
Journal Pre-proof

Dynamic FPGA reconfiguration for scalable embedded artificial
intelligence (AI): A co-design methodology for CNN acceleration

Jalil Boudjadar, Saif Ul Islam, Rajkumar Buyya

PII: S0167-739X(25)00072-X
DOI: https://doi.org/10.1016/j.future.2025.107777
Reference: FUTURE 107777

To appear in: Future Generation Computer Systems

Received date : 18 September 2024
Revised date : 8 January 2025
Accepted date : 18 February 2025

Please cite this article as: J. Boudjadar, S.U. Islam and R. Buyya, Dynamic FPGA reconfiguration
for scalable embedded artificial intelligence (AI): A co-design methodology for CNN acceleration,
Future Generation Computer Systems (2025), doi: https://doi.org/10.1016/j.future.2025.107777.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier B.V.

https://doi.org/10.1016/j.future.2025.107777
https://doi.org/10.1016/j.future.2025.107777

Journal Pre-proof

Ab

In c-
ula -
olo d
co e
fra y
co y
en d
fo e
cla s.

Ke
Co

1.

[1
rec
6,
an
an
ev
a v
siz
to
to
mo
fro

ne
ca
pu
of
su
de
the
be
an

ing
the
ram

e
-
s
-

re
d
x
a

to
o
e

ix
e

ut
w
c-
n
e
l.
i-
t-
e
s
r

f-
-

i-
e-

Pre 25

REVISED Manuscript Click here to view linked References
Jo
ur

na
l P

re
-p

ro
of

Dynamic FPGA Reconfiguration for Scalable Embedded Artificial Intelligence (AI): A
Co-Design Methodology for CNN Acceleration

Jalil Boudjadara, Saif Ul Islamb, Rajkumar Buyyac

aDepartment of Electrical and Computer Engineering - Software Engineering & Computing systems, Aarhus University, Aarhus, 8200, Denmark
bWMG, The University of Warwick, Coventry, CV4 7AL, UK

cCloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and Information Systems, The University of Melbourne, Melbourne, VIC
3125, Australia

stract

recent years, FPGA platforms have shown significant potential for accelerating artificial intelligence (AI) applications, parti
rly in Embedded AI. While various studies have explored adaptive AI deployment on FPGAs, there remains a gap in method
gies fully integrating software adaptability with FPGA hardware reconfigurability. This article presents a novel end-to-en

-design methodology for deploying adaptable and scalable Convolutional Neural Networks (CNNs) on FPGA platforms. Th
mework enhances computational performance and reduces latency by dynamically modifying hardware acceleration units b
mbining CNN architecture adaptability with dynamic partial reconfiguration of FPGA hardware. The proposed methodolog
ables automated synthesis and runtime customization of both hardware accelerators and CNN architectures, eliminating the nee
r iterative synthesis. This approach has been implemented and tested on a Xilinx XC7020 FPGA board for a CNN-based imag
ssifier, achieving superior computation performance (0.68s/image) and accuracy (97%) compared to state-of-the-art alternative

ywords: Adaptive CNNs, FPGA dynamic reconfiguration, Hardware acceleration, Co-design framework, Embedded AI,
mputation performance, Scalable AI deployment.

Introduction

Over the last decade, Convolutional Neural Networks (CNN)
] are used in solving complex problems such as classification,
ognition, regression, prediction, and optimization [2, 3, 4, 5,
7]. Solving complex tasks by mimicking the human brain
d its biological neural network has been a topic for decades
d was first opened up for debate in the 40s [8]. It is, how-
er, only in the most recent years that CNN has been seen as
iable technology due to constraints enforced by the network
es and the underlying computation complexity. This is due
the sheer amount of resources needed for utilizing CNNs [9]
their full potential, especially for computationally intensive
dels that utilize kernel filters to extract spatial information
m images [10].
CNNs are deep learning models formed by several layers of

urons that rely on accumulating the knowledge mathemati-
lly from baseline training to infer decisions based on the in-
t data [11]. Neurons of a layer are connected to some or all
the neurons from the adjacent layers to pass processing re-

lts. The neuron connections are weighted with coefficients to
termine how much each input will contribute to the output in

next layer. Each neuron is associated with a bias value to
added to the output computation of the neuron. The weights

d biases are computed through a training process [12].
CNNs extract features from the input images by recogniz-
the key patterns present in each image so as to classify

m following the training and calibration of the CNN pa-
eters so that the classification converges towards the pat-

tern having the optimal output value [13]. CNNs may involv
different image processing features such as segmentation, Max
pooling, and convolution. In fact, image segmentation enable
an image to be processed in multiple smaller segments indepen
dently, where the calculations can be sent to dedicated hardwa
accelerators, a cluster of computational nodes, or a distribute
system, thus achieving a short computation latency [14]. Ma
Pooling reduces a matrix of weighted pixels spatially into
smaller matrix by maintaining the highly informative pixels
reduce the computation cost without degrading the accuracy to
much [15]. Convolution is the most computationally expensiv
operation as it amounts to multiplying an input image matr
with a kernel to generate a new image, called fmap [16]. Th
convolution works by sliding the kernel image over the inp
image, where each position of the kernel will generate a ne
pixel by multiplying each value in the kernel with the respe
tive position of the kernel value in the input image. Convolutio
usually represents a fertile source for acceleration, given th
many computation operations that can be performed in paralle

Machine learning solutions, specifically CNN-based appl
cations, often utilize cloud technology, where the actual ne
work is deployed on powerful computation servers, making th
inference speed relatively quick. For many application domain
such as IoT and control systems, the deployment technology fo
CNN-based software solutions is recently undergoing a signi
icant transformation, shifting from a cloud to edge and embed
ded computing [17, 18, 19, 20]. This was to enable 1) ubiqu
tous and pervasive computing and reduce the connectivity d

print submitted to Future Generation Computer Systems January 9, 20

Journal Pre-proof

pe
of
niz
to
tha
co

sig
pe
of
so
tio
wa
ch
giv
ha
its
tur
fo
co

to
pr
be
co
an
ab
wh
tim
an
on

pr
ad
en
of
siz
fin
ad
up
tur
po
ce
ZY
res
to
su

d

re
el

y.
n
d

ted
O
n
l-
f-
d

y
at
-

e-
A
le

2
-
e
e
i-
to

-
m
al
-
-

r-
e-
to
re
re
re
ly
g.
e-
g

d
e

to
NN
s,
Jo

ur
na

l P
re

-p
ro

of

ndency; 2) parallel execution of multiple layers and modules
the CNNs, thus reducing the execution latency and synchro-
ing with high-frequency data sources; 3) make it possible
process and extra features directly from the data source so
t to reduce data communication cost and security threats; 4)

ping with the privacy concerns and nascent GDPR.
However, an intrinsic challenge for the platform-aware de-

n and adaptation of applications targeting FPGAs is the ex-
nsive synthesis cost for acceleration hardware and the lack
automated customization of the synthesized computation re-
urces and CNN architecture at runtime [21]. For conven-
nal acceleration frameworks, a new synthesis of the hard-
re acceleration cores is needed every time the deployed CNN
anges because the acceleration cores are synthesized for a
en software functionality [20, 22]. Another factor that can

rden this challenge comes from the fact that a CNN can adapt
architecture at runtime (changes to the overall CNN struc-
e, number of layers, size of layers, and other hyper-parameters)

llowing changes in the input data space so that to reduce the
mputation burden and adjust the CNN functionality [23].

Over the last few years, a substantial effort has been devoted
accelerating CNNs on reconfigurable embedded platforms to
ocess images [19, 24, 25, 26, 27, 21, 28]. However, to the
st of the author’s knowledge, none of the research studies
nsidered optimizing the costly hardware synthesis operation
d acceleration performance by combining both CNN adapt-
ility and FPGA reconfigurability in a single design approach
ere both software and hardware are reconfigurable at run-
e [29, 30], so that to leverage the execution performance

d flexibility and reduce further the deployment cost of CNNs
FPGAs.
This article proposes a new co-design and deployment ap-

oach to leverage computation performance and latency for
aptive CNNs on FPGA platforms. The proposed approach
ables iteration-free deployment to reduce the expensive cost
hardware accelerator synthesis. The accelerators are synthe-
ed once and configured at runtime, using a combination of
e-grained and coarse-grained customization, following the
aptive CNN architecture. The CNN adaptability is secured
on an on-the-fly upload of new configurations (network struc-
e and hyper-parameters) to the FPGA at runtime. The pro-
sed design and deployment have been implemented to ac-
lerate and deploy a CNN-based image classifier on a Xilinx
BO XC7020 FPGA. Computation performance, accuracy,
ource utilization, and scalability are analyzed and compared
the state of the art. The major contributions of the article are
mmarized as follows:

1. A novel co-design and deployment framework that inte-
grates adaptive Convolutional Neural Networks (CNNs)
with FPGA platforms. The model eliminates the need for
iterative synthesis, significantly reducing the costs and
time associated with hardware accelerator deployment.

2. The proposed methodology leverages dynamic partial re-
configuration of FPGA hardware to accommodate changes
in CNN architecture and hyper-parameters during run-
time. This approach ensures the high adaptability of CNNs,

enabling on-the-fly updates to the network structure an
parameters.

3. By combining fine-grained and coarse-grained hardwa
customizations with adaptive CNN architecture, the mod
enhances computation performance and reduces latenc
The co-design approach ensures that FPGA platforms ca
maximize the efficiency of hardware accelerators tailore
to specific application requirements.

4. The proposed framework has been implemented and tes
using a CNN-based image classifier on the Xilinx ZYB
XC7020 FPGA board. Detailed analysis of computatio
performance, accuracy, resource utilization, and scalabi
ity has been conducted, with results compared to state-o
the-art approaches to demonstrate the effectiveness an
improvements of the proposed model.

5. The article contributes to the field of Embedded AI b
presenting a comprehensive end-to-end methodology th
combines CNN architecture adaptability with FPGA dy
namic reconfiguration. This advancement facilitates d
ploying scalable and adaptable AI applications on FPG
platforms, pushing the boundaries of what is achievab
in hardware-accelerated AI.

The rest of the article is organized as follows: Section
presents the state-of-the-art for acceleration architectural mod
els and describes the relevant work. Section 3 explains th
proposed methodology for customized acceleration of adaptiv
CNNs. Section 4 elaborates on the implementation and exper
ments using Xilinx XC7020 FPGA and compares the results
the state-of-the-art. Finally, Section 5 concludes the paper.

2. Related Work

A Field Programmable Gate Arrays (FPGA) is a compu
tation platform composed of a conventional processing syste
(PS) and programmable logic (PL) [31]. PS is a convention
computer system that possesses processing cores (ARM pro
cessor), memories and caches. In contrast, PL is a set of fab
ric circuits (Flip-flops, registers, look-up tables, DSP, RAM
blocks, etc.) that can be compiled to synthesize extra (use
defined) processing and storage components dedicated to ex
cuting given software functions. Compiling a set of circuits
implement the functionality of a software code as a hardwa
core is called High-level synthesis (HLS) [32]. The hardwa
components resulting from the HLS of a software function a
called Intellectual Property, IP for short. IP cores are usual
described using an HDL language such as VHDL or Verilo
They can be seen as functional blocks coupled with PS to ex
cute a software system much faster by parallelizing and splittin
the execution between PS and PL.

Machine learning-empowered systems are often deploye
in dynamic environments. Being able to change the machin
learning model post-deployment could be of capital interest
ensure high accuracy and performance through adaptability. C
adaptation is an update of the structure, connections, weight

2

Journal Pre-proof

an
Th
tri
etc

ate
re-
co
fig
ex
sy
by
att

ab
ha
atu
ad
de

rec
ch
lec
ac
tim
ing
ha
the
pa
CN
ur
the
tio
de

tio
els
De
ac
mo
he
res

tec
pu
ex
ex
de
ac

na
wa
[2
the
to
lay

a
d

e-
is
e-
-

i-
to
-

e-

d
r-
s
n-
e

e-

r-
s.
f

s,
-
e

al
r-
q
-
e
e
f

r
od
-
ed
d
y
r
l,
-

6,
-

s-
n
-

nt
f

el
d
e
Jo

ur
na

l P
re

-p
ro

of

d other hyper-parameters of the CNN architecture [24, 23, 6].
e adaptation can be performed offline or at runtime, mainly
ggered by changes in the data stream, new training results,
.
An IP core is synthesized for the network model to acceler-
a CNN. Thus, runtime adaptability of a CNN may require

synthesizing IPs and re-programing the FPGA, which is a
mplex and expensive task [25, 24]. A hardware IP recon-
uration is a customization of the generic IP functionality to
ecute a modified version of the original software used for the
nthesis [21, 26]. Such automated customization is captured
tuning some of the IP parameters based on the benchmark

ributes of the input software.
Strong effort has been devoted to implementing CNNs adapt-

ility [26, 23, 20, 33] and runtime reconfiguration of FPGA
rdware accelerators [24, 28, 21, 20, 34]. However, the liter-
re still lacks adequate tooling and studies that tie the CNN

aptability and the hardware reconfigurability to design and
ploy customizable CNN hardware accelerators [35, 24, 29].

Bouazzaoui et al [26] proposed a partial (coarse-grained)
onfiguration environment to accelerate the execution of ma-

ine learning models on FPGAs using dynamic classifier se-
tion. Each classification model is implemented as a static

celerator to be activated and parsed to specific inputs at run-
e. The identification of the most fitting classifier for incom-
data, based on the K-Nearest Centroid approach, at runtime

s led to considerable reduction in the resources utilization of
FPGA platform. Huang et al [36], the authors introduced a

rtial (fine-grained) reconfiguration architecture to accelerate
N on FPGAs. The proposed acceleration relies on reconfig-

ing specific convolution layer hardware blocks according to
input model parameters at runtime. The partial reconfigura-

n of the IP blocks has led to high computation efficiency and
creased energy consumption.

Tong et al [37] presented a highly unified generic accelera-
n architecture to accelerate different machine learning mod-
such as standard CNNs, lightweight CNNs and CNNs with
CONV layers by dynamically reconfiguring the hardware

celerator following the architecture parameters of the input
del. The acceleration architecture model reduces the over-

ad when deploying different models and enhances the overall
ources utilization efficiency.
Kumar et al [20] proposed a hardware customization archi-

ture to execute CNN layers and enable intelligent edge com-
ting. To cope with the data transfer bottleneck, the layers
ecution is performed using a linear task model. However,
ecuting layers as a sequence may lead to higher latency and
grade the computation performance, notably, if the hardware
celerators enable overlapped execution [29].

To leverage FPGA flexibility for CNN applications, a dy-
mic model enabling runtime reconfiguration of FPGA hard-
re to accelerate different CNN architectures was proposed in

2]. Using a layer-clustering algorithm, the authors classify
CNN layers and generate optimal hardware configurations

execute each layer. However, one must run the expensive
ers classification for each update to the CNN architecture.
Wang et al [38] developed a scalable and cost-efficient FPGA

accelerator for large-scale deep learning networks through
pipeline of three processing units to scale the performance an
improve the throughput. However, data communication b
tween the processing system and the acceleration units (PL)
a bottleneck [39]. To loosen the communication bottleneck b
tween the FPGA processing system and the acceleration hard
ware, Shi et al [28] proposed an acceleration model with opt
mized dynamic allocation, through a classification of layers,
hardware processing elements using AXI bus interfaces. How
ever, the classification processing overhead contributes to d
grading the execution performance.

Ratto et al [35] proposed a toolchain to enable model-base
adaptivity of CNNs and runtime reconfigurabilty of the unde
lying hardware accelerators. The proposed deployment relie
on fine-grained reconfiguration of the hardware accelerators sy
thesized using ONNX parser and Vivado HLS by activating th
subset of IP circuits corresponding to the functionality param
ters in the CNN customization.

Zaidy et al [40] developed an efficient, low-power accele
ator to leverage the inherent parallelism in CNN architecture
The computation efficiency resulted from implementing a set o
ComputeCore accelerators each of which integrates the map
weights buffers and comparators. One can see that, the com
putation efficiency is achieved on the expense of hardware siz
area which could be a bottleneck for scalability. Meloni et
[41] proposed a flexible hardware/software solution to accele
ate CNNs on Zynq SoCs via an efficient allocation of the Zyn
ARM cores to hard-to-accelerate tasks whereas CNN compu
tations are allocated to the hardware accelerator. Although th
accelerator is static and the CNN architecture does not chang
at runtime, a flexibility results from the dynamic scheduling o
the computation resources and control of the accelerator.

In this article, we develop an agile deployment model fo
accelerating CNNs using FPGA hardware. The proposed meth
involves altering the functionality of FPGA by partially recon
figuring its hardware resources at runtime using both fine-grain
(partial reconfiguration of IP cores) [36] and coarse graine
customization (dynamic mapping of IP cores) [26, 42]. B
combining CNN adfaptability and FPGA reconfigurability, ou
proposal enables users to easily shape adaptivity at model leve
achieving thus application-specific HW accelerators. Specifi
cally, we advance the hardware reconfiguration models in [3
26, 22] by enabling the CNN to change its architecture at run
time, for which the hardware accelerators are automatically cu
tomized and dynamically mapped to secure high computatio
performance. Compared to the state of the art, the proposed co
design achieved a highly resource- and computation-efficie
classification (0.68 second per image) while delivering one o
the highest accuracy levels (97%).

3. Adaptive Acceleration Methodology

This section specifies the adaptive CNN architecture mod
and elaborates on how the hardware accelerators are customize
at runtime following changes in the CNN template to leverag
the execution performance.

3

Journal Pre-proof

wa
sta
un
teg
sto
ma
ne
fig
all

lay
ten
sid
ing
co
pa
are
hig

I
i

Ou

3.1

vic
ru
fo
On
ram
ers
the
me
the
mo
na

pla
an
ru
tem
go
Th

-
is
ll
al
s-
e
s
d
s
-
s
-
s
ll
-
y
t.
i-
e

N

n
el

in
n
d

to

-
d
s,
∗

r-
ss
d
-

at
T
Jo

ur
na

l P
re

-p
ro

of

The proposed methodology is depicted in Fig. 1. The hard-
re IP cores for acceleration are synthesized once at the design
ge, from the software functionality using HLS, as standalone
its flexible enough to accommodate runtime changes and in-
ration of different applications. The CNN parameters are
red in on-chip memory upon adaptation to leverage perfor-
nce and achieve less memory access [43]. The red compo-

nts in the figure are dynamic. The blue arrows are recon-
uration to the IP cores, and the dashed arrows are dynamic
ocations of the computation tasks to the IP cores.

We also developed an optimized dynamic allocation of CNN
ers to the accelerators to leverage the performance and la-
cy [42], enabling thus a coarse-grained reconfiguration. Be-
es, a fine-grained reconfiguration is achieved upon specify-
different activation functions within each IP core, where the

rresponding functionality is activated using the CNN layer
rameters [35]. Although this may lead to a large hardware
a for each accelerator, it enables low-cost customization and
h flexibility.

…..

IP core1

Original CNN
Template

CNN
Layer1
Layer2
…

Re-config
& Sched

Segmentation IP core2

Input
CNN
config

PL

PS Software
functionality

FPGA
architecture

HLS

Classification

nput
mage

tput

Figure 1: Proposed acceleration and deployment methodology.

. Proposed Adaptive CNN Architecture

As illustrated in the Amazon Elastic Compute Cloud F1 ser-
es [44], having an adaptive CNN architecture that changes at

ntime can secure customized service and better performance
llowing changes in the customer’s functionality and input data.
e way of achieving this is by implementing CNNs as a pa-
eterized architecture where weights, bias, number of lay-

, neurons per layer, and connections can be updated with
input data at runtime. Enabling dynamic model adjust-

nts at runtime ensures the system’s adaptability to changes in
environment or functional requirements. For instance, one
del configuration could optimize efficiency, while an alter-

tive configuration may prioritize accuracy [45].
We design the CNN model as a dynamic architecture (tem-

te) to be instantiated by the processing system PS every time
instantiation configuration of the template is provided. The

ntime customization of the CNN model dynamically maps
plate parameters to the specific configuration parameters

verning neurons, layers, and connections in the architecture.
is mechanism ensures an efficient adaptation via instantia-

tion. Once an instance of the CNN template is carried out ev
ery time a configuration is provided, further customization
performed via: 1) deactivation of the connections having nu
weights: connections between neurons that hold weights equ
to zero are identified and deactivated. This eliminates unnece
sary computations, as such connections do not contribute to th
forward or backward propagation; 2) deactivation of Neuron
with no active, outgoing connections: each neuron is analyze
for active,e outgoing connections. If all outgoing connection
of a neuron are deactivated, the neuron itself becomes redun
dant and is subsequently deactivated. This step further reduce
the computational load by removing idle neurons from the com
putational graph; 3) deactivation of each layer if all its neuron
are deactivated: Entire layers are subject to deactivation if a
neurons within the layer are deactivated due to a lack of outgo
ing connections. This step simplifies the model architecture b
removing layers that do not contribute to the network’s outpu

Formally, we specify a neuron N = ⟨ f , b⟩ through an act
vation function f () [46] and bias b ∈ R. Besides, we defin
a CNN layer L = ⟨N1 . . .Nn⟩ as a set of neurons Ni. A CN
template T is then given by:

T = ⟨L1,L2, ..,Lm,C⟩
where C ∈ LI × LI ×R+ specifies the neuron connections give
as weight coefficients. The template T is the original mod
architecture to be customized at runtime.

For the sake of notation, we denote the neuron N j with
layer Li as Ni j. Likewise, the weight of a connection betwee
a source neuron Ns and a destination neuron Nd is represente
as wd

s . For instance, w21
12 is the weight connecting neuron N2

1
neuron N1

2.
We characterize a configuration, denoted as C, as the dy

namic modification to the CNN template at runtime, achieve
by adjusting parameters and activation or deactivating neuron
connections, and layers. Specifically, a configuration C ⊆ T
constitutes a subset of the template, specifying values for a po
tion of the actual parameters. These modifications encompa
alterations to the activation functions, the number of layers an
neurons per layer, and connections between layers and neuron
related parameters.

Core1 Core2

F1 F2 F2 F3 F2 F2

Core1 Core2Hardware

Mapping

Hardware

Mapping

Adaptation

(a) (b)

Figure 2: Example of CNN adaptation and HW reconfiguration.

For the sake of simplicity, we represent C as a function th
generates a new template T′ = C(T) from the actual template
as stated in Eq. (1):

4

Journal Pre-proof

T

(a
ou
va
ch
ati
ex

pli
thr
pr
tio
pr
tit
era
ne
ce
rec
tha
sc

3.2

res
fo
of
FP
[4
ca
sig
El
sta
loa
90

pa
tim
as
fo
su
sp
sa
Im
ca
ita
arr
IP
ate

y,
e
e

e-
is
n

e-
P

a-
-

za-
c-
-
P
e

c-
m
-

e.
g

ly
is
rs
c-
er
to
-

d
s-
s-
in
e
e

nt
e

h
-

r-
a-
Jo

ur
na

l P
re

-p
ro

of′ = T |



∀i j,N j
i ∈ C =⇒



T′.Li.N j. f = N j
i . f

T′.Li.N j.b = N j
i .b

∀xy T′.C.wxy
i j = C.C.wxy

i j

∀i j,N j
i < C =⇒



T′.Li.N j. f = Neutral
T′.Li.N j.b = 0
∀x y T′.C.wxy

i j = 0
(1)

Fig. 2 illustrates the adaptation of a CNN template, image
), to a new configuration, image (b), where elements greyed
t (2 neurons, one layer, and many connections) are deacti-
ted. Moreover, the activation function of the first hidden layer
anged from F1 to F3. This has led to adjusting the acceler-
on cores allocation and active modules within the cores as
plained in Section 3.2.

Recognizing the potential variability in layers, we omit ex-
cit iteration on layers, considering it implicitly accomplished
ough neuron iteration. To ensure scalability for the efficient

ocessing of large CNNs, even if the platform imposes limita-
ns on the width of layers (number of neurons acquired and
ocessed simultaneously), it should support the ability to par-
ion layers into sub-layers for processing across multiple it-
tions. However, it is crucial to note that such a layer split

cessitates the segmentation of bias vectors and weight matri-
s. This introduces a notable overhead in the time required to
onstruct the processed layers. It is important to acknowledge
t the exploration of layer-splitting options goes beyond the

ope of this article.

. Proposed Acceleration Customization
Although FPGAs are limited in computation and storage

ources, many recent analyses have shown that FPGAs can
rm a promising ground for the deployment and acceleration
future deep learning applications given the parallelization of
GAs and the pipeline-based architecture of neural networks

7, 48]. Moreover, FPGA-based acceleration enables appli-
tion flexibility and deployment optimization as explicit de-
n steps. As an example of the potential of FPGAs, Amazon

astic Compute Cloud (Amazon Web Services EC2) F1 in-
nces are Xilinx FPGAs reconfigured to accelerate data work-
ds supporting machine learning inference [44], providing
x higher performance than CPUs [49].

The proposed customization of acceleration cores encom-
sses fine-grained and coarse grained reconfiguration at run-
e. The customization strategy focuses on key operational

pects to achieve seamless parallelism and reduced memory
otprint. Firstly, it involves mapping layers processing from
b-images to distinct IP cores. This assignment adheres to
ecific guidelines such that either two layers belonging to the
me sub-image are mapped to different IP cores (Intra-Sub-
age Mapping), or layers from different sub-images are allo-
ted to different IP cores (Inter-Sub-Image Mapping), facil-
ting local data exchange between IP cores. This runtime
angement promotes efficient local data exchange between
cores, thus reducing latency and ensuring that intermedi-
computation results are available for subsequent process-

ing without unnecessary communication overhead. Secondl
by monitoring the processing balance between the PS and th
IP cores, the customization enables offloading an IP core if th
layers’ processing by a given IP core outpaces the image r
assembly and reconstruction handled by the PS partition. Th
step ensures a balanced workflow, maintains synchronizatio
between PS and PL partitions, and curtails the storage requir
ments for intermediate results, as each result produced by I
cores is immediately transferred and used by PS.

Lastly, each acceleration core is equipped with the cap
bility to execute multiple activation functions (e.g., ReLU, Sig
moid, etc) implemented as modular components. The customi
tion incorporates an automated mechanism to activate or dea
tivate these functional blocks based on the runtime CNN adap
tation configuration. This adaptive approach ensures that the I
reconfiguration aligns seamlessly with the customization of th
CNN template.

The capability of dynamic mapping and offloading of a
celeration cores is a valuable optimization feedback mechanis
for the image-splitting process [42]. It allows for dynamic ad
justments to the size and quantity of sub-images per imag
When PL partition demonstrates superior performance, optin
for larger sub-images becomes advantageous, as it effective
diminishes the storage requirements for interim results. Th
reduction in storing intermediate results subsequently lowe
the processing system’s reassembly cost. Conversely, if the a
celeration lags behind the PS performance, considering small
sub-images and allocating layers from the same sub-image
the acceleration cores becomes a valuable choice to balance PS
PL workload and latency.

A thorough exploration of the hardware architecture an
partitioning design space was undertaken to enhance the cu
tomization and performance. The findings pointed to a promi
ing architecture: creating two hardware partitions, illustrated
Fig. 3, each containing two processing modules. This choic
arises from the advantageous ability to parallelize sub-imag
processing and implement a pipelining approach for differe
functions (such as convolution and classification) within th
same sub-image processing.

Figure 3: Multi-module architecture for PL partition

Given that input images might have large sizes due to hig
resolution, we consider image segmentation, where each in
put image is divided into smaller sub-images [50]. The pa
titions overlap with one pixel to preserve boundary inform

5

Journal Pre-proof

tio
da
lay
tio
pu
su
as
tur
vo
lat
su
cie
ag
ou
se
or
alr

tit
lel
fro
lay

de
su
up
of
R(
Lm

am
ba
fo
tio
the

Th
im
su
im
sc
lat
fas
pa
su

lay
en
few

r-
e
e
e.
d,
a-
a-

)

e
at
-

is
s,
s

)

e
te

)

-
e,
r,
er
w
d
N
-

is
to

)

edul-
s

)

e-
d

i-
e-
a-
Jo

ur
na

l P
re

-p
ro

of

n, as CNN operations like convolution rely on neighborhood
ta. Each sub-image is passed independently through the CNN
ers, performing convolution, pooling, and activation opera-
ns. The results (feature maps) for each sub-image are com-
ted separately. To integrate the sub-images processing re-
lts, we apply image reassembling [51]. In fact, image re-
sembling combines the resulting sub-images to recreate a fea-
e map corresponding to the original input image. This in-
lves aligning the outputs correctly based on their spatial re-
ionships in the original image. Overlapping areas between
b-images must be handled to avoid artifacts or inconsisten-
s in the reconstructed feature map, where methods like aver-
ing or blending may be used to ensure a smooth transition. In
r case, we adopt blending [52], where each newly integrated
gment overrides a one-pixel row or column depending on the
iginal coordinates in the input image, on each side with the
eady integrated segments.
To calibrate the synchronization between PS and PL par-

ions to minimize execution latency [53], we tune the paral-
ization of sub-image acceleration on PL, where either layers
m the same sub-image (as tasks) execute on all IP cores or
ers from different images interleave [54].
Formally, given a set of acceleration IP cores I1, .., Il, we

fine the latency R(L(S), I) of a layer execution L to process a
b-image S on IP core I to be the time duration between the
loading of sub-image S to PL and the execution termination
L. We write L(S) to refer to the processing of S by L. Thus,
Lm(S), I) refers to the response time of executing S on I since

is the last layer in the CNN architecture. The calibration
ounts analyze the response time of the previous sub-images

tch (reassembling, acceleration), compare the PS and PL per-
rmance, and adjust the parallelization of sub-images execu-
n. The performance estimation and comparison is given by
specification in Eq.(2):

R(Reassemble(S 1, .., S k)i1) > max
∑

j

(Ri−1(Lm(S j), Ix)) (2)

is constraint states that if the response time of the last sub-
ages reassembling in PS, from receiving the first processed
b-image S 1 to the previous one S k, is larger than the max-
um response time of the sub-images acceleration in PL, the
heduler will consider reducing the parallelization, as described
er. Accordingly, at any time point t if the PS partition is
ter than the PL partition, according to the performance com-
rison defined earlier, the scheduling of a layer Li to process
b-image S j is computed as described in Eq. (3):

S ched(Li(S j), t) = Ix | ∀y



R(Li(S j), Ix) ≤ R(Li(S j), Iy)
∧

¬∃ k l S ched(Lk(S l), t) = Iy
(3)

Implementing this constraint decreases the interleaving of
er execution for sub-images during runtime, subsequently

hancing latency. This reduction allows for the storage of
er intermediate results and minimizes the utilization of AXI

buses, ultimately contributing to improved execution perfo
mance. The control module of the IPs dynamically adjusts th
allocation of layers and sub-images based on inputs from th
Processing System (PS) and adherence to the constraints abov
Parallel processing from different sub-images can be increase
and real-time random computation of hardware allocation is f
cilitated to achieve a more efficient mapping with reduced l
tency as given Eq. (4):

S ched(Li(S j), t) = Ix | ∀yR(Li(S j), Ix) ≤ R(Li(S j), Iy) (4

Lastly, an initial static binding of the template layers to th
IP cores is established, which will be dynamically adjusted
runtime based on the computational load of adaptive CNN lay
ers. The computation load of a given layer, denoted as Li,
quantified by the computation cost of its activation function
denoted as | |, benchmarked on the target FPGA board [55], a
stated in Eq. (5):

load(Li) =
ni∑

1

|N .i f | (5

Accordingly, as given in Eq. (6), a layer is defined to b
NEUTRAL if it has an empty computation load, i.e., to simula
an inactive layer where all activation functions are neutral.

NEUTRAL(Li) = {∀ j N j
i . f = Neutral} (6

At runtime, when a layer is excluded from the CNN tem
plate due to having a neutral load in the adaptive architectur
the original IP core designated to execute that excluded laye
denoted as Li, is repurposed to execute the subsequent lay
in the sequence. This is to avoid computing an entirely ne
schedule. Meanwhile, the outputs presumed to be generate
by layer Li are utilized as inputs for the next layer in the CN
architecture. Consequently, this dynamic adjustment in the run
time schedule ensures that the next layer, denoted as Li + 1,
scheduled for execution using the IP core initially assigned
Li. Namely, the scheduling is update is given in Eq. (7).

S ched(Li, t) = −1 if NEUTRAL(Li) (7

Accordingly, whenever a layer Li becomes neutral, the sch
ing of the next layers Li+z, with z ∈ {1,m− i} will be updated a
stated in Eq. (8).

S ched(Li+z, t) = S ched(Li+z−1, t − 1) (8

The schedule update is iterative, so whenever a layer is d
activated, customization runs through mapping all layers an
updating it accordingly.

4. Implementation and Performance Evaluation

This section elaborates on the implementation and exper
ments and compares the results to the state-of-the-art, with r
spect to accuracy, computation performance, hardware utiliz
tion, and scalability.

6

Journal Pre-proof

4.1

og
low
ac
tio
effi
M
the
of

av
ce
us
lic
sto
to
[5
pla
tio
be
tri

Ea
wa
an
co
pla∑

be
the
IP
inc
ac

4.2

the
ag
W
fer
tiv
ne
the
tai
ble
va
ex
fo
an

4.3

on

XZ

-
y
i-
-

s.
-
-

al
y
is
n

re
h

e-
al
e-
-
d
-

g,
-
p

th
t-
to
c-
8

nt
-

c-
ly
d
h
e

ip
a-
er
in
y
r-
al
to

sses,
e

in
Jo
ur

na
l P

re
-p

ro
of

. Implementation
The implementation and testing of the proposed methodol-

y utilized the rapid prototyping PYNQ framework, as it al-
s for work at a higher abstraction when interacting with the

celeration IP cores, where those cores are wrapped as func-
ns to call from the application code in PS. This is particularly
cient when carrying out design space exploration on Xilinx

PSoCs. PYNQ further enabled easy memory allocation in
DDR RAM on the platform, making intermediate storage

weights, biases, and fmaps possible.
The original implementation was made in Python due to the

ailability of tools and open-source libraries for image pro-
ssing and training the CNN network. Namely, Keras has been
ed to create the CNN template, train and test it on the pub-
data sets MNIST and CODaN. Keras further enables easier
rage of the CNN models as it offers many different formats
store the networks, where, in this case, the h5 format is used
6]. The training outcomes are then supplied to the CNN tem-
te on the FPGA through an SD card for runtime customiza-
n. The runtime customization configuration of the CNN can
triggered upon reading the SD card or can as well be time-

ggered.
It was chosen to synthesize many independent IP cores.

ch IP core was created using Vitis HLS, where the IP core
s implemented, optimized using pragma, tested, synthesized,
d exported to Vivado to integrate later with the PS partition
de. Furthermore, in the implementation of the CNN tem-
te T we considered the following: m ≤ 6, n ≤ 512 and

m
i=1 ni ≤ 2048. When the current image block layers have
en processed, the CNN controller triggers a callback where

next layers are determined and sent to the corresponding
core set in the Layer Controller. The implementation code,
luding CNN test data, high-level synthesis of the hardware

celerators, and application integration, is available here 1.

. Experiments
We have conducted a large set of experiments to analyze
performance, accuracy, resource utilization, memory stor-

e, and scalability of the proposed acceleration architecture.
e have considered the following parameters to define the dif-
ent experiments: sub-image resolution (splitting size), ac-
ation functions, CNN depth (number of layers), number of
urons per layer, and quantization size to represent and store

CNN parameters and data. For each experiment, we main-
n all the parameters constant and only vary one at a time. Ta-

1 summarizes the experiment sets we conducted where the
riable parameters are highlighted in parenthesis. In total, 24
periments were carried out with more than 56 analyses, and
r each experiment, we assessed accuracy, resource utilization,
d execution performance.

. Results and Discussion
Accuracy Analysis. The accuracy analysis was conducted

MNIST and CODaN datasets with variable parameters. Fig. 4a

1https://e.pcloud.link/publink/show?code=

vDN2ZW2YSsz7tHMQzevCkcOojnVArsSiX

Table 1: Summary of the experiments and tests performed.

Exp \ Test values test 1 test 2 test 3 test 4 test 5 test 6
Experiment set1
(sub-image size) 12*12 18*18 24*24 28*28 34*34 52*52
Experiment set2
(layers number) 3 4 5 6 7 8
Experiment set3
(neurons per layer) 32 64 128 256 512 1024
Experiment set4
(quantization) Q(2,14) Q(4,4) Q(8,8) Q(16,16) Q(32,16) Q(32,32)

presents the accuracy loss for the MNIST data set while vary
ing the image split size. Our model demonstrates an accurac
range of 93% to 97% in both the 14 and 28 splitting exper
ments. This range falls within the acceptable threshold com
pared to state-of-the-art analyses utilizing the same dataset
For instance, previous studies such as [57] reported an accu
racy of 93%, while [58] achieved an accuracy of 96%. We ob
served that the accuracy level is the same when a convolution
block of one and two is used. However, a minimal accurac
loss is introduced when the length of the convolution blocks
larger than two. Similarly, an accuracy analysis is conducted o
the CODaN dataset. Fig. 4b shows the accuracy results whe
a higher accuracy loss is introduced due to data being muc
larger and diverse compared to MNIST.
Computation Performance Analysis. In Fig. 5a, the compr
hensive analysis of computation performance depicts the tot
execution time and the acceleration time (hardware time) r
quired for one adaptation of the CNN architecture and the pro
cessing of 10 images. In the best case (Split28), our propose
acceleration environment processes 10 images in 18.5s, includ
ing initial parsing of the CNN architecture, image partitionin
reassembly, classification and another CNN parsing via adap
tation. A breakdown analysis of the execution reveals that u
to 53% of the 18.5s duration is used to read and parse bo
the initial and the adaptation CNN configurations, each consis
ing of at least 140000 parameters from the SD card, and up
10% to fetch the input images from the SD card. Thus, the a
tual computation time to process 10 images with a split of 2
is 6.8s, with an average of 0.68s per image. The experime
employing a 14x14 split executes in 68 seconds, while its coun
terpart with a 28x28 split completes the processing in 18.5 se
onds. One can observe that a significant portion, approximate
80%, of the total execution time for the 14x14 split is consume
outside the hardware accelerators to fetch and store the hig
number of sub-images [18]. In fact, the high processing tim
in PS is due to parsing the CNN template (from an off-ch
memory), computing new schedules to allocate the acceler
tion cores, segmentation, and storage of the increased numb
of 14x14 sub-images. This leads to heightened overhead time
PS to reassemble processed sub-images and a higher frequenc
of sending and retrieving sub-images between PS and PL pa
titions. By applying a split of 52x52 (test case 6), the tot
processing time for the same experiment as above converges
1 second.

Since we have synthesized mainly two different IP core cla
one for classification and one for convolution, we analyzed th
execution time of both hardware accelerators as depicted

7

Journal Pre-proof

Fi
co
is,
su
fin
Ha
tha
ov
ou
pix
In
clu
fli
CN
sto
siz
ea

y,
s

K
d
k
e
n

in

g
e
s
e
a
n
r,
e-
Jo

ur
na

l P
re

-p
ro

of

(a) (b)

Figure 4: Accuracy analysis on MNIST and CODaN datasets.

TI
M

E
(S

)

(a)

TI
M

E
(S

)

(b)

Figure 5: Analysis of execution and acceleration time.

g. 5b. It can be seen that the time spent performing CNN
nvolutions is largely higher than the classification time. This
in fact, due to convolution being applied to all intermediate

b-images, whereas classification is executed only once on the
al (reassembled) image.
rdware Utilization and Scalability analysis. Considering
t CNN size and image resolution significantly influence the

erall resource utilization and scalability, we conducted vari-
s analyses by adjusting the total number of CNN neurons and
els per image.
Fig. 6, the utilization of hardware fabric logic resources, in-
ding RAM blocks (BRAM), digital signal processors (DSP),

p-flops (FF), and look-up tables (LUT), is depicted for the
N architectures ranging from 32 to 2048 neurons. Notably,
rage requirements exhibit a quadratic increase with input
e expansion. Conversely, DSPs, FFs, and LUTs display lin-
r growth, as these resources are statically determined by the

number of neurons rather than the input size. Consequentl
BRAM capacity may present a bottleneck for deploying CNN
with more neurons. Given that the board we use contains 230
LUT, the acceleration core can be scaled up to incorporate an
process up to 2700 Neurons in parallel however, this bottlenec
can be bypassed by reusing IP core circuits and serializing th
execution of some of the neurons although this can slow dow
execution pace. Furthermore, typical neural networks conta
far less than that large number of neurons per layer.

Fig. 7 depicts the hardware resource utilization followin
the input image size. One can see that BRAM and URAM hav
a linear complexity relative to the input image size, wherea
DSPs, FFs, and LUTs do not demonstrate any specific increas
pattern. This might require further investigation to identify
particular dependency pattern so that deployment feasibility ca
be assessed early enough for the input image sizes. Howeve
it is important to state that the input image size does not repr

8

Journal Pre-proof

se
im
ce
as
de

va
to
co
se
na
of
Co
po
the
ac
the
ac
to
na
the
to
ac
co
the
im
ev
cu
res

mo
req
ati
CN

t-
al
-
-

re
a-
-

l-
d

a-
s.
n
i-
e
e

IST
d
i-
e
-
r

t-
er
i-
-
e
g
t-

n,
ep
Jo
ur

na
l P

re
-p

ro
of

Figure 6: PL resources utilization and scalability.

nt a deployment bottleneck given the modular processing of
ages via splitting. Thus, high-resolution images can be pro-
ssed in a similar way via a larger number of splitting and re-
sembling operations. Indeed, the number of splits to perform
pends on the maximum input size of the IP core adopted.

Since the customization involves the activation and deacti-
tion of acceleration core modules, as each IP is synthesized
execute functions such as convolution, classification, and

mputation utilizing distinct activation functions, we have ob-
rved that if the current layer size is less than 50% of the origi-
l template layer size employed during IP synthesis, up to 35%
the IP circuits remain inactive.
mparison to the state-of-the-art. As stated earlier, the pro-
sed acceleration framework outperforms different state-of-
-art studies in terms of accuracy [60, 57]. Moreover, the

hieved computation performance (0.68s/image) outperforms
computation performance of 2.5s/image and 2.19s/image

hieved in [36] and [62], respectively. This is, in fact, due
the parallelization of the sub-images processing, with a dy-
mic overlapping (intra- and inter-subimage mapping), and
efficient load balancing between PS and PL partitions. Thanks

our efficient implementation, parallelization efficiency is not
hieved at the expense of large hardware sizes. Rather, the IP
mponents are re-utilized for sub-image processing, whereas

Pipeline directive executes the for-loops within each sub-
age processing. Table 2 summarizes a comparison to the rel-
ant state-of-the-art studies by considering classification ac-
racy, computation performance, and the number of hardware
ources used for acceleration.
One can see that while delivering the highest accuracy and
derate computation performance, the proposed acceleration
uires one of the lowest hardware resources set for acceler-

on. This will result in high scalability to accelerate larger
N architectures and achieve high energy efficiency.

5. Conclusions and Future Work

This article developed a methodology for deploying adap
able, scalable, and hardware-accelerated convolutional neur
networks on an embedded platform for image processing ap
plications. The proposed architecture facilitates CNNs’ run
time adaptability and dynamic configuration of the hardwa
accelerators to leverage execution performance. The innov
tion lies in an iteration-free synthesis approach, where hard
ware IPs are synthesized once and configured at runtime fo
lowing the CNN architecture, significantly reducing design an
deployment costs.

A prototype was implemented in Python to validate the fe
sibility of the proposed acceleration and deployment processe
This prototype enabled CNN training and parameter generatio
using Keras. Vitis HLS was employed to synthesize and opt
mize hardware accelerators on a Xilinx FPGA board, while th
PYNQ environment integrated the software application with th
synthesized hardware accelerators.

Extensive experiments, encompassing datasets such as MN
and CODaN with up to 180,000 parameters, were conducte
to evaluate the execution performance, accuracy, resource ut
lization, and scalability. The results indicate that our prototyp
surpasses the state-of-the-art in terms of accuracy and deploy
ment cost, especially when changes to the CNN architecture o
functionality do not necessitate IP core synthesis.

In the future, we aim to enhance adaptability by incorpora
ing a broader range of activation functions and strive for bett
alignment of computation loads across IP accelerators to opt
mize response times. Additionally, automated inference of op
timized configurations during initial hardware synthesis will b
crucial for further development. It is also worth investigatin
efficient on-chip memory utilization to reduce the off-chip bo
tleneck and improve the latency further.

References

[1] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Franco
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, B. Hodjat, Evolving de

9

Journal Pre-proof

[2

[3

[4

[5

[6

[7

[8

[9

[10

[11

p-
n-
e-

of
ce

t-

K.
al

al
-

g:
c-

p-
re

ri,
ng
).
e,
al
.
n,

c-
n:
m

n-
M
Jo

ur
na

l P
re

-p
ro

of

Figure 7: PL resources utilization following input image size.

Table 2: Comparison to the state-of-the-art.

Ref Accuracy (%) Latency (s) FF LUT DSP BRAM
Luo et al. [59] 95 0.33 49K 49K 44 93
Wen et al. [60] 94 0.035 25K 20K 576 149

Waseem et al. [61] - 0.11 43K 17K 25 173
Wang et al. [62] 89 2.19 131K 181K 576 435
Huang et al. [36] - 2.5 - - - -

Meshkini et al. [57] 93 - - - - -
Proposed Approach 97 0.68 11K 14K 54 178

neural networks (2024).
] A. Haleem, M. Javaid, M. Asim Qadri, R. Pratap Singh, R. Suman, Artifi-

cial intelligence (ai) applications for marketing: A literature-based study,
International Journal of Intelligent Networks 3 (2022) 119–132.

] Z. Wang, M. Goudarzi, M. Gong, R. Buyya, Deep reinforcement learning-
based scheduling for optimizing system load and response time in edge
and fog computing environments, Vol. 152, 2024, pp. 55–69.

] A. Khdoudi, T. Masrour, I. El Hassani, C. El Mazgualdi, A deep-
reinforcement-learning-based digital twin for manufacturing process op-
timization, Systems 12 (2) (2024) 38.

] M. Rafiei, J. Boudjadar, M. P. Griffiths, M.-H. Khooban, Deep learning-
based energy management of an all-electric city bus with wireless power
transfer, IEEE Access 9 (2021) 43981–43990.

] B. Saleem, R. Badar, A. Manzoor, M. A. Judge, J. Boudjadar, S. U. Islam,
Fully adaptive recurrent neuro-fuzzy control for power system stability
enhancement in multi machine system, IEEE Access 10 (2022) 36464–
36476.

] N. Hu, D. Zhang, K. Xie, W. Liang, K.-C. Li, A. Y. Zomaya, Dynamic
multi-scale spatial–temporal graph convolutional network for traffic flow
prediction, Future Generation Computer Systems 158 (2024) 323–332.

] P. W. McCulloch WS, A logical calculus of the ideas immanent in nervous
activity, Bulletin of Mathematical Biophysics 52 (1943) 115–133.

] P. Freire, S. Srivallapanondh, B. Spinnler, A. Napoli, N. Costa, J. E.
Prilepsky, S. K. Turitsyn, Computational complexity optimization of neu-
ral network-based equalizers in digital signal processing: A comprehen-
sive approach, Journal of Lightwave Technology 42 (12) (2024) 4177–
4201.

] Y. Wang, Y. Han, C. Wang, S. Song, Q. Tian, G. Huang, Computation-
efficient deep learning for computer vision: A survey, Cybernetics and
Intelligence (2024).

] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, B. Hodjat, Evolving deep
neural networks, in: Artificial Intelligence in the Age of Neural Networks
and Brain Computing (Second Edition), Academic Press USA (2024), pp.
269–287.

[12] M. Yasir, S. Liu, X. Mingming, J. Wan, S. Pirasteh, K. B. Dang, Shi
geonet: Sar image-based geometric feature extraction of ships using co
volutional neural networks, IEEE Transactions on Geoscience and R
mote Sensing (2024).

[13] X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, M. Parmar, A review
convolutional neural networks in computer vision, Artificial Intelligen
Review 57 (4) (2024).

[14] Y. Zhang, A survey on evaluation methods for image segmentation, Pa
tern Recognition 29 (8) (1996) 1335–1346.

[15] A. Zafar, M. Aamir, N. Mohd Nawi, A. Arshad, S. Riaz, A. Alruban, A.
Dutta, S. Almotairi, A comparison of pooling methods for convolution
neural networks, Applied Sciences 12 (17) (2022).

[16] G. D. Licciardo, C. Cappetta, L. Di Benedetto, Design of a convolution
two-dimensional filter in fpga for image processing applications, Com
puters 6 (2) (2017).

[17] P. Grzesik, D. Mrozek, Combining machine learning and edge computin
Opportunities, challenges, platforms, frameworks, and use cases, Ele
tronics 13 (3) (2024) 640.

[18] Y. Wan, X. Xie, J. Chen, K. Xie, D. Yi, Y. Lu, K. Gai, Ads-cnn: Ada
tive dataflow scheduling for lightweight cnn accelerator on fpgas, Futu
Generation Computer Systems 158 (2024) 138–149.

[19] S. Bertazzoni, L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzola
M. Re, S. Spanò, Design space exploration for edge machine learni
featured by mathworks fpga dl processor: A survey, IEEE Access (2024

[20] P. Kumar, I. Ali, D.-G. Kim, S.-J. Byun, D.-G. Kim, Y.-G. Pu, K.-Y. Le
A study on the design procedure of re-configurable convolutional neur
network engine for fpga-based applications, Electronics 11 (23) (2022)

[21] J. a. G. Reis, A. A. Fröhlich, Towards deterministic fpga reconfiguratio
International Journal of Embedded Systems 13 (2) (2020) 236–253.

[22] Y. Yang, C. Wang, X. Zhou, Drama: A high efficient neural network a
celerator on fpga using dynamic reconfiguration: Work-in-progress, i
Proceedings of Intl. Conf. on Hardware/Software Codesign and Syste
Synthesis Companion, 2019.

[23] M. Sponner, B. Waschneck, A. Kumar, Adapting neural networks at ru
time: Current trends in at-runtime optimizations for deep learning, AC

10

Journal Pre-proof

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

[41

[42

[43

[44

or

ns
2.
ic,
d-

H.
rs,

/

y,
o-
li-

u,
n-
ge

e-
er

k-
n:
a-

al
n:

a,
tl.

/

u-
d-
0.
r-

ed

e
07

ed

or
l-
s,

d-
e-
.

Jo
ur

na
l P

re
-p

ro
of

Comput. Surv. 56 (10) (2024).
] A. Dimitriou, B. Biggs, J. Hare, G. V. Merrett, Fpga acceleration of dy-

namic neural networks: Challenges and advancements, in: 2024 IEEE
International Conference on Omni-layer Intelligent Systems (COINS),
2024.

] E. Jaballi, S. Gdaim, N. Liouane, Design and implementation of fpga-
based hardware acceleration for machine learning using opencl: A case
study on the k-means algorithm, in: 2024 International Conference on
Control, Automation and Diagnosis (ICCAD), 2024.

] A. El Bouazzaoui, A. Hadjoudja, O. Mouhib, N. Cherkaoui, Fpga-based
ml adaptive accelerator: A partial reconfiguration approach for optimized
ml accelerator utilization, Array 21 (2024).

] K. P. Seng, P. J. Lee, L. M. Ang, Embedded intelligence on fpga: Survey,
applications and challenges, Electronics 10 (2021).

] K. Shi, M. Wang, X. Tan, Q. Li, T. Lei, Efficient dynamic reconfigurable
cnn accelerator for edge intelligence computing on fpga, Information
14 (3) (2023).

] T. S. Ajani, A. L. Imoize, A. A. Atayero, An overview of machine learn-
ing within embedded and mobile devices–optimizations and applications,
Sensors 21 (13) (2021) 4412.

] A. Fanariotis, T. Orphanoudakis, K. Kotrotsios, V. Fotopoulos,
G. Keramidas, P. Karkazis, Power efficient machine learning models de-
ployment on edge iot devices, Sensors 23 (2023).

] I. Kuon, R. Tessier, J. Rose, Fpga architecture: Survey and challenges,
Foundations and Trends® in Electronic Design Automation 2 (2) (2008)
135–253.

] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, Z. Zhang, High-
level synthesis for fpgas: From prototyping to deployment, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
30 (4) (2011) 473–491.

] S. Branco, A. G. Ferreira, J. Cabral, Machine learning in resource-scarce
embedded systems, fpgas, and end-devices: A survey, Electronics 8 (11)
(2019) 1289.

] J. Jakobsen, M. Jensen, I. Sharifirad, J. Boudjadar, A flexible implemen-
tation model for neural networks on fpgas, in: International Conference
on Intelligent Systems Design and Applications, Springer, 2022, pp. 332–
342.

] F. Ratto, Á. P. Máinez, C. Sau, P. Meloni, G. Deriu, S. Delucchi,
M. Massa, L. Raffo, F. Palumbo, An automated design flow for adap-
tive neural network hardware accelerators, Journal of Signal Processing
Systems 95 (9) (2023) 1091–1113.

] C.-H. Huang, S.-W. Tang, P.-A. Hsiung, Acnne: An adaptive convolution
engine for cnns acceleration exploiting partial reconfiguration on fpgas,
in: 2024 IEEE International Symposium on Circuits and Systems (IS-
CAS), 2024.

] H. Tong, K. Han, S. Han, Y. Luo, Design of a generic dynamically recon-
figurable convolutional neural network accelerator with optimal balance,
Electronics 13 (2024).

] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, X. Zhou, Dlau: A scalable deep
learning accelerator unit on fpga, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 36 (3) (2016) 513–517.

] K. Neshatpour, H. M. Mokrani, A. Sasan, H. Ghasemzadeh, S. Rafatirad,
H. Homayoun, Architectural considerations for fpga acceleration of ma-
chine learning applications in mapreduce, in: Proceedings of Intl. Con.
on embedded computer systems: Architectures, modeling, and simula-
tion, 2018, pp. 89–96.

] V. Gokhale, A. Zaidy, A. X. M. Chang, E. Culurciello, Snowflake: An
efficient hardware accelerator for convolutional neural networks, in: 2017
IEEE International Symposium on Circuits and Systems (ISCAS), 2017.

] P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi, L. Raffo,
L. Benini, Neuraghe: Exploiting cpu-fpga synergies for efficient and flex-
ible cnn inference acceleration on zynq socs, ACM Trans. Reconfigurable
Technol. Syst. 11 (3) (2018).

] S. I. Venieris, C.-S. Bouganis, fpgaconvnet: Mapping regular and irregu-
lar convolutional neural networks on fpgas, IEEE Transactions on Neural
Networks and Learning Systems 30 (2) (2019).

] C. Gao, F. Zhang, Fpga-based accelerator for independently recurrent
neural network, in: 2018 IEEE 4th International Conference on Computer
and Communications (ICCC), 2018.

] AMD Xilinx, Aws cloud: Xilinx fpgas in world’s largest
cloud, https://www.xilinx.com/products/design-tools/

acceleration-zone/aws.html.
[45] H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning filters f

efficient convnets, arXiv preprint arXiv:1608.08710 (2016).
[46] S. Qian, H. Liu, C. Liu, S. Wu, H. S. Wong, Adaptive activation functio

in convolutional neural networks, Neurocomputing 272 (2018) 204–21
[47] A. Nechi, L. Groth, S. Mulhem, F. Merchant, R. Buchty, M. Berekov

Fpga-based deep learning inference accelerators: Where are we stan
ing?, ACM Trans. Reconfigurable Technol. Syst. 16 (4) (2023).

[48] A. G. Blaiech, K. B. Khalifa, C. Valderrama, M. A. Fernandes, M.
Bedoui, A survey and taxonomy of fpga-based deep learning accelerato
Journal of Systems Architecture 98 (2019) 331–345.

[49] AMD Xilinx, https://www.xilinx.com/applications

megatrends/machine-learning.html.
[50] S. Bose, A. Mukherjee, Madhulika, S. Chakraborty, S. Samanta, N. De

Parallel image segmentation using multi-threading and k-means alg
rithm, in: 2013 IEEE International Conference on Computational Intel
gence and Computing Research, 2013.

[51] T. Yan, G. Chen, H. Zhang, G. Wang, Z. Yan, Y. Li, S. Xu, Q. Zho
R. Shi, Z. Tian, B. Wang, Convolutional neural network with parallel co
volution scale attention module and rescbam for breast histology ima
classification, Heliyon 10 (2024).

[52] C.-N. Lu, Y.-C. Chang, W.-C. Chiu, Bridging the Visual Gap: Wid
Range Image Blending , in: 2021 IEEE/CVF Conference on Comput
Vision and Pattern Recognition (CVPR), 2021.

[53] J. Boudjadar, S. Ramanathan, A. Easwaran, U. Nyman, Combining tas
level and system-level scheduling modes for mixed criticality systems, i
2019 IEEE/ACM 23rd International Symposium on Distributed Simul
tion and Real Time Applications (DS-RT), 2019.

[54] B. Madzar, J. Boudjadar, J. Dingel, T. E. Fuhrman, S. Ramesh, Form
analysis of predictable data flow in fault-tolerant multicore systems, i
Formal Aspects of Component Software, 2017.

[55] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishr
H. Esmaeilzadeh, From high-level deep neural models to fpgas, in: In
Symposium on Microarchitecture (MICRO), 2016.

[56] The HDF Group, https://www.hdfgroup.org/solutions/hdf5

(2022).
[57] K. Meshkini, J. Platos, H. Ghassemain, An analysis of convolutional ne

ral network for fashion images classification (fashion-mnist), in: Procee
ings of Conf. on Intelligent Information Technologies for Industry, 202

[58] K. Cheng, R. Tahir, L. K. Eric, M. Li, An analysis of generative adversa
ial networks and variants for image synthesis on mnist dataset, Multim
Tools Appl 79 (2020) 13725–13752.

[59] Y. Luo, X. Cai, J. Qi, D. Guo, W. Che, Fpga–accelerated cnn for real-tim
plant disease identification, Computers and Electronics in Agriculture 2
(2023).

[60] L. C. Hongxing Wen, Software and hardware synergy for accelerat
plant disease identification, Applied Soft Computing 61 (2024).

[61] S. M. Waseem, S. K. Roy, Chapter 10 - fully convolutional network f
edge devices—fpga implementation and analysis for agriculture techno
ogy, in: Agri 4.0 and the Future of Cyber-Physical Agricultural System
Academic Press (2024), 2024, pp. 175–196.

[62] X. Wang, Z. Zhou, Z. Yuan, J. Zhu, Y. Cao, Y. Zhang, K. Sun, G. Sun, F
cnn: A frequency-domain fpga acceleration scheme for cnn-based imag
processing applications, ACM Trans. Embed. Comput. Syst. 22 (2023)

11

Journal Pre-proof

Jalil Boudjadar Photo Click here to access/download;Author Photo;Jalil Boudjadar
Jo
ur

na
l P

re
-p

ro
of

Picture.jpg

Journal Pre-proof

Saif Ul Islam Photo Click here to access/download;Author Photo;Saif ul Islam
Jo
ur

na
l P

re
-p

ro
of

Picture.jpg

Journal Pre-proof

Rajkumar Buyya Photo Click here to access/download;Author Photo;Rajkumar Buyya
Jo
ur

na
l P

re
-p

ro
of

Picture.jfif

Journal Pre-proof

Highlights
Jo
ur

na
l P

re
-p

ro
of

Highlights

Paper Title: Dynamic FPGA Reconfiguration for Scalable Embedded Artificial Intelligence (AI): A Co-

Design Methodology for CNN Acceleration

1. Novel co-design framework that integrates adaptive CNNs with FPGA platforms to eliminate

iterative synthesis, reducing deployment time and costs.

2. FPGA hardware can be reconfigured at runtime to adapt CNN architectures and

hyperparameters without full re-synthesis.

3. Combines fine- and coarse-grained hardware customizations, improving computation

performance and reducing latency.

4. Tested on Xilinx ZYBO FPGA with a CNN-based image classifier, demonstrating improved

efficiency and scalability.

5. An adaptable, scalable solution for deploying AI applications on FPGA platforms through

dynamic reconfiguration.

Journal Pre-proof

Author Biography
Jo
ur

na
l P

re
-p

ro
of

Authors’ Biographies

Jalil Boudjadar received the M.Sc. degree from Limoges University in June 2008 and the Ph.D. degree

from Toulouse University, France, in December 2012. He is currently an associate professor in the

Electrical and Computer Engineering (ECE) Section of the Department of Engineering. He is also a

member of the DIGIT Research Centre. His research interests include the design, validation, and

optimization of embedded systems; modeling and intelligent control for cyber-physical systems;

digitization, digital twins, and adaptive runtime engineering; machine learning and embodied artificial

intelligence; real-time systems and scheduling theories; and formal methods for security, safety, and

data analysis.

Saif Ul Islam received a Ph.D. degree in distributed systems from Université Toulouse III Paul Sabatier,

Toulouse, France, in 2015 under the supervision of Prof. Jean-Marc Pierson, the head of Institut de

Recherche en Informatique de Toulouse (IRIT). He is currently a Research Fellow at WMG, University

of Warwick, UK. Previously, he was an Associate Professor with the Department of Computer Science,

Institute of Space Technology, Islamabad, Pakistan, and an Assistant Professor with COMSATS

University, Islamabad, Pakistan. He is currently working and has been part of European Union-funded

research projects. He has published his research in various reputed journals. He has an H-Index of 31

at Google Scholar. He is the associate editor of two journals and also guest-editing a few special issues

in different journals. His research interests include parallel and distributed computing, sustainable

computing, artificial intelligence, fog computing, edge computing, and machine learning.

Rajkumar Buyya is a Redmond Barry Distinguished Professor and Director of the Cloud Computing and

Distributed Systems (CLOUDS) Laboratory at the University of Melbourne, Australia. He is also serving

as the founding CEO of Manjrasoft Pty Ltd., a spin-off company of the University, commercialising its

innovations in Cloud Computing. He served as a Future Fellow of the Australian Research Council

during 2012-2016. He serving/served as Honorary/Visiting Professor for several elite Universities

including Imperial College London (UK), University of Birmingham (UK), University of Hyderabad

(India), and Tsinghua University (China). He received B.E and M.E in Computer Science and Engineering

from Mysore and Bangalore Universities in 1992 and 1995 respectively; and a Doctor of Philosophy

(PhD) in Computer Science and Software Engineering from Monash University, Melbourne, Australia

in 2002. He was awarded Dharma Ratnakara Memorial Trust Gold Medal in 1992 for his academic

excellence at the University of Mysore, India. He received Richard Merwin Award from the IEEE

Computer Society (USA) for excellence in academic achievement and professional efforts in 1999. He

received Leadership and Service Excellence Awards from the IEEE/ACM International Conference on

High Performance Computing in 2000 and 2003. He received "Research Excellence Awards" from the

University of Melbourne for productive and quality research in computer science and software

engineering in 2005 and 2008. He acknowledges all researchers and institutions worldwide for their

consideration in building on software systems created by his CLOUDS Lab and recognising them

through citations and contributing to their further enhancements. With over 152,000 citations, a g-

index of 371, and an h-index of 168, he is one of the highly cited authors in computer science and

software engineering worldwide. He received the Chris Wallace Award for Outstanding Research

Contribution 2008 from the Computing Research and Education Association of Australasia, CORE,

which is an association of university departments of computer science in Australia and New Zealand.

Dr. Buyya received the "2009 IEEE TCSC Medal for Excellence in Scalable Computing" for pioneering

the economic paradigm for utility-oriented distributed computing platforms such as Grids and Clouds.

He served as the founding Editor-in-Chief (EiC) of IEEE Transactions on Cloud Computing (TCC). Dr.

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Buyya is recognized as a "Web of Science Highly Cited Researcher" for seven times since 2016, Scopus

Researcher of the Year 2017 with Excellence in Innovative Research Award by Elsevier, and "Lifetime

Achievement Awards" from two Indian universities for his outstanding contributions to Cloud

computing and distributed systems. He has been recognised as the "Best of the World" twice for

research fields (in Computing Systems in 2019 and Software Systems in 2021) as well as "Lifetime

Achiever" and "Superstar of Research" in "Engineering and Computer Science" discipline twice (2019

and 2021) by the Australian Research Review. Recently, he received "Research Innovation Award" from

IEEE Technical Committee on Services Computing and "Research Impact Award" from IEEE Technical

Committee on Cloud Computing.

Dr. Buyya has contributed to the creation of high-performance computing and communication system

software for PARAM supercomputers developed by the Centre for Development of Advanced

Computing (C-DAC), India. He has pioneered Economic Paradigm for Service-Oriented Distributed

Computing and demonstrated its utility through his contribution to conceptualisation, design and

development of Grid and Cloud Computing technologies such as Aneka, GridSim, Libra, Nimrod-

G, Gridbus, and Cloudbus that power the emerging eScience and eBusiness applications. He has been

awarded, over $8 million, competitive research grants from various national and international

organisations including the Australian Research Council (ARC), Sun Microsystems, StorageTek, IBM, and

Microsoft, CA Australia, Australian Dept. of Innovation, Industry, Science and Research (DIISR), and

European Council. Dr. Buyya has been remarkably productive in a research sense and has converted

much of that knowledge into linkages with industry partners (such as IBM, Sun and Microsoft), into

software tools useful to other researchers in a variety of scientific fields, and into community

endeavours. Software technologies for Grid and Cloud computing developed under Dr. Buyya's

leadership have gained rapid acceptance and are in use at several academic institutions and

commercial enterprises in 50+ countries around the world. In recognition of this, he received Vice

Chancellor's inaugural "Knowledge Transfer Excellence (Commendation) Award" from the University

of Melbourne in Nov 2007. Manjrasoft's Aneka technology for Cloud Computing developed under

Dr.Buyya's leadership has received "2010 Asia Pacific Frost & Sullivan New Product Innovation Award".

Recently, Dr. Buyya received "Bharath Nirman Award" and "Mahatma Gandhi Award" along with Gold

Medals for his outstanding and extraordinary achievements in Information Technology field and

services rendered to promote greater friendship and India-International cooperation.

Dr. Buyya has authored/co-authored over 850 publications. Since 2007, he received twelve "Best Paper

Awards" from international conferences/journals including a "2009 Outstanding Journal Paper Award"

from the IEEE Communications Society, USA. He has co-authored five text books: Microprocessor x86

Programming (BPB Press, New Delhi, India, 1995), Mastering C++ (McGraw Hill Press, India, 1st edition

in 1997 and 2nd edition in 2013), Object Oriented Programming with Java: Essentials and

Applications (McGraw Hill, India, 2009), Mastering Cloud Computing (Morgan Kaufmann, USA;

McGraw Hill, India, 2013; China Machine Press, 2015), and Cloud Data Centers and Cost

Modeling (Morgan Kaufmann, USA, 2015). The books on emerging topics that he edited include, High

Performance Cluster Computing (Prentice Hall, USA, 1999), High Performance Mass Storage and

Parallel I/O (IEEE and Wiley Press, USA, 2001), Content Delivery Networks (Springer, Germany,

2008), Market Oriented Grid and Utility Computing (Wiley Press, USA, 2009), and Cloud Computing:

Principles and Paradigms (Wiley, USA, 2011). He also edited proceedings of over 25 international

conferences published by prestigious organisations, namely the IEEE Computer Society Press (USA)

and Springer Verlag (Germany). He served as Associate Editor of Elsevier's Future Generation

Computer Systems Journal (2004-2009) and currently serving on editorial boards of many journals

including Software: Practice and Experience (Wiley Press). Dr. Buyya served as a speaker in the IEEE

Computer Society Chapter Tutorials Program (from 1999-2001), Founding Co-Chair of the IEEE Task

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Force on Cluster Computing (TFCC) from 1999-2004, and member of the Executive Committee of the

IEEE Technical Committee on Parallel Processing (TCPP) from 2003-2011. He served as the first elected

Chair of the IEEE Technical Committee on Scalable Computing (TCSC) during 2005-2007 and played a

prominent role in the creation and execution of several innovative community programs that

propelled TCSC into one of the most successful TCs within the IEEE Computer Society. In recognition

of these dedicated services to computing community over a decade, President of the IEEE Computer

Society presented Dr. Buyya a Distinguished Service Award in 2008.

Dr. Buyya is a Fellow of IEEE, Foreign Fellow of Academia Europaea, and Life Member of ACM. He has

co-founded five IEEE/ACM international conferences: CCGrid, Cluster, Grid, e-Science, and UCC (Utility

and Cloud Computing) and served as the Chair of their inaugural meetings. He served as a Member of

the IEEE Computer Society Fellow Evaluating Committee in 2015, 2018, and 2021. He has presented

over 600 invited talks (keynotes, tutorials, and seminars) on his vision on IT Futures and advanced

computing technologies at international conferences and institutions in Asia, Australia, Europe, North

America, and South America. For further information on Dr. Buyya, please

visit: http://www.buyya.com

Journal Pre-proof

Author Names and their Contribution
Jo
ur

na
l P

re
-p

ro
of

Authors’ Contributions

Paper Title: Dynamic FPGA Reconfiguration for Scalable Embedded Artificial Intelligence (AI): A Co-

Design Methodology for CNN Acceleration

Jalil Boudjadar: Conceptualization, Methodology, Software, Implementation, Writing - Original Draft

Saif Ul Islam: Validation, Analysis, Project Management, Writing - Review & Editing

Rajkumar Buyya: Supervision, Validation, Writing - Review & Editing

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐ The author is an Editorial Board Member/Editor-in-Chief/Associate Editor/Guest Editor for [Journal
name] and was not involved in the editorial review or the decision to publish this article.

☐ The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

