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Task scheduling in distributed stream computing systems is an NP-complete problem. Current schedul-
ing schemes usually have a pause or slow start process due to the fluctuation of input data stream,
which affects the performance stability, especially the high throughput and low latency goals. In
addition, idle compute nodes at runtime may result in large idle load energy consumption. To address
these problems, we propose an energy efficient and runtime-aware framework (Er-Stream). This paper
thoroughly discusses the framework from the following aspects: (1) The communication between
real-time data streaming tasks is investigated; stream application, resource and energy consumption
are modeled to formalize the scheduling problem. (2) After an initial topology is submitted to
the cluster, task pairs with high communication cost are processed on the same compute node
through a lightweight task partitioning strategy, minimizing the communication cost between nodes
and avoiding frequent triggering of runtime scheduling. (3) At runtime, reliable task migration is
performed based on node communication and resource usage, which in turn helps the dynamic
adjustment of the node energy consumption. (4) Metrics including latency, throughput, resource load
and energy consumption are evaluated in a real distributed stream computing environment. With a
comprehensive evaluation of variable-rate input scenarios, the proposed Er-Stream system provides
promising improvements on throughput, latency and energy consumption compared to the existing
Storm’s scheduling strategies.
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1. Introduction and Storm [9], etc. Built on batch processing [10], Spark divides

incoming data stream into short batches; Heron is a real-time

Data-intensive services, such as social networking, stock trad-
ing and weather monitoring, are becoming increasingly common.
They generate massive amounts of data every second. At the
same time, more and more applications emphasize real-time and
accuracy, putting higher demand on stream processing. For exam-
ple, security issues face great challenges in large-scale computing
environments [1,2], where timeliness is crucial in security check,
and real-time computing allows for fast analysis and processing
to obtain useful information. Besides, real-time computing is also
used in various aspects such as education industry [3], road
traffic [4], and environmental inspection [5].

To meet this demand, a variety of stream processing frame-
works have emerged, including Spark [6], Heron [7], Samza [8]
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fault-tolerant distributed stream data processing system devel-
oped by Twitter [11] as an open-source project; Samza started
out as a stream processing solution for LinkedIn [12]. Its most
important feature is its construction relies heavily on the log-
based Kafka [13]; Storm is one of the most popular open source
big data stream computing systems and has been widely used by
many well-known companies and organizations, such as Twitter
and Alibaba [14].

A stream computing system has multiple compute nodes that
collaborate to process tasks, where high data transfer latency
between nodes may have a negative impact on system perfor-
mance. The communication time and data transfer latency can
be effectively reduced by restricting data transfer on the same
node or between nearby nodes. In addition, capability differences
between nodes result in different performance of task execution
and data transfer. Task placement for streaming applications can
be mapped to an NP-complete problem [15]. Given the computa-
tional resources of a node are limited, data loss may occur when
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Fig. 1. System throughput at different times.

node resources cannot meet the computational demand. These
factors make the scheduling of streaming applications challeng-
ing.

Triggering rescheduling [16,17] at runtime to reallocate tasks
and resources for streaming applications is one of the ways to
addressing this challenge. However, runtime scheduling also has
problems, such as how to keep the sustainability of stream pro-
cessing, how to effectively reduce the network delay of processing
data tuples and balance the computational resources of nodes.
Fig. 1 shows the throughput variation of an example application
over time in Storm system. To create resource utilization bottle-
neck on some nodes, a smaller than required number of compute
nodes are purposely used to run a streaming application. As can
be seen, when the topology is running in [Os, 15s], its throughput
stays at a relatively low level. The main reason for the low
throughput may be because tasks with high communication load
are on different nodes and/or some nodes are short of computing
resources. To improve the throughput of the system, we can
restart the whole topology to make the tasks with high commu-
nication load on the same node and deploy part of tasks from
the nodes with limited computing resources to these with idle
computing resources or to new nodes. However, this reschedul-
ing process can seriously lower the throughput during interval
[18s-27s] and a slow pickup during interval [27s-33s], which
obviously affects user’s experience. This is just a simple case,
but it demonstrates the necessity of providing a runtime-aware
mechanism which can monitor the node resource consumption
and communication among tasks, dynamically balance the node
resource load and deploy tasks based on their communication
load at runtime.

In addition, after a streaming application is mapped to a di-
rected acyclic graph (DAG), a critical path of the DAG can reflect
the response time of the system. When none of the tasks running
on a node is on a critical path, the node does not have to run the
tasks to its full capability as it will inevitably result in high energy
consumption. If there is a good method to dynamically adjust the
working state of compute nodes, the energy consumption of the
system may become more effective.

Based on the above observations and thoughts, this paper
proposes an energy efficient and runtime-aware framework (Er-
stream). It tries to resolve: (1) when and how to reschedule an
application topology based on the fluctuation of data stream, (2)
when to perform reliable task migration based on node resource
consumption, and (3) how to dynamically adjust the frequency of
node’s CPU based on their resource load.
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1.1. Paper contributions

As discussed, Er-Stream is proposed to improve the through-
put and reduce the latency of a distributed stream computing
system. Our contributions are summarized as follows:

(1) Investigate task placement, resource constraint and energy
consumption of fluctuating data streams, and formalize
the scheduling problem by modeling stream application,
resource constraint and energy consumption;

Propose a stream application scheduling algorithm that
deploys tasks with potential communication load on the
same node in the DAG initialization phase and evaluate
the resource allocation scheme at runtime to determine the
necessity of making partial task adjustments;

Propose a run-time aware scheduling algorithm to avoid
excessive consumption of node resources by determining
the necessity of making task migration, and adjust node’s
CPU frequency dynamically based on the resource usage
information to lower the energy consumption;

Evaluate the system throughput, response time and energy
consumption of the proposed scheduling framework.
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Experiments are conducted on real data and the results demon-
strate the effectiveness of the Er-stream framework.

1.2. Paper organization

The rest of this paper is organized as follows. Section 2 de-
scribes the background knowledge; Section 3 introduces the sys-
tem models, including the DAG model, the resource model and
the energy consumption model; Section 4 formalizes the schedul-
ing problem and provides optimization schemes; Section 5 in-
troduces the Er-Stream framework and its main algorithms; Sec-
tion 6 evaluates the performance of the Er-Stream; Section 7
presents related work and Section 8 concludes our work.

2. Background

Scheduling strategies in a stream computing system determine
the allocation of stream applications to compute nodes. In the
process of creating a topology for a streaming application, user
can define the parallelism of components and the number of
resources to be used by the topology. Storm, as one of the most
popular distributed streaming computing systems, provides four
built-in scheduling strategies [9]: EvenScheduler, IsolationSched-
uler, MultitenantScheduler and ResourceAwareScheduler.

2.1. EvenScheduler

EvenScheduler releases resources that are no longer needed
by other topologies before assigning tasks to them. The available
resources in the system are therefore evenly distributed among
the active topologies. As shown in Fig. 2, a streaming application
G includes tasks v1,1, v1,2, v3,1 and vs 3, which are deployed on 4
compute nodes nq, ny, n3, ny. Tasks in dashed boxes implement
the same function. There are two main steps to run tasks of the
example streaming application G in a Storm cluster: (1) receive
the tasks submitted by users, then distribute them evenly to four
workers with two instances per worker. (2) retrieve the available
resources of the current cluster, and place the four workers
evenly on the nodes. This load distribution is not absolutely even.
When the number of topologies submitted by users increases,
uneven node load may occur.
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Fig. 3. Computing resource is isolated by IsolationScheduler.

2.2. IsolationScheduler

IsolationScheduler provides a mechanism that allows users
to individually specify the node resources needed for certain
topologies. The user needs to specify this information (topology
names and the number of nodes they need) in the Storm con-
figuration entry, and IsolationScheduler will prioritize the task
assignment of these topologies, ensuring that the nodes assigned
to a particular topology can only run that particular topology,
as if these topologies were running in a separate environment
from each other. After these specified topologies are assigned, the
EvenScheduler assigns tasks of the remaining topologies using the
remaining resources in the system.

As shown in Fig. 3, The streaming application G is assigned to
two nodes nq, ny. The tasks in G will be evenly distributed over n,
and nj. This scheduler is designed to make the topology exclusive
to the cluster nodes, so that different topologies are physically
isolated from each other by occupying different cluster resources
when they are released.

2.3. MultitenantScheduler

The MultitenantScheduler first constructs an isolated resource
pool for each user exclusively, then it traverses the topology
set and assigns nodes by creating topological associations to
the resource pool. The resources are isolated from each other
among the users. As shown in Fig. 4, two users userA, userB
submit their streaming applications to the cluster. Assume the
application submitted by userA is G and it is deployed on nodes
ny, ny. The one submitted by userB is deployed on nodes ns, ng.
As the applications are submitted by different users, there is
no resource sharing between the two applications. If there are
just right processing resources for G and userA wants to submit
another streaming application, userA will have to wait for the
resources of G to be completely released. If userA still has unused
resources, other users cannot use them either. This scheduling
strategy decreases resource utilization of the cluster, but pro-
vides an isolation mechanism for each application and fixes the
allocation of computational resources.
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Fig. 5. Public resource pool can be used by ResourceAwareScheduler if users’
computing resources are insufficient.

2.4. ResourceAwareScheduler

The ResourceAwareScheduler allocates resources on a per-
user basis. Each user is guaranteed a certain number of resources
to run their topology, and the ResourceAwareScheduler will guar-
antee the allocation as much as possible. When a Storm cluster
has additional resources, the ResourceAwareScheduler will al-
locate the additional resources to users in a fair manner. The
ResourceAwareScheduler can compensate for the shortcomings
of MultitenantScheduler and improve the resource utilization of
the entire cluster. As shown in Fig. 5, nodes nq, n, can be used
by userA, node n3 can be used by userB and node ny4 is a public
resource that can be used by both userA and userB. Assume userA
submits a streaming application G which requires more than its
available computational resources. As there exists an extra re-
source node n4 in the cluster, G allocates its task to this extra node
ng4. The unallocated resources of the cluster are public resources
and can be used when needed.

The basic design idea behind all these stream computing
scheduling strategies is to track the resource load of nodes. How-
ever, these strategies are static and cannot dynamically adapt to
changing communication load between tasks or take into account
the current load and energy consumption of each node. On Storm
platform, topology rescheduling can be implemented through the
IScheduler interface, but it requires that the entire topology be
killed before the rescheduling strategy being applied.

In this paper, we focus on an energy efficient and runtime-
aware framework for stream computing on the Storm platform,
and further propose a scheme for reliable task migration upon
rescheduling to improve both the performance and energy effi-
ciency of the system.

3. System models
Before formalizing the scheduling problem and introducing

our solution, we first model the stream application, resource and
energy consumption in stream computing environments.
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(a) Logic topology of a stream application
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Fig. 6. Topology relationship diagram on Storm.

3.1. Stream application model

In a stream computing environment, users are able to define
a topology themselves and submit it to the stream computing
system. A topology consists of spout and bolt, where the spout
task, the source of the data stream, can emit an unbounded num-
ber of tuples to downstream in the topology, and the bolt task,
a component that consumes any number of tuples from spouts
or other bolts, can process the received tuples, and potentially
emit new tuples to downstream. The topology formed by spouts
and bolts constitutes a complex streaming application and can
be mapped to a directed acyclic graph G = (V(G), E(G)), where
V(G) = {vi]li € 1,...,n} represents a finite set with n vertices.
A vertex v; € V(G) is an operation with a specific function
and can be represented as multiple instances of a spout or bolt
component. E(G) = {ey, ;. [Vik vji,m € V(G)} denotes a finite set
of edges and an edge v vim € E(G) denotes the existence of
communication between instances v and vj p.

When a topology is submitted to the cluster, a stream ap-
plication model is first constructed based on the parallelism set
by the user for each component, then the default EvenScheduler
(if no other scheduler explicitly specified) steps in to allocate
resources and distribute the corresponding tasks to run on nodes.
As shown in Fig. 6, the illustrated topology contains one spout
component and three bolt components, where each component
has a parallelism of 2. This topology can be viewed as a directed
acyclic graph with each component mapped as a vertex v; € V(G)
and each communication relationship between instances of the
components mapped as € fvjm € E(G).

We define tr(viy, vjm), where i,j={1..n and i#j}, k=
{1...size(v;)}, m = {1...size(v;)}, is the data tuple transmission rate
between instances vjk, vj, of two vertices v; and v, that is, the
number of tuples passed per unit time. It satisfies (1).

0 vi k and vj , on the
tr(vik, Vjm) = same node, (1)
wy  otherwise,

Where w;, represents the average transmission rate in time in-
terval [ts, t.], t; and t, denote the start time and end time of a
given short time period which can be set by user (e.g. 5 s). There
may be transient fluctuations in the arrival stream rates, and wy,
can effectively lower its impact by deducting the max and min
rates and calculating the average rate, easing the impact brought
by sudden rate fluctuations. It can be calculated by (2).

£, .
fts" Wyr, dt — max(wy, ) — min(wy, )

P— (2)

Wy =
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where wy, represents the transmission rate at time ¢, and t €
[ts. tel.

The vertex instance v;j outputs the processed data tuples to
its downstream vertex instance set D(vi), Op(;,) = [D(vik)l
indicating the number of downstream instance set. If op(,;,) = 0
indicates that the vertex is the last component of the stream
topology. As shown in Fig. 6, the downstream instance set of v, ;
is D(vy,1) = {v3,1, v3.2}.

The vertex instance v; , receives the input data stream from its
upstream vertex instance set U(vj k), oy(vik) = |U(vi )| indicating
the number of upstream instance set. If oy(vi ) = 0, it indicates
that the vertex is the data source of the streaming application.
As shown in Fig. 6, the upstream instance set of v, 1 is U(v,,1) =

{v1,1, v12}.
3.2. Resource model

In a cluster, resources on a compute node can be measured in
different dimensions, such as CPU, memory and I/O. In this paper,
we consider the CPU resources. The complexity of a vertex vy is
determined by the function it implements and measured by the
time complexity and space complexity of the function algorithm
implemented. The greater the complexity, the more CPU com-
putational resources required. Not only the tuple processing, but
also the tuple sending and receiving consume CPU computational
resources.

Therefore, running an instance v; of vertex v; on a compute
node, the CPU consumption of this instance v; s, noted as L,; , can
be calculated by (3).

Ly = lyye + b " v viy (3)
+ Digoue * Poivipim
where L, ., Ly oo by o deDOte the CPU resources consumed by

the instance v;; on tuple computation, tuple input and output
on instance vj, respectively. &, ,, ,; and py;, v, ,, are decision
variables and can be obtained by (4) and (5), respectively.

0,
Evpovic1j =
Pvikviprm = [

where vi_q; € U(vi), Vig1,m € D(vik).

At time t, there may be multiple instances v;  running on com-
pute node n;, denoted as G, ,. The CPU consumption of compute
node n; (denoted Ly,) can be calculated by (6).

vix and vi_y; run
on the same node,

otherwise,

(4)
1,

0, Virk and Vi1, Tun
on the same node,

otherwise,

(5)
1a

Ln,- = Z Lvtk : w“i.k,r’ (6)
Vi k€Cnv

where w,, . is a coefficient, and can be calculated by (7).
) 1 at time t, v is running,

Woige = { 0 otherwise. )

Since the CPU utilization of one compute node may vary, to
ease the effect of such variation, all mathematical expectations in
a statistical time interval [ts, t.] can be defined as the load factor
Lrn, it5,¢.) for compute node n;. Lry, 1,,¢,) can be calculated by (8).

Ly, Zu,-{kecn.v Ly - Wy,

te—t; te — &

; (8)

Lr”is[fs«[e] =
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3.3. Energy consumption model

Power consumption [18,19] of a processor can be mainly di-
vided into static power consumption and dynamic power con-
sumption. Static power consumption refers to the standby power
consumption of the physical machine. In general, the static power
consumption of the same type of physical machine is a fixed
constant. Dynamic power consumption refers to the power con-
sumption of data processing when the physical machine performs
a task. It is a variable and generally depends on the tasks. The
power consumption of a processor can be denoted as (9)

P=c-v*-f, (9)

Where P represents the power consumption, ¢ represents a con-
stant determined by the process and other factors, v represents
the voltage and f represents the clock frequency. It is known that
f is positively correlated with v. Therefore, for the convenience of
discussion, the dynamic power consumption is modeled as cf*,
Kk is approximately equal to 3, and P; is used to denote the static
power consumption of the physical machine. The complete power
consumption of the processor is denoted as (10)

P=Ps+c-f“. (10)

Assume the maximum frequency of a processor is fpe and
h,’{}"" is the execution time for node n; to execute A data tuples
at the maximum frequency fnq. When the frequency of node n;
is fi (fi < fmax), the execution time of executing A data tuples can
be estimated by (11).
h — hmux 'fmax

n; fl .
Then, the energy consumption of node n; to execute A data
tuples can be calculated by (12).
hye "fmax
Eni(fi))=P-hy, =(ps+c-f)- %
1

The energy consumption for the cluster deployed with a stream-

ing application can calculated by (13).

(11)
(12)

En(f) =) Enf;) (13)
i=1

where s. denotes the size of the cluster.
4. Problem statement and optimization

In this section, we formalize the scheduling problem in stream
computing systems and present our optimization schemes for
DAG initialization and runtime scheduling, and strategies for
energy saving.

4.1. Scheduling problem

Latency and throughput are two important criteria for per-
formance evaluation of a stream computing system. Assume the
system latency to process a data tuple is dr, then the average
delay dr; ;) when processing A data tuples can be calculated by
(14).

A A y
1
drjpag = X -( E dtr + E dqu + E dco),
=1 =1 =1

where dtr, dqu, and dco denote the transmission delay, queuing
delay, and computational delay of a data tuple in the system,
respectively. In this paper, the queuing delay of a data tuple is
not considered for the time being. When the system’s data tuple

(14)
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processing delay drq 3 is low, its throughput will be high. dtr, dco
and drpy ) are positively correlated. There exists a positive math-
ematical relationship between transmission delay of instances dtr
and the data tuple transmission rate of instances tr(vj, vjm), as
represented by (15).

(15)

where o is a coefficient and @ > 0. Computational delay dco
and a node’s CPU consumption L, are positively correlated, as
represented by (16).

z(dtr) = w - tr(vik, Vjm),

g(dco) = dco+ 4 - Ly, (16)
where § is a coefficient and can be calculated by (17).

) nm Ly, > B,
8= { 0 otherwise, a7

where B is the maximum limit of the node resource load, u is the
factor that decides the change of dco, and u is a positive number.
Suppose Dn = {nq,np, ns, ..., Nym} is a cluster with num
compute nodes. When a user submits an application topology
G = (V(G), E(G)) (i.e., a DAG model), all vertex instances of V(G)
are deployed to Dn. For A input tuples, the topology’s network
transmission latency dtr; ;) can be estimated by (18).

A A
dirp sy =Y _z(dtr) = - Y tr(vik, vim)- (18)
=1 =1

From (18), we can see that the larger >_ tr(vik, vjm) is, the
greater the system transmission latency becomes. The main rea-
son of the increase is that the two vertex instances with commu-
nication relationship are allocated to different compute nodes.

When a user submits multiple applications to a stream com-
puting system, there may be an uneven distribution of vertex
instances. This can result in some nodes being overloaded. Due
to the relationship between the computational delay dco and
node’s CPU consumption L, as indicated in (16), the dco of the
overloaded node will increase.

In a time interval [t;, t.], if a node’s tuple processing rate is
cory, r,1, and its tuple receiving rate is inr, r}, € can be calculated
by (19).

P Mt te) . (.19)

COTt te)

where ¢ denotes the ratio between receiving and processing tuple
rates in the [ts, t.] time interval. When ¢ < 1, the data tuples
of instance v;; will not be backed up in cache, so the queuing
delay will be small. When ¢ > 1, the data tuples for instance v; x
are continuously accumulated in the cache, and the queuing delay
dqu increases over time.

In summary, if the scheduler of a stream computing sys-
tem cannot effectively perceive the communication load between
nodes and the resource usage of nodes, the dtr, dqu and dco of
data tuples will grow.

4.2. DAG initialization optimization

The initial scheduling optimization is to find a reasonable allo-
cation scheme that minimizes the communication cost between
nodes, helping improve the throughput and lower the response
latency.

The data tuple transmission rate between vertex instances
cannot be estimated in the initialization phase because the com-
munication load between vertex instances is not available yet.
However, we can determine if communication exists between
two adjacent instances, i.e. tr(vik, vit1.m) > 0, we assume the

average transmission rate We(y; vy ) = 1
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Fig. 7. Graph segmentation example.

For a cluster Dn = {n{,ny, n3,..., Ny} and a streaming
application G, we assign all instances in G to run on Dn. To reduce
unnecessary network transmission overhead, the number of Dn
used by G should be minimized, given allocated nodes are not
overloaded.

Assume the set of compute nodes used by G is Gn = {n;|1 <
i < num}, then the available resources of the cluster must be
greater than the resources required for topology G, i.e., condition
in (20) must be satisfied.

i
chj,u > Z Z Vi k-
=1

v;eV(G) vi kEV;
As G is a directed acyclic graph and can be stored in a matrix,
it can be further divided into lengthg, number of subgraphs,
denoted as (21).

G= {Gsub1 s Gsubz s e

(20)

(21)

O] GSUblengthCn }7

where Gy, denotes one subgraph of graph G. The size of Ggy,
corresponds to Gy, 00 and each subgraph has a mapping relation-
ship with compute node, denoted as Map(sub;, n;). In addition, the
subgraph must satisfy condition (22).

mm( Z tr(Gsub,- P Gsubj ))7

where tr(Ggp,, Gsubj) denotes the communication load between
Gsub,- and Gsubj-

As shown in Fig. 7, if the example application uses 3 com-
pute nodes ny, ny and ns, the graph will be divided into 3 sub-
graphs Ggyp,, Gsup, and Ggp,. The dashed circle indicates the split
boundary.

At runtime, the vertex instances of Ggyp,, Gsup, and Ggyp, are
placed on the corresponding compute nodes ny, n, and ns.

(22)

4.3. Runtime scheduling optimizer

The runtime reliable scheduling optimizer monitors the com-
munication load and CPU load of nodes. When the communi-
cation load between vertex instances changes significantly, it
produces an assessment result. Based on this result, a local ad-
justment is made to the allocation of vertex instances running
on the compute nodes. If a node becomes CPU overloaded, a
corresponding migration action is triggered, allowing the system
computational latency to reach a balanced and stable state.

(1) The communication load. Given one stream application
G = (V(G),E(G)) runs on node set Gn {nilt <i < num},
each compute node n; runs vertex instances G, ,, and the com-
munication load between each vertex instance can be collected by
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Fig. 8. A topology running on two nodes.

a monitoring module, the communication load between compute
nodes in Gn can be calculated by (23).

tr(n;, nj) = Z tr(vik, vjm),

where tr(vjk, vjm) denotes the communication load between v;
and vj . vix and vj,, are running instances of the respective
nodes.

When condition (24) is satisfied, a local adjustment to the ver-
tex instance assignment on the compute nodes will be triggered.

(23)

Oldrr(n,-.nj)

>a, (n;,n;)eqn, (24)

NeWer(n;,n;)

where oldtr(ni,,,j) denotes the current allocation scheme on the
compute node set Gn. newy(n; n) denotes the proposed new allo-
cation scheme generated by the background monitoring module.
« denotes a user-defined trigger threshold, determining whether
the vertex instance allocation needs adjustment.

There exists a mapping relationship between the position
adjustment of vertex instances and the compute nodes, denoted
as fs(vik, Vj,m) n; — n;. When the position of one vertex
instance changes, there must exist another instance to replace
it, i.e. Changes occur in pairs and fs(vi, vjm) iS a one-to-one
relationship.

When the mapping relationship fs is obtained, it does not
immediately trigger a migration action on the vertex instances.
We have to consider the state of the compute node’s CPU load in
a comprehensive way, e.g. whether the pair of instances can be
migrated without overloading the CPU of the compute node. The
migration action is triggered when condition (25) is satisfied.

(25)

where DLry, 1, ] denotes the CPU load ratio of the target node to
be migrated to by vj . L,;, denotes the CPU consumption of this
instance vj . By, is the maximum CPU load ratio per node set by
the user.

As shown in Fig. 8, the streaming application depicted in Fig. 6
runs on 2 compute nodes nodel and node2. It can be seen that
there is a huge amount of communication load between nodel
and node2 in this deployment. The monitoring module can sense
this problem by collecting information about the communica-
tion load among vertex instances and propose a new allocation
scheme. The new scheme is compared with the old one and
generates the set of tasks to be migrated.

When the vertex instances in the set are migrated, the CPU
loads of node1 and node2 are not evaluated as overload. After the
task migration, the distribution of vertex instances on the nodes is
shown in Fig. 9. It is clear that the communication load between
nodel and node2 is decreased by roughly 66% ((180-60)/180 =
0.66) by adjusting the vertex instances deployed on the nodes,
which contributes to the high throughput and low response time
of the system.

DLr"i,[ts,te] + LUi‘k < B”i’
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node3

Fig. 10. Migration is triggered when a node’s CPU is overloaded.

(2) The CPU load. The migration of vertex instances can also be
triggered when the CPU load ratio of a compute node is greater
than By,. And the choice of the to-be-migrated vertex instance v; 5
must satisfy condition (26) so that the instance migration cost is
minimized.

;s = min( Z Z tr(viss, Vm,n))-

Vi s€Cn;,v Vm,n€Cn;,v

(26)

The vertex instance v; ; can choose a target node for migration
where the upstream or downstream instance of v; s is located on
the target node. Set M(n;) = D(v; s)UU(v;s), where M(n;) denotes
the migrated target set and n; is the node that satisfies (25).

Consider migrating v; ; to an appropriate node in set M(n;) and
obtain the reliability of node n; € M(n;) to get r(n;), where r(n;)
denotes the reliability estimate of node n; given by the system.
Finally, migrate v; ; to the node with max(r(n;)), where n; € M(n;).
When set M(n;) is empty, obtain the reliability of all nodes r(n;),
where n; € Dn(n;), and migrate v; ; to node max(r(n;)).

As shown in Fig. 10, when node2’s CPU is overloaded, instance
v1,2 running on node2 will be migrated to other node because it
has minimal communication load with the other instances of the
topology. The migration of instance vy follows two steps: (1)
Local selection. As node1 has upstream or downstream instances
of vy 5, it is considered first. However, as node1 is a computation-
ally intensive node, if instance v, is migrated to nodel, it may
overload nodel’s CPU according to condition (24). So no node
is selected in this step. (2) Global selection. Global nodes in the
cluster are considered in this step. Node3 has the lowest CPU load
and is therefore selected. Instances vy, is migrated to node3.

Task migration triggered by the communication load among
nodes or by the CPU load of node can be accomplished by restart-
ing the task. If there are stateful tasks in a streaming application,
a checkpoint mechanism can be used to manage the states of
these tasks. Before killing a stateful task, backing-up its state is
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required. After restarting the stateful task on a new node, its state
needs to be recovered from the backup storage.

4.4. Energy saving strategies

CPU is the most important indicator of energy consumption
for compute nodes [20,21]. In this paper, we therefore only focus
on the CPU consumption. Optimizing node energy consumption
requires sensing the CPU utilization of node on non-critical path
and the amount of data processed by node on non-critical path.
The computational performance of the node is known to be
correlated with the frequency of the node’s CPU f;, the CPU
utilization rate L,; and the amount of data processed by the node.
Their correlation [18] is modeled in (27). Energy efficiency can
be improved by making the node’s CPU frequency equal to the
frequency required to process data tuples, reducing the idle load
energy consumption.

yni(fi) =In [fl 'LTl,' +(1 _Lﬂi)] : 9!

where, y;,(f;) denotes the performance of node n;, 6 is a coeffi-
cient and can be estimated by (28). The minimum performance
criterion of a given node is Ypin, which satisfies y,,(fi) = Ymin.

Zvi_kECni,v dCOUi,k
length(:ni,v

Where dcoui_k denotes the computational delay of instance v;
and Iengthcni,l, denotes the size of set G, ,.

Assuming that the streaming application has been deployed to
the cluster, the resource usage and computational latency of each
node is known, given the minimum computational performance
of a node, the energy consumption of a node is minimized.

Then, our problem becomes:

(27)

) (28)

lengthp,
MinimizeEn(f) = Z Eni(f), (29)
i=1
subject to
Yn,(f1) = Ymins
}’nz(f2) 2 Ymin, (30)

Yu(fa) = Ymin-

Please refer to Appendix for detail.

The minimum CPU frequency of a node can be calculated
by considering the node’s computing capability (Appendix). As
shown in Fig. 11, a streaming application is deployed on 3 com-
pute nodes, where vy 5, v3,1, V4,1 and vs 1 are on the critical paths
calculated based on the stream application model. v;; and v3;
are deployed on nodel. v4; and vs; are on node2. None tasks
running on node3 are on critical paths. Therefore, Node3’s CPU
frequency can be determined by the amount of tasks being per-
formed on it. Given the information about node3’s computing
capability, the minimum CPU frequency of node3 can be obtained
through the KKT mathematical model (in Appendix). Adjustment
to the CPU frequency for nodes on non-critical paths do not have
much impact on the system performance.

5. Er-Stream: Framework and algorithms

Based on the above formal modeling and analysis, we propose
and implement Er-Stream, an energy efficient and runtime-aware
framework for stream computing systems. To provide a bet-
ter description of the proposal, this section discusses its overall
framework and key algorithms, including DAG initialization al-
gorithm, DAG runtime partial adjustment algorithm and energy
saving algorithm.
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(a) A sample streaming application.

Nodel Node2 Node3
[ | l
[ Switch ]

O Critical path task Vij O Non-critical path task Vij
(b) Task deployment.

Fig. 11. Frequency adjustment to nodes on non-critical paths.
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Fig. 12. Er-Stream framework.

5.1. System framework

The system framework of Er-Stream consists of an optimiza-
tion layer and a monitoring layer, as shown in Fig. 12.

The monitor layer mainly includes a monitor module and two
controller module. The monitor module collects various metrics
of the cluster, such as communication load between nodes, rate
of node resource utilization, etc. The collected data is submitted
to the optimization layer. The controller module mainly includes
a Resource Controller and a Frequency Controller. It receives
decisions from the Scheduling Analysis module and the Energy
Saving module in the optimization layer. The Resource Controller
receives new scheduling information from the upper ReSchedul-
ing Migration module and deploys the new scheduling tasks
onto the supervisors in the cluster. The Frequency Controller gets
information about nodes on non-critical paths from the Energy
Saving module and informs the compute nodes to adjust their
CPU frequencies.
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The optimization layer is mainly responsible for analyzing the
data from the monitor layer and coming up with an adjustment
suggestion. This layer mainly includes modules for topological
construction, instantiation analysis, scheduling analysis, reliable
migration and energy consumption analysis.

Topological construction refers to user designs the logical
structure for a stream application, and determines the grouping
strategy and the number of vertex instances for the stream
application.

Instantiation analysis refers to the system creates one or more
instances for each vertex. Instances of the same vertex have the
same functionality and semantics. Multiple vertex instances can
improve computational parallelism, but not the more the better.

Scheduling analysis refers to the system deploys vertex in-
stances to compute nodes in the cluster, especially allocating
the instances with potential communication load on the same
compute node and keeping the instance number on each compute
node balanced.

Reliable migration refers to the local adjustment of vertex
instances using a reliable migration strategy to make the system
sustainable when there are large fluctuations in data stream.
In addition, the reliable migration strategy is also triggered to
reduce system latency when the nodes are resource overloaded.
It can be implemented via the IScheduler interface in Storm.

Energy consumption analysis refers to the system reduces the
corresponding node’s CPU frequency according to the computa-
tional load on the node. It opens a monitoring thread to listen to
messages from the Frequency Controller. When the monitoring
thread of node is notified by the Frequency Controller, the node
triggers the CPU frequency adjustment strategy by using the
CPUFreq tool [22].

Er-stream has the following advantages compared with tradi-
tional scheduling schemes. (1) When the input rate is stable, the
traditional scheduling schemes do not consider the energy con-
sumption of the cluster if the system has not reached its resource
bottleneck. However, Er-stream can reduce the cluster’s power
consumption by adjusting the CPU frequency of nodes. (2) When
there is high performance demand on the system, the traditional
scheduling schemes will prolong nodes’ downtime, causing the
streaming application to work abnormally. Er-Stream can sense
the bottleneck of the computing resources in the system. When
the nodes are overloaded, a dynamic resource expansion can be
conducted by Er-Stream.

5.2. DAG initialization algorithm

At the initial stage, the additional overhead caused by runtime
scheduling can be reduced by graph partitioning of the DAG.
The more instances are migrated during the runtime scheduling
phase, the more costly the runtime scheduling will be. Therefore,
DAG initialization using graph partitioning tries to control and
reduce the number of runtime instance migrations.

Graph partitioning is an NP problem. Using heuristic genetic
algorithm is one of the effective ways to solving this partitioning
problem [23].

The heuristic genetic algorithm mainly consists of heuristic
information and a valuation function. We further abstract the
division of the DAG graph by maximizing the weights of the
edges owned by each subgraph. The valuation function for graph
partition is an objective function. It takes the average of the
weights of each subgraph and is denoted as (31).

Zniecn Z(ui.k,uj.m)eCni_v sum + tr(vik, vj.m)

lengthg,

fit(pop;) = (31)

where fit(pop;) denotes the fitness value of the ith graph partition
scheme pop.
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Algorithm 1: Graph partition algorithm during initial-
ization.
Input: G = (V(G), E(G)), Gn = {n;|]1 < i < num};
Output: G, ,, n; € Gn;
1 while User set population size n do
2 Generate a chromosome using a random method
cs(n) = {Ujl, V2, ** ", an}2
Add this chromosome to the initial population
pop(1) — cs(n);
end
Obtain the initial population pop(1),t := 1, the
number of iterations is 1;
while User sets the number of iterations t do
For each chromosome pop;(t) in population pop(t),
calculate its fitness value.;
u; = fit(popi(t));
if u; < uf;, uf; is a user set value then
With probability: p; N“" randomly, use
5
roulette wheel to randomly select some
chromosomes from pop;(t) to form a new
population
newpop(t + 1) = {pop;(t)i = 1,2, ..., N};
Crossover with probability P. to generate some
new chromosomes and get a new population
crosspop(t + 1);
With a small probability P, of mutating a gene
on a chromosome to form
mutpop(t + 1);t :=t + 1;
Form a new group pop(t) = mutpop(t + 1);
end
end
return The chromosome with the maximum value of u;

in pop(t);

v

2]

10

1

12

13
14
15

-
2]

The algorithm for graph partition in the initialization phase is
described in Algorithm 1.

The input of this algorithm includes the stream application
G = (V(G), E(G)) and the available nodes Gn = {n;|1 < i < numj}.
The output is the allocation Gy, ,, n; € Gn corresponding to each
compute node.

Steps 1 to 4 initialize the population size pop;(t). A real num-
ber encoding is used, making each vertex instance vy of the
graph G a gene fragment. Steps 7 to 8 calculate the fitness value
fitness(pop;(t)) of each chromosome, which is mainly used as a
criterion to distinguish between good and bad individuals in a
population, and is the driving force of the algorithmic evolu-
tionary process, the only basis for natural selection. Step 10 is
a selection operation, in which good individuals are randomly
selected by a roulette wheel spin, so that each chromosome has
a chance to enter the next generation. The fitness scaling method
is used to set the magnitude of each individual probability P;.
A roulette wheel is constructed using the probability P; of each
individual.

Step 11 is the crossover operation, using two adjacent chro-
mosomes for two-point crossover. Two-point crossover is to set
two crossover points and swap the code strings between the
crossover points with each other. The crossover points are ran-
domly generated. In the process of crossover, gene conflicts may
occur, and partial match crossover (PMX) is used to resolve gene
conflicts. Step 12 is the mutation operation, which is mainly to
maintain the diversity of the population. Here it is used to repair
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and replenish certain genes that may be lost during the selection
crossover.

The algorithm uses swapping variants to generate two random
numbers and swap their gene fragments. The deployment scheme
generated by algorithm 1 costs 64 ms. Its time complexity is O(nx*
m), where n is the number of iterations and m is the population
size.

5.3. DAG runtime partial adjustment algorithm

To reduce the latency caused by data tuple processing, the
monitor module must be able to sense (1) stream fluctuations of
application G running on the set of compute nodes Gn = {n;|1 <
i < num}, and (2) change of CPU load rate of compute node
n; € Gn. To meet these two requirements, the Er-Stream decision
algorithm is divided into two phases.

In the first phase, the monitor component scans the CPU
load ratio Lry ¢ Of each compute node. When the condition
Lty (,.t,] > By is satisfied, Er-Stream triggers the instance migra-
tion strategy.

The node’s CPU load detection algorithm is described in Algo-
rithm 2.

Algorithm 2: CPU load detection algorithm.
Input: Lrn’[[s,te], Vi ks Lvi,k' r(n,-), Bn;
Output: min,; — tn;
1 Declare migration target nodes tn;
2 min,, , denotes the minimum communication load
with other vertex instances on node n;;
3 for [; being the CPU load ratio for nodes in set Gn do
4 Determine whether the CPU of each node is
overloaded or not;
if ; > B, then
Fetch downstream nodes D(v; ) and upstream
nodes U(v; ) of the min,,,, and assign them to
M(n);
for n; € M(n) do
if DLry, + Liin vij > Bn then
| Remove(M(n;));

end
end
if M(n;) is empty then

| tn = max(r(n;), n; € Dn(m;));
end
15 tn = max(r(n;), n; € M(n;));
16 end
17 end
18 return minvi.k —tn;

7
8
9
10
1
12
13
14

The input of this algorithm includes the CPU load factor
Lry t,.¢,7 for each compute node, the CPU load factor L, for each
vertex instance, reliability of each node r(n;) and CPU resource
constraint threshold B,. The output is the node to which the
vertex instance is migrated. Step 3 to 5 select the compute
nodes that are CPU overloaded and select the vertex instances
from the nodes that will be moved out. Step 6 to 11 select the
nodes that meet the conditions from the upstream or down-
stream nodes. In step 12 to 14, if the condition is not satisfied
by either upstream or downstream nodes, the node with the
highest reliability among all nodes will be selected. In step 15, the
node with the highest reliability is selected from the upstream
or downstream nodes. When a node is overloaded, a dynamic
resource expansion can be conducted by the algorithm 2. The
time complexity of Algorithm 2 is O(n % m), where n denotes the
size of Gn and m denotes the size of Dn.
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In the second stage, the monitor module checks whether the
communication load between compute nodes Gn changes signif-
icantly. If true, reevaluate the graph G to get neWy(n,,n)-

The algorithm for runtime scheduling is described in Algo-
rithm 3.

Algorithm 3: Runtime scheduling algorithm.
Input: G, Lt [t t.1» Viks Lo o EF(Viks Vjm)s
Output: Set(fs(vi));
1 Set nos stores instances of vertices whose positions
have changed;
2 fort; € Gdo
3 Build Matrix IEF; < tr(vik, Vjm);
4 Call the genetic algorithm interface, output the best
allocation scheme and the fitness value
(BGrap_e, bfitness) <— GAUils(IET;);
SMHES > o then
6 Compare the old and new assignment schemes,
and select the vertex instances v; y whose
positions have changed
fs(vi ) < compareScheme(BGrap_e, Grap);
7 if L, + Ly — Lvgi < By and
Ly ; + Loy — Lvik < By then

vix and vy ; are found in pairs;

nos <= fs(vix) : nj — nj;

nos < fs(vyi) : nj — n;;
end
12 assigned(nos);

13 end
14 end
15 return nos;

10
1

The input of this algorithm includes the stream application G,
the CPU load factor Lry, 1 ¢, for each node n; € Gn, the vertex
instance v; load factor Ly the communication load between
vertex instances tr(vi, vj,») and the topology local adjustment
trigger threshold «. The output is the set of position change for
the vertex instances. In step 3 to 4, a matrix of application G is
constructed and passed into Algorithm 1, which returns the new
allocation scheme as well as the fitness value. In steps 5 to 6, if
the ratio of the old and new schemes is greater than the threshold
«, the vertex instance whose position has changed from the old
to the new scheme is selected. Steps 7 to 11 determine whether
the instances can be migrated to the destination node without
overloading the CPU of the destination node. The time complexity
of Algorithm 3 is O(n), where n denotes the number of vertex
instances.

5.4. Energy saving algorithm

When a node performs a task, its frequency can be dynami-
cally adjusted to reduce its energy consumption according to the
size of the processed task, providing that the node performance
is not affected. Dynamic adjustment to node’s CPU frequency can
be achieved by calling the CPUFreq interface, which provides a
lightweight CPU scaling monitor and is a powerful CPU frequency
management tool.

As discussed above, a binary search algorithm is able to return
optimal results under the constraints of keeping node perfor-
mance. The algorithm for optimizing node energy consumption
is described in Algorithm 4.

The input of this algorithm includes the correlation yp,(f;)
between the CPU frequency f; and CPU resource utilization Ly
of node n;, the minimum value of node performance y; and
the functional relationship y(f) between y and f;. The output is
node’s optimal frequency. Step 1 calculates the range value of y
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Algorithm 4: Energy saving algorithm.
Input: Yy, yu, (i), v (F);
Output: f;;
1 Compute b and rb according to (A.13); // Ib and rb are
the upper and lower bounds of the search region y ,
respectively;
2 while b — b > u do
mid < (b +1b), .

3
4 | < Ymia;
5 if Ymin SYniU)SYmin+Cthen
6 | return f;
7 end
8 | ifyy(f) = Ymin + ¢ then
9 | b < mid;
10 else
1 | b < mid;
12 end
13 end
Table 1
Software configuration of the Er-Stream.
Software Version
Ubuntu Ubuntu16.03
Storm apache-storm-1.0.2
JDK jdk1.7.64 bit
Zookeeper zookeeper-3.4.6
Python python 2.7.2
MySql MySql-5.1.7

Power Detection PowerTop 2.9

and records the maximum and minimum. Step 4 calculates the
frequency f corresponding to ymiq. Step 5 to 7 determine whether
the node performance at frequency f meets the requirements.
In step 8 to 11, if the node performance requirements are not
met, make adjustment to [b or rb. The time complexity of this
algorithm is O(log,n) where n is the range of y.

6. Performance evaluation

Experiments are conducted to evaluate whether the proposed
scheduling algorithm can improve the system performance. In
this section, the experimental environment and parameter set-
tings are first discussed, followed by the result analysis of two
stream applications, Top_N and WordCount.

6.1. Experimental environment and parameter setup

The Er-Stream framework is deployed above Storm-1.0.3 on
Ubuntu 16.03. The experiments are conducted on a computing
cluster in the Computer Architecture Laboratory of China Uni-
versity of Geosciences, Beijing. The cluster consists of twelve
computers with two as nimbus nodes and ten as supervisor
nodes, and the monitor component deployed together with the
nimbus nodes. Three computers (three multiplexed with the su-
pervisor) deploy the Zookeeper cluster. Detailed environment
configuration is shown in Table 1. Detailed Server configuration
is shown in Table 2.

Two stream applications Top_N and WorldCount are run to
evaluate the system latency and throughput.

As shown in Fig. 13, the topology of Top_N is composed of four
vertices v1, vy, v3 and v4, Where the numbers of vertex instances
for each vertex are 4, 8, 6 and 2, respectively. The function of
each vertex is shown in Table 3. The grouping strategies between
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Table 2

Server configuration.
Hardware Performance
VCPU 2
Network Baseline Bandwidth 100 Mbps
Memory 1.2 GB
Hard Disk Drive 60 GB

I Tuple I I Tuple | | Tuple | | Tuple ,
— (O~
Field Field Global

Fig. 13. Logical graph of Top_N.

Table 3
Vertex function of Top_N.
Vertex Instances Function
V1 4 Read words from data stream
vy 8 Count words
v3 6 Rank words by count
Vg 2 Merge all ranks from upstream
| Tuple ‘ | Tuple ’ ‘ Tuple | | Tuple | | Tuple |
Shuffle Field
Fig. 14. Logical graph of WordCount.
Table 4
Vertex function of wordcount.
Vertex Instances Function
vy 6 Read sentence from data stream
vy 18 Split words of sentence
v3 8 Count words

vertices are field grouping, field grouping, and global grouping
from left to right.

As shown in Fig. 14, the topology of WordCount is composed
of three vertices, v{, v, and vs, where the numbers of vertex
instances for each vertex are 6, 18 and 8, respectively. The func-
tion of each vertex is shown in Table 4. The grouping strategies
between vertices are shuffle grouping and field grouping from left
to right.

Among the four built-in schedulers on Storm introduced in
Section 2, EvenScheduler and ResourceAwareScheduler are fre-
quently used in industrial practice. Therefore, in this experiment,
we compare the proposed Er-Stream framework with them.

6.2. Performance results

The performance evaluation metrics adopted are system
throughput ST and system response time RT.

6.2.1. System throughput

System throughput is calculated based on the number of data
tuples processed per second. It reflects the cluster’s processing
capacity. The higher the system throughput, the more capable the
system is of processing the data.

When the input rate remains stable, Er-Stream has higher
real-time throughput compared to the EvenScheduler and Re-
sourceAwareScheduler.

As shown in Fig. 15, the input rate of the data stream is 1000
tuples/s. In [100s-350s], the average throughput of Er-Stream
is 506 tuples/s, and in [400s-600s], the average throughput of
Er-Stream is 554 tuples/s. In [100s-600s], the throughputs of
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Fig. 15. System throughput of WordCount under stable input rate.
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Fig. 16. System throughput of Top_N under stable input rate.

EvenScheduler and ResourceAwareScheduler are 271 tuples/s and
201 tuples/s, respectively. For the given WordCount application,
the average throughput of Er-Stream is higher than those of the
EvenScheduler and ResourceAwareScheduler when the input rate
is stable.

As shown in Fig. 16, when Top_N is running, the throughput
of the Er-Stream is higher compared to those of the EvenSched-
uler and ResourceAwareScheduler. In [100s-350s], the average
throughput of Er-Stream is 486 tuples/s, and in [400s-600s], the
average throughput of Er-Stream is 552 tuples/s. In [100s-600s],
the throughputs of the EvenScheduler and resourceAwareSched-
uler are 224 tuples/s and 184 tuples/s, respectively.

There are inflection points at the 30s and 420s in Fig. 15 and
361s in Fig. 16. At the DAG initialization stage, since the commu-
nication load between vertex instances cannot be predicted, our
division strategy is to minimize the number of edges connecting
subgraphs, but this allocation may not be the best solution. After
a period of time (which can be set, in this paper it is set to 30s),
the communication load between instances can be obtained by
the monitoring module. After 30s, The monitoring module con-
tinuously evaluates the system performance and decides whether
to make a task migration. At the 420s in Fig. 15 and the 361s in
Fig. 16, task rescheduling is triggered because the computational
characteristics of the data may change significantly, resulting in
changes in the data stream feed and the amount of data computed
at each node.

Er-Stream has higher system throughput compared to Even-
Scheduler and ResourceAwareScheduler when the stream input
rate is varying over time.

As shown in Fig. 17, when WorldCount is running, the data
input rate increases from 1000 tuple/s to 2000 tuple/s at the
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Fig. 17. System throughput of WordCount under increasing input rate.
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Fig. 18. System throughput of Top_N under increasing input rate.

600s. The data input rate is 1000 tuple/s in [0s, 600s] and 2000
tuple/s in [600s, 1000s]. Under steady input, the throughput of
Er-Stream varies from 506 tuple/s to 912 tuple/s and the through-
puts of EvenScheduler and ResourceAwareScheduler range from
271 tuples/s to 546 tuples/s and from 201 tuples/s to 506 tuples/s,
respectively. The average throughput of Er-Stream is still higher
than those of the EvenScheduler and ResourceAwareScheduler
when the input rate is increasing.

As shown in Fig. 18, when Top_N is running, the throughput of
Er-Stream is still higher, compared to those of the EvenScheduler
and ResourceAwareScheduler. They are 876 tuples/s, 526 tuples/s
and 484 tuples/s, respectively.

The streaming applications WordCount and Top_N are de-
ployed on the same 6 compute nodes by using Er-Stream, Even-
Scheduler and ResourceAwareScheduler, respectively. The bottle-
neck of system throughput is tested by continuously increasing
the input rate. As shown in Fig. 19, it can be seen that Er-Stream
has a stronger data processing capability than EvenScheduler
and ResourceAwareScheduler when using the same amount of
computational resources. It is because Er-Stream merges those
operations requiring high communication load. Therefore, the
bottleneck of system throughput under Er-Stream is greater than
those under EvenScheduler and ResourceAwareScheduler, given
the same amount of computing resources.
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6.2.2. System response time

System response time RT is the time interval from the input of
a topology to the output of result. It mainly includes processing
delay, propagation delay and queuing delay. We mainly consider
the propagation delay and processing delay in this paper. If the
system response time is too long, it will greatly downgrade user
experience. The shorter the system response time, the better the
real-time system performance. Storm platform has a built-in Ul
allowing user to access RT data through a browser.

Er-Stream has lower latency compared to the Storm’s two
popular built-in scheduling strategies EvenScheduler and Re-
sourceAwareScheduler under stable input. As shown in Fig. 20,
the input rate for the WordCount is 1000 tuples/s, and the com-
putation node is continuously pressurized. Er-Stream triggers the
migration strategies at the 350s and stabilizes the computational
latency of the system afterwards. At [400s-600s], the average
latency of Er-Stream is 36 ms, while the computational latency
of the built-in scheduling strategies of Storm is increasing over
time.

As shown in Fig. 21, when Top_N is running, the real-time
performance of Er-Stream is clearly better than those of the
EvenScheduler and ResourceAwareScheduler. In [300s-600s], the
average computation latency of Er-Stream, EvenScheduler and
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Fig. 21. System latency of Top_N under stable input rate.

ResourceAwareScheduler are 34 ms, 79 ms and 87 ms, respec-
tively.

6.3. Cluster size and CPU utilization of the compute nodes

Keeping the data input rate stable at 1000 tuples/s, we de-
ploy the WordCount application on 4, 6, 8 and 10 compute
nodes, respectively. When the cluster size increases, Er-Stream
has higher throughput compared to the EvenScheduler and Re-
sourceAwareScheduler. In addition, when Er-Stream deploys an
application, it does not distribute the vertex instances evenly over
all the compute nodes, but using the right number of compute
nodes. As shown in Fig. 22, when the cluster size is 4 compute
nodes, the average throughputs of Er-Stream, EvenScheduler and
ResourceAwareScheduler are 502 tuples/s, 340 tuples/s and 240
tuples/s, respectively. When the cluster size is 6, Er-Stream’s
throughput remains stable, while the EvenScheduler’s throughput
drops to 311 tuple/s and ResourceAwareScheduler’s throughput
drops to 232 tuple/s. When the cluster size is 8, Er-Stream'’s
throughput remains stable, the EvenScheduler’s throughput drops
to 281 tuple/s and the ResourceAwareScheduler’s throughput
drops to 219 tuple/s. When processing non-intensive tasks, Er-
Stream remains stable performance even if the cluster size grows,
while the EvenScheduler and ResourceAwareScheduler have the
performance decreased even with an increased cluster size. Er-
Stream remains stable as the cluster size grows. The reason
behind is that the number of nodes used by Er-Stream remains
constant regardless of the size of the cluster. When the comput-
ing resources used by the streaming application are sufficient,
expanding the cluster size can trigger extra communication de-
lays by EvenScheduler and ResourceAwareScheduler, leading to
decreased throughput even with an increased cluster size.

To enable the compute nodes to better process data tuples, the
CPU load of nodes is tested under pressure and their CPU utiliza-
tion rate is calculated after implementing the reliable migration
strategy.

As shown in Fig. 23, when the input rate is 1000 tuples/s, in
[40s-160s] the CPU utilization rate of nodel, node2, node3 and
node4 are 60%, 74%, 57%, and 6%, respectively. It can be seen that
each node is not overloaded in terms of resources.

At the 200s, the input rate is increased to 2000 tuples/s. It
can be found that at the 213s, node2 is CPU overloaded and the
CPU utilization rate reaches 91%. At this point, reliable migration
is triggered on node2, and some tasks are migrated to node4
according to the reliability of the target migrating node (node4).
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After that, the CPU utilization rate of node2 drops and is stabilized
below 80% afterwards. It is proved that Er-Stream can monitor
node’s resources in real time and trigger task migration when a
node becomes overloaded.

6.4. Energy saving strategy

The Top_N topology is deployed on 8 compute nodes by Even-
Scheduler. The power consumption of each node under a stable
input rate is separately monitored by the POWERTOP tool. It can
be observed that the power consumption is changed when the
node CPU frequency is adjusted. Their correlation is shown in
Fig. 24. When the system throughput is kept at a stable rate, the
average power consumption of node1l, node2 and node6 remains
constant because the tasks running on these nodes are on critical
paths and no CPU frequency changes are made. The average
power consumption of node3, node4, node5, node7 and node8
decreases because their CPU frequencies are adjusted lower using
the CPUFreq tool. The cluster’s power consumption is therefore
reduced due to the decrement of these 5 nodes. The frequency
adjustments to these 5 nodes do not have much influence on the
system response time because they are not on critical paths.

As shown in Fig. 25, the Top_N topology is deployed on 4
nodes (nodes 1-4) of the cluster by ResourceAwareScheduler. It
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is clear that there is an apparent drop in power consumption for
node3 and node4 because the tasks running on these 2 nodes are
not on critical paths. Nodes 5-8 have low power consumption
because they are in idle state.

As shown in Fig. 26, the Top_N topology is deployed on the
same 8 compute nodes by Er-Stream. From this figure, we can
observe that the average power consumption of node1 and node3
remains constant. For node2 and node4, their average power
consumption decreases. For nodes 5-8, the consumption is signif-
icantly lower than the rest. Nodes 1-4 have higher average power
consumption because they are the only nodes used to deploy the
Top_N topology.

It can be found in Figs. 24-26 that the power consumption
among the Top_N nodes under EvenScheduler, ResourceAware
Scheduler and Er-Stream Scheduler is different because the dy-
namic CPU frequency scaling supported by Linux Operating Sys-
tem is used by the non-energy strategy based on resource load.
The power consumption of Top_N nodes with our energy saving
strategy is less than these with the default strategy, as Er-Stream
reduces the CPU frequencies of these non-critical-paths nodes
based on their minimum values.
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The default dynamic CPU frequency scaling is used to ad-
just the CPU frequency of a node deployed with tasks in a dis-
tributed environment based on resource load. It is a better ap-
proach for a single node. However, for the whole cluster, it
may cause extra power consumption. From Figs. 24-26, we get
the cluster’'s power consumption for Top_N under EvenSched-
uler, ResourceAwareScheduler and Er-Stream energy is 109 W,
94 W and 85 W, respectively. The average power consumption
under Er-Stream is lower than that of the EvenScheduler and
ResourceAwareScheduler when the system throughput rate is
stable.

The energy consumption of the cluster for Top_N under Er-
Stream, EvenScheduler and ResourceAwareScheduler is separately
tested. It is calculated by first working out the power consump-
tion of each node, then summing it up. The energy consumption
of each node can be obtained by multiplying the node power
consumption by its running time. The energy consumption under
the schedulers is shown in Figs. 27 and 28.

As shown in Fig. 27, when the data stream rate is stable at
2000 tuple/s, the energy consumption of the cluster for Top_N
under Er-Stream is smaller than that of EvenScheduler and Re-
sourceAwareScheduler. The longer the running time, the more
obvious the gap. We analyze the reason behind Er-Stream'’s lower
energy consumption in two main aspects: (1) The impact of
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Table 5
Related work comparison.
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Aspects Related works Our work
[24] [25] [26] [27] 28] [29] [30] ([31] [32] I[33] [34] I[35]

Runtime-aware v X X v v v v v v v v v v

Communication-aware v v v v v v v v v 4 X v v

Resource constraint v v v v v v v v X v X v v

Reliable migration X X X X v X X X X v X X v

Energy consumption X X X X X X X X X X v v v

EvenScheduler —8— s
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Fig. 28. Energy consumption of Top_N under increasing input rate.

compute node number on energy consumption under different
scheduling  schemes (Er-Stream, EvenScheduler  and
ResourceAwareScheduler). (2) The impact of CPU frequency un-
der Er-Stream. It is found that the number of compute nodes
employed by Er-Stream is reduced, compared with other sched-
ulers, and Er-Stream has lower power consumption by adjusting
node’s CPU frequency.

As shown in Fig. 28, when Top_N is running with a low trigger
rescheduling factor value (e.g. o 0), and the data input rate
increases from 2000 tuple/s to 4000 tuple/s at the 400 s, it can
be seen that the growth rate of the average energy consump-
tion under Er-Stream, EvenScheduler and ResourceAwareSched-
uler becomes faster after 400 s. Moreover, Er-Stream remains
a lower energy consumption compared to EvenScheduler and
ResourceAwareScheduler.

7. Related work

In this section, we review three major categories of related
work: stream application deployment optimization, resource con-
straints, and reliable scheduling & energy consumption in stream
computing. The summary of the comparison between our work
and other closely related works is given in Table 5.

7.1. Stream application deployment optimization

The deployment of tasks for streaming applications is critical
in improving system throughput and reducing latency. In recent
years, there has been great interest in stream application deploy-
ment on Storm. However, it is challenging to find an optimal
deployment due to the fluctuation of data stream, the processing
capacity of compute nodes and other factors.

In [24], a heuristic scheduling algorithm was proposed to
place highly communicating tasks on the same compute node
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to find an optimal task allocation scheme in a heterogeneous
cloud environment. However, data stream volatility and energy
consumption of compute nodes was not considered.

In [25], a workload scheduling strategy based on graph par-
titioning algorithm was proposed to collect the runtime com-
munication behavior of applications and create schedules using
the METIS package for graph partitioning. Both computational
resources of compute nodes and communication between tasks
were considered, however, the scheduling scheme resulted in an
equal amount of tasks processed by each compute node, which
does not correspond to a realistic streaming environment.

In [26], an offline resource-aware scheduler was proposed. The
algorithm used width-first search to rank the application topol-
ogy to reduce inter-node communication and maximize through-
put and resource utilization under user-specified resource con-
straints. However, the drawback is that users were frequently
involved in this process.

In [27], the scheduling problem is modeled as a bin-packing
variant and a heuristic-based algorithm is proposed to mini-
mize the inter-node communication. The algorithm overcame the
limitation of the static resource-aware scheduler. However, the
impact of network characteristics on system performance was not
considered.

In [36], a key/value store was added to each working node
to reduce the granularity of task scheduling, from scheduling
in processes to scheduling in threads. Each worker managed
its own executor, reducing unnecessary overhead. However, the
placement of communication-intensive tasks was not considered.

In [37], a novel predictive scheduling framework was proposed
to enable fast and distributed stream data processing, featured
with topology-aware modeling for performance prediction and
predictive scheduling.

In [28], an adaptive online scheme was proposed to schedule
and enforce resource allocation in stream processing systems,
which guaranteed that the system could achieve less congestion
under heavy load and less resource waste under light load.

In [29], the task assignment problem under stream computing
systems was mainly studied by finding highly communicative
tasks for which tasks were assigned by using graph partition-
ing algorithms and mathematical packages. However, the elastic
variation of the data stream and the energy consumption of the
compute nodes were likewise not considered.

Compared to them, the Er-Stream strategy uses heuristic al-
gorithms to quickly partition the instance graph and uses fewer
compute nodes to run streaming applications, reducing the la-
tency of the system. It is able to dynamically sense and respond
to changes of data stream.

7.2. Resource constraints of stream computing systems

While the impact of network latency on stream computing
performance is substantial, CUP resources on compute nodes are
also a factor that should not be ignored. When the CPU load of one
compute node is too heavy, it will very likely affect the efficiency
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of data processing and even cause the node to go down. Therefore,
it is helpful to optimize the load of a stream computing system.

In [38], an integrated solution is presented for load balanc-
ing, horizontal scaling and operator instance collocation, and the
problem of load balance is modeled as a Mixed-Integer Linear
Program to improve the load distribution in computing cluster.
However, the number of nodes used by the application was not
minimal, resulting in a waste of resources.

In [30], the allocation of priority and non-priority tasks was
mainly considered, using the modified honey bee behavior in-
spired algorithm and the enhanced weighted round-robin algo-
rithm, respectively, which improved the efficiency of resource
utilization. However, the availability of computational nodes was
not considered in the task migration process.

In [31], a new key-based workload partitioning framework
was proposed. It assigned target worker threads to keys via
hashing and routing strategies and supported dynamic work-
load assignment for stateful operators. However, this work only
considered the short-term fluctuations of the data stream.

In [32], to load balance the system, a cloud-based resource
scheduling scheme was proposed. It dynamically scheduled re-
sources based on the current workload to avoid wasting resources
and improved the operational efficiency of the system.

In [39], a new flow grouping scheme Partial Key Grouping
(PKG) was proposed to optimize the standard hashing method
using both key division and local load estimation. It solved the
load imbalance problem to some extent.

Compared to them, Er-Stream is able to sense changes to the
CPU load of compute nodes. It ensures the streaming applications
use fewer compute nodes to process data without overloading
CPU of the compute nodes.

7.3. Reliable scheduling and energy consumption in stream comput-
ing

When the deployment of a task is changed, the reliability of
nodes is to be considered to keep the robustness of the system.
The energy utilization can be improved if the energy consumption
of nodes is controlled. In the past years, researchers have been
optimizing reliable scheduling and energy consumption.

In [40], an Efficient Resource Allocation with Score scheme
(ERAS) was proposed to provide reliable task scheduling for a
limited number of heterogeneous virtual machines. It considered
the earliest completion time of the task and the operational avail-
ability of the virtual machine to allocate resources to it. However,
there was still room for improvement in terms of dynamic task
scheduling efficiency.

In [33], an online adaptive framework for sensing runtime
variations and environmental changes in real-time systems was
proposed, taking soft-error reliability and lifetime reliability into
account. In addition, dynamic migration tasks were performed
under the condition that various constraints were satisfied.

In [34], an energy-aware real-time scheduling on a multi-core
platform was proposed to minimize the expected energy con-
sumption by considering processors on the same cluster running
at the same speed and modeling the runtime energy consump-
tion.

In [41], energy efficiency and resource utilization problems
were studied. In a heterogeneous environment, the processing
speed, energy consumption, and priority of compute nodes are
different. An energy allocation and load balancing strategy based
on data fitting and Lagrangian theory approach was used to solve
these two problems.

In [35], the problem of allocating and placing resilient re-
sources while satisfying energy cost minimization in a distributed
system was investigated and a collaborative strategy was pro-
posed from a system perspective. In addition, a prediction model
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was incorporated to estimate the system latency by predicting
the future workload.

Compared to them, Er-Stream is able to evaluate node reli-
ability based on factors such as node load. Karush-Kuhn-Tucker
mathematical conditions are used to model node resource utiliza-
tion and energy consumption to minimize node energy consump-
tion of data center.

8. Conclusions and future work

In a fluctuating data stream environment, minimizing network
communication and energy consumption, and keeping nodes
meeting load constraints are the goals of a system implementa-
tion. Achieving these goals relies on the system that can intel-
ligently monitor data stream size and node resource utilization
to adaptively adjust instance deployment, and sense data cen-
ter energy consumption to tailor the CPU frequency of node
accordingly. In this work, we attempt to optimize the system
performance from the perspective of minimizing the network
transmission of data tuples by proposing an energy efficient
and runtime-aware framework, Er-Stream. It handles changes in
data stream and dynamically adjusts the instance migration on
compute nodes, thus optimizing the system performance. At the
same time, it senses the computational resources of each compute
node to adjust the resource allocation, further improving the
system performance. KKT mathematical constraints are used to
model node resources and energy consumption to increase the
energy utilization of the data center.

Currently, there is still room for Er-Stream to improve, e.g. it
does not support state management. In the future, we will fur-
ther:

(1) integrate state migration and fault tolerance into Er-Stream,
making the system more efficient and reliable.

(2) consider more indicators when modeling energy consump-
tion of nodes, such as I/0 and memory.

(3) use Er-Stream in real-life large-scale stream computing
environments, such as IoT, Telematics and financial risk
control, to bring the system closer to the commercial sector
and promote the development of community.
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Appendix. Energy saving strategy
In this appendix, we present the process of minimizing cluster

energy consumption. As discussed in Section 4.4, the problem of
energy consumption for cluster can be defined as

lengthpp
MinimizeEn(f) = > Eni(f), (A1)
i=1
subject to
J’nl(ﬂ) = Ymin»
J’nz(fz) = Ymin, (A.Z)

yn(fn) = Ymin-

We just need to minimize En; for each node n; to finally
minimize En(f). This is a variable optimization problem and It can
be well solved by meeting the Karush-Kuhn-Tucker conditions
(KKT) [21], an optimization method for inequality constraints
problems. For each node, the following is constructed:

L(fis y):Enl(fl)-l_V [J’min—ym(fi)]a (A3)
which can be differentiated to,
oL(f;, OEn;(fi oyn.(fi)
G y) _OENGE) _ ) Ad)
of; of; ofi
where,
OEn;(fi P
M) _ e [c(,c - —;] : (AS5)
af; i
And,
ayl‘li(fivLﬂiva) _ Ln,— (A6)
aﬁ ff'LT!,'+(l_Lﬂi), .
Equating (A.4) to 0
hy, - finax [c(;c —1)ff % - fp_éi| =
' (A7)

L
Vo (i

We first analyze the relationship between y and f;. The La-
grangian factor y can be treated as a function of f;.

y() =" fe(e — 1) f 2 - B
" [ ! ] (A8)
: [fl .Lni +(1 _Lni)] )
where (A.9) is a factor of (A.8)
te(f;) = [c(,c 1) ‘H . (A.9)
We have
te'(f) = clc — D — 2)f* > +;’—§ > 0. (A.10)

Therefore, te(f;) is a monotonically increasing function with
respect to f;. Furthermore, (A.11) is another factor of (A.8).

fio Loy + (1= Ly)),

where L,, > 0 and therefore (A.11) is also monotonically increas-
ing with respect to f;. We can consider y(f;) as a monotonically
increasing function with respect to f;.
Considering Eq. (27), we get
Ly,
ﬁ . Lﬂi +(1 _Ln,-)

(A.11)

Vo, i) = > 0. (A.12)
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Therefore, y,,(f;) is also a monotonically increasing function
with respect to f;.

According to the above analysis, we can use a binary search to
find the y value. The frequency of the node corresponding to this
y satisfies ymin < yn,(fi) < Ymin + ¢, where c is the error factor.
The search range of y is.

min V(ﬁ‘,min) <y < max ¥ (fimax), (A13)

where min y(fi min) is minimum frequencies of the nodes and
max y(fimax) is current frequency of the node.
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