
SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 1

µ-DDRL: A QoS-Aware Distributed Deep
Reinforcement Learning Technique for Service

Offloading in Fog computing Environments
Mohammad Goudarzi, Maria A. Rodriguez, Majid Sarvi, and Rajkumar Buyya

Abstract—Fog and Edge computing extend cloud services to the proximity of end users, allowing many Internet of Things (IoT) use
cases, particularly latency-critical applications. Smart devices, such as traffic and surveillance cameras, often do not have sufficient
resources to process computation-intensive and latency-critical services. Hence, the constituent parts of services can be offloaded to
nearby Edge/Fog resources for processing and storage. However, making offloading decisions for complex services in highly stochastic
and dynamic environments is an important, yet difficult task. Recently, Deep Reinforcement Learning (DRL) has been used in many
complex service offloading problems; however, existing techniques are most suitable for centralized environments, and their
convergence to the best-suitable solutions is slow. In addition, constituent parts of services often have predefined data dependencies
and quality of service constraints, which further intensify the complexity of service offloading. To solve these issues, we propose a
distributed DRL technique following the actor-critic architecture based on Asynchronous Proximal Policy Optimization (APPO) to
achieve efficient and diverse distributed experience trajectory generation. Also, we employ PPO clipping and V-trace techniques for
off-policy correction for faster convergence to the most suitable service offloading solutions. The results obtained demonstrate that our
technique converges quickly, offers high scalability and adaptability, and outperforms its counterparts by improving the execution time
of heterogeneous services.

Index Terms—Fog/Edge Computing, Internet of Things (IoT), Deep Reinforcement Learning (DRL), QoS-Aware Service Offloading.

✦

1 INTRODUCTION

INTERNET of Things (IoT) devices have been widely
adapted for many application scenarios, resulting in more

intelligent and efficient solutions. The domain of IoT appli-
cations is diverse and ranges from smart transportation and
mobility systems to healthcare [1], [2]. To illustrate, ongoing
urbanization along with ever increasing traffic has led to a
high demand for smart transportation and mobility systems,
where the main goal is to obtain faster, cheaper, and safer
transportation by collecting, augmenting, and analyzing
heterogeneous data generated from various sources. Smart
transportation and mobility systems comprise a wide range
of services with heterogeneous characteristics, including but
not limited to vehicle automation, dynamic traffic light con-
trol, and road condition monitoring [3], [4]. These growing
IoT services, either computationally intensive or latency-
critical, require high computing, storage, and communica-
tion resources for smooth and precise execution [5], [6]. On
their own, IoT devices with limited computing and storage
capacities cannot efficiently process and analyze the vast
amount of generated data in a timely manner, and hence
they require surrogate resources for processing and storage.
We refer to the process of allocating services on surrogate

• M. Goudarzi and R. Buyya are with the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, School of Computing and Information
Systems, The University of Melbourne, Australia.

• M. A. Rodriguez is with the School of Computing and Information
Systems, University of Melbourne, Australia.

• M. Sarvi is with the Department of Infrastructure Engineering, Univer-
sity of Melbourne, Australia
E-mail: m.goudarzi@unsw.edu.au, marodriguez@unimelb.edu.au, ma-
jid.sarvi@unimelb.edu.au, rbuyya@unimelb.edu.au.

resources as offloading/outsourcing [7], [8].
Cloud computing is fundamental for IoT service deploy-

ment, providing elastic computing and storage resources [4],
[9]. However, it falls short for latency-critical services due
to high latency and low bandwidth between IoT devices
and cloud servers. In contrast, fog computing, using Fog
Servers (FSs) near IoT devices, offers low-latency, high-
bandwidth resources [10], [11]. FSs are resource-limited
compared to Cloud Servers (CSs) and may not handle all
services, especially computation-intensive ones. In our view,
edge computing only leverages nearby resources, while fog
computing uses a hierarchical structure of FSs and CSs
to handle computation-intensive and latency-sensitive ser-
vices. Fig. 1 shows an overview of Edge and fog computing.

Offloading services to fog computing facilitates practical
deployment of computation-intensive and latency-critical
services. However, this poses a challenging problem due
to resource limitations in service providers and complex
dependencies in service models, represented as Directed
Acyclic Graphs (DAGs) [2], [5], [12]. Also, IoT services
require specific Quality of Service (QoS) constraints for
smooth execution [13]. Given the scale of IoT services,
resources, and constraints, service offloading in fog comput-
ing becomes an NP-hard problem. Existing heuristics and
rule-based algorithms struggle to adapt to the dynamic and
stochastic nature of fog computing [2].

In the stochastic fog computing environment, adaptive
service offloading decisions are essential. Deep Reinforce-
ment Learning (DRL) combines Reinforcement Learning
(RL) with Deep Neural Networks (DNN) to enable dy-
namic learning of optimal policies and rewards in stochastic

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 2

L
at

en
cy

, C
om

p
u

ta
ti

on
al

 R
es

ou
rc

es

E
d

ge
 L

ay
er F

og
 L

ay
er

F
og

 C
om

p
u

ti
n

g
P

ar
ad

ig
m

Figure 1: An overview of Edge and Fog computing

settings without prior system knowledge [14]. However,
the DRL agent requires collecting a large and diverse set
of experience trajectories in the exploration phase to be
used for training the agent to learn the optimal policy.
Thus, centralized DRL methods suffer from high exploration
costs and slow convergence, affecting service offloading
performance in heterogeneous and stochastic fog computing
environments. Moreover, most of the distributed DRL tech-
niques don’t efficiently utilize experience trajectories from
different actors, leading to slow convergence to optimal
results [14].

To address these challenges, we propose µ-DDRL, a
distributed deep reinforcement learning technique designed
for efficient offloading of diverse services with varying
QoS requirements in heterogeneous fog computing envi-
ronments. µ-DDRL leverages Asynchronous Proximal Pol-
icy Optimization (APPO) [15], employing an actor-learner
framework, in which deployed distributed agents across
different Fog Servers (FSs) work in parallel. This approach
reduces exploration costs, accelerates trajectory generation,
diversifies trajectories, and enhances the learning of optimal
service offloading policies. Moreover, µ-DDRL employs V-
trace [16] and PPO Clipping [17] to address the policy
gap between actors and the learner caused by decoupled
acting and learning. The main contributions of this paper
are summarized as follows.

• An execution time model for minimizing service of-
floading of DAG-based services while satisfying their
required QoS is proposed.

• A distributed DRL-based service offloading technique,
called µ-DDRL, for dynamic and stochastic fog com-
puting environments is proposed, which works based
on the APPO framework. It helps to efficiently use the
experience trajectories generated by several distributed
actors to train a better service offloading model. Con-
sequently, we propose a reward function for µ-DDRL
to minimize the execution time of each DAG-based
service while satisfying QoS. We use two techniques,
called V-trace and PPO Clipping, to solve the policy
gap between actors and learners.

• We conduct comprehensive experiments using a wide
range of synthetic service DAGs derived from real-
world services to cover the requirements of different
services. Also, we compare the performance of µ-DDRL
with three state-of-the-art and widely adopted DRL and
DDRL techniques.

The rest of the paper is organized as follows. Section 2

reviews related work on service offloading techniques in
fog computing environments. Section 3 describes the system
model and problem formulation. The DRL model and its
main concepts are presented in Section 4. Our proposed
DDRL-based service offloading framework is presented in
Section 5. In Section 6, the performance of µ-DDRL is stud-
ied and compared with state-of-the-art techniques. Finally,
Section 7 concludes the paper and draws future work.

2 RELATED WORK

In this section, we discuss service offloading techniques in
fog computing environments.

Several works in the literature consider an IoT service
either as a single service or as a set of independent compo-
nents. In these works, the constituent parts of each service
can be executed without any data dependency among the
different components. Bahreini et al. [18] proposed a greedy
technique to manage the computing resources of connected
electric vehicles to minimize energy consumption. Chen et
al. [19] proposed a collaborative service placement tech-
nique in an Edge computing environment, in which a net-
work of small cell base stations is deployed to minimize
the execution cost of services. The problem is first solved
in a centralized manner to find the optimal solution, and
then a graph coloring technique is proposed to solve the
service placement problem in a decentralized way. Maleki
et al. [20] proposed location-aware offloading approaches
based on approximation and greedy techniques to mini-
mize the response time of applications in a stochastic and
dynamic Edge computing environment. Badri et al. [21]
modeled the location-aware offloading problem in an Edge
computing environment as a multistage stochastic problem,
and proposed a Sample Average Approximation (SAA) al-
gorithm to maximize the QoS of users while considering the
energy budget of Edge servers. Ouyang et al. [22] proposed
a Markov approximation technique to obtain a near-optimal
solution for the cost-performance trade-off of the service
offloading in the Edge computing environment, which does
not require prior knowledge of users’ mobility. Zhang et
al. [23] and Huang et al. [24] proposed a Deep Q-Network
(DQN) based technique to learn the optimal migration pol-
icy and computation offloading in mobile Edge computing,
respectively. Zhang et al. [23] considered scenarios where
user mobility is high, such as autonomous driving, to im-
prove user QoS, while Huang et al. [24] considered fixed
IoT devices, such as smart cameras. Furthermore, Chen
et al. [25] proposed the use of a more stable version of
the DQN technique, Double DQN (DDQN), to learn the
optimal offloading policy. Garaali et al. [26] proposed a
multi-agent deep reinforcement learning solution based on
the Asynchronous Advantage Actor Critic (A3C) to reduce
system latency, so that each agent aims to learn interactively
the best offloading policy independently of other agents. Li
et al. [27] designed a hierarchical software-defined network
architecture for vehicles that send their computational tasks
to remote Edge servers for processing. Next, a DQN tech-
nique is proposed to solve the load balancing optimization
problem so that the mean square deviation of the loads
among different Edge servers is minimized. Liao et al. [28]
developed a double RL-based offloading solution for mobile

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 3

devices to minimize the energy consumption of devices
and the delay of tasks based on the Deep Deterministic
Policy Gradient (DDPG) and DQN, respectively. Ramezani
et al. [29] proposed a Q-learning-based technique to reduce
load imbalance and waste of resources in fog computing
environments. Zhou et al. [30] proposed a Mixed Integer
Non-Linear Programming (MINLP) formulation to jointly
optimize the computation offloading and service caching
in fog computing environments. To solve the optimization
problem, an A3C-based technique is designed to optimize
the offloading decision and service caching.

Several works in the literature considered IoT services as
a set of dependent tasks, modeled as DAG. In these services,
each task can only be executed when its parent tasks finish
their execution. Wang et al. [7] proposed a mobility-aware
microservice coordination scheme to reduce the service
delay of real-time IoT applications in the fog computing
environment. First, the authors formulated the problem as
an MDP and then proposed a Q-learning technique to learn
the optimal policy. The authors in [31] proposed a mobility-
aware application placement technique for microservices
based on the Non-Dominated Sorting Genetic Algorithm
(NSGA-II) in a fog computing environment to minimize
the execution time, energy consumption, and cost. The
authors in [32] proposed fast heuristics for the placement
and migration of real-time IoT applications, consisting of
microservices, in a hierarchical fog computing environment.
Shekhar et al. [33] proposed a service placement technique
for microservice-based IoT applications while considering
a deterministic mobility pattern for users based on previ-
ous mobility data. The main goal of the centralized con-
troller is to make the placement decision to satisfy the
latency requirements. Qi et al. [2] proposed an adaptive and
knowledge-driven service offloading technique based on
DRL for microservice-based smart vehicles’ applications in
an Edge computing environment. Mouradian et al. [34] and
Sami et al. [35] studied metaheuristic-based service place-
ment in Edge and fog computing environments, respec-
tively. Mouradian et al. [34] formulated the service place-
ment problem as using Integer Linear Programming (ILP)
and proposed a Tabu Search-based placement algorithm to
minimize the response time and cost of applications. Sami et
al. [35] proposed an evolutionary Memetic Algorithm (MA)
for the placement of containerized microservices in vehicle
onboard units. Wang et al. [14] proposed a centralized DRL
technique based on Proximal Policy Optimization (PPO)
for the placement of a diverse set of IoT applications to
minimize their response time. Bansal et al. [36] proposed
a dueling DQN technique to minimize the energy consump-
tion of IoT devices and the response time of modular IoT
applications in multi-access edge computing environments.

Table 1 identifies key elements identified in the literature:
service structure, environmental architecture, and decision
engine. This table compares our work with existing litera-
ture in these areas to emphasize our contributions. The ser-
vice structure explores IoT service design models, including
monolithic, independent tasks, modular, and microservices,
and introduces granular heterogeneity in terms of compu-
tation size and data flow. The environmental architecture
assesses tiering, IoT device and Edge/Fog server proper-

ties, potential cooperation among Fog Servers (FSs), and
consideration of multiple cloud service providers. The deci-
sion engine evaluates optimization characteristics, problem
modeling, QoS constraints, decision planning techniques,
adaptability to changing computing environments, and high
scalability in each technique.

Considering the literature, the most complex and hetero-
geneous fog computing environment comprises properties
that include diverse IoT devices, services with varying QoS
requirements (often with dependent constituent parts), het-
erogeneous FSs, multi CSs, and high dynamicity. Traditional
approximation techniques, heuristics, and metaheuristics,
such as [18], [19], [31] are inadequate for efficient offloading
in such complex fog computing environments [2], [26],
[30]. Moreover, the high cost of exploration and the low
convergence rate of centralized DRL agents in the literature,
such as [14], [23], [24], [25], [27], [36], form a barrier to
the practical deployment of centralized DRL-based deci-
sion engines, especially when the number of features, the
complexity of environments, and applied constraints to the
offloading problem increase. There are some DDRL works
in the literature, such as [2], [26], [30], that use parameter-
sharing DDRL techniques. These techniques, such as [2],
[26], [30], though distributed, are inefficient in utilizing
experience trajectories from different actors because each
actor trains its local policies based on its limited experi-
ence trajectories and then forwards these parameters to the
learner for aggregation/training. Moreover, sharing param-
eters between actors and learners in these DDRL techniques
is more costly since the size of parameters shared among
actors and learners is larger than the weights of experience
trajectories. To tackle these issues, we introduce µ-DDRL,
an experience-sharing distributed deep reinforcement learn-
ing approach, which leverages an Asynchronous Proximal
Policy Optimization (APPO) technique. It employs an actor-
learner framework with multiple distributed actors working
in parallel to generate diversified batches of experience tra-
jectories, significantly reducing exploration costs, improving
the convergance rate, and enhancing offloading efficiency.
Additionally, µ-DDRL incorporates V-trace [16] and PPO
Clipping [17] techniques to rectify discrepancies between
the learner and actor policies, arising from the decoupled
acting and learning process.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In our system model, we assume that each service may
have a different number of tasks with various depen-
dency models, which can be represented as directed cyclic
graphs (DAGs) [2]. Moreover, some predefined servers (i.e.,
brokers) in proximity of IoT devices are responsible for
making service placement decisions based on the resource
requirements of each service, its QoS requirements, and the
system’s properties. These servers are accessible with low
latency and high bandwidth, which helps reduce the start-
up time of the services. An overview of our system model
in fog computing is shown in Fig. 21. Appendix A presents
a summary of the parameters and definitions used.

1For a detailed description of protocols, technologies, and technical
aspects, please refer to https://github.com/Cloudslab/FogBus2

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 4

Table 1: A qualitative comparison of related works with ours

Ref

Service Structure Environmental Architecture Decision Engine

Design
Granular

Het
Tiering

IoT Device Edge/Fog Servers
Multi

Cloud

Optimization Characteristics Decision

Planner

Technique

High

Scalability

High

AdaptabilityNumber Het Number Het Cooperation Perspective
Problem

Modelling

QoS

Constraints

[18] Monolithic ✓ Edge Multiple ✓ Multiple ✓ × × IoT MINLP × Greedy × ×

[19] Independent ✓ Edge Multiple ND Multiple ND ✓ × IoT IP × Optimal × ×

[20] Monolithic × Edge Multiple ✓ Multiple ✓ × × IoT MINLP × Approx × ×

[7] Microservice ✓ Fog Multiple ✓ Multiple ✓ ✓ × IoT MDP × Q-learning × ✓

[31] Microservice ✓ Fog Multiple ✓ Multiple ✓ ✓ × Hybrid ND × NSGA2 × ×

[21] Monolithic × Edge Multiple ✓ Multiple ✓ × × Hybrid IP Energy SAA × ×

[32] Microservice ✓ Fog Multiple ✓ Multiple ✓ ✓ × IoT ILP × Heuristic × ×

[22] Monolithic ✓ Edge Multiple ✓ Multiple ✓ ✓ × Hybrid Lyapu Deadline Approx × ×

[33] Microservice ✓ Fog Single × Multiple ✓ × × IoT ND × GTB × ×

[2] Microservice ✓ Edge Multiple ✓ Multiple ✓ ✓ × IoT MDP × A3C ✓ ✓

[23] Monolithic × Edge Multiple × Multiple ✓ × × IoT ND × DQN × ✓

[34] Modular ✓ Fog Multiple ✓ Multiple ✓ ND ✓ IoT ILP × Tabu × ×

[35] Microservice ✓ Edge Multiple ✓ Multiple ✓ ✓ × IoT ND × MA × ×

[24] Monolithic ND Edge Multiple ✓ Single × × × IoT MDP × DQN × ✓

[25] Independent ✓ Edge Single ✓ Multiple × × × IoT MDP × DDQN × ✓

[14] Modular ✓ Edge Multiple ✓ Single × × × IoT MDP × PPO × ✓

[26] Independent ✓ Edge Multiple ✓ Multiple ✓ × × IoT MDP × A3C ✓ ✓

[27] Independent ✓ Edge Multiple ✓ Multiple ✓ × × System MDP × DQN × ✓

[28] Independent ✓ Edge Multiple ✓ Single × × × IoT MDP × DDPG-DQN × ✓

[29] independent ✓ Fog Multiple × Multiple ND × × System MDP × Q-learning × ×

[36] Modular ✓ Edge Multiple ✓ Multiple ✓ ✓ × IoT MDP × DuDQN × ✓

[30] Independent ✓ Fog Multiple ✓ Multiple ✓ × × Hybrid MDP × A3C ✓ ✓

Our

Technique
Microservice ✓ Fog Multiple ✓ Multiple ✓ ✓ ✓ IoT MDP Deadline APPO ✓ ✓

Het: Heterogeneity, ND: Not Defined, MDP: Markov Decision Process, IP: Integer Programming, ILP: Integer Linear Programming, MINLP: Mixed Integer Non-Linear Programming, Lyapu: Lyapunov

SAA: Sample Average Approximation, GTB: Gradient Tree Boosting, PPO: Proximal Policy Optimization, MA: Memetic Algorithm, DDQN: Double DQN, DuDQN: Dueling DQN

IoT Layer

Cloud 2

Cloud 3

Cloud Layer

Cloud 1

Edge Layer

Fog Layer

Fog Computing Paradigm

Actors
Deployment Learner/Learners Deployment

T1

T2

T3

T4

T1

T2

T3

Heterogeneous
IoT Services

Figure 2: An overview of our system model

3.1 Service Model

We define each service as a DAG G = (V, E), in which
V = {vi|1 ≤ i ≤ |V|}, |V| = L shows the set of tasks within
each service, where the ith task is shown as vi. The edges
of the graph, E = {ei,j |vi, vj ∈ V, i ̸= j}, denote the data
dependencies between tasks, with ei,j representing a data
flow between vi (parent) and vj (child). Additionally, the
weight of an edge, ewi,j , represents the amount of input data
that task vj receives from task vi.

A task vj is represented as a tuple < vwj ,vramj ,ζvj >,
where vwj is the number of CPU cycles required for the
processing of the task, vramj is the required amount of RAM
required to run the task, and ζvj is the maximum tolerable
delay for the task (which restricts the execution time of each
task). Considering the dependency model between tasks,
P(vj) is defined as the set of all predecessor tasks of vj .
For each DAG G, tasks without parent tasks are called input
tasks, while tasks without children are called exit tasks.

3.2 Problem Formulation

The set of available servers is defined as M, where |M| = M .
We represent each server as my,z ∈ M, in which y illustrates
the server’s type (i.e., IoT device, FSs, CSs) and z presents
the index of the corresponding server’s type. Therefore, we
define the offloading configuration of task vj as follows:

xvj = my,z (1)

Accordingly, for each service with L tasks, the offloading
configuration X can be defined as:

X = {xvj |vj ∈ V, 1 ≤ j ≤ L} (2)

Tasks within a service can be sorted in a sequence by
an upward ranking algorithm that guarantees each task
can only be executed after the successful execution of its
predecessor tasks [5]. Also, the upward ranking algorithm
defines a priority for tasks that can be executed in parallel
and, accordingly, sorts them [14], [32]. For parallel tasks,
we define CP (vi) as a function to indicate whether or not
each task is on the critical path of the service based on the
upward ranking function and the associated computational
cost of running tasks [2], [14] (i.e., a set of tasks and the
corresponding data flow resulting in the highest execution
time). Also, CP presents the set of tasks on the critical path
of the service.

3.2.1 Optimization model

For each task vj , the execution time can be defined as the
time it takes for the input data to become available for
that task T input

xvj
plus the processing time of the task on the

corresponding server T proc
xvj

:

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 5

Txvj
= T proc

xvj
+ T input

xvj
(3)

where T proc
xvj

can be obtained based on the CPU cycles
required by the task (vwj) and the processing speed of the
corresponding assigned server fsxvj

:

T proc
xvj

=
vwj
fsxvj

(4)

T input
xvj

is estimated as the time it takes for all input data
to arrive to the server assigned to vj (i.e., xvj) from its
predecessors:

T input
xvj

= max((
ewi,j

b(xvi , xvj)
+l(xvi , xvj))×SS(xvi , xvj)), ∀vi ∈ P(vj)

(5)
in which b(xvi , xvj) illustrates the data rate (i.e., bandwidth)
between the selected servers for the execution of vi and vj ,
respectively. Moreover, l(xvi , xvj) depicts the communica-
tion latency between two servers (i.e., an IoT device and
a remote server or two remote servers), and is calculated
based on the propagation speed for the communication
medium (i.e., ðc) and the Euclidean distance between the
coordinates of the participating servers (i.e., d(xvi , xvj)) in
the Cartesian coordinate system:

l(xvi , xvj) =
d(xvi , xvj)

ðc (6)

where d(xvi , xvj) is calculated as follows:

d(xvi , xvj) =
√

(xxvi − xxvj)
2 + (xyvi − xyvj)

2 (7)

The SS(xvi , xvj) is a function that indicates whether the
assigned servers to each pair of tasks are the same (i.e.,
0 if xvi = xvj) or different (i.e., 1 if xvi ̸= xvj). Because
the fog computing environment is dynamic, heterogeneous,
and stochastic, fsxvj

, b(xvi , xvj), and l(xvi , xvj) may have
different values from time to time.

The principal optimization objective is minimizing the
execution time of each service by finding the best possible
configuration of surrogate servers for the execution of the
service’s tasks, as defined below.

min(T (X)) (8)

where

T (X) =

L∑
j=1

CP (vj)× Txvj
(9)

s.t.
CS1 : Sn(xvj) = 1, ∀xvj ∈ X (10)
CS2 : T (vi) ≤ T (vi + vj), ∀vi ∈ P(vj) (11)

CS3 :
∑

∀vj∈V
IA(vj ,m

y,z)× vramj ≤ R(my,z) (12)

CS4 : Txvj
≤ ζvj , ∀vj ∈ V (13)

where CP (vj) can be obtained from:

CP (vj) =

{
1, vj ∈ CP
0, otherwise

(14)

CP (vj) is equal to 1 if the task vj is on the critical
path and 0 otherwise. CS1 restricts the assignment of each

task to exactly one server at a time. Also, CS2 shows that
the cumulative execution time of vj is always larger or
equal to the execution time of its predecessors’ tasks [37],
which guarantees the execution order of tasks with data
dependency. CS3 states that the summation of the required
RAM for all tasks assigned to one server should always be
less than or equal to the available memory on that server
R(my,z). IA(vj ,m

y,z) is an indicator function to check if
the task vj is assigned to the server my,z (IA = 1) or not
(IA = 0). Finally, CS4 states that the execution time of each
task should be within the range of the task’s tolerable delay.

The service offloading problem in heterogeneous com-
puting environments is an NP-hard problem [5], [38], and
the complexity of the problem grows exponentially as the
number of servers and/or tasks within a service increases.
Therefore, the optimal solution to the service offloading
problem cannot be obtained in polynomial time.

4 DRL MODEL

In the DRL, reinforcement learning and deep learning are
combined to transform a set of high-dimensional inputs into
a set of outputs to make decisions. In DRL, the learning
problem is formally modeled as a Markov Decision Pro-
cess (MDP) which is mainly used to make decisions in
stochastic environments. We define a learning problem by
a tuple < S,A,P,R, γ >, where S shows the state space
and A presents the action space. The probability of a state
transition between states is shown by P. Finally, R and
γ ∈ [0, 1] denote the reward function and discount factor,
respectively. Also, the continuous time horizon is divided
into multiple time steps t ∈ T. In each time step t, the
DRL agent interacts with the environment and receives the
state of the environment st. Consequently, the agent uses its
policy π(at|st) and chooses an action at. The agent performs
the action at and receives a reward in that time step rt.
The agent aims at maximizing the expected total of future
discounted rewards:

Vπ(st) = Eπ[
∑
t∈T

γtrt] (15)

in which rt = R(st, at) represents the reward at time step t,
and at ∼ π(.|st) is the action at t when following the policy
π. Furthermore, because DNN is used to approximate the
function, θ shows the corresponding parameters.

In what follows, the main concepts of the DRL for the
service offloading problem in the fog computing environ-
ment are described:

• State space S: The state is defined as the agent’s ob-
servation of fog computing environments. Accordingly,
we represent the state space as a set of characteristics
for all servers, IoT devices, and corresponding services
in different time steps:

S = {st|st = (FM
t , F

vj
t),∀t ∈ T} (16)

where st shows the system state at time step t, FM
t

represents the feature vector of all M servers at time
step t, and F

vj
t presents the feature vectors of the cur-

rent task in a service. The FM
t includes the servers and

devices’ properties, such as their positions, number of
CPU cores, corresponding CPU frequency speed, data

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 6

rate, ram, etc. If each server/device has a maximum of
K1 features, we can define the feature vector of all M

servers/devices at time step t as:

FM
t = {fm

y,z

i |∀my,z ∈ M, 1 ≤ i ≤ k1} (17)

in which fm
y,z

i represents the ith feature corresponding
to the server my,z . Also, the F

vj
t includes the features

of a current task , vj , such as required computation,
RAM, dependency model of the corresponding tasks,
and service offloading configuration of prior tasks, just
to mention a few. As tasks within a service are sorted
by upward ranking, the current tasks’ dependencies are
already solved. Supposing that each task at maximum
contains k2 features, we can define the feature vector of
task vj at time step t as:

F
vj
t = {fvji |vj ∈ V,∀i 1 ≤ i ≤ k2} (18)

in which f
vj
i shows the ith feature of the task vj .

• Action space A: Since we aim to find the best config-
uration of servers for tasks within a service, the action
space A is related to all available servers, defined in
what follows:

A = M (19)

Also, each action in time step t, i.e., at, is defined in the
assignment of a server to the current task:

at = xvj = my,z (20)

• Reward function R: As presented in Eq. 8, the opti-
mization goal is to minimize the execution time of each
service while satisfying the QoS. Hence, the reward
function per time step t is defined as the negative value
of Eq. 3 if the task can be properly executed within the
maximum tolerable delay (i.e., Txvj

≤ ζvj). As tasks are
currently sorted based on the upward-ranking function,
tasks that incur the highest execution cost (i.e., tasks on
the critical path of the service) receive higher priority.
Thus, tasks incurring the highest execution cost can be
assigned to more powerful servers at the initial stages
of the offloading decision-making process. Although it
is not obligatory for the step-reward function to directly
align with the long-term reward for the DRL agent,
enhancing their correlation can enhance the agent’s
overall performance. In our reward function, the step
reward is correlated to the long-term reward because
it tries to reduce the execution time of each task, ulti-
mately resulting in the reduction of the overall service
execution time. Moreover, Φ is defined as a failure
penalty to penalize actions that violate the maximum
tolerable delay for that task for any reason. Accordingly,
rt is defined as:

rt =

{
−Txvj

, Txvj
≤ ζvj

Φ, otherwise
(21)

5 µ-DDRL: DISTRIBUTED DRL FRAMEWORK

In this section, we mainly describe the µ-DDRL framework,
which is a technique for high-throughput distributed deep

reinforcement learning based on the actor-critic APPO ar-
chitecture. µ-DDRL is designed for QoS-aware service of-
floading and aims to minimize the execution time of distinct
services in highly heterogeneous and stochastic computing
environments.

In the actor-critic architecture, the policy, π(at|st; θ) is
parameterized by θ. Gradient ascent on the variance of the

expected total future discounted reward (i.e.,
∞∑
k=0

γkrt+k)

and the learned state-value function under policy π (i.e.,
Vπ(st)) are used to update θ. The actor interacts with its
environment and obtains the state st and selects an action at
according to the parameterized policy π(at|st; θ), resulting
in a reward rt and the next state st+1. The critic utilizes
the obtained rewards to evaluate the current policy based
on the Temporal Difference (TD) error between the current
reward and the estimation of the value function. Different
DNNs are used as function approximators for the actor and
the critic, which are trained independently. The parameters
of the actor network are updated by feedback from the
TD error to improve the selection probability of suitable
actions. Additionally, the parameters of the critic network
are updated to obtain a higher quality value estimation. The
decoupled act and learning in actor-critic architecture makes
this method a suitable option for long-term performance
optimizations in distributed computing environments.

APPO and its role in µ-DDRL: While the actor-critic
architecture is suitable for highly distributed environments,
it still suffers from slow learning speed and high exploration
costs. APPO is a distributed DRL architecture that helps
significantly parallelize the collection of the distributed
experience trajectories from different actors and achieves
very high throughput. The distributed experience-sharing
approach, in which actors generate heterogeneous trajecto-
ries in parallel and share their experience trajectories with
learners/learners, can significantly improve the learning
speed and exploration costs of actor-critic frameworks (and
DRL frameworks in general). µ-DDRL works based on the
decoupled actor-critic and APPO. Hence, each actor in the
distributed fog computing environments makes service of-
floading decisions and creates experience trajectories. Each
actor asynchronously forwards its collection of experience
trajectories to the learner for training. Hence, the experience
trajectories of slow actors (actors generating fewer expe-
rience trajectories) and fast actors (actors generating more
experience trajectories) can be mixed together in the learner,
resulting in more diversified experience trajectories. More-
over, when the learner updates the policy, the local policy of
slow and fast actors will be updated together, so that each
actor can more efficiently make service offloading decisions.
Fig. 3 presents an overview of the µ-DDRL framework. In
what follows, the roles of each actor and critic (i.e., learner)
are described in detail.

5.1 µ-DDRL: Actor Role

In the µ-DDRL framework, actors act as brokers in the
environment that make offloading decisions using their own
local policy κ for incoming service offloading requests from
smart devices (e.g., smart transportation cameras). In a fog
computing environment, where computational resources

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 7

Actor 1
Actor 2
Actor 3
Actor 4

Actor n

Learner

Target Model

Master Buffer

Optimize

Model

Experience Batch

(Asynchronous Sampling) IoT Devices &

IoT Applications

Computing

Nodes/Servers

Updated Parameters

Fog Computing

Environments
Actors/Workers

state (𝒔𝒕)

action (𝒂𝒕)

reward (𝒓𝒕)

Actor ModelPre-processor

Sample Buffer

𝑆𝑡
′

𝑣𝑗

𝑠𝑜𝑟𝑡𝑒𝑑𝐺

Pre-scheduler

S
tr

u
ct

u
re

 o
f

ea
ch

 A
ct

o
r

Figure 3: An overview of µ-DDRL framework

are distributed, actors can be deployed on distributed and
heterogeneous servers in the environment. Moreover, dis-
tributed actors can work in parallel and interact with the
environment to make service-offloading decisions. This dis-
tributed behavior reduces the incoming requests’ queuing
time, which improves the service-ready time for users. Al-
gorithm 1 presents how each actor/broker interacts with the
environment, makes service offloading decisions, and builds
experience trajectories.

Initially, the local policy of each actor κ is updated by the
policy of the learner π, to ensure that each actor works with
the most optimized and updated policy to make service
offloading decisions (line 3). Then, each actor uses the local
policy κ to make N offloading decisions. The actor fetches
the metadata of a service request from SQ whenever it be-
gins making the offloading decision for a new service G (line
7). Next, the metadata of the new service G is fed into the
Pre-sch() function, which sorts the tasks within each service
while satisfying the dependency constraints among tasks
considering the DAG of each service and outputs the list
of sorted tasks, sortG (line 8). The Pre-sch() function works
based on the upward ranking to sort tasks within a service
[5], [14]. While other sorting algorithms, such as topological
sort, can also satisfy the dependency constraints of tasks
within a DAG, these sorting algorithms, by default, do not
provide any order for tasks that can be executed in parallel.
The upward ranking algorithm not only defines an order for
the parallel tasks but also helps identify the critical path of a
DAG-based service by estimating the average execution cost
of each task and its related edges on different servers. Next,
the DAG of service G, list of available servers M, and sorted
lists of tasks sortG are given as input to the RCVInitState()
function to build the system state si (line 9). Afterwards,
the state of flagin is changed to False until the actor starts
making a decision for a new incoming service requiring
the re-execution of Pre-sch() to obtain a new sequence of
ordered tasks (line 10). Otherwise, the current state si of
the system is obtained by RCVCurrState() function based on
Eq. 16, which contains the feature vectors of the servers FM

t

and the current task of service F
vj
t (line 12). The Pre-proc()

function receives the feature vector of the current state si
and normalizes the values (line 14). Next, the actor performs
the service offloading based on the current local policy κ and
outputs the action ai using the SOEngine() function (line
15). The action ai is then executed, which means that the

Algorithm 1: Each actor’s role
Input : π: The policy of the learner
/* N:Maximum steps’s number, κ: the local

policy of each actor, EB: experience
batch, SQ: Queue of received requests, G:
current service */

1 flagin=True
2 while True do
3 κ=UpdateLocalPolicy(κ, π)
4 i = 0
5 while i < N do
6 if flagin=True then
7 G=SQ.dequeue()
8 sortG = Pre-sch (G)
9 si=RCVInitState(G, M, sortG)

10 flagin=False
11 else
12 si=RCVCurrState()
13 end
14 si=Pre-proc(si)
15 ai=SOEngine(si, κ) % Service Offloading Engine
16 ri=StepCostCal(si, ai) % → Eq. 21
17 si+1 = BuildNextState(si, ai)
18 EB.update(si, ai, ri, si+1)
19 if Finish(G) then
20 TotalCostCal(G) % → Eq. 8
21 flagin=True
22 end
23 end
24 ShareExpeienceToLearner(EB)
25 end

current task is offloaded onto the assigned surrogate server.
The reward of this offloading action is then calculated by
the StepCostCal() function based on Eq. 21, which takes into
account the execution of the task on the assigned server
within the specified maximum tolerable delay ζvj (line 16).
The BuildNextState() function then prepares the next state of
the environment, and the experience batch EB of the current
actor is updated by the experience tuple (si,ai,ri,si+1) (lines
17-18). If the service offloading for the current service is
finished, the actor calculates the total execution cost of the
current service using TotalCostCal() function based on Eq. 8
and adjusts the state of flagin (lines 19-20). This process is
continuously repeated for the N steps, after which the actor
sends the experience batch to the learner and restarts the
process with an updated local policy κ (line 24).

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 8

5.2 µ-DDRL: Learner Role
In the µ-DDRL framework, the main roles of the learner are
managing the incoming experience batches from different
actors, training and updating the target policy π, and up-
dating the actor policies κ.

V-trace, PPO Clipping, and their role in µ-DDRL:
In asynchronous RL techniques, a policy gap between the
actor policy κ and learner policy π may happen. Generally,
two major types of techniques are designed to cope with off-
policy learning [15]. First, applying trust region methods by
which the technique can stay closer to the behavior policy
(i.e., the policy used by actors when generating experiences)
during the learning process, which results in higher quality
gradient estimates obtained using the samples from this
policy [17]. The second type is employing importance sam-
pling to correct targets for the value function to improve the
approximation of the discounted sum of the rewards under
the learner policy. In this work, we use PPO Clipping [17]
as a trust region technique and the V-trace algorithm [16]
as an importance sampling technique, which uses truncated
importance sampling weights to correct the value targets.
It has been shown that these techniques can be applied
independently since V-trace corrects the training objective
and PPO Clipping protects against destructive parameter
updates. Overall, the combination of PPO-Clipping and V-
trace leads to more stable training in asynchronous RL [15].

Algorithm 2 presents the learner role in µ-DDRL.
The learner actively interacts with the actors and asyn-
chronously receives the experience trajectories EBa. The
learner has a master buffer, called MB, which stores the
incoming trajectories from actors (line 5). Whenever the size
of the master buffer MB reaches the size of the training
batch TB, the BuildTrainBatch() function fetches sufficient
samples from the master buffer MB for training (lines 6-
10). Next, the OptimizeModel() function computes the policy,
computes value network gradients, and updates the policy
and value network weights, as follows [39]:

∇θJ(θ) =
1

|TB|
∑

j∈TB

min(Z× ÂV(GAE), Clip(Z, ϵ)ÂV(GAE)) (22)

where Z is πt
κ , Clip(., ϵ) = Clip(., 1 − ϵ, 1 + ϵ) is a clipping

function, TB shows the training batch, πt shows the target
policy, and the V-trace GAE-λ (i.e., ÂV(GAE)) modifies the
advantage function by adding clipped importance sampling
terms to the summation of TD errors:

ÂV(GAE) =

t+n−1∑
i=t

(λγ)i−t

i−1∏
j=t

cj

 δiV (23)

where δiV is the importance sampled TD error introduced
in V-trace [16], defined as follows:

δiV = ρi(ri + γV(si+1)−V(si)) (24)

The γ is a discount factor. Moreover, cj = min(c,
πt(aj |sj)
κ(aj |sj))

and ρi = min(ρ,
π(ai|si)
κ(ai|si)) are clipped Importance Sampling

(IS) weight in V-trace, controlling the speed of convergence
and the value function to which the technique converges,
respectively. Finally, the value network gradients are com-
puted as follows.

Algorithm 2: Learner’s role
Input : EBa: Actors’ batch of experience
/* lista: actors’ list, π: the policy of the

learner, MB: master buffer, TB: training
batch */

1 while True do
2 flagtr=False
3 MB=∅
4 while flagtr==False do
5 MB.add(EBa)
6 if size(TB) ≤ size(MB) then
7 TB=BuildTrainBatch(MB)
8 flagtr==True
9 end

10 end
11 OptimizeModel(TB) % → Eqs. 22, 23, 24, 25
12 UpdateActors(listbrokers)
13 end

∇wL(w) =
1

|TB|
∑
j

(
Vw

(
sj
)
− V̂V(GAE)

(
sj
))

∇wVw
(
sj
)

(25)
Next, the policy and value network weights are updated.
Finally, the learner sends the updated policy and weights to
the actors (line 12). Taking into account the target network
stored in the learner, the OptimizeModel() function has the
ability to run multiple stochastic gradient descent/Ascent
(SGD/SGA). Moreover, µ-DDRL offers a highly scalable
solution because as the number of actors increases, the
number of shared experiences with the learner increases,
and also the training batch is further diversified. As a
result, distributed DRL agents can learn faster and adapt
themselves to stochastic fog computing environments. In
addition, the asynchronous nature of acting and learning
in µ-DDRL helps newly joined actors in the environment to
initialize their policy and parameters with the most recent
and optimized policy of the learner rather than start making
service offloading decisions using the naive actor policy,
resulting in better offloading decisions.

6 PERFORMANCE EVALUATION

In this section, we describe the evaluation setup and base-
line techniques used for the performance evaluation. Then,
the hyperparameters of µ-DDRL are illustrated and the
performance of µ-DDRL and its counterparts are evaluated.

6.1 Evaluation Setup
OpenAI gym [40] is used to develop a simulation envi-
ronment for a heterogeneous fog computing environment.
The environment comprises Smart Cameras in Transporta-
tion Systems (SCTS) as IoT devices with heterogeneous
service requests, heterogeneous resource-limited FSs, and
powerful CSs. For SCTS’ resources, we consider a 1 GHz
single-core CPU. As heterogeneous FSs, we consider 30
FSs, where each FS has a CPU with four cores with 1.5-
2GHz processing speed and 1-4GB of RAM2. Moreover, we
consider 20 CSs, where each CS has an eight-core CPU with
2-3Ghz processing speed and 16-24GB of RAM for CSs.

2The resources of FSs are aligned with resources of Raspberrypi and
Nvidia Jetson platform

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 9

Small task number,
fat, and density

Large task number,
fat, and density

Sa
m

e t
as

k n
um

be
r,

an
d d

iff
er

en
t t

op
olo

gie
s

Figure 4: Role of density, fat, and number of tasks in dataset

The bandwidth (i.e., data rate) among different servers and
SCTS devices is set based on the values profiled from the
testbed setup [9]. Accordingly, the bandwidth between SCTS
devices and FSs is randomly selected between 10-12MB/s,
while the bandwidth between SCTS devices and FSs to CSs
is randomly selected between 4-8MB/s, similar to [5], [41].
The latency between servers and SCTS devices depends on
the respective coordinates of the SCTS devices and remote
servers, as defined in Eq. 6.

Several complex services based on DAG for SCTS de-
vices, which contain heterogeneous tasks with different de-
pendency models, are designed to represent heterogeneous
services with different preferences, similar to [2], [14]. The
service property data contains the number of tasks, the
required CPU cycles (vwj), RAM usage per task (vramj),
the dependency model between tasks, the amount of data
transmission between a pair of tasks (ewi,j) and the maxi-
mum tolerable delay for each task (ζvj). Thus, in order to
generate heterogeneous DAGs, two important points must
be considered. First, the topology of the DAGs depends on
the number of tasks within the service (L), fat (identifies
the width and height of the DAG), and density (controls
the number of edges within the DAG). The second point
is the weights assigned to each task and edge within each
DAG. To generate different DAG topologies, we assume
that the number of tasks for different services ranges from
5 to 50 tasks (i.e., L ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}) to
show a heterogeneous number of tasks for services [2], [5],
[14]. Moreover, fat ∈ {0.4, 0.5, 0.6, 0.7, 0.8}, and density ∈
{0.4, 0.5, 0.6, 0.7, 0.8} to create different dependency models
between tasks of each service. Taking into account these val-
ues, we have generated 250 different topologies for DAGs,
so that each DAG presents the potential topology of a
service. Fig. 4 shows the role of fat, density, and L in the
creation of DAGs. Next, for each DAG topology, we generate
100 DAGs with different sets of weights, where vwj ranges
from 107 cycles to 3 ∗ 108 cycles [14], [42], vramj ranges from
25MB to 100MB [43], ewi,j ranges from 50KB to 2000KB [14],
[44], and ζvj is randomly selected from [25−100]ms [44], [45],
[46], [47]. Consequently, 250 different DAG topologies and
100 different weighting configurations per DAG topology
result in 25,000 service DAGs with heterogeneous L, fat,
and density, and weights. Among these DAGs, 80% have
been used for training µ-DDRL and baseline techniques,
while 20% of the DAGs are used for evaluation.

The performance of µ-DDRL is compared with the fol-
lowing baseline techniques:

Table 2: Hyperparameters

Parameter Value Parameter Value
FC layers 2 Learning Rate lr 0.01

Gradient Steps 2 Discount Factor γ 0.99
Optimization Technique Adam V-trace ρ 1

Activation Function Tanh V-trace c 1
Clipping Constant ϵ 0.2 GAE Discount Factor λ 0.95

• MRLCO: The improved version of the technique pro-
posed in [14] is considered for evaluation. This tech-
nique is extended to be used in heterogeneous fog
computing environments where several IoT devices,
FSs, and CSs are available. Also, the reward function
is updated to support deadline constraints. This tech-
nique uses synchronous PPO as its DRL framework
while the networks of the agent are wrapped by the
RNN. Furthermore, the agent is tuned based on the
hyperparameters used in [14].

• Double-DQN: In the literature, several works such as
[23], [24], [25] have used standard deep Q-learning
(DQN) or double-DQN as the agent. Here, we used
the optimized Double-DQN technique with an adaptive
exploration which provides better efficiency for the
agent. The agent model is tuned based on the hyper-
parameters used in [23].

• DRLCO: The enhanced version of the method intro-
duced in [30] is considered for evaluation. Further-
more, we updated the reward function in this work
to accommodate heterogeneous services with different
topologies and deadline constraints. This approach uses
A3C as its underlying DDRL framework.

6.2 Performance Study
This section describes the µ-DDRL hyperparameters and
presents the performance of our proposed technique and
its counterparts.

6.2.1 µ-DDRL Hyperparameters
In µ-DDRL, the DNN contains two fully connected layers,
and the DNN structure of all agents is exactly the same.
For hyperparameter tuning, we performed a grid search
and, accordingly, the learning rate lr, discount factor γ,
and gradient steps are set to 0.01, 0.99, and 2, respectively.
The control parameters of the V-trace, ρ and c, are set to 1.
In addition, the clipping constant ϵ and the GAE discount
factor are set to 0.2 and 0.95, respectively. The summary of
the hyperparameter configuration is presented in Table 2.

6.2.2 Execution Time Analysis
6.2.3 System Size Analysis
This experiment demonstrates the performance of dif-
ferent service offloading techniques after specified tar-
get policy updates (i.e., training iteration) for differ-
ent services. At first, the training dataset is selected as
L ∈ {5, 10, 20, 25, 30, 35, 40, 45, 50}, while for the evalua-
tion L = 15. Next, we consider the training dataset as
L ∈ {5, 10, 15, 20, 25, 30, 35, 45, 50} while for the evaluation
L = 40. Hence, in both cases, the evaluation dataset is
different from the training dataset, which helps understand

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 10

500

700

900

1100

1300

1500

1700

1900

2100

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Ex
ec

ut
ion

 T
im

e (
m

s)

Iteration

 µ-DDRL Double-DQN MRLCO DRLCO

(a) Training dataset: L ∈ {5, 10, 20, 25, 30, 35, 40, 45, 50},
Evaluation dataset: L = 15

500

1000

1500

2000

2500

3000

3500

4000

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Ex
ec

ut
ion

 T
im

e (
m

s)

Iteration

 µ-DDRL Double-DQN MRLCO DRLCO

(b) Training dataset: L ∈ {5, 10, 15, 20, 25, 30, 35, 45, 50},
Evaluation dataset: L = 40

Figure 5: Execution time analysis vs number of target policy updates

0

500

1000

1500

2000

2500

3000

Iteration 25 Iteration 50 Iteration 100 Iteration 200

Ex
ec

ut
ion

 T
im

e (
ms

)

 µ-DDRL 25 µ-DDRL 50 µ-DDRL 75 µ-DDRL 100 DRLCO 25 DRLCO 50 DRLCO 75 DRLCO 100
Double-DQN 25 Double-DQN 50 Double-DQN 75 Double-DQN 100 MRLCO 25 MRLCO 50 MRLCO 75 MRLCO 100

Figure 6: System size analysis

the performance of different techniques when receiving new
service offloading requests.

Fig 5 represents the average execution time of all tech-
niques in this study. As the number of iterations increases,
the execution time of all techniques decreases, meaning
that target policy updates lead to better service offloading
decisions. However, the convergence speed of service of-
floading techniques is clearly different. µ-DDRL converges
faster to the optimal solution compared to MRLCO, DRLCO,
and Double DQN in both cases, as shown in Fig 5a and
Fig 5b. The V-trace and clipping techniques used in µ-
DDRL help for more efficient training on experience tra-
jectories, leading to faster convergence to optimal service
offloading solutions. Besides, the learner in µ-DDRL gets
the benefit of more diverse experience trajectories in each
training iteration on the learner compared to other tech-
niques because it employs experience trajectories generated
by several distributed actors. Also, comparing Fig. Fig 5a
and Fig 5b demonstrates that the complexity of services has
a direct impact on the performance of service offloading
techniques, where suitable service offloading solutions for
more complex services require more experience trajecto-
ries and policy updates. In addition, DRLCO reaches bet-
ter service offloading solutions compared to Double DQN
and MRLCO but its convergence speed is slower than µ-
DDRL. Accordingly, the superiority of µ-DDRL is obtaining
the best solution and also converging faster towards best
solution. This experiment represents the performance of
service offloading techniques when the number of surrogate
computing servers increases. The larger number of servers
leads to increased search space and the number of features
that directly affect the complexity of the service offloading

problem. In this experiment, we consider a different number
of servers, where M ∈ 25, 50, 75, 100. Moreover, we consider
the training dataset as L ∈ {5, 10, 15, 20, 25, 30, 35, 45, 50},
while for the evaluation, we use L = 40.

Fig. 6 presents the obtained execution time of all service
offloading techniques while considering different number
of servers after different target policy updates (i.e., training
iterations). The execution time obtained from each technique
decreases as the number of training iterations increases,
which exactly follows the pattern shown in the previous
experiment. Moreover, as the number of servers increases,
the performance of service offloading techniques within
the same iteration number is diminished. The background
reason is that when the search space and the number of
features increase, the DRL-based service offloading tech-
niques require more interactions with the environment,
diverse experience trajectories, and training to precisely
obtain the offloading solutions. Although the pattern is the
same for all techniques, µ-DDRL converges faster to more
suitable service offloading solutions and outperforms other
techniques even when the system size grows. This is mainly
because µ-DDRL uses the shared experience trajectories (i.e.
steps in the environment) of different actors in each training
iteration, which are usually more diverse compared to ex-
perience trajectories of non-DDRL counterparts. Moreover,
µ-DDRL training is more efficient than DRLCO because
it works on actual experience trajectories forwarded from
different actors, while the main policy in DRLCO is trained
based on the parameters forwarded from different actors.
Thus, µ-DDRL offers higher scalability and adaptability
features.

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 11

0

1

2

3

4

5

6

Double-DQN MRLCO DRLCO µ-DDRL-8W

Sp
ee

du
p

Figure 7: Speedup Analysis

6.2.4 Speedup Analysis
The speedup analysis studies how long it takes for DRL
agents to obtain a predefined number of experience tra-
jectories. The faster interactions with the computing envi-
ronment, the more experience trajectories, and the higher
potential for faster training. Similarly to [5], [48], we define
the speedup as follows:

SP =
T imeR
T imeT

(26)

where T imeR is the reference time defined as the required
time that the APPO technique with 1 worker reaches 150,000
sample steps in the environment. Also, T imeT is the tech-
nique time within which each technique reaches the speci-
fied sample steps.

Fig 7 presents the speedup results of µ-DDRL with 8
workers, MRLCO, DRLCO, and Double DQN techniques.
The results depict that µ-DDRL works roughly 8 to 12 times
faster than Double DQN and MRLCO techniques in terms
of SP . Moreover, the speedup of µ-DDRL is about 40%
higher than the DRLCO technique. Therefore, the learning
time of the µ-DDRL agent is significantly lower than other
techniques, which helps reduce the startup time of DRL
agents (i.e., the time DRL agents require to converge) and
also provides greater adaptability to highly dynamic and
stochastic computing environments, such as fog computing.

6.2.5 Decision Time Overhead Analysis
In this experiment, we study the average Decision Time
Overhead (DTO) of all service offloading techniques. DTO
represents the average required amount of time that tech-
niques require to make an offload decision for each service
with several tasks. For evaluation, we consider services that
contain 40 tasks (i.e., L = 40). As Fig. 8 depicts, while µ-
DDRL outperforms MRLCO and DRLCO, it has a higher
DTO compared to Double DQN technique. However, be-
cause µ-DDRL converges faster to more suitable solutions
and its higher efficiency in the training and experience tra-
jectory generation, the negligible increase of DTO in worst-
case scenarios is acceptable.

6.2.6 Optimality Analysis
In this experiment, we are evaluating the effectiveness of our
proposed solution by comparing its performance against
the optimal results. To achieve the optimal results, we em-
ployed MiniZinc3, which allows the integration of various

3https://www.minizinc.org/

0

10

20

30

40

50

60

Double-DQN MRLCO DRLCO µ-DDRL

DT
O

(m
s)

Figure 8: Decision Time Overhead Analysis

400
600
800
1000
1200
1400
1600
1800

1 5 10 15 20 40Ex
ecu

tio
n T

im
e (

ms
)

Iteration
 µ-DDRL Optimal

Figure 9: Optimality Analysis

optimization solvers, to explore all possible candidate con-
figurations for service offloading. Due to the extensive time
required to find the optimal solution, in this experiment, we
reduce the number of candidate servers to 8 (i.e., |M| = 8)
and the number of tasks for the server to 10 (i.e., L = 10) to
reduce the search space of the problem.

Fig. 9 shows the performance of µ-DDRL compared to
the optimal results, obtained from Minizinc, in terms of
execution time. The results illustrate that µ -DDRL can
reach the optimal solution after 10 training iterations. As the
search space for the problem grows, µ-DDRL requires extra
exploration and training to converge to optimal solutions.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a distributed DRL technique,
called µ-DDRL, for efficient DAG-based service offloading
for complex IoT services in highly stochastic and dynamic
fog computing environments. We designed an MDP model
for service offloading and defined a reward function to
minimize the execution time of services while meeting their
deadlines. Next, we proposed µ-DDRL as a service offload-
ing technique working based on actor-critic architecture
and Asynchronous Proximal Policy Optimization (APPO).
The designed DDRL framework enables multiple parallel
actors (i.e., brokers that make service offloading decisions)
to work simultaneously in a computing environment and
share their experience trajectories with the learner for more
efficient and accurate training of the target policy. Moreover,
we used two off-policy correction techniques, called PPO
Clipping and V-trace, to further improve the convergence
speed of µ-DDRL towards the optimal service offloading
solution. Based on extensive experiments, we demonstrate
that µ DDRL outperforms its counterparts in terms of scal-
ability and adaptability to highly dynamic and stochastic
computing environments and different service models. Fur-
thermore, experiments show that µ-DDRL can obtain service

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 12

offloading solutions to reduce the execution of IoT services
by up to 60% compared to its counterparts.

As part of future work, we plan to consider DDRL
techniques for IoT services with dynamic mobility scenar-
ios. Moreover, we plan to update the reward function to
enable dynamic service migration among different surrogate
servers.

REFERENCES

[1] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Minimizing the delay and
cost of computation offloading for vehicular edge computing,”
IEEE Transactions on Services Computing, vol. 15, no. 5, pp. 2897–
2909, 2021.

[2] Q. Qi, J. Wang, Z. Ma, H. Sun, Y. Cao, L. Zhang, and J. Liao,
“Knowledge-driven service offloading decision for vehicular edge
computing: A deep reinforcement learning approach,” IEEE Trans-
actions on Vehicular Technology, vol. 68, no. 5, pp. 4192–4203, 2019.

[3] A. Pekar, J. Mocnej, W. K. Seah, and I. Zolotova, “Application
domain-based overview of iot network traffic characteristics,”
ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1–33, 2020.

[4] C. Liu and L. Ke, “Cloud assisted internet of things intelligent
transportation system and the traffic control system in the smart
city,” Journal of Control and Decision, pp. 1–14, 2022.

[5] M. Goudarzi, M. S. Palaniswami, and R. Buyya, “A distributed
deep reinforcement learning technique for application placement
in edge and fog computing environments,” IEEE Transactions on
Mobile Computing, 2021, accepted, in press.

[6] S. Tian, C. Chi, S. Long, S. Oh, Z. Li, and J. Long, “User preference-
based hierarchical offloading for collaborative cloud-edge com-
puting,” IEEE Transactions on Services Computing, 2021.

[7] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen,
“Delay-aware microservice coordination in mobile edge comput-
ing: A reinforcement learning approach,” IEEE Transactions on
Mobile Computing, vol. 20, no. 4, pp. 939 – 951, 2021.

[8] M. Goudarzi, H. Wu, M. S. Palaniswami, and R. Buyya, “An
application placement technique for concurrent iot applications
in edge and fog computing environments,” IEEE Transactions on
Mobile Computing, vol. 20, no. 4, pp. 1298 – 1311, 2021.

[9] Q. Deng, M. Goudarzi, and R. Buyya, “Fogbus2: a lightweight
and distributed container-based framework for integration of iot-
enabled systems with edge and cloud computing,” in Proceedings
of the International Workshop on Big Data in Emergent Distributed
Environments, 2021, pp. 1–8.

[10] M. Goudarzi, M. Palaniswami, and R. Buyya, “A fog-driven
dynamic resource allocation technique in ultra dense femtocell
networks,” Journal of Network and Computer Applications, vol. 145,
p. 102407, 2019.

[11] F. Al-Doghman, N. Moustafa, I. Khalil, Z. Tari, and A. Zomaya,
“Ai-enabled secure microservices in edge computing: Opportuni-
ties and challenges,” IEEE Transactions on Services Computing, 2022.

[12] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource alloca-
tion for mobile edge computing-based augmented reality appli-
cations,” IEEE Wireless Communications Letters, vol. 6, no. 3, pp.
398–401, 2017.

[13] Y. Ding, K. Li, C. Liu, Z. Tang, and K. Li, “Budget-constrained
service allocation optimization for mobile edge computing,” IEEE
Transactions on Services Computing, 2021.

[14] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta rein-
forcement learning,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 1, pp. 242–253, 2020.

[15] A. Petrenko, Z. Huang, T. Kumar, G. Sukhatme, and V. Koltun,
“Sample factory: Egocentric 3d control from pixels at 100000
fps with asynchronous reinforcement learning,” in International
Conference on Machine Learning. PMLR, 2020, pp. 7652–7662.

[16] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning et al., “Impala: Scalable
distributed deep-rl with importance weighted actor-learner archi-
tectures,” in International Conference on Machine Learning. PMLR,
2018, pp. 1407–1416.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[18] T. Bahreini, M. Brocanelli, and D. Grosu, “Vecman: A framework
for energy-aware resource management in vehicular edge com-
puting systems,” IEEE Transactions on Mobile Computing, 2021, (in
press).

[19] L. Chen, C. Shen, P. Zhou, and J. Xu, “Collaborative service
placement for edge computing in dense small cell networks,” IEEE
Transactions on Mobile Computing, vol. 20, no. 2, pp. 377–390, 2021.

[20] E. F. Maleki, L. Mashayekhy, and S. M. Nabavinejad, “Mobility-
aware computation offloading in edge computing using machine
learning,” IEEE Transactions on Mobile Computing, 2021, (in press).

[21] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware
application placement in mobile edge computing: A stochastic op-
timization approach,” IEEE Transactions on Parallel and Distributed
Systems, vol. 31, no. 4, pp. 909–922, 2020.

[22] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge:
Mobility-aware dynamic service placement for mobile edge com-
puting,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 10, pp. 2333–2345, 2018.

[23] C. Zhang and Z. Zheng, “Task migration for mobile edge comput-
ing using deep reinforcement learning,” Future Generation Com-
puter Systems, vol. 96, pp. 111–118, 2019.

[24] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-
edge computing networks,” IEEE Transactions on Mobile Comput-
ing, vol. 19, no. 11, pp. 2581–2593, 2019.

[25] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Opti-
mized computation offloading performance in virtual edge com-
puting systems via deep reinforcement learning,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4005–4018, 2018.

[26] R. Garaali, C. Chaieb, W. Ajib, and M. Afif, “Learning-based task
offloading for mobile edge computing,” in Proceedings of the IEEE
International Conference on Communications (ICC). IEEE, 2022, pp.
1659–1664.

[27] P. Li, W. Xie, Y. Yuan, C. Chen, and S. Wan, “Deep reinforcement
learning for load balancing of edge servers in iov,” Mobile Networks
and Applications, vol. 27, no. 4, pp. 1461–1474, 2022.

[28] L. Liao, Y. Lai, F. Yang, and W. Zeng, “Online computation offload-
ing with double reinforcement learning algorithm in mobile edge
computing,” Journal of Parallel and Distributed Computing, vol. 171,
pp. 28–39, 2023.

[29] F. Ramezani Shahidani, A. Ghasemi, A. Toroghi Haghighat, and
A. Keshavarzi, “Task scheduling in edge-fog-cloud architecture:
a multi-objective load balancing approach using reinforcement
learning algorithm,” Computing, vol. 105, no. 6, pp. 1337–1359,
2023.

[30] H. Zhou, Z. Wang, H. Zheng, S. He, and M. Dong,
“Cost minimization-oriented computation offloading and ser-
vice caching in mobile cloud-edge computing: An a3c-based ap-
proach,” IEEE Transactions on Network Science and Engineering,
2023.

[31] D. Kimovski, N. Mehran, C. E. Kerth, and R. Prodan, “Mobility-
aware iot applications placement in the cloud edge continuum,”
IEEE Transactions on Services Computing, 2021, (in press).

[32] M. Goudarzi, M. Palaniswami, and R. Buyya, “A distributed
application placement and migration management techniques for
edge and fog computing environments,” in Proceedings of the 16th
Conference on Computer Science and Intelligence Systems (FedCSIS).
IEEE, 2021, pp. 37–56.

[33] S. Shekhar, A. Chhokra, H. Sun, A. Gokhale, A. Dubey, and
X. Koutsoukos, “Urmila: A performance and mobility-aware
fog/edge resource management middleware,” in Proceedings of
the IEEE 22nd International Symposium on Real-Time Distributed
Computing (ISORC). IEEE, 2019, pp. 118–125.

[34] C. Mouradian, S. Kianpisheh, M. Abu-Lebdeh, F. Ebrahimnezhad,
N. T. Jahromi, and R. H. Glitho, “Application component place-
ment in nfv-based hybrid cloud/fog systems with mobile fog
nodes,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 5, pp. 1130–1143, 2019.

[35] H. Sami, A. Mourad, and W. El-Hajj, “Vehicular-obus-as-on-
demand-fogs: Resource and context aware deployment of con-
tainerized micro-services,” IEEE/ACM Transactions on Networking,
vol. 28, no. 2, pp. 778–790, 2020.

[36] M. Bansal, I. Chana, and S. Clarke, “Urbanenqosplace: A deep
reinforcement learning model for service placement of real-time
smart city iot applications,” IEEE Transactions on Services Comput-
ing, 2023.

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 13

[37] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, and
L. Qi, “A computation offloading method over big data for iot-
enabled cloud-edge computing,” Future Generation Computer Sys-
tems, vol. 95, pp. 522–533, 2019.

[38] X. Qiu, W. Zhang, W. Chen, and Z. Zheng, “Distributed and col-
lective deep reinforcement learning for computation offloading: A
practical perspective,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 5, pp. 1085–1101, 2020.

[39] M. Luo, J. Yao, R. Liaw, E. Liang, and I. Stoica, “Impact: Impor-
tance weighted asynchronous architectures with clipped target
networks,” arXiv preprint arXiv:1912.00167, 2019.

[40] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[41] H. Wu, W. Knottenbelt, and K. Wolter, “An efficient application
partitioning algorithm in mobile environments,” IEEE Transactions
on Parallel and Distributed Systems, vol. 30, no. 7, pp. 1464–1480,
2019.

[42] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency
scaling,” IEEE Transactions on Communications, vol. 65, no. 8, pp.
3571–3584, 2017.

[43] M. Goudarzi, Q. Deng, and R. Buyya, “Resource management in
edge and fog computing using fogbus2 framework,” arXiv preprint
arXiv:2108.00591, 2021.

[44] Z. Cheng, M. Min, M. Liwang, L. Huang, and Z. Gao, “Multi-
agent ddpg-based joint task partitioning and power control in fog
computing networks,” IEEE Internet of Things Journal, vol. 9, no. 1,
pp. 104–116, 2021.

[45] T. Xie and X. Qin, “Scheduling security-critical real-time applica-
tions on clusters,” IEEE transactions on computers, vol. 55, no. 7, pp.
864–879, 2006.

[46] P. Gazori, D. Rahbari, and M. Nickray, “Saving time and cost on
the scheduling of fog-based iot applications using deep reinforce-
ment learning approach,” Future Generation Computer Systems, vol.
110, pp. 1098–1115, 2020.

[47] Y. Chen, S. Zhang, Y. Jin, Z. Qian, M. Xiao, J. Ge, and S. Lu, “Locus:
User-perceived delay-aware service placement and user allocation
in mec environment,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 7, pp. 1581–1592, 2022.

[48] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic
scheduling for stochastic edge-cloud computing environments
using a3c learning and residual recurrent neural networks,” IEEE
Transactions on Mobile Computing, 2020.

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 14

APPENDIX A
PARAMETERS AND RESPECTIVE DEFINITIONS

A summary of the parameters and their respective defini-
tions is presented in table 3.

SUBMITTED TO TRANSACTIONS JOURNAL, VOL.YY, NO.ZZ, YEAR 15

Table 3: Parameters and respective Definitions

Parameter Definition Parameter Definition
G A service represented as a DAG. V The set of tasks within each service G.

vi The ith task in a set of tasks V . E The set of edges denoting the data dependencies between tasks
for each service G.

ei,j A data flow between vi (parent) and vj (child) L The maximum number of tasks in a service G

ewi,j The amount of input data that task vj receives from task vi. vwj The number of CPU cycles required for the processing of the task.
vramj The required amount of RAM required to run the task. ζvj The maximum tolerable delay for the task.
P(vj) The set of all predecessor tasks of vj . M The set of available servers

my,z A server in which y illustrates the server’s type and z presents
the index of the corresponding server’s type.

xvj The offloading configuration of task vj .

X The offloading configuration set of a service. CP (vi)
A function to indicate whether or not each task is on the critical
path of the service.

CP The set of tasks on the critical path of the service. Txvj
The execution time of each task vj .

T proc
xvj

The processing time of the task on the corresponding server. T input
xvj

The time it takes for the input data to become available for that task.

fs
xvj

The processing speed of the corresponding assigned server. b(xvi , xvj)
The data rate (i.e., bandwidth) between the selected servers for the
execution of vi and vj .

l(xvi , xvj) The communication latency between two servers. ðc The propagation speed for the communication medium.

d(xvi , xvj)
The Euclidean distance between the coordinates of the participating
servers in the Cartesian coordinate system.

SS(xvi , xvj)
A function that indicates whether the servers assigned to each pair of
tasks are the same (that is, 0 if xvi = xvj) or different (i.e., 1 if xvi ̸= xvj).

T (X) The execution time of each service based on its configuration. IA(vj ,m
y,z)

An indicator function to check if the task vj is assigned to the server
my,z (IA = 1) or not (IA = 0).

.

S The state space in MDP. A The action space in MDP.
P A state transition between states in MDP. R The reward function in MDP.
γ The discount factor in MDP. π(at|st) The agent policy.
st The state of environment at time step t. at The action at time step t.
rt The reward at time step t FM

t The feature vector of all M servers at time step t.
F

vj
t The feature vectors of the current task in a service. fmy,z

i The ith feature corresponding to the server my,z .
f
vj
i The ith feature of the task vj . Φ The failure penalty to penalize actions that violate ζvj .

	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 Service Model
	3.2 Problem Formulation
	3.2.1 Optimization model

	4 DRL Model
	5 -DDRL: Distributed DRL Framework
	5.1 -DDRL: Actor Role
	5.2 -DDRL: Learner Role

	6 Performance Evaluation
	6.1 Evaluation Setup
	6.2 Performance Study
	6.2.1 -DDRL Hyperparameters
	6.2.2 Execution Time Analysis
	6.2.3 System Size Analysis
	6.2.4 Speedup Analysis
	6.2.5 Decision Time Overhead Analysis
	6.2.6 Optimality Analysis

	7 Conclusions and Future Work
	References
	Appendix A: Parameters and respective Definitions

