
DoSP: A Deadline-Aware Dynamic Service Placement

Algorithm for Workflow-oriented IoT Applications in

Fog-Cloud Computing Environments

Meeniga Sriraghavendra1, Priyanka Chawla1, Huaming Wu2, Sukhpal Singh Gill3,

and Rajkumar Buyya4

1School of Computer Science, Lovely Professional University, Phagwara, Punjab, India
{sr.meeniga, priyankachawla.cse}@gmail.com

2Center for Applied Mathematics, Tianjin University, Tianjin 300072, PR China

whming@tju.edu.cn

3School of Electronic Engineering and Computer Science, Queen Mary University of

London, UK
s.s.gill@qmul.ac.uk

4Cloud Computing and Distributed Systems (CLOUDS), Laboratory, School of Computing

and Information Systems, The University of Melbourne, Australia
rbuyya@unimelb.edu.au

Abstract. The next generation Internet of Things (IoT) applications are offering

multiple services and run in a distributed heterogeneous environment. In such

applications, Quality of Service (QoS) requirements are in jeopardy when the

computing operations are only outsourced to the public cloud. For IoT

applications a comprehensive framework that supports QoS-aware service

placement in a fog computing environment is highly required. It is a challenging

task to orchestrate the time critical IoT applications in the fog environment. To

alleviate this problem, this paper proposes a novel multitier fog computing

architecture called Deadline oriented Service Placement (DoSP) that provides the

services both in fog and cloud nodes. This research work proposed a

methodology to utilize low cost fog resources while ensuring that the response

time satisfies a given time constraint. It uses the Genetic Algorithm (GA) to

dynamically determine the service placement in the fog environment. In this

work, we used the iFogSim simulator to model DoSP and measured the impact

of the service placement technique in terms of service deadline. It has been

observed that through the proposed solution, there is a reduction in service

execution delay, i.e. approximately 10.19% of the overall response time to the

EdgeWard and 2.58% to the cloud-only.

Keywords: Fog computing; IoT; Cloud Computing; Edge Computing;

Workflow.

1 Introduction

Cloud computing has been facilitating individuals and organizations by extending

access to remote computing resources on subscription basis. In cloud computing, the

servers are located in a remote place and provide computing resources on demand.

Servers being in the remote place leads to problems such as high latency, high

bandwidth and energy consumption. Because of these disadvantages cloud computing

is not ideal for Internet of Things (IoT) applications [1], which are latency sensitive,

such as precision agriculture, intelligent transportation, smart homes, smart cities, smart

grids, smart healthcare units and smart supermarkets. Providing services in a short time

is a major research issue that has been addressed by many researchers in the past few

years [4][28][30]. The issue to get the computation closer to the end devices, which

produce the computational data, is addressed by fog computing technology. Fog

computing is an elongated version of cloud computing with effective network

bandwidth utilization, heterogeneous computation, workload distribution, and mobility.

Some of the extended features of fog computing are described in the below Table 1.

Table 1 Fog Computing Features

Factor Description

Low Latency The best facilities on the edge of the network

are provided

Mobility Disassociates the host identity to the location

identity.

Real Time Interactions Uninterrupted speedy service.

Interoperability Objects collaborate and communicate with

each other during the transmission

Low Energy Consumption Reducing computation and communication

energy consumption.

Resource provisioning can reduce latency and increase compliance of Service Level

Agreements (SLAs) [32], which has been investigated in [7], [10], [18], [19], and [25].

However, mere service provisioning cannot achieve the desired performance, which

needs to be coupled with service placement strategies as explored in [3], [4], [6], [12],

[13], [31], [33] and [34]. So, there is a need for a comprehensive approach that not only

takes care of service placement but also enhances Quality of Service (QoS) in the

heterogeneous and dynamic fog-cloud computing environment.

The major contributions of this proposed work is as follows: The proposed work

provides a comprehensive solution of QoS-aware service placement to realize highly

optimized service placement of sequential IoT applications in a fog-cloud computing

environment.

1. A Deadline-oriented Service Placement (DoSP) algorithm is proposed,

which analyzes the response time of service placement indifferent layers,

and determines decisions on placing modules/services of workflow-based

IoT application in different layers of fog-cloud architecture.

2. The fog-cloud environment is simulated using iFogSim toolkit and the

performance of the service placement algorithm is evaluated. We are able

to visualize the service placement and the different layers determine

decisions on placing modules/services of multiple IoT applications in

different layers of fog-cloud architecture.

The rest of the sections in the paper are organized in the following way: Section 2

presents a motivating scenario for the research carried out. Section 3 reviews the

literature on developing and deploying IoT applications, resource allocation and

application/service placement in the fog-cloud environments. Section 4 presents the

system model which is the basis of the research. The complete methodology used to

realize an approach for deadline-aware efficient service placement is provided in

Section 5. Section 6 presents the study on simulation that is made with iFogSim

simulator. The performance evaluation of our approach and comparison with the state-

of-the-art methods is presented. Section 7 concludes the paper along with directions for

future work.

2 Motivation Scenario

Fog computing helps benefit IoT devices and applications. This is an important

proposition based on which this motivating scenario is conceived. Workflow-based IoT

applications in the real world need to desire latency where the edge of the network with

storage and computing services (fog computing) plays a crucial role. Extending the

cloud computing capability to the edge of the network, and providing a required

inductive usage is by Fog Computing. Placement of IoT applications with proper

utilization of cloud and fog computing resources is a game changing approach that will

have a huge impact on the deployed applications. Figure 1 shows the motivating

scenario that can be used to investigate the proposition aforementioned.

As presented in Figure 1, it is evident that a patient respiratory management system is

considered as a motivation scenario. Wearable sensors such as sensors are used to detect

the vital signs of a patient in relation to the cardiovascular system. The wearable devices

equipped with sensors are connected to other digital infrastructure. The sensors provide

heartbeat rate, changes in blood volume of the skin and oxygen level carried in both.

When sensors provide redundant and irrelevant data, they need to be pre-processed with

filtering techniques prior to data analytics. The results of the analysis provide the

severity of the problems and accordingly further steps are taken. Sometimes the results

reflect an emergency situation where immediate attention is essential. As the

application is crucial, in the healthcare domain it is essential to optimize service

placement for better latency besides adhering to deadlines if any. It is therefore

necessary to evaluate the device modules and make decisions on placements in various

layers. Low latency reflects high performance while high latency reflects low

performance. This scenario motivates further research on optimal service placement as

the availability of the application is indispensable. Every application consists of various

modules. The modules of the case study application considered here are described in

the following subsections.

Figure 1 Optimized Application module placement architecture

2.1. Sensing Module

This is the module where actual sensing of data takes place. It is made by the wearable

body sensors that are associated with a selected patient. This module is responsible for

generating the patient’s vital signs related to the respiratory system. Thus, it plays a

crucial role in the application, because without this module, other modules would not

exist.

2.2. Data Aggregation Module

This module is responsible for data aggregation, which is needed in order to have more

meaningful data and also get rid of duplications. It also has a device that converts the

analog signal into digital counterparts and needs to be integrated with a microcontroller

unit that involves in the data aggregation process, it may include filtration and

normalization. The data is aggregated and finally sent to the fog controller node.

2.3. Data Analysis Module

This module is responsible for analyzing data. This is made as per the kind of sensor

data, which involves in machine learning algorithms. It is used to test hypotheses.

Besides, it needs processing power, storage, and to be placed carefully based on the

deadline constraints.

2.4. Decision Making

The analysis module provides the required patterns or interesting facts found in the

analysis. These facts are interpreted, and decisions are made by this module. The

decisions are pertaining to the real time diagnosis of the patient’s vital signs and make

the necessary steps. A decision vector holds the resultant information.

2.5. Actuation Module

This module is responsible for turning energy into motion or performing its intended

purpose. In general, it converts physical parameters into electrical outputs.

3 Related Work

This segment examines the literature on the location of services in the fog computing

world and its associated aspects.

3.1. Building and Deployed Fog-Based IoT Applications

Kochovski and Stankovski [1] focused on dependable edge computing and proposed

architecture for constructing smart applications that exploit edge computing in the

context of IoT. Their proposed infrastructure includes edge management services,

virtual clusters, and smart IoT construction environments. Edge management services

perform probing, monitoring, alarming and storing. Edge management services work

on top of virtual clusters to support edge computing applications. Pham and Huh [2]

considered a cloud-fog computing environment, where fog nodes are used

appropriately along with cloud nodes to enhance performance. Giang et al. [11]

proposed a distributed data flow approach for building IoT applications to be deployed

in fog.

3.2. Resource Allocation for IoT Applications in Fog Environment

It is essential to have resource allocating mechanisms, when the IoT applications are

executed in the fog-cloud environment. Skarlat et al. [7] presented an architecture or

framework for resource allocation in the fog-cloud environment. Delay sensitive

utilization of fog resources was the aim of the framework. Considering SLAs and QoS,

Aazam et al. [10] proposed a framework known as Media Fog Resource Estimation for

estimation of resources based on QoS, QoE, Relinquish Rate (RR) and service give-up

ratio.

Yousefpour et al. [15] studied the problem of service provisioning in a dynamic and

distributed computing environment. To solve the dynamic service placement they have

proposed two heuristic algorithms in fog inspite of building a framework to realize it.

They found that the framework could decrease SLA violations besides increasing the

performance of deployed applications. Aazam and Huh [16] considered many issues

with IoT-fog environment due to the mobility of nodes, resource constrained nature of

nodes and heterogeneity of the environment. Taking those factors into account, they

proposed resource estimation and provisioning framework through fog micro

datacenter. Aazam and Huh [17] have researched adaptive resource estimation and cost

allocation models for IoT applications implemented in the fog computing area.

An architecture for flexible and adaptive resource allocation in fog computing is

proposed by Agarwal et al. [18]. They proposed an algorithm known as Efficient

Resource Allocation (ERA) for estimation of resources and allocating the same to IoT

applications deployed in fog. On the other hand, Verma et al. [19] focused on reliable

services in the fog by proposing load balancing and data replication techniques and

reduce dependency on the cloud. Alsaffar et al.[20] suggested an architecture for the

dual purpose of the distribution of resources and the allocation of IoT services in a fog

computing system. They found that their work is resulted in meeting the QoS of

applications and SLAs.

In the context of container based service computing, Tao et al. [23] proposed a dy-

namic resource allocation algorithm, which is based on scheduling and fuzzy inference

system. Their contributions may increase the efficiency of the cluster in terms of

average execution time. Ni et al. [24] proposed a model known as Priced Timed Petri

Nets (PTPN), which is a resource allocation strategy in fog computing and also a model

to support the strategy. Shekhar et al.[25] proposed a dynamic and data-driven cloud

and edge system for dynamic resource management in fog in the presence of

performance-sensitive applications. Dang and Hoang [26] proposed a framework for

efficient scheduling of tasks in the fog to realize expected latency, this framework is

known as fog-based region. A joint optimization approach for resource allocation is

investigated by Zhang et al. [27] for efficient resource allocation and performance of

IoT applications in fog-cloud environments.

3.3. Service Placement in Fog Environment

IoT applications may have micro-services that need to be deployed strategically. Filip

et al. [3] studied cloud-edge environments for scheduling micro-services related to IoT

applications. They proposed a scheduling architecture for real life utilization of the fog-

edge environment effectively. They used a scheduling policy for better task scheduling.

IoT applications have multiple modules. Mahmud et al. [4] studied deploying such

modules in the fog-cloud environment. They proposed a methodology to fully take

advantage of the capabilities of fog nodes in the context of large IoT applications. Their

approach resulted in a decrease of latency towards QoS requirements of the

applications. Similarly, Desikan et al. [5] explored latency-aware data processing in the

fog-cloud environment. They could reduce the response time and increase the

performance of gateways with buffer occupancy efficiencies.

Taneja and Davy [6] proposed an algorithm named Module Mapping, which is meant

for deploying modules of IoT application appropriately in fog-cloud resources. As the

storage and computation are distributed dynamically, the algorithm was able to reduce

latency and improve the capabilities of the cloud-fog environment to withstand SLAs.

Skarlat et al. [8] investigated QoS-aware provisioning of services of IoT, on fog

resources and found a considerable 35% less cost in terms of execution time while

compared with the cloud-based approach. On the other hand, Mahmud et al. [9]

considered Quality of Everything (QoE)-aware placement of services or applications in

a fog computing environment. They proposed an application policy that is QoE-aware

and prioritizes application placement requests as per the expectations of users.

Souza et al. [12] studied the QoS-aware service allocation problem. They proposed fog-

cloud architecture with four tiers. The bottom layer composed of end user devices, the

layer above is called the fog layer 1, fog layer 2 is on top of fog layer 1 and the top most

layer is the cloud. The cloud has high reach ability but causes high access delay with

respect to IoT applications. Fog layer 2 exhibits medium reach ability and medium

access delay, while fog layer 1 causes low reach ability and low delay. This scenario is

to be exploited by QoS-aware service allocation. FogTorch is a java tool which is

proposed by Brogi and Forti [13]. The tool is a latency and bandwidth-aware while

deploying the IoT applications in the fog. Brogi et al.[35] have reviewed the existing

policies to solve the problem of how to dynamically deploy the application modules in

the computational components with qualitative attributes. Abbasi et al.[36] addresses

the problem of placement of workloads. The purpose of their study is to minimize the

energy consumption and propagation delay of the cloud while processing. In this work,

the placement problem is solved by using the NSGA-II algorithm. The work does not

focus on the application deadline and the propagation delay among the fog nodes.

3.4. A Qualitative Comparison

Table 2 identifies and compares key elements of related works with DoSP. The

comparison attributes are the target system, application type, resource utilization,

minimization of response time, application priority and deadline constraint. The

insights found in the literature reveal that the existing approaches are good to realize

fog-cloud environments with increased performance. However, it is understood that a

comprehensive framework that not only takes care of service placement but also QoS

enhancement in the presence of the highly heterogeneous environment.

4 System Model

The system model considered for the proposed research provides the layered

architecture, in which proposed workplaces the multiple sequential IoT applications

with a sense-process-actuate model are executed. In the context of this system model

service placement, QoS-aware service placement approach is explored in this research

work.

Table 2 Comparison of DoSP with existing works

FN is meant for storing arbitrary data required by workflow-based IoT applications and

also supports computations. It is said to be the local node or the node that is closer to

the deployed IoT application. Thus, fog computing is an enhanced version of of cloud

Work

Targ

et

system

App

(Applica

tion) type

Resource

utilization

(same

cluster/neighbor

cluster)

Minimi

ze

response

time

App

(Appli

cation)

priorit

y

Deadline

constraint
Approach

Kochovskietet

al. [1]
Edge

workflo

w
Same cluster No No No Test bed

Giang et al. [11] Fog
workflo

w
Same cluster No No No

Visual

programming tool

Taneja et al. [6] Fog
workflo

w
Same cluster No No No Heuristic Algorithm

Abbasi et al.[36] Fog
workflo

w
Same cluster No No No Heuristic Algorithm

Skarlat et al. [7] Fog
workflo

w
Same cluster Yes No No

Linear

Programming

Pham et al. [2] Fog
workflo

w
Same cluster Yes No No Heuristic Algorithm

Alsaffar et al.

[20]
Fog

workflo

w
Same cluster Yes No No Heuristic Algorithm

Gupta et al. [22] Fog
workflo

w
Same cluster Yes No No Heuristic Algorithm

Souza et al. [12] Fog
workflo

w
Same cluster Yes No No

Linear

Programming

Zeng et al. [29] Fog
Bag-of-

tasks
Same cluster Yes No No Heuristic Algorithm

Mahmud et al.

[9]
Fog

workflo

w
Same cluster Yes Yes No Fuzzy logic

Goudarji et al.

[34]
Fog

workflo

w
Same cluster Yes No No Heuristic Algorithm

Pham et al. [28] Fog
workflo

w
Same cluster Yes No Yes

Heuristic Algorithm

Mahmud et al.

[4]
Fog

workflo

w
Same cluster Yes Yes Yes Heuristic Algorithm

Skarlat et al.

[30]
Fog

workflo

w

Same and

Neighbor

Cluster

Yes Yes Yes
Linear

Programming

DoSP (this

work)
Fog

workflo

w

Same and

Neighbor

Cluster

Yes Yes Yes Heuristic Algorithm

computing which is especially meant for rendering efficient services to workflow-based

IoT applications. As per the facts found in the literature, FCN>FN>CN>NFCN is the

thumb rule with respect to the speed of the deployed services of IoT applications. In

this context, this system model is used to investigate service placement with QoS

awareness strategies in place. The proposed mechanism for service placement has two

different phases, i.e., application prioritizing phase and node selection phase. In the

prioritizing phase, the services of IoT applications are assigned priorities. In the node

selection phase, the suitable node in the fog or cloud is selected for the placement of

given services. Based on the objective function, the node selection is carried out.

Figure 2 System model

4.1. Application Prioritizing Phase

In this phase, the requests coming from different applications for service placement are

subjected to prioritization. Towards this end, based on the distance between the

deadline of an application and the deployment time of an application we prioritize the

applications, which is defined as follows:

 prioritization = DeadlineAppi
− DeptimeAppi

 (1)

Where DeadlineAppi represents application deadline, and DeptimeAppi represents

waiting time for deployment. DeptimeAppi is associated with the time waited by

application prior to assignment of it to suitable computing resources.

It is always a better practice to initially assign the applications that have high waiting

time based on the deadline to the fog resources. As the deadline cannot be violated, it

needs to be made so. Allocating the shortest computation applications first to fog

resources may lead to starvation, hence it is not desirable.

4.2. Node Selection Phase

In order to deploy services of an application, it is essential to have certain constraints

that can help to achieve optimal performance.

Constraint 1: In addition to storage, this constraint is related to RAM and CPU

(important computer resources). These resources are to be considered as the fog

resources allocation should not exceed these available resources.

∑ ∑ ResAppModi

𝐴𝑝𝑝𝑖

𝐴𝑝𝑝𝑀𝑜𝑑𝑖

. PlaceAppModi
fn ≤ Avail

Resfn
, ∀fn

𝐴𝑝𝑝

𝐴𝑝𝑝𝑖

 (2)

Where fn={FN,FCN,NFCN}denotes fog node in a fog cluster,

Res={CPU,MEM,STORAGE}denotes required resources, Place denotes service

placement and Avail denotes available resources.

Constraint 2: This condition is related to expected response time of the applications.

No application should violate its deadline, therefore:

 ResptimeAppi ≤ DeadlineAppi , ∀Appi (3)

Where ResptimeAppi represents application response time and DeadlineAppi represents

application deadline.

Estimating application response time

In a deadline-aware approach, it is important to estimate application response time.

Therefore, the response time can be estimated by:

 ResptimeAppi = TotDeptimeAppi + ExectimeAppi (4)

 ExectimeAppi = MakespanAppi + CommAppi (5)

Where TotDeptimeAppi denotes deployment time, ExectimeAppi denotes execution time,

MakespanAppi denotes makespan time, and CommAppi denotes communication time.

DeptimeAppi considers elapsed time prior to the placement of each service correctly. The

placement is done either in cloud or fog based on runtime situations. In fact,

TotDeptimeAppi represents elapsed time and also the expected deployment time. It is

made when service AppModi ∈ Appi is actually subjected to propagation to nearest

colony. The execution time denoted as AppModi ∈ Appi reflects the time required for

execution of all services of given application plus the amount of communication needed

among services. Therefore, the total execution time AppModi ∈ Appi is computed as

the communication time CommAppi and the sum of makespan MakespanAppi . In the

link, delays reflect communication time in the process of service placement in different

areas as illustrated in the architecture.

4.3. IoT Application Placement Flow in Fog Environment

Figure 3 shows a fog controller node receives a service placement request from the

user. Then, it identifies the required resources for the requested IoT application. It also

takes deadline associated with the service to be placed. Keeping deadline in mind, the

resources on fog nodes are analyzed. Then identify fog nodes that can meet service

deadline. Afterward, the deadline-deployment time is calculated and verified. If it is

low, the service is placed in the fog node (or) fog controller node (or) cloud. If the time

is high, then it is forwarded to NFCN and checks the resource availability and QoS

expectation. If it is satisfied, the application modules are placed in NFCN, otherwise,

they are forwarded to the public cloud where the service is placed.

5 Proposed Methodology

Goal of this proposed work is to develop a comprehensive framework that supports

QoS-aware service placement of IoT based applications in a fog based computing

environment. The significance of this methodology lies in the context of emerging IoT

applications in different domains like healthcare, military and the need for fog

computing to accommodate the same besides exploiting the technologies like cloud

computing. According to the research objectives mentioned in Section 4, the proposed

methodology needs to be divided into multiple sections.

5.1. Overview of the proposed work

This section provides an overview of the proposed work. The framework presented in

Figure 4, which provides QoS-aware service placement for ensuring that the placement

of services is highly optimized to improve performance. This kind of methodology can

help in placing services in a fog computing environment with efficient decision making

related QoS requirements of a given IoT application. Workflow-based IoT

application(s) is given as input. Then, the proposed system is responsible for analyzing

its requirements and executing an algorithm to have an effective service placement that

considers the deadline of services. The service placement achieves satisfying deadlines.

Here in the proposed work, no service layer agreements are considered, for simplicity.

5.2. Functional Details of the Proposed Work

The proposed architecture for deadline aware service placement is as shown in Figure

5, which is elaborated with functional details. On taking one or more workflow-based

IoT applications, the proposed architecture performs a series of activities to ensure that

the service placement is done according to the requirements of the application. From

the IoT application, the modules of the application are extracted. For each

module/service, the details obtained include a number of modules to be placed, the

sequence of the modules and the deadline associated with each module. Afterward, the

requirements for each module are analyzed. This is nontrivial as each module needs

different resources such as memory, processing power, and bandwidth. Moreover, this

requirement for a given service may be fulfilled in FN, FCN, NFCN or CN. Resource

availability is then verified to know the information about all nodes and their available

resources. The resource availability information is then utilized to make a decision on

node selection for a given service or module. Once node selection is made based on the

latest analysis of the resource availability considering the deadline associated with the

service, the services are finally placed in a selected layer and in selected nodes.

Figure 3 Flowchart of Resource Provisioning for IoT application in Fog based

computing environment

Figure 4 Overview of the framework showing the proposed research

5.3. Deadline-oriented Service Placement Algorithm (DoSP)

Deadline-oriented Service Placement (DoSP) algorithm is designed to analyze the fog

environment for a given deadline requirement of a workflow-based IoT application and

make well informed decisions on the application or its modules placement in the fog

environment. The proposed DoSP algorithm is presented in Table 3.

The proposed algorithm is part of Deadline-aware service placement module in Figure

4 and Node selection module in Figure 5. It is based on the concept of Genetic

Algorithms (GA). When using a genetic algorithm, the first thing to be considered is

how to model the solution.

Every operator inside the GA will work using that model. The size of the vector

considered is equal to the number of services that will be used in the algorithm, i.e., the

number of services requested to be executed. The vector is the placement plan which

places the application modules. If the vector[i] = 2, then ith module is placed in node 2.

Hence, the ith module is placed in the computation node value. We consider this vector

(the placement plan) as the chromosome. As said before, it will be in the form of a

vector of integers. Possible integers are IDs of fog cells, cloud, closest neighbor, fog

orchestration control node. The IDs considered as follows, 0 for Cloud, 1 for FCN, 2

for NFCN, 3 to remaining as FN. The number of possible integers is assigned to the

variable “number of Placement Locations”

Figure 5 Functionalities of the proposed architecture

After we assign values to variables “Chromosome Length” and “Number of Placement

Locations”, we need to create the first generation. One of the segments of the GA is the

population size that needs to be predefined. With this number, we will go ahead and

create many chromosomes (solutions) to form the first generation. There are a lot of

different ways how we can create a chromosome, i.e., fill a vector of integers. One way

is to randomly put numbers from a set of possible integers to the vector. A new

chromosome is created at this stage. All the generated chromosomes should satisfy the

state check. A state check is an operation which checks whether the given plan is

successfully placed. A module can be successfully placed firstly, when the required

MIPS is less than available MIPS secondly, the sense and actuation modules are placed

only in FN, and finally process modules are not allowed to place in FN.

After a new chromosome has been created, we calculate its fitness to see how good it

really is, and then we add it to the population. The fitness of the chromosome depends

on how far the app is away from the deadline. If the application is closer to the deadline

then a high penalty is added or else a low penalty is added. Here we need to minimize

the fitness value. Minimum fitness chromosome is the best possible placement plan.

We assign the fittest chromosome from the population to the variable “fittest

Chromosome”. If that chromosome satisfies all the constraints, we return it, and this is

done. If that is not the case, we will need to use the rest of the algorithm. First, we

define how many crossovers will be executed. “Crossover” is another operator inside

the genetic algorithm which is used.

Another segment of the genetic algorithm is the number of generations, which is also

user defined. In each generation, we used a GA operator “selection” to get the

best(fittest) chromosome. The fittest chromosome is, in this case, the one that has the

biggest fitness among the selected ones. So, we are not looking at the fittest

chromosome directly from the population. The selection part of the algorithm can be

implemented in many ways. One way is to use the Tournament selection. Tournament

selection is the type of selection with two steps.

Table 3 Deadline-oriented Service Placement (DoSP) Algorithm

Algorithm 1: Deadline-oriented Service Placement (DoSP)

Inputs: No. of applications, No. Application modules, CPU, Memory Storage, make-span time,

deployment time, population.

Output: Efficient and deadline-aware service placement

// build the first generation

Chromosome Length = total No. of applications * No. Application modules;

Number Of Placement Locations = FN or CN or NFCN or FCN;

for i = 1 to population Size do

 new Chromosome = create Chromosome(Chromosome Length, Number Of Placement

Locations);

 if(state_check(Chromosome))

 calculate fitness of new Chromosome;

 add new Chromosome to population;

 i++

end for

for i = 1 to generation Limit do

 fittest Chromosome = get Fittest Chromosome(population);

 if fitness of fittest Chromosome > 0 then

 return fittest Chromosome;

 add the current population to the temporary population;

 number Of Chromosomes Used For Crossover = generation Size * defined Crossover

Percentage;

 number Of Crossovers = number Of Chromosomes Used For Crossover / 2;

// two chromosomes are involved in each crossover

 for j = 1 to number Of Crossovers do

 parent Chromosomes = select Chromosomes(population); // selection

 children Chromosomes = mate Chromosomes(parent Chromosomes); // crossover

 state_check(children Chromosomes)

 state_check(mutate Chromosomes(children Chromosomes)); //mutation and state check

 calculate the fitness of the new chromosomes;

 add the new chromosomes to temporary population;

 end for

 add elite chromosomes from temporary population to the new population;

 add remaining best chromosomes from temporary population to the new population;

end for

The first step is to round all the solutions from the population into a “circle”, and

depending on the fitness of each solution, it will occupy some part of that circle. The

better is the fitness, the greater the percentage of the circle. The second step is to return

the fittest out of the selected solutions. This selection is used to get both parents. There

are different ways of how a crossover can be implemented.

One way is the uniform crossover. In this crossover, genes (parts of the chromosome)

are uniformly selected between both parents to form a child chromosome. Another

genetic algorithm parameter is the fixed mixing ratio inside the uniform crossover,

which tells us how much of the genes will come from each parent. We are actually

creating two child chromosomes with crossover. Those chromosomes are completely

opposite. If the first one uses the first gene from the first parent, the second one will use

the first gene from the second parent, etc. Here in the proposed algorithm we have used

uniform crossover. The resultant chromosome is the valid chromosome which satisfies

the state check. A mutation can happen after crossover. The mutation is another genetic

algorithm operator. It is rarely used, but it is a tool that helps a lot when we want to

have a diverse population. In the mutation operation, we select ‘m’ number of random

locations, and we stuff each location with a new node value that satisfies the state check.

After the mutation, we calculate the fitness of the new chromosomes and store them

(chromosomes) into a temporary and constant list of population. In that temporary list,

we also put the whole current population. After this, we do all the crossovers and place

all the new chromosomes to the temporary population, we perform elitism. Elitism has

a percentage, for example, 20%, which means that 20% of the best chromosomes from

the current population will automatically go to the next generation. The rest will be

selected from the temporary population by sorting them (chromosomes) based on the

fitness value and choosing the best 80%from them. This depends on when the user-

defined algorithm stops. When the number of applications and nodes increase the time

complexity will increase, this is observed while using genetic algorithms. The

asymptotical time consumption or the complexity of the proposed algorithm is O(nlogn

+ IPS2), where n indicates no. of applications for sorting, I is the no. of iterations, P

indicates population size and S implies no. of sub solutions.

6 Performance Evaluation

6.1. System Setup and Parameters

As found in [3], [6], [8] and [10], simulation studies are widely used for fog computing

to evaluate resource management policies. Here, we use a fog computing simulation

toolkit named iFogSim [22], which is found to be a suitable framework for fog

computing research as it is used by a number of research works like [14],[20],[27] and

[31].

The environment is important for conducting experiments. A summary of the

environment used for the empirical study in this research work is given in Table 4.

The simulation study has been carried out using iFogSim with JDK 1.8. Our simulation

framework has an API to visually model the fog computing infrastructure. It has

provisions to model the cloud, fog nodes, fog controller nodes, gateways, sensors, and

actuators. The organization of the network is as follows: one ‘Fog Orchestration node’,

ten ‘Fog Nodes’ controlled by a ‘Fog Controller Node’, one ‘Neighbor Controller

Node’, and a ‘Cloud’. The processing capability of the node can be set with a certain

capacity that is measured in Millions of Instructions per Second (MIPS). The iFogSim

supports drag and drop features that help users to have intuition in design and

understanding.

Table 4 Simulation setup and its configuration

Processor Intel Core i5-2430 CPU,2.40GHz

Memory 8 GB

Simulator iFogSim

Operating System Windows 7 Professional

Topology model Hierarchy

Figure 6 shows the fog infrastructure modeled for the proposed simulation study.

Table 5 Characteristics of the fog controller node and fog node

Parameter Fog Controller node Fog node

Processing rate 1000 MIPS 250 MIPS

Memory 512 MB 256 MB

Storage 8 GB 4 GB

Figure 6 Fog infrastructure modeled using iFogSim for the simulation study

Each fog cell has a provision for different nodes. Once the modeling is made, the nodes

are configured appropriately. In the simulation study, each node mimics a real world

node with equivalent characteristics. Therefore, it is essential to configure them as

required. How fog controller and fog nodes are configured for different parameters is

shown in Table 5. The parameters include processing rate, memory and storage details.

As shown in Table 6, there are other parameters needed for simulation. These

parameters are configured in terms of the communication link delays (in seconds). This

makes it easier to observe and measure the results in the simulation study. When the

service placement scenario is simulated, observation of various parameters is essential

as those parameters are used in the real world fog computing-networks.

Table 6 Different parameters and their corresponding communication link

delay in seconds

Parameter Communication link delay (sec)

Fog controller node-Cloud 9

Fog controller node-Neighbor controller node 0.5

Fog controller node-Fog node 0.3

The communication link delay for Fog controller node–Fog node link is set to 0.3

seconds. The communication link delay for Fog controller node–Neighbor controller

node link is set to 0.5. The communication link for Fog controller node–Cloud is

configured to have 9 second delay.

Once such configurations have been done, it is important to take care of service

modules as well. They need different resources like CPU, memory, storage, and makes-

pan. These configurations are listed in Table 7. These details are provided for the well-

informed simulation study. For instance, the actuate module is set to have 50 CPU

(MIPS), 20 MB main memory and 10 MB storage and 0.50 makespan time in seconds.

Table 7 Required resources for application modules

Service module CPU (MIPS) Memory

(MB)

Storage (MB) Makespan (sec)

Sensing module 50 30 10 0.90

Data aggregation module 200 10 30 0.10

Data analysis module 200 20 30 0.10

Decision making module 100 30 30 0.25

Actuate module 50 20 10 0.50

The parameters, deadline and deployment, configurations for different types of

applications are as shown in Table 8.

Table 8 Deadline and Deployment time of each application

Application type Application deadline Deployment time

Motion 120 60

Video 300 0

Sound 300 60

Temp 360 60

Humidity 240 0

For application types associated with motion, video, sound, temp, and humidity, the

application deadline and deployment time are determined and presented. The values

that were assumed here in Tables 6-8 are based on the average of the previous

experimental run.

6.2. Experimental Results

Observations are made on application or its modules placement in fog computing using

the experimental setup described in the previous section. The proposed deadline-aware

method for service placement methodology is compared with the contemporary

methods, e.g., EdgeWard[22] and Cloud Only. EdgeWard is a baseline greedy

optimization heuristic, hence it is chosen. EdgeWard places the application modules in

the bottom to top approach, based on the availability of resources. In all the cases,

Cloud-only places all the application modules in the cloud. Response time is an

important observation made at different deadlines. Different workflow-based IoT

applications are considered for empirical study. Simulations using iFogSim have

resulted in desired insights for the applications such as motion, video, sound, temp, and

humidity.

As depicted in Figure 7, the deadline requirement for Motion Application is 120

seconds and Video Application is 300. The horizontal axis provides different service

placement approaches, while the vertical axis shows response time in seconds. The

results revealed that deadline violation occurred in the case of motion application. In

both cases of EdgeWard and Cloud Only methods, the deadline is violated by 184.45

and 31.85 seconds, respectively. The EdgeWard, Cloud Only and DoSP approaches

could ensure that the time limit for video application is not breached.

(a) (b)

Figure 7: Performance comparison with (a) Motion and (b) Video applications

As can be seen in Figure 8, it is evident that the results are provided for sound and temp

applications. The response time is observed for the IoT applications with deadlines 300

seconds and 360 seconds, respectively. The results revealed that deadline violations

occurred in the case of sound application. The EdgeWard method could not provide

service placement ideally as it violated the deadline by 4.45 seconds. In the case of

temp application, service placement is made by the three methods without violating the

deadline. However, EdgeWard took more response time while DoSP method took the

least response time.

(a) (b)

Figure 8 Performance comparison with (a) Sound and (b) Temp applications

As presented in Figure 9, the performance of service placement approaches showed

different response times. The proposed DoSP method could honor the deadline. It is the

same with Cloud Only approach as well. In the case of EdgeWard method, the deadline

is violated by 4.45 seconds. This kind of performance is not acceptable as deadlines in

cloud and fog computing scenarios might be associated with SLAs.

Figure 9 Performance comparison with Humidity application

Response Time against Deadline

Response time or latency is an important metric used for evaluating the proposed DoSP

algorithm. The response time against a given deadline is an important empirical

observation. As shown in Figure 10, the observations are made in terms of response

time against different deadlines. Results of all the applications are presented with the

communication distance between the fog controller node and the cloud is 1 second. The

deadlines from 50 to 500 seconds incremented by 50 seconds are provided on the

horizontal axis.

Figure 10 Performance of the DoSP method with respect to all applications

The response time is shown on the vertical axis. When the elapsed time is 50 seconds,

both Humidity and Video applications started while other applications started at an

elapsed time of 100 seconds. The observations revealed that the response time values

can be categorized into 3 levels, namely, lower, medium and high. When services are

placed in a fog controller node, response time is less indicating higher performance. In

the same fashion, when services are placed in the cloud, the response time is said to be

medium, which is greater than that of the fog controller node. The response time is

more when services are deployed in the neighbor fog controller node due to deployment

delay and extra deployment time to place the service modules. These observations

provide the rationale behind the patterns found in response time. The results revealed

that the deadline has an impact on the response time. The rationale behind this is that

the purpose of the proposed DoSP algorithm is to provide service placement which

yields response time that should not violate the given deadline. The results revealed

that the proposed method is deadline-aware, and no violations are found with respect

to all applications. It does mean that based on the deadline and the resource availability,

DoSP has taken appropriate service placement decisions.

Resource Utilization Analysis

Resource availability is analyzed by the proposed DoSP method in order to make

service placement decisions. In the EdgeWard method, the sensing and actuating

services are placed in various fog nodes in the fog layer. Other activities are known as

data aggregation, analysis of data and decision making, are moved to the controller

node and propagated to the neighbor fog controller node. In the DoSP, it is different.

The sensing and actuation modules are placed in the fog nodes where as the processing

related modules are placed in either fog controller node or in thecloud node.

As shown in Figure 11, based on the resource analysis, 40% of the service placements

are made in fog node, which is faster than other nodes. Service placement shows 12%

in the closest neighbor node and 6% in the fog controller node.

(a) (b)

Figure 11 Resource utilization for the (a) EdgeWard method and (b) DoSP

The remaining 42% of service placements occur in the cloud. As mentioned earlier,

there is a difference in EdgeWard scenarios. It places 40% of services in the fog nodes,

32% in the closest neighbor nodes and 28% in the fog orchestration control nodes.

The Cloud Only approach keeps everything in the cloud. Therefore, it is not able to

exploit the fog nodes and fog controller nodes. It has a drawback as the Cloud Only

service placement may not meet certain workflow-based IoT applications where quick

response time is desired. Cloud is relatively slower than other layers in the fog

computing architecture.

7 Conclusion and Future Work

We proposed a Deadline-Aware Dynamic Service Placement (DoSP) algorithm for

multiple sequential IoT workflow applications of the same model (sense-process-

actuate) and the same number of modules in each application. The applications follow

the DDF deployment model. Each application contains the same number of services

and each and every service has to be placed on computational nodes.

With the advent of fog computing a platform for the exploitation of available resources

at the edge of the network is emerged. The response time of different layers can be

stated as 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑓𝑜𝑔 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑛𝑜𝑑𝑒(𝑁𝐹𝐶𝑁) > 𝐶𝑙𝑜𝑢𝑑 𝑛𝑜𝑑𝑒(𝐶𝑁) > 𝐹𝑜𝑔 𝑛𝑜𝑑𝑒(𝐹𝑁) >

𝐹𝑜𝑔 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑛𝑜𝑑𝑒(𝐹𝐶𝑁). The proposition is interesting as it can speed up IoT services

deployed in fog computing. The proposed work investigates the proposition of the

hypothesis aforementioned. It has architecture with multiple layers, i.e., device layer,

fog layer, and cloud layer. An evaluation of DoSP algorithm is carried out using

iFogSim simulator. The simulation results revealed that the proposed algorithm offers

better performance over the approaches like EdgeWard, Cloud Only. DoSP performed

well as its placement strategy differs to optimize performance in terms of reducing

response time in the presence of strict deadlines associated with SLAs. This conclusion

is made using only five workflows based IoT applications but this may not be limited

to five and can be extended. The values that were assumed are based on the average of

the previous experimental run, which are not extracted from any real-time dataset. In

the future, we plan to work on the real-time dataset and investigate energy efficiency

for optimization of service placement along with the deadlines considered. In further

study a hyper-heuristic approach can also be used for better optimization. Container

virtualization along with device mobility in a fog computing environment would also

be considered.

References

1. P. Kochovski and V. Stankovski, “Supporting smart construction with dependable edge

computing infrastructures and applications,” Automation in Construction, vol. 85, pp. 182–

192, 2018.

2. X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a cloud- fog computing system,” in

2016 18th Asia-Pacific network operations and management symposium (APNOMS), pp. 1–

4, IEEE, 2016.

3. I.D. Filip, F. Pop, C. Serbanescu, and C. Choi, “Micro services scheduling model over

heterogeneous cloud-edge environments as support for IoT applications,” IEEE Internet of

Things Journal, vol. 5, no. 4, pp. 2672–2681, 2018.

4. R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware application module

management for fog computing environments,” ACM Transactions on Internet Technology

(TOIT), vol. 19, no. 1, pp. 1–21, 2018.

5. K. S. Desikan, M. Srinivasan, and C. S. R. Murthy, “A novel distributed latency-aware data

processing in fog computing-enabled IoT networks,” in Proceedings of the ACM Workshop

on Distributed Information Processing in Wireless Networks, pp. 1–6, 2017.

6. M. Taneja and A. Davy, “Resource aware placement of IoT application modules in fog-cloud

computing paradigm,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service

Management (IM), pp. 1222–1228, IEEE, 2017.

7. O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource provisioning for IoT services

in the fog,” in 2016 IEEE 9th international conference on service-oriented computing and

applications (SOCA), pp. 32–39, IEEE, 2016.

8. O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-aware fog service

placement,” in 2017 IEEE 1st international conference on Fog and Edge Computing

(ICFEC), pp. 89–96, IEEE, 2017.

9. R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality of Experience

(QoE)-aware placement of applications in fog computing environments,” Journal of Parallel

and Distributed Computing, vol. 132, pp. 190–203, 2019.

10. M. Aazam, M. St-Hilaire, C.-H. Lung, and I. Lambadaris, “MeFoRE: QoE based resource

estimation at fog to enhance QoS in IoT,” in 2016 23rd International Conference on

Telecommunications (ICT), pp. 1–5, IEEE, 2016.

11. N. K. Giang, M. Blackstock, R. Lea, and V. C. Leung, “Developing IoT applications in the

fog: A distributed dataflow approach,” in 2015 5th International Conference on the Internet

of Things (IOT), pp. 155–162, IEEE, 2015.

12. V. B. C. Souza, W. Ramírez, X. Masip-Bruin, E. Marín-Tordera, G. Ren, and G. Tashakor,

“Handling service allocation in combined fog-cloud scenarios,” in 2016 IEEE international

conference on communications (ICC), pp. 1–5, IEEE, 2016.

13. A Brogi and S. Forti, “QoS-aware deployment of IoT applications through the fog,” IEEE

Internet of Things Journal, vol. 4, no. 5, pp. 1185–1192, 2017.

14. B Y. Lin and H. Shen, “Cloud fog: Towards high quality of experience in cloud gaming,” in

2015 44th International Conference on Parallel Processing, pp. 500–509, IEEE, 2015.

15. A Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya, Q. Zhang, W. Xie, and

J. P. Jue, “FogPlan: a lightweight QoS-aware dynamic fog service provisioning framework,”

IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5080–5096, 2019.

16. M. Aazam and E.-N. Huh, “Dynamic resource provisioning through fog micro datacenter,”

in 2015 IEEE international conference on pervasive computing and communication

workshops (PerCom workshops), pp. 105–110, IEEE, 2015.

17. M. Aazam and E.-N. Huh, “Fog computing micro datacenter based dynamic resource

estimation and pricing model for IoT,” in 2015 IEEE 29th International Conference on

Advanced Information Networking and Applications, pp. 687–694, IEEE, 2015.

18. S. Agarwal, S. Yadav, and A. K. Yadav, “An efficient architecture and algorithm for resource

provisioning in fog computing,” International Journal of Information Engineering and

Electronic Business, vol. 8, no. 1, p. 48, 2016.

19. S. Verma, A. K. Yadav, D. Motwani, R. Raw, and H. K. Singh, “An efficient data replication

and load balancing technique for fog computing environment,” in 2016 3rd International

Conference on Computing for Sustainable Global Development (INDIACom), pp. 2888–

2895, IEEE, 2016.

20. A.A.Alsaffar, H.P.Pham, C.-S.Hong, E.-N.Huh, and M.Aazam, “An architecture of IoT

service delegation and resource allocation based on collaboration between fog and cloud

computing,” Mobile Information Systems, vol. 2016, 2016.

21. N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, “ENORM: A framework for

edge node resource management,” IEEE transactions on services computing, 2017.

22. H. Gupta, A. VahidDastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A toolkit for modeling

and simulation of resource management techniques in the internet of things, edge and fog

computing environments,” Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296,

2017.

23. Y.Tao, X.Wang, X.Xu, and Y.Chen, “Dynamic resource allocation algorithm for container-

based service computing,” in 2017 IEEE 13th International Symposium on Autonomous

Decentralized System (ISADS), pp. 61–67, IEEE, 2017.

24. L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation strategy in fog computing

based on priced timed petri nets,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1216–

1228, 2017.

25. S. Shekhar and A. Gokhale, “Dynamic resource management across cloud-edge resources

for performance-sensitive applications,” in 2017 17th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGRID), pp. 707–710, IEEE, 2017.

26. D. Hoang and T. D. Dang, “FBRC: Optimization of task scheduling in fog-based region and

cloud,” in 2017 IEEE Trustcom/BigDataSE/ICESS, pp. 1109–1114, IEEE, 2017.

27. H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing resource allocation

in three-tier IoT fog networks: A joint optimization approach combining stackelberg game

and matching,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1204–1215, 2017.

28. X.-Q. Pham, N. D. Man, N. D. T. Tri, N. Q. Thai, and E.-N. Huh, “A cost-and performance-

effective approach for task scheduling based on collaboration between cloud and fog

computing,” International Journal of Distributed Sensor Networks, vol. 13, no. 11, p.

1550147717742073, 2017.

29. D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task scheduling and

image placement in fog computing supported software-defined embedded system,” IEEE

Transactions on Computers, vol. 65, no. 12, pp. 3702–3712, 2016.

30. Skarlat O, Nardelli M, Schulte S, Dustdar S (2017) Towards QoS aware fog service

placement. In: 1st IEEE international conference on fog and edge computing (ICFEC), 2017.

IEEE, Madrid, Spain, pp 89–96.

31. S.S. Gill, P. Garraghan, and R. Buyya, ROUTER: Fog Enabled Cloud based Intelligent

Resource Management Approach for Smart Home IoT Devices, Journal of Systems and

Software, 154, 125-138, 2019.

32. H. Wu, W. J. Knottenbelt, and K. Wolter, “An efficient application partitioning algorithm in

mobile environments,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no.

7, pp. 1464–1480, 2019.

33. H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading in heterogeneous

networks,” IEEE Transactions on Mobile Computing, vol. 17, no. 2, pp. 461–474, 2017.

34. M. Goudarzi, H. Wu, M. Palaniswami, and R.Buyya, An Application Placement Technique

for Concurrent IoT Applications in Edge and Fog Computing Environments, IEEE

Transactions on Mobile Computing (TMC), 2020.

35. A. Brogi, S. Forti, C. Guerrero and I. Lera, "How to Place Your Apps in the Fog-State of the

Art and Open Challenges", arXiv preprint arXiv:1901.05717, 2019.

36. M.Abbasi, E. Mohammadi Pasand, & M.R. Khosravi, "Workload Allocation in IoT-Fog-

Cloud Architecture Using a Multi-Objective Genetic Algorithm," J Grid Computing 18, 43–

56 (2020). https://doi.org/10.1007/s10723-020-09507-1.

