
IEEE Network • September/October 20211 0890-8044/21/$25.00 © 2021 IEEE

Abstract
In-network computing indicates the conver-

gence of computing and network, which can be
further considered as computing-based network-
ing and network-enabled computing, from which
comes the edge in-network computing paradigm.
In this newly proposed paradigm, the comput-
ing, caching, and communication resources are
deployed on in-transit edge nodes, such as rout-
ers or switches; hence, services are provided
with less delay and energy consumption by the
deep aggregation of edge-side resources. How-
ever, open challenges still exist in dealing with
heterogeneous resource sharing, scheduling, and
ensuring credibility of service processing. Given
this background, this article aims to address the
edge-side heterogeneous resource trust man-
agement in multi-domain scenarios. A multi-do-
main heterogeneous resource trust management
architecture is first constructed to achieve trust-
ed resource sharing and transaction. Then, under
the proposed architecture, a smart-contract-based
resource sharing mechanism is formulated, includ-
ing an incentive mechanism based on end-side
node contribution. Furthermore, a differential-evo-
lution-enabled containerized microservice orches-
tration algorithm is finally designed to minimize
operation delay and load imbalance during the
container deployment. The application of this plat-
form in a highly elastic power grid scenario has
been tested as an example.

Introduction
In-network computing achieves higher attention
in both the network and computing areas, where
network devices are endowed with computing
capability, compared to only being in charge
of transferring data in the traditional form [1].
The primary force of this change is to integrate
resources within the network to reduce the cost
of task processing. Following this trend, the edge
in-network computing paradigm has emerged
and is increasingly adopted. In contrast to in-net-
work computing, it specifically refers to resource
integration at the edge, which means integration
of the computing, caching, and communication
resources between terminals and the remote
cloud, providing services with less delay and ener-
gy consumption. This paradigm makes multi-do-
main heterogeneous resource management

possible and provides a solution for edge nodes’
cooperation. It is evolving with the development
of 5G and 6G and has become a promising trend
for decentralized latency-sensitive applications.
However, as the edge nodes are geographically
distributed and have limited capabilities, the col-
laborative management of edge-side resources
mainly faces two challenges:
•	 The trust assurance of multi-domain resource

integration
•	 The overall schedule of heterogeneous and

geographically distributed edge resources
Luckily, cutting-edge technologies such as block-
chain can help meet these challenges, although
there are still limitations in the related research.

For the first challenge, blockchain is integrated
in edge computing, to ensure trustworthiness and
traceability. In [2], J. Feng et al. used blockchain
to establish a distributed, tamper-proof digital led-
ger to ensure data security, and optimized the
design of blockchain and mobile edge computing
(MEC) collaboratively. A blockchain-based mobile
edge computing (B-MEC) framework for adaptive
resource allocation and computation offloading in
wireless networks is proposed in [3], using block-
chain to provide management and control func-
tions, and smart contract to execute computation
tasks automatically. Similarly, [4] proposed a sim-
plified but effective framework named FogBus for
facilitating end-to-end IoT-fog (edge)-cloud inte-
gration. However, most of the work only focus
on information trustworthiness, ignoring the trust
issues in the resource allocation process.

For the second challenge, there are some
ongoing research works on the design of block-
chain-based resource management framework.
In [5], a blockchain-based trusted decentralized
resource management framework was proposed
to solve the problem of energy consumption in
data centers. In [6], Y. He et al. proposed a gen-
eral framework for IoT scenarios. In addition, they
realized the machine learning algorithm A3C with
a smart contract in a private blockchain network.
Taking incentives and cross-server resource alloca-
tion into consideration, [7] employed blockchain
technology to maintain a tamper-proof ledger
database. The resource allocation procedure was
executed as a smart contract in blockchain, ensur-
ing secure, fair cross-server resource allocation.
In [8], a blockchain-enabled decentralized self-or-
ganized trading platform for Industrial Internet

Edge In-Network Computing Meets Blockchain: A Multi-Domain Heterogeneous
Resource Trust Management Architecture
Linna Ruan, Shaoyong Guo, Xuesong Qiu, Luoming Meng, Shuang Wu, and Rajkumar Buyya

IN-NETWORK COMPUTING: EMERGING TRENDS FOR THE EDGE-
CLOUD CONTINUUM

Digital Object Identifier:
10.1109/MNET.110.2100029

Linna Ruan, Shaoyong Guo (corresponding author), Xuesong Qiu, and Luoming Meng (corresponding author) are with the Beijing University of
Posts and Telecommunications; Shuang Wu is with the Ningxia Xintong Network Technology Co., Ltd; Rajkumar Buyya is with the University of Melbourne.

IEEE Network • September/October 2021 2

of Things (IIoT) devices was constructed. More-
over, it adopted Stackelberg game to describe the
interaction between the cloud provider and min-
ers. However, these works omitted the challenge
brought by the heterogeneity of resources. Such
methods and metrics are adopted to address this
problem [9, 10]. In [9], the elastic regression tree
is combined with sample information to allocate
heterogeneous computing resources. Reference
[10] utilized data fusion, combined with non-or-
thogonal multiple access (NOMA), successive
interference cancellation (SIC), and beamform-
ing techniques to allocate power and spectrum
resources to heterogeneous devices. Besides
these methods, virtual technology, widely referred
to as network function virtualization (NFV), is also
adopted to cope with resource heterogeneity
[11–14]. In this way, the difference brought by
varying dedicated hardware can be regarded, and
the end-edge resource is integrated as a resource
pool. However, these works have not taken the
trust challenge into consideration.

In accordance with the discussions above, the
existing work to a great extent might be able to
figure out one of the two challenges at once.
Compared to these, this article discusses both the
aforementioned challenges in the context of edge
in-network computing meeting blockchain, real-
izes deep aggregation of network resources, and
provides an architecture to guide multi-domain
heterogeneous resource sharing and scheduling.
The main contributions of this article therefore
can be considered as follows:
•	 A multi-domain heterogeneous resource

trust management (MHRTM) architecture is
constructed where consortium blockchain
is adopted to ensure the information trust-
worthiness as well as transaction traceability,
and virtual technology supports multi-domain
resource management. To the best of our
knowledge, this is the first architecture that
addresses heterogeneous resource trust man-
agement under the background of block-
chain meeting edge in-network computing.

•	 A smart-contract-based incentive mechanism
for edge-side resource sharing is formulated.
Terminals are encouraged to share resourc-
es under the condition of fair revenue dis-
tribution. Honest information submission is
guaranteed by contribution-based reward.
Furthermore, performance analysis on four
aspects is included.

•	 A differential evolution (DE)-enabled contain-
erized microservices orchestration algorithm
is designed to provide decisions on microser-
vices deployment while minimizing process-
ing delay and load imbalance. As a result,
resources are packed as containers with spe-
cific functions, and the heterogeneity can be
regarded.

Architecture for the Trusted Edge Network
The MHRTM platform is shown in Fig. 1. It is
divided into three layers: end-edge device layer,
heterogeneous edge resource integration layer,
and decentralized application layer. Blockchain
is used to ensure the information credibility as
well as transaction traceability, while the hetero-
geneous resource integration is implemented by
virtual technology.

In the designed edge in-network computing
paradigm, each intra-domain device and inter-do-
main router are mapped as virtual nodes and
form a virtual network with specific functions.
These virtual networks are further abstracted as
virtual nodes, where the function of blockchain is
deployed. Considering scenarios with controllable
access, the nodes are connected to form a con-
sortium blockchain, which shows higher efficiency
than the private chain and is more flexible than
the public chain. Resource information of termi-
nals, edge nodes, and network nodes, such as
routers and service models, are uploaded to the
blockchain to ensure the credibility and traceabil-
ity. Furthermore, heterogeneous resource sched-
uling and benefit distribution are implemented
on the basis of virtual technology and incentive
mechanism.

Resource management is divided into resource
sharing and resource scheduling processes, which
are solved by a smart contract-based incentive
mechanism and a DE-enabled containerized
microservice orchestration algorithm in this arti-
cle. Decentralized applications (DApps), such as
intelligent inspection, demand-side management
(DSM), and virtual/augmented reality are support-
ed by the proposed resource management solu-
tion, which is carried out in the following sections.

The Workflow of the Resource
Trust Management Process

The procedure of resource trust management
is shown in Fig. 2. It can be divided into four
parts: device registration, service request, service
provision, and incentives for resource sharing.
Consider a request submitted by a data service
subscriber (DSS); the transaction procedure can
be described as follows.

Device Registration
Edge network devices and end devices are
abstracted as nodes and belong to different

FIGURE 1. Multi-domain heterogeneous resource trust management (MHRTM)
architecture.

IEEE Network • September/October 20213

domains in the system. Through virtualization,
the resources of nodes in a domain can be inte-
grated, and these nodes are regarded as virtu-
al nodes, where the functions of blockchain are
deployed, such as participating in the consensus
process, generating blocks, and maintaining the
blockchain. End nodes participate in resource
sharing through a smart-contract-based incentive
mechanism, which is detailed later.

Back to the registration procedure. When a
virtual node applies to join the system, it needs
to upload its registration information to the block-
chain, including the node ID, its location informa-
tion and the amount of resources the nodes in the
domain are willing to share. The shared resources
in this article include computing, communication,
and caching resources of devices. Furthermore,
the computing resources refer to logical comput-
ing capability, parallel computing capability, and
neural network acceleration capability.

After receiving the registration request from
the virtual node, the smart contract will verify it.
If the request is approved, the system will return
a confirmation message (including the account
information of the virtual node that initiated the
request) and write the registration information
to the blockchain in the form of transactions.
Since the resources that nodes can share will be
affected by their own needs, except for the fixed-
time information submission required, the system
allows nodes to actively submit their resource sta-
tus.

In order to ensure normal operation of the sys-
tem, after virtual nodes complete the registration
of identities and resources, the system will give
them a certain amount of digital currency as start-
up money. When nodes in the system need to
share resources, they use the money to purchase

resources. Since the currency issued can only be
used in the system and cannot be exchanged for
actual legal currency, a rational node will maintain
the work of the system to protect its digital cur-
rency from losing value, enhancing the robustness
of the system to some extent.

The registration of devices and resources is the
basis for resource allocation. By writing the regis-
tration information on the blockchain, the trace-
ability and tamper-proofing of the registration
information are ensured. However, the authen-
ticity of the registration information has not been
guaranteed, which can be solved by the incentive
mechanism based on the contribution described
in the next section.

Service Request
When a DSS in the system initiates a resource
sharing request, the system will verify and decide
whether to approve it according to the price and
account balance.

The specific steps are as follows.
Step 1: The DSS initiates a resource sharing

request to the smart contract and submits the
request information, including identity information
of the DSS and the specific requirements.

Step 2: The system executes the DE-enabled
containerized microservice orchestration algo-
rithm to obtain the resource allocation decision.
The resource scheduling algorithm will then guide
tasks allocation according to the resources of
each virtual node in the edge network, and the
virtual nodes will accept them by default.

Step 3: The system calculates the price of this
request according to the unit price of resourc-
es, and the amount and usage time of resources.
Then the virtual node inquires about the balance
of the DSS. If the balance is enough for this
request, the resource sharing process continues.

Step 4: The system returns the resource alloca-
tion decision to the DSS.

Step 5: The system freezes part of the DSS’s
assets as the deposit of this process.

Step 6: The DSS records the information of
this process as a transaction and submits it to
blockchain.

Step 7: The system verifies trading information
and conducts a consensus process.

Step 8: The system sends the transaction num-
ber to the DSS and virtual nodes for block prop-
agation.

By executing the resource scheduling algo-
rithm based on DE, the platform can provide per-
sonalized resource scheduling service for the DSS
according to the resource request. The specific
implementation of the algorithm is detailed below.
According to the result of the resource scheduling
algorithm, the platform calculates the price of this
request and decides whether to provide resource
scheduling service for the DSS according to its
balance. According to the price, a portion of the
DSS’s funds is frozen, which means it still belongs
to the DSS but is unavailable in the execution of
the resource request, thereby guaranteeing the
benefit of the resource provider.

Service Provision
Through the resource scheduling algorithm intro-
duced below for resource allocation, virtual nodes
are selected for resource sharing. The blockchain

FIGURE 2. The procedure of resource trust management.

IEEE Network • September/October 2021 4

sends the resource sharing requests to the select-
ed virtual nodes according to the scheduling deci-
sion. Through container creation and migration,
the DSS acquires the resources it requests. Since
the available resources of the selected virtual
nodes change after each sharing, they upload and
update the resource information to the block-
chain.

As one of the core technologies of blockchain,
the consensus mechanism ensures the consisten-
cy of the distributed ledger, which is the basis for
the safe and reliable service provision in a block-
chain network. In this article, scenarios with con-
trollable access are considered; hence, we use the
consortium blockchain to support the distributed
heterogeneous resource trust management plat-
form, and realize the multi-domain trusted sched-
uling and sharing of resources. As a simple and
effective consensus algorithm, the Raft consensus
algorithm is chosen to alleviate the computing
and communication burden. Raft is a non-Byzan-
tine fault-tolerant consensus algorithm, which is
mainly implemented by leader election and log
synchronization. The leader election is triggered
by the heartbeat mechanism. Once a leader node
is elected, the client’s requests will be executed,
and the follower nodes will copy logs safely until
the next round begins. The maximum number of
fault-tolerant failure nodes of the Raft algorithm is
(N – 1)/2, where N is the total number of nodes
in the cluster. Compared to consensus mecha-
nisms such as proof of work (PoW) and proof of
stake (PoS), the communication complexity of the
Raft algorithm is O(n), which greatly saves nodes’
computing and communication resources.

Incentives for Resource Sharing
When a service is completed, the DSS releases
the resources it acquired before, and the selected
virtual nodes update their resource information
again. The DSS sends service feedback to the
blockchain, triggering the smart-contract-based
incentive mechanism. Blockchain will distribute
the incentives according to each virtual node’s
contribution and unfreeze the remaining deposit.

Smart-Contract-Based Incentive Mechanism
For Edge-Side Resource Sharing

Edge-side resource virtualization is the basis for
resource sharing and scheduling. Considering
the limited capability of edge nodes, containers,
which represent the operating system (OS)-lev-
el virtualization, are formulated instead of the
hardware-level virtualization, acknowledged as
virtual machines (VMs). The specific procedure
is depicted in Fig. 3. As shown, the resources of
terminals and edge devices in each domain are
virtualized from computing and caching aspects.
Then, following the resource scheduling decision
made by edge nodes that received services, con-
tainers are created by the docker. Each contain-
er corresponds to a microservice. Afterward, the
containers will migrate to the node that received
the request, and after the service is completed,
the smart-contract-based incentive mechanism
for resource sharing is triggered and executed
automatically.

Edge-Side Resource Incentive Mechanism Based on
Contribution

In this article, both the edge nodes and the end
nodes are considered as selfish. Every node hopes
to get higher profits by providing more resources,
so their behaviors are similar and still regarded as
one virtual node in the incentive mechanism to
ease analysis. The smart contract will be triggered
when the virtual node that uploads a resource
sharing request submits service feedback to the
blockchain, and the incentive mechanism will be
automatically executed according to the evalua-
tion results of nodes’ contributions. In this article,
we only consider the situation in which the total
available resources in the system can meet the
requirements of resource sharing requests.

When a resource sharing request is approved,
the smart contract will call the resource sched-
uling algorithm to allocate resources and send
a resource sharing request to the related nodes.
Then the smart contract will reward every virtual
node that participates in the sharing process. In
order to reward nodes fairly and reasonably, an
incentive mechanism based on nodes’ contribu-
tions is proposed. The reward obtained by each
node hinges on whether it is honest, the amount
of resources it provides, and the usage time and
unit price of resources, which can be calculated
by multiplying the average selling price of resourc-
es by a credit factor defined as follows.

If a node is honest and can provide enough
resources according to the resource sharing
request made by the system, its credit factor is
1, and the system provides rewards to the node
according to the average selling price of the
resources. However, if a node is dishonest and
cannot provide enough resources according to

FIGURE 3. Container-based edge-side resource virtualization.

IEEE Network • September/October 20215

the requests issued by the system, its credit factor
is smaller than 1, calculated by the ratio of the
actual amount of resources provided by the node
to the amount of resources it registered in the
system. In this situation, the reward will be less.
The unit price of resources is reached by all the
parties before the resource allocation process. In
order to ensure that a node can afford the request
it initiated, the deposit that it needs to offer is cal-
culated according to the average selling price of
the required resources.

Performance Analysis
The Algorithm Satisfies the Truthfulness: Partici-
pants will not benefit from lying. In the resource
scheduling strategy, we take the resource that a
virtual node owns as a constraint rather than an
optimization objective. Hence, the resource allo-
cation strategy has no direct relationship with the
resource amount owned by each node. Report-
ing more resource than actually owned will not
increase the opportunity of a node to be selected
in resource sharing.

We assume that the virtual nodes are ratio-
nal but selfish, and they will not report less
resources than they are willing to share. Under
this assumption, the possible strategies adopted
by virtual nodes can be divided into two types:
honest report, where the amount of resources it
registered is the same as the real value; and false
report, where the amount of resources it regis-
tered is more than the real value.

In this article, resources are directly allocat-
ed to the requesting node through virtualization,
and the system will issue incentives to each vir-
tual node according to the resources it actual-
ly provides, so it is meaningless for virtual nodes
to falsely report the amount of resources they
are willing to provide. Moreover, the credit fac-
tor is added to the incentive mechanism. If a
node reports falsely and fails to provide sufficient
resources according to the requirements of the
system, the reward will be less. It is obvious that
deception shows no benefits; hence, as a ratio-
nal node, there is no reason to make such false

behavior.
The Algorithm Satisfies Individual Rationality:

Each selected resource provider can obtain incen-
tives. Although the amount of incentives that one
node can get varies with the amount of resources
it provides, the usage time of the resources, the
unit price of resources, and whether it is honest,
the incentives are always non-negative. Hence,
it is always profitable for nodes to participate in
resource sharing.

The Algorithm Satisfies Budget-Wise Feasi-
bility: The price of a resource sharing request is
related to the required amount, usage time, and
unit price of resources. When a node submits
a request, the smart contract will calculate the
price of the request according to the specific
requirements. If the account balance is lower than
the budget, the resource request will end, and
resource sharing operation will not be carried out.
Since the budget is calculated under the assump-
tion that each node is honest, which means the
credit factor is set as 1, the actual payment will
definitely not exceed the price.

The Algorithm Has High Computational
Efficiency: The time complexity of the incen-
tive mechanism is analyzed. Since the incentive
obtained by each node is proportional to the
amount of resources it shares and the usage time
of the resources, the complexity of the incentive
algorithm is O(1) when only one virtual node par-
ticipates in the resource sharing process. When n
virtual nodes participate in the resource sharing
process in the system, the operations above need
to be performed n times, so the complexity of the
incentive algorithm is O(n).

DE-Enabled Containerized Microservice
Orchestration Algorithm

Virtualization technology and a DE optimiza-
tion algorithm are adopted to support container
deployment determination, container creation,
and container migration, as shown in Fig. 4. Con-
sider the case when a request is submitted by
DSS; the edge-side containerized microservices

FIGURE 4. Edge-side containerized microservices orchestration architecture.

IEEE Network • September/October 2021 6

orchestration algorithm is then called to realize
resource scheduling, which takes latency and load
balance as objectives and computing, caching as
well as communication resources as constraints.
It is obviously an NP-hard problem, solved by DE
as detailed below. The containers will be creat-
ed and then migrate to the edge node that holds
the request. The request will be finalized with the
required containers, and the completion status of
the task will finally be sent to the edge node for
contribution evaluation.

Problem Formulation
For the sake of simplicity, we assume that each
DSS only initiates one service request within a
period of time. Services can be divided into
microservices, which are carried by containers
with specific functions. The service is described
from two aspects: microservice set and depen-
dency relationship between microservices. When
one microservice needs the results or data of
another microservice, a relationship is established
between them. Microservices are directly initi-
ated by users or requested by other users, and
the resource information of microservices mainly
includes computing and caching capabilities, in
which the computing part can be further divided
into logical computing capability, parallel comput-
ing capability, and neural network acceleration
capability. The problem is established via three
models described below.

The network model includes node set (com-
puting and caching capabilities) and link set
(bandwidth and network distance).

The computing model is used to evaluate load
balance (measured by the standard deviation of
computing and caching resources) and network
transmission delay between microservices, which
mainly depends on three factors:
•	 Data transmission amount requested

between two microservice samples
•	 Bandwidth between edge nodes where

microservice samples are deployed
•	 Network distance

A multi-objective optimization model is estab-
lished, which aims to minimize transmission delay
and load imbalance. Constraints are set on com-
puting, communication, and caching resources.
A linear weighting method is used to transform
multiple objectives into a single objective. Hence,
decisions on which node each microservice
should be placed on can be made.

The implementation of the whole orchestration
process includes container deployment location
determination, container creation, and container
migration. We mainly focus on the first part and
design a containerized microservices orchestra-
tion algorithm as follows.

DE-Enabled Containerized Microservice Orchestration
This is a typical NP-hard problem. Heuristic algo-
rithms are frequently used for this kind of problem
to give an almost optimal result. DE is a widely
adopted heuristic algorithm with fast convergence
speed and accurate results. In this article, an
adaptive DE-enabled containerized microservice
orchestration algorithm is designed. The tradition-
al differential evolution based on integers can eas-
ily be premature if the mutation rate is set too
large, and the global search performance is poor.

If the mutation rate is set small, the population
diversity decreases, and the global search perfor-
mance is poor. Adaptive operators can maintain
diversity in the initial stage and prevent prema-
turity. With the progress, the mutation operator
decreases to avoid the destruction of the optimal
solution.

For the treatment of constraints: an idea similar
to [11] is adopted to separate the fitness function
from the constraints so that each individual has
two fitness values. Evaluation criteria is established
to cross-evaluate the feasible solution and the
infeasible solution.

Inputs: These are relevant information of
microservice application, edge node set, group
capacity, maximum iteration times, shrinkage fac-
tor, and cross probability.

Process:
•	 Initialize the population.
•	 Judge whether the termination condition is

met.
•	 If not, perform mutation, crossover, and

boundary condition processing, calculate the
objective function, select, and then judge
whether the condition is met again; If the
condition is met, the optimal result can be
obtained.
Output: This comprises decisions on which

node each microservice should be placed on.

Use Case
A distributed heterogeneous resource trust man-
agement platform is constructed in this article.
The platform can support multi-domain hetero-
geneous resource trust sharing and microservices
deployment for scenarios that hold latency-sensi-
tive and computation-intensive applications, such
as smart factories, smart grids, and smart cities.
These scenarios all require multi-domain informa-
tion interaction and task collaborative processing.

Smart grids, as an emerging trend for energy
supply and management, hold a huge number of
terminals and provide energy mainly for residen-
tial, industrial, as well as commercial customers.
In this article, the highly elastic power grid, as an
extension of smart grid, cooperates with indus-
tries to indicate different domains and is modeled
as a use case. Due to the dynamicity of tasks,
the resource usage of each domain varies a lot.
However, because of the trust problem and inte-
gration difficulties caused by the heterogeneity
of resources, it is hard to carry out multi-domain
resource management. Given this, the proposed
multi-domain heterogeneous resource trust man-
agement architecture plays the role of a distribut-
ed platform for resource sharing and scheduling,
enhancing resource efficiency.

An architecture for the test environment
is constructed in Fig. 5. Since guiding industrial
users who have high power demand to actively
participate in load sharing and shifting is the key
to ensure high elasticity, demand-side manage-
ment (DSM), which enables bidirectional energy
information interaction, enhances energy usage
performance further, and proposes real-time
response requirements, is taken as a representa-
tive application in this part. Refer to the MHRTM
architecture built previously. DSSs correspond
to smart grid operators and industrial managers;
requests correspond to industrial energy service

IEEE Network • September/October 20217

in the industrial domain; and energy price and
demand negotiation, and energy usage schedule
recommendation for the smart grid domain. MEC
indicates a mobile edge server, while AMI rep-
resents advanced metering infrastructure. Once a
service request is completed, a smart contract is
triggered. The DE-enabled containerized micros-
ervices orchestration is used in the smart contract
to implement microservices deployment, follow-
ing which the containers with specific functions
are created and finally migrate to the target edge
node. The heterogeneous resources of the power
grid and industry domains are virtualized and
managed by the proposed platform, where block-
chain, as a supportive technology, ensures trusted
resource sharing.

A test environment is established in a province
of China. Response delay is tested for demand
bidding service while processing by end nodes,
edge nodes, and integrated end-edge nodes.
These two groups in Fig. 5 represent that differ-
ent volumes of data are contained in the demand
bidding process, which is an important part of
DSM for determining who can participate in the
demand shifting. The result shows that the third
way (processing with integrated end-edge nodes),
which was adopted in this article, shows the best
performance, and its improvement becomes
more and more obvious with the increase of num-
ber of participants. While the end nodes have lim-
ited processing capability, when it increases, the
response delay increases exponentially. The test
result verified the efficiency of the MHRTM archi-
tecture in reducing delay.

Conclusion
In this article, a multi-domain heterogeneous
resource trust management architecture is pro-
posed to address challenges when edge in-net-
work computing meets blockchain. Blockchain is

adopted for trusted resource sharing and transac-
tion, while virtual technology is used to mitigate
the heterogeneity of multi-domain resources, with
a DE algorithm to support resource scheduling. A
use case is provided to depict the application of
the proposed solution for energy scenarios.

The proposed solution is still suffering from its
own limitations. Each microservice is served by
one container in this article, while the situation
where a microservice corresponds to multiple
containers should also be addressed. Further-
more, the architecture design may require some
adjustments according to the scope of domains.
There are more situations to discuss, and various
use cases are also expected.

Acknowledgments
This work was supported in part by the National
Natural Science Foundation of China (62071070),
in part by the Key Project Plan of Blockchain in
the Ministry of Education of the People’s Repu-
tation of China (2020KJ010802), and in part by
the Test Bed Construction of Industrial Internet
Platform in Specific Scenes (new mode).

References
[1] Y. Tokusashi, H. Matsutani, and N. Zilberman, “LaKe: The

Power of In-Network Computing,” Proc. Int’l. Conf. ReCon-
Figurable Computing and FPGAs (ReConFig), Cancun, Mex-
ico, 2018, pp. 1–8.

[2] J. Feng et al., “Cooperative Computation Offloading and
Resource Allocation for Blockchain-Enabled Mobile-Edge
Computing: A Deep Reinforcement Learning Approach,” IEEE
Internet of Things J., vol. 7, no. 7, July 2020, pp. 6214–28.

[3] F. Guo et al., “Adaptive Resource Allocation in Future Wire-
less Networks With Blockchain and Mobile Edge Comput-
ing,” IEEE Trans. Wireless Commun., vol. 19, no. 3, Mar.
2020, pp. 1689–1703.

[4] S. Tuli et al., “FogBus: A Blockchain-Based Lightweight
Framework for Edge and Fog Computing,” J. Systems and
Software, vol. 154, Elsevier, Aug. 2019, pp. 22–36.

[5] C. Xu, K. Wang, and M. Guo, “Intelligent Resource Manage-
ment in Blockchain-Based Cloud Datacenters,” IEEE Cloud
Computing, vol. 4, no. 6, Nov./Dec. 2017, pp. 50–59.

FIGURE 5. Use case and test results.

IEEE Network • September/October 2021 8

[6] Y. He et al., “Blockchain-Based Edge Computing Resource
Allocation in IoT: A Deep Reinforcement Learning
Approach,” IEEE Internet of Things J., vol. 8, no. 4, Feb. 15,
2021, pp. 2226–37.

[7] W. Sun et al., “Joint Resource Allocation and Incentive
Design for Blockchain-Based Mobile Edge Computing,” IEEE
Trans. Wireless Commun., vol. 19, no. 9, Sept. 2020, pp.
6050–64.

[8] H. Yao et al., “Resource Trading in Blockchain-Based Indus-
trial Internet of Things,” IEEE Trans. Industrial Informatics, vol.
15, no. 6, June 2019, pp. 3602–09.

[9] Y. Tang et al., “Elastic Regression-Tree Learning in a Hetero-
geneous Computing Environment,” IEEE Internet of Things J.,
vol. 6, no. 5, Oct. 2019, pp. 8826–34.

[10] K. Lin et al., “Data-Driven Joint Resource Allocation in
Large-Scale Heterogeneous Wireless Networks,” IEEE Net-
work, vol. 34, no. 3, May/June 2020, pp. 163–69.

[11] L. Yu et al., “Stochastic Load Balancing for Virtual Resource
Management in Datacenters,” IEEE Trans. Cloud Computing,
vol. 8, no. 2, 1 April-June 2020, pp. 459–72.

[12] H. Cao et al., “Virtual Resource Allocation for Tactile and
Flexible Services in UAVs-Integrated 5G Networks,” Proc.
IEEE ICC, Dublin, Ireland, 2020, pp. 1–6.

[13] Y. Zhou et al., “Virtual Resource Allocation for Informa-
tion-Centric Heterogeneous Networks With Mobile Edge
Computing,” Proc. IEEE INFOCOM Wksps., Atlanta, GA,
2017, pp. 235–40.

[14] Z. Tan et al., “Virtual Resource Allocation for Heteroge-
neous Services in Full Duplex-Enabled SCNs With Mobile
Edge Computing and Caching,” IEEE Trans. Vehic. Tech., vol.
67, no. 2, Feb. 2018, pp. 1794–1808.

[15] G. Fan et al., “Multi-Objective Optimization of Contain-
er-Based Microservice Scheduling in Edge Computing,”
Computer Science and Info. Systems, 2020, p. 41.

Biographies
Linna Ruan received her B.S. degree from Beijing Informa-
tion Science and Technology University, China. She is current-
ly studying for a Ph.D. degree at Beijing University of Posts
and Telecommunications. Her research interests lie in edge
and cloud computing for power and IoT scenarios, including
resource allocation and service computation offloading.

Shaoyong Guo received his Ph.D. degree from Beijing Univer-
sity of Posts and Telecommunications. He is currently with the
Department of State Key Laboratory of Networking and Switch-
ing Technology. His research interests include blockchain appli-
cation technology, edge computing, and IIoT in energy Internet.

Xuesong Qiu is currently a professor and Ph.D. supervisor with
the State Key Laboratory of Networking and Switching Technol-
ogy, Beijing University of Posts and Telecommunications. He
has authored about 200 SCI/EI index papers. He presides over
a series of key research projects on network management and
edge computing.

Luoming Meng graduated from Tsinghua University in 1987.
He is a professor and Ph.D. supervisor. He is the Director of
the Communications Software Technical Committee of China
Institute of Communications and the Chairman of the National
Network Management Standards Study Group.

Shuang Wu is a senior engineer and the deputy general manag-
er of Ningxia Xintong Network Technology Co., Ltd. His current
research interests lie in construction, and operation and man-
agement of power information and communication systems.

Rajkumar Buyya is a Redmond Barry Distinguished Professor
and director of the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory at the University of Melbourne, Australia.
He is a highly cited author in computer science and software
engineering worldwide (hindex=148, g-index=320, 115100+
citations). For further information, please visit: www.buyya.com.

