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Abstract
In-network computing indicates the conver-

gence of computing and network, which can be 
further considered as computing-based network-
ing and network-enabled computing, from which 
comes the edge in-network computing paradigm. 
In this newly proposed paradigm, the comput-
ing, caching, and communication resources are 
deployed on in-transit edge nodes, such as rout-
ers or switches; hence, services are provided 
with less delay and energy consumption by the 
deep aggregation of edge-side resources. How-
ever, open challenges still exist in dealing with 
heterogeneous resource sharing, scheduling, and 
ensuring credibility of service processing. Given 
this background, this article aims to address the 
edge-side heterogeneous resource trust man-
agement in multi-domain scenarios. A multi-do-
main heterogeneous resource trust management 
architecture is first constructed to achieve trust-
ed resource sharing and transaction. Then, under 
the proposed architecture, a smart-contract-based 
resource sharing mechanism is formulated, includ-
ing an incentive mechanism based on end-side 
node contribution. Furthermore, a differential-evo-
lution-enabled containerized microservice orches-
tration algorithm is finally designed to minimize 
operation delay and load imbalance during the 
container deployment. The application of this plat-
form in a highly elastic power grid scenario has 
been tested as an example.

Introduction
In-network computing achieves higher attention 
in both the network and computing areas, where 
network devices are endowed with computing 
capability, compared to only being in charge 
of transferring data in the traditional form [1]. 
The primary force of this change is to integrate 
resources within the network to reduce the cost 
of task processing. Following this trend, the edge 
in-network computing paradigm has emerged 
and is increasingly adopted. In contrast to in-net-
work computing, it specifically refers to resource 
integration at the edge, which means integration 
of the computing, caching, and communication 
resources between terminals and the remote 
cloud, providing services with less delay and ener-
gy consumption. This paradigm makes multi-do-
main heterogeneous resource management 

possible and provides a solution for edge nodes’ 
cooperation. It is evolving with the development 
of 5G and 6G and has become a promising trend 
for decentralized latency-sensitive applications. 
However, as the edge nodes are geographically 
distributed and have limited capabilities, the col-
laborative management of edge-side resources 
mainly faces two challenges:
•	 The trust assurance of multi-domain resource 

integration
•	 The overall schedule of heterogeneous and 

geographically distributed edge resources
Luckily, cutting-edge technologies such as block-
chain can help meet these challenges, although 
there are still limitations in the related research. 

For the first challenge, blockchain is integrated 
in edge computing, to ensure trustworthiness and 
traceability. In [2], J. Feng et al. used blockchain 
to establish a distributed, tamper-proof digital led-
ger to ensure data security, and optimized the 
design of blockchain and mobile edge computing 
(MEC) collaboratively. A blockchain-based mobile 
edge computing (B-MEC) framework for adaptive 
resource allocation and computation offloading in 
wireless networks is proposed in [3], using block-
chain to provide management and control func-
tions, and smart contract to execute computation 
tasks automatically. Similarly, [4] proposed a sim-
plified but effective framework named FogBus for 
facilitating end-to-end IoT-fog (edge)-cloud inte-
gration. However, most of the work only focus 
on information trustworthiness, ignoring the trust 
issues in the resource allocation process.

For the second challenge, there are some 
ongoing research works on the design of block-
chain-based resource management framework. 
In [5], a blockchain-based trusted decentralized 
resource management framework was proposed 
to solve the problem of energy consumption in 
data centers. In [6], Y. He et al. proposed a gen-
eral framework for IoT scenarios. In addition, they 
realized the machine learning algorithm A3C with 
a smart contract in a private blockchain network. 
Taking incentives and cross-server resource alloca-
tion into consideration, [7] employed blockchain 
technology to maintain a tamper-proof ledger 
database. The resource allocation procedure was 
executed as a smart contract in blockchain, ensur-
ing secure, fair cross-server resource allocation. 
In [8], a blockchain-enabled decentralized self-or-
ganized trading platform for Industrial Internet 
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of Things (IIoT) devices was constructed. More-
over, it adopted Stackelberg game to describe the 
interaction between the cloud provider and min-
ers. However, these works omitted the challenge 
brought by the heterogeneity of resources. Such 
methods and metrics are adopted to address this 
problem [9, 10]. In [9], the elastic regression tree 
is combined with sample information to allocate 
heterogeneous computing resources. Reference 
[10] utilized data fusion, combined with non-or-
thogonal multiple access (NOMA), successive 
interference cancellation (SIC), and beamform-
ing techniques to allocate power and spectrum 
resources to heterogeneous devices. Besides 
these methods, virtual technology, widely referred 
to as network function virtualization (NFV), is also 
adopted to cope with resource heterogeneity 
[11–14]. In this way, the difference brought by 
varying dedicated hardware can be regarded, and 
the end-edge resource is integrated as a resource 
pool. However, these works have not taken the 
trust challenge into consideration.

In accordance with the discussions above, the 
existing work to a great extent might be able to 
figure out one of the two challenges at once. 
Compared to these, this article discusses both the 
aforementioned challenges in the context of edge 
in-network computing meeting blockchain, real-
izes deep aggregation of network resources, and 
provides an architecture to guide multi-domain 
heterogeneous resource sharing and scheduling. 
The main contributions of this article therefore 
can be considered as follows:
•	 A multi-domain heterogeneous resource 

trust management (MHRTM) architecture is 
constructed where consortium blockchain 
is adopted to ensure the information trust-
worthiness as well as transaction traceability, 
and virtual technology supports multi-domain 
resource management. To the best of our 
knowledge, this is the first architecture that 
addresses heterogeneous resource trust man-
agement under the background of block-
chain meeting edge in-network computing.

•	 A smart-contract-based incentive mechanism 
for edge-side resource sharing is formulated. 
Terminals are encouraged to share resourc-
es under the condition of fair revenue dis-
tribution. Honest information submission is 
guaranteed by contribution-based reward. 
Furthermore, performance analysis on four 
aspects is included.

•	 A differential evolution (DE)-enabled contain-
erized microservices orchestration algorithm 
is designed to provide decisions on microser-
vices deployment while minimizing process-
ing delay and load imbalance. As a result, 
resources are packed as containers with spe-
cific functions, and the heterogeneity can be 
regarded.

Architecture for the Trusted Edge Network
The MHRTM platform is shown in Fig. 1. It is 
divided into three layers: end-edge device layer, 
heterogeneous edge resource integration layer, 
and decentralized application layer. Blockchain 
is used to ensure the information credibility as  
well as transaction traceability, while the hetero-
geneous resource integration is implemented by 
virtual technology.

In the designed edge in-network computing 
paradigm, each intra-domain device and inter-do-
main router are mapped as virtual nodes and 
form a virtual network with specific functions. 
These virtual networks are further abstracted as 
virtual nodes, where the function of blockchain is 
deployed. Considering scenarios with controllable 
access, the nodes are connected to form a con-
sortium blockchain, which shows higher efficiency 
than the private chain and is more flexible than 
the public chain. Resource information of termi-
nals, edge nodes, and network nodes, such as 
routers and service models, are uploaded to the 
blockchain to ensure the credibility and traceabil-
ity. Furthermore, heterogeneous resource sched-
uling and benefit distribution are implemented 
on the basis of virtual technology and incentive 
mechanism.

Resource management is divided into resource 
sharing and resource scheduling processes, which 
are solved by a smart contract-based incentive 
mechanism and a DE-enabled containerized 
microservice orchestration algorithm in this arti-
cle. Decentralized applications (DApps), such as 
intelligent inspection, demand-side management 
(DSM), and virtual/augmented reality are support-
ed by the proposed resource management solu-
tion, which is carried out in the following sections.

The Workflow of the Resource  
Trust Management Process

The procedure of resource trust management 
is shown in Fig. 2. It can be divided into four 
parts: device registration, service request, service 
provision, and incentives for resource sharing. 
Consider a request submitted by a data service 
subscriber (DSS); the transaction procedure can 
be described as follows.

Device Registration
Edge network devices and end devices are 
abstracted as nodes and belong to different 

FIGURE 1. Multi-domain heterogeneous resource trust management (MHRTM) 
architecture.
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domains in the system. Through virtualization, 
the resources of nodes in a domain can be inte-
grated, and these nodes are regarded as virtu-
al nodes, where the functions of blockchain are 
deployed, such as participating in the consensus 
process, generating blocks, and maintaining the 
blockchain. End nodes participate in resource 
sharing through a smart-contract-based incentive 
mechanism, which is detailed later.

Back to the registration procedure. When a 
virtual node applies to join the system, it needs 
to upload its registration information to the block-
chain, including the node ID, its location informa-
tion and the amount of resources the nodes in the 
domain are willing to share. The shared resources 
in this article include computing, communication, 
and caching resources of devices. Furthermore, 
the computing resources refer to logical comput-
ing capability, parallel computing capability, and 
neural network acceleration capability.

After receiving the registration request from 
the virtual node, the smart contract will verify it. 
If the request is approved, the system will return 
a confirmation message (including the account 
information of the virtual node that initiated the 
request) and write the registration information 
to the blockchain in the form of transactions. 
Since the resources that nodes can share will be 
affected by their own needs, except for the fixed-
time information submission required, the system 
allows nodes to actively submit their resource sta-
tus. 

In order to ensure normal operation of the sys-
tem, after virtual nodes complete the registration 
of identities and resources, the system will give 
them a certain amount of digital currency as start-
up money. When nodes in the system need to 
share resources, they use the money to purchase 

resources. Since the currency issued can only be 
used in the system and cannot be exchanged for 
actual legal currency, a rational node will maintain 
the work of the system to protect its digital cur-
rency from losing value, enhancing the robustness 
of the system to some extent.

The registration of devices and resources is the 
basis for resource allocation. By writing the regis-
tration information on the blockchain, the trace-
ability and tamper-proofing of the registration 
information are ensured. However, the authen-
ticity of the registration information has not been 
guaranteed, which can be solved by the incentive 
mechanism based on the contribution described 
in the next section.

Service Request
When a DSS in the system initiates a resource 
sharing request, the system will verify and decide 
whether to approve it according to the price and 
account balance. 

The specific steps are as follows.
Step 1: The DSS initiates a resource sharing 

request to the smart contract and submits the 
request information, including identity information 
of the DSS and the specific requirements. 

Step 2: The system executes the DE-enabled 
containerized microservice orchestration algo-
rithm to obtain the resource allocation decision. 
The resource scheduling algorithm will then guide 
tasks allocation according to the resources of 
each virtual node in the edge network, and the 
virtual nodes will accept them by default.

Step 3: The system calculates the price of this 
request according to the unit price of resourc-
es, and the amount and usage time of resources. 
Then the virtual node inquires about the balance 
of the DSS. If the balance is enough for this 
request, the resource sharing process continues.

Step 4: The system returns the resource alloca-
tion decision to the DSS.

Step 5: The system freezes part of the DSS’s 
assets as the deposit of this process.

Step 6: The DSS records the information of 
this process as a transaction and submits it to 
blockchain.

Step 7: The system verifies trading information 
and conducts a consensus process.

Step 8: The system sends the transaction num-
ber to the DSS and virtual nodes for block prop-
agation.

By executing the resource scheduling algo-
rithm based on DE, the platform can provide per-
sonalized resource scheduling service for the DSS 
according to the resource request. The specific 
implementation of the algorithm is detailed below. 
According to the result of the resource scheduling 
algorithm, the platform calculates the price of this 
request and decides whether to provide resource 
scheduling service for the DSS according to its 
balance. According to the price, a portion of the 
DSS’s funds is frozen, which means it still belongs 
to the DSS but is unavailable in the execution of 
the resource request, thereby guaranteeing the 
benefit of the resource provider.

Service Provision
Through the resource scheduling algorithm intro-
duced below for resource allocation, virtual nodes 
are selected for resource sharing. The blockchain 

FIGURE 2. The procedure of resource trust management.
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sends the resource sharing requests to the select-
ed virtual nodes according to the scheduling deci-
sion. Through container creation and migration, 
the DSS acquires the resources it requests. Since 
the available resources of the selected virtual 
nodes change after each sharing, they upload and 
update the resource information to the block-
chain.

As one of the core technologies of blockchain, 
the consensus mechanism ensures the consisten-
cy of the distributed ledger, which is the basis for 
the safe and reliable service provision in a block-
chain network. In this article, scenarios with con-
trollable access are considered; hence, we use the 
consortium blockchain to support the distributed 
heterogeneous resource trust management plat-
form, and realize the multi-domain trusted sched-
uling and sharing of resources. As a simple and 
effective consensus algorithm, the Raft consensus 
algorithm is chosen to alleviate the computing 
and communication burden. Raft is a non-Byzan-
tine fault-tolerant consensus algorithm, which is 
mainly implemented by leader election and log 
synchronization. The leader election is triggered 
by the heartbeat mechanism. Once a leader node 
is elected, the client’s requests will be executed, 
and the follower nodes will copy logs safely until 
the next round begins. The maximum number of 
fault-tolerant failure nodes of the Raft algorithm is 
(N – 1)/2, where N is the total number of nodes 
in the cluster. Compared to consensus mecha-
nisms such as proof of work (PoW) and proof of 
stake (PoS), the communication complexity of the 
Raft algorithm is O(n), which greatly saves nodes’ 
computing and communication resources.

Incentives for Resource Sharing
When a service is completed, the DSS releases 
the resources it acquired before, and the selected 
virtual nodes update their resource information 
again. The DSS sends service feedback to the 
blockchain, triggering the smart-contract-based 
incentive mechanism. Blockchain will distribute 
the incentives according to each virtual node’s 
contribution and unfreeze the remaining deposit.

Smart-Contract-Based Incentive Mechanism 
For Edge-Side Resource Sharing

Edge-side resource virtualization is the basis for 
resource sharing and scheduling. Considering 
the limited capability of edge nodes, containers, 
which represent the operating system (OS)-lev-
el virtualization, are formulated instead of the 
hardware-level virtualization, acknowledged as 
virtual machines (VMs). The specific procedure 
is depicted in Fig. 3. As shown, the resources of 
terminals and edge devices in each domain are 
virtualized from computing and caching aspects. 
Then, following the resource scheduling decision 
made by edge nodes that received services, con-
tainers are created by the docker. Each contain-
er corresponds to a microservice. Afterward, the 
containers will migrate to the node that received 
the request, and after the  service is completed, 
the smart-contract-based incentive mechanism 
for resource sharing is triggered and executed 
automatically.

Edge-Side Resource Incentive Mechanism Based on 
Contribution

In this article, both the edge nodes and the end 
nodes are considered as selfish. Every node hopes 
to get higher profits by providing more resources, 
so their behaviors are similar and still regarded as 
one virtual node in the incentive mechanism to 
ease analysis. The smart contract will be triggered 
when the virtual node that uploads a resource 
sharing request submits service feedback to the 
blockchain, and the incentive mechanism will be 
automatically executed according to the evalua-
tion results of nodes’ contributions. In this article, 
we only consider the situation in which the total 
available resources in the system can meet the 
requirements of resource sharing requests.

When a resource sharing request is approved, 
the smart contract will call the resource sched-
uling algorithm to allocate resources and send 
a resource sharing request to the related nodes. 
Then the smart contract will reward every virtual 
node that participates in the sharing process. In 
order to reward nodes fairly and reasonably, an 
incentive mechanism based on nodes’ contribu-
tions is proposed. The reward obtained by each 
node hinges on whether it is honest, the amount 
of resources it provides, and the usage time and 
unit price of resources, which can be calculated 
by multiplying the average selling price of resourc-
es by a credit factor defined as follows.

If a node is honest and can provide enough 
resources according to the resource sharing 
request made by the system, its credit factor is 
1, and the system provides rewards to the node 
according to the average selling price of the 
resources. However, if a node is dishonest and 
cannot provide enough resources according to 

FIGURE 3. Container-based edge-side resource virtualization.
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the requests issued by the system, its credit factor 
is smaller than 1, calculated by the ratio of the 
actual amount of resources provided by the node 
to the amount of resources it registered in the 
system. In this situation, the reward will be less. 
The unit price of resources is reached by all the 
parties before the resource allocation process. In 
order to ensure that a node can afford the request 
it initiated, the deposit that it needs to offer is cal-
culated according to the average selling price of 
the required resources.

Performance Analysis
The Algorithm Satisfies the Truthfulness: Partici-
pants will not benefit from lying. In the resource 
scheduling strategy, we take the resource that a 
virtual node owns as a constraint rather than an 
optimization objective. Hence, the resource allo-
cation strategy has no direct relationship with the 
resource amount owned by each node. Report-
ing more resource than actually owned will not 
increase the opportunity of a node to be selected 
in resource sharing.

We assume that the virtual nodes are ratio-
nal but selfish, and they will not report less 
resources than they are willing to share. Under 
this assumption, the possible strategies adopted 
by virtual nodes can be divided into two types: 
honest report, where the amount of resources it 
registered is the same as the real value; and false 
report, where the amount of resources it regis-
tered is more than the real value.

In this article, resources are directly allocat-
ed to the requesting node through virtualization, 
and the system will issue incentives to each vir-
tual node according to the resources it actual-
ly provides, so it is meaningless for virtual nodes 
to falsely report the amount of resources they 
are willing to provide. Moreover, the credit fac-
tor is added to the incentive mechanism. If a 
node reports falsely and fails to provide sufficient 
resources according to the requirements of the 
system, the reward will be less. It is obvious that 
deception shows no benefits; hence, as a ratio-
nal node, there is no reason to make such false 

behavior.
The Algorithm Satisfies Individual Rationality: 

Each selected resource provider can obtain incen-
tives. Although the amount of incentives that one 
node can get varies with the amount of resources 
it provides, the usage time of the resources, the 
unit price of resources, and whether it is honest, 
the incentives are always non-negative. Hence, 
it is always profitable for nodes to participate in 
resource sharing.

The Algorithm Satisfies Budget-Wise Feasi-
bility: The price of a resource sharing request is 
related to the required amount, usage time, and 
unit price of resources. When a node submits 
a request, the smart contract will calculate the 
price of the request according to the specific 
requirements. If the account balance is lower than 
the budget, the resource request will end, and 
resource sharing operation will not be carried out. 
Since the budget is calculated under the assump-
tion that each node is honest, which means the 
credit factor is set as 1, the actual payment will 
definitely not exceed the price.

The Algorithm Has High Computational 
Efficiency: The time complexity of the incen-
tive mechanism is analyzed. Since the incentive 
obtained by each node is proportional to the 
amount of resources it shares and the usage time 
of the resources, the complexity of the incentive 
algorithm is O(1) when only one virtual node par-
ticipates in the resource sharing process. When n 
virtual nodes participate in the resource sharing 
process in the system, the operations above need 
to be performed n times, so the complexity of the 
incentive algorithm is O(n).

DE-Enabled Containerized Microservice 
Orchestration Algorithm

Virtualization technology and a DE optimiza-
tion algorithm are adopted to support container 
deployment determination, container creation, 
and container migration, as shown in Fig. 4. Con-
sider the case when a request is submitted by 
DSS; the edge-side containerized microservices 

FIGURE 4. Edge-side containerized microservices orchestration architecture.
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orchestration algorithm is then called to realize 
resource scheduling, which takes latency and load 
balance as objectives and computing, caching as 
well as communication resources as constraints. 
It is obviously an NP-hard problem, solved by DE 
as detailed below. The containers will be creat-
ed and then migrate to the edge node that holds 
the request. The request will be finalized with the 
required containers, and the completion status of 
the task will finally be sent to the edge node for 
contribution evaluation.

Problem Formulation
For the sake of simplicity, we assume that each 
DSS only initiates one service request within a 
period of time. Services can be divided into 
microservices, which are carried by containers 
with specific functions. The service is described 
from two aspects: microservice set and depen-
dency relationship between microservices. When 
one microservice needs the results or data of 
another microservice, a relationship is established 
between them. Microservices are directly initi-
ated by users or requested by other users, and 
the resource information of microservices mainly 
includes computing and caching capabilities, in 
which the computing part can be further divided 
into logical computing capability, parallel comput-
ing capability, and neural network acceleration 
capability. The problem is established via three 
models described below.

The network model includes node set (com-
puting and caching capabilities) and link set 
(bandwidth and network distance).

The computing model is used to evaluate load 
balance (measured by the standard deviation of 
computing and caching resources) and network 
transmission delay between microservices, which 
mainly depends on three factors:
•	 Data transmission amount requested 

between two microservice samples
•	 Bandwidth between edge nodes where 

microservice samples are deployed
•	 Network distance

A multi-objective optimization model is estab-
lished, which aims to minimize transmission delay 
and load imbalance. Constraints are set on com-
puting, communication, and caching resources. 
A linear weighting method is used to transform 
multiple objectives into a single objective. Hence, 
decisions on which node each microservice 
should be placed on can be made.

The implementation of the whole orchestration 
process includes container deployment location 
determination, container creation, and container 
migration. We mainly focus on the first part and 
design a containerized microservices orchestra-
tion algorithm as follows.

DE-Enabled Containerized Microservice Orchestration
This is a typical NP-hard problem. Heuristic algo-
rithms are frequently used for this kind of problem 
to give an almost optimal result. DE is a widely 
adopted heuristic algorithm with fast convergence 
speed and accurate results. In this article, an 
adaptive DE-enabled containerized microservice 
orchestration algorithm is designed. The tradition-
al differential evolution based on integers can eas-
ily be premature if the mutation rate is set too 
large, and the global search performance is poor. 

If the mutation rate is set small, the population 
diversity decreases, and the global search perfor-
mance is poor. Adaptive operators can maintain 
diversity in the initial stage and prevent prema-
turity. With the progress, the mutation operator 
decreases to avoid the destruction of the optimal 
solution.

For the treatment of constraints: an idea similar 
to [11] is adopted to separate the fitness function 
from the constraints so that each individual has 
two fitness values. Evaluation criteria is established 
to cross-evaluate the feasible solution and the 
infeasible solution.

Inputs: These are relevant information of 
microservice application, edge node set, group 
capacity, maximum iteration times, shrinkage fac-
tor, and cross probability.

Process: 
•	 Initialize the population.
•	 Judge whether the termination condition is 

met.
•	 If not, perform mutation, crossover, and 

boundary condition processing, calculate the 
objective function, select, and then judge 
whether the condition is met again; If the 
condition is met, the optimal result can be 
obtained.
Output: This comprises decisions on which 

node each microservice should be placed on.

Use Case
A distributed heterogeneous resource trust man-
agement platform is constructed in this article. 
The platform can support multi-domain hetero-
geneous resource trust sharing and microservices 
deployment for scenarios that hold latency-sensi-
tive and computation-intensive applications, such 
as smart factories, smart grids, and smart cities. 
These scenarios all require multi-domain informa-
tion interaction and task collaborative processing.

Smart grids, as an emerging trend for energy 
supply and management, hold a huge number of 
terminals and provide energy mainly for residen-
tial, industrial, as well as commercial customers. 
In this article, the highly elastic power grid, as an 
extension of smart grid, cooperates with indus-
tries to indicate different domains and is modeled 
as a use case. Due to the dynamicity of tasks, 
the resource usage of each domain varies a lot. 
However, because of the trust problem and inte-
gration difficulties caused by the heterogeneity 
of resources, it is hard to carry out multi-domain 
resource management. Given this, the proposed 
multi-domain heterogeneous resource trust man-
agement architecture plays the role of a distribut-
ed platform for resource sharing and scheduling, 
enhancing resource efficiency.

An architecture for the test environment 
is constructed in Fig. 5. Since guiding industrial 
users who have high power demand to actively 
participate in load sharing and shifting is the key 
to ensure high elasticity, demand-side manage-
ment (DSM), which enables bidirectional energy 
information interaction, enhances energy usage 
performance further, and proposes real-time 
response requirements, is taken as a representa-
tive application in this part. Refer to the MHRTM 
architecture built previously. DSSs correspond 
to smart grid operators and industrial managers; 
requests correspond to industrial energy service 
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in the  industrial domain; and energy price and 
demand negotiation, and energy usage schedule 
recommendation for the smart grid domain. MEC 
indicates a mobile edge server, while AMI rep-
resents advanced metering infrastructure. Once a 
service request is completed, a smart contract is 
triggered. The DE-enabled containerized micros-
ervices orchestration is used in the smart contract 
to implement microservices deployment, follow-
ing which the containers with specific functions 
are created and finally migrate to the target edge 
node. The heterogeneous resources of the power 
grid and industry domains are virtualized and 
managed by the proposed platform, where block-
chain, as a supportive technology, ensures trusted 
resource sharing.

A test environment is established in a province 
of China. Response delay is tested for demand 
bidding service while processing by end nodes, 
edge nodes, and integrated end-edge nodes. 
These two groups in Fig. 5 represent that differ-
ent volumes of data are contained in the demand 
bidding process, which is an important part of 
DSM for determining who can participate in the 
demand shifting. The result shows that the third 
way (processing with integrated end-edge nodes), 
which was adopted in this article, shows the best 
performance, and its improvement becomes 
more and more obvious with the increase of num-
ber of participants. While the end nodes have lim-
ited processing capability, when it increases, the 
response delay increases exponentially. The test 
result verified the efficiency of the MHRTM archi-
tecture in reducing delay.

Conclusion
In this article, a multi-domain heterogeneous 
resource trust management architecture is pro-
posed to address challenges when edge in-net-
work computing meets blockchain. Blockchain is 

adopted for trusted resource sharing and transac-
tion, while virtual technology is used to mitigate 
the heterogeneity of multi-domain resources, with 
a DE algorithm to support resource scheduling. A 
use case is provided to depict the application of 
the proposed solution for energy scenarios.

The proposed solution is still suffering from its 
own limitations. Each microservice is served by 
one container in this article, while the situation 
where a microservice corresponds to multiple 
containers should also be addressed. Further-
more, the architecture design may require some 
adjustments according to the scope of domains. 
There are more situations to discuss, and various 
use cases are also expected.
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