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Summary

Data centers consume an enormous amount of energy to meet the ever-increasing demand for

cloud resources. Computing and Cooling are the two main subsystems that largely contribute

to energy consumption in a data center. Dynamic Virtual Machine (VM) consolidation is a

widely adopted technique to reduce the energy consumption of computing systems. However,

aggressive consolidation leads to the creation of local hotspots that has adverse effects on

energy consumption and reliability of the system. These issues can be addressed through

efficient and thermal-aware consolidation methods. We propose an Energy and Thermal-Aware

Scheduling (ETAS) algorithm that dynamically consolidates VMs to minimize the overall energy

consumption while proactively preventing hotspots. ETAS is designed to address the trade-off

between time and the cost savings and it can be tuned based on the requirement. We perform

extensive experiments by using the real-world traces with precise power and thermal models.

The experimental results and empirical studies demonstrate that ETAS outperforms other

state-of-the-art algorithms by reducing overall energy without any hotspot creation.
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1 INTRODUCTION

Cloud computing is a massive paradigm shift from how the computing capabilities are acquired in past from traditional ownership model to

current subscription model.1 Cloud offers on-demand access to elastic resources as services with pay as you go model based on the actual

usage of resources. Cloud data centers are the backbone infrastructure to cloud services. To adapt to the increasing demand for massive scale

cloud services, data centers house thousands of servers to fulfill their computing needs. However, they are power hungry and consume a huge

amount of energy to provide cloud services in a reliable manner. According to the USA energy department report,2 data centers in the USA itself

consume about 2% (70 billion kWh) of the total energy production. Not only do data centers consume huge power; they significantly contribute

to the greenhouse gas emissions resulting in high carbon footprints. To be precise, they generate 43 million tons of CO2 per year and continues

to grow at an annual rate of 11%.3 If the necessary steps are taken, data center power consumption can be reduced from the predicted worst

case of 8000 TWh to 1200 TWh by the year 2030.4 Therefore, improving the energy efficiency of the cloud data center is quintessential for

sustainable and cost-effective cloud computing.

A significant part of cloud data centers' energy consumption emanates from computing and cooling systems. In particular, the contribution of

cooling system power is almost equal to the computing system.5 In this context, a data center resource management system should holistically

contemplate computing and cooling power together to achieve overall energy efficiency.

In pursuance of reducing the computing energy, workloads are consolidated on the fewest hosts as possible, and remaining hosts are shut

down or turned to low power mode.6-9 However, such aggressive consolidation leads to localized hotspots. The effect of hotspots is manifold.

It has a catastrophic effect on the entire system by affecting the reliability of the data center.10 In addition, the temperature beyond the threshold

at host damages the silicon components of CPU leading to the failure of the host itself. Moreover, to prevent further complications, the cooling
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system is enforced to pass more cold air which further increases the cost of cooling. This entails for thermal management through optimal

workload distribution to avoid the hotspots and simultaneously reduce the overall data center energy.

The temperature variations in a data center are caused by many factors. First, the power consumed by a host is dissipated as heat to the

ambient environment11; this power consumption is directly proportional to the utilization level of resources. Second, the supplied cold air from

Computer Room Air Condition (CRAC) itself carries certain temperature along with it, which is known as cold air supply temperature. Finally,

existing studies have shown that the inlet temperature of hosts exhibits the spatio-temporal phenomenon.12 The dissipating heat from one host

affects the temperature of other hosts, this heat recirculation within a data center happens due to the thermodynamic feature of hot air. The air

that has passed through or over hosts does not completely reach the return-air plenum but instead remains in the space to pass over the hosts

again. In this aspect, it is important to address this spatio-temporal aspect to optimize energy usage.

On the other hand, estimating the temperature in a data center is a non-trivial problem. There are three approaches to predict the thermal

status of the data center. First, CFD (Computational Fluid Dynamics) models13 are accurate in predictions; however, the inherent complexity in

rendering makes it computationally expensive and thus infeasible for real-time online scheduling. The second approach is to use predictive models

with techniques like machine learning11; it largely depends on prediction models and the quality and quantity of the data. The last approach

is analytical modeling,12 which is based on the thermodynamic features of heat and physical properties of a data center. It is computationally

inexpensive and efficient compared to other two approaches. Therefore, it is requisite to use an analytical model to design online schedulers

which are computationally inexpensive than others.

Dynamic VM Consolidation has proven to be a prominent approach for data center energy savings.7,14 These consolidation algorithms are

not aware of the physical layout and the location of the physical machine. Furthermore, due to the skewed temperature distribution in the data

center, consolidating the workload on the fewest hosts may not always save the energy as it may increase the cooling cost and create hotspots.11

However, there exists a restricted amount of work to address this aspect. Power and thermal-aware workload allocation for the heterogeneous

data center were proposed in the work of Al-Qawasmeh et al.15 Similarly, dynamic voltage frequency scaling (DVFS) coupled spatio-temporal

aware job scheduling was discussed in the work of Sun et al.16 These solutions either cannot be applied directly to the virtualized cloud data

centers or their solutions are application specific.

In this paper, we propose a new online scheduling algorithm for dynamic consolidation of VMs that uses analytical models for thermal

status estimation. The randomized online algorithms commonly perform better than deterministic algorithms designed for the same problems in

real-time decision making systems.17 Therefore, this algorithm for dynamic consolidation is based on Greedy Random Adaptive Search Procedure

(GRASP)18 meta-heuristic, which is fast, adaptive, and suitable for online decision systems. We analyze the proposed algorithm with the extensive

simulation-based experiments using CloudSim19 with real-time workload traces from PlanetLab systems. The proposed algorithm reduces the

significant amount of overall energy consumption by preventing hotspot creation with the small amount of performance overhead in terms of

Service Level Agreement (SLA) violations.

The key contributions of our work can be summarised as follows.

• We propose policies for efficient distribution of workloads (VMs) to optimize the computing and cooling energy holistically and proactively

prevent the hotspots.

• We design an online scheduling algorithm based on GRASP meta-heuristic, which is used for dynamic VM consolidation.

• We implement the proposed algorithm and validate its efficiency with extensive experiments using real workload traces through simulation

and demonstrate its superiority by comparing to the several baseline algorithms.

The rest of this paper is organized as follows. We introduce the system model in Section 2 and provide problem formulation and an overview

of our algorithm in Section 3. The experiments and results are discussed in Section 4, and related work is described in Section 5. Finally, we draw

the conclusion and future directions in Section 6.

2 SYSTEM MODEL

A model of a cloud computing system is shown in Figure 1. It consists of three elements, ie, infrastructure, resource management system (RMS),

and users. An RMS receives the request for resources from users and it allocates requested resources from the data center infrastructure. We

assume all the requests are submitted as virtual machines, which are hosted on some physical machines. Table 1 shows the definition of all the

symbols that are used in this section and the rest of the paper. A discussion on key elements of RMS, ie, server model, temperature model, CRAC

model, and workload model, is presented below.

2.1 Server model

The data center consists of heterogeneous hosts with different processing capability. The power consumed by a host is predominantly determined

by its utilization level; we adopt this power model,20 which has a linear relationship with the utilization of the CPU

Pi(t) =
⎧⎪⎨⎪⎩

Pidle
i

+
∑Mi

j=1
u(VMi, j(t)) × Pdynamic

i
Mi > 0

0 Mi = 0.
(1)
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FIGURE 1 System model

TABLE 1 Definition of symbols

Symbol Definition

N Number of hosts

Pi Power of Hosti

Pidle
i

Idle power of Hosti

Pdynamic
i

Dynamic power of Hosti

t Time interval t

T Total scheduling interval

Umax Maximum CPU utilizayion threshhold of hosti

u(VMi,j) utilization of VMj on hosti

PC Computing system power

PCRAC Cooling system power

Ptotal Total data center power

Tsup Cold air supply temperature

Tin
i
(t) Inlet temperature at hosti on time t

Ti(t) Temperature at hosti at time t

Tred Maximum threshold of CPU temperature

R Thermal resistance of Host

C Heat capacity of host

di,k Effect of heat recirculation to hostk from i

𝛼 Parameter to decide size of RCL in GRASP

𝜖 Iterations controller parameter in algorithm

The power (Pi(t)) consumption of a host is the summation of idle and dynamic power. In Equation (1), Pidle
i

is power consumption of a host in its

idle state, which is constant, and Pdynamic
i

is dynamic power consumption of host, which has linear realtionship with CPU utilization. The u(VMi, j) is

utilization of jth VM on hosti, and Mi is number of VMs running on hosti. We consider the host is active if its utilization is more than 0 and inactive

if the utilization is 0.

2.2 Temperature model

The temperature at the host is dynamic and it depends on several factors such as its power consumption, CRAC settings, and physical location of

the host itself due to the heat recirculation effect.12

The focus of this work is not to devise new metrics for these; instead, we use the existing approaches to model and incorporate it into our

temperature model. The inlet temperature (Tin
i
(t)) of a host is defined as a linear combination of supplied cold air temperature (Tsup) from CRAC

and temperature increase due to heat circulation

Tin
i (t) = Tsup +

N∑
k=1

di,k × Pk(t). (2)
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Considering the heat recirculation effect exist within particular zones of data center based on its current physical layout, this recirculation

effect can be quantified as a heat distribution matrix D where each entry di,k in the matrix D indicates the factor by which inlet temperature of

hosti is affected by the hostk and this factor is magnitude of power consumption (Pk(t)) of hostk. In Equation (2), k ∈ 1,N is the number of hosts in

recirculation zone. In abstract, it can be noted based on Equation (2); although the CRAC passes similar cold air supply temperature (Tsup) across

all the hosts in a data center, the inlet temperature varies at each host based on its physical location and heat recirculation effect.

The CPU temperature at the hosti is dominated by dissipating heat by its CPU; hence, the temperature at time t can be defined by adopting

widely used RC model21 as follows:

Ti(t) = PR + Tin
i +

(
Tinitial − PR − Tin

i

)
× e−

t
RC , (3)

where P is the dynamic power of host, R and C are thermal resistance (k∕w) and heat capacity (j∕k) of the host, respectively, and Tinitial is the

initial temperature of the CPU. Here, Ti(t) refers to the dissipated CPU temperature (CPU temperature dissipated by hosti at time t). Based on

Equation (3), it can be noted that CPU temperature of host is not only governed by amount of power it is consuming (although it has a major effect

and it is proportional to the CPU speed or workload level), but it is also governed by hardware specific constants like R and C along with the inlet

temperature (Tin
i

). Although we adopted the RC model to estimate the CPU temperature, our proposed work is independent of the temperature

model and it can be applied to other models.12 Equation (3) captures the dynamic behavior of host temperature including heat recirculation effect.

2.3 CRAC model

The data center thermal management is done by Computer Room Air Condition (CRAC) system. In a modern data center, racks are arranged as

cold aisle and hot aisle, as shown in Figure 2. The cold air flows through vented tiles from the bottom of the rack to the top of the rack in the

cold aisle. The exhausted hot air is passed through hot aisle, ie, from the rear of the racks, and it is collected through the ceiling and supplied back

to CRAC.22 Each data center consists of multiple CRAC units, CRAC = {CRAC1,CRAC2, … ,CRACn}. We consider CRACs are the only cooling

facility available in the data center. The efficiency of such a cooling system is measured by the metric Coefficient of Performance (CoP). The CoP

is a function of cold air supply temperature11 (Tsup) and it is defined as the ratio of total power consumed by the computing system to the total

power consumed by the cooling system to extract the dissipated heat

CoP(Tsup) =
PC

PCRAC
. (4)

In Equation (4), PC and PCRAC represent computing and cooling system power. The CoP of data center varies for various settings in a different

data center. It depends on the physical layout and thermodynamic feature of the data center. It can be modeled using the regression techniques

with multiple experiments using the different workloads and supply air temperature. In this work, we use the following model from HP lab11 data

center to estimate the CoP

CoP(Tsup) = 0.0068T2
sup + 0.0008Tsup + 0.458. (5)

Equation (5) indicates that, by increasing the value of Tsup , we can increase the efficiency of the cooling system and reduce the cooling power.

FIGURE 2 Data center rack layout
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2.4 Workload model

The requests from users are considered as tasks or cloudlets. Suppose n is the total number of cloudlets submitted; we consider the same number

of VMs are required to execute these tasks, which are represented as VM = {VM1,VM2,VM3..… ,VMn}. We model the workload in terms of

the virtual machine; hence, our solution is independent of the workload type. We consider each VM executes a single cloudlet and the VM is

terminated after the cloudlet is executed. Each cloudlet has CPU requirement Rcpu , memory requirement Rmem, and task length l; hence, each

cloudlet has triplet attributes {Rcpu,Rmem, l}. Since we are addressing the dynamic consolidation, we submit all cloudlets at the beginning of the

experiment. The VMs are consolidated dynamically based on certain scheduling policies at every interval.

3 ENERGY AND THERMAL AWARE SCHEDULING

3.1 Problem formulation

The larger part of the data center energy consumption is contributed by the computing and cooling systems. The computing system consists of

hosts and its energy consumption can be defined as follows:

PC =
T∑

t=0

N∑
i=1

xjPi. (6)

According to Equation (6), computing system energy (PC) is a summation of energy consumed by all hosts. The binary variable xj holds value 1

if the host i is active at timestep t and 0 otherwise. It is imperative that computing systems energy is governed by the number of active hosts.

Therefore, keeping an optimal number of active hosts at each scheduling interval is important.

The cooling system (CRAC) power consumption is defined as the ratio between the thermal load and CoP of the data center.11 Considering the

fact that energy consumed by a computing system is almost dissipated as heat to an ambient environment of the data center,12 thermal load can

be represented as PC . Accordingly, cooling system energy consumption can be defined as follows:

PCRAC = ThermalLoad
CoP(Tsup)

= PC

CoP(Tsup)
. (7)

Based on Equation (7), it can be inferred that cooling system energy (PCRAC) can be reduced either by increasing the CRAC cold air supply

temperature (Tsup) or by decreasing the thermal load. Therefore, by using consolidation technique, we aim to decrease the thermal load of the

data center and simultaneously avoid hotspots with a proactive approach for a given static cold air supply temperature (Tsup). Thus, the total

energy consumption of the data center can be given as

Ptotal = PC + PCRAC =
(

1 + 1
CoP(Tsup)

)
PC . (8)

The VM placement and consolidation algorithm must be aware of the orthogonal tradeoff between computing and cooling systems, where

higher concentrated consolidation leads to hotspots and a highly sparsed distribution increases the energy consumption

minimize
X

Ptotal =
T∑

t=0

N∑
i=1

xj

(
1 + 1

CoP(Tsup)

)
Pi

subject to u(hi) ≤ Umax

Ti(t) < Tred

m∑
j=0

VMj,i(Rcpu,Rmem) ≤ hi(Rcpu,Rmem)

xj ∈ {0,1}.

(9)

The objective function in Equation (9) takes care of the holistic minimization of energy. The constraints ensure the potential thermal violation

and CPU threshold violation does not occur due to the added workload on the host. The constraints also satisfy the capacity constraints; if the

host has enough resource (Rcpu,Rmem) for an accommodating VM, then the host is considered suitable for the VM placement. xj is a binary variable

whose value is 1 if the VM is allocated to hosti, and 0 otherwise. The aforementioned optimization function in Equation (9) should be executed at

each scheduling interval to decide the target host for the VMs. Considering that scheduling is an NP-hard problem and scale of cloud data center

where a single data center hosts thousands of physical hosts, solving this optimization function in Equation (9) is time-consuming and infeasible

for real-time systems. Consequently, in the next section, we propose an online scheduling algorithm with reduced time complexity based on

GRASP metaheuristic, which finds the near-optimal solution in a reasonable amount of time.
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3.2 The scheduling algorithm

3.2.1 Overview

In this section, we propose a scheduling algorithm based on GRASP metaheuristic. GRASP is simple to implement and easy to adapt based on the

problem specific domain.18 It is an iterative randomized optimization technique. Each iteration has two phases, ie, (1) greedy construction phase,

where the solution list is constructed based on the greedy function by random sampling from the solution space and (2) local search phase, a

neighborhood search to find the current best solution from the previously constructed solution list. The iteration continues until certain stopping

criteria is reached, which can be chosen based on problem-specific constraints.

Its adaptive nature, which provides an opportunity to dynamically update the greedy value of the objects, and the simple probabilistic nature,

which selects the solution by random sampling, are viable to achieve the near optimal solution. Moreover, its inherent capabilities like the flexibility

to select the size of solution space, and to tune the stopping criteria is useful to adjust the amount of greediness and computational complexity.

Dynamic consolidation framework has mainly three steps.7

1. Detect overloaded and underloaded hosts.

2. Select the VMs to migrate from the hosts selected in step 1.

3. Place the selected VMs into new target hosts.

In this work, our primary focus will be on step 3, ie, placement of VMs to new hosts based on thermal and energy status. These three

optimization steps are applied to each scheduling interval to reduce the number of active hosts and keep remaining hosts in a low power mode

or complete power off state to reduce the energy consumption.

3.2.2 Algorithm

For the first two steps of dynamic consolidation, we use the following procedure. To detect overloaded hosts, we use the static CPU threshold

(Umax) and the maximum threshold of CPU temperature (Tred) together as threshold parameters. To detect the underloaded hosts, we use the same

approach used by Beloglazov et al,7 where all the active hosts that are not overloaded are iterated, and if all the VMs from such particular host can

migrate to other active hosts, then that host is considered as underloaded. For the second step of consolidation, we select VMs from overloaded

hosts to migrate in an iterative manner until the host condition is not overloaded. The VM, which has minimum migration time (mmt), is selected

to reduce the migration bottleneck in the system (which has minimum RAM usage and takes less time to migrate with the available bandwidth).

We assume that, prior to optimization, the data center has reached to a steady state, ie, all the requested VMs are placed into hosts and

thermal status of the data center has reached to steady state. Algorithm 1 runs at the beginning of each scheduling interval (five minutes in this

case) and identifies the VMs that are needed to be migrated (based on VM selection policies described above) from overloaded and underloaded

hosts and migrates them to the destination hosts.

In the first step of the algorithm, all the essential parameters like Tred (redline temperature), 𝛼 which decides the size of Restricted Candidate

List (RCL) in GRASP technique and 𝜖 (expected amount of improvement over the previous iteration), are initialized; definitions of these are given

in Table 1. At each interval, all the VMs from over and underutilized hosts are identified (line 3) based on previously discussed policies, and for

each VM to be migrated, the best possible host is allocated.

For each VM to be migrated from the migrate list, the process starts with initializing the allocated host to null initially (line 5). The line numbers

7 to 16 in Algorithm 1 show the generic schema of the GRASP technique. At this stage, each iteration has two main steps, ie, (1) constructing a

feasible solution list from the search space; in this case, it is a list of possible hosts that can accommodate the current VM; and 2) performing the

local search to find a local best candidate, a sub-optimal solution. To reach the global best solution, at each iteration, the solution, ie, allocated

host, is updated based on the greedy value (𝜏) computed during the construction phase (line number 12).

If the difference (𝛿) between the current allocated host and newly allocated host's greedy value (𝜏) is greater than the predefined parameter

𝜖, then the iteration process is continued. Otherwise, iteration is stopped and the current allocated host is returned as a result (line numbers 11

to 15). Here, 𝜖 acts as the parameter to decide the expected amount of improvement over the previous solution. If the new solution at current

iteration does not give improvement greater than 𝜖 to the previous iteration, the process is terminated. If this process is failed to find the suitable

host for VM, then the new host is initiated from the inactive host's list in the data center resource pool (line numbers 17 and 18).

Algorithm 2 refers to the greedy construction solution phase. It takes VM and host list as input and returns the feasible solution list of hosts for

a current VM upon each call to this procedure. The first step of this procedure is constructing the RCL, which represents the finite solution search

space to construct the solution list. The RCL is formed to limit the number of search in the solution space and thus reduce the time complexity. To

that end, we completely exclude the inactive hosts and include a 𝛼 percentage of hosts from the active number of hosts; this ensures the search

space is vastly reduced. In addition, selecting the 𝛼 fraction of active hosts into the RCL is done through random sampling, which depicts the

probabilistic part of GRASP. The cost for each host in the RCL represented as 𝜏 is calculated based on Equation (9) for current time interval (ie,

t=1, i=1). It is important to note that there can be a repetitive selection of the same sample in different iterations; however, with the sufficiently

large number of iterations, it is assumed that the random sampling provides enough distinct distributions from the solution space.

Algorithm 3 shows the local search applied to find the local best for each iteration. Based on the calculated greedy value 𝜏 , the best local

candidate is returned as a solution.
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This algorithm not only reduces the energy consumption, but it also circumvents the potential thermal violation along with satisfying capacity

constraints like CPU, memory, and bandwidth; this is evidenced in line 4 of Algorithm 2 that satisfies all the constraints that are listed in

Equation (9). Moreover, the parameters 𝛼 and 𝜖 together act as tuning parameters to adjust the amount of greediness and decision time. If

accuracy is most crucial in a system, these parameters can be set to a higher value, which increases the time complexity to find the solution.

Consequently, if finding a quick solution is crucial, these values can be set to lower, which may compromise the quality of the solution.
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TABLE 2 Host and VM configuration

Name Core CPU MIPS RAM Bandwidth

Intel Xeon_X5670 2 1860 4 GB 1 Gbit/s

Intel Xeon_X5675 2 2660 4 GB 1 Gbit/s

VM1 (Extra Large) 1 2500 870 MB 100 Mbit/s

VM2 (Large) 1 2000 1740 MB 100 Mbit/s

VM3 (Micro) 1 1000 1740 MB 100 Mbit/s

Vm4 (Nano) 1 500 613 MB 100 Mbit/s

TABLE 3 Host power consumption at different utilization level in watts

Servers 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100

IBM x3550 M3 66 107 120 131 143 156 173 191 211 229 247

(Interl Xeon X5670 CPU)

IBM x3550 M3 58.4 98 109 118 128 140 153 170 189 205 222

(Intel Xeon X5675 CPU)

4 PERFORMANCE EVALUATION

We evaluated the feasibility and performance of our proposed algorithm ETAS and compared it to other baseline algorithms. We created

a simulation environment using CloudSim19 as it allows to model and simulates cloud computing environments that resemble real-world

infrastructure elements. As the default CloudSim toolkit does not include thermal aspects of a data center, we extend the base classes to

incorporate all the thermal parameters into it.

4.1 Simulation setup

In our setup, data center infrastructure comprises 1000 heterogeneous hosts. The capacity of these hosts are configured based on the IBM

x3550 M3 machine with Intel Xeon X5670 and X5675 processor; configuration of these machines are shown in Table 2. The reason for adopting

CPUs with less number of cores is to demonstrate the efficiency of dynamic consolidation with a large number of VM migrations. Oppositely,

hosts with a large number of cores can accommodate more number of VMs granting less opportunity for VMs migration. Nevertheless, the

proposed policies do not affect this factor and also considering the fact that cloud data centers with massive heterogenous workloads induce

enough triggers that generate a large number of VM migrations. The power usage of these systems is adopted from SPECpower benchmark,23

which provides power usage in watts for the respective machines at different CPU utilization level; the power usage of the two hosts that are

used in this work can be seen in Table 3.

VMs are modeled according to the AWS* offerings as shown in Table 2. The experiments are conducted on a desktop system with 64 bit Ubuntu

operating system, which is equipped with the Intel(R) Core(TM) i7-6700 processor, 16 GB of primary memory, and 1 TB of secondary memory.

We assume that the hosts/servers are arranged in rack layout, and the racks are arranged in zones. Each zone consists of 10 racks that are laid

in 5×2 rows, and each rack has 10 servers; this setup is inspired by the experimentally validated setup in the work of Tang et al.12 We assume

heat recirculation effects exist within each zone and is negligible across the zones; therefore, we do not consider recirculation effect across

zones. The heat distribution matrix that represents the recirculation effect within the zone is adopted based on the matrix that was used in the

work of Tang et al.12

We derive the workload from realistic traces from PlanetLab systems.24 This workload has several months of utilization history record of more

than a thousand VMs that are geographically distributed. The data is recorded at an interval of 5 minutes. We use the one-day traces from this

to generate the workloads for the VMs.

4.2 Baseline algorithms

In order to compare the performance and efficiency of our proposed algorithm, we consider the following baseline algorithms.

• Random: In this algorithm, all the VMs are placed on randomly selected hosts. This is a most intuitive method, which does not consider either

thermal or power status of the host.

• Round Robin (RR): In this algorithm, all the VMs are placed in a round robin fashion. This method tries to equally distribute the workloads

among active hosts.

• PABFD: Power-aware Modified Best Fit Decreasing algorithm was proposed by Beloglazov et al.7 This energy efficient policy only considers

CPU utilization for consolidation while ignoring the thermal aspects.

* https://aws.amazon.com/ec2/

https://aws.amazon.com/ec2/
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• GRANITE: Greedy VM scheduling algorithm to minimize holistic energy in cloud data center proposed in the work of Li et al.25 This policy

dynamically migrates VM to balance workload based on a certain temperature threshold.

• TAS: Thermal aware scheduling selects the lowest temperature host as the target host. The protective nature toward the thermal status of

the host tries to avoid hotspot creation.

For all the aforementioned algorithms, similar policy for the initial two steps (over and underload host detection and VM selection) of dynamic

consolidation is used as described in Section 3.2. However, they differ in VM placement strategy.

4.3 Parameter selection

The parameters that occur in different equations are set as follows. We set thermal resistance and the heat capacity in Equation (3) as 0.34 K∕w

and 340 J∕K, respectively, and the initial CPU temperature is set to 318 K.21 According to the recommendation from American Society of Heating,

Refrigerating and Air-Conditioning Engineers (ASHRAE),26 the cold air supply temperature Tsup from CRAC is set to 25◦C.

The maximum allowable temperature of the host is between 85 and 100◦C,16,27 we set it to 95◦C. It is important to note that the temperature

at the host is not only a factor of dissipated CPU temperature; it also includes the temperature that is associated with CRAC supply air (inlet

temperature if we exclude recirculation effect). Excluding this supply air temperature (Tsup set to 25◦C), which is regarded as static, the CPU

dynamic maximum threshold temperature (Tred) is 70◦C. This means, a host CPU is allowed to dissipate the maximum of 70◦C. In other words, we

can say that the maximum temperature threshold is 95◦C, and after exclusion of the static part (Tsup), dynamic temperature threshold is 70◦C.

The CPU static utilization threshold (Umax) is set to 0.9. The hyperparameters 𝛼 and 𝜖 are set to 0.4 and 10−1, respectively; the choice of

selection and effects of these parameters are discussed in Section 4.5.

4.4 Results and analysis

The experiments were run for 5 times and the average results are reported. We ran the simulation for periods of 24 hours and scheduling

algorithm was executed after each 5-minute interval to consolidate VMs dynamically. For the PABFD algorithm, there are many combinations

based on different VM selection and allocation policies. We use local regression (LR), minimum migration time (MMT) as overload detection, and

VM selection policy, respectively, which has shown to be the most efficient; we vary safety parameter of this algorithm from 1.0 to 1.4 with the

increasing step value of 0.1 as described in the work of Beloglazov et al.7

4.4.1 Metrics

In order to analyze the effectiveness of our proposed solution, we evaluate the results with the following metrics.

Energy: This metric indicates energy consumption of each approach in Kilowatts(kW).

SLA violation: This metric captures performance overhead caused due to dynamic consolidation. This overhead can be captured by the SLA

violation metric28 (SLAviolation) as shown in Equation (12). Due to the oversubscription policy, hosts may reach its full utilization level (100%); in

such case, the VMs on such host experiences the less performance level; this can be described as SLA violation Time per Active Host (SLATAH),

and it is defined as in Equation (10). Furthermore, the consolidation of VMs comes with performance overhead that has caused due to live VM

migration.29 This Performance Degradation due to Migration (PDM) is defined as in Equation (11)

SLATAH = 1
N

N∑
i=1

Tmax

Tactive
(10)

PDM = 1
M

M∑
j=1

pdmj

Cdemandj

(11)

SLAviolation = SLATAH × PDM. (12)

Here, N is total number of hosts, Tmax is amount of time Hosti has expereienced 100% of utilization, and Tactive is total active time of Hosti. M is

total number of VMs and pdmj is performance degradation due to live migration of VMj; in our experiment, it is set to 10%; this value is similar to

the one used by Beloglazov et al.7 The Cdemandj
is total amount of CPU resource (MIPS) requested by VMj in its lifetime. The overall SLA violation

of cloud infrastructure (SLAviolation) can be captured by combining both of these SLATAH and PDM as shown in Equation (12).

Hotspots: This metric indicates the number of hosts that have exceeded the redline temperature.

Active hosts: This metric shows the number of active hosts present during the experimented period.

Peak Temperature: This metric indicates maximum temperature attained by any host during a scheduling interval.

4.4.2 Evaluating energy, hotspots, and SLA

The energy consumption from each of the policies is shown in Figure 3A. The random policy has the highest energy usage of 363.19kWh. RR,

PABFD, GRANITE, and TAS have 342.82kWh, 235.2kWh, 265. 68kWh, and 327.38kWh, respectively, while ETAS has 250.30 kWh of energy

consumption with 95% confidence interval (CI), ie, (247.7, 252.5). In other words, ETAS consumes 31.1%, 27%, 5%, and 23.5% less than Random,
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FIGURE 3 Evaluation of energy, hotspots, and SLA. A, Energy consumption; B, Number of hotspots; C, SLA violations

RR, GRANITE, and TAS, respectively. Compared to PABFD, ETAS has a slight increase of 6.4%; PABFD consumes less energy due to the fact that it

consolidates VMs on extremely less number of hosts compared to ETAS. This is due to PABFD is aggressive toward the consolidation and accounts

for only optimizing computing energy while ignoring the potential thermal constraints, which might have unfavorable effects on the system.

GRANITE though integrates both the thermal and energy aspect, it solely considers temperature as threshold parameter to balance the

workload. Moreover, it sets the temperature threshold as the lowest temperature of a host among top 10% of high-temperature hosts in the data

center and migrates VMs from those 10% hosts to balance the workload. This particular method is highly correlated with the workload type data

center processes. For example, in the case where not all top 10% servers are exhibiting overload condition, it causes overhead due to excessive

VM migrations; oppositely, if more than 10% servers are experiencing overload, GRANITE does not account this case too. In addition, identifying

% of servers that are experiencing overload is unexplored in this approach (set to 10 % by default). Moreover, it is important to note that default

GRANITE algorithm balances the workload for only overloaded hosts; here, we have applied the underload host management techniques similar

to our approach with the GRANITE algorithm to balance the workload. In the process of balancing workload, there will be multiple underloaded

hosts over a time, for which GRANITE does not have proposed policy. Applying GRANITE without underloaded hosts management resulted in a

high amount of energy consumption compared to the other approaches.

Although PABFD consumes slightly less energy compared to our ETAS, it creates a significant number of hotspots. This is evidenced in the bar

chart Figure 3B, where the Y axis in the figure has a logarithmic scale to respond to the skewness of large values. The consequence of randomness

in Random policy has a high impact on both energy consumption and hotspots; this correlation can be observed in the result. Particularly, the

Random policy has resulted in 5477 thermal violations in the experimented period. The fair policy distribution of RR performs better than Random

policy and it accounts for 416 hotspots; nevertheless, its obliviousness toward thermal and energy parameters cause hotspots and more energy

consumption. PABFD has resulted in a total number of 123 hotspots during the experimented period, whereas ETAS resulted in 0 hotspots.

It may seem like ETAS consumes slightly higher amount of energy (250.30 kWh) than PABFD (235.20 kWh); however, occurrence of 123 hotspots

in case of PABFD has multiple effects, such as 1) there may be high potential of server failure due to overheating 2) whenever hotspots appear;

in a reactive action to this, the data center administrators enforced to set the cooling temperature to much lower degree ◦C, which further

increases the energy consumption; this can be evidenced based on Equation (7) where cooling system energy is a function of cold air supply

temperature (Tsup). Therefore, PABFD energy consumption will surpass when the reactive approach is enforced. This indicates that, in order to

evade from hotspot creation, ETAS distributes VMs slightly spread out than PABFD and less than Random, RR, and TAS. In Figure 3B, it can

also be observed that GRANITE and TAS also do not account for any thermal violation due to their thermal-aware scheduling policies. The

Conservative approach from TAS toward thermal status alone results in increased power consumption as its power agnostic nature spreads

workloads too sparsely on more number of hosts. Consequently, thermal proactiveness and energy-aware placement of VMs from ETAS avoids

hotspots and saves the energy.

Figure 3C compares the percentage of SLA violation between all the policies. Random, PABFD, and TAS are least efficient, while RR, GRANITE,

and ETAS do not account for higher violation of SLA. Even though RR does not consider the SLA requirements while scheduling decision, its

inherent characteristics that equally distributes the workload among hosts resulted in reduced SLA violations compared to Random, PABFD, and

TAS. However, SLA violation percentage from ETAS (0.02%) may not seem like to completely outperform the RR (0.04%), but this SLA obtained

by ETAS is while simultaneously optimizing total energy consumption, which has an orthogonal tradeoff with SLA,7 whereas RR does not consider

any aspect of energy optimization. Hence, ETAS is capable of minimizing SLA violations with better performance due to its performance and SLA

aware scheduling policies.

4.4.3 Runtime evaluation

To completely understand the performance during runtime, we collect and report runtime data of following metrics: (1) number of active nodes,

(2) maximum peak temperature attained by any of the hosts at each scheduling interval (5 minutes), (3) running time of each of the policies, and

(4) effect of different CPU threshold on energy and number of active nodes.
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FIGURE 4 Runtime evaluation. A, Average number of active nodes per hour; B, Peak temperature of a host

The number of active nodes in the experimented duration can be observed in Figure 4A. For the sake of understanding and clear visibility of

plots, we take the average value for each hour (12 intervals average represent a 1-hour data) for the results. PABFD results in less number of

active nodes, while ETAS has a modest increase in a number of active nodes compared to PABFD. GRANITE has a small increase in a number

of active nodes than ETAS; the reflection of this is evidenced by energy increase based on Equation (8) and can be observed in Figure 3A.

The Random policy has the highest number of active nodes among all. TAS has a minimal increase in the number of active nodes while less

in the case of RR. Moreover, a correlation between the number of active nodes, hotspots, and energy can be derived as the policies with less

number of active nodes are prone to the occurrence of hotspots. However, the Random policy is exceptional due to its arbitrary decisions. The

difference in a number of the active nodes is not huge among all the policies due to the reason that, in our consolidation process, we use same

policy to detect over and underloaded hosts along with VM selection policy which contributes largely to this factor. The observed difference

exists because of different VM placement decisions by each algorithm. Regardless, it can be inferred that ETAS has a modest increase in a

number of active hosts compared to PABFD, which is necessary to avoid high concentration of workload and prevent the potential hotspot

creation.

Figure 4B illustrates the comparison of the peak temperature of a host by each of the policies. The proposed ETAS never exceeds the

redline temperature due to its thermal-aware placement of VMs and it operates near to redline, which increases the resource utilization and

reduces the cooling cost. TAS always operates at a much lower level temperature and PABFD almost operates around redline temperature

(70◦C) and exceeds the red line in multiple instances. The peak temperature of a host from GRANITE policy is lowest among all as it considers

temperature as threshold parameter alone and migrates VMs from high-temperature hosts to balance the workload. Although RR equally

distributes workload, some of the hosts exceed the redline temperature due to its thermal unawareness. Note that the represented results

are not an average temperature of all the hosts; instead, the values represent the temperature of the hottest machine during each scheduling

interval.

To analyze the computation overhead of different policies, we report the empirical values of the running time of each of these policies. This

time indicates mean VM allocation time, which includes time taken by an algorithm to migrate a VM to a destination host; here, major variant

complexity is from deciding a target host for all VMs in this process. Figure 5A illustrates the running time of each of the policies. It can be

observed that, due to the arbitrary selection of hosts by Random policy, it has the lowest running time compared to all. Since RR just needs to

select the next suitable host in a queue for allocation, it also accounts for less runtime. GRANITE has slightly more runtime compared to Random

and RR. TAS and PABFD have high runtime overhead as they have to perform the maximum number iterations to find possible hosts for VM

allocation. ETAS has minimal runtime compared to TAS and PABFD as it does not search complete solution space; more importantly, we can tune

the runtime of ETAS with the energy trade-offs, which is discussed in next section.

Performance of ETAS with different CPU utilization threshold values (Umax) can be observed in Figures 5B and 5C, which show energy

consumption and number of active nodes with different Umax values, respectively. For a lower utilization threshold, the energy consumption is

higher as more number of hosts in the data center will be active to accommodate the given workloads. If we set the threshold to a lower value,

the utilization of data center decreases and energy consumption increases. Hence, to achieve energy efficiency, the threshold should be high

enough to utilize the data center resources efficiently. Furthermore, it can be observed that, after the threshold value of 0.9 (90%), the amount

of reduction in energy consumption is less. Consequently, the extremely high value of Umax will result in a high number of QoS/ SLA violations.

In conclusion, our proposed energy and thermal-aware algorithm reduces the overall energy consumption of a data center while circumventing

the hotspots by operating within the redline temperature. It also has minimal impact on the SLA violation. ETAS increases the global utilization

of resources while ensuring the thermal constraints. In addition, the variant of GRASP heuristic is fast, lightweight, and can be used in an online

system.
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FIGURE 5 Evaluation of running time and effect of utilization level. A, Running time analysis of different policies; B, Energy consumption with
different utilization thresholds; C, Number of active nodes with different utilization thresholds

TABLE 4 Parameter and values

Parameter Values

𝛼 0.1 0.2 0.3 0.4 0.5

𝜖 101 100 10−1 10−2 10−3

FIGURE 6 Sensitivity analysis of hyperparameters 𝛼 and 𝜖. A, Effect on time; B, Effect on energy

4.5 Sensitivity analysis

The performance of our proposed algorithm is highly influenced by the parameters 𝛼 and 𝜖. To analyze this, we carried a sensitivity analysis and

identified the best settings for these parameters. The values for 𝛼 and 𝜖 that are considered as listed in Table 4. These two parameters form 25

different combinations altogether. We evaluated the effect of these parameters on time and energy. The time represents a mean VM allocation

time, ie, decision time to find the target host for a VM to be migrated.

The effect of hyperparameters 𝛼 and 𝜖 on time and energy with all the 25 combinations can be observed in Figure 6. The higher 𝜖 and lower 𝛼

value results in higher energy consumption with the less time. However, after 𝛼 = 0.4, the energy saving is almost linear. Similarly, the lower 𝜖

yields better energy saving but it increases the time exponentially. The ideal setting for 𝛼 and 𝜖 are 0.4 and 10−1, respectively, which can be

observed from Figures 6A and 6B. Therefore, these parameters can be tuned to manage the trade-off between time and energy.

5 RELATED WORK

Energy management in a cloud data center has been the topic of interest for many researchers in recent years. The high energy consumption in

data center incurs a huge operational cost and diminishes the profit margin of cloud service providers. The literature on energy management in

the cloud data center itself is vast and we identify some of the relevant works in this section. Techniques like hardware optimization and Dynamic

Voltage Frequency Scaling (DVFS) have been practically examined in the work of Kim et al30 to manage the energy of a host by adaptively

varying the frequency of processor based on its utilization. However, such solutions are restricted to a single node level. For the data center
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level, techniques like VM Consolidation and load balancing7,8 are extensively used to increase the resource utilization and reduce the energy

consumption of computing nodes.

Utilization-based consolidation has been studied by Beloglazov et al,7 where they consolidate the VMs on the fewest server as possible based

on current CPU utilization. The Modified Best Fit Decreasing (BFD) algorithm is used to place the VM into a target host. They also proposed

different heuristics to detect overloaded and underloaded hosts and to select a set of VMs from those hosts and migrate to new hosts. Kansal

and Chana31 have proposed Energy-aware VM consolidation algorithm using firefly meta-heuristic optimization technique. The target physical

machine for VM to be migrated is selected based on a certain distance metric. The results have shown that 44% energy can be saved compared

to other baseline algorithms. Li et al32 studied about VM migration and consolidation algorithms and proposed multi-resource energy-efficient

models for the same. To avoid local optima and to reach global optima, particle swarm optimization-based policies have been proposed.

Verma et al8 proposed server consolidation using the workload analysis. They have stressed identifying the correlation between applications to

consolidate on a server. These consolidation techniques are better at saving the computer system energy; however, they completely ignore the

effect of consolidation on thermal status of a data center.

Thermal management is an important task for a data center resource management system. At first, Moore et al identified the effect of workload

on CPU temperature and heat recirculation effect in the data center.11 The authors have proposed workload placement strategies to reduce the

heat recirculation effect. Similarly, Tang et al investigated12 thermal-aware task scheduling for homogeneous HPC data center. The scheduling

policy is derived to minimize peak inlet temperature through task assignment (MPIT-TA). Moreover, they quantified the heat recirculation effect

into a heat distribution matrix that was initially identified in the work of Moore et al.11 In a similar way, DVFS coupled, thermal-aware HPC job

scheduling has been investigated by Sun et al,16 where the primary focus of the work is to reduce the makespan. Lee et al33 have proposed

proactive thermal-aware resource management policies for virtualized HPC clouds. The authors have formulated heat imbalance model based on

heat generation and heat extraction metrics. In addition, virtual machine allocation policies VMAP and VMAP+ are proposed to consolidate the

workload.

All these solutions addresses either thermal-aware static job placement or mostly confined to HPC workloads. Such workload specific solutions

cannot be directly applied to a cloud data centers where applications are deployed within virtualized resources and service providers usually do

not have knowledge of the application characteristics running inside. The IaaS cloud services require application agnostic resource management

techniques with a high abstraction of input data.

Thermal management specific to cloud data center is studied in many of the works in literature. Al-Qawasmeh et al15 presented power and

thermal-aware workload allocation in the heterogeneous cloud. They have developed optimization techniques to assign the performance state of

the CPU core at data center level. Li et al34 have investigated the failure and energy-aware scheduling. In this work, they have extracted failure

model from the workload and developed failure and energy-aware static task assignment problem. However, these approaches are static in their

nature and do not consider runtime variation in utilization and consolidate accordingly. Moreover, cloud workloads typically run into few days to

many years and they need to be dynamically consolidated at regular intervals, which is the focus of this paper.

Mhedheb et al35 proposed heuristic algorithms with the goal of reducing energy by balancing load and temperature inside the cloud data center.

The evaluation results through CloudSim has resulted that thermal-aware scheduling outperforms compared to power-aware only algorithms.

The thermal models considered in this work are incomplete and excludes heat recirculation effect.

In a similar context, Ferreto et al36 designed consolidation algorithms with migration control based on linear programming and heuristic

techniques. The results have evaluated based on a number of migrations and active physical machines as primary factors. The proposed

consolidation tries to optimize only computing system of energy while completely ignoring thermal and cooling aspects.

TABLE 5 Related work

Research Works Thermal-aware Heat Recirculation -aware Consolidation Online Dynamic

Beloglazov et al7 N N Y Y Y

Verma et al8 N N Y Y Y

Ferreto et al36 N N Y Y Y

Kansal and Chana31 N N Y Y Y

Li et al32 N N Y Y Y

Moore et al11 Y Y N Y N

Tang et al12 Y Y N Y Y

Sun et al16 Y Y N Y N

Al-Qawasmeh et al15 Y Y N Y N

Li et al34 Y Y N Y N

Lee et al33 Y N Y Y Y

Li et al25 Y Y Y Y Y

Mhedheb et al35 Y N Y Y Y

Our Work (ETAS) Y Y Y Y Y
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In a similar way, Li et al25 have proposed scheduling algorithm for holistic energy minimization of computing and cooling system in cloud data

centers. The authors have proposed a greedy heuristic scheduling algorithm GRANITE that balances workload after fixed scheduling interval.

However, the algorithm balances the workload only from the overloaded hosts that are decided based on a temperature threshold. The threshold

is set by ranking hosts based on their temperature and selecting lowest temperature among top 10% of those hosts. The policy does not discuss

managing underloaded hosts and setting an optimal percentage of servers that are to be considered as overloaded.

In a consolidation enabled cloud data centers, managing overloaded hosts for unknown nonstationary workloads poses challenging work

for resource management systems. In this regard, Beloglazov et al37 proposed a solution to predict overloaded hosts and manage resources

efficiently with explicitly set QoS. They have used a multi-size sliding window estimation model and Markov chain model to solve this problem.

However, this work solely focuses on overload detection with regard to CPU resources. In a dynamic environment of cloud data center, the

overload detection algorithm should integrate both thermal and computing resource aspects together.

The comparison of the related work can be found in Table 5. Here, Dynamic means the ability to consolidate VMs in a regular interval after the

initial placement based on optimization criteria.

The complexity of thermal behaviour and uncertain workload makes scheduling a complex problem. To address the dynamic consolidation

with both thermal and energy awareness, in this work, we optimize the computing and cooling energy together with the aim of reducing the

overall energy consumption of a data center while proactively mitigating the effect of hotspots.

6 CONCLUSIONS AND FUTURE WORK

Cloud data centers are increasing in both number and size due to the rapid adoption of cloud computing in many spectrum of IT. Minimizing the

energy consumption to increase the profit for cloud service providers without affecting the performance of user applications is a paramount need.

In this work, we have proposed a dynamic consolidation framework for holistic management of cloud resources by optimizing both computing

and cooling systems together. Through our proposed ETAS algorithm, we have managed the tradeoff between aggressive consolidation and

sparse distribution of VMs, which has an effect on energy and hotspots. Moreover, based on the system requirement, ETAS algorithm can

be adjusted to manage the computational time and quality of the solution. The experiments are conducted with traces from real system and

results have demonstrated that the proposed ETAS algorithm saves 23.5% and 5% more energy as compared to the thermal-aware algorithms.

Compared to the Energy-aware algorithm, ETAS is capable of avoiding hotspots with a modest increase in energy consumption.

In the future, we plan to extend our work for varying CRAC supply air temperature. We have assumed that CRAC cold air supply temperature

is set to static; to vary the cold air supply temperature based on an overall status of a data center and save more energy, scheduling schemes

need to be changed and we plan to do this in our upcoming work. We also intend to study the effects of using renewable energy and free air

economizer usage in the data center resource management system.
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