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Abstract

In Desktop Grid, volunteers (i.e, resource providers) have heterogeneous properties and
dynamically join and leave during execution. Moreover, some volunteers may behave er-
ratically or maliciously. Thus, it is important to detect and tolerate erroneous results (i.e.,
result certification) in order to guarantee reliable execution, considering volatility and het-
erogeneity in a scheduling procedure. However, existing result certification mechanisms
do not adapt to such a dynamic environment. As a result, they undergo high overhead and
performance degradation.

To solve the problems, we propose a new Group-based Adaptive Result Certification
Mechanism (GARCM). GARCM applies different result certification and scheduling algo-
rithms to volunteer groups that are constructed according to their properties such as volun-
teering service time, availability and credibility.
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1 Introduction

A Grid system is a platform that provides access to various computing resources
owned by institutions by making virtual organizations [1,2]. In contrast, a Desktop
Grid system is a platform that achieves high throughput computing by harvesting
a number of idle desktop computers owned by individuals at the edge of Internet
using peer to peer computing technologies [3,4,8,11,13-15,18,19]. The Desktop
Grid systems usually support embarrassingly parallel applications that consist of
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Fig. 1. Desktop Grid computing environment

a lot of instances of the same computation with each own data. The applications are
usually involved with scientific problems requiring large amounts of processing ca-
pacity over long periods of time. Recently, there has been a rapidly growing interest
in Desktop Grid systems because of the success of the most popular examples, i.e.,
GIMPS [5], distributed.net [6] and SETI@Home [7].

A Desktop Grid computing environment mainly consists of client, volunteer and
server, as shown in Figure 1. @ient is a parallel job submitter who requests re-
sults. Avolunteeris a resource provider that donates its idle computing resources.
A serveris a central manager that controls submitted jobs and volunteers. It can
have a file server to maintain tasks and results files. A client first submits a parallel
job to a server. The job is then divided into sub-jobs that have their own specific
input data. The sub-job is calledtask The server distributes tasks to volunteers
using scheduling mechanisms. Each volunteer executes its task when idle. When
each volunteer subsequently finishes its task, it returns the result of the task to the
server. Finally, the server returns the final result of the job back to the client.

A Desktop Grid computing is complicated by heterogeneous capabilities, failures,
volatility (i.e., intermittent presence), and lack of trust [18-20] because it is based
on desktop computers (i.e., volunteers) at the edge of the Internet. In particular,
volunteers at the edge of the Internet are exposed to link and crash failures. In
addition, they can dynamically join and leave in the middle of execution without
impediment. Thuspublic executior(i.e., the execution of a task as a volunteer)
may be halted arbitrarily. Moreover, volunteers are not dedicated exclusively to



Desktop Grid computing, so public executions become temporarily suspended by
private executior(i.e., the execution of a private job as a personal user). In this
paper, we regard such unstable situationsa@snteer autonomy failurelsecause

they lead to delay and blocking of task execution and even partial or entire loss
of the execution. The volunteer autonomy failures occur more frequently than in a
Grid computing environment because a Desktop Grid computing system is based
on dynamic desktop computers. Volunteers have different occurrence rates-for
unteer autonomy failureaccording to their execution behavior. In addition, since
any node can participate as a volunteer (i.e., resource provider), some malicious
volunteers tamper with the computation and return corrupted results. Therefore,
Desktop Grid computing systems must not only adapt to such a dynamic environ-
ment, but also detect and tolerate the erroneous result (i.e., result certification) in
order to guarantee reliable execution in such a distrustful environment.

To this end, existing Desktop Grid systems exploited result certification mecha-
nisms such as voting and spot-checking [21-36]. However, (i) existing result cer-
tification mechanisms do not adapt to the distinct features resulting from the het-
erogeneous properties and volatility; (ii) There is no dynamic scheduling for result
certification although the result certification is tightly related with scheduling in
that both the special task for spot-checking and the redundant tasks for voting are
allocated to volunteers in a scheduling procedure; (iii) Existing Desktop Grid sys-
tems simply used the eager scheduling mechanism [10-13,23], although the result
certification and scheduling mechanisms are required to classify volunteers into
groups that have similar properties, and then dynamically apply various schedul-
ing mechanisms to each group. As a result, they suffer from high overhead and
performance degradation because they do not adapt to a dynamic Desktop Grid
computing environment.

To solve these problems, we propose a new Group-based Adaptive Result Certifi-
cation Mechanism (GARCM) that adapts to a dynamic Desktop Grid computing
environment. GARCM also provides dynamic scheduling algorithms for result cer-
tification. It dynamically performs result certification and scheduling algorithms to
each group according to its properties such as volunteering service time, availabil-
ity, and credibility. To this end, it construct@lunteer groupghat are classified

on the basis of the volunteer’s properties, and applies appropriate scheduling and
result certification algorithms to each volunteer group. Consequently, GARCM can
reduce the overhead and latency and therefore complete more tasks while guaran-
teeing reliable results.

The rest of the paper is structured as follows. Section 2 presents a new taxonomy of
result certification and describes limitations of existing scheduling for result certifi-
cation in Desktop Grid. Section 3 describes GARCM in details. Section 4 presents
the analysis of result certification mechanisms and experimental results. Section 5
concludes the paper.
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Fig. 2. A taxonomy of result certification

2 Background and Motivation
2.1 A Taxonomy of Result Certification

Result certification aims to detect and tolerate erroneous results in order to guaran-
tee a trusted execution. Some works have focused on result certification in a Desk-
top Grid computing environment [19-34]. A new taxonomy of result certification

is presented in terms of judgment method, comparison object, resource selection
method and response to worker’s behavior, as shown in Figure 2.

Result certification is categorized into two approaches according to the judgment



method: voting and spot-checking (or sampling). Intbéng approachthe same

tasks are distributed to different volunteers (that is, voting group) as many as the
number of redundancy or until the predefined threshold is reached. Redundancy
makes it possible to identify the correct result against erroneous one if there are suf-
ficiently more good volunteers than bad ones. When the results are returned from
volunteers (or workers), they are compared to verify the correctness. In majority
voting, if the majority of volunteers return the same result, it is regarded as the
correct one. In the threshold-based weighted voting, if the results reach the prede-
fined threshold (for example, error rate, credibility and reliability), they are consid-
ered trustworthy. Weighted voting uses the reputation of volunteers (for example,
credibility, reliability and trust) to compare the results. If volunteers have a higher
reputation, they are considered to be more trustworthy. For example, the votes of
highly-reputed volunteers carry more weight than others. Irspgw-checking ap-
proach the special tasks with different inputs, whose result is already known (for
example, one-way hash function and quiz), are distributed to volunteers. When the
results are returned from volunteers, they are compared with the already-known
result produced by a reliable resource (that is, oracle). If volunteer’s response is
different (in the simple spot-checking) or the error rate is not within the error-
tolerant range or does not reach the predefined threshold (in the threshold-based
spot-checking or the threshold-based weighted spot-checking), the volunteer is re-
garded as malicious and the results returned are discarded. The comparison proce-
dure of the voting approach, which verifies whether the result is correct or not, is
performed between workers. On the other hand, the spot-checking approach com-
pares worker and oracle. Thus, it needs a reliable resource (that is, oracle) to gener-
ate a reliable canonical result. The voting approach is apparently more costly than
the spot-checking approach, because it requires a redundancy of at least two per
task. Spot-checking and voting can be combined together.

Result certification is classified according to the object compared: final result of a
task, intermediate result of a task and result of a special task. The final result of a
task is mainly used in the voting approach. The intermediate result of a task (that is,
checkpoint) is mainly used for long-running applications in the voting approach in
order to detect errors earlier. Additional procedures are needed for the checkpoint
approach, for example, how many or often to do checkpoint or how to synchronize
several checkpoints that volunteers take at different times due to volatility. The
result of a special task (for example, quiz or one-way hash function) is used in the
spot-checking approach.

Result certification accompanies resource selection methods to choose volunteers
for a voting group or for spot-checking, and is categorized according to the resource
selection method: reputation, non-reputation and QoS. The reputation-based re-
source selection chooses volunteers according to their reputation, based on criteria
such as credibility, volatility, reliability and result return rate. For example, highly-
reputed volunteers are first selected or badly-reputed volunteers are excluded from
a scheduling procedure. Non-reputation-based resource selection chooses volun-



teers randomly or on a FCFS (First Come First Served) basis. Volunteers can be
selected according to QoS such as the deadline of a task or homogeneous hardware
and software types and versions.

Result certification can be classified according to the calculation method of redun-
dancy or spot-checking rate. It is very important how many redundancies for voting
is needed or how often spot-checking is performed because it is directly related to
overhead, performance and correctness. First, the number of redundancy for voting
and spot-checking rate can be calculated depending on volunteer reputation such
as failure rate, sabotage rate, volatility and credibility. For example, the higher the
reputation, the lower the redundancy and spot-checking rate. Second, they can be
decided randomly or as an odd number for majority voting. Finally, voting and
spot-checking can be performed until the threshold (for example, acceptable error
rate) is satisfied.

Result certification can be categorized according to positive or negative response to
worker behavior: incentive and penalty, respectively. Incentive-based responses aim
to encourage resource owners to donate their resources reliably and trustworthily by
giving rewards (for example, money, resources, ranking, high priority in a schedul-
ing procedure, etc.) to volunteers for their donation. Penalty-based responses at-
tempt to inflict punishment (for example, blacklist, exclusion from scheduling, de-
crease in reputation and ranking, etc.) on untrustworthy volunteers.

2.2 Motivation

A few studies have been made on scheduling for result certification in a Desktop
Grid computing environment [23,30-32,35,36]. Bayanihan [23] proposed major-
ity voting and spot-checking based on an eager scheduling algorithm. Especially,
it also proposed a credibility-enhanced eager scheduling algorithm. In such algo-
rithms, the more a volunteer passes the spot-checking, the higher its credibility.
The more volunteers within a voting group agree on a result, the higher its credibil-
ity becomes. Volunteers continue to compute the task and perform spot-checking
until the credibility threshold is satisfied. When the desired credibility threshold is
reached, the result is accepted as final. In these algorithms, the voting group for ma-
jority voting is not built before tasks are distributed to volunteers. Instead, it is built
on the fly. Whenever a faster volunteer is allocated a task, it is added to the voting
group for the task. As a result, the members in the voting group have different cred-
ibility. Taufer et al. [30] proposed homogeneous redundancy to tolerate variations
in numerical processing due to a variety of hardware and software malfunctions.
Homogeneous redundancy dispatches redundant tasks to numerically identical vol-
unteers. Zhao et al. [31] proposed result verification and trust-based scheduling
mechanisms, combining a reputation system with the basic verification schemes
such as majority voting and quiz. Reputation systems maintain trusted and black-



lists not only to select trusted volunteers, but also to exclude malicious volunteers
from a scheduling procedure. Sonneck et al. [32] proposed an adaptive reputation-
based scheduling that uses worker reliability for efficient task allocation. Worker
reliability is calculated based on the number of correct results. Reputation-based
scheduling attempts to form redundancy groups (that is, voting groups) that sat-
isfy the likelihood of correctness (LOC), which means group workers will return

a majority of correct and timely results. The redundancy group can be organized
randomly or in order of reliability. Kim et al. [35] proposed a priority-based list
scheduling mechanism for sabotage tolerance with deadline tasks. The scheduling
mechanism selects volunteers according to credibility and result return probability,
satisfying both the correctness of results and the deadline of tasks.

However, there are some limitations in existing scheduling mechanisms for result
certification.

1) They do not adapt to dynamic Desktop Grid computing environniedasting
scheduling and result certification mechanisms do not take into account heteroge-
neous properties and volunteer autonomy failures in scheduling and result certifica-
tion procedures (i.e., when deciding the number of redundancy and spot-checking
rate, or when selecting new volunteers for failed or slow volunteers). As a result,
they require more redundancy to achieve result certification as well as more over-
head. They cannot complete result certification because of delay and blocking of
task execution.

2) There are no dynamic scheduling mechanisms for result certificaResult
certification is tightly related with scheduling in the sense that both the special task
for spot-checking and redundant tasks for voting are allocated to volunteers in a
scheduling procedure. In the presence of failure, the failed tasks are reallocated to
new volunteers in a fault tolerant scheduling procedure. However, existing Desktop
Grid computing systems [8,10-13] simply use an eager scheduling mechanism,
which is not appropriate for result certification. For example, consider a voting
group built on the fly in Bayanihan [23]. When a volunteer is allocated a task, it
is added to the voting group for the task. At this time, eager scheduling simply
selects the fastest volunteer as a member of the voting group for the task without
considering the credibility of the volunteer. As a result, the credibility of the voting
group fluctuates. Although a volunteer with a high credibility makes the credibility
of the voting group higher, another volunteer with low credibility can reduce the
credibility. Thus, it becomes difficult to agree on the same result. In other words,
more volunteers are needed to reach agreement. Consequently, delays and overhead
problems arise. In the case of failures, when the failed volunteer is replaced with a
new volunteer, the same problems also arise.

3) They use only one scheduling mechanism at a time statid¢allpesktop Grid
computing environments, volunteers have various properties, e.g., capacity, loca-
tion, availability, credibility, etc. Thus, various scheduling and result certification



mechanisms should be dynamically applied at the same time according to volun-
teer’s properties. However, existing mechanisms use only one mechanism at a time.
The same scheduling, result certification, and fault tolerant algorithms are applied
to all volunteers without considering their individual properties. As a result, they
experience high overhead and scalability problems.

To overcome these limitations, we propose a new group-based adaptive result certi-
fication mechanism on the basis of a volunteer group constructed according to vol-
unteering service time, volatility, availability and credibility. The proposed mech-
anism applies different scheduling and result certification algorithms to volunteer
groups according to their properties.

3 Group-based Adaptive Result Certification Mechanism

Group-based Adaptive Result Certification Mechanism (GARCM) dynamically per-
forms different scheduling and result certification algorithms suitable for volunteer
groups that are classified on the basis of the properties of volunteers such as
unteer availability volunteering service timand volunteer credibility First, we
present the construction of volunteer group according to volunteer properties. Sec-
ond, we illustrate the application of scheduling and result certification algorithms
to volunteer groups, that is, how to select volunteers for voting and spot-checking
and how to calculate the redundancy or spot-checking rate according to volunteer
group’s properties.

3.1 Constructing Volunteer Groups

Volunteers are required to first be formed into homogeneous groups in order to
apply different scheduling and result certification algorithms suitable for volun-
teers during the scheduling phase. GARCM classifies volunteers into four volun-
teer groups on the basis wblunteer availabilitya,,, volunteering service time,
andvolunteer credibilityC,,, that is,A’, B, C', and D’ volunteer groups. In the’
volunteer group, all features are high. In thevolunteer group, both,, andC, are

high. In theC” volunteer group, onl is high. Finally, in theD’ volunteer group,

all features are low.

3.1.1 Classifying Volunteers

When classifying volunteers, their CPU and memory capacities are important fac-
tors. The most important factors, however, are volunteering time, volunteer avail-
ability and credibility because a Desktop Grid computing system is based on dy-



namic desktop computers. In a Desktop Grid computing environment, the capaci-
ties of desktop computers are different, while the volunteering time, availability,
and credibility are very diverse [8,9,18,19]. Therefore, the computation time is
more affected by the latter factors. In this paper, we classify volunteers according to
volunteer availability and volunteering service time. Volunteering time, volunteer
availability and volunteering service time are defined as follows.

Definition 1 (Volunteering time) Volunteering timeY) is the period when a vol-
unteer is supposed to donate its resources.

T=Tr+7Yg

Here,reserved volunteering tim@ ) is the reserved time when a volunteer pro-
vides its computing resources. Volunteers mostly perform public execution during
T g, rarely performing private execution. On the other haselfish volunteering
time (Ts) is unexpected volunteering time. Thus, volunteers usually perform pri-
vate execution durind s, while occasionally performing public execution.

Definition 2 (Volunteer availability) Volunteer availability {,) is the probabil-
ity that a volunteer will be correctly operational and be able to deliver volunteer
services during volunteering time

- MTTV AF
- MTTVAF + MTTR

Qy

Here, MTTVAF means “mean time to volunteer autonomy failures,” &hTTR
means “mean time to rejoin,” MTTVAF means the average time before volunteer
autonomy failures happen, and MTTR means the mean duration of volunteer au-
tonomy failuresa, reflects the degree of volunteer autonomy failures, whereas the
traditional availability in distributed systems is mainly related with crash failure.

Volunteering service time is defined as follows.

Definition 3 (Volunteering service time) Volunteering service time)) is the ex-
pected service time when a volunteer participates in public execution diiring

O=TX oy,
In a scheduling procedur€) is more appropriate thatf becauseo represents

the time when a volunteer actually executes each task in the presence of volunteer
autonomy failures.

Volunteers are categorized into four classes (He .3, C', D classes) according to
a, and®, as shown in Figure 3 (a).
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Fig. 3. The classification of volunteers and volunteer groups

3.1.2 Classifying and Making Volunteer Groups

A server selects volunteers as volunteer group members according to volunteer
properties such as volunteering service time and volunteer credibility.

Volunteer credibility is defined as follows.

Definition 4 (Volunteer credibility) Volunteer credibilityC, represents the prob-
ability of result correctness that a volunteer returns.

o CR
" ER+CR+IR

Here,E R means the number of erroneous result® means the number of correct
results, and R means the number of incomplete resulis? + CR + I R means

the total number of tasks that a volunteer executes. When a volunteer does not
complete spot-checking or majority voting on account of crash failure and volun-
teer autonomy failured,R occurs in a Desktop Grid computing environment. If a
volunteer passes the spot-checking, the credibility increases. If volunteers within a
voting group reach agreement for majority voting, their credibility also increases.

Volunteer groups are categorized into four classes, as shown in Figure 3 (b), when
both ©® and C,, are considered in a grouping procedure. Hékes the expected
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Il V4 : AclassVg: B class,Vi : C class,Vp: D class
Il VG4 : A class,VGp: B' class,VG¢ : C' classVGpr: D' class
/I To classify the registered volunteers into A, B, C, D classes, respectiv
ClassifyVolunteerd();
/l To construct volunteer groups
if (V; € Va)then /I if V; (one of the classified volunteers) belongdto
if (V;.C, > 9)then [/ if C, of V; is greater than or equal ib
Vi = VGar; Il V;is assignedtd’G 4. (—: assign)
else
Vi = VGer; I'V;is assigned t& G¢r.
fi;
else if (V; € V) then /I if V; belongs toVp
if (V;.C, > 9)then [/ if C, of V; is greater than or equal ib
Vi = VGpg; Il V;isassignedtd’ Gp .
else
Vi = VGpr; Il V;isassigned t&/ Gpr.
fi;
else if (V; € V) then /I if V; belongs tal
Vi = VGer; Il 'V is assigned t& Ger.
else
Vi = VGpr;, Il V;is assigned t&/ G pr.
fi;

Fig. 4. Algorithm of volunteer group construction

3.1.3 Maintaining Volunteer Groups

11

y

computation time of a task.is the desired credibility threshold that a task achieves.

Figure 4 shows the algorithm of volunteer group construction. Registered volun-
teers are classified intd, B, C, and D classes according to volunteering service

time and volunteer availability. Then, each volunteer group is constructed accord-
ing to volunteer credibility and volunteering service time.

Volunteer groups are constructed at a server through either of two modes : time-
based and count-based. The time-based mode builds volunteer groups at regular in-
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tervals if the tasks requiring scheduling remain. The count-based mode constructs
volunteers groups when the number of participating volunteers is larger than or
equal to a predefined numbkerwhich depends on the size of volunteer groups or
the number of redundancy. The size of a volunteer groigprelated with main-
tenance cost, i.e., the management of task agents and fault tolerance. Volunteer
groups are kept until a scheduler can distribute tasks to members. In other words,
if all members have no time enough to execute a task, the volunteer groups are
dismissed.

A member of a volunteer group is replaced by another if it continuously returns
incorrect results or fails. In the case of failure, the failed member is replaced by a
new volunteer.

3.2 Applying Scheduling and Result Certification to Volunteer Group

3.2.1 Result Certification for Volunteer Group

Result certification is dynamically applied to each volunteer group. GARCM pro-
vides the following result certification strategies as follows.

The A’ volunteer group has a sufficiently high,, high ©, and higha, to execute

tasks reliably. There is high possibility that tHévolunteer group will produce the
correct results. If voting is used for result certification, the sequential voting group
approach is more appropriate than the parallel one because the former can perform
more tasks. In Figure 5 (b), in case of the, task, if the first two results generated
atV; andV; are the same, there is no need to executeé/thetask atl, because

the majority (i.e., 2 out of 3) is already is achieved. Therefore, since other tasks
can be executed instead of the executions such as the solid line in Figure 5 (b), the
sequential voting group can perform more tasks.

The B’ volunteer group has a high, and higha,, but a low®. It has a high
possibility to produce correct results. However, it cannot complete tasks because
of the lack of computation time. In addition, volunteer autonomy failures occur
frequently in the middle of execution. Therefore, the managé eblunteer group

must provide not only task migration in order to execute the tasks continuously but

12



also fault tolerant algorithms to tolerate volunteer autonomy failures. During task
migration, the former volunteer affects the latter volunteer (i.e., the volunteer to
which a task migrates) to which a task is migrated. In other words, if the latter
volunteer is selected wrongly, it might ruin the correct result that was generated
by the former volunteer. Therefore, the latter volunteer must be chosen aiong

or A’ volunteer groups, rather thatf or D’ volunteer groups. Spot-checking is
additionally performed by the former volunteer as well as by the latter volunteer
to check the correctness again. Besides, sequential voting is more appropriate than
parallel voting, similar to thel’ volunteer group.

The C’ volunteer group has a high, but a lowC, and low «,. It has enough

time to execute tasks. However, its results might be incorrect. Therefore, in order
to strengthen the credibility, thé’ volunteer group must do more spot-checking or
place more redundancy than tHéor B’ volunteer groups. Parallel voting is more
appropriate than sequential voting. If sequential voting is adopted, the voting proce-
dure is frequently delayed because each volunteer suffers from volunteer autonomy
failures owing to a lowy,. It also takes longer time and incurs higher overhead to
complete result certification. In the case of the parallel voting group, however, the
overhead and the completion time are relatively small because the voting procedure
for each task is completed within one step, as shown in Figure 5 (a).

The D’ volunteer group has a lo&,, low ©, and lowa,. It has insufficient time

to execute tasks. In addition, there is scarcely any possibility to produce correct
results. Moreover, volunteer autonomy failures occur frequently in the middle of
execution. Therefore, tasks are not allocated to/fhesolunteer group not only
because management cost is too expensive, but also because results are incorrect.

3.2.2 Dynamic Scheduling for Result Certification

Each volunteer group has its own scheduling algorithm for result certification ac-
cording to the above strategies. In general, the tasks are scheduled in the following
order, that is, thed’, ¢’ and B’ volunteer groups sequentially because #ieand

C’ volunteer groups have enough time to execute tasks. The scheduling algorithms
for each volunteer group are as follows.

Scheduling for result certification in th& volunteer group is as follows. 1) Order
the A’ volunteer group byy, and then byo. 2) Evaluate the number of redundancy

or the spot-checking rate. 3) Construct a sequential voting group, or choose some
volunteers for spot-checking on the basi$bf) Distribute tasks in the manner of

a sequential voting group, or allocate special tasks for spot-checking. 5) Check the
collected results.

Scheduling for result certification in th¢’ volunteer group is as follows. 1) Order
the B’ volunteer group by and then by,. 2) The same as for thB’ volunteer
group. 3) Construct a sequential voting group, or choose some volunteers for spot-

13



checking on the basis @&. 4)~5) The same as for thd’ volunteer group. Espe-
cially, the B’ scheduling algorithm is required to perform additional spot-checking
during task migration because of lack of volunteering service time.

Scheduling for result certification in th€ volunteer group is as follows. 1) Order

the C’ volunteer group by, and then,,. 2) Evaluate the number of redundancy

or the spot-checking rate. 3) Construct a parallel voting group, or choose some
volunteers for spot-checking on the basis(¢f. 4)~5) The same as for thd’
volunteer group. Th&"” scheduling algorithm should handle volunteer autonomy
failures.

3.2.3 Calculating Redundancy and the Spot-checking Rate

The number of redundancy for voting and the spot-checking rate are differently
applied to each volunteer group. In the case of redundancy for voting,’tlel-
unteer group has a greater redundancy number tha#’thed B’ volunteer groups
because of a low credibility. Similarly, spot-checking rate is ordered’a®’ and

A’. The B’ volunteer group has a higher number of spot-checking tamlunteer
group on account of task migration.

The number of redundaneyfor majority voting is dynamically calculated through
Equation 1. Herey = 2k + 1. The final error rate of majority voting is evaluated
as follows [37].

5(0{}, 7“) - Z

i=k+1
ioh i AC,(1=Cy)]E+1
which is bounded byl =S

Here, paramete€’] means the probability that volunteers within each volunteer
group generate correct results.

2k+1 <2k+1
1

- coyepesn @

Suppose that a desired credibility threshold.i&SARCM calculates the number of
redundancy for each volunteer grougif— ) > ¢(C;,r). Consequently, the!’
and B’ volunteer groups have a smallso it can reduce the overhead of majority
voting and execute more tasks. In contrast, fevolunteer group has a large
The larger makes the credibility high.

Spot-checking rate is also calculated through Equation 2. The final error rate of
spot-checking is evaluated as follows [21].

sCl(1—qgs)"”

i=cp+ai—gr 2

e(q,n,C,,s) =
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where,n is the saboteur’s share in the total work and its sabotage rate.

If n ands are given, the spot-checking ratepf each volunteer group is calculated.
GARCM calculates the rate of spot-checking for each volunteer graup-ify) >
e(q,n,C!, s). The spot-checking rate of th# and B’ volunteer groups are smaller
than that of the”” volunteer group. Therefore, th& and B’ volunteer groups can
reduce overhead, and therefore execute more tasksCTRelunteer group can
increase its credibility.

4 Analysis and Evaluation

4.1 Analysis

Existing result certification mechanisms are analyzed according to the taxonomy
shown in Figure 2. Tables 1 and 2 show a mapping of the taxonomy to existing
result certification mechanisms.

According to survey and analysis, result certification should be tightly related to
scheduling in the sense that both the special task for spot-checking and the re-
dundant tasks for voting are allocated to volunteers in a scheduling procedure.
However, most existing Desktop Grid systems simply use eager scheduling, not
considering volunteer reputation. As a result, there are high overhead, performance
degradation, and scalability problems. Desktop Grid systems should provide a new
scheduling mechanism for result certification, coupling resource reputation that ac-
counts for volatility, volunteering time and credibility with result certification.

Result certification should be coupled with an incentive mechanism. Incentive mech-
anisms aim to encourage resource owners to donate resources eagerly, reliably and
trustworthily by giving rewards (e.g., money, resources, credit, ranking, etc.) to
volunteers for their donation, or penalties (e.g., blacklist) to volatile and malicious
volunteers. However, most existing result certification mechanisms do not give in-
centive to reliable volunteers in scheduling and result certification procedures. To
make Desktop Grid systems more reliable, Desktop Grid systems should consider
incentive mechanisms.

4.2 Simulation Results

We evaluate GARCM with existing scheduling mechanism for result certification.
This evaluation focuses on how much performance improvement will be gained de-
pending on whether or not the volunteer groups are considered in scheduling and
result certification procedures. GARCM is compared to eager scheduling to which
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Table 3
Simulation Environment

Case A B’ c’ D’ Total
P. | 84(42%) | 26 (13%) | 70 (35%)| 20 (10%) 200

Casel| «, 0.84 0.88 0.81 0.83 0.84
(C] 41 17 39 16 35 min.

Cy 0.98 0.98 0.88 0.86 0.93

P. | 71(35.5%)| 31 (15.5%)| 76 (38%)| 22 (11%) | 200

Case2| a, 0.87 0.89 0.80 0.82 0.84
(C] 41 17 39 16 34 min.

Cy 0.98 0.98 0.84 0.85 0.91

P. | 76(38%) | 27 (13.5%)| 80 (40%)| 17 (8.5%) | 200

Case3| a, 0.86 0.78 0.80 0.71 0.81
S} 35 17 33 16 30 min.

Cy 0.98 0.98 0.82 0.85 0.91

P. | 42(21%) | 59 (29.5%)| 30 (15%)| 69 (34.5%)| 200

Case4| «, 0.80 0.70 0.78 0.69 0.73
(C] 28 12 25 13 24 min.

Cy 0.98 0.98 0.89 0.89 0.94

result certification has been applied. There are considerable scheduling heuristics
in Grids, e.g., MCT, MET, SA, KPB, min-min, max-min, and sufferage heuris-
tics [38,39]. In this article, we adopt eager scheduling among existing scheduling
heuristics because it is more straightforward and simple than other heuristics in
Grids. In particular, eager scheduling has been mainly used in Desktop Grids [8,10—
13] because it is more adaptive to the dynamic computing environments of Desktop
Grids than the heuristics in Grids.

In our simulations, we model a number of scenarios using different distributions for
volunteer properties, as shown in Table 3. The evaluation is based on a simulator
modeled on Korea@Home [9], which consists of a server and many volunteers.
We intentionally set up volunteer groups which have different volunteering service
time © and volunteer availabilityy,. As the performance metrics for comparing
GARCM to eager scheduling, our simulations use the number of completed tasks,
the number of redundancy and the error rate.

Table 3 shows a simulation environment with different volunteer groups, volunteer-
ing service time, and volunteer availability. For each case in Table 3, 200 volunteers
participated in our simulation for one hour. In Case 1, Hevolunteer group has
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Fig. 6. The number of completed tasks without result certification

more volunteers than the other groups. In Case 2Cthelunteer group has more
volunteers than the other groups. Case 3 shows that more volunteers belong to the
A’ and C’ volunteer groups as compared to the other groups. In Case 4)'the
volunteer group has more volunteers than the other groups. When analyzing Ta-
ble 3, Case 1 is different from Case 2 with respect to volunteer credibility. Case 3
is different from Case 1 with regard to volunteer availability and volunteer avail-
ability. Case 4 is different from Case 1 with respect to volunteer availability and
volunteering service time. Herd/, B, C’, andD’ represent thel’, B’, C’, andD’
volunteer groups, respectively. Herg,(i.e., population) represents the number of
volunteers. Each simulation was repeated 10 times per each case.

The range of\/ VT is set as 10~ 60 minutesMTTV AF is configured as 1/0.2
1/0.05 minutesM TT R is set as 3v 10 minutes. A task in the application exhibits
18 minutes of execution time on a dedicated Pentium 1.4 GHz. Suppose-that
andn=10 in spot-checking.

Figures 6, 7 and 8 show the simulation results. Here, the ES represents an existing
eager scheduling mechanism. GARCMY, GARCM(B’) and GARCM(") mean

the results performed by each volunteer group, respectively. As shown in Figures 6,
7 (a), and 8 (a), GARCM completes more tasks than the existing eager scheduling
mechanism, while satisfying the desired credibility threshold (or desired error rate),
as shown in Figures 7 (c), and 8 (c). In particular, #tievolunteer group has an
important role in gaining better performance. When the number of members in the
A’ volunteer group decreases gradually (i.e., from Case 1 to Case 4), the number
of completed tasks decreases. In contrast, as the number of membersi® the
volunteer group increases, the number of completed tasks decreases. In addition,
volunteer availability is tightly related to performance. Cases 1 and 2 can complete
more tasks than cases 3 and 4.
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Fig. 7. Simulation results in group-based voting
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In the case of majority voting, GARCM obtains more tasks results than eager
scheduling because it dynamically decides the number of redundancy according
to properties of volunteer groups, as shown in Figure 7 (b). Ahand B’ volun-

teer groups choose less redundancy tharCtheolunteer group. As a result, th€&

and B’ volunteer groups are able to reduce replication overhead, so they can exe-
cute more tasks. On the other hand, Herolunteer group needs a large number of
redundancy to meet the reliability threshold. However, it can decrease its error rate.

In the case of spot-checking, GARCM completes more tasks than eager scheduling
because it dynamically decides the spot-checking rate according to the properties of
the volunteer groups, as shown in Figure 8 (b). However, ifAheolunteer group

is less than th€"” volunteer group, as in Cases 2 and 3, the number of completed
tasks becomes similar because ttfevolunteer group has a high spot-checking
rate.

5 Conclusions

Result certification is important to guarantee reliable execution. A dynamic schedul-
ing mechanism for result certification is also essential to overcome high over-
head and performance degradation. In this article, we proposed a new Group-based
Adaptive Result Certification Mechanism (GARCM). GARCM reflects the volatil-

ity, failure, heterogeneous properties and reliability of volunteers in scheduling and
result certification procedures by means of volunteer groups. Volunteer groups are
constructed according to volunteer properties such as availability, volunteering ser-
vice time and credibility. GARCM dynamically applies different scheduling and
result certification algorithms to each volunteer group.

The simulation results showed that GARCM gains better performance and reduces
the overhead of result certification while satisfying the desired credibility threshold.
In particular, GARCM completes more tasks than eager scheduling to which result
certification is applied result certification. GARCM reduces the number of redun-
dancy or the spot-checking rate more than eager scheduling because it dynamically
decides the number of redundancy or spot-checking according to the properties of
each individual volunteer group. With regard to volunteer groups, the evaluation
results showed that the larger the number of volunteers intlendC’ volunteer
groups is, the larger the number of completed tasks. Also, as the number of volun-
teers in theB’ and D’ volunteer groups increases, the more the difference between
GARCM and eager scheduling.

We are currently studying how to couple result certification with incentive schedul-
ing in Desktop Grids. An incentive scheduling is aimed at giving more rewards and
benefit to eager, reliable and trustworthy volunteers, and punishing volatile, selfish
or malicious volunteers. Thus, it encourages volunteers to donate their resources
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eagerly and reliably. Incentive scheduling can use result certification to evaluate
volunteers.
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