieved by applying proposed

approach formappingworkflow tasks in the Grid environment, we
conduct experiments by varying the size of the workflow from 100
to 500 tasks and fixing the RUQ inter-arrival delay at 300 s. As a
measurement of the load balancing efficiency,weuse the following
metrics: (i) average makespan per workflow (see Section 5.3.1),
an efficient workflow task mapping approach should be able
to minimize the makespan for workflow applications across the
environment; (ii) average task waiting time per task in the system;
and (iii) number of task executions per processor for different Grid
resources.
The metric, task waiting time is measured as the total queuing

time of a single task in the system, which is equal to the difference
between the submission time of a task and its execution starting
time on a Grid resource. The number of task executions per
processor, tp, indicates how the task processing load is balanced
across Grid resources in the environment. tp, for a particular Grid
Resource, ri is calculated as,

tp(ri) =
total number of tasks executed by ri

pi
.

Fig. 12(a) presents the results related to the average waiting
time for a taskwith increase inworkflow size for both the coopera-
tive and non-cooperative scheduling approaches. The results show
that if workflow brokers undertake cooperative scheduling, the
tasks across the Grid environment experience relatively smaller
waiting time as compared to non-cooperative scheduling. Further-
more, with the increase in workflow size (number of tasks) across
the system, the performance gain achieved by applying the pro-
posed approach is more evident. For instance, when the number
of tasks in a workflow is 100, the difference between the task
waiting times for cooperative and non-cooperative approaches is
7 s, whereas the difference increases to 142 s when each work-
flow consists of 500 tasks. Accordingly, the average makespan of
the workflow also shows similar improvement for cooperative
scheduling approach in comparison to non-cooperative schedul-
ing (refer to Fig. 12(b)). For example, when workflow size is 100,
makespan is reducedby5%,whereasmakespan is decreasedby25%
when the workflow consists of 500 tasks.
As the non-cooperative scheduling technique applied by the

workflow brokers does not take into account the resource
behaviors (utilization, queue length) that dynamically change
across the environment, resources are often overloaded and the
amount of time, a task has to wait in a queue before being assigned
to a processor increases. This situation is further aggravated as
the workflow size scales. However, the proposed approach is able
to dynamically monitor status of the resources and coordinated
the distribution of load across available resources uniformly in
the Grid environment, thereby minimizing task waiting time and
makespan.
In Fig. 13 we show histograms of the distribution of the number

of task executions per processor for different Grid resources. The

766 M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768
no. of task executions per processor

Mean

2

4

6

8

10

12

14

16

0

18
co

un
t

0 10 20 30 40 50 60 70 80 90 100 110 120 130

no. of task executions per processor

Mean

2

4

6

8

10

12

14

co
un

t

0

16

0 20 40 60 80 100 120 140 160 180 200 220

(a) Cooperative scheduling (workflow size= 500). (b) Non-cooperative scheduling (workflow size= 500).

Fig. 13. Distribution of the number of tasks (per processor) executed by Grid resources.
Table 5
Summary statistics of the number of tasks (per processor) executed by Grid
resources for different workflow size.

Tasks Approach Min Q1 Median Q3 Max

100 Cooperative 0.11 0.90 2.07 3.70 26.75
100 Non-cooperative 0.09 1.06 1.80 3.53 45.75

500 Cooperative 0.25 5.65 7.97 10.78 126.00
500 Non-cooperative 0.12 4.70 9.06 15.95 213.00

distribution for non-cooperative approach shows more variability
as it is more spread out and the values differ more from the center
(mean value) as it is skewed. This happens because some resources
are allocated more tasks to execute, while other resources are
underutilized. On the contrary, the distribution for cooperative
scheduling approach is bell shaped and more densely clustered
around the mean. Therefore, from Fig. 13, it is evident that the
load balancing technique employed by the cooperative scheduler is
effective in terms of uniformly distributing workflow tasks across
the resources in the Grid environment. The summary statistics of
these two distributions for different workflow sizes are presented
in Table 5.

5.4.2. Decentralized vs. centralized coordination
In order to compare the effectiveness of our proposed

decentralized and cooperative scheduling technique, we compare
it against the scheduling technique with centralized coordination
service. The simulation system, developed for evaluating a
centrally coordinated Grid-Federation for this study assumes that
the coordination service is hosted on amachine, which is known to
all the workflow brokers (GFAs) in the system. In this setup, every
workflow broker is required to submit its resource claim objects to
the centralized coordination service. Similarly, all resources in the
Grid-Federation periodically update their usage information to the
coordination service.
In the case of decentralized setting (i.e. P2P spatial index),

a claim object can be mapped to more than one control points
based on its spatial extent or query window size. If the control
points are assigned to different Grid peers in the network then
the problem of duplicate or conflicting notification can arise for
a given claim (i.e. a claim is hit by more than one ticket object
at more than one Grid peer at the same time). This problem is
quite evident in the case of decentralized spatial index [39]. On
the other hand, under the centralized setting, the coordination
space (see Fig. 5) is hosted and managed by a single machine
in the system and all the control points, claims and tickets are
stored with it. Therefore, the problem of duplicate or conflicting
notifications does not occur here and the notification complexity
Fig. 14. Makespan for decentralized and centralized coordination service.

involved with the centralized approach is bounded by the function
O(1). In addition, the centralized coordination service generates
schedule that can efficiently distribute the workload among all the
Grid peers as it receives all the claims and tickets in the system.
The objective of the discussion of this section is to show that

(i) our decentralized and cooperative scheduling technique is as
efficient as the centralized coordination technique at solving the
duplicate or conflicting notification problem; and (ii) the final
makespan achieved per workflow as a result of decentralized
coordination service is comparable to the centralized approach.
As shown in the previous section (refer to Section 5.3.1),

the simulation results for our proposed approach show that
the notification complexity is bounded by the function O(1)
(similar to the centralized approach). This is achieved due to
unsubscribing the claim object of a task from the coordination
space as soon as thematchnotification arrives.Moreover, in Fig. 14,
we show the average makespan, achieved per workflow in the
case of decentralized and centralized approaches for different sizes
of workflow. From the figure, it is evident that our proposed
decentralized technique is also successful in generating schedules,
which are as efficient as the centralized approach. This proves
that our decentralized coordination service is able to efficiently
schedule the workload among the Grid peers in the system.

6. Conclusion and future work

In this paper, we have presented a decentralized and cooper-
ative scheduling technique for workflow applications in Peer-to-
Peer Grids. Using simulation, we have measured the performance
of our scheduling approach with respect to both scheduling and
coordination perspective and analyzed different performancemet-
rics according to the obtained results. The results show that our
approach is scalable in terms of scheduling message complexity

M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768 767
and makespan. As we leverage the DHT-based coordination space
for our scheduling, it can also avoid the limitation of single point
of failure regarding resource information service in centralized
scheduling techniques.
In order to show the performance of the proposed approach

against non-cooperative scheduling approach, we have conducted
experiment for different sizes of workflow and the results show
that our scheduling technique can reduce the makespan up to 25%
by decreasing the taskwaiting time up to 37% and is able to balance
the load among the available Grid resources significantly.
We have also compared the effectiveness of our proposed

scheduling technique against the scheduling technique with cen-
tralized coordination service. According to the results obtained, our
decentralized and cooperative scheduling technique is as efficient
as the centralized approach at generating O(1) notifications per
task and the makespan achieved per workflow by our approach is
also comparable to the centralized approach.
In future, we intend to investigate the incorporation of different

optimizations into our proposed algorithm such as spatial hashing
of all the tasks in a workflow within a single claim object.
This hashing is based on the assumption that the tasks have
homogeneous requirementswith regard to resource configuration.
This approachwould be significantly helpful in curbing the number
of messages, produced as a result of mapping individual claim
objects for different tasks in a workflow. Further, we intend to
address the resource failure and fault tolerance issues into our
scheduling technique in our future work.

Acknowledgement

This work is partially supported by Australian Research
Council (ARC) Discovery Project grant.

References

[1] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann Publishers, USA, 1998.

[2] L. Paterson, T. Roscoe, The design principles of planetlab, Operating Systems
Review 40 (1) (2006) 11–16.

[3] Y. Fu, J. Chase, B. Chun, S. Schwab, A. Vahdat, SHARP: An architecture for secure
resource peering, in: Proceedings of the 9th ACM symposium on Operating
systems principles, NY, USA, 2003.

[4] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, S. Tuecke, A
directory service for configuring high-performance distributed computations,
in: Proceedings of the 6th IEEE International Symposium onHigh Performance
Distributed Computing, Portland, USA, 1997.

[5] X. Zhang, J.L. Freschl, J.M. Schopf, A performance study of monitoring and
information services for distributed systems, in: Proceedings of the 12th
IEEE International Symposium on High Performance Distributed Computing,
Seattle, USA, 2003.

[6] M. Rahman, S. Venugopal, R. Buyya, A dynamic critical path algorithm for
scheduling scientific workflow applications on global grids, in: Proceedings
of the 3rd IEEE International Conference on e-Science and Grid Computing,
Bangalore, India, 2007.

[7] Z. Li, M. Parashar, Comet: A scalable coordination space for decentralized
distributed environments, in: Proceedings of the 2nd International Workshop
on Hot Topics in Peer-to-Peer Systems, Sun Diego, USA, 2005.

[8] R. Ranjan, A. Harwood, R. Buyya, Coordinated load management in peer-to-
peer coupled federated grid systems, Technical Report, GRIDS-TR-2008-2, Grid
Computing and Distributed Systems Laboratory, The University of Melbourne,
Australia, 2008.

[9] I. Stoica, R.Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: A scalable
peer-to-peer lookup service for internet applications, in: Proceedings of the
ACM SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, San Diego, USA, 2001.

[10] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems, in: Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms, 2001.

[11] E. Tanin, A. Harwood, H. Samet, Using a distributed quadtree index in peer-to-
peer networks, VLDB Journal 16 (2) (2007) 165–178.

[12] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.H. Su, K. Vahi,
M. Livny, Pegasus: Mapping scientific workflow onto the grid, in: Proceedings
of the Across Grids Conference, Cyprus, 2004.
[13] I. Taylor, M. Shields, I. Wang, Resource management of triana p2p services,
Grid Resource Management, Netherlands, June 2003.

[14] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M.R. Pocock, A. Wipat, P. Li, Taverna: A tool for the composition
and enactment of bioinformatics workflows, Bioinformatics 20 (17) (2004)
3045–3054.

[15] M. Litzkow, M. Livny, M. Mutka, Condor-a hunter of idle workstations,
in: Proceedings of the 8th International Conference of Distributed Computing
Systems, IEEE CS Press, USA, 1988.

[16] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,M. Jones, E.A Lee, J. Tao,
Y. Zhao, Scientific workflowmanagement and the kepler system, Concurrency
and Computation: Practice and Experience (2005) Special Issue on Scientific
Workflows.

[17] Y. Yang, J. Chen, J. Lignier, H. Jin, Peer-to-peer based grid workflow runtime
environment of swindew-g, in: Proceedings of the 3rd IEEE International
Conference on e-Science and Grid Computing, India, December 2007.

[18] J. Yu, R. Buyya, A novel architecture for realizing grid workflow using tuple
spaces, in: Proceedings of the 5th IEEE/ACM Workshop on Grid Computing,
IEEE CS Press, USA, 2004.

[19] T. Fahringer, et al., Askalon: A tool set for cluster and grid computing,
Concurrency and Computation: Practice and Experience 17 (2005) 143–169.

[20] R. Raman, M. Livny, M. Solomon, Resource management through multilateral
matchmaking, in: Proceedings of the 9th IEEE International Symposium on
High-Performance Distributed Computing, USA, August 2000.

[21] J. Yao, C.K. Tham, K.Y. Ng, Decentralized dynamic workflow scheduling for
grid computing using reinforcement learning, in: Proceedings of the14th IEEE
International Conference on Networks, Singapore, 2006.

[22] G. Chen, C.P. Low, Z. Yang, Coordinated service provisioning in peer-to-peer
environments, IEEE Transactions on Parallel and Distributed Systems 19 (4)
(2008).

[23] R. Ranjan, A. Harwood, R. Buyya, A case for cooperative and incentive
based coupling of distributed clusters, Future Generation Computing Systems
(ISSN: 0167-739X) 24 (4) (2008) 280–295.

[24] B. Bode, D. Halstead, R. Kendall, D. Jackson, PBS: The portable batch scheduler
and the maui scheduler on linux clusters. in: Proceedings of the 4th Linux
Showcase and Conference, Atlanta, USA, 2000.

[25] W. Gentzsch, Sun grid engine: Towards creating a compute power grid, in:
Proceedings of 1st IEEE International Symposium on Cluster Computing and
the Grid, Brisbane, Australia, 2001.

[26] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley
Publishing Company, 1989.

[27] E. Byun, Y. Kee, E. Deelman, K. Vahi, G. Mehta, J. Kim, Estimating
Resource Needs for Time-Constrained Workflows, in: Proceedings of 4th IEEE
International Conference on eScience, USA, December 2008.

[28] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Wien2k — An
augmented plane wave plus local orbitals program for calculating crystal
properties, Technical report, Vienna University of Technology, Austria, 2001.

[29] D. Theiner, P. Rutschmann, An inverse modelling approach for the estimation
of hydrological model parameters, in: Journal of Hydroinformatics, IWA
Publishing, 2005.

[30] F. Schuller, J. Qin, Towards a Workflow Model for Meteorological Simulations
on the AustrianGrid, in: Proceedings of 1st Austrian Grid Symposium, Schloss
Hagenberg, Austria, December 2005.

[31] L. Clementi, et al. Services oriented architecture for managing workflows
of avian flu grid, in: Proceedings of 4th IEEE International Conference on
eScience, USA, December 2008.

[32] L. Ramakrishnan, M. Reed, J. Tilson, D. Reed, Grid Portals for Bioinformatics,
Renaissance Computing Institute, University of North Carolina, USA.

[33] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, I. Stoica, Towards a common api
for structured peer-to-peer overlays, in: Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS03), CA, USA, 2003.

[34] W. Gropp, E. Lusk, A. Skjellum, UsingMPI: Portable Parallel Programmingwith
the Message Passing Interface, MIT press, 1999.

[35] R. Ranjan, A. Harwood, R. Buyya, Peer-to-peer resource discovery in global
grids: A tutorial, IEEE Communications Surveys and Tutorials 10 (2) (2008)
6–33. Second Quarter.

[36] A. Gupta, O.D. Sahin, D. Agrawal, A. El Abbadi, Meghdoot: Content-
based publish/subscribe over p2p networks, in: Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, Toronto, Canada,
2004.

[37] R. Buyya, M. Murshed, Gridsim: A toolkit for the modeling and simulation
of distributed resource management and scheduling for grid computing,
Concurrency and Computation: Practice and Experience 14 (13–15) (2002)
1175–1220.

[38] P. Garca, C. Pairot, R. Mondjar, J. Pujol, H. Tejedor, R. Rallo, Planetsim: A
new overlay network simulation framework, in: Proceedings of Software
Engineering and Middleware, Linz, Austria, 2004.

[39] L. Chan, S. Karunasekera, Designing configurable publish-subscribe scheme for
decentralised overlay networks, in: Proceedings of the 21st IEEE International
Conference on Advanced Information Networking and Applications, Canada,
2007.

768 M. Rahman et al. / Future Generation Computer Systems 26 (2010) 753–768
Mustafizur Rahman received BSc. in Computer Science
and Engineering from Bangladesh University of Engineer-
ing and Technology (BUET), Dhaka, Bangladesh in 2004.
He worked as a lecturer in the Department of Computer
Science and Engineering at BUET. Currently, he is with
GRIDS Lab and a PhD candidate in the Department of Com-
puter Science and Software Engineering at the University
of Melbourne, Melbourne, Australia. His research inter-
ests include scientific workflow management, scheduling
in Grids and P2P systems, and autonomic systems. He is a
student member of IEEE and IEEE Computer Society.

Dr. Rajiv Ranjan received BE in Computer Engineering
from Gujarat University, Gujarat, India in 2002 and
Doctor of Philosophy (PhD) from the University of
Melbourne, Melbourne, Australia in 2007. He worked as
a lecturer in the Department of Computer Engineering
at Gujarat University. Currently, he is working as a post-
doctoral research fellow in the Department of Computer
Science and Software Engineering at the University of
Melbourne. His research interests lie in the algorithmic
aspects of resource allocation and resource discovery in
decentralized Grid and Peer-to-Peer computing systems.

He has served as a reviewer for journals including Future Generation Computer
Systems, Journal of Parallel and Distributed Computing, IEEE Internet Computing,
and IEEE Transactions on Computer Systems.
Dr. Rajkumar Buyya Rajkumar Buyya is an Associate Pro-
fessor of Computer Science and Software Engineering; and
Director of the Grid Computing and Distributed Systems
(GRIDS) Laboratory at the University of Melbourne, Aus-
tralia. He received BE andME in Computer Science and En-
gineering fromMysore and Bangalore Universities in 1992
and 1995 respectively; and Doctor of Philosophy (PhD)
fromMonash University, Melbourne, Australia in 2002. He
has authored over 220 publications and three books. The
books on emerging topics that Dr. Buyya edited include,
High Performance Cluster Computing (Prentice Hall, USA,

1999) and Market-Oriented Grid and Utility Computing (Wiley, 2008). Dr. Buyya
has contributed to the creation of high performance computing and communication
system software for Indian PARAM supercomputers. He received ‘‘Research Excel-
lence Award’’ from the University of Melbourne for productive and quality research
in computer science and software engineering in 2005. The Journal of Information
and Software Technology in Jan 2007 issue, based on an analysis of ISI citations,
ranked Dr. Buyya’s work (published in Software: Practice and Experience Journal
in 2002) as one among the ‘‘Top 20 cited Software Engineering Articles in 1986-
2005’’. He received the ChrisWallace Award for Outstanding Research Contribution
2008 from the Computing Research and Education Association of Australasia, CORE,
which is an association of university departments of computer science in Australia
and New Zealand. Dr. Buyya served as the first elected Chair of the IEEE Techni-
cal Committee on Scalable Computing (TCSC) during 2005–2007. In recognition of
these dedicated services to computing community over a decade, President of the
IEEE Computer Society, USA presented Dr. Buyya a ‘‘Distinguished Service Award’’
in 2008.

	Cooperative and decentralized workflow scheduling in global grids
	Introduction
	Related work
	Scheduling infrastructure
	Coordination mechanism

	System models
	Grid model
	Application model
	Coordination space model
	Layered design of the coordination service
	Coordination objects
	 D -dimensional coordination object mapping and routing

	Proposed algorithms
	Scheduling and provisioning algorithm
	Task scheduling
	Resource provisioning

	Coordination algorithm
	Time complexity

	Performance evaluation
	Network model
	Simulation setup
	Workload configuration
	Network configuration
	Resource claim and ticket injection rate
	Spatial index configuration
	Resource load indicator

	Results and observations
	Scheduling perspective
	Coordination perspective

	Comparison
	Cooperative vs. non-cooperative load balancing
	Decentralized vs. centralized coordination

	Conclusion and future work
	Acknowledgement
	References

