
A Data Stream Prediction Strategy for Elastic Stream

Computing Systems

Hanchu Zhang1, Dawei Sun1, Atul Sajjanhar2, and Rajkumar Buyya3

1 School of Information Engineering, China University of Geosciences, Beijing, 100083, P.R.

China

zhanghanchu@cugb.edu.cn, sundaweicn@cugb.edu.cn
2School of Information Technology, Deakin University, Victoria 3216, Australia

atul.sajjanhar@deakin.edu.au

3 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing

and Information Systems, The University of Melbourne, Australia

rbuyya@unimelb.edu.au

Abstract. In a distributed stream processing system, elastic resource provision-

ing/scheduling is the main factor that affects system performance and limits sys-

tem applications. However, in the data stream computing platform, resource al-

location is often suboptimal due to the large fluctuations of the data stream rate,

which creates a performance bottleneck for the cluster. In this paper, we propose

a data stream prediction strategy (Dp-Stream) for elastic computing system to

mitigate the resource allocation issue. First, we establish a back propagation (BP)

neural network prediction model based on genetic simulated annealing algorithm

to predict the trend of the data stream rate in the next time window of the cluster;

second, according to the time latency, the estimation model adjusts the resources

allocated to the critical operations of the critical path in the Directed Acyclic

Graph (DAG) and finally, the resource communication cost is optimized. We

evaluate the prediction accuracy and system latency of the proposed scheduling

strategy in Storm. The experimental results prove the feasibility and effectiveness

of the proposed strategy.

Keywords: Data stream prediction, Resource scheduling, Stream computing,

Back propagation neural network, Storm.

1 Introduction

1.1 Background and Motivation

With the continuous development of science and technology, society has entered the

era of big data, which is driven by a series of smart applications, smart devices, and

smart services, including social networks, smart phones, and intelligent transportation

[1]. In these scenarios, the amount of data is showing a trend of rapid growth, so it can

be seen that the demand for real-time data stream processing services is also increasing.

There is no doubt that the analysis and processing of real-time data has a very broad

mailto:zhanghanchu@cugb.edu.cn
mailto:rbuyya@unimelb.edu.au

2

application prospect, and it is also a huge challenge. Therefore, a large number of dis-

tributed stream processing real-time computing platforms represented by Storm [2] and

Spark Streaming [3] are derived to address the problem of timeliness of data, so that

these data can be processed quickly within the constraints of time.

In a distributed stream processing system, the transmission rate of data stream usu-

ally has high volatility, for example, data stream surges during e-commerce promo-

tional activities. On the other hand, data streams are reduced during the emergency

incidents of smart power system. In this case, if the stream processing system can adjust

resources according to the data demand when the data stream fluctuates the resource

utilization of the system will be improved, so the research on elastic resource schedul-

ing is of great significance [4]. Although Storm can meet the basic needs of data stream

processing, it has many shortcomings in supporting elastic resource scheduling. The

ideal elastic resource scheduling should accommodate the data stream traffic increase,

and adjust the system to increase the resource allocation in real time [5]; and when the

data stream traffic drops, the system should reclaim part of resources, in a timely man-

ner. At the same time, if the system's resources are adjusted when the changed data

stream arrives in the system, it will greatly increase the system's response time. There-

fore, if resources are adjusted in advance before the data stream rate changes, a lot of

system response time utilized for resource adjustments upon data arrival can be sal-

vaged, thereby reducing the latency of the system and improving the performance of

the system. As a result, we can predict the rate of the data stream to deploy resources

in advance.

1.2 Contributions

Based on the above background, we propose a data stream prediction strategy (Dp-

Stream) for elastic stream computing system. We mitigate the problem by making the

following contributions:

(1) We develop a BP neural network model based on genetic simulated annealing

algorithm to predict the change in trend of the data stream rate in the next time window

of the cluster;

(2) We propose a resource scheduling strategy from a systematic perspective, ac-

cording to the latency estimation model, resources are adjusted for the critical opera-

tions of the critical path in the DAG to obtain a lower system latency and higher re-

source utilization.

1.3 Paper Organization

The organization of the rest of the paper is as follows: Section 2 introduces the related

work. In section 3, the application model, prediction model and latency estimation

model are introduced. Section 4 focuses on Dp-Stream, including system architecture,

3

data stream prediction algorithm and resource scheduling algorithm. Section 5 intro-

duces the experimental environment, parameter settings and performance evaluation of

Dp-Stream. Finally, Section 7 presents conclusions and future work.

2 Related Work

In stream processing systems, due to the volatility of data streams, insufficient system

resources will cause system performance degradation. How to allocate resources effec-

tively and reasonably is the main challenge faced by streaming computing platforms.

At present, some researchers use predictive methods to optimize the allocation of sys-

tem resources to improve system performance.

In [12], the authors used the model predictive control (MPC) method to design an

elastic data stream processing strategy for multi-core systems, and proposed a tree

structure to describe the search space, and used the branch and bound method to deter-

mine Optimal resource allocation, reducing MPC runtime overhead and optimizing

throughput and latency performance.

[13] proposed the use of autoregressive integrated moving average (ARIMA) model

to predict the input traffic changes in the working node, using the resource cost model

to track and limit the node's CPU usage level within the acceptable range of strategies.

In [15], the authors used an integrated regression model to predict CPU and memory

usage, and used incremental learning techniques to build the prediction model in real

time. At the same time, according to the relative independence of different regression

models, the weighted integral algorithm of the regression model is given, and the ab-

normal value detection mechanism is introduced to monitor the abnormal execution to

improve the accuracy of prediction.

Table 1 Comparison of our work and other related work

Parameter

Related Work

Dp-Stream

[13] [15] [16] [17]

Prediction Modelling     

Performance Modelling     

Elastic Strategy     

Resource Saving     

At the same time, there are many researchers working on the scheduling strategy in

distributed stream processing system. [16] proposed a dynamic resource scheduling

strategy DRS based on cloud data stream management system. It analyzes each node in

4

the task topology through the Erlang formula to obtain its data processing latency, and

then uses the Jackson queuing network to aggregate the processing latency of the entire

topology on a weighted average.

In [17], the authors proposed an adaptive online solution for scheduling and resource

implementation on a stream processing framework. It can determine the number of re-

sources required by each instance in a timely manner to handle unexpected load peaks

without causing congestion, and wasteful allocation of resources. A resource cost-

aware layout algorithm is proposed, which can minimize the number of affected worker

threads.

In summary, the above solutions provide valuable insights for the elastic scheduling

strategy of distributed stream processing systems, including prediction methods, re-

source scheduling, and resource allocation. However, the current methods still have

some limitations, so it is necessary to develop novel methods to adapt to the era of big

data. The comparison between our work and other closely related works is given in

Table 1.

3 Problem Statement

In this section, we introduce the application DAG model, prediction model and latency

estimation model in big data stream computing environments.

3.1 Application Model

Data stream processing systems model the logic of the real-time application as a DAG,

represented by     ,DAG V G E G ,where    1 2, , , nV G v v v is a set of n verti-

ces, and each vertex represents a Spout or Bolt component. Spout is responsible for

reading data from the data source and sending tuples (Tuple) to the Topology. Tuples

are units of data processed by Storm. Bolt encapsulate processing logic, realize the spe-

cific processing of data, each processing a tuple.    1,2 1,3 ,, , , n i nE G e e e  is a finite

set of directed edges, the weight associated with a vertex or an edge respectively repre-

sents its computation cost or communication cost. A vertex in each component is an

instance, and the number of vertices in a component is the number of instances of the

component, which is also called the parallelism of the component. For each DAG, first

use the graph-based depth fist traversal algorithm to find the largest path from
1v to

nv .

This maximum path is called the critical path of the topological graph, all nodes on the

critical path are called Critical Operations (CO).

5

3.2 Prediction Model

We propose a BP neural network based on the genetic simulated annealing algorithm

to predict the input rate of data stream
1tr 
of the application in the future time window

1t  based on the historical input rate
1 2 3(, , ,...,)in tR r r r r .In the BP neural network,

the historical input rate of the application
1 2 3(, , ,...,)in tR r r r r is used as the input data

of the neural network,
1 2 3(, , ,...,)nW     is the weight corresponding to the input

data to the hidden layer,
1 2 3(, , ,...,)nH h h h h is the output value of the hidden layer,

 1 2 3, , ,..., kY y y y y

is the output value of the output layer, and

1 2 3(, , ,...,)kT t t t t

is

the target value of the output layer. The output result of the hidden layer can be calcu-

lated by (1).

 1

,
t

n ni i

i

h f r


 
  

 
 (1)

where we use
1

1 kx
f

e




as the transfer function of the BP neural network. And the

output of the output layer can be expressed by (2).

1

,
N

k nk n

n

y f h


 
  

 
 (2)

where,
nk is the weight between the hidden layer and the output layer. Therefore, the

error between the target output and the actual output can be obtained by (3),

2

2

1 1

1 1
() .

2 2

K N

k n n

k n

b T Y t f h
 

  
      

  
  (3)

Genetic algorithm is a kind of global search algorithm, which has strong global search

ability, but it is prone to premature convergence, which leads to the problem of local

optimal solution. In the process of searching for the optimal solution, the simulated

annealing algorithm uses a certain probability to jump out of the local optimal solution

to avoid the shortcomings of falling into the local optimal solution. In the forecasting

process, the genetic simulated annealing algorithm is used to replace the back propaga-

tion process of the BP neural network. First, get the initial population from the initial

solution  P k of the BP neural network according to the genetic algorithm, and then

perform crossover and mutation operations on the initial population to obtain new in-

dividuals x . At this time, the energy value of the system E b  is obtained according

to the simulated annealing algorithm. Then the energy difference can be expressed as

E E E b b      . Metropolis' probability acceptance criteria is used to determine

whether to accept or reject the new state. The probability of the system accepting the

state x can be calculated by (4).

6

 

1 , 0,

1
exp , ,

k k

if E

P E
otherwise

z t Kt

 


  
 
 

 (4)

where, K is Boltzmann's constant, kt is the current temperature. If the probability P is

an arbitrary random number in the interval  0,1 , the new state x is accepted, otherwise

the current state x is retained. In the iterative process of the algorithm, the solid mole-

cules continue to move to a place with relatively low energy, and the state probability

distribution of the energy E of the solid in a certain state tends to the Gibbs distribution

can be calculated by (5),

1

.

exp i

i k

z
E

t


 
 
 



 (5)

The genetic simulated annealing algorithm makes the initial point of the iteration con-

tinue to iterate from an initial solution, and correct the weights and error thresholds of

the BP network to gradually find the optimal solution. Finally, the output of the output

layer is used as the input rate of the application in the time window 1t 

to be pre-

dicted.

3.3 Latency Estimation Model

In data stream processing system, for data tuples, the flag of processing completion is

that it and all the intermediate tuples it produces are processed by its corresponding

compute nodes. T is used to represent the time experienced from the data stream input

tuple to the application to the completion of its processing by the last computing node.

iT is used to represent the time required for the
iv node to process the tuple.

iT

including

tuple processing time
iTp , the time

iTs required to transmit tuples from node
iv to jv

.

The tuple processing time is related to the processing rate of the task, therefore, the

faster the processing rate, the shorter the processing time. Hence, it is inversely propor-

tional to the average processing rate, that can be calculated by (6).

1

,i

i k

ik

k

r t
Tp

p


 




 (6)

where
ikp is the tuple processing rate under the assumption that the instances of all

nodes are homogeneous. It can be seen that when the processing rate of node
iv is

larger,
iTp is smaller. Therefore, when the current processing rate cannot achieve the

7

lower processing time, we can increase the number of node instances (that is, increase

the node parallelism) to reduce the processing time.

Then the time required to transmit tuples from node
iv to jv

is related to the network

bandwidth, and if the instances of two nodes are on the same Worker node, the trans-

mission time between them can be ignored. Therefore,
iTs can be calculated by (7),

, , ker .

0 , .

i

iji

r t
if i j in different Wor node

BTs

otherwise

 


 



 (7)

The value
iT is the weight of the sum of the value of all calculated values, that can be

expressed by (8).

 (),i i i iT w Tp Ts   (8)

where,
iw is the weight of node

iv on the path.

In stream processing applications, the required time between data stream on the path

is equal to the sum of the latency of the nodes with the longest required time on the

path, that is, the sum of the latency of all nodes that belong to the critical operation on

the critical path, so each input element in the application the response time T of the

group can be expressed by (9),

 , .i i

i

T T v CO  (9)

Therefore, the optimization goal of this paper can be defined as: in the case of meeting

the predicted data input rate, find the appropriate number of instances (executor) for

each critical operation node of the critical path on the DAG, so as to minimize the

latency and meet the requirements of each Worker node resource capacity to improve

resource utilization.

4 Dp-Stream Overview

Based on the relevant model discussed in the Section 3, we propose a scheduling strat-

egy, namely, Dp-Stream. Dp-Stream is a resource scheduling strategy based on the pre-

diction of data stream rate. For data stream rates that fluctuate drastically, it can adjust

system resources according to the stream rate before the changing data stream arrives

to ensure low latency. In order to provide an overview of Dp-Stream, this section fo-

cuses on Dp-Stream, including data stream rate prediction algorithms, resource sched-

uling methods based on predicted stream rates and its system architecture.

8

4.1 System Architecture

The basic structure of Storm includes Nimbus, Zookeeper and several Worker nodes.

Nimbus is responsible for receiving the DAG submitted by the user and deploying it to

each Worker node. Each Worker node runs a Supervisor to monitor the tasks assigned

by Nimbus to the Worker node. Zookeeper is used to save the working status of Nimbus

and Supervisor.

In order to implement Dp-Stream, the basic structure of Storm needs to be improved.

The improved cluster mainly includes an input rate monitoring module, a prediction

module, and a resource scheduling module. The input rate monitoring module is used

to monitor the current stream rate of the system data stream and save the record in the

database. The prediction module applies historical input rate from the database to per-

form forecasting according to the algorithm proposed in Section 4.2. The resource

scheduling module uses the IScheduler interface to implement the scheduling strategy

proposed in Section 4.3. The Dp-Stream deployment architecture is shown in Figure 1.

Fig. 1. Dp-Stream deployment architecture

4.2 Data Stream Prediction Algorithm

In order to realize a timely response of stream processing applications to rate changes,

it is necessary to predict the data stream rate of the next time window through the pre-

diction model, so as to allocate appropriate resources to the application in advance.

The genetic simulated annealing algorithm uses the annealing algorithm to find the

optimal solution by adding the local optimal solution as a potential candidate, and then

workers

Supervisor

Nimbus

Executor

Zookeeper

Database

Load monitoring

node

Load prediction

node

Resource scheduling

node

Executor

Executor

Worker node Worker node

workers

Supervisor

Executor

Executor

Executor

9

adjusting the entire search range with new candidates to improve the accuracy of the

algorithm. BP neural network is prone to converge at the local optimal solution, so this

paper proposes a BP neural network based on genetic simulated annealing algorithm as

a prediction model, which is described in Algorithm1.

Algorithm 1: Prediction algorithm of BP network based on genetic simulated annealing

algorithm

1. Input: Population size S , iteration number N , crossover probability
cP ,

mutation probability
mP , simulated annealing initial temperature

mt , tem-

perature decay function parameter

2. Output: Data stream rate
1tr 
 in the t+1 time window

3. Initialize the BP network and encode the weight and threshold, and initial-

ize the population  P k then

4. Use fitness function to evaluate current individuals E b

5. for n<N do

6. if fitness value satisfies the termination condition then

7. return

8. else

9. Select and copy the population then

10. Perform crossover and mutation operations on the population

11. then do Simulated annealing operation to obtain a new fitness value

E b  at temperature
kt

12. if 0E 

13. Accept the new solution

14. else Calculated P by (4)

15. if  0,1P

16. accept the new solution

17. else keep the original solution

18. then gradually lower the temperature,
1k kt t  , 1n n 

19. return

10

In Algorithm 1, the initial solution of the algorithm is obtained by the BP neural net-

work, and the initial population of the genetic algorithm is obtained (Step 3). Then a

fitness function is used to evaluate the fitness value of the candidates in the population.

If the fitness value meets the termination condition of the algorithm, the result will be

output, otherwise the population will be cross-mutated (Step 4 to 10). At temperature

kt , calculate the fitness value of the individuals in the population after genetic manip-

ulation and compare it with their respective parental fitness values, and decide whether

to accept the individuals after genetic manipulation according to Metropolis acceptance

criteria (Step 11 to 19). Then the population is cooled down.

4.3 Resource Scheduling

After predicting the rate of data stream, Dp-Stream will perform resource adjustment

and scheduling operations based on the data stream rate in the next time window ob-

tained by the prediction algorithm. Firstly, execute resource adjustment of the critical

operation nodes on the critical path in the DAG, increase or decrease the number of

instances of the component to match the changes in the coming data stream rate, so as

to ensure a lower system latency. Then place the changed instance in the appropriate

Worker node according to the remaining resource capacity on the Worker node to en-

sure the resource utilization of the system. The scheduling algorithm of the Dp-Stream

is described in Algorithm 2.

Algorithm 2: Resource scheduling algorithm

1. Input: critical operation set CO, threshold  and minimum value  of crit-

ical operation
iT , set of Worker nodes jW

2. Output: calculated time for critical operations
iT , the change number of

instances of each critical operation node
in , the placement of executor in-

stances on each Worker node jW 

3. for each
iv CO do

4. calculate
iT by (8)

5. if
iT  then

6. while
iT  do

7.

increase the number of instances 1i iN N  , calculate
iT

8. else if
iT  then

11

9. while
iT  do

10. reduce the number of instances 1i iN N  , calculate
iT

11. for each jW do

12. calculate the remaining resource capacity jR

13. for each
in do

14. if 0in  then

15. if the remaining capacity jR

is more than the resource requirement of

the instance
kr

and j j kR R r  

is the smallest then

16. place an instance into, j jR R 

17. else if 0in  then

18. if jW containing the instance and j j kR R r  

is the biggest hen

19. release the instance form jW  , j jR R 

20. return
iT , jW 

In Algorithm 2, we adjust the resources of the critical operation nodes on the critical

path in the DAG. First, calculate the latency of each critical operation node (Step 4).

When the latency of the critical operation exceeds the threshold  , add an Executor

instance to the node until the latency is less than the threshold (Step 5 to 7). Similarly,

when the latency of the critical operation is less than the minimum value  , one Ex-

ecutor instance is reduced for the node until the latency is greater than the minimum

value (Step 8 to 10). Then calculate the remaining resource capacity of each Worker

node (steps 11-12). When an executor instance is placed, select a Worker node that

meet the resource requirements of the instance and has the smallest remaining resource

capacity after placing the instance to increase resource utilization (Step 13 to 16). Sim-

ilarly, when releasing an executor instance, select the Worker node that contains the

instance and the remaining resource capacity is the largest after the instance is released,

so as to generate more resources to prepare for the subsequent placement of the instance

(step 17-19).

12

5 Performance Evaluation

In this section, we first discuss the experimental environment and parameter settings,

which is followed by analysis of performance evaluation results.

5.1 Experimental Environment and Parameter Setup

The proposed Dp-Stream system is developed based on Storm 2.1.0, and installed on

top of CentOS 6.8. The cluster consists of 7 machines, with one designated machine

serving as the master node, running Storm Nimbus, two designated as Zookeeper node,

and the rest 4 machines working as Supervisor nodes. The Nimbus node is equipped

with 12 Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz 6-core processors and 12GB of

memory. Zookeeper nodes and Supervisor nodes are virtual machines, equipped with 2

Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz 2-core processors and 4GB of RAM. The

software configuration of Dp-Stream platform is shown in Table 2.

Table 2 Software configuration of Dp-Stream

Software Version

OS CentOS 6.8 64bit

Storm apache-storm-2.1.0

JDK Jdk1.8 64bit

Zookeeper zookeeper-3.4.14

Python

Maven

python 2.7.2

Maven 3.6.2

MySQL Mysql 5.1.73

WordCount is an application used to count the frequency of words in English text. It

consists of a Spout and two Bolt. Top-N is an application for counting trending topics,

including one Spout and three Bolt. Here, we use WordCount and Top-N as the topol-

ogy for our experiments.

5.2 Prediction model evaluation

In order to evaluate the accuracy of the prediction model for predicting the data stream

rate, the experiment in this section simulates the phenomenon of violent rate fluctua-

tions in the online business. The data stream rate is set as a random rate, and the arrival

rate range of the random rate is set to [1000,3000] tuple/s. First, collect the actual sim-

ulation value of 200s as the training data of the neural network model. In order to de-

scribe the accuracy of the prediction algorithm more intuitively, we continuously col-

lect 20s predicted and true values of the data stream, we recorded the predicted values

and actual values of 5s, 10s, 15s, and 20s, and calculated the mean absolute error

13

(MAE), root mean squared error (RMSE) and mean relative error (MRE). The results

are summarized in Table 3.

Table 3 Comparison of predicted value and actual value at different time and eval-

uation of prediction method

Time Predicted Value Actual Value

5 2101 2056

10 2511 2421

15 2114 2201

20 1864 1799

MAE 61.92 RMSE 66.76 MRE 0.031

In Table 3, both MAE and RMSE are around 60, and MRE<0.05. Therefore, it can be

concluded that our prediction method has a good accuracy and can meet the require-

ments of Dp-Stream for the accuracy of the prediction algorithm.

5.3 Resource Scheduling Strategy Evaluation

We apply the simulated data stream to the Dp-Stream and Storm’s default scheduler,

and observe the changes of system latency. The experiments evaluate the system la-

tency under Dp-Stream and Storm default scheduler.

Fig. 2. System latency comparison when running WordCount

14

Fig. 3. System latency comparison when running Top-N

In Figure 2 and 3, the horizontal axis represents the experiment time (s), and the verti-

cal axis represents the waiting time (ms) of the Dp-Stream and Storm default sched-

uler. Figure 2 records the system latency comparison of Dp-Stream and Storm default

scheduler when running WordCount application. Due to the constant fluctuation of

the input rate of the data stream, during the 800s observation period, the average sys-

tem latency of Dp-Stream is about 2.27ms, and the average latency of Storm default

scheduler is about 4.66ms. Figure 3 records the system latency comparison of Dp-

Stream and Storm’s default scheduler when running Top-N application, and the aver-

age system latency of Dp-Stream is about 2.40ms, and the average latency of Storm

default scheduler is about 4.84ms. It can be seen from these two figures that com-

pared with the default scheduler of Storm the latency of Dp-Stream is much lower

than the default scheduler. The Dp-Stream has been adjusted in advance to deal with

rate changes, so the latency has only a small fluctuation and the overall trend is de-

creasing. However, the latency of the default scheduler is higher than Dp-Stream and

the overall trend is increasing. This shows that our Dp-Stream is more effective.

6 Conclusions and Future Work

In a distributed stream processing system, in the face of continuous changes in the data

stream rate of the data stream, if there is no proper resource scheduling strategy, the

latency of the application will increase significantly. In this paper, we propose a data

stream prediction strategy for elastic stream computing system (Dp-Stream), with the

goal of allocating system resources in advance to ensure low system latency before

changing stream arrive. Experimental results show that the prediction model proposed

15

in this paper is more accurate, and the proposed scheduling algorithm reduces system

latency compared with Storm's default scheduler.

In the future, we will focus on improving the prediction algorithm to improve the

accuracy of prediction, and considering heterogeneous situation of Worker nodes in the

resource scheduling strategy to make the scheduling strategy better.

Acknowledgements. This work is supported by the National Natural Science Foun-

dation of China under Grant No. 61972364 and the Fundamental Research Funds for

the Central Universities under Grant No. 2652021001. This work is also supported by

Melbourne-Chindia Cloud Computing (MC3) Research Network.

References

1. F. Zhu, Y. Lv, Y. Chen, X. Wang, G. Xiong, F. Y. Wang: Parallel Transportation Systems:

Toward IoT-Enabled Smart Urban Traffic Control and Management. In: IEEE Transactions

on Intelligent Transportation Systems, vol. 21, no. 10, pp. 4063-4071 (2020).

2. A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K.

Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, D. Ryaboy: Storm@twitter. In: 2014 ACM

SIGMOD International Conference on Management of Data, SIGMOD 2014, ACM Press,

pp. 147-156 (2014).

3. S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu, K. Nus-

baum, K. Patil, B. J. Peng, P. Poulosky: Benchmarking Streaming Conputation Engines:

Storm, Flink and Spak Streaming, In: 2016 IEEE International Parallel and Distributed Pro-

cessing Symposium Workshops (IPDPSW), pp. 1789-1792 (2016).

4. X. Liu, R. Buyya: Resource Management and Scheduling in Distributed Stream Processing

Systems: A Taxonomy, Review, and Future Directions. In: ACM Computing Surveys, vol.

53, no.3, pp.1-41 (2020).

5. J. Zhang, C. Li, L. Zhu, Y. Liu: The Real-Time Scheduling Strategy Based on Traffic and

Load Balancing in Storm. In: 2016 IEEE 18th International Conference on High Perfor-

mance Computing and Communications; IEEE 14th International Conference on Smart

City; IEEE 2nd International Conference on Data Science and Systems, Sydney, NSW, Aus-

tralia, pp. 372-379 (2016).

6. W. Duan, L. Zhou: Task Scheduling Optimization Based on Firefly Algorithm in Storm. In:

2020 IEEE 10th International Conference on Electronics Information and Emergency Com-

munication (ICEIEC), pp. 150-154 (2020).

7. T. Heinze, V. Pappalardo, Z. Jerzak, C. Fetzer: Auto-scaling techniques for elastic data

stream processing. In: 2014 IEEE 30th International Conference on Data Engineering Work-

shops, Chicago, IL, USA, pp. 296-302 (2014).

8. N. Hidalgo, D. Wladdimiro, E. Rosasl: Self-adaptive processing graph with operator fission

for elastic stream processing. The Journal of Systems & Software 127 (2017).

16

9. Cardellini V, Nardelli M, Luzi D: Elastic Stateful stream processing in storm. In: Interna-

tional Conference on High Performance Computing & Simulation, pp. 583-590 (2016).

10. Chakraborty R, Majumdar S: A priority-based resource scheduling technique for multitenant

storm clusters. In: 2016 International Symposium on Performance Evaluation of Computer

and Telecommunication Systems, pp. 1-6 (2016).

11. Y. Zhou, Y. Liu, C. Zhang, X. Peng, X. Oin: TOSS: A Topology-based Scheduler for Storm

C1usters. In: 2020 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), New Orleans, LA, USA, pp. 587-596 (2020).

12. T. D. Matteis, G. Mencagli: Proactive elasticity and energy awareness in data stream pro-

cessing. The Journal of Systems & Software, vol. 127, pp. 302-319 (2017).

13. M. R. Hoseiny Farahabady, H. R. Dehghani Samani, Y. Wang, A. Y. Zomaya, Z. Tari: A

QoS-aware controller for Apache Storm. In: 2016 IEEE 15th International Symposium on

Network Computing and Applications (NCA), Cambridge, MA, USA, pp. 334-342 (2016).

14. Hoseiny Farahabady M R, Zomaya A Y, Tari Z: QoS- and Contention- Aware Resource

Provisioning in a Stream Processing Engine. In: 2017 IEEE International Conference on

Cluster Computing (CLUSTER), pp. 137-146 (2017).

15. Wang C, Meng X, Guo Q, Weng Z, Yang C: OrientStream: A Framework for Dynamic

Resource Allocation in Distributed Data Stream Management Systems. In: 25th ACM Inter-

national on Conference on Information and Knowledge Management, ACM Press, pp. 2281-

2286 (2016).

16. T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, Z. Zhang: DRS: Dynamic Resource

Scheduling for Real-Time Analytics over Fast Streams. In: 2015 IEEE 35th International

Conference on Distributed Computing Systems, Columbus, OH, USA, pp. 411-420 (2015).

17. S. Liu, J. Weng, J. H. Wang, C. An, Y. Zhou, J. Wang: An Adaptive Online Scheme for

Scheduling and Resource Enforcement in Storm. In: IEEE/ACM Transactions on Network-

ing, vol. 27, no. 4, pp. 1373-1386 (2019).

18. W. Wang, C. Zhang, X. Chen, Z. Li, H. Ding, X. Wen: An On-the-Fly Scheduling Strategy

for Distributed Stream Processing Platform. In: 2018 IEEE Intl Conf on Parallel & Distrib-

uted Processing with Applications, Melbourne, VIC, Australia, pp. 773-780 (2018).

19. X. Liu, R. Buyya: D-Storm: Dynamic Resource-Efficient Scheduling of Stream Processing

Applications. In: 2017 IEEE 23rd International Conference on Parallel and Distributed Sys-

tems, pp. 485-492 (2017).

20. T. De Matteis, G. Mencagli: Elastic Scaling for Distributed Latency-Sensitive Data Stream

Operators. In: 2017 25th Euromicro International Conference on Parallel, Distributed and

Network-based Processing (PDP), St. Petersburg, Russia, pp. 61-68 (2017).

https://ieeexplore.ieee.org/xpl/conhome/7569775/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7569775/proceeding

