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Abstract. In a distributed stream processing system, elastic resource provision-

ing/scheduling is the main factor that affects system performance and limits sys-

tem applications. However, in the data stream computing platform, resource al-

location is often suboptimal due to the large fluctuations of the data stream rate, 

which creates a performance bottleneck for the cluster. In this paper, we propose 

a data stream prediction strategy (Dp-Stream) for elastic computing system to 

mitigate the resource allocation issue. First, we establish a back propagation (BP) 

neural network prediction model based on genetic simulated annealing algorithm 

to predict the trend of the data stream rate in the next time window of the cluster; 

second, according to the time latency, the estimation model adjusts the resources 

allocated to the critical operations of the critical path in the Directed Acyclic 

Graph (DAG) and finally, the resource communication cost is optimized. We 

evaluate the prediction accuracy and system latency of the proposed scheduling 

strategy in Storm. The experimental results prove the feasibility and effectiveness 

of the proposed strategy. 

Keywords: Data stream prediction, Resource scheduling, Stream computing, 

Back propagation neural network, Storm. 

1 Introduction 

1.1 Background and Motivation 

With the continuous development of science and technology, society has entered the 

era of big data, which is driven by a series of smart applications, smart devices, and 

smart services, including social networks, smart phones, and intelligent transportation 

[1]. In these scenarios, the amount of data is showing a trend of rapid growth, so it can 

be seen that the demand for real-time data stream processing services is also increasing. 

There is no doubt that the analysis and processing of real-time data has a very broad 
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application prospect, and it is also a huge challenge. Therefore, a large number of dis-

tributed stream processing real-time computing platforms represented by Storm [2] and 

Spark Streaming [3] are derived to address the problem of timeliness of data, so that 

these data can be processed quickly within the constraints of time. 

In a distributed stream processing system, the transmission rate of data stream usu-

ally has high volatility, for example, data stream surges during e-commerce promo-

tional activities. On the other hand, data streams are reduced during the emergency 

incidents of smart power system. In this case, if the stream processing system can adjust 

resources according to the data demand when the data stream fluctuates the resource 

utilization of the system will be improved, so the research on elastic resource schedul-

ing is of great significance [4]. Although Storm can meet the basic needs of data stream 

processing, it has many shortcomings in supporting elastic resource scheduling. The 

ideal elastic resource scheduling should accommodate the data stream traffic increase, 

and adjust the system to increase the resource allocation in real time [5]; and when the 

data stream traffic drops, the system should reclaim part of resources, in a timely man-

ner. At the same time, if the system's resources are adjusted when the changed data 

stream arrives in the system, it will greatly increase the system's response time. There-

fore, if resources are adjusted in advance before the data stream rate changes, a lot of 

system response time utilized for resource adjustments upon data arrival can be sal-

vaged, thereby reducing the latency of the system and improving the performance of 

the system. As a result, we can predict the rate of the data stream to deploy resources 

in advance. 

 

1.2 Contributions 

Based on the above background, we propose a data stream prediction strategy (Dp-

Stream) for elastic stream computing system. We mitigate the problem by making the 

following contributions: 

(1) We develop a BP neural network model based on genetic simulated annealing 

algorithm to predict the change in trend of the data stream rate in the next time window 

of the cluster; 

(2) We propose a resource scheduling strategy from a systematic perspective, ac-

cording to the latency estimation model, resources are adjusted for the critical opera-

tions of the critical path in the DAG to obtain a lower system latency and higher re-

source utilization. 

 

1.3 Paper Organization 

The organization of the rest of the paper is as follows: Section 2 introduces the related 

work. In section 3, the application model, prediction model and latency estimation 

model are introduced. Section 4 focuses on Dp-Stream, including system architecture, 
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data stream prediction algorithm and resource scheduling algorithm. Section 5 intro-

duces the experimental environment, parameter settings and performance evaluation of 

Dp-Stream. Finally, Section 7 presents conclusions and future work. 

2 Related Work 

In stream processing systems, due to the volatility of data streams, insufficient system 

resources will cause system performance degradation. How to allocate resources effec-

tively and reasonably is the main challenge faced by streaming computing platforms. 

At present, some researchers use predictive methods to optimize the allocation of sys-

tem resources to improve system performance. 

In [12], the authors used the model predictive control (MPC) method to design an 

elastic data stream processing strategy for multi-core systems, and proposed a tree 

structure to describe the search space, and used the branch and bound method to deter-

mine Optimal resource allocation, reducing MPC runtime overhead and optimizing 

throughput and latency performance. 

[13]  proposed the use of autoregressive integrated moving average (ARIMA) model 

to predict the input traffic changes in the working node, using the resource cost model 

to track and limit the node's CPU usage level within the acceptable range of strategies. 

In [15], the authors used an integrated regression model to predict CPU and memory 

usage, and used incremental learning techniques to build the prediction model in real 

time. At the same time, according to the relative independence of different regression 

models, the weighted integral algorithm of the regression model is given, and the ab-

normal value detection mechanism is introduced to monitor the abnormal execution to 

improve the accuracy of prediction. 

Table 1 Comparison of our work and other related work 

Parameter 

Related Work 

Dp-Stream 

[13] [15] [16] [17] 

Prediction Modelling      

Performance Modelling      

Elastic Strategy      

Resource Saving      

 

At the same time, there are many researchers working on the scheduling strategy in 

distributed stream processing system. [16] proposed a dynamic resource scheduling 

strategy DRS based on cloud data stream management system. It analyzes each node in 
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the task topology through the Erlang formula to obtain its data processing latency, and 

then uses the Jackson queuing network to aggregate the processing latency of the entire 

topology on a weighted average.  

In [17], the authors proposed an adaptive online solution for scheduling and resource 

implementation on a stream processing framework. It can determine the number of re-

sources required by each instance in a timely manner to handle unexpected load peaks 

without causing congestion, and wasteful allocation of resources. A resource cost-

aware layout algorithm is proposed, which can minimize the number of affected worker 

threads. 

In summary, the above solutions provide valuable insights for the elastic scheduling 

strategy of distributed stream processing systems, including prediction methods, re-

source scheduling, and resource allocation. However, the current methods still have 

some limitations, so it is necessary to develop novel methods to adapt to the era of big 

data. The comparison between our work and other closely related works is given in 

Table 1. 

3 Problem Statement 

In this section, we introduce the application DAG model, prediction model and latency 

estimation model in big data stream computing environments. 

 

3.1 Application Model 

Data stream processing systems model the logic of the real-time application as a DAG, 

represented by     ,DAG V G E G ,where    1 2, , , nV G v v v is a set of n verti-

ces, and each vertex represents a Spout or Bolt component. Spout is responsible for 

reading data from the data source and sending tuples (Tuple) to the Topology. Tuples 

are units of data processed by Storm. Bolt encapsulate processing logic, realize the spe-

cific processing of data, each processing a tuple.    1,2 1,3 ,, , , n i nE G e e e   is a finite 

set of directed edges, the weight associated with a vertex or an edge respectively repre-

sents its computation cost or communication cost. A vertex in each component is an 

instance, and the number of vertices in a component is the number of instances of the 

component, which is also called the parallelism of the component. For each DAG, first 

use the graph-based depth fist traversal algorithm to find the largest path from
1v to

nv . 

This maximum path is called the critical path of the topological graph, all nodes on the 

critical path are called Critical Operations (CO). 
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3.2 Prediction Model 

We propose a BP neural network based on the genetic simulated annealing algorithm 

to predict the input rate of data stream 
1tr 
of the application in the future time window 

1t  based on the historical input rate
1 2 3( , , ,..., )in tR r r r r .In the BP neural network, 

the historical input rate of the application 
1 2 3( , , ,..., )in tR r r r r  is used as the input data 

of the neural network, 
1 2 3( , , ,..., )nW      is the weight corresponding to the input 

data to the hidden layer, 
1 2 3( , , ,..., )nH h h h h is the output value of the hidden layer, 

 1 2 3, , ,..., kY y y y y
 
is the output value of the output layer, and 

1 2 3( , , ,..., )kT t t t t
 
is 

the target value of the output layer. The output result of the hidden layer can be calcu-

lated by (1). 

 
  1
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n ni i
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where we use 
1
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as the transfer function of the BP neural network. And the 

output of the output layer can be expressed by (2). 
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where, 
nk  is the weight between the hidden layer and the output layer. Therefore, the 

error between the target output and the actual output can be obtained by (3), 
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Genetic algorithm is a kind of global search algorithm, which has strong global search 

ability, but it is prone to premature convergence, which leads to the problem of local 

optimal solution. In the process of searching for the optimal solution, the simulated 

annealing algorithm uses a certain probability to jump out of the local optimal solution 

to avoid the shortcomings of falling into the local optimal solution. In the forecasting 

process, the genetic simulated annealing algorithm is used to replace the back propaga-

tion process of the BP neural network. First, get the initial population from the initial 

solution  P k of the BP neural network according to the genetic algorithm, and then 

perform crossover and mutation operations on the initial population to obtain new in-

dividuals x . At this time, the energy value of the system E b   is obtained according 

to the simulated annealing algorithm. Then the energy difference can be expressed as

E E E b b      . Metropolis' probability acceptance criteria is used to determine 

whether to accept or reject the new state. The probability of the system accepting the 

state x  can be calculated by (4). 
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 

1 , 0,
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k k

if E

P E
otherwise

z t Kt
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

  
 
 

 (4) 

where, K  is Boltzmann's constant, kt  is the current temperature. If the probability P is 

an arbitrary random number in the interval  0,1 , the new state x is accepted, otherwise 

the current state x is retained. In the iterative process of the algorithm, the solid mole-

cules continue to move to a place with relatively low energy, and the state probability 

distribution of the energy E of the solid in a certain state tends to the Gibbs distribution 

can be calculated by (5), 

 
1

.

exp i

i k

z
E
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
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 
 



 (5) 

The genetic simulated annealing algorithm makes the initial point of the iteration con-

tinue to iterate from an initial solution, and correct the weights and error thresholds of 

the BP network to gradually find the optimal solution. Finally, the output of the output 

layer is used as the input rate of the application in the time window 1t 
 
to be pre-

dicted. 

 

3.3 Latency Estimation Model 

In data stream processing system, for data tuples, the flag of processing completion is 

that it and all the intermediate tuples it produces are processed by its corresponding 

compute nodes. T is used to represent the time experienced from the data stream input 

tuple to the application to the completion of its processing by the last computing node. 

iT is used to represent the time required for the
iv node to process the tuple. 

iT
 
including 

tuple processing time 
iTp , the time 

iTs required to transmit tuples from node 
iv to jv

.
 

The tuple processing time is related to the processing rate of the task, therefore, the 

faster the processing rate, the shorter the processing time. Hence, it is inversely propor-

tional to the average processing rate, that can be calculated by (6). 
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p
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 (6) 

where 
ikp  is the tuple processing rate under the assumption that the instances of all 

nodes are homogeneous. It can be seen that when the processing rate of node 
iv  is 

larger,
iTp  is smaller. Therefore, when the current processing rate cannot achieve the 
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lower processing time, we can increase the number of node instances (that is, increase 

the node parallelism) to reduce the processing time. 

Then the time required to transmit tuples from node 
iv to jv

 
is related to the network 

bandwidth, and if the instances of two nodes are on the same Worker node, the trans-

mission time between them can be ignored. Therefore, 
iTs can be calculated by (7), 

 
, , ker .

0 , .

i

iji

r t
if i j in different Wor node

BTs

otherwise
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

 



 (7) 

The value 
iT   is the weight of the sum of the value of all calculated values, that can be 

expressed by (8). 

 ( ),i i i iT w Tp Ts    (8) 

where,
iw  is the weight of node 

iv  on the path. 

In stream processing applications, the required time between data stream on the path 

is equal to the sum of the latency of the nodes with the longest required time on the 

path, that is, the sum of the latency of all nodes that belong to the critical operation on 

the critical path, so each input element in the application the response time T of the 

group can be expressed by (9), 

 , .i i

i

T T v CO   (9) 

Therefore, the optimization goal of this paper can be defined as: in the case of meeting 

the predicted data input rate, find the appropriate number of instances (executor) for 

each critical operation node of the critical path on the DAG, so as to minimize the 

latency and meet the requirements of each Worker node resource capacity to improve 

resource utilization. 

4 Dp-Stream Overview 

Based on the relevant model discussed in the Section 3, we propose a scheduling strat-

egy, namely, Dp-Stream. Dp-Stream is a resource scheduling strategy based on the pre-

diction of data stream rate. For data stream rates that fluctuate drastically, it can adjust 

system resources according to the stream rate before the changing data stream arrives 

to ensure low latency. In order to provide an overview of Dp-Stream, this section fo-

cuses on Dp-Stream, including data stream rate prediction algorithms, resource sched-

uling methods based on predicted stream rates and its system architecture. 
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4.1 System Architecture 

The basic structure of Storm includes Nimbus, Zookeeper and several Worker nodes. 

Nimbus is responsible for receiving the DAG submitted by the user and deploying it to 

each Worker node. Each Worker node runs a Supervisor to monitor the tasks assigned 

by Nimbus to the Worker node. Zookeeper is used to save the working status of Nimbus 

and Supervisor. 

In order to implement Dp-Stream, the basic structure of Storm needs to be improved. 

The improved cluster mainly includes an input rate monitoring module, a prediction 

module, and a resource scheduling module. The input rate monitoring module is used 

to monitor the current stream rate of the system data stream and save the record in the 

database. The prediction module applies historical input rate from the database to per-

form forecasting according to the algorithm proposed in Section 4.2. The resource 

scheduling module uses the IScheduler interface to implement the scheduling strategy 

proposed in Section 4.3. The Dp-Stream deployment architecture is shown in Figure 1. 

 

 

Fig. 1. Dp-Stream deployment architecture 

 

4.2 Data Stream Prediction Algorithm  

In order to realize a timely response of stream processing applications to rate changes, 

it is necessary to predict the data stream rate of the next time window through the pre-

diction model, so as to allocate appropriate resources to the application in advance. 

The genetic simulated annealing algorithm uses the annealing algorithm to find the 

optimal solution by adding the local optimal solution as a potential candidate, and then 
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adjusting the entire search range with new candidates to improve the accuracy of the 

algorithm. BP neural network is prone to converge at the local optimal solution, so this 

paper proposes a BP neural network based on genetic simulated annealing algorithm as 

a prediction model, which is described in Algorithm1. 

Algorithm 1: Prediction algorithm of BP network based on genetic simulated annealing 

algorithm 

1. Input: Population size S , iteration number N , crossover probability 
cP , 

mutation probability
mP , simulated annealing initial temperature 

mt , tem-

perature decay function parameter  

2. Output: Data stream rate
1tr 
 in the t+1 time window 

3. Initialize the BP network and encode the weight and threshold, and initial-

ize the population  P k  then 

4. Use fitness function to evaluate current individuals E b  

5. for n<N do 

6.   if fitness value satisfies the termination condition then 

7.     return  

8.   else  

9.     Select and copy the population then 

10.    Perform crossover and mutation operations on the population 

11.      then do Simulated annealing operation to obtain a new fitness value

E b  at temperature 
kt  

12.        if 0E   

13.          Accept the new solution 

14.       else Calculated P  by (4)  

15.         if  0,1P   

16.           accept the new solution 

17.        else keep the original solution  

18.       then gradually lower the temperature, 
1k kt t  , 1n n   

19.  return 
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In Algorithm 1, the initial solution of the algorithm is obtained by the BP neural net-

work, and the initial population of the genetic algorithm is obtained (Step 3). Then a 

fitness function is used to evaluate the fitness value of the candidates in the population. 

If the fitness value meets the termination condition of the algorithm, the result will be 

output, otherwise the population will be cross-mutated (Step 4 to 10). At temperature 

kt , calculate the fitness value of the individuals in the population after genetic manip-

ulation and compare it with their respective parental fitness values, and decide whether 

to accept the individuals after genetic manipulation according to Metropolis acceptance 

criteria (Step 11 to 19). Then the population is cooled down. 

 

4.3 Resource Scheduling  

After predicting the rate of data stream, Dp-Stream will perform resource adjustment 

and scheduling operations based on the data stream rate in the next time window ob-

tained by the prediction algorithm. Firstly, execute resource adjustment of the critical 

operation nodes on the critical path in the DAG, increase or decrease the number of 

instances of the component to match the changes in the coming data stream rate, so as 

to ensure a lower system latency. Then place the changed instance in the appropriate 

Worker node according to the remaining resource capacity on the Worker node to en-

sure the resource utilization of the system. The scheduling algorithm of the Dp-Stream 

is described in Algorithm 2. 

Algorithm 2: Resource scheduling algorithm 

1. Input: critical operation set CO, threshold  and minimum value  of crit-

ical operation 
iT , set of Worker nodes jW  

2. Output: calculated time for critical operations 
iT , the change number of 

instances of each critical operation node 
in , the placement of executor in-

stances on each Worker node jW   

3. for each 
iv CO  do  

4.   calculate  
iT   by (8) 

5.   if  
iT   then 

6.     while 
iT   do  

7. 
       

increase the number of instances 1i iN N  , calculate 
iT    

8.   else if 
iT   then 
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9.     while 
iT   do 

10.         reduce the number of instances 1i iN N  , calculate 
iT   

11. for each jW  do 
 
 

12.   calculate the remaining resource capacity jR  

13. for each 
in  do 

14.   if 0in   then 

15.     if the remaining capacity jR
 
is more than the resource requirement of    

the instance 
kr  

and j j kR R r  
 
is the smallest then 

16.        place an instance into,  j jR R   

17.   else if 0in   then 

18.     if jW containing the instance and j j kR R r  
 
is the biggest hen 

19.       release the instance form jW  , j jR R    

20. return 
iT , jW   

 

In Algorithm 2, we adjust the resources of the critical operation nodes on the critical 

path in the DAG. First, calculate the latency of each critical operation node (Step 4). 

When the latency of the critical operation exceeds the threshold  , add an Executor 

instance to the node until the latency is less than the threshold (Step 5 to 7). Similarly, 

when the latency of the critical operation is less than the minimum value  , one Ex-

ecutor instance is reduced for the node until the latency is greater than the minimum 

value (Step 8 to 10). Then calculate the remaining resource capacity of each Worker 

node (steps 11-12). When an executor instance is placed, select a Worker node that 

meet the resource requirements of the instance and has the smallest remaining resource 

capacity after placing the instance to increase resource utilization (Step 13 to 16). Sim-

ilarly, when releasing an executor instance, select the Worker node that contains the 

instance and the remaining resource capacity is the largest after the instance is released, 

so as to generate more resources to prepare for the subsequent placement of the instance 

(step 17-19). 
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5 Performance Evaluation 

In this section, we first discuss the experimental environment and parameter settings, 

which is followed by analysis of performance evaluation results. 

5.1 Experimental Environment and Parameter Setup 

The proposed Dp-Stream system is developed based on Storm 2.1.0, and installed on 

top of CentOS 6.8. The cluster consists of 7 machines, with one designated machine 

serving as the master node, running Storm Nimbus, two designated as Zookeeper node, 

and the rest 4 machines working as Supervisor nodes. The Nimbus node is equipped 

with 12 Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz 6-core processors and 12GB of 

memory. Zookeeper nodes and Supervisor nodes are virtual machines, equipped with 2 

Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz 2-core processors and 4GB of RAM. The 

software configuration of Dp-Stream platform is shown in Table 2. 

Table 2 Software configuration of Dp-Stream 

Software Version 

OS CentOS 6.8 64bit 

Storm apache-storm-2.1.0 

JDK Jdk1.8 64bit 

Zookeeper zookeeper-3.4.14 

Python 

Maven 

python 2.7.2 

Maven 3.6.2 

MySQL Mysql 5.1.73 

 

WordCount is an application used to count the frequency of words in English text. It 

consists of a Spout and two Bolt. Top-N is an application for counting trending topics, 

including one Spout and three Bolt. Here, we use WordCount and Top-N as the topol-

ogy for our experiments. 

5.2 Prediction model evaluation 

In order to evaluate the accuracy of the prediction model for predicting the data stream 

rate, the experiment in this section simulates the phenomenon of violent rate fluctua-

tions in the online business. The data stream rate is set as a random rate, and the arrival 

rate range of the random rate is set to [1000,3000] tuple/s. First, collect the actual sim-

ulation value of 200s as the training data of the neural network model. In order to de-

scribe the accuracy of the prediction algorithm more intuitively, we continuously col-

lect 20s predicted and true values of the data stream, we recorded the predicted values 

and actual values of 5s, 10s, 15s, and 20s, and calculated the mean absolute error 
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(MAE), root mean squared error (RMSE) and mean relative error (MRE). The results 

are summarized in Table 3. 

Table 3 Comparison of predicted value and actual value at different time and eval-

uation of prediction method 

Time Predicted Value Actual Value 

5 2101 2056 

10 2511 2421 

15 2114 2201 

20 1864 1799 

MAE 61.92 RMSE 66.76 MRE 0.031 

 

In Table 3, both MAE and RMSE are around 60, and MRE<0.05. Therefore, it can be 

concluded that our prediction method has a good accuracy and can meet the require-

ments of Dp-Stream for the accuracy of the prediction algorithm. 

 

5.3 Resource Scheduling Strategy Evaluation 

We apply the simulated data stream to the Dp-Stream and Storm’s default scheduler, 

and observe the changes of system latency. The experiments evaluate the system la-

tency under Dp-Stream and Storm default scheduler.   

 

Fig. 2. System latency comparison when running WordCount 
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Fig. 3. System latency comparison when running Top-N 

 

In Figure 2 and 3, the horizontal axis represents the experiment time (s), and the verti-

cal axis represents the waiting time (ms) of the Dp-Stream and Storm default sched-

uler. Figure 2 records the system latency comparison of Dp-Stream and Storm default 

scheduler when running WordCount application. Due to the constant fluctuation of 

the input rate of the data stream, during the 800s observation period, the average sys-

tem latency of Dp-Stream is about 2.27ms, and the average latency of Storm default 

scheduler is about 4.66ms. Figure 3 records the system latency comparison of Dp-

Stream and Storm’s default scheduler when running Top-N application, and the aver-

age system latency of Dp-Stream is about 2.40ms, and the average latency of Storm 

default scheduler is about 4.84ms. It can be seen from these two figures that com-

pared with the default scheduler of Storm the latency of Dp-Stream is much lower 

than the default scheduler. The Dp-Stream has been adjusted in advance to deal with 

rate changes, so the latency has only a small fluctuation and the overall trend is de-

creasing. However, the latency of the default scheduler is higher than Dp-Stream and 

the overall trend is increasing. This shows that our Dp-Stream is more effective. 

6 Conclusions and Future Work 

In a distributed stream processing system, in the face of continuous changes in the data 

stream rate of the data stream, if there is no proper resource scheduling strategy, the 

latency of the application will increase significantly. In this paper, we propose a data 

stream prediction strategy for elastic stream computing system (Dp-Stream), with the 

goal of allocating system resources in advance to ensure low system latency before 

changing stream arrive. Experimental results show that the prediction model proposed 
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in this paper is more accurate, and the proposed scheduling algorithm reduces system 

latency compared with Storm's default scheduler. 

In the future, we will focus on improving the prediction algorithm to improve the 

accuracy of prediction, and considering heterogeneous situation of Worker nodes in the 

resource scheduling strategy to make the scheduling strategy better. 
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