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Abstract. The next generation Internet of Things (IoT) applications are offering 

multiple services and run in a distributed heterogeneous environment. In such 

applications, Quality of Service (QoS) requirements are in jeopardy when the 

computing operations are only outsourced to the public cloud. For IoT 

applications a comprehensive framework that supports QoS-aware service 

placement in a fog computing environment is highly required. It is a challenging 

task to orchestrate the time critical IoT applications in the fog environment. To 

alleviate this problem, this paper proposes a novel multitier fog computing 

architecture called Deadline oriented Service Placement (DoSP) that provides the 

services both in fog and cloud nodes. This research work proposed a 

methodology to utilize low cost fog resources while ensuring that the response 

time satisfies a given time constraint. It uses the Genetic Algorithm (GA) to 

dynamically determine the service placement in the fog environment. In this 

work, we used the iFogSim simulator to model DoSP and measured the impact 

of the service placement technique in terms of service deadline. It has been 

observed that through the proposed solution, there is a reduction in service 

execution delay, i.e. approximately 10.19% of the overall response time to the 

EdgeWard and 2.58% to the cloud-only.  

Keywords: Fog computing; IoT; Cloud Computing; Edge Computing; 

Workflow. 

1   Introduction 

Cloud computing has been facilitating individuals and organizations by extending 

access to remote computing resources on subscription basis. In cloud computing, the 



servers are located in a remote place and provide computing resources on demand. 

Servers being in the remote place leads to problems such as high latency, high 

bandwidth and energy consumption. Because of these disadvantages cloud computing 

is not ideal for Internet of Things (IoT) applications [1], which are latency sensitive, 

such as precision agriculture, intelligent transportation, smart homes, smart cities, smart 

grids, smart healthcare units and smart supermarkets. Providing services in a short time 

is a major research issue that has been addressed by many researchers in the past few 

years [4][28][30]. The issue to get the computation closer to the end devices, which 

produce the computational data, is addressed by fog computing technology. Fog 

computing is an elongated version of cloud computing with effective network 

bandwidth utilization, heterogeneous computation, workload distribution, and mobility. 

Some of the extended features of fog computing are described in the below Table 1.  

Table 1 Fog Computing Features 

Factor Description 

Low Latency The best facilities on the edge of the network 

are provided 

Mobility Disassociates the host identity to the location 

identity. 

Real Time Interactions Uninterrupted speedy service. 

Interoperability Objects collaborate and communicate with 

each other during the transmission 

Low Energy Consumption Reducing computation and communication 

energy consumption. 

Resource provisioning can reduce latency and increase compliance of Service Level 

Agreements (SLAs) [32], which has been investigated in [7], [10], [18], [19], and [25]. 

However, mere service provisioning cannot achieve the desired performance, which 

needs to be coupled with service placement strategies as explored in [3], [4], [6], [12], 

[13], [31], [33] and [34]. So, there is a need for a comprehensive approach that not only 

takes care of service placement but also enhances Quality of Service (QoS) in the 

heterogeneous and dynamic fog-cloud computing environment.  

The major contributions of this proposed work is as follows: The proposed work 

provides a comprehensive solution of QoS-aware service placement to realize highly 

optimized service placement of sequential IoT applications in a fog-cloud computing 

environment. 

1. A Deadline-oriented Service Placement (DoSP) algorithm is proposed, 

which analyzes the response time of service placement indifferent layers, 

and determines decisions on placing modules/services of workflow-based 

IoT application in different layers of fog-cloud architecture. 

2. The fog-cloud environment is simulated using iFogSim toolkit and the 

performance of the service placement algorithm is evaluated. We are able 

to visualize the service placement and the different layers determine 

decisions on placing modules/services of multiple IoT applications in 

different layers of fog-cloud architecture. 



The rest of the sections in the paper are organized in the following way: Section 2 

presents a motivating scenario for the research carried out. Section 3 reviews the 

literature on developing and deploying IoT applications, resource allocation and 

application/service placement in the fog-cloud environments. Section 4 presents the 

system model which is the basis of the research. The complete methodology used to 

realize an approach for deadline-aware efficient service placement is provided in 

Section 5. Section 6 presents the study on simulation that is made with iFogSim 

simulator. The performance evaluation of our approach and comparison with the state-

of-the-art methods is presented. Section 7 concludes the paper along with directions for 

future work. 

2   Motivation Scenario 

Fog computing helps benefit IoT devices and applications. This is an important 

proposition based on which this motivating scenario is conceived. Workflow-based IoT 

applications in the real world need to desire latency where the edge of the network with 

storage and computing services (fog computing) plays a crucial role. Extending the 

cloud computing capability to the edge of the network, and providing a required 

inductive usage is by Fog Computing. Placement of IoT applications with proper 

utilization of cloud and fog computing resources is a game changing approach that will 

have a huge impact on the deployed applications. Figure 1 shows the motivating 

scenario that can be used to investigate the proposition aforementioned. 

 

As presented in Figure 1, it is evident that a patient respiratory management system is 

considered as a motivation scenario. Wearable sensors such as sensors are used to detect 

the vital signs of a patient in relation to the cardiovascular system. The wearable devices 

equipped with sensors are connected to other digital infrastructure. The sensors provide 

heartbeat rate, changes in blood volume of the skin and oxygen level carried in both. 

When sensors provide redundant and irrelevant data, they need to be pre-processed with 

filtering techniques prior to data analytics. The results of the analysis provide the 

severity of the problems and accordingly further steps are taken. Sometimes the results 

reflect an emergency situation where immediate attention is essential. As the 

application is crucial, in the healthcare domain it is essential to optimize service 

placement for better latency besides adhering to deadlines if any. It is therefore 

necessary to evaluate the device modules and make decisions on placements in various 

layers. Low latency reflects high performance while high latency reflects low 

performance. This scenario motivates further research on optimal service placement as 

the availability of the application is indispensable. Every application consists of various 

modules. The modules of the case study application considered here are described in 

the following subsections. 

 



 

Figure 1 Optimized Application module placement architecture 

2.1. Sensing Module 

This is the module where actual sensing of data takes place. It is made by the wearable 

body sensors that are associated with a selected patient. This module is responsible for 

generating the patient’s vital signs related to the respiratory system. Thus, it plays a 

crucial role in the application, because without this module, other modules would not 

exist. 

2.2. Data Aggregation Module 

This module is responsible for data aggregation, which is needed in order to have more 

meaningful data and also get rid of duplications. It also has a device that converts the 

analog signal into digital counterparts and needs to be integrated with a microcontroller 

unit that involves in the data aggregation process, it may include filtration and 

normalization. The data is aggregated and finally sent to the fog controller node. 



2.3. Data Analysis Module 

This module is responsible for analyzing data. This is made as per the kind of sensor 

data, which involves in machine learning algorithms. It is used to test hypotheses. 

Besides, it needs processing power, storage, and to be placed carefully based on the 

deadline constraints. 

2.4. Decision Making 

The analysis module provides the required patterns or interesting facts found in the 

analysis. These facts are interpreted, and decisions are made by this module. The 

decisions are pertaining to the real time diagnosis of the patient’s vital signs and make 

the necessary steps. A decision vector holds the resultant information. 

2.5. Actuation Module 

This module is responsible for turning energy into motion or performing its intended 

purpose. In general, it converts physical parameters into electrical outputs. 

3   Related Work 

This segment examines the literature on the location of services in the fog computing 

world and its associated aspects. 

3.1. Building and Deployed Fog-Based IoT Applications 

Kochovski and Stankovski [1] focused on dependable edge computing and proposed 

architecture for constructing smart applications that exploit edge computing in the 

context of IoT. Their proposed infrastructure includes edge management services, 

virtual clusters, and smart IoT construction environments. Edge management services 

perform probing, monitoring, alarming and storing. Edge management services work 

on top of virtual clusters to support edge computing applications. Pham and Huh [2] 

considered a cloud-fog computing environment, where fog nodes are used 

appropriately along with cloud nodes to enhance performance. Giang et al. [11] 

proposed a distributed data flow approach for building IoT applications to be deployed 

in fog. 

3.2. Resource Allocation for IoT Applications in Fog Environment 

It is essential to have resource allocating mechanisms, when  the IoT applications are 

executed in the fog-cloud environment. Skarlat et al. [7] presented an architecture or 

framework for resource allocation in the fog-cloud environment. Delay sensitive 



utilization of fog resources was the aim of the framework. Considering SLAs and QoS, 

Aazam et al. [10] proposed a framework known as Media Fog Resource Estimation for 

estimation of resources based on QoS, QoE, Relinquish Rate (RR) and service give-up 

ratio.  

Yousefpour et al. [15] studied the problem of service provisioning in a dynamic and 

distributed computing environment. To solve the dynamic service placement they have 

proposed two heuristic algorithms in fog inspite of building a framework to realize it. 

They found that the framework could decrease SLA violations besides increasing the 

performance of deployed applications.  Aazam and Huh [16] considered many issues 

with IoT-fog environment due to the mobility of nodes, resource constrained nature of 

nodes and heterogeneity of the environment. Taking those factors into account, they 

proposed resource estimation and provisioning framework through fog micro 

datacenter. Aazam and Huh [17] have researched adaptive resource estimation and cost 

allocation models for IoT applications implemented in the fog computing area. 

An architecture for flexible and adaptive resource allocation in fog computing is 

proposed by Agarwal et al. [18]. They proposed an algorithm known as Efficient 

Resource Allocation (ERA) for estimation of resources and allocating the same to IoT 

applications deployed in fog. On the other hand, Verma et al. [19] focused on reliable 

services in the fog by proposing load balancing and data replication techniques and 

reduce dependency on the cloud. Alsaffar et al.[20] suggested an architecture for the 

dual purpose of the distribution of resources and the allocation of IoT services in a fog 

computing system. They found that their work is resulted in meeting the QoS of 

applications and SLAs.  

In the context of container based service computing, Tao et al. [23] proposed a dy-

namic resource allocation algorithm, which is based on scheduling and fuzzy inference 

system. Their contributions may increase the efficiency of the cluster in terms of 

average execution time. Ni et al. [24] proposed a model known as Priced Timed Petri 

Nets (PTPN), which is a resource allocation strategy in fog computing and also a model 

to support the strategy. Shekhar et al.[25] proposed a dynamic and data-driven cloud 

and edge system for dynamic resource management in fog in the presence of 

performance-sensitive applications. Dang and Hoang [26] proposed a framework for 

efficient scheduling of tasks in the fog to realize expected latency, this  framework is 

known as fog-based region. A joint optimization approach for resource allocation is 

investigated by Zhang et al. [27] for efficient resource allocation and performance of 

IoT applications in fog-cloud environments. 

3.3. Service Placement in Fog Environment 

IoT applications may have micro-services that need to be deployed strategically. Filip 

et al. [3] studied cloud-edge environments for scheduling micro-services related to IoT 

applications. They proposed a scheduling architecture for real life utilization of the fog-

edge environment effectively. They used a scheduling policy for better task scheduling. 

IoT applications have multiple modules. Mahmud et al. [4] studied deploying such 

modules in the fog-cloud environment. They proposed a methodology to fully take 

advantage of the capabilities of fog nodes in the context of large IoT applications. Their 

approach resulted in a decrease of latency towards QoS requirements of the 



applications. Similarly, Desikan et al. [5] explored latency-aware data processing in the 

fog-cloud environment. They could reduce the response time and increase the 

performance of gateways with buffer occupancy efficiencies.  

Taneja and Davy [6] proposed an algorithm named Module Mapping, which is meant 

for deploying modules of IoT application appropriately in fog-cloud resources. As the 

storage and computation are distributed dynamically, the algorithm was able to reduce 

latency and improve the capabilities of the cloud-fog environment to withstand SLAs. 

Skarlat et al. [8] investigated QoS-aware provisioning of services of IoT, on fog 

resources and found a considerable 35% less cost in terms of execution time while 

compared with the cloud-based approach. On the other hand, Mahmud et al. [9] 

considered Quality of Everything (QoE)-aware placement of services or applications in 

a fog computing environment. They proposed an application policy that is QoE-aware 

and prioritizes application placement requests as per the expectations of users.  

Souza et al. [12] studied the QoS-aware service allocation problem. They proposed fog-

cloud architecture with four tiers. The bottom layer composed of end user devices, the 

layer above is called the fog layer 1, fog layer 2 is on top of fog layer 1 and the top most 

layer is the cloud. The cloud has high reach ability but causes high access delay with 

respect to IoT applications. Fog layer 2 exhibits medium reach ability and medium 

access delay, while fog layer 1 causes low reach ability and low delay. This scenario is 

to be exploited by QoS-aware service allocation. FogTorch is a java tool which is 

proposed by Brogi and Forti [13]. The tool is a latency and bandwidth-aware while 

deploying the IoT applications in the fog. Brogi et al.[35] have reviewed the existing 

policies to solve the problem of how to dynamically deploy the application modules in 

the computational components with qualitative attributes.  Abbasi et al.[36] addresses 

the problem of placement of workloads. The purpose of their study is to minimize the 

energy consumption and propagation delay of the cloud while processing.  In this work, 

the placement problem is solved by using the NSGA-II algorithm. The work does not 

focus on the application deadline and the propagation delay among the fog nodes. 

3.4. A Qualitative Comparison 

Table 2 identifies and compares key elements of related works with DoSP. The 

comparison attributes are the target system, application type, resource utilization, 

minimization of response time, application priority and deadline constraint. The 

insights found in the literature reveal that the existing approaches are good to realize 

fog-cloud environments with increased performance. However, it is understood that a 

comprehensive framework that not only takes care of service placement but also QoS 

enhancement in the presence of the highly heterogeneous environment. 

4   System Model 

The system model considered for the proposed research provides the layered 

architecture, in which proposed workplaces the multiple sequential IoT applications 

with a sense-process-actuate model are executed. In the context of this system model 



service placement, QoS-aware service placement approach is explored in this research 

work. 

Table 2 Comparison of DoSP with existing works 

FN is meant for storing arbitrary data required by workflow-based IoT applications and 

also supports computations. It is said to be the local node or the node that is closer to 

the deployed IoT application. Thus, fog computing is an enhanced version of of cloud 
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computing which is especially meant for rendering efficient services to workflow-based 

IoT applications. As per the facts found in the literature, FCN>FN>CN>NFCN is the 

thumb rule with respect to the speed of the deployed services of IoT applications. In 

this context, this system model is used to investigate service placement with QoS 

awareness strategies in place. The proposed mechanism for service placement has two 

different phases, i.e., application prioritizing phase and node selection phase. In the 

prioritizing phase, the services of IoT applications are assigned priorities. In the node 

selection phase, the suitable node in the fog or cloud is selected for the placement of 

given services. Based on the objective function, the node selection is carried out. 

 

Figure 2 System model 

4.1. Application Prioritizing Phase 

In this phase, the requests coming from different applications for service placement are 

subjected to prioritization. Towards this end, based on the distance between the 

deadline of an application and the deployment time of an application we prioritize the 

applications, which is defined as follows: 

          prioritization =  DeadlineAppi
− DeptimeAppi

     (1)                                                                 

Where DeadlineAppi represents application deadline, and DeptimeAppi  represents 

waiting time for deployment. DeptimeAppi is associated with the time waited by 

application prior to assignment of it to suitable computing resources. 

It is always a better practice to initially assign the applications that have high waiting 

time based on the deadline to the fog resources. As the deadline cannot be violated, it 

needs to be made so. Allocating the shortest computation applications first to fog 

resources may lead to starvation, hence it is not desirable. 



4.2. Node Selection Phase 

In order to deploy services of an application, it is essential to have certain constraints 

that can help to achieve optimal performance.  

Constraint 1: In addition to storage, this constraint is related to RAM and CPU 

(important computer resources). These resources are to be considered as the fog 

resources allocation should not exceed these available resources.  

∑ ∑ ResAppModi

𝐴𝑝𝑝𝑖

𝐴𝑝𝑝𝑀𝑜𝑑𝑖

. PlaceAppModi 
fn ≤  Avail 

Resfn
, ∀fn 

𝐴𝑝𝑝

𝐴𝑝𝑝𝑖

       (2) 

 

Where fn={FN,FCN,NFCN}denotes fog node in a fog cluster, 

Res={CPU,MEM,STORAGE}denotes required resources,  Place denotes service 

placement and Avail denotes available resources. 

Constraint 2: This condition is related to expected response time of the applications. 

No application should violate its deadline, therefore: 

 

        ResptimeAppi   ≤   DeadlineAppi ,  ∀Appi         (3) 

 
Where  ResptimeAppi represents application response time and DeadlineAppi  represents 

application deadline. 

Estimating application response time 

In a deadline-aware approach, it is important to estimate application response time. 

Therefore, the response time can be estimated by: 

 

      ResptimeAppi = TotDeptimeAppi + ExectimeAppi          (4) 
 

       ExectimeAppi  = MakespanAppi + CommAppi                    (5) 

 

Where TotDeptimeAppi denotes deployment time, ExectimeAppi denotes execution time, 

MakespanAppi denotes makespan time, and CommAppi denotes communication time. 

DeptimeAppi considers elapsed time prior to the placement of each service correctly. The 

placement is done either in cloud or fog based on runtime situations. In fact, 

TotDeptimeAppi  represents elapsed time and also the expected deployment time. It is 

made when service AppModi ∈ Appi is actually subjected to propagation to nearest 

colony. The execution time denoted as AppModi ∈ Appi reflects the time required for 

execution of all services of given application plus the amount of communication needed 

among services. Therefore, the total execution time  AppModi ∈ Appi is computed as 

the communication time  CommAppi and the sum of makespan  MakespanAppi . In the 

link, delays reflect communication time in the process of service placement in different 

areas as illustrated in the architecture. 



4.3. IoT Application Placement Flow in Fog Environment 

Figure 3 shows a fog controller node receives a service placement request from the 

user. Then, it identifies the required resources for the requested IoT application. It also 

takes deadline associated with the service to be placed. Keeping deadline in mind, the 

resources on fog nodes are analyzed. Then identify fog nodes that can meet service 

deadline. Afterward, the deadline-deployment time is calculated and verified. If it is 

low, the service is placed in the fog node (or) fog controller node (or) cloud. If the time 

is high, then it is forwarded to NFCN and checks the resource availability and QoS 

expectation. If it is satisfied, the application modules are placed in NFCN, otherwise, 

they are forwarded to the public cloud where the service is placed. 

5   Proposed Methodology 

Goal of this proposed work is to develop a comprehensive framework that supports 

QoS-aware service placement of IoT based applications in a fog based computing 

environment. The significance of this methodology lies in the context of emerging IoT 

applications in different domains like healthcare, military and the need for fog 

computing to accommodate the same besides exploiting the technologies like cloud 

computing. According to the research objectives mentioned in Section 4, the proposed 

methodology needs to be divided into multiple sections. 

5.1. Overview of the proposed work 

This section provides an overview of the proposed work. The framework presented in 

Figure 4, which provides QoS-aware service placement for ensuring that the placement 

of services is highly optimized to improve performance. This kind of methodology can 

help in placing services in a fog computing environment with efficient decision making 

related QoS requirements of a given IoT application. Workflow-based IoT 

application(s) is given as input. Then, the proposed system is responsible for analyzing 

its requirements and executing an algorithm to have an effective service placement that 

considers the deadline of services. The service placement achieves satisfying deadlines. 

Here in the proposed work, no service layer agreements are considered, for simplicity. 

5.2. Functional Details of the Proposed Work 

The proposed architecture for deadline aware service placement is as shown in Figure 

5, which is elaborated with functional details. On taking one or more workflow-based 

IoT applications, the proposed architecture performs a series of activities to ensure that 

the service placement is done according to the requirements of the application. From 

the IoT application, the modules of the application are extracted. For each 

module/service, the details obtained include a number of modules to be placed, the 

sequence of the modules and the deadline associated with each module. Afterward, the 

requirements for each module are analyzed. This is nontrivial as each module needs 



different resources such as memory, processing power, and bandwidth. Moreover, this 

requirement for a given service may be fulfilled in FN, FCN, NFCN or CN. Resource 

availability is then verified to know the information about all nodes and their available 

resources. The resource availability information is then utilized to make a decision on 

node selection for a given service or module. Once node selection is made based on the 

latest analysis of the resource availability considering the deadline associated with the 

service, the services are finally placed in a selected layer and in selected nodes. 

 
 

Figure 3 Flowchart of Resource Provisioning for IoT application in Fog based 

computing environment 

 



 
 

 

Figure 4 Overview of the framework showing the proposed research 

5.3. Deadline-oriented Service Placement Algorithm (DoSP) 

Deadline-oriented Service Placement (DoSP) algorithm is designed to analyze the fog 

environment for a given deadline requirement of a workflow-based IoT application and 

make well informed decisions on the application or its modules placement in the fog 

environment. The proposed DoSP algorithm is presented in Table 3. 

The proposed algorithm is part of Deadline-aware service placement module in Figure 

4 and Node selection module in Figure 5. It is based on the concept of Genetic 

Algorithms (GA). When using a genetic algorithm, the first thing to be considered is 

how to model the solution.  

Every operator inside the GA will work using that model. The size of the vector 

considered is equal to the number of services that will be used in the algorithm, i.e., the 

number of services requested to be executed. The vector is the placement plan which 

places the application modules. If the vector[i] = 2, then ith module is placed in node 2. 

Hence, the ith module is placed in the computation node value. We consider this vector 

(the placement plan) as the chromosome. As said before, it will be in the form of a 

vector of integers. Possible integers are IDs of fog cells, cloud, closest neighbor, fog 

orchestration control node. The IDs considered as follows, 0 for Cloud, 1 for FCN, 2 

for NFCN, 3 to remaining as FN. The number of possible integers is assigned to the 

variable “number of Placement Locations” 



 

Figure 5 Functionalities of the proposed architecture 

After we assign values to variables “Chromosome Length” and “Number of Placement 

Locations”, we need to create the first generation. One of the segments of the GA is the 

population size that needs to be predefined. With this number, we will go ahead and 

create many chromosomes (solutions) to form the first generation. There are a lot of 

different ways how we can create a chromosome, i.e., fill a vector of integers. One way 

is to randomly put numbers from a set of possible integers to the vector. A new 

chromosome is created at this stage. All the generated chromosomes should satisfy the 

state check. A state check is an operation which checks whether the given plan is 

successfully placed. A module can be successfully placed firstly, when the required 

MIPS is less than available MIPS secondly, the sense and actuation modules are placed 

only in FN, and finally process modules are not allowed to place in FN.  

After a new chromosome has been created, we calculate its fitness to see how good it 

really is, and then we add it to the population. The fitness of the chromosome depends 

on how far the app is away from the deadline. If the application is closer to the deadline 

then a high penalty is added or else a low penalty is added. Here we need to minimize 

the fitness value. Minimum fitness chromosome is the best possible placement plan. 

We assign the fittest chromosome from the population to the variable “fittest 

Chromosome”. If that chromosome satisfies all the constraints, we return it, and this is 

done. If that is not the case, we will need to use the rest of the algorithm. First, we 

define how many crossovers will be executed. “Crossover” is another operator inside 

the genetic algorithm which is used. 

Another segment of the genetic algorithm is the number of generations, which is also 

user defined. In each generation, we used a GA operator “selection” to get the 

best(fittest) chromosome. The fittest chromosome is, in this case, the one that has the 

biggest fitness among the selected ones. So, we are not looking at the fittest 

chromosome directly from the population. The selection part of the algorithm can be 



implemented in many ways. One way is to use the Tournament selection. Tournament 

selection is the type of selection with two steps.  

Table 3 Deadline-oriented Service Placement (DoSP) Algorithm 

Algorithm 1: Deadline-oriented Service Placement (DoSP) 

Inputs: No. of applications, No. Application modules, CPU, Memory Storage, make-span time, 

deployment time, population. 

Output: Efficient and deadline-aware service placement   

 

// build the first generation 

Chromosome Length = total No. of applications * No. Application modules; 

Number Of Placement Locations = FN or CN or NFCN or FCN; 

 

for i = 1 to population Size do 

 new Chromosome = create Chromosome(Chromosome Length, Number Of Placement 

Locations); 

            if(state_check(Chromosome)) 

          calculate fitness of new Chromosome; 

          add new Chromosome to population; 

 i++ 

end for 

for i = 1 to generation Limit do 

  fittest Chromosome = get Fittest Chromosome(population); 

  if fitness of fittest Chromosome > 0 then 

  return fittest Chromosome; 

  add the current population to the temporary population; 

  number Of Chromosomes Used For Crossover = generation Size * defined Crossover 

Percentage; 

  number Of Crossovers = number Of Chromosomes Used For Crossover / 2;  

// two chromosomes are involved in each crossover 

  for j = 1 to number Of Crossovers do 

  parent Chromosomes = select Chromosomes(population); // selection 

  children Chromosomes = mate Chromosomes(parent Chromosomes); // crossover 

            state_check(children Chromosomes) 

      state_check(mutate Chromosomes(children Chromosomes)); //mutation and state check     

  calculate the fitness of the new chromosomes; 

  add the new chromosomes to temporary population; 

  end for 

  add elite chromosomes from temporary population to the new population; 

  add remaining best chromosomes from temporary population to the new population; 

end for 



The first step is to round all the solutions from the population into a “circle”, and 

depending on the fitness of each solution, it will occupy some part of that circle. The 

better is the fitness, the greater the percentage of the circle. The second step is to return 

the fittest out of the selected solutions. This selection is used to get both parents. There 

are different ways of how a crossover can be implemented.  

One way is the uniform crossover. In this crossover, genes (parts of the chromosome) 

are uniformly selected between both parents to form a child chromosome. Another 

genetic algorithm parameter is the fixed mixing ratio inside the uniform crossover, 

which tells us how much of the genes will come from each parent. We are actually 

creating two child chromosomes with crossover. Those chromosomes are completely 

opposite. If the first one uses the first gene from the first parent, the second one will use 

the first gene from the second parent, etc. Here in the proposed algorithm we have used 

uniform crossover. The resultant chromosome is the valid chromosome which satisfies 

the state check. A mutation can happen after crossover. The mutation is another genetic 

algorithm operator. It is rarely used, but it is a tool that helps a lot when we want to 

have a diverse population. In the mutation operation, we select ‘m’ number of random 

locations, and we stuff each location with a new node value that satisfies the state check. 

After the mutation, we calculate the fitness of the new chromosomes and store them 

(chromosomes) into a temporary and constant list of population. In that temporary list, 

we also put the whole current population. After this, we do all the crossovers and place 

all the new chromosomes to the temporary population, we perform elitism. Elitism has 

a percentage, for example, 20%, which means that 20% of the best chromosomes from 

the current population will automatically go to the next generation. The rest will be 

selected from the temporary population by sorting them (chromosomes) based on the 

fitness value and choosing the best 80%from them. This depends on when the user-

defined algorithm stops. When the number of applications and nodes increase the time 

complexity will increase, this is observed while using genetic algorithms. The 

asymptotical time consumption or the complexity of the proposed algorithm is O(nlogn 

+ IPS2), where n indicates no. of applications for sorting, I is the no. of iterations, P 

indicates population size and S implies no. of sub solutions. 

6   Performance Evaluation 

6.1. System Setup and Parameters 

As found in [3], [6], [8] and [10], simulation studies are widely used for fog computing 

to evaluate resource management policies. Here, we use a fog computing simulation 

toolkit named iFogSim [22], which is found to be a suitable framework for fog 

computing research as it is used by a number of research works like [14],[20],[27] and 

[31].  

The environment is important for conducting experiments. A summary of the 

environment used for the empirical study in this research work is given in Table 4. 

The simulation study has been carried out using iFogSim with JDK 1.8. Our simulation 

framework has an API to visually model the fog computing infrastructure. It has 

provisions to model the cloud, fog nodes, fog controller nodes, gateways, sensors, and 



actuators. The organization of the network is as follows: one ‘Fog Orchestration node’, 

ten ‘Fog Nodes’ controlled by a ‘Fog Controller Node’, one ‘Neighbor Controller 

Node’, and a ‘Cloud’. The processing capability of the node can be set with a certain 

capacity that is measured in Millions of Instructions per Second (MIPS). The iFogSim 

supports drag and drop features that help users to have intuition in design and 

understanding. 

Table 4 Simulation setup and its configuration 

Processor Intel Core i5-2430 CPU,2.40GHz 

Memory 8 GB 

Simulator iFogSim 

Operating System Windows 7 Professional 

Topology model Hierarchy 

Figure 6 shows the fog infrastructure modeled for the proposed simulation study.  

 

Table 5 Characteristics of the fog controller node and fog node 

Parameter Fog Controller node Fog node 

Processing rate 1000 MIPS 250 MIPS 

Memory 512 MB 256 MB 

Storage 8 GB 4 GB 

 

 

Figure 6 Fog infrastructure modeled using iFogSim for the simulation study 



Each fog cell has a provision for different nodes. Once the modeling is made, the nodes 

are configured appropriately. In the simulation study, each node mimics a real world 

node with equivalent characteristics. Therefore, it is essential to configure them as 

required. How fog controller and fog nodes are configured for different parameters is 

shown in Table 5. The parameters include processing rate, memory and storage details. 

As shown in Table 6, there are other parameters needed for simulation. These 

parameters are configured in terms of the communication link delays (in seconds). This 

makes it easier to observe and measure the results in the simulation study. When the 

service placement scenario is simulated, observation of various parameters is essential 

as those parameters are used in the real world fog computing-networks. 

Table 6 Different parameters and their corresponding communication link 

delay in seconds 

Parameter Communication link delay (sec) 

Fog controller node-Cloud 9 

Fog controller node-Neighbor controller node 0.5 

Fog controller node-Fog node 0.3 

The communication link delay for Fog controller node–Fog node link is set to 0.3 

seconds. The communication link delay for Fog controller node–Neighbor controller 

node link is set to 0.5. The communication link for Fog controller node–Cloud is 

configured to have 9 second delay. 

Once such configurations have been done, it is important to take care of service 

modules as well. They need different resources like CPU, memory, storage, and makes-

pan. These configurations are listed in Table 7. These details are provided for the well-

informed simulation study. For instance, the actuate module is set to have 50 CPU 

(MIPS), 20 MB main memory and 10 MB storage and 0.50 makespan time in seconds. 

Table 7 Required resources for application modules 

Service module CPU (MIPS) Memory 

(MB) 

Storage (MB) Makespan (sec) 

Sensing module 50 30 10 0.90 

Data aggregation module 200 10 30 0.10 

Data analysis module 200 20 30 0.10 

Decision making module 100 30 30 0.25 

Actuate module 50 20 10 0.50 

The parameters, deadline and deployment, configurations for different types of 

applications are as shown in Table 8.  

Table 8 Deadline and Deployment time of each application 

Application type Application deadline Deployment time 

Motion 120 60 

Video 300 0 

Sound 300 60 



Temp 360 60 

Humidity 240 0 

For application types associated with motion, video, sound, temp, and humidity, the 

application deadline and deployment time are determined and presented. The values 

that were assumed here in Tables 6-8 are based on the average of the previous 

experimental run. 

6.2. Experimental Results 

Observations are made on application or its modules placement in fog computing using 

the experimental setup described in the previous section. The proposed deadline-aware 

method for service placement methodology is compared with the contemporary 

methods, e.g., EdgeWard[22] and Cloud Only. EdgeWard is a baseline greedy 

optimization heuristic, hence it is chosen. EdgeWard places the application modules in 

the bottom to top approach, based on the availability of resources. In all the cases, 

Cloud-only places all the application modules in the cloud. Response time is an 

important observation made at different deadlines. Different workflow-based IoT 

applications are considered for empirical study. Simulations using iFogSim have 

resulted in desired insights for the applications such as motion, video, sound, temp, and 

humidity. 

As depicted in Figure 7, the deadline requirement for Motion Application is 120 

seconds and Video Application is 300. The horizontal axis provides different service 

placement approaches, while the vertical axis shows response time in seconds. The 

results revealed that deadline violation occurred in the case of motion application. In 

both cases of EdgeWard and Cloud Only methods, the deadline is violated by 184.45 

and 31.85 seconds, respectively. The EdgeWard, Cloud Only and DoSP approaches 

could ensure that the time limit for video application is not breached. 

  

(a)   (b) 

Figure 7: Performance comparison with (a) Motion and (b) Video applications 

As can be seen in Figure 8, it is evident that the results are provided for sound and temp 

applications. The response time is observed for the IoT applications with deadlines 300 

seconds and 360 seconds, respectively. The results revealed that deadline violations 



occurred in the case of sound application. The EdgeWard method could not provide 

service placement ideally as it violated the deadline by 4.45 seconds. In the case of 

temp application, service placement is made by the three methods without violating the 

deadline. However, EdgeWard took more response time while DoSP method took the 

least response time. 

  

(a) (b) 

Figure 8 Performance comparison with (a) Sound and (b) Temp applications 

As presented in Figure 9, the performance of service placement approaches showed 

different response times. The proposed DoSP method could honor the deadline. It is the 

same with Cloud Only approach as well. In the case of EdgeWard method, the deadline 

is violated by 4.45 seconds. This kind of performance is not acceptable as deadlines in 

cloud and fog computing scenarios might be associated with SLAs. 

 

Figure 9 Performance comparison with Humidity application 

Response Time against Deadline 

Response time or latency is an important metric used for evaluating the proposed DoSP 

algorithm. The response time against a given deadline is an important empirical 

observation. As shown in Figure 10, the observations are made in terms of response 

time against different deadlines. Results of all the applications are presented with the 

communication distance between the fog controller node and the cloud is 1 second. The 



deadlines from 50 to 500 seconds incremented by 50 seconds are provided on the 

horizontal axis. 

 

 

Figure 10 Performance of the DoSP method with respect to all applications 

The response time is shown on the vertical axis. When the elapsed time is 50 seconds, 

both Humidity and Video applications started while other applications started at an 

elapsed time of 100 seconds. The observations revealed that the response time values 

can be categorized into 3 levels, namely, lower, medium and high. When services are 

placed in a fog controller node, response time is less indicating higher performance. In 

the same fashion, when services are placed in the cloud, the response time is said to be 

medium, which is greater than that of the fog controller node. The response time is 

more when services are deployed in the neighbor fog controller node due to deployment 

delay and extra deployment time to place the service modules. These observations 

provide the rationale behind the patterns found in response time. The results revealed 

that the deadline has an impact on the response time. The rationale behind this is that 

the purpose of the proposed DoSP algorithm is to provide service placement which 

yields response time that should not violate the given deadline. The results revealed 

that the proposed method is deadline-aware, and no violations are found with respect 

to all applications. It does mean that based on the deadline and the resource availability, 

DoSP has taken appropriate service placement decisions. 

Resource Utilization Analysis 

Resource availability is analyzed by the proposed DoSP method in order to make 

service placement decisions. In the EdgeWard method, the sensing and actuating 

services are placed in various fog nodes in the fog layer. Other activities are known as 

data aggregation, analysis of data and decision making, are moved to the controller 

node and propagated to the neighbor fog controller node. In the DoSP, it is different. 



The sensing and actuation modules are placed in the fog nodes where as the processing 

related modules are placed in either fog controller node or in thecloud node. 

As shown in Figure 11, based on the resource analysis, 40% of the service placements 

are made in fog node, which is faster than other nodes. Service placement shows 12% 

in the closest neighbor node and 6% in the fog controller node. 

  

(a) (b) 

Figure 11 Resource utilization for the (a) EdgeWard method and (b) DoSP 

The remaining 42% of service placements occur in the cloud. As mentioned earlier, 

there is a difference in EdgeWard scenarios. It places 40% of services in the fog nodes, 

32% in the closest neighbor nodes and 28% in the fog orchestration control nodes. 

The Cloud Only approach keeps everything in the cloud. Therefore, it is not able to 

exploit the fog nodes and fog controller nodes. It has a drawback as the Cloud Only 

service placement may not meet certain workflow-based IoT applications where quick 

response time is desired. Cloud is relatively slower than other layers in the fog 

computing architecture. 

7   Conclusion and Future Work 

We proposed a Deadline-Aware Dynamic Service Placement (DoSP) algorithm for 

multiple sequential IoT workflow applications of the same model (sense-process-

actuate) and the same number of modules in each application. The applications follow 

the DDF deployment model. Each application contains the same number of services 

and each and every service has to be placed on computational nodes. 

With the advent of fog computing a platform for the exploitation of available resources 

at the edge of the network is emerged. The response time of different layers can be 

stated as 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑓𝑜𝑔 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑛𝑜𝑑𝑒(𝑁𝐹𝐶𝑁) > 𝐶𝑙𝑜𝑢𝑑 𝑛𝑜𝑑𝑒(𝐶𝑁) > 𝐹𝑜𝑔 𝑛𝑜𝑑𝑒(𝐹𝑁) >

𝐹𝑜𝑔 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑛𝑜𝑑𝑒(𝐹𝐶𝑁). The proposition is interesting as it can speed up IoT services 



deployed in fog computing. The proposed work investigates the proposition of the 

hypothesis aforementioned. It has architecture with multiple layers, i.e., device layer, 

fog layer, and cloud layer. An evaluation of DoSP algorithm is carried out using 

iFogSim simulator. The simulation results revealed that the proposed algorithm offers 

better performance over the approaches like EdgeWard, Cloud Only. DoSP performed 

well as its placement strategy differs to optimize performance in terms of reducing 

response time in the presence of strict deadlines associated with SLAs. This conclusion 

is made using only five workflows based IoT applications but this may not be limited 

to five and can be extended. The values that were assumed are based on the average of 

the previous experimental run, which are not extracted from any real-time dataset. In 

the future, we plan to work on the real-time dataset and investigate energy efficiency 

for optimization of service placement along with the deadlines considered. In further 

study a hyper-heuristic approach can also be used for better optimization. Container 

virtualization along with device mobility in a fog computing environment would also 

be considered.  
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