
1

EdgeShield: Enabling Collaborative DDoS
Mitigation at the Edge

Xiaoyu Xia, Member, IEEE , Feifei Chen, Senior Member, IEEE , Qiang He, Senior Member, IEEE , Ruikun
Luo, Bowen Liu, Caslon Chua, Rajkumar Buyya, Fellow, IEEE , and Yun Yang, Senior Member, IEEE

Abstract—Edge computing (EC) enables low-latency services by pushing computing resources to the network edge. Due to the
geographic distribution and limited capacities of edge servers, EC systems face the challenge of edge distributed denial-of-service
(DDoS) attacks. Existing systems designed to fight cloud DDoS attacks cannot mitigate edge DDoS attacks effectively due to new
attack characteristics. In addition, those systems are typically activated upon detected attacks, which is not always realistic in EC
systems. DDoS mitigation needs to be cohesively integrated with workload migration at the edge to ensure timely responses to edge
DDoS attacks. In this paper, we present EdgeShield, a novel DDoS mitigation system that leverages edge servers’ computing
resources collectively to defend against edge DDoS attacks without the need for attack detection. Aiming to maximize system
throughput over time without causing significant service delays, EdgeShield monitors service delays and migrates workloads across an
EC system with adaptive mitigation strategies. The experimental results show that EdgeShield outperforms state-of-the-art solutions by
27.17%-78.55% in terms of system throughput and 58.12%-66.00% in terms of service delays.

Index Terms—Edge computing, DDoS attack, mitigation.

✦

1 INTRODUCTION

Edge Computing (EC) offers groundbreaking opportuni-
ties for workload management, which has been intensively
studied in cloud computing [31], [35]. Figure 1 illustrates an
EC system comprised of four edge servers that may receive
both benign and attack workloads from nearby users in a
metropolitan area, e.g., smart web cameras, autonomous
vehicles, etc. These devices may offload workloads onto
nearby edge servers for processing with low service la-
tency [26]. Furthermore, this helps alleviate the traffic bur-
den on the back-haul network [29]. However, the geographic
distribution of edge servers in an EC system raises many
new security issues. In particular, a distributed denial-of-

• X. Xia is with the School of Computing Technologies, RMIT University,
Australia. E-mail: xiaoyu.xia@rmit.edu.au.

• F. Chen is with the School of Information Technology, Deakin University,
Australia. E-mail: feifei.chen@deakin.edu.au.

• Q. He is with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, School of Computer Science and
Technology, Huazhong University of Science and Technology, China,
and also with the Department of Computing Technologies, Swinburne
University of Technology, Melbourne, VIC 3122, Australia. E-mail:
hqiang@hust.edu.au.

• R. Luo is with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, School of Computer Science and
Technology, Huazhong University of Science and Technology, China. E-
mail: rkluo@hust.edu.cn.

• B. Liu is with the State Key Laboratory for Novel Software Tech-
nology, Nanjing University, China, and iSING Laboratory, The Hong
Kong University of Science and Technology, Hong Kong. E-mail: li-
ubw@smail.nju.edu.cn.

• C. Chua and Y. Yang are with the Department of Computing Technolo-
gies, Swinburne University of Technology, Australia. E-mail: {cchua,
yyang}@swin.edu.au.

• R. Buyya is with the School of Computing and Information Systems, The
University of Melbourne, Australia. E-mail: rbuyya@unimelb.edu.au.

H

H

Edge Server under Attack

Attacker

Fig. 1. An example EC system. The system consists of multiple edge
servers and edge devices such as smart vehicles, smartphones, lap-
tops, etc.

service (DDoS) attack in EC may control a number of devices
to generate attack workloads against edge servers [18].
For example, with Mirai - a malware used to attack web
servers belonging to PayPal, Netflix, Twitter, and Spotify
in 2016, an adversary can control over 400,000 devices as
bots to coordinate a DDoS attack [9]. The rapid growth of
mobile and Web-of-Things (WoT) devices in recent years
significantly increases the number of potential bots that can
be leveraged to attack the edge servers in an EC system.

DDoS attacks against cloud servers have been stud-
ied intensively [1], [3], [37], but not those against edge
servers at the network edge [18]. Many previous studies
have focused on detecting DDoS attacks by differentiating
attack workloads from benign ones [41], [49]. However, it
typically requires long-term workload monitoring, which is
unsuitable in EC systems that often host dynamic and short-
lived services [14] (§2). With virtually infinite resources
available in the cloud, recent DDoS defense mechanisms

2

have employed workload migration to mitigate DDoS at-
tacks, making it a resource competition between the attacker
and the defender [13], [18]. The main idea is to migrate
both benign and attack workloads across autoscaled virtual
machine instances so that they can all be processed timely
with minimum resources without the need for attack detec-
tion [3]. However, compared with powerful cloud servers,
edge servers suffer from constrained resources [8]. They
cannot be autoscaled easily and flexibly like cloud servers to
handle migrated workloads. As a result, they fall victim to
DDoS attacks easily, which can cause significant economic
and societal losses because edge servers usually power crit-
ical applications like autonomous driving [24]. Other cloud
DDoS defense solutions based on traffic scrubbing [13] and
routing orchestration [40] are not practical for EC systems
either because their responses also take seconds to min-
utes. In fact, the slow responses of state-of-the-art DDoS
defense solutions have inspired the new pulse-wave DDoS
attacks [1].

Fortunately, with peer-offloading [8], edge servers in the
same area can communicate with each other and transmit
data efficiently [42]. They can mitigate DDoS attacks col-
laboratively [18]. In fact, even without attacks, jobs often
need to be migrated across edge servers for processing to
utilize their resources collectively [46]. This allows edge
DDoS mitigation to be integrated with job migration co-
hesively without having to turn on edge servers’ intrusive
”defense mode” upon detected attacks. This paper presents
EdgeShield, a novel DDoS mitigation system that leverages
edge servers’ collective resources to mitigate edge DDoS at-
tacks collaboratively without the need for attack detection. It
is designed to maximize system throughput over time while
ensuring low service latency under edge DDoS attacks. The
main contributions include:

• We design EdgeShield to fight edge DDoS attacks
specifically, considering the unique attack characteris-
tics and system characteristics.

• We propose a cumulative delay monitor (CDM) to ensure
low service delay in EdgeShield.

• We design a job completion estimator (JCE) to estimate
job completion times, so that the adaptive time scaler
(ATS) can dynamically adjust the time slot length for
formulating mitigation strategies.

• We design an attack mitigation engine (AME) for formu-
lating mitigation strategies with the support of CDM
and ATS.

• We experimentally evaluate the performance of
EdgeShield and the results demonstrate that
EdgeShield outperforms all benchmark systems
significantly.

2 BACKGROUND AND RELATED WORK

In cloud computing, DDoS attacks have been studied com-
prehensively from various perspectives [36], e.g., detecting
attacks based on attack characteristics [3], mitigating attacks
through job migration mechanisms [13], etc. Edge DDoS
attacks are structurally different from cloud DDoS attacks.
In a cloud DDoS attack, attack workloads usually come from
attackers worldwide [13]. While cloud DDoS attacks usually
target a single server in the cloud, edge DDoS attacks can

target multiple edge servers in the same area at the network
edge, compromising their ability to support each other and
crippling the defense mechanisms deployed at the core
of the internet. In addition, low service latency is a key
feature promised and pursued by EC [15]. To accommodate
edge users’ dynamic demands with low end-to-end latency,
services are often deployed in docker containers on edge
servers for quick starts with minimal overheads [39]. Thus,
edge services are usually short-lived and it is challenging
to monitor their workloads constantly for DDoS attack
detection. Even if constant workload monitoring is possible,
the workload analysis for attack detection usually takes a
long time, up to 15 seconds according to recent studies [49].
Similarly in industry, existing edge DDoS protections are
also based on attack detection, such as Cisco Secure DDoS
Edge Protectionprovided by Cisco, and an edge DDoS solu-
tion called Autonomous Edgeprovided by CloudflareMost
defense mechanisms, including Cisco Secure DDoS Edge
Protection and Autonomous Edge, also take seconds to min-
utes to respond to an attack, which is the major vulnerability
exploited by the new pulse-wave DDoS attack [1]. Given the
need to maintain low service latency for users, edge servers
cannot afford to wait for a long time to receive a detection
result before taking necessary mitigation actions.

Edge servers are especially vulnerable to DDoS attacks
due to the constrained resources which can be rapidly
exhausted by an edge DDoS attack [8]. A straightforward
solution is to offload the workloads to the cloud. However,
many users would experience high service latency, which
conflicts with their low latency requirement for edge ser-
vices. Fortunately, edge servers can share their resources
through the high-speed communication links connecting
them [8] to perform various tasks. The workloads on
edge servers under an edge DDoS attack can be offloaded
to nearby edge servers for processing. In this way, the
edge servers can mitigate such DDoS attacks collectively.
This is the key idea of existing edge DDoS mitigation
approaches [18], [20], [48]. In [20], SecEG is proposed to
defend against the edge DDoS attack by implementing a
queueing theory model for resource allocation on edge
servers. In addition, SecEG applies the anomaly detection
way to roughly identify benign and attack workloads, then
isolates the attack workloads in an isolated container. In [18],
the authors propose EDMGame, a game-theoretic approach
designed to mitigate edge DDoS attacks. When an attack
is detected, it kicks in and transfers the workloads of the
affected edge servers to other edge servers for processing.
However, as mentioned earlier, detecting DDoS attacks in
EC systems is a challenging task, which makes it difficult
to implement SecEG and EDMGame in practice. Zhou et
al. [48] introduce a prediction-free online approach (PFO)
by using the resources in both cloud and edge to mitigate
edge DDoS attacks to balance the workloads mitigated
to edge servers and remote cloud. However, the above-
mentioned approaches aim to maximize the current system
throughput without considering system performance over
time, suffering from poor performance against continuous
DDoS attacks (§5).

Integrating edge DDoS mitigation with runtime job mi-
gration can 1) ensure low service latency by fast responses;
and 2) alleviate the need for DDoS attack detection. This mo-

3

tivates the design of EdgeShield. Please note that edge DDoS
mitigation is fundamentally different from conventional
load balancing. Load balancing aims to achieve vastly differ-
ent goals, e.g., fair workload distribution, equal remaining
capacities, etc., with “evenness” as a key objective [47]. To
mitigate edge DDoS attacks, EdgeShield tries to fully utilize
the capacities of edge servers close to the edge servers under
attack.

3 EDGE DDOS MITIGATION PROBLEM

In EC, devices can submit attack or benign workloads to
nearby edge servers with latency constraints. When an edge
DDoS attack occurs, adversaries generate and submit a large
volume of jobs to target edge servers as attack workloads.
As discussed in §2, the accurate and timely detection of edge
DDoS attacks is difficult. Fortunately, the resources on edge
servers can be shared to collaboratively process workloads.
Thus, collaboration among edge servers is critical to miti-
gating edge DDoS attacks. The notations and symbols used
in this paper are summarized in 1.

TABLE 1
Summary of Notations

Notation Description
cti,r resource r needed by job jti in time slot t
ct,am,r amount of available resource r on edge server

sm in time slot t
r resource r
R set of resources
LCM cumulative service delay over time
Lt

CM cumulative service delay by a time slot t
lt,Ei latency constraint for jti in time slot t
lti actual service latency of jti
M number of edge servers
S set of edge servers
sm mth edge server
t time lot t ∈ T
T set of time
J set of jobs over time
Jt set of jobs in time slot t
jti ith job in time slot t
σt mitigation strategy for time slot t
σt
i,m binary value indicating whether job jti is

allocated to sm in time slot t

System Throughput. Given M edge servers in an EC sys-
tem, denoted by S = {s1, ..., sm, ..., sM}, and jobs arrived
in time slot t ∈ T , denoted by J t, the objective of the
edge DDoS mitigation problem is to maximize the system
throughput for migrating the stress of an edge DDoS attack.
This is quantified by the number of benign jobs processed
during the mitigation process. In time slot t, the sys-
tem throughput can be formulated by

∑
jti∈Jt

B

∑
sm∈S σt

i,m,
where J t

B is the set of newly arrived benign jobs in time slot
t and σt

i,m ∈ {0, 1} is the mitigation decision about whether
job jti is allocated to edge server sm in time slot t or not.
If job jti is allocated to edge server sm in time slot t, there
is σt

i,m = 1; otherwise, there is σt
i,m = 0. The mitigation

decisions for all the jobs constitute the mitigation strategy
in time slot t, denoted by σt.

Capacity Constraint. Since each edge server only has a
limited amount of resources, e.g., CPU, GPU, memory,
bandwidth, etc., denoted by R, each type of resource r ∈ R
required by all the jobs newly assigned to an edge server in
any time slot must not exceed its current available resources,
i.e.,

∑
jti∈Jt cti,rσ

t
i,m ≤ ct,am,r,∀sm ∈ S, r ∈ R, t ∈ T , where

cti,r is the amount of resource r ∈ R needed by job jti and
ct,am,r is the available amount of r on edge server sm in time
slot t. Please note that edge servers are heterogeneous in
their resources, as well as their runtime workloads.
Latency Constraint. Each job comes with its own latency
constraint lt,Ei . Thus, jti ’s service latency should be no longer
than lt,Ei . To fulfill this latency constraint, lti ≤ lt,Ei ,∀jti ∈
J t, t ∈ T should be fulfilled, where lti is the actual service
latency for job jti according to the mitigation strategy σt.
Specifically, the service latency is calculated by the data size
of job jti and the allocated bandwidth, such as inter-edge
bandwidth via edge mitigation and cloud-edge bandwidth
via cloud mitigation.
Problem Formulation. The edge DDoS mitigation problem
can be formulated with the aim to maximize the system
throughput over time T , while fulfilling capacity constraint
and latency constraint.
Threat Model. In this study, attackers can coordinate a DoS
attack by sending attack jobs to a subset of edge servers.
However, they cannot gain direct control over edge servers
to sabotage their collaborative defense.

4 EDGESHIELD SYSTEM

4.1 System Overview
Figure 2 overviews an EdgeShield system. Before
EdgeShield runs the attack mitigation engine (AME) to
formulate mitigation strategies to solve the edge DDoS
mitigation problem effectively, it first collects the current
system status, such as the service latency and processing
time of the jobs finished in previous time slots. After that,
the cumulative delay monitor (CDM) calculates the cumu-
lative delay to check the latency constraint and sends the
result to the AME. In this way, EdgeShield keeps the low
service delay in long-term via CDM. In the meantime, the
job completion estimator (JCE) estimates the completion
time of each current job based on the processing time of
completed jobs. Based on JCE’s estimation, the adaptive
time scaler (ATS) decides the time slot length to determine
the timing for running AME. With JCE and ATS, EdgeShield
can utilize available resources effectively with low system
overhead. When the AME starts to formulate the mitigation
strategy, it collects information about new jobs in the time
slot, such as resource demands, latency constraints, and
arrival time. Based on the value of the cumulative service
latency provided by the cumulative delay monitor, the AME
formulates the mitigation strategy to decide where each job
goes, and to which edge server. If the system resources
are insufficient to mitigate all the jobs, the AME mitigates
partial jobs to the remote cloud. We will now introduce
CDM (§4.2), JCE (§4.3), ATS (§4.4), and AME (§4.5) in detail.

4.2 Cumulative Delay Monitor
To maximize system throughput, a straightforward solution
is to process as many jobs as possible without considering

4

EdgeShield

Workloads to
Cloud

Workloads to
Edge Servers

System Status Workloads

Mitigation
Strategy

Job Completion
Estimation (4.3)

Adaptive Time
Scalar (4.4)

Attack Mitigation
Engine (4.5)

§

Cumulative Delay
Monitor (4.2)

§

§

§

Fig. 2. EdgeShield system overview. EdgeShield consists of four main
components, including the cumulative delay monitor (CDM), job com-
pletion estimator (JCE), adaptive time scaler (ATS) and attack mitigation
engine (AME).

their latency constraints. However, this solution may result
in a lot of late job completions and violates the corre-
sponding service level objectives (SLOs). To calculate and
manage the service delay, we introduce the cumulative job
delay, i.e., the total delay in processing all previous jobs.
According to latency constraint in §3, the cumulative service
latency, denoted by LCM , can be calculated by LCM =⌊∑

t∈T

∑
jti∈Jt σt

i,m ·
(
lti−lt,Ei

)⌋
+

. Then, the average service

delay Lavg in an EC system is Lavg = LCM∑
t∈T

∑
jt
i
∈Jt σt

i,m
.

Since EdgeShield aims to eliminate the service latency to
ensure the low latency services in the long-term, this service
delay should eventually converge to 0 over time T , i.e.,
Lavg = 0, t → |T |. However, this requires that the complete
information about system dynamics must be available in
advance, i.e., all the jobs over T and edge servers’ remaining
capacities in every time slot. Unfortunately, it is not realistic
in a real-world EC system where jobs arrive dynamically.

To tackle this challenge, EdgeShield employs a cumula-
tive delay monitor (CDM) to monitor the current cumulative
delay for AME (§4.5). The cumulative delay by a time slot t

can be obtained by Lt
CM =

⌊
Lt−1
CM+

∑
jt−1
i ∈Jt−1 σt

i,m·
(
lt−1
i −

lt−1,E
i

)⌋
+

. The cumulative delay by time slot t is calculated

based on the cumulative delay by time slot t − 1 and the
total job delay in time slot t − 1. This indicates that when
the cumulative delay increases, the value of Lt

CM increases.
When Lt

CM is more than 0, CDM sends this value to the
AME for triggering strategy adjustment (§4.5).

4.3 Job Completion Estimator

As discussed in §4.1, ATS in EdgeShield relies on the esti-
mated completion times of the current jobs. Accurate esti-
mation will contribute to proper utilization of edge servers’
capacities against edge DDoS attacks. Many approaches
have been proposed in recent years to make workload-
related predictions based on machine learning models [19].
However, these approaches are likely to suffer from poor
performance in estimating job completion times for edge
servers. The main reasons are twofold: 1) the user demands

are highly dynamic and often vary drastically across edge
servers [32]; and 2) edge servers’ resources are heteroge-
neous and limited [46]. It is challenging to train a machine
learning model universally suitable for every edge server
in different areas. More importantly, high efficiency and
low overheads in formulating mitigation strategies must be
ensured in the EC environment, while the training process
of a machine learning model is relatively slow [49]. To
tackle those challenges, EdgeShield employs a lightweight
algorithm JCE to estimate job completion times rapidly.

Algorithm 1: Job Completion Estimator (JCE)
Input: the processing time records of the latest

completed jobs on every edge server and the
start time λstar,i of each current job jti

Output: the estimated completion time E[λcomp,i] of
each current job jti

1 for current job jti do
2 read processing time records of similar

completed jobs on edge server sm processing jti
3 find processing time ¯timeproc,m of best matching

workload on sm
4 calculate the ratio αm of the longest job

processing time over ¯timeproc,m according to
the records

5 read job jti ’s elapsed processing time timecurrproc,i

6 if timecurrproc,i ≤ ¯timeproc,m then
7 E[λcomp,i] = λstar,i + ¯timeproc,m

8 else
9 E[λcomp,i] =

λstar,i + rand(timecurrproc,i, αm · timecurrproc,i)

JCE processes the current jobs iteratively. For a current
job jti , JCE obtains the processing time of similar completed
jobs on the edge server processing jti (Line 2). Then, JCE
employs a signature-based prediction method [23] to find
the job most similar to jti in resource demands, and obtains
its processing time ¯timeproc (Line 3). It is possible that jti ’s
elapsed processing time has already exceeded ¯timeproc. In
such cases, JCE also calculates the ratio of the longest job
processing time over ¯timeproc, denoted by αm, for estimat-
ing jti ’s completion time (Line 4). According to jti ’s elapsed
processing time (Line 5), denoted by timecurrproc,i, JCE checks
whether timecurrproc,i is longer than the best matching process-
ing time ¯timeproc (Line 6). If there is timecurrproc,i ≤ ¯timeproc,
JCE assigns ¯timeproc as the estimated completion time of jti
(Line 7), assuming that job jti ’s processing time is similar
to the best matching job previously completed on the same
edge server. If jti ’s elapsed processing time is already longer
than ¯timeproc, jti is likely to take more time to complete.
In this case, JCE randomly selects an estimated completion
time from 1× to αm× timecurrproc,i for jti (Line 9).

JCE Complexity. Let J t
m,comp denote the number of jobs

completed on edge server sm in time slot t. In this case, the
computation complexities of Line 2 and Line 3 in time slot t′

are O(
∑

t∈t′ J
t
m,comp). Since the computation complexities

of Lines 4-9 are always constant, i.e., O(1), the average

complexity of JCE over time is O(
∑

t∈T Jt
m,comp

T) ≈ O(|J|
MT).

5

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
Estimation Error ()

0.0

0.5

1.0

1.5

2.0

2.5

Sy
st

em
 T

hr
ou

gh
pu

t 1e4
100% accurate

Fig. 3. System throughput v.s. estimation error (θ) on 20 edge servers
over 100 seconds. The experiments were executed under the default
settings presented in §5.1.

Here, We conducted a set of experiments to investi-
gate the impact of JCE’s estimation on EdgeShield’s per-
formance. Aiming for high efficiency and low overheads,
JCE may not always be able to estimate job completion
times accurately. Inaccurate estimation may mislead ATS in
determining the right timing for mitigation strategy formu-
lation. We conducted a set of experiments to investigate the
impact of JCE’s inaccurate estimation on the performance of
EdgeShield. In the experiments, we manually fed incorrect
estimates of job completion times to ATS. The estimation
error (θ) ranges from -0.5 to 0.5 in steps of 0.1. For example,
if the actual completion time of a job is 200ms, an estimate
with a -0.5 error is 100ms, and an estimate with a 0.5
error is 300ms. We ran the experiments under the default
settings presented in §5.1. Figure 3 illustrates the results.
Unsurprisingly, EdgeShield achieves the highest system
throughput when the estimates of job completion times are
always accurate (θ = 0), with a 13.28% advantage over the
worst case (θ = 0.5). Figure 3 shows that the performance
of EdgeShield decreases with the increase in estimation
error (|θ|). In addition, Table 2 also summarizes the estima-
tion errors of JCE under five attack distributions including
sinusoidal distribution (SINUS), exponential distribution
(EXPO), poisson distribution (POISS), gamma distribution
(GAMMA) and pulse-wave distribution (PW), during the
experiments in §5.3. The results demonstrate that JCE’s θ is
ranged from 0.2 to 0.4 under various attacks. Please note
that once a more accurate estimator is available, EdgeShield
can directly integrate it to improve the performance.

TABLE 2
JCE’s average estimation error (θ) under five attacks.

SINUS EXPO POISS GAMMA PW
θ 0.25 0.35 0.34 0.18 0.39

4.4 Adaptive Time Scaler
Most existing studies of dynamic problems in cloud com-
puting and EC assume an equal length for all the time
slots and execute algorithms in each time slot. Usually,
job arrivals follow a specific distribution in general, e.g.,
sinusoidal distribution [43], uniform distribution [5], etc.
In this case, job arrivals can be estimated based on the
corresponding distribution. It is reasonable to consider a
fixed length for all the time slots if server capacities are
known. However, an edge DDoS attack does not follow
these distributions because it generates a large volume of

100 1000 10000
Time Slot Length (ms)

0.0

0.5

1.0

1.5

2.0

Sy
st

em
 T

hr
ou

gh
pu

t 1e4

(a) System throughput v.s. |t|

100 1000 10000
Time Slot Length (ms)

0.0

0.5

1.0

1.5

Sy
st

em
 In

sp
ec

tio
n

Ti
m

e
(m

s)

1e4

(b) System inspection time v.s. |t|

Fig. 4. EdgeShield with different fixed time slot lengths |t|.

attack jobs within a short period of time in a geographical
area. When the attack occurs, a fixed time slot length can
easily cause system resource waste because edge servers’
idle resources cannot be utilized timely. Here, we analyze
the disadvantages of fixed-length time slots in two cases
and present the Adaptive Time Scaler as a solution.
Case 1: Short Fixed Time Slots. In this case, small time
slots are considered, e.g., 100ms. With such small time
slots, timely system inspection allows high system resource
utilization and high system throughput when an edge DDoS
attack occurs. For example, running over 100 seconds un-
der the same implementation settings in §5.1, EdgeShield’s
system throughput with different fixed time slot lengths,
i.e., 100ms, 1,000ms and 10,000ms in Figure 4(a). EdgeShield
with 100ms time slots achieves the highest system through-
put, i.e., processing 0.16× and 10.01× more jobs than
EdgeShield with 1,000ms and 10,000ms time slots. As dis-
cussed in §4.1, EdgeShield needs to inspect the system
status before formulating the mitigation strategy. Frequent
inspections will consume more time overall. As shown in
Figure 4(b), the total time for EdgeShield to inspect the
system status with 100ms time slots is 18,393ms during
an edge DDoS attack, higher than 7,361ms with 1,000ms
time slots and 5,146ms with 10,000ms time slots. This indi-
cates that frequent system status inspection consumes edge
servers’ bandwidth, slows down the mitigation process, and
increases service latency.
Case 2: Long Fixed Time Slots. In this case, large time slots
are considered, e.g., 10,000ms. Most jobs can be processed
within one time slot. This often leads to system resources’
under-utilization because a lot of resources remain idle
before the next time slot. This is evidenced by the low
system throughput presented in Figure 4(a) when the time
slot length is 10,000ms.

As discussed above, the time slot length significantly
impacts the performance of EdgeShield in mitigating an
edge DDoS attack. Unfortunately, it is impossible to find
an optimal time slot length without all the job and sys-
tem information over time, even without the DDoS attack.
EdgeShield employs an Adaptive Time Scaler (ATS) algo-
rithm to adjust the time slot length. Its pseudo code is
presented in Algorithm 2.

At the beginning, ATS checks the current time slot length
denoted by It, and the end of the current time slot denoted
by λt. ATS also inspects whether any jobs have been finished
and how many jobs have been offloaded to the remote
cloud. If no jobs have been finished or more than half of
new jobs have been offloaded to the remote cloud, ATS

6

Algorithm 2: Adaptive Time Scaler (ATS)

Input: current time slot length It and It’s end
timestamp λt

Output: next time slot length It+1

1 if no jobs have been finished or more than half of new jobs
have been offloaded to the remote cloud in time slot t then

2 It+1 = It

2

3 else
4 obtain the median value E[λcomp,medi] from the

estimated completion times of all the current jobs
and the median ratio
αmedi = median{αm|∀sm ∈ S} by JCE, where αm

is the ratio of the longest job processing time over
the average job processing time on edge server sm

5 if E[λcomp,medi]− λt ≥ It · αmedi then
6 It+1 = It · αmedi

7 else
8 if E[λcomp,medi]− λt ≥ It

αmedi
then

9 It+1 =
max{E[λcomp,medi]−λt,It}

αmedi

10 else
11 It+1 = It

αmedi

reduces the length of the next time slot It+1 to It

2 (Line
2). This is because the current jobs’ processing time has
exceeded a time slot and they are likely to be finished soon.
If there are finished jobs, ATS executes JCE to estimate the
current jobs’ completion times and computes the ratio α
on each edge server. Then, ATS obtains the median value
E[λcomp,medi] of all the estimated completion times and
the median value αmedi of the ratios (Line 4). Next, ATS
uses the median value of the estimated remaining time
E[λcomp,medi]− λt to determine the length of the next time
slot It+1. When this median value is higher than αmedi×
It, it indicates that most of the current jobs are likely to
be finished after running over a period of αmedi× It time.
As observed in Figure 4(a), a longer time slot will lower
the system throughput. Thus, ATS sets the length of the
next time slot to αmedi× It in this case (Line 6). When
E[λcomp,medi] − λt is in the range of [1

αmedi
, αmedi] × It,

ATS sets It+1 =
max{E[λcomp,medi]−λt,It}

αmedi
to leverage the

advantages of a short time slot while avoiding excessively
long system inspection time (Line 9). For the same reason,
when E[λcomp,medi] − λt is lower than It

αmedi
, ATS sets

It+1 = It

αmedi
(Line 11).

ATS Complexity. According to Algorithm 2, the
average computation complexity of Line 1 is

(
∑

t∈T

∑
sm∈M Jt

m,comp

T) = O(|J|T). The computation
complexity of Line 4 is O(

∑
sm∈S 1 · |J|

TM), given the O(|J|
MT)

complexity of JCE. In addition, the computation complexity
of Lines 5-11 is O(1). Thus, the computation complexity of
ATS is max{O(|J|T), O(

∑
sm∈S 1 · |J|

TM)} = O(|J|T).
To evaluate the performance of ATS in the EdgeShield

system, we implement an implementation of EdgeShield
without ATS, named EdgeShield−ATS , as a benchmark sys-
tem in §5.2. According to Figure 4, 1,000ms is a proper time
slot length for EdgeShield−ATS . Thus, we set the time slot
length to 1,000ms in the evaluation.

4.5 Attack Mitigation Engine
Edge servers are geographically distributed [7] and remote
control from the cloud introduces significant delays in their
responses to DDoS attacks [46]. Edge servers must coordi-
nate to mitigate edge DDoS attacks collaboratively. A series
of game-theoretic approaches have been designed to enable
collaboration among edge servers [12], [18]. They require up
to hundreds of communication rounds among edge servers
to make a major decision. Even with a small EC system,
this can lead to a high delay in edge DDoS mitigation
and edge servers cannot act until the mitigation strategy
is formulated. To tackle this challenge, EdgeShield employs
a global algorithm named AME (Attack Mitigation Engine)
to migrate all the jobs, benign or attack.

Algorithm 3: Attack Mitigation Engine (AME)
Input: system information, new jobs, and current

jobs in time slot t
Output: the mitigation strategy σt

1 normalize all the jobs’ resource requirements based
on the remaining resources in the system

2 sort all the jobs in ascending order of required
resources based on the Euclidean norm

3 obtain the cumulative delay Lt
CM by current time

slot t from CDM
4 L′t

CM =
Lt

CM

2
5 for each sorted job jti do
6 if no available edge server within jti ’s latency

constraint lt,Ei then
7 offload jti to the remote cloud

8 else
9 if L′t

CM > 0 then
10 offload jti to the edge server sm with the

minimum service latency lti,m
11 L′t

CM = L′t
CM − (lti − lt,Ei,m)

12 else
13 offload jti to the edge server sm with the

most available resources based on the
Euclidean distance between normalized
resource requirements of jti and
normalized available resources on sm

After ATS outputs the time slot length for the next time
slot, AME runs at the end of the next time slot and collects
system information as its input. AME migrates jobs heuristi-
cally, aiming to mitigate an edge DDoS attack. To maximize
system throughput, AME needs to sort the jobs by the
amount of required resources in ascending order. However,
a job normally requires multi-dimensional resources, e.g.,
CPU and memory. Thus, before the sorting process, all the
resource requirements are normalized based on the remain-
ing system resources (Line 1). For example, let us assume
that a job requires 0.2GB memory while the total remaining
memory in the system is 10GB. It is normalized to 0.02.
After that, we can sort all the jobs based on the Euclidean
norm over all the resource dimensions (Line 2). The job
requiring the least resources is migrated for processing first.
Then, AME receives the cumulative service latency Lt

CM

7

from CDM and assigns the value of Lt
CM

2 to L′t
CM (Lines

3 - 4). Reducing the cumulative delay to 0 in one time slot
may require migrating many jobs to the remote cloud. Thus,
AME will try to reduce the cumulative delay by half. Next,
AME migrates the sorted jobs iteratively (Lines 6 - 13) based
on the value of L′t

CM . In each iteration, AME first checks
whether there is an edge server with sufficient resources
for processing job jti with a latency constraint lt,Ei (Line 6).
Since the latency between edge servers may vary over time,
we use the latency obtained in the previous time slot here. If
no edge servers have sufficient resources due to the resource
limit or exhaustion, this job is migrated to the remote cloud
for processing (Line 7). Otherwise, this job is migrated to a
suitable edge server depending on the value of L′t

CM (Lines
9 - 13). When L′t

CM > 0, the cumulative delay is overly large.
In this case, AME migrates the job to the edge server with
the minimum service latency lt,Ei,m (Lines 10). Then, AME
deducts the value of L′t

CM by the reduced delay compared
to jti ’s latency constraint lt,Ei (Line 11). When L′t

CM is equal
to or less than 0, AME migrates the job to the edge server
with the most available resources (Line 13).

AME Complexity. Since AME needs to sort the jobs in Line
2, the computation complexity of Line 2 depends on the
selected sorting algorithm. In the implementation, the merge
sort is adopted in this paper, and its computation complex-
ity is O(|J|T · log |J|

T). For the iteration process in Lines 5-
13, the computation complexity is O(|J|T · M). Thus, the
computation complexity of AME is O(|J|T ·max{M, log |J|

T }).
Since the complexities of JCE and ATS are O(|J|

MT)

and O(|J|T), respectively, the complexity of EdgeShield is
max{O(|J|

MT), O(|J|T), O(|J|T · max{M, log |J|
T })} = O(|J|T ·

max{M, log |J|
T }), same as the complexity of ATS.

Remark. Once the attack detection is available, attack de-
tection can complement EdgeShield by reducing the work-
loads transferred across edge servers. For example, high-
risk workloads can be discarded immediately to reduce the
overall system resources needed to mitigate an edge DDoS
attack and to decrease the average service latency.

4.6 System Deployment
4.6.1 Leader Election
A conventional way to deploy EdgeShield is to run ev-
erything on a remote cloud server, including the CDM,
JCE, ATS and AME. However, the high end-to-end network
latency between the edge and the cloud will inevitably
slow down EdgeShield’s responses to edge DDoS attacks.
The remote cloud server may also become a performance
bottleneck or a potential vulnerability. For example, targeted
attacks may be launched against the cloud server running
EdgeShield to delay or block its communication with edge
servers.

As discussed in §3, in the defense against an edge DDoS
attack against edge servers in an area, EdgeShield leverages
the resources available on other edge servers in the same
area to ensure that benign jobs can be processed under
corresponding latency constraints. Taking this into account,
EdgeShield can be deployed on a specific edge server in the
area to coordinate the edge servers’ fight against an edge

DDoS attack. This approach has been widely adopted to
solve various problems at the edge, including the state-of-
the-art solution to edge DDoS mitigation [18].

However, the edge server selected as the leader may also
create a performance bottleneck and is potentially subject to
targeted attacks. To tackle it, in each time slot, EdgeShield
runs a secret election process to identify leaders to formulate
mitigation strategies. Inspired by Algorand [16], the election
process employs the bilinear mapping function (BMF) [2]
and verifiable random function (VRF) [27] to protect an
elected leader against targeted attacks by hiding its identity
until it announces the mitigation strategy. A brief introduc-
tion to BMF and VRF can be found in §A.

In each time slot t, every edge server will implement
the mitigation strategy σt received from the leader and
set a timeout based on the length of the current time slot
determined by the leader’s ATS. Then, they will broadcast
their workload information, including the completion times
of their jobs in the current time slot, the requirements for
their ongoing and new jobs, and the processing time of their
ongoing jobs. Upon receiving the workload information
from other edge servers, they run the AME to formulate
a new mitigation strategy σt+1. Next, they participate in
the election process for time slot t + 1, which goes through
two main phases, i.e., leadership bidding and leadership
verification.

Leadership Bidding. To bid for leadership, every edge
server sm runs the VRF to create its own bid bidm =<
tagkeypri,m

(seed), valuekeypri,m
(seed), keypub,m, σt+1

m >,
where keypri,m and keypub,m are private and public keys
of m, and seed is a random seed in VRF. When the timeout
elapses, sm sends its bid to other edge servers.

Leadership Verification. When an edge server sn receives
a bid, say bidm, it verifies the correctness of bidm with the
BMF. If sn receives multiple correct bids, it accepts the one
with the lowest VRF value, say, bidc, and implements the
corresponding mitigation strategy σt+1

c .
Deployed on all the edge servers, EdgeShield eliminates

the performance bottleneck created by a fixed leader, as well
as the single-point failures. In each time slot, every edge
server will formulate a mitigation strategy. The mitigation
does not rely on any individual edge server. A potential
drawback is the increasing communication overheads when
the system scales up. Fortunately, it is difficult, if not im-
possible, to coordinate an edge DDoS attack against a large
number of edge servers in an area because they are only
accessible from within their serving areas [18].

4.6.2 Security Analysis
In the EC environment, edge servers are more vulnera-
ble due to their limited resource. In practice, mitigation
strategies may fail when the leader becomes unavailable
or overwhelmed during targeted attacks. In each time slot,
a leader is elected in EdgeShield and an edge server can
infer whether it is elected as a leader by inspecting the
received bids without a voting process. Since the VRF value
is randomly generated based on a random seed, it is com-
putationally difficult for adversaries to calculate other edge
servers’ VRF values. In this way, the attacker cannot identify
the leader until its mitigation is released and the leadership

8

Attacked

Leader

Edge Server

Edge Server

Edge Server

VRF value =
0001

VRF value
= 2012

VRF value
= 1803

VRF value
= 3714

VRF value =
0201

Mitigation
Strategy

(a) Non-leader under attack

Edge Server

Attacked

Leader

Edge Server

Edge Server

VRF value =
0001

VRF value
= 2012

VRF value
= 1803

VRF value
= 3714

VRF value =
0201

Mitigation
Strategy

(b) Leader under attack

Fig. 5. System under a targeted attack.

can be protected from targeted attacks. Compared with
Raft [28], the overhead of this leader election mechanism is
significantly lower, thanks to its independence of a Raft-like
voting process.

However, adversaries can still launch edge DDoS attacks
targeting more edge servers, regardless of whether they
function as a leader or not. In fact, EdgeShield can protect
the entire system from targeted attacks in three general
cases, as shown in Figure 5:
• Case 1: Non-leader edge servers are under attack. In this

case, the mitigation strategy formulated by the leader will
be implemented in the system for the edge servers in the
system to mitigate the attack collectively.

• Case 2: The leader is under attack. The leader, the edge
server with the lowest VRF value, may be slowed down or
overwhelmed. In this case, another leader election process
kicks off after a leader timeout, similar to Raft [28]. In this
way, the mitigation strategy formulated by the new leader
will be acknowledged and implemented in the system
for the edge servers in the system to mitigate the attack
collectively.

• Case 3: Both the leader and non-leader edge servers
are under attack. In this case, the mitigation strategy
formulated by the new leader will be acknowledged and
implemented, same as Case 2.

According to the above analysis, EdgeShield possesses
the capability to formulate mitigation strategies to defend
against edge DDoS attacks no matter the leader edge server
is specifically targeted or not. EdgeShield’s effectiveness and
efficiency in devising such strategies are key strengths that
contribute to its resilience in protecting EC systems from
edge DDoS attacks.

5 EVALUATION

To evaluate EdgeShield, we implement a prototype and con-
duct intensive experiments to answer the following research
questions:
• Q1 Performance. Is EdgeShield capable of mitigating

different types of DDoS?
• Q2 Scalability. Does EdgeShield scale?
• Q3 Robustness. How does EdgeShield accommodate

DDoS attacks of different intensities?
• Q4 Overhead. Is the overhead of EdgeShield acceptable?

5.1 Environment Setup
Implementation. The prototype of EdgeShield is imple-
mented on an EC system comprised of 30 edge servers

At
tac

k w
ork

loa
ds

T i m e s t a m p
(a) SINUS

At
tac

k w
ork

loa
ds

T i m e s t a m p
(b) EXPO

At
tac

k w
ork

loa
ds

T i m e s t a m p
(c) POISS

A
tta

ck
 w

or
kl

oa
ds

Timestamp
(d) Gamma

A
tta

ck
 w

or
kl

oa
ds

Timestamp
(e) PW

Fig. 6. DDoS attack patterns

running Ubuntu 16.04. Each edge server is equipped with
2, 4 or 8 vCPUs and 4, 8, 16 or 32 GB memory, the same
as the edge servers provided by AWS Wavelength. Adjacent
edge servers are linked based on their locations according
to a given edge density, i.e., the number of links per edge
server in the EC system. An r6g.12xlarge EC2 running
Amazon Linux 2 with 48 vCPUs and 384 GB memory is
deployed in Amazon’s cloud as the cloud server. The inter-
edge bandwidth is set as 1Gbps, same as the settings in [22],
to ensure that the mitigation process is not throttled by the
cloud server.

By default, EdgeShield is installed on 20 edge servers
with an edge density of 2.0, and 6 of these edge servers
are under attack. In the scalability and robustness tests (§5.4
and §5.5), the edge density, the number of edge servers and
the edge DDoS attack intensity are varied to create various
edge DDoS scenarios and EC system structures to evaluate
the impacts of system scalability and system robustness.
As discussed in §4.4, we set the time slot length to 1,000
milliseconds and run each experiment over 100 seconds.
On average, each job, benign or attack, requires 0.20 CPUs
and 0.66GB memory. We ran a stress test and found that
on average, an edge server can process at most 20 jobs
simultaneously. Accordingly, the number of new benign jobs
arriving on an edge server in each time slot is randomly
selected following the normal distribution N(20, 1).

Job Generation. In the experiments, benign and attack
jobs are generated based on resource usages/requirements
obtained from the widely-used Alibaba Cluster Trace Pro-
gram1 [25]. We generate job information like job processing
time by YCSB [10] for 200,000 jobs with arrival timestamps
and edge server IDs. In the experiment, we randomly se-
lect edge servers from this synthesized dataset. Five typ-
ical types of attacks are launched, following the patterns
shown in Figure 6, including the sinusoidal distribution
(SINUS) [6], [38], exponential distribution (EXPO) [11],
[33], poisson distribution (POISS) [45], gamma distribution
(GAMMA) [34] and pulse-wave distribution (PW) [1]. As
discussed in §2, the volume of an edge DDoS attack is
much smaller than conventional cloud DDoS attacks. In

1. https://github.com/alibaba/clusterdata

9

0 5 10
Time (x104)

0.0

0.5

1.0

1.5

2.0
Sy

st
em

 T
hr

ou
gh

pu
t 1e4

(a) System throughput
under SINUS attack

0 5 10
Time (x104)

0.0

0.5

1.0

1.5

2.0

Sy
st

em
 T

hr
ou

gh
pu

t 1e4

(b) System throughput
under EXPO attack

0 5 10
Time (x104)

0.0

0.5

1.0

1.5

2.0

Sy
st

em
 T

hr
ou

gh
pu

t 1e4

(c) System throughput
under POISS attack

0 5 10
Time (x104)

0.0

0.5

1.0

1.5

2.0

Sy
st

em
 T

hr
ou

gh
pu

t 1e4

(d) System throughput
under GAMMA attack

0 5 10
Time (x104)

0.0

0.5

1.0

1.5

2.0

Sy
st

em
 T

hr
ou

gh
pu

t 1e4

(e) System throughput
under PW attack

0 5 10
Time (x104)

0

2

4

6

8

Se
rv

ice
 D

el
ay

 (m
s)

1e2
EdgeShield
EdgeShield ATS
EDMGame
PFO
SecEG
HWS

(f) Service delay under SI-
NUS attack

0 5 10
Time (x104)

0

2

4

6

8
Se

rv
ice

 D
el

ay
 (m

s)

1e2
EdgeShield
EdgeShield ATS
EDMGame
PFO
SecEG
HWS

(g) Service delay under
EXPO attack

0 5 10
Time (x104)

0

2

4

6

8

Se
rv

ice
 D

el
ay

 (m
s)

1e2
EdgeShield
EdgeShield ATS
EDMGame
PFO
SecEG
HWS

(h) Service delay under
POISS attack

0 5 10
Time (x104)

0

2

4

6

8

Se
rv

ice
 D

el
ay

 (m
s)

1e2
EdgeShield
EdgeShield ATS
EDMGame
PFO
SecEG
HWS

(i) Service delay under
GAMMA attack

0 5 10
Time (x104)

0

2

4

6

8

Se
rv

ice
 D

el
ay

 (m
s)

1e2
EdgeShield
EdgeShield ATS
EDMGame
PFO
SecEG
HWS

(j) Service delay under
PW attack

Fig. 7. System performance under 5 different attacks at 6 random edge servers out of 20 over 100 seconds.

the experiments, an edge DDoS attack lasts 10 time slots,
following the threat model in §3. In each time slot, each
edge server under attack will receive a maximum of 60 jobs
under a SINUS attack, 120 jobs under an EXPO attack, 80
jobs under a POISS attack, 60 jobs under a GAMMA attack
and 70 jobs under a PW attack. Our stress test revealed that
those attack jobs can easily exhaust an edge server.

The dataset synthesized in the experiments has been
published2 for the validation and reproduction of experi-
mental results.

5.2 Benchmark Systems
To evaluate EdgeShield, five benchmark systems are imple-
mented for comparison.
• EdgeShield−ATS : This approach is a variant of

EdgeShield without ATS.
• EDMGame [18]: In each time slot, EDMGame finds a

Nash equilibrium as the mitigation strategy. The optimiza-
tion objective is to minimize the overall mitigation cost,
calculated based on the service latency and the penalty
of unprocessed jobs. Unlike EdgeShield, EDMGame is
activated when an edge DDoS attack is detected, which
is impractical in real-world scenarios as discussed in §2.
Thus, in the experiments, EDMGame runs in every time
slot to formulate a mitigation strategy for both benign and
attack jobs.

• PFO [48]: In each time slot, PFO first inspects the current
system status and the information about newly arrived
jobs. After that, it heuristically migrates those newly ar-
rived jobs to edge servers with the minimum cost consist-
ing of the mitigation cost and the processing cost as its
final strategy in the current time slot. In our experiment,
the cost is measured by the time taken for mitigation and
processing. To facilitate a fair comparison, PFO employs
the same leadership mechanism as EdgeShield (§4.6) for
system deployment.

• SecEG [20]: SecEG implements a lightweight anomaly
detection based on the Poisson distribution. In each time

2. https://anonymous.4open.science/r/dataset-7B08

slot, SecEG first inspects the current edge server status
and the information about newly arrived jobs on this
edge server. Then, SecEG implements the detection and
separates the jobs into two categories including whitelist
and greylist. After that, SecEG allocates the available
resources on an edge server equally to the jobs on the
whitelist and greylist. SecEG migrates the jobs that cannot
be executed on edge servers to the remote cloud.

• HWS [26]: In each time slot, HWS first finds a
set of available mitigation strategies based on the
Karush–Kuhn–Tucker (KKT) conditions [17], aiming to
maximize the system throughput without considering the
service delays. After that, HWS selects the mitigation
strategy that utilizes the available resources on edge
servers with the minimum service delay as its final strat-
egy in the current time slot. Similar to PFO, HWS also
employs the leadership mechanism presented in §4.6 for
system deployment.

5.3 Overall Performance

The performance of EdgeShield is evaluated under five
typical types of edge DDoS attacks, including SINUS-based,
EXPO-based, POISS-based, GAMMA-based and PW-based
edge DDoS attacks. The results answer Q1.

Under SINUS-based edge DDoS attacks, Figure 7(a)
and Figure 7(f) show that EdgeShield achieves the highest
system throughput and the lowest service delay. In terms
of system throughput, EdgeShield has a 27.94% advantage
over EdgeShield−ATS , 135.73% over EDMGame, 144.46%
over PFO, 183.79% over SecEG and 207.43% over HWS. It
can also be seen that the system throughput achieved by
EdgeShield is continuously higher than that achieved by
other approaches over time. Figure 7(f) demonstrates that
the service delay in EdgeShield is much lower than those
in other systems. In fact, EdgeShield is the only system that
manages to converge the service delay to 0 under SINUS
attacks. Figure 7(b) and Figure 7(g) show that EdgeShield
can mitigate EXPO attacks, and outperform benchmark
systems with large margins. Specifically, its system through-

10

2.0 2.4 2.8 3.2 3.6 4.0
Edge Density

0.5

1.0

1.5

2.0
Sy

st
em

 T
hr

ou
gh

pu
t 1e4

(a) System throughput v.s. edge
density

10 15 20 25 30
System Size

1

2

3

Sy
st

em
 T

hr
ou

gh
pu

t 1e4
EdgeShield
EdgeShield ATS
EDMGame
PFO
SecEG
HWS

(b) System throughput v.s. sys-
tem size

Fig. 8. System scalability

put is 1.48×, 2.51×, 2.94×, 3.08× and 3.58× achieved by
EdgeShield−ATS , EDMGame, PFO, SecEG and HWS, re-
spectively. Again, EdgeShield is the only system that fulfills
the long-term latency constraint Lavg = 0, t → |T | under
EXPO attacks.

With similar performance and advantages over bench-
mark systems, Figure 7(c), Figure 7(h), Figure 7(d), Fig-
ure 7(i), Figure 7(e) and Figure 7(j) show that EdgeShield can
mitigate POISS, GAMMA and PW attacks effectively. Under
POISS, GAMMA and PW attacks, EdgeShield achieves an
average of 1.51×, 1.28× and 1.20× system throughput
achieved by EdgeShield−ATS , 2.38×, 2.12× and 1.96×
achieved by EDMGame, 2.85×, 2.60× and 2.28× achieved
by PFO, 2.98×, 2.78× and 2.46× achieved by SecEG, and
3.49×, 3.14× and 2.87×of achieved by HWS, respectively.
This demonstrates the superior performance of EdgeShield
in mitigating edge DDoS attacks. In Figure 7, POISS attacks
are the most difficult to be mitigated. Under POISS attacks,
all five systems achieve the lowest throughput. However,
the advantages of EdgeShield under POISS attacks are the
most significant among all five DDoS attacks.

In summary, EdgeShield excels in mitigating edge DDoS
attacks. It can mitigate all five typical types of edge DDoS
attacks effectively with similar performance. In the remain-
der of this section, we illustrate and analyze its performance
under SINUS attacks for demonstration purposes.

5.4 System Scalability

In practice, scalability is a crucial concern - EdgeShield
must be able to scale with system size, which is the first
scalability dimension. As discussed and illustrated in §1,
an EC system is comprised of multiple connected edge
servers. Their connectivity, often measured by the average
number of edges per edge server, plays a crucial role in the
performance of the system, particularly when edge servers
need to collaborate. With a high edge density, edge servers
can seek help from more edge servers under the latency
constraint while fighting an edge DDoS attack. Similar to
many studies [18], [21], [30], [44], we vary the edge density
(measured by the number of links per edge server) from 2.0
to 4.0 in steps of 0.4 and the system size (measured by the
number of edge servers in the system) from 10 to 30 in step
5 to investigate the scalability of EdgeShield. The results in
Figure 8 answer Q2.

Figure 8(a) shows the results when varying the edge
density from 2.0 to 4.0. EdgeShield achieves the highest

2 4 6 8 10
Attack Intensity

1.0

1.5

2.0

2.5

Sy
st

em
 T

hr
ou

gh
pu

t 1e4
EdgeShield
EdgeShield ATS
EDMGame

PFO
SecEG
HWS

(a) System throughput

4 6 8 10
Attack Intensity

0

2

4

6

8

Sy
st

em
 T

hr
ou

gh
pu

t
De

cr
ea

se

1e2
EdgeShield
EdgeShield ATS
EDMGame

PFO
SecEG
HWS

(b) Throughput decrease

Fig. 9. System robustness against attack intensity

system throughput again, with a 34.16% advantage over
EdgeShield−ATS , 136.62% over EDMGame, 149.76% over
PFO, 175.17% over SecEG and 206.18% over HWS. Fig-
ure 8(b) reveals that EdgeShield again outperforms all other
systems with significant margins. On average, its system
throughput is 40.37% higher than EdgeShield−ATS , 139.58%
higher than EDMGame, 153.80% higher than PFO, 181.40%
higher than SecEG and 208.69% higher than HWS. With the
increase in system size from 10 to 30, the system through-
put achieved by EdgeShield, EdgeShield−ATS , EDMGame,
PFO, SecEG, and HWS also increases by 196.15%, 189.65%,
102.40%, 97.09%, 112.41%, and 95.15%, respectively. We can
see that EdgeShield scales with system size and can properly
leverage the increase in system resources to mitigate edge
DDoS attacks.

As shown in Figure 8, EdgeShield outperforms other
comparison systems in scalability, evidenced by its much
higher system throughput, as well as faster system through-
put increases, compared with the other five approaches.

5.5 System Robustness
An edge DDoS attack tailored specifically for EdgeShield
can be performed against multiple nearby edge servers si-
multaneously, making it difficult for edge servers to mitigate
the attack collaboratively. Here, we vary the attack intensity,
i.e., the number of attacked edge servers from 2 to 10 in steps
of 2, to investigate the performance of EdgeShield under
more powerful edge DDoS attacks. The results answer Q3.
As shown in Figure 9(a), EdgeShield significantly outper-
forms the other five comparison systems again in terms
of system throughput. The average system throughput of
EdgeShield is 27.56% higher than EdgeShield−ATS , 121.35%
higher than EDMGame, 136.35% higher than PFO, 159.64%
higher than SecEG, and 189.85% higher than HWS. To
evaluate the robustness of EdgeShield against such attacks,
Figure 9(b) compares the system throughput when more
than two edge servers are under attack versus when two
edge servers are under attack. When the attack intensity
increases from 2 to 8, the volume of attack jobs decreases
correspondingly. Some of the extra attack jobs will be
processed by edge servers with available resources, which
decreases the system throughput. This is consistent with
Figure 9(a).

5.6 System Overhead
System overhead is an important metric to evaluate the
performance of edge DDoS mitigation. System overhead

11

TABLE 3
System overheads (in milliseconds) under SINUS attack.

System System Size Edge Density System Robustness
OPS MR

∑
OPS OPS MR

∑
OPS OPS MR

∑
OPS

EdgeShield 50 464 23,204 45 432 19,463 58 417 24,051
EdgeShield−ATS 126 100 12,587 135 100 13,513 161 100 16,084

EDMGame 4,584 100 458,393 5,738 100 573,750 6,693 100 669,329
PFO 127 100 12,712 143 100 14,269 154 100 15,383

SecEG 93 100 9,931 79 100 7,910 106 100 10,631
HWS 145 100 14,523 48 127 12,738 184 100 18,417

The lowest values in each column are highlighted in grey. OPS (Overhead per Strategy) is the average time taken to formulate a
mitigation strategy. MR is the number of mitigation runs.

∑
OPS is the overall time taken to formulate all the mitigation strategies.

is measured by the time taken to formulate mitigation
strategies. A system that takes a long time to formulate a
mitigation strategy is impractical for mitigating edge DDoS
attacks in real-world scenarios. In particular, if a system
freezes in one of the time slots, the delay caused will cascade
to subsequent time slots because the jobs arriving in these
time slots will also be delayed. This will increase the service
delay profoundly.

Table 3 summarizes the average system overheads in
experiments for evaluating system scalability (§5.4) and
system robustness (§5.5), and answers Q4.. EdgeShield takes
the least time to formulate an individual mitigation strategy.
EDMGame and EdgeShield−ATS take the most time and
second most time. We investigated and found the reason.
When a lot of jobs arrive during an edge DDoS attack,
EdgeShield employs ATS to reduce the time slot length.
The jobs will be migrated and processed in small batches,
making it easier for AME to formulate mitigation strate-
gies, one for each batch. This lowers EdgeShield’s system
overhead in a single time slot. However, EdgeShield−ATS

does not have the support of ATS, and formulates mitigation
strategies for large job batches, which take more time than
small job batches tremendously. As a result, EdgeShield
formulates many more mitigation strategies over the same
period of time to mitigate edge DDoS attacks in a fine-
grained manner. EDMGame applies the potential game
theory in its algorithm and requires hundreds of rounds
with information communication and exchange among edge
servers. Thus, communication time contributes a significant
component to the overhead. SecEG incurs the least system
overheads. This comes from the absence of collaborations
among edge servers. However, its absence of collabora-
tions is also the reason why SecEG achieves the second
poorest performance in terms of system throughput and
service delay. Overall, EdgeShield incurs the least system
overheads in formulating an individual mitigation strategy,
taking 63.74%, 99.10%, 63.92%, 44.96%, and 59.42% less time
than EdgeShield−ATS , EDMGame, PFO, SecEG, and HWS,
respectively. This demonstrates the low system overhead of
EdgeShield.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed EdgeShield, a novel system that
mitigates edge DDoS attacks without the need for attack
detection. By adjusting the time slot length adaptively and
triggering strategy adjustments on demand, EdgeShield can

leverage edge servers’ resources collectively to mitigate
edge DDoS attacks effectively and efficiently. It outperforms
all benchmark systems significantly with a 27.17%-78.55%
system throughput gain over the state-of-the-art solution
and a 58.12%-66.00% service delay reduction with accept-
able system overheads. As part of future work, we will
investigate the potential vulnerabilities of EdgeShield and
explore corresponding defense mechanisms.

REFERENCES

[1] A. G. Alcoz, M. Strohmeier, V. Lenders, and L. Vanbever,
“Aggregate-based congestion control for pulse-wave DDoS de-
fense,” in ACM SIGCOMM Conference, 2022, pp. 693–706.

[2] P. S. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient algo-
rithms for pairing-based cryptosystems,” in Annual international
cryptology conference. Springer, 2002, pp. 354–369.

[3] A. Bremler-Barr, E. Brosh, and M. Sides, “DDoS attack on cloud
auto-scaling mechanisms,” in IEEE Conference on Computer Com-
munications. IEEE, 2017, pp. 1–9.

[4] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and ef-
ficient asynchronous broadcast protocols,” in Annual International
Cryptology Conference. Springer, 2001, pp. 524–541.

[5] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using ARIMA model and its impact on cloud applica-
tions’ QoS,” IEEE transactions on cloud computing, vol. 3, no. 4, pp.
449–458, 2014.

[6] H. Chen, Y. Chen, D. H. Summerville, and Z. Su, “An optimized
design of reconfigurable PSD accelerator for online shrew DDoS
attacks detection,” in 2013 Proceedings IEEE INFOCOM. IEEE,
2013, pp. 1780–1787.

[7] J. Chen and X. Ran, “Deep learning with edge computing: A
review.” Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[8] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading
for energy-constrained mobile edge computing in small-cell net-
works,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp.
1619–1632, 2018.

[9] C. Cimpanu, “You can now rent a Mirai botnet of 400,000 bots,”
http://www.bleepingcomputer.com/news/security/you-can-
now-rent-a-mirai-botnet-of-400-000-bots/, 24 Nov. 2016.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings
of the ACM symposium on Cloud computing, 2010, pp. 143–154.

[11] H. M. Demoulin, I. Pedisich, N. Vasilakis, V. Liu, B. T. Loo, and
L. T. X. Phan, “Detecting asymmetric application-layer denial-of-
service attacks in-flight with finelame,” in 2019 USENIX Annual
Technical Conference, 2019, pp. 693–708.

[12] Y. Ding, K. Li, C. Liu, and K. Li, “A potential game theoretic
approach to computation offloading strategy optimization in end-
edge-cloud computing,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 33, no. 6, pp. 1503–1519, 2021.

[13] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and elastic DDoS defense,” in USENIX Security Symposium, 2015,
pp. 817–832.

12

[14] P. K. Gadepalli, G. Peach, L. Cherkasova, R. Aitken, and G. Parmer,
“Challenges and opportunities for efficient serverless computing
at the edge,” in 38th Symposium on Reliable Distributed Systems.
IEEE, 2019, pp. 261–2615.

[15] N. Garg, M. Sellathurai, V. Bhatia, B. Bharath, and T. Ratnarajah,
“Online content popularity prediction and learning in wireless
edge caching,” IEEE Transactions on Communications, vol. 68, no. 2,
pp. 1087–1100, 2019.

[16] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,”
in Symposium on Operating Systems Principles, 2017, pp. 51–68.

[17] G. Gordon and R. Tibshirani, “Karush-kuhn-tucker conditions,”
Optimization, vol. 10, no. 725/36, p. 725, 2012.

[18] Q. He, C. Wang, G. Cui, B. Li, R. Zhou, Q. Zhou, Y. Xiang,
H. Jin, and Y. Yang, “A game-theoretical approach for mitigating
edge DDoS attack,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 4, pp. 2333 – 2348, 2022.

[19] Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang, “Characterization
and prediction of deep learning workloads in large-scale GPU
datacenters,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp.
1–15.

[20] H. Huang, T. Meng, J. Guo, X. Wei, and W. Jia, “Seceg: A secure
and efficient strategy against ddos attacks in mobile edge comput-
ing,” ACM Transactions on Sensor Networks, vol. 20, no. 3, pp. 1–21,
2024.

[21] Y. Huang, Y. Zeng, F. Ye, and Y. Yang, “Fair and protected profit
sharing for data trading in pervasive edge computing environ-
ments,” in IEEE Conference on Computer Communications. IEEE,
2020, pp. 1718–1727.

[22] B. Li, Q. He, F. Chen, L. Lyu, A. Bouguettaya, and Y. Yang,
“Edgedis: Enabling fast, economical, and reliable data dissemi-
nation for mobile edge computing,” IEEE Transactions on Services
Computing, 2023.

[23] Y. Li, Y. Chen, T. Lan, and G. Venkataramani, “Mobiqor: Pushing
the envelope of mobile edge computing via quality-of-result opti-
mization,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems. IEEE, 2017, pp. 1261–1270.

[24] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous driv-
ing: Constraints and acceleration,” in International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, 2018, pp. 751–766.

[25] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He,
and C. Xu, “Characterizing microservice dependency and perfor-
mance: Alibaba trace analysis,” in Proceedings of the ACM Sympo-
sium on Cloud Computing, 2021, pp. 412–426.

[26] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service
caching and workload scheduling in mobile edge computing,”
in IEEE INFOCOM 2020-IEEE Conference on Computer Communi-
cations. IEEE, 2020, pp. 2076–2085.

[27] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,”
in 40th Annual Symposium on Foundations of Computer Science.
IEEE, 1999, pp. 120–130.

[28] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 USENIX Annual Technical Conference,
2014, pp. 305–319.

[29] H. Park, S. Zhai, L. Lu, and F. X. Lin, “StreamBox-TZ: secure
stream analytics at the edge with TrustZone,” in USENIX Annual
Technical Conference, 2019, pp. 537–554.

[30] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement
with provable guarantees in heterogeneous edge computing sys-
tems,” in IEEE Conference on Computer Communications. IEEE,
2019, pp. 514–522.

[31] Q. Pei, S. Chen, Q. Zhang, X. Zhu, F. Liu, Z. Jia, Y. Wang, and
Y. Yuan, “Cooledge: hotspot-relievable warm water cooling for
energy-efficient edge datacenters,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2022, pp. 814–829.

[32] J. Peng, Q. Li, X. Ma, Y. Jiang, Y. Dong, C. Hu, and M. Chen,
“Magnet: Cooperative edge caching by automatic content congre-
gating,” in Proceedings of the ACM Web Conference 2022, 2022, pp.
3280–3288.

[33] S. Ranjan, R. Swaminathan, M. Uysal, A. Nucci, and E. Knightly,
“DDoS-shield: DDoS-resilient scheduling to counter application
layer attacks,” IEEE/ACM Transactions on Networking, vol. 17, no. 1,
pp. 26–39, 2008.

[34] A. Scherrer, N. Larrieu, P. Owezarski, P. Borgnat, and P. Abry,
“Non-gaussian and long memory statistical characterizations for
internet traffic with anomalies,” IEEE Transactions on Dependable
and Secure Computing, vol. 4, no. 1, pp. 56–70, 2007.

[35] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini,
“Serverless in the wild: Characterizing and optimizing the server-
less workload at a large cloud provider,” in USENIX Annual
Technical Conference, 2020, pp. 205–218.

[36] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and R. Buyya,
“DDoS attacks in cloud computing: Issues, taxonomy, and future
directions,” Computer Communications, vol. 107, pp. 30–48, 2017.

[37] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and M. Rajarajan,
“Scale inside-out: Rapid mitigation of cloud DDoS attacks,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 6, pp.
959–973, 2017.

[38] C. W. Tan, D.-M. Chiu, J. C. Lui, and D. K. Yau, “A distributed
throttling approach for handling high bandwidth aggregates,”
IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 7,
pp. 983–995, 2007.

[39] Z. Tao, Q. Xia, Z. Hao, C. Li, L. Ma, S. Yi, and Q. Li, “A survey of
virtual machine management in edge computing,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1482–1499, 2019.

[40] M. Tran, M. S. Kang, H.-C. Hsiao, W.-H. Chiang, S.-P. Tung, and
Y.-S. Wang, “On the feasibility of rerouting-based DDoS defenses,”
in IEEE Symposium on Security and Privacy. IEEE, 2019, pp. 1169–
1184.

[41] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “DDoS attack protection
in the era of cloud computing and software-defined networking,”
Computer Networks, vol. 81, pp. 308–319, 2015.

[42] K. Wang, Q. He, F. Chen, C. Chen, F. Huang, H. Jin, and Y. Yang,
“Flexifed: Personalized federated learning for edge clients with
heterogeneous model architectures,” in Proceedings of the ACM Web
Conference 2023, 2023, pp. 2979–2990.

[43] S. Wu, X. Wang, H. Jin, and H. Chen, “Elastic resource provi-
sioning for batched stream processing system in container cloud,”
in Asia-Pacific Web (APWeb) and Web-Age Information Management
(WAIM) Joint Conference on Web and Big Data. Springer, 2017, pp.
411–426.

[44] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
281–294, 2020.

[45] Y. Xiang, K. Li, and W. Zhou, “Low-rate DDoS attacks detection
and traceback by using new information metrics,” IEEE transac-
tions on information forensics and security, vol. 6, no. 2, pp. 426–437,
2011.

[46] L. Yuan, Q. He, S. Tan, B. Li, J. Yu, F. Chen, H. Jin, and Y. Yang,
“CoopEdge: A decentralized blockchain-based platform for coop-
erative edge computing,” in Proceedings of the Web Conference, 2021,
pp. 2245–2257.

[47] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen,
L. Wan, L. Liu, Z. Ding et al., “Tiara: A scalable and efficient
hardware acceleration architecture for stateful layer-4 load balanc-
ing,” in 19th USENIX Symposium on Networked Systems Design and
Implementation, 2022, pp. 1345–1358.

[48] R. Zhou, Y. Zeng, L. Jiao, Y. Zhong, and L. Song, “Online and
predictive coordinated cloud-edge scrubbing for ddos mitigation,”
IEEE Transactions on Mobile Computing, 2024.

[49] L. Zhu, X. Tang, M. Shen, X. Du, and M. Guizani, “Privacy-
preserving ddos attack detection using cross-domain traffic in
software defined networks,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 3, pp. 628–643, 2018.

13

APPENDIX A
BMF AND VRF PROPERTIES

Before presenting the election process in detail, we introduce
the BMF and VRF:
• BMF. EdgeShield employs the BMF to verify the iden-

tities of the participants in the election process. It can
be represented with e(L1,L1) → L2, where L1 and L2

are multiplicative cyclic lists with a large prime order
p. The generator of L1 is denoted with δ. BMF is non-
degenerate, i.e., e(σ, τ) ̸= 1,∀σ, τ ∈ L1. In addition, BMF
fulfills e(σς , τ ϵ) = e(σϵ, τ ς) = e(σςϵ, τ) = e(σ, τ ςϵ) =
e(σ, τ)ςϵ,∀ς, ϵ ∈ Z∗

p.
• VRF. Edge servers run the VRF to generate their bids for

leadership. Given a random seed seed3, an edge server
runs the VRF to generate a private key keypri, a public
key keypub, a tag tagkeypri

(seed) = e(δ, δ)1/(seed+keypri)

and a random VRF value valuekeypri
(seed) =

δ1/(seed+keypri). For valuekeypri
(seed) to be valid,

e(δseed × keypub, tagkeypri
(seed)) = e(δ, δ) and e(δ,

tagkeypri
(seed)) = valuekeypri

(seed) must hold.

3. Many approaches have been developed to generate and distribute
random seed values. EdgeShield adopts the one proposed in [4], which
is also adopted by Algorand [16].

