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Abstract
Crop productivity prediction and recommendation is a significant research area of 
smart agriculture. This paper proposes an Internet of Things (IoT) framework based 
on dew computing, edge computing, and federated learning, where soil parameters, 
environmental parameters, and weather data are analysed to predict the crop produc-
tivity of a land, and then recommend suitable crop for the land. The dew layer pre-
processes and accumulates the received sensor data, and forwards to the edge server. 
The edge server analyses the sensor data and the weather data, and then sends the 
result to the cloud along with the model characteristics and to the mobile device. 
The proposed framework is simulated in iFogSim. The theoretical analysis shows 
that the proposed framework has reduced the delay by 60–70% approximately and 
power consumption by 70–80% approximately than the conventional sensor-cloud 
framework. We also observe that the proposed framework has reduced the delay 
by 12–35% approximately and power consumption by 30–50% approximately than 
the edge-cloud framework. We compare four machine learning algorithms based 
on their performance in data analysis in terms of precision, recall, accuracy, and 
F-score. We observe that each classifier obtains more than 95% prediction accuracy. 
An Android application is also proposed for crop recommendation.
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1  Introduction

IoT has become a key component of smart applications [1]. The use of IoT in agri-
culture has also gained the interest of the researchers [2]. Internet of Agricultural 
Things (IoAT) refers to the use of IoT in agriculture [3]. The crop productivity pre-
diction of land plays a significant role in smart farming. The increasing population 
growth in the fixed land area has raised the necessity of predicting the right crop 
for the right land. The appropriate guidance to the farmers for efficient utilization 
of the land is highly important for their economical profit. The proper guidance 
consists of various issues like crop prediction, cost of farming, and preparation of 
soil. Previously, the crop productivity prediction was carried out manually by ana-
lysing the prior knowledge of the cultivator on the selected crop [4]. However, the 
manual analysis does not consider the dynamic behaviour of the attributes such as 
soil parameters and environmental parameters [4]. Hence, the use of artificial intelli-
gence in crop productivity prediction is required for boosting the prediction of accu-
racy level, and to resolve the problems regarding the manual analysis.

The analysis of the data related to the weather and soil parameters can provide 
better crop productivity prediction [5]. In the present work, we perform crop pro-
ductivity prediction of land using machine learning. In our proposed work, we con-
sider soil, environmental, and weather parameters (Nitrogen (N), Potassium (K), and 
Phosphorus (P) levels of soil, pH, temperature, humidity, and rainfall) as the input 
features, and take various crop classes in the input dataset. Four different machine 
learning algorithms (Support Vector Machine (SVM), K-Nearest Neighbour (KNN), 
Linear Discriminant Analysis (LDA), and Decision Tree (D-Tree)) [5–7] are used in 
data analysis for classifying the input dataset, and achieved a standard level of pre-
diction accuracy of crop yield.

1.1 � Motivation and contributions

The primary purpose of agricultural planning is to maximize crop yields while uti-
lizing a limited amount of land resources to facilitate the economy of a country. 
To meet this objective, a data analytics framework is required that will predict crop 
productivity of land, and recommend suitable crop for the land. In the conventional 
data analysis approaches, cloud servers are used to store and analyse the data. How-
ever, the use of remote cloud has constraints in terms of delay, network connectivity, 
security, etc. The conventional edge-cloud framework reduces the delay. However, 
the agricultural lands are located in rural regions, where the network connectivity 
is not usually good. In such a case, the data transmission from sensors to the edge 
server is affected. The motivation of the proposed work is to provide a crop pro-
ductivity prediction and recommendation framework that will overcome these chal-
lenges. The key contributions of this paper are:

•	 A dew computing, edge computing, and federated learning-based crop produc-
tivity prediction and recommendation framework is proposed for IoAT. The pro-
posed framework is named as E-CropReco (Dew-Edge Computing-based Crop 
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Recommendation). The theoretical analysis demonstrates that the proposed 
framework has lower delay and power consumption than the existing sensor-
cloud and edge-cloud frameworks. The architecture is simulated in iFogSim to 
analyse its performance in terms of delay, network usage, and energy consump-
tion.

•	 In the agricultural fields at rural regions, the network connectivity is a major issue. 
The sensor data transmission to the edge server is affected due to the poor network 
connectivity. To deal with this problem, we use dew computing in this framework. 
Between the microcontroller and edge server, a mobile device is used that provides 
the dew layer in our framework. The mobile device is allotted for the data collec-
tion, accumulation, and pre-processing. By using dew computing the temporary 
data storage is performed when the network connectivity is not available. When the 
network connectivity of the mobile device is available, the data from the dew layer 
are sent to the edge server. The edge server performs data analysis and generates 
the result. By using federated learning, the cloud overhead is reduced and the data 
privacy is enhanced.

•	 A comparative study among four machine learning algorithms is performed based 
on their performance in analysing soil parameters, environmental parameters, and 
weather data. Their performance is measured in terms of precision, recall, accuracy, 
and F-score.

•	 Based on the data analysis using machine learning crop productivity of a land is 
predicted, and the suitable crop for the land is recommended.

The rest of the paper is organized as follows. Section 2 discusses the related works, 
Sect.  3 presents the proposed framework. Section  4 evaluates the performance of 
E-CropReco. Finally, we conclude in Sect. 5.

2 � Related work

Machine learning techniques were applied in crop yield study to enhance the agricul-
tural growth of the country. We have performed a comprehensive literature study to 
acquire an overview of the application of machine learning in crop yield prediction.

2.1 � Use of machine learning and deep learning

Over the past few decades, machine learning (ML) approaches made significant 
advancements. Instead of attempting to deduce the nature of the mechanical processes 
behind the outcomes, ML is primarily concerned with making predictions about the 
future [5]. ML applications are widely employed for addressing a number of issues that 
humans frequently fail at or take a long time to solve. ML techniques were applied in 
crop yield study to enhance the agricultural growth of the country. Usually, the ML 
methods are categorized into three types: supervised, unsupervised, and reinforcement 
learning. The use of these three types of ML methods in agriculture is explained as 
follows.
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2.1.1 � Use of supervised learning

Four ML algorithms namely linear regression, elastic net (EN), KNN, support vec-
tor regression (SVR) were used for predicting the potato tuber yield in [6]. Statis-
tical parameters were generated from the data that was collected using modelling 
approaches to produce yield projections. Five ML algorithms were used for predict-
ing the mustard crop yield by analysing the soil data in [7]. Among them KNN and 
Artificial Neural Network (ANN) both were found as effective algorithms to predict 
the mustard crop yield. Different weather and soil parameters such as temperature, 
rainfall, soil, seed, and wind speed data were collected and analysed in [8] to help 
the farmer for improving the crop production.

2.1.2 � Use of unsupervised learning

Clustering divides a set of data into groups based on similarity and then labels a rel-
atively small number of groups. Clustering is unsupervised learning because it does 
not rely on preset classes or training instances with class labels [9]. The K-means 
classification technique was used to classify the dataset and pick the optimal group 
or combination of precipitation and temperature for increasing crop yields [10]. The 
primary flaw in the current clustering algorithms was highlighted, including the uni-
form input of the number of clusters and the random initialization of cluster centres. 
In order to produce high-quality clusters and estimate the harvest with better accu-
racy, a modified version of the K-means clustering method was created in [9].

2.1.3 � Use of reinforcement learning

Reinforcement learning uses the dynamic programming idea to create and train 
algorithms by using a strategy of reward and punishment. Deep reinforcement 
learning is a combination of reinforcement learning and deep learning. In order to 
anticipate crop yield, the suggested study [11] built a Deep Recurrent Q-Network 
model, which is a Recurrent Neural Network-based deep learning algorithm over 
Q-Learning reinforcement learning algorithm. In order to strengthen the mastering 
set of rules for yield prediction, the research [12] developed a version of the Deep 
Recurrent Q-Network SVM deep mastering set of rules over Q-Learning. By main-
taining the baseline distribution of information, the suggested model predicted the 
trendy crop production by maintaining 93.7% accuracy level. A deep reinforcement 
learning-based plant industrial sensor data processing model was proposed in [13]. 
It offered a fresh concept for the intelligence of plant manufacturers and the process-
ing of sensor data.

2.1.4 � Use of deep learning

In [14], deep transfer learning framework was presented for predicting the crop yield 
in the developing countries by using the remote sensing data. A parametric statistical 
model augmented with the help of deep neural network (DNN), named as semi-par-
ametric neural network (SNN), achieved better predictive performance, as presented 
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in [5]. A multi-parametric DNN was proposed to model the impact of changes on 
climate, as well as different soil and climate characteristics in order to predict crop 
production [4]. With the use of previous knowledge about different functional forms 
linked to the agricultural yield field, the multi-parametric DNN outperformed the 
DNN in terms of statistical efficiency. However, because of the usage of a hierarchy 
of features, the complexity grows and the quality of the concealed representation 
might be compromised. Another limitation of the system was that for medium-sized 
datasets the system might not be able to provide the optimal representation.

2.1.5 � ML algorithms used in E‑CropReco

The four ML algorithms (SVM, KNN, LDA, and D-Tree) used for data analysis in 
our proposed framework are briefly discussed as follows.

•	 SVM Support Vector Machine or SVM is the general discriminant classifier 
widely used in the area of pattern recognition. In SVM model, several classes 
are represented in the concept of surface named as hyperplane, where the bound-
ary is drawn between the data instances and plotted in multidimensional space. 
SVM generates hyperplane in an iterative manner for minimizing the error. SVM 
depends on the kernel functions. Kernel functions are generally used to map the 
original features to the higher dimensional space nonlinearly. Non-separable 
problems are converted into separable problems [6]. SVM is a supervised ML 
algorithm that can be used for classification and regression tasks. The funda-
mental goal of SVM is to identify the optimal boundary for classifying the data 
into distinct groups. It can work with high-dimensional data and is effective with 
small datasets.

•	 KNN The key concept behind the K-Nearest Neighbour or KNN classifier is to 
find the similarities in close proximity that means how the similar data points are 
close to each other. KNN algorithm [7] uses data and it classifies new data points 
based on the distance function. The techniques belonging to KNN are based on 
single nearest neighbour classification and unfamiliar sample classification on 
the votes of K-nearest neighbour. Here, K is the user-defined constant. Based 
on Euclidean distance function the algorithm searches K neighbours closest to 
the unlabelled sample from the training space. KNN is one of the most straight-
forward ML algorithms, and it is based on the supervised learning method. This 
algorithm assumes that the new data and the existing data are similar, and it 
places the new data in the category that the existing data are most similar to. 
KNN properly works with labelled and error free data, and also works effectively 
on small dataset.

•	 LDA Linear discriminant analysis or LDA is a supervised classifier that is used 
for dimension reduction. It measures several categories of information. LDA is 
used for placing the extracted features from higher to lower dimensional space 
depending on the number of class for avoiding the dimensional curse, and also 
used for reducing the resource. LDA focuses on fetching the appropriate projec-
tion direction by using the Fisher function [7]:
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•	 For maximizing among scattered classes.
•	 For minimizing within each class.

	    LDA is generally used for taking the class covariance within itself, mean of 
total data, mean of total class, and class probabilities. LDA is one of the most 
straightforward and efficient supervised ML algorithms for multi-class classifica-
tion tasks with categorical output data. It is used when dataset is linearly separa-
ble.

•	 D-Tree Decision Tree or D-Tree is a powerful classification tool used for predic-
tion. From its tree structure, internal nodes are defined as test, leaf nodes are 
defined as class label, and branches are defined as features conjunction that indi-
cates those particular classes. D-Tree [5] follows the technique by considering 
all probable decisions’ outcomes and finds the conclusion by tracing every path. 
D-Tree is easy to comprehend since it uses the same steps that people do while 
making decisions in everyday life. D-Trees are simple to understand as it follows 
the tree like structure logic. It can be useful for solving decision-making prob-
lems.

In our work, the crop productivity of a land is predicted. The dataset is compara-
tively small, labelled data are considered, and decision-making regarding which 
crop is suitable for which land takes place. Thus, we have selected these four ML 
algorithms for data analysis in our framework.

2.2 � IoT, cloud, edge, and fog computing

IoT is a principal component of smart solutions. A time-aware smart object recom-
mendation model was proposed in [15] that considered both the social similarity 
of the smart object and the user’s preference over time. The suggested model used 
events associated with user object usage to develop a latent probabilistic model that 
tracked user preferences over time. By inferring customer preferences from user-
generated heterogeneous information, a recommendation model was proposed for 
physical businesses in [16]. In IoT, to analyse the high volume of sensor data, usu-
ally, cloud computing is used, where the cloud servers are used for data storage and 
processing. However, the use of remote cloud suffers from increase in delay, network 
traffic, and computation overhead on the cloud. As a solution, edge and fog comput-
ing come into the scenario. For smart agriculture, edge computing [17, 18] has a lot 
of potential. Smart farming benefits not only the scientists and agronomists, but also 
the cultivators by allowing them access to current technologies and gadgets, which 
help to maximize the product quality and quantity while lowering the agricultural 
cost [18, 19]. Edge computing allows smart agriculture services to be accessed and 
used more effectively. Fog computing is another approach that improves the qual-
ity of service for the modern information and communication technology. Unlike 
cloud computing, which processes all data on the cloud, the intermediate fog nodes 
also participate in data processing in fog computing. Thus, the use of fog computing 
reduces the network traffic and computation overhead on the cloud. An architecture 
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based on two levels of communication and processing nodes (edge and fog nodes) 
was proposed using low cost sensing technologies in [20]. A data sensing framework 
was developed in [21] for the complete crop lifetime by merging edge computing 
with IoT. The technique had the potential to greatly reduce the data collection time 
as well as energy consumption. In [17, 18], the use of edge computing in agriculture 
was highlighted. The use of IoT and edge computing in agriculture was explored in 
various research works, especially for soil quality monitoring, irrigation system, etc. 
[22–24]. However, crop productivity recommendation has not gained so much atten-
tion from the researchers, though the planting of suitable crop and proper utilization 
of land are highly significant for the economical profit of the farmers.

2.3 � Dew computing

Dew computing is an emerging research trend [25–28]. Dew computing combines 
the use of end nodes such as mobile devices with cloud computing to provide local 
data storage and access to the data even in offline mode. A dew virtual machine is 
composed of a dew server, data analytics server, and artificial intelligence of the 
dew. The dew server is a lightweight server that provides micro-services according 
to the requirements and interacts with the cloud to periodically synchronize the con-
tent. The dew analytics server collects data regarding the use of the dew server. The 
artificial intelligence of the dew is used for data customization and update after the 
reception for improving the user experience. In developing countries, the agricul-
tural fields are located usually in remote places, where network connectivity is not 
always available. In such a case, the use of dew computing can provide local storage 
and access to the data even in offline mode. In [29], dew computing was used for 
health care, where the authors focused on the early prediction of bronchial asthma. 
In [30], dew computing-based IoT was discussed for smart city applications. In [28], 
the use of dew computing and blockchain was highlighted for smart city applica-
tions. Though, dew computing was used for health care and smart city applications, 
its use in smart agriculture is not largely explored.

In our paper, we have used dew computing, edge computing, and federated learn-
ing for designing a crop productivity prediction and recommendation system. As per 
our knowledge, for the first time we are integrating IoAT with dew computing, edge 
computing, and federated learning, to develop a delay-aware and power-efficient 
paradigm for crop productivity prediction. Federated learning (FL) is a method in 
which an algorithm is trained across multiple decentralized edge servers containing 
local data [31, 32]. The local data are not exchanged in FL. Usually, the lower level 
nodes perform the local processing, and the result along with model characteristics 
are forwarded to the next level. This in turn helps in privacy protection. Table 1 pre-
sents a comparative study between the existing approaches and the proposed frame-
work. We observe that the proposed framework (E-CropReco) is novel and benefi-
cial than the existing approaches.
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3 � E‑CropReco: proposed framework for crop recommendation

This section presents the architecture and working model of E-CropReco, and its 
delay and power consumption.

3.1 � Architecture and working model

The principal components of E-CropReco are (refer Fig. 1):

•	 Sensors with microcontrollers: A sensor node (S) is mathematically defined 
as: 

 where Sid , Sst , and Sob denote the id of the sensor, status of the sensor (active 
or not), and the object type with which the sensor is attached (e.g. temperature, 
humidity, etc.), respectively. A microcontroller is mathematically defined as: 

S =< Sid, Sst, Sob >,

Fig. 1   Architecture of E-CropReco
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 where Mid and Mst denote the id and status of the microcontroller, respectively.
•	 Mobile device: A mobile device working as the dew layer is mathematically 

defined as: 

 where Did , Dse , and Dsp denote the id of the mobile device, security methods 
used by the mobile device, and specification of the mobile device, respectively.

•	 Base station with edge server: An edge server is defined as: 

 where Eid , Ese , and Esp denote the id of the edge server, security methods used 
by the edge server, and specification of the edge server, respectively.

•	 Cloud servers: A cloud computing instance is defined as: 

 where Cid and Cpr represent the id of the cloud computing instance and a set 
containing the processing unit IDs of the necessary cloud servers of the instance, 
respectively.

The working model of the proposed framework is described as follows, and the 
corresponding flow diagram is presented in Fig. 2.

•	 The sensor nodes collect the soil parameter data (such as Nitrogen (N), Potas-
sium (K), Phosphorous (P) levels of the soil, and pH) and environmental param-
eter data (such as temperature and humidity), and send to the connected micro-
controller.

•	 The microcontroller sends the data to a mobile device connected with the net-
work.

•	 The mobile device pre-processes the received data, accumulates, and then sends 
the data to the base station of the region, where the land is located. Though we 
have used here mobile devices in our framework, instead of mobile device any 
processing device with good storage and computation abilities can be used as the 
dew layer.

•	 The base station after receiving the data stores it inside the attached edge server. 
We assume that the edge server already has the weather data (such as rainfall) 
of the region containing the land. The edge server analyses the soil parameters, 
environmental parameters, and the weather data using ML to predict the crop 
productivity and recommend suitable crop for the land under examination. The 
ML algorithm suggests which crop is suitable for the land. The result is sent to 
the cloud along with the model characteristics and to the mobile device.

M =< Mid,Mst >,

D =< Did,Dse,Dsp >,

E =< Eid,Ese,Esp >,

C =< Cid,Cpr >,
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The cloud can also send data to the edge server if required. In our framework, the 
mobile device works as the dew layer by containing the data collected from the sen-
sors. If the network connectivity is not available, then the dew layer i.e. the mobile 
device holds the data. When the connectivity is available, it forwards the data to the 
edge server. To connect the microcontroller to the mobile device Bluetooth can be 
used. As the data transmission takes place from microcontroller to mobile device, 
the microcontroller will act as the client and the mobile device will act as the server 
during data transmission between these two nodes. The Bluetooth address of the 
mobile device will be traced and a pairing agent will be executed. Then the data can 
be sent from the microcontroller to the mobile device.

Fig. 2   Flow diagram of working 
model of E-CropReco



	 S. Bera et al.

1 3

3.1.1 � Use of ML

In this paper, we have used four ML algorithms SVM, KNN, LDA, and D-Tree for 
analysing the data. In the performance analysis section, their performance is com-
pared with respect to accuracy, precision, recall, and F-score.

3.1.2 � Accuracy

 The ratio of the number of proper predictions produced by the classifier to the total 
number of predicted crop yields made by the classifier is denoted as the classifica-
tion accuracy. The classification accuracy is calculated as,

where X, Y, Z, and W denote True Positive, True Negative, False Positive, and False 
Negative, respectively.

3.1.3 � Precision

It is the volume of properly predicted crops over True Positive and False Positive, 
mathematically defined as,

3.1.4 � Recall

It is mathematically defined as,

where X and W denote True Positive and False Negative, respectively.

3.1.5 � F‑score

F-score helps to evaluate the recall and precision at the same time. The F-score is 
maximum if the recall is equal to the precision. The F-score is mathematically cal-
culated as,

Accuracy = (X + Y)∕(X + Y + Z +W)

Precision = X∕(X + Z)

Recall = X∕(X +W)

Fscore = 2 ∗ (Precision*Recall)∕(Precision+Recall)
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3.1.6 � Use of dew computing

In our framework, we have used dew computing to allow the holding of data even 
if the network connectivity is lost. The mobile device is used as the dew layer here. 
The mobile device pre-processes and accumulates the data received from the sensor 
nodes, and then transmits to the edge server when the network connectivity is avail-
able. In the agricultural field specially located at the remote region of the developing 
countries, the good and seamless network connectivity is a major concern. There-
fore, continuous data transmission from the sensor nodes to the edge server may not 
be possible. Now, if the mobile device is used as the dew layer, the data can be hold 
for a period of time if the connectivity is lost. When the network is again available, 
the dew layer transmits the data to the edge server.

3.1.7 � Use of FL

In E-CropReco, we are using FL to maintain the local data inside the respective 
device instead of storing it inside the cloud. The mobile device holds the sensor 
data (received through the microcontroller), pre-processes, and accumulates. Here, 
the local data are stored inside the mobile device. The accumulated data are sent 
to the edge server for further analysis. The edge server has the weather data of the 
region, where it is located. The edge server analyses the weather data and received 
sensor data using ML to predict crop productivity, and generate recommendations 
regarding the suitable crop for the respective land. The edge servers send the result 
(recommendations) to the mobile device. The weather data as well as the received 
data are not forwarded to the cloud but rather stored and analysed by the edge server. 
Here, the local regional data processing and storage takes place inside the edge 
server. Only, the result generated after the analysis and the model characteristics 
(learned parameters, gradients) are sent to the cloud. The cloud deploys aggregate 
models to enhance the overall efficacy of the system. If the framework is consid-
ered as a three-tier model ((1) Tier 1: Sensors, microcontrollers, and mobile device, 
(2) Tier 2: Edge server, (3) Tier 3: Cloud), then at each tier the local data is main-
tained by the devices of the corresponding level, and the result after processing is 
forwarded to the next level. This in turn helps to reduce the data traffic, as well as 

Fig. 3   Region-based data collection and processing in E-CropReco using FL
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by maintaining the data locally, data privacy is enhanced compared to storing the 
entire data inside the cloud. In Fig. 3, we have demonstrated the use of FL in E-Cro-
pReco. In the figure, SM denotes sensors with microcontrollers, MD denotes mobile 
device, and ES denotes edge server. We assume there are k regions, each contain-
ing one edge server. Inside each region, there is a number of mobile devices. We 
assume region 1 contains n1 number of mobile devices, region 2 contains n2 number 
of mobile devices, and so on. As observed, the local data with respect to region 1 
are maintained by edge server 1, the local data with respect to region 2 are main-
tained by edge server 2, and so on. The cloud receives the result data of each region 
along with the model characteristics, based on which it can perform region-based 
crop productivity prediction. The weather data of the regions are different from each 
other, as well as the values of the soil parameters and environmental parameters 
vary for different regions. Therefore, based on the results and model characteristics 
of different regions, the cloud can perform further analysis for region-based crop 
productivity prediction. In the present work, we have performed crop productivity 
prediction of a land. By collecting the data of different regions, region-based crop 
productivity prediction is a future research scope of the present work. In our frame-
work, horizontal FL is used, and the features considered in the data set for each of 
the node are same. Though the features are same, the datasets hold different values 
based on the considered land.

3.1.7.1  Reason of using FL  In our framework, we have used FL to increase the data 
privacy. If the entire data are sent to the cloud, then not only the traffic is increased 
but data privacy becomes a major concern. In such a case, the use of FL allows local 
data processing and transmission of only the result and model characteristics to the 
cloud. This in turn avoids huge data transmission to the cloud, reduces storage and 
computation overhead of the cloud, and enhances data privacy.

3.2 � Delay and power consumption

The parameters used for calculating delay and power consumption of the E-Cro-
pReco framework are defined in Table 2. If g is a parameter whose value depends on 
the values of two parameters a and b, then g is a function of a and b, mathematically 
expressed as, g = f (a, b).

3.2.1 � Delay of the framework

Theoretically, the delay in data transmission from one node ( node1 ) to another node 
( node2 ) is given as: T12 = (1 + 𝜙12)(̇Data12∕R12) , where Data12 is the amount of 
data transmitted, R12 is the data transmission rate, and �12 is the link failure rate. In 
the practical scenario, the data transmission rate, link failure rate, etc. vary based on 
the present traffic, allocated bandwidth, etc. As the data transmission delay mainly 
depends on the amount of data transmitted, data transmission rate, and link failure 
rate, we have considered the data transmission delay as a function of the amount 
of data transmission, data transmission rate, and link failure rate, the function 
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is denoted by ft . The delay in data transmission from microcontrollers to mobile 
device is given as a function of respective data amount ( DataMD ), data transmission 
rate ( RMD ), and link failure rate ( �MD):

The delay in data transmission from mobile device to edge server is given as a func-
tion of respective data amount ( DataDE ), data transmission rate ( RDE ), and link fail-
ure rate ( �DE):

TMD = ft(DataMD,RMD,�MD).

TDE = ft(DataDE,RDE,�DE).

Table 2   Parameters for delay and power calculation

Parameter Definition

T
SM

Delay in data collection by sensors and transmission to microcontrollers 
(considering all sensors and microcontrollers)

P
S

Power consumption of all sensors in data collection and transmission
P
M

Power consumption of all microcontrollers in data reception and transmission
P
Dr

Power consumption of a mobile device per unit time in data reception
P
Dt

Power consumption of a mobile device per unit time in data transmission
P
Da

Power consumption of a mobile device per unit time in active mode
P
Er

Power consumption of an edge server per unit time in data reception
P
Et

Power consumption of an edge server per unit time in data transmission
P
Ea

Power consumption of an edge server per unit time in data analysis
P
Cr

Power consumption of cloud per unit time in data reception
P
Ct

Power consumption of cloud per unit time in data transmission
PCa Power consumption of cloud per unit time in data analysis
Data

D
Data amount pre-processed and accumulated by mobile device

Data
E

Data amount analysed by edge server
DataC Data amount analysed by cloud
Data

MD
Data amount received by mobile device from microcontrollers

Data
DE

Data amount received by edge server from mobile device
Data

EC
Data amount received by cloud from edge server

Data
ED

Data amount received by mobile device from edge server
Data

CE
Data amount received by edge server from cloud

Sp
D

Processing speed of a mobile device
Sp

E
Processing speed of an edge server

Sp
C

Processing speed of cloud
R
MD

Data transmission rate from microcontroller to mobile device
R
DE

Data transmission rate from mobile device to edge server
R
EC

Data transmission rate from
edge server to cloud

R
CE

Data transmission rate from cloud to edge server
R
ED

Data transmission rate from edge server to mobile device
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The delay in result data transmission from edge server to cloud is given as a function 
of respective data amount ( DataEC ), data transmission rate ( REC ), and link failure 
rate ( �EC):

The delay in result data transmission from edge server to mobile device is given as a 
function of respective data amount ( DataED ), data transmission rate ( RED ), and link 
failure rate ( �ED):

The delay in data transmission from cloud to edge server is given as a function of 
respective data amount ( DataCE ), data transmission rate ( RCE ), and link failure rate 
( �CE):

Therefore, the total delay in data collection and transmission in E-CropReco is given 
as:

Theoretically, the delay in data processing of a node ( node1 ) is calculated as:

where Data1 is the amount of data processed and Sp1 is the processing speed of the 
node. In a practical scenario, a node executes different types of tasks, and the pro-
cessor type, allotted memory, processing load, etc. can have an impact on the delay. 
However, the delay mainly depends on the amount of data processed and the data 
processing speed. Hence, we have considered the delay in data processing as a func-
tion of the amount of data and the processing speed, the function is denoted by fp . 
The delay in data pre-processing and accumulation by the mobile device is given as 
a function of the respective data amount ( DataD ) and processing speed ( SpD):

The delay in data analysis by the edge server is given as a function of the respective 
data amount ( DataE ) and processing speed ( SpE):

The delay in data analysis by the cloud is given as a function of the respective data 
amount ( DataC ) and processing speed ( SpC):

Therefore, the total delay in data processing (pre-processing, accumulation, and 
analysis) in E-CropReco is given as:

TEC = ft(DataEC,REC,�EC).

TED = ft(DataED,RED,�ED).

TCE = ft(DataCE,RCE,�CE).

(1)Tt = TSM + TMD + TDE + TEC + TED + TCE

T1 = Data1∕Sp1,

TDp = fp(DataD, SpD).

TEp = fp(DataE, SpE).

TCp = fp(DataC, SpC).
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The total delay in E-CropReco is given as the sum of the data transmission and pro-
cessing delays as follows:

 In conventional edge-cloud framework, the microcontrollers send the data to the 
edge server, and the edge server sends the data to the cloud after pre-processing. 
Therefore, the delay in data transmission in the conventional edge-cloud framework 
is given as,

where TME is the data transmission delay from microcontrollers to the edge server, 
TpEC is the data transmission delay from edge server to the cloud, TCE is the data 
transmission delay from cloud to the edge server, and TED is the delay in data trans-
mission from edge server to the user’s mobile device. These delays depend on the 
respective data amount, data transmission rate, and link failure rate. The total delay 
in data processing in conventional edge-cloud framework is given as,

where TEpec is the delay in data pre-processing by the edge server and TCpec is the 
delay in data processing by the cloud. These delays depend on the respective data 
amount and data processing speed. The total delay in conventional edge-cloud 
framework is given as the sum of the data transmission and processing delays as 
follows:

In the rural regions, the network connectivity is poor, and most of the agricultural 
lands are located in the rural regions. In such a scenario, the data transmission to 
the edge server is affected in conventional edge-cloud framework due to poor net-
work connectivity. As a result, the delay is increased. In conventional sensor-cloud 
framework, the data are sent to the cloud from the microcontroller, and the entire 
data are processed inside the cloud. A user using his or her mobile device can access 
the data. Therefore, the delay in data transmission in the conventional sensor-cloud 
framework is given as,

where TMC is the data transmission delay from microcontrollers to the cloud and 
TCD is the data transmission delay from cloud to the user’s mobile device. These 
delays depend on the respective data amount, data transmission rate, and link failure 
rate. In sensor-cloud framework, the entire data processing happens inside the cloud. 
Therefore, the total delay in data processing in sensor-cloud framework is given as,

(2)Tp = TDp + TEp + TCp

(3)T = Tt + Tp

(4)Ttec = TSM + TME + TpEC + TED + TCE

(5)Tpec = TEpec + TCpec

(6)Tec = Ttec + Tpec

(7)Ttsc = TSM + TMC + TCD
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where TCpsc is the delay in data processing by the cloud. This delay depend on the 
respective data amount and data processing speed. The total delay in sensor-cloud 
framework is given as the sum of the data transmission and processing delays as 
follows:

As most of the agricultural lands are located in rural regions, which suffer from poor 
network connectivity, the data transmission to the cloud is highly affected in conven-
tional sensor-cloud framework. As a result, the delay is increased.

3.2.2 � Power consumption of the framework

If node1 denotes a node, then theoretically, the power consumption of the node 
( Pownode1

 ) during a time period is given as the product of the time duration (let 
Tnode1 ) and the power consumption of the node per unit time (let Pnode1

 ), i.e. 
Pownode1

= Pnode1
Ṫnode1 . Therefore, we can consider the power consumption of a node 

as a function of the power consumption per unit time and the time duration, the func-
tion is denoted by fpow . The power consumption of the mobile device for data reception 
from microcontrollers is given as a function of its respective power consumption per 
unit time ( PDr ) and the delay ( TMD):

The power consumption of the mobile device for data transmission to edge server is 
given as a function of its respective power consumption per unit time ( PDt ) and the 
delay ( TDE):

The power consumption of the mobile device for data reception from edge server is 
given as a function of its respective power consumption per unit time ( PDr ) and the 
delay ( TED):

Therefore, the total power consumption of the mobile device for data transmission 
and reception is given as,

The power consumption of the mobile device for data pre-processing and accumula-
tion is given as a function of its respective power consumption per unit time ( PDa ) 
and the delay ( TDp):

(8)Tpsc = TCpsc

(9)Tsc = Ttsc + Tpsc

PD11
= fpow(PDr, TMD).

PD12
= fpow(PDt, TDE).

PD13
= fpow(PDr, TED).

(10)PD1
= PD11

+ PD12
+ PD13

PD2
= fpow(PDa, TDp).
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The total power consumption of the mobile device is given as the sum of its power 
consumption during data transmission, reception, pre-processing, and accumulation, 
as follows:

The power consumption of the edge server for data reception from mobile device is 
given as a function of its respective power consumption per unit time ( PEr ) and the 
delay ( TDE):

The power consumption of the edge server for data transmission to cloud is given as 
a function of its respective power consumption per unit time ( PEt ) and the delay ( TEC
):

The power consumption of the edge server for data transmission to mobile device is 
given as a function of its respective power consumption per unit time ( PEt ) and the 
delay ( TED):

The power consumption of the edge server for data reception from cloud is given 
as a function of its respective power consumption per unit time ( PEr ) and the delay 
( TCE):

Therefore, the total power consumption of the edge server for data transmission and 
reception is given as,

The power consumption of the edge server for data analysis is given as a function of 
its respective power consumption per unit time ( PEa ) and the delay ( TEp):

The total power consumption of the edge server is given as the sum of its power 
consumption during data transmission, reception, and analysis, as follows:

The power consumption of the cloud for data reception from edge server is given 
as a function of its respective power consumption per unit time ( PCr ) and the delay 
( TEC):

(11)PD = PD1
+ PD2

PE11
= fpow(PEr, TDE).

PE12
= fpow(PEt, TEC).

PE13
= fpow(PEt, TED).

PE14
= fpow(PEr, TCE).

(12)PE1
= PE11

+ PE12
+ PE13

+ PE14

PE2
= fpow(PEa, TEp).

(13)PE = PE1
+ PE2

PC11
= fpow(PCr, TEC).



	 S. Bera et al.

1 3

The power consumption of cloud for data transmission to edge server is given as a 
function of its respective power consumption per unit time ( PCt ) and the delay ( TCE):

Therefore, the total power consumption of the cloud for data transmission and recep-
tion is given as,

The power consumption of the cloud for data analysis is given as a function of its 
respective power consumption per unit time ( PCa ) and the delay ( TCp):

The total power consumption of the cloud is given as the sum of its power consump-
tion during data transmission, reception, and analysis, as follows:

The total power consumption of the E-CropReco framework is given as the sum of 
the power consumption by its components, as follows:

 In the conventional edge-cloud framework, the power consumption is given as,

where PEec
 and PCec

 are the power consumption of the edge server and cloud, respec-
tively, for data transmission, reception, and analysis. The power consumption of the 
edge server in different modes (data transmission or reception or analysis) are cal-
culated depending on the respective delays and power consumption per unit time 
depending on the modes, and then added to calculate PEec

 . The power consumption 
of the cloud in different modes (data transmission or reception or analysis) is cal-
culated depending on the respective delays and power consumption per unit time 
depending on the modes, and then added to calculate PCec

 . In the conventional sen-
sor-cloud framework, the power consumption is given as,

where PCsc
 is the power consumption of the cloud for data transmission, reception, 

and analysis. The power consumption of the cloud in different modes (data trans-
mission or reception or analysis) is calculated depending on the respective delays 
and power consumption per unit time depending on the modes, and then added to 
calculate PCsc

.

PC12
= fpow(PCt, TCE).

(14)PC1
= PC11

+ PC12

PC2
= fpow(PCa, TCp)

(15)PC = PC1
+ PC2

(16)P = PS + PM + PD + PE + PC

(17)P
ec
= P

S
+ P

M
+ P

E
ec
+ P

C
ec

(18)Psc = PS + PM + PCsc
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4 � Performance evaluation

In this section, we have performed theoretical analysis using MATLABR2022b, 
simulation using iFogSim, experimental data analysis using MATLABR2022b, and 
finally proposed an Android APP for crop recommendation.

4.1 � Theoretical analysis

The theoretical analysis is performed to demonstrate the delay and power consump-
tion of the framework depending on the data transmission rate, amount of data, data 
processing speed, power consumption per unit time, etc. (the equations are presented 
in Sect.  3.2). Though the data transmission delay depends on the amount of data 
transmission, data transmission rate, link failure rate, etc. in the practical scenario, 
the data transmission rate, link failure rate, etc. depends on various factors such as 
the network traffic and allocated bandwidth. Similarly, though, the data processing 
delay depends on the data amount and data processing speed, in the practical sce-
nario, the data processing speed depends on different factors such as the number of 
tasks under execution by the device, allocated memory, and processor type. Here, 
we have performed the theoretical analysis using MATLABR2022b. The uplink 
and downlink data transmission rate (between mobile device and edge server, and 
edge server and cloud) are assumed 1–2 Mbps and 2–4 Mbps, respectively. The 
data amount to be processed is assumed 100–500 KB. The processing speed of the 
mobile device, edge server, and cloud are considered 500 MHz, 1 GHz, and 2 GHz, 

Fig. 4   Delay in proposed, edge-cloud, and sensor-cloud frameworks
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respectively. The power consumption of sensor nodes is considered 5–100 mW/s, 
microcontroller is considered 4.2 mW/s (5 V, 3 A), mobile device, edge server, and 
cloud is considered 0.11 W/s (220 V, 1.8 A). Figure 4 presents a graphical compari-
son of the delays of E-CropReco framework, conventional edge-cloud framework, 
and sensor-cloud framework. Figure 5 presents a graphical comparison of the power 
consumption of E-CropReco framework, edge-cloud framework, and sensor-cloud 
framework. We observe that the proposed E-CropReco framework has approxi-
mately 60–70% lower delay and 70–80% lower power consumption compared to 
the sensor-cloud framework. We observe that the proposed E-CropReco frame-
work has approximately 12–35% lower delay and 30–50% lower power consump-
tion compared to the edge-cloud framework. Usually, most of the agricultural lands 
are located in the rural regions, and in the rural regions the network connectivity 
is poor. Hence, the sensor data transmission to the edge server or to the cloud (for 
processing and storage) is affected in conventional edge-cloud and sensor-cloud 
frameworks. But in E-CropReco, the dew layer temporarily holds the sensor data 
to prevent data loss, pre-processes the data, accumulates the data, and sends to the 
edge server for processing. After processing the data the edge server sends the result 
to the mobile device and to the cloud. By using dew computing and FL, E-CropReco 
outperforms the conventional edge-cloud and sensor-cloud frameworks in terms of 
delay and power consumption.

Fig. 5   Power consumption in proposed, edge-cloud, and sensor-cloud frameworks
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4.2 � Simulation using iFogSim

The simulation is performed to determine the network usage, delay, and the 
energy consumption of the proposed framework. To match with the real-world 
scenario: (i) the sensors’ input values are provided based on the real dataset 
used in the experiment 4.3, the maximum and minimum sensor values are con-
sidered accordingly, (ii) uplink and downlink bandwidth in terms of data trans-
mission speed are considered, (iii) various parameters are considered for the 
microcontrollers, mobile device, edge server, and cloud, such as RAM size and 
CPU length. To simulate the proposed framework, iFogSim [35] has been used. 
In Fig. 6, the proposed topology is presented. As observed, we have used three 
microcontrollers: MC1, MC2, and MC3. Under MC1, there are three sensor 
nodes (S1 (Nitrogen level measurement, maximum value: 140, minimum value: 
0), S2 (Phosphorous level measurement, maximum value: 145, minimum value: 
5), S3 (Potassium level measurement, maximum value: 205, minimum value: 
15)). Under MC2, there is one sensor node (S4 (pH measurement, maximum 
value: 8, minimum value: 5)). Under MC3, there are two sensors nodes (S5 (tem-
perature measurement, maximum value: 45, minimum value: 8), S6 (humidity 
measurement, maximum value: 100, minimum value: 45)). The microcontrollers 
(MC1, MC2, and MC3) are connected with the mobile device (MD). The mobile 
device is connected with the edge server (ES). The edge server is connected with 
the cloud. In the simulation, it is assumed that: (i) each microcontroller has 500 
MB RAM, CPU length: 1000 MIPS, (ii) the mobile device has 1 GB RAM, CPU 
length: 3000 MIPS, (iii) the edge server has 4 GB RAM, CPU length: 40,000 

Fig. 6   Proposed topology implemented using iFogSim
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MIPS, and (iv) the cloud virtual machine (VM) has 4 GB RAM, CPU length: 
44,800 MIPS. The idle power of mobile device, edge server, and cloud VM are 
83.4333 W, 16 x 83.25 W, and 16 x 83.25 W, respectively. The busy power of 
mobile device, edge server, and cloud VM are 107.339 W, 16 x 103 W, and 16 x 
103 W, respectively. We have considered four case scenarios (refer to Table 3). 
The uplink and downlink bandwidth (between mobile device and edge server, and 
between edge server and cloud) in terms of data transmission rate are presented 
in the table. The data processing delay is measured from the experimental analy-
sis (here, we have considered a real dataset of 1000 samples, size: 151 KB) and 
added to measure the total delay. The network usage, delay, and the energy con-
sumption of the proposed framework are presented in Fig. 7a–c, respectively. We 
observe that the network usage, delay, and energy consumption of the simulated 
framework are 9490–9504 kB, 24.4−25.6 ms, and 2.19−2.21 MJ, respectively.

Comparison between the theoretical and simulation results: In the theoretical 
analysis, we have measured the total delay and power consumption of the E-Cro-
pReco framework. In the simulation, we have measured the network usage, delay, 
and energy consumption of the framework. The theoretical analysis shows that the 
total delay of the E-CropReco framework for analysing 100–500 KB data is ∼ 20–40 
ms. The simulation results present that the delay is ∼ 24–26 ms (dataset contains 

Fig. 7   Results from iFogSim

Table 3   Case scenarios 
considered in simulation

Case scenarios Uplink bandwidth Downlink bandwidth

Case 1 1 Mbps 1.2 Mbps
Case 2 1.2 Mbps 1.5 Mbps
Case 3 1.5 Mbps 1.8 Mbps
Case 4 1.8 Mbps 2 Mbps
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1000 samples, size: 151 KB). As observed, the delay values obtained from the simu-
lation and theoretical results are quite similar.

4.3 � Experimental analysis

For experimental analysis, we have considered 1000 samples from the real data-
set,1 and prepared our input dataset. We have applied four ML methods (SVM, 
LDA, D-Tree, and KNN) on the input dataset to observe their efficacy in crop 
yield prediction. We have performed the experimental analysis using MAT-
LABR2022b. In this experiment, soil, environmental, and weather parameters 
(N, P, K levels of the soil, temperature, humidity, pH, and rainfall), and crop are 
taken in the input dataset. Table 4 presents the statistical summary of the dataset 
of 1000 samples. The requirements of N, P, and K for different crops are pre-
sented in Fig. 8. This is observed that the level of N is highest for cotton, whereas 
the levels of P and K are highest for grapes. The requirements of pH and rainfall 

Table 4   Statistical summary of the considered dataset

Statistical measure N P K Temperature Humidity pH Rainfall

Number of entries 1000 1000 1000 1000 1000 1000 1000
Minimum 0 5 15 8.83 45.02 4.51 35.04
Maximum 140 145 205 43.68 99.98 7.99 298.56
Mean 60.96 54.37 52.98 26.63 79.14 6.4 117.51
Standard deviation 38.54 33.73 50.41 5.16 12.69 0.63 64.84

Fig. 8   N, P, K requirements of different crops

1  https://​www.​kaggle.​com/​datas​ets/​athar​vaing​le/​crop-​recom​menda​tion-​datas​et.

https://www.kaggle.com/datasets/atharvaingle/crop-recommendation-dataset
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for different crops are presented in Fig. 9. The results present that the pH level 
in case of lentil is highest, whereas the rainfall is highest for rice. The require-
ments of temperature and humidity for different crops are presented in Fig.  10. 
The results present that humidity is highest for coconut and temperature is high-
est for papaya.

From the dataset of 1000 samples, 800 samples are taken as training dataset 
and 200 samples are taken as test dataset. The test dataset’s actual and predicted 
class labels are compared to determine the classification accuracy. We have con-
sidered the test cases by reducing the number of features, but we observe that 
considering all the features we are achieving the highest accuracy. If we consider 

Fig. 9   pH and rainfall requirements of different crops

Fig. 10   Temperature and humidity requirements of different crops
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only pH and rainfall, the SVM, KNN, LDA, and D-Tree achieve 68%, 67.5%, 
60.5%, and 74% accuracy, respectively. If we consider only temperature and 
humidity, the SVM, KNN, LDA, and D-Tree achieve 66%, 73.5%, 61.5%, and 
70.5% accuracy, respectively. If we consider only N, P, K, the SVM, KNN, LDA, 
and D-Tree achieve 81.5%, 88.5%, 82%, and 85.5% accuracy, respectively. When 
we consider all seven features, the SVM, KNN, LDA, and D-Tree achieve 97.5%, 
96.5%, 96.5%, and 98% accuracy, respectively. Thus, it is observed that consider-
ing all features better prediction accuracy is achieved.

According to the classifiers, the obtained prediction accuracy of ten different 
classes (banana, coconut, cotton, grapes, jute, lentil, mango, papaya, rice, and water-
melon) considering all seven features, are presented along with the respective confu-
sion matrix. Each entry in a confusion matrix represents the number of predictions 
made by the model, which correctly or incorrectly classify the classes.

Figure  11 shows the comparative accuracy obtained for each of the different 
classes according to the training features used in SVM classifier. Figure 12 illustrates 
the comparative accuracy achieved for each of the different classes according to the 

Fig. 11   Confusion matrix obtained using SVM classifier
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training features used in KNN classifier. Figure 13 presents the comparative accu-
racy obtained for each of the different classes based on the training features used in 
LDA classifier. Figure 14 illustrates the comparative accuracy obtained for each of 
the different classes according to the training features used in D-Tree classifier.

To compare the performance of SVM, KNN, LDA, and D-Tree classifiers in crop 
productivity prediction, we consider accuracy, precision, recall, and F-score, as the 
performance metrics.

Based on the confusion metrics (refer Figs. 11, 12, 13, and 14), we have gener-
ated Fig. 15, that presents the accuracy achieved by the four classifiers for differ-
ent crops. Table 5 presents the accuracy, precision, recall, and F-score obtained by 
each of the four classifiers considering all crops in the test dataset. The graphical 
representation of the performance metrics for the four classifiers is demonstrated in 
Fig. 16. We observe that each classifier has above 95% prediction accuracy, preci-
sion, recall, and F-score. We observe that D-Tree has higher accuracy, recall, preci-
sion, and F-score (98%) compared to the other three methods. From the results, we 
conclude that considering all performance metrics (accuracy, precision, recall, and 

Fig. 12   Confusion matrix obtained using KNN classifier
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F-score) and all crops, D-Tree performs better in E-CropReco than the other meth-
ods. As the input dataset used in the experiment has only 1000 samples, we have 
generated a large data set containing 50,000 samples also to evaluate the perfor-
mance. The accuracy, precision, recall, and F-score measures in analysing the large 
dataset by using the four classifiers are presented in Fig.  17. We observe that for 
large dataset SVM and D-Tree outperforms KNN and LDA. However, the accuracy 
for each classifier is above 95%.

4.3.1 � Comparison with existing approaches

Table 6 draws a comparison among the existing and proposed frameworks based on 
the accuracy, precision, recall, and F-score. This is observed that in [33], five ML 
algorithms were used for crop data analysis, and among them random forest (RF) 
achieved highest accuracy of 97.18%. In [34], KNN was used for crop data analysis, 
and achieved accuracy of 92.62%. In our E-CropReco, we have used four ML algo-
rithms for crop data analysis, and among them D-Tree has achieved highest accuracy 

Fig. 13   Confusion matrix obtained using LDA classifier
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Fig. 14   Confusion matrix obtained using D-Tree classifier

Fig. 15   Accuracy obtained by the classifiers for different crops
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Table 5   Comparison of four 
classifiers based on accuracy, 
precision, recall, and F-score

Classifier Accuracy Precision Recall F-score

SVM 97.5% 98% 97.5% 97.46%
KNN 96.5% 96.93% 96.5% 96.44%
LDA 96.5% 97.41% 96.5% 96.39%
D-Tree 98% 98% 98% 98%

Fig. 16   Comparison of four classifiers based on accuracy, precision, recall, and F-score, in analysing the 
real dataset containing 1000 samples

Fig. 17   Comparison of four classifiers based on accuracy, precision, recall, and F-score, in analysing the 
dataset containing 50,000 samples
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of 98%. We also observe that the proposed framework has outperformed the existing 
approaches in terms of precision, recall, and F-score also.

4.4 � CropReco: an app for crop recommendation

The objective of the proposed framework E-CropReco is to help the farmers to 
select the suitable crop for their land that will be beneficial in terms of their eco-
nomical profit. Therefore, a user interface or mobile app is required using which the 
farmer can upload the data related to the land (sensor data), and receive recommen-
dation. For this purpose, we have proposed an Android app named CropReco. Fig-
ure 18 shows the screenshots of the app. The mobile device works as the dew layer 
in our framework, and it has the received sensor data. Using the proposed app, the 
farmer can login or register if he/she is a new user (refer to Fig. 18a). After success-
ful login, the farmer can select the checkbox for uploading the data from the mobile 
device (refer to Fig.  18b). The uploaded data and the weather data (stored inside 

Table 6   Comparison among the proposed and existing frameworks based on accuracy, precision, recall, 
and F-score

Work Classifier Accuracy Precision Recall F-score

Thilakarathne et al. [33] RF (Highest), KNN, 97.18% 97% 97% 97%
D-Tree, Extreme
Gradient Boosting
(XGBoost), SVM

Cruz et al. [34] KNN 92.62% 96.74% 92.62% 95.46%
E-CropReco D-Tree (highest), 98% 98% 98% 98%

SVM, KNN, LDA

Fig. 18   Screenshots of CropReco
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the edge server) will be analysed, and the recommendation will be generated by the 
edge server. The recommendation will be displayed on the screen (refer to Fig. 18c). 
Using this app, the farmer can receive the guidance regarding which crop he/she 
should plant depending on the soil data, environmental data, and weather data.

5 � Conclusions and future work

The application of IoT in agriculture has gained the attention of the researchers in 
last few years. From the economical perspective agriculture is a vital sector of a 
country. Suitable crop identification for land plays a significant role in the produc-
tion. Crop productivity prediction and recommendation are highly required for better 
productivity. In this paper, we propose a dew computing, edge computing, and FL-
based IoAT framework that analyses the soil parameters, environmental parameters, 
and weather data, for predicting suitable crop for land. In the framework, the data 
regarding the soil parameters and environmental parameters, are collected using sen-
sor nodes and sent to the mobile device. The mobile device working as the dew layer 
pre-processes and accumulates the sensor data, and forwards it to the edge server. 
The edge server holds the weather data of the region, where it is located. After ana-
lysing the weather data and the received sensor data using ML, the edge server sends 
the result to the cloud along with the model characteristics and to the mobile device. 
Four ML algorithms are used in the data analysis, and compared based on the per-
formance metrics: precision, recall, accuracy, and F-score. We observe from the 
results that D-Tree outperforms SVM, KNN, and LDA, though each of the classi-
fiers has more than 95% prediction accuracy. We have simulated the proposed archi-
tecture in iFogSim, and analysed its performance in terms of network usage, delay, 
and energy consumption. Theoretical results present that the proposed E-CropReco 
framework has reduced the delay by 60–70% and power consumption by 70–80% 
approximately than the conventional sensor-cloud framework. It is also observed 
from the results that the proposed E-CropReco framework has reduced the delay 
by 12–35% and power consumption by 30–50% approximately than the edge-cloud 
framework. We have also proposed an Android application for crop recommendation 
in this paper. In the future, we wish to extend our work for region-based crop pro-
ductivity prediction. In the future, we also wish to use deep learning in the proposed 
E-CropReco framework. The use of blockchain is another future scope of this work.
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