
The Journal of Systems and Software 152 (2019) 108–119

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

ElasticSFC: Auto-scaling techniques for elastic service function

chaining in network functions virtualization-based clouds

Adel Nadjaran Toosi a , ∗, Jungmin Son

c , Qinghua Chi b , Rajkumar Buyya

c

a Faculty of Information Technology, Monash University, Clayton, Australia
b Wireless Network Research Department, Shanghai Huawei Technologies Co., Ltd., China
c Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia

a r t i c l e i n f o

Article history:

Received 22 October 2018

Revised 20 January 2019

Accepted 25 February 2019

Available online 26 February 2019

Keywords:

Service function chaining

Network functions virtualization

Virtualized network functions

Software defined networking

Auto-scaling

Cloud computing

a b s t r a c t

It is anticipated that future networks support network functions, such as firewalls, load balancers and

intrusion prevention systems in a fully automated, flexible, and efficient manner. In cloud computing en-

vironments, network functions virtualization (NFV) aims to reduce cost and simplify operations of such

network services through the virtualization technologies. To enforce network policies in NFV-based cloud

environments, network services are composed of virtualized network functions (VNFs) that are chained

together as service function chains (SFCs). All network traffic matching a policy must traverse network

functions in the chain in a sequence to comply with it. While SFC has drawn considerable attention, rela-

tively little has been given to dynamic auto-scaling of VNF resources in the service chain. Moreover, most

of the existing approaches focus only on allocating computing and network resources to VNFs without

considering the quality of service requirements of the service chain such as end-to-end latency. Therefore,

in this paper, we define a unified framework for building elastic service chains. We propose a dynamic

auto-scaling algorithm called ElasticSFC to minimize the cost while meeting the end-to-end latency of

the service chain. The experimental results show that our proposed algorithm can reduce the cost of SFC

deployment and SLA violation significantly.

© 2019 Elsevier Inc. All rights reserved.

g

s

s

f

s

R

w

a

f

w

o

p

t

i

t

v
1. Introduction

Network Functions Virtualization (NFV) is an emerging trend

in networking that concerns with migration of network functions

(NFs) such as network address translation (NAT), firewalls, intru-

sion detection systems (IDS) into virtualized environments to re-

duce capital expenditure, simplify operations, and speed up ser-

vice deployment. Traditionally, NFs are embedded on dedicated

hardware devices called middleboxes or network appliances. Even

though, such middleboxes are designed to handle heavy loads effi-

ciently, they require high up-front investment and do not achieve

the elasticity feature of virtualized environments (Pham et al.,

2017). Hence, there is a significant tendency among cloud ser-

vice providers and operators to decouple NFs from their under-

lying hardware and run them on commodity servers (e.g., x86

servers) (Eramo et al., 2017). This tendency has given birth to NFV

technology that converts NFs into virtualized network functions

(VNFs) hosted in virtual machines or containers.
∗ Corresponding author.

E-mail address: adel.n.toosi@monash.edu (A. Nadjaran Toosi).

a

s

a

https://doi.org/10.1016/j.jss.2019.02.052

0164-1212/© 2019 Elsevier Inc. All rights reserved.
Network policies often require those VNFs to be stitched to-

ether as Service Function Chains (SFC) to deliver value-added

ervices or certain network functionality (Pham et al., 2017). To

upply specific requirements, SFC defines a sequence of service

unctions (SF) through which traffic (stream of packets) must be

teered. Note that here SF, NF and VNF are used synonymously.

ecently, the new software defined networking (SDN) technology

hich decouples the data forwarding and network control planes

nd enables the network to become centrally manageable is ef-

ectively exploited in policy enforcement and appropriate SFC for-

arding (Mechtri et al., 2017).

In today’s networks, many applications produce a large volume

f traffic that is required to be processed by SFC. Cloud service

roviders’ goal is to utilize network and host resources optimally

o operate these service chains and provide their associated Qual-

ty of Service (QoS) requirements such as end-to-end latency or

hroughput, while failure to do so results in violation of the ser-

ice level agreement (SLA) (Ghaznavi et al., 2015). The automated

nd efficient NFV management and orchestration is one of the key

olutions to achieve this goal.

Cloud service providers have access to many prominent mech-

nisms and techniques to develop efficient NFV management and

https://doi.org/10.1016/j.jss.2019.02.052
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.02.052&domain=pdf
mailto:adel.n.toosi@monash.edu
https://doi.org/10.1016/j.jss.2019.02.052

A. Nadjaran Toosi, J. Son and Q. Chi et al. / The Journal of Systems and Software 152 (2019) 108–119 109

o

m

b

a

i

h

d

o

V

g

a

m

t

r

v

e

S

c

e

e

s

c

p

f

a

e

g

v

i

p

2

p

c

h

e

m

f

S

F

(

a

d

r

o

v

s

n

e

a

2

n

w

m

v

t

s

b

v

P

t

{
w

s

a

a

L

o

e

s

N

“

e

H

a

i

t

p

(

t

T

f

p

t

A

w

h

s

T

w

i

i

i

o

w

b

W

i

m

d

t

t

f

fi

t

d

1 https://tools.ietf.org/pdf/draft-ietf-sfc-architecture-07.pdf .
rchestration systems that minimizes their operational cost while

eeting SLA requirements. The elasticity feature of VNFs allows for

oth horizontal and vertical scaling of resources in response to vari-

tion in service requests and workload. In horizontal scaling, VNF

nstances can be added or removed, whereas in vertical scaling,

ost and bandwidth can be allocated or released according to on-

emand requests. To the best of our knowledge, this paper is one

f the first attempts to use vertical and horizontal auto-scaling of

NFs at the same time to build elastic service chains. The live mi-

ration of VNFs is another option that would enable consolidation

nd replacement of the VNFs to minimize cost and improve perfor-

ance. For example, a VNF can be migrated to a new host closer

o the traffic source to reduce network delay or a host with more

esidual network bandwidth or computing resources suitable for

ertical auto-scaling. Further, dynamic flow scheduling and traffic

ngineering provides opportunities for flow scheduling to redirects

FC traffic to other paths to gain more network bandwidth or avoid

ongestion.

With this in mind, in this paper, we intend to minimize the op-

rational cost of the cloud computing service provider while the

nd-to-end delay requirements of the service function chains are

atisfied using dynamic auto-scaling of resources in the network

hain. The majority of works in this area focused on the efficient

lacement of VNFs to reduce operational cost and improve the per-

ormance of the chain, for example (Yoshida et al., 2014; Moens

nd Turck, 2014; Wang et al., 2016; Gember et al., 2013; Clayman

t al., 2014). However, they mostly ignore to how provide a strictly

uaranteed SLA to satisfy QoS requirements of the users which is

ery critical to the cloud service providers. There are a few stud-

es, partially similar to our work, that address the auto-scaling and

lacement of VNFs with respect to end-to-end latency (Li et al.,

016; Cziva et al., 2018).

Moreover, to best of our knowledge none of the existing works

roposes a unified method that builds elastic service function

hains with simultaneously considering all of auto-scaling (both

orizontal and vertical), placement, migration and network traffic

ngineering together. To overcome the challenges of building such

ethod, we propose an elastic SFC management and orchestration

ramework and make the following key contributions :

1. Definition of an extended architectural framework and princi-

ples for building elastic service chains in NFV environments,

2. Proposed ElasticSFC, a novel heuristic algorithm for end-to-end

latency-aware dynamic auto-scaling of service function chains

using horizontal and vertical scaling of VNFs and dynamic

bandwidth allocation. In dynamic bandwidth allocation, we use

dynamic flow scheduling and VNF migration to enable efficient

utilization of network resources,

3. Evaluation of the ElasticSFC using realistic network policies

and workload traces of a web application in our extended

CloudSimSDN simulator to support SFC and NFV.

The remainder of this paper is organized as follows:

ection 2 provides a brief background on network polices, Service

unction Chaining (SFC), and Network Functions Virtualization

NFV). In Section 3 , we describe the extended architecture for SFC

nd fundamental principles to build elastic service chains. We

iscuss our choices for building elastic service chains to meet QoS

equirements of users including horizontal and vertical scaling

f service functions, dynamic traffic steering in the network, and

irtualized network function migration in Section 4 . Section 5 de-

cribes our proposed algorithms for dynamic auto-scaling of

etwork service functions. We present performance evaluation and

xperimental results in Section 6 . Section 7 discusses related work

nd finally we conclude our paper in Section 8 .
. Background

Applications in distributed systems have complex commu-

ications patterns sometimes requiring enforcement of net-

ork policies to comply with performance and security require-

ents (Cui et al., 2017). Network policies mandate traffic to tra-

erse a series of network functions (NFs) such as firewalls, proxies,

raffic shapers, load balancers, intrusion detection and prevention

ystems (IDS or IPS). A network policy (shorted as policy here) can

e represented as a flow and a list of NFs the flow needs to tra-

erse, for instance, {Source IP, Source Port, Destination IP, Destination

ort, Protocol} → {Series of NFs} . Sample policy for a web applica-

ion front-end can be configured as:

∗, ∗, LB 1 , 80 , T CP }− > { IDS1 , F 1 } ,
hich implies that all TCP requests from any ports of all clients

ent to the port 80 of the public IP of the front-end load bal-

ncer (LB1) must traverse through intrusion detection system IDS1

nd then firewall F1 before reaching the destination load balancer

B1. The responsibility of an NF is to perform specific treatment

f received packets (e.g., dropping all packets with specific head-

rs in a firewall) where it can act at various layers of the protocol

tack (e.g., at the network layer or other OSI layers). 1 Traditionally,

Fs are typically deployed in the form of “network appliances” or

middleboxes” in which NF software is tightly coupled with propri-

tary hardware that needs to be manually installed and managed.

owever, thanks to the advances in the Network Functions Virtu-

lization (NFV), NFs can be realized as virtual elements embedded

nto Virtual Machines called virtualized network functions (VNFs)

hat alleviate operational challenges of middleboxes and rapid de-

loyment of NFs.

A network policy can be interpreted as a service function chain

SFC) defining an ordered list of service functions (SFs) enforcing

he ordering constraints and steering network flows through them.

he term “service function” is used here to denote a “network

unction” or “virtualized network functions” in the context of this

aper.

We define P = { p 1 , p 2 , . . . } as the set of SFC policies in the sys-

em. An SFC policy p i is defined in the form of { f low → sequence } .
 f low is denoted by a 5-tuple: { src , dst , srcport , dstport , proto },

here src and dst are IP addresses of the source and destination

osts and srcport , dstport are their associated port numbers, re-

pectively. proto represents the protocol type that can be either

CP or UDP. sequence is a list of SFs, { s f 1 , s f 2 , . . . , s f n } , that all net-

ork flows matching the f low section of policy p i must traverse

n the sequence of s f 1 → s f 2 → . . . → s f n . We denote sf 1 and sf n as

ngress and egress service functions, respectively.

SFCs might be unidirectional or bidirectional . Network traffic

n the unidirectional SFC needs to be be forwarded through the

rdered list of SFs in one direction, i.e., s f 1 → s f 2 → . . . → s f n ,

hereas a bidirectional SFC requires the traffic to pass through

oth directions (s f 1 → s f 2 → . . . → s f n and s f n → . . . → s f 2 , → s f 1).

ithout loss of generality, we assume that SFCs are unidirectional

n this paper.

Based on the Internet Engineering Task Force (IETF) model, the

ain component of SFC architecture includes: 1) a classifier that

ifferentiates the traffic flows against the policy and redirects them

o the specific SFC by adding an SFC header, and 2) a Service Func-

ion Forwarder (SFF) that uses the information in the SFC header to

orward packets received from the network to associated SFs. Traf-

c from SFs eventually returns to the same SFF that injects back

raffic onto the network.

A wide range of research work has been conducted on the

esign and development of novel frameworks and techniques for

https://tools.ietf.org/pdf/draft-ietf-sfc-architecture-07.pdf

110 A. Nadjaran Toosi, J. Son and Q. Chi et al. / The Journal of Systems and Software 152 (2019) 108–119

Virtual Network Elements

Service Func�on Chaining Applica�ons

VNF VNF VNF VNF

Physical Infrastructure Resources

re
ll

or
tn

oC
ND

S

Management and Orchestra�on (MANO)

VNF Manager
(VNFM)

Elas�c Service Controller

Flow Scheduling VNF Migra�on VNF Scaling

NFV Orchestrator
(NFVO)

Virtualized
Infrastructure

Manager (VIM)

VNF Manager
(VNFM)

Elas�c Service Controller

Flow Scheduling VNF Migra�on VNF Scaling

NFV Orchestrator
(NFVO)

Virtualized
Infrastructure

Manager (VIM)

CLI APIAPI DashboardCLI API Dashboard

Fig. 1. Service function chaining architecture.

Q

i

s

c

a

T

a

f

i

a

s

t

r

i

e

m

4

s

i

b

m

a

h

t
successful realization of SFC goals. Among these works, consider-

able amount of attention has been given to VNF routing, place-

ment, and consolidation with the aim of decreasing operational

and network communications cost. The VNF placement and consol-

idation problems in NFV environments are very similar to the well-

studied VM placement and consolidation in cloud computing envi-

ronments (Eramo et al., 2017). However, existing works in the VM

management area are not suitable for SFC in their default forms

as they are designed without consideration of the sequencing re-

quirement of service chains (Ghaznavi et al., 2015).

The possibility to dynamically scale network functions in ser-

vice chains at runtime in an automated fashion is an important

area of the research that requires particular attention (Szabo et al.,

2015). Providing elastic networking services is similar to offering

flexible cloud services with the pay-as-you-go cost models. How-

ever, it is far from trivial as it requires careful consideration of the

chain-ordered set of SFs and configuration of virtualized resources

including virtual machines (VMs) and network resources to meet

the demand on the service chain.

One of the main benefits offered by the NFV approach is the op-

portunity to dynamically scale VNFs and the allocated bandwidth

between them to meet the performance requirements of the ser-

vice chain such as throughput or end-to-end latency. As mentioned

earlier, considerable attention in the literature has been given to

the VNF routing, placement, and consolidation which make the

building blocks of elastic service chains. However, holistic auto-

scaling approaches that unify all these advancements and con-

sider scaling for both compute and network resources to meet SLA

requirement of the service chain are not sufficiently investigated

in the current NFV management and orchestration frameworks.

Therefore, this work aims to develop dynamic auto-scaling algo-

rithms to support the construction of elastic service chains meet-

ing the end-to-end delay requirement of users in NFV management

and orchestration frameworks.

3. Service function chaining architecture

In this section, we describe our extended architecture for SFC

and fundamental components to build elastic service chains. With

elastic service function chaining, network service functions can be

dynamically scaled in order to meet QoS requirements of diversi-

fied clients (users).

The proposed architecture, shown in Fig. 1 , includes service

function chaining applications that allow users to composite their

network policies and chain together their required network func-

tion services via a dashboard or command line (CLI) or applica-

tion program (API) interfaces. Central to the architecture is Man-

agement and Orchestration (MANO) module which is in charge of

the orchestration and management of resources and realization of

service chains. The architecture of MANO is aligned with ETSI NFV

architectural framework 2 and has three main functional blocks:

NFV Orchestrator (NFVO), VNF manager (VNFM), and Virtualised

Infrastructure Manager (VIM). NFVM is in charge of NFV lifecy-

cle management including instantiation, scaling and termination of

VNF instances. It maintains the view of the entire virtualization

infrastructure and keeps a record of installed VNFs and available

resources in the physical infrastructure. VIM controls and manage

the compute, storage and network resources within the infrastruc-

ture. NFVO is responsible for lifecycle management of network ser-

vices and policy management for VNF instances.

In this paper, we propose algorithms for building elastic service

chains that are dynamically scaled based on the system load and
2 ETSI GS NFV 002 (V1.1.1): “Network Functions Virtualisation (NFV); Architectural

Framework”.

p

s

a

o
oS requirements of users. Our proposed algorithms are plugged

nto a module of MANO called elastic service controller that is re-

ponsible for auto-scaling of service chains. To build elastic service

hains, we use techniques such as flow scheduling, VNF migration,

nd scaling that are explained in more details in the next section.

o perform its duties, MANO communicates with SDN controller in

 tightly regulated process that ensures proper deployment and

unctioning of service chains. SDN controller is a logically central-

zed component of the system with a general view of the network

nd handles traffic steering according to the requirement of the

ervice function chaining applications. SDN controller uses a pro-

ocol such as OpenFlow to set forwarding rule satisfying routing

equirement of service chains for the virtual and physical switches

n the infrastructure.

In the next section, we focus on the main techniques used by

lastic service controller to dynamically scale service functions to

eet elasticity requirement of service chains.

. Elastic service chaining approach

In this section, we explore a range of possible options including

caling up/down and scaling in/out VNFs, dynamic flow schedul-

ng, and VNF migration to allocate required processing power and

andwidth to build elastic service chains meeting QoS require-

ents. Please note that the majority of software-based network

ppliances are CPU intensive and unlikely to be memory and disk

eavy. Hence, we only focus on the processing power of VNFs and

he network bandwidth between them that are essential to the

erformance of the service chain for the sake of simplicity. We as-

ume that VNFs always have access to adequate memory and stor-

ge resources and demand no scaling for these resources. However,

ur proposed methods can be simply extended to support these

A. Nadjaran Toosi, J. Son and Q. Chi et al. / The Journal of Systems and Software 152 (2019) 108–119 111

A B C D

(a) Service Chain

A B C D

(b) Vertical scaling of VNF B

A DCB

B’

(c) Horizontal scaling of VNF B

A DCB

(d) Allocating more bandwidth to B-C con-
nection

Fig. 2. Elasticity mechanism.

r

n

s

a

c

t

a

s

(

V

S

c

p

a

e

s

i

t

s

p

c

i

i

n

n

T

e

o

b

b

t

d

v

p

t

n

c

D

A B

C

(a) Service Chain Placement

D

A B

C

(b) Flow Scheduling for Scaling Bandwidth

D

A B

C

A

(c) VNF Migration for Scaling Bandwidth

Fig. 3. Scaling bandwidth for a service chain.

S

w

r

c

p

S

I

b

t

a

t

t

b

(

V

s

p

l

v

t

r

o

5

g
esources. In the following, we discuss challenges related to dy-

amic scaling of service functions in the NFV framework enforcing

ervice chaining.

Fig. 2 a shows a service chain where each box represents one

bstract SF. Let us assume that the size of each box shows the pro-

essing power of the hosting compute node (virtual machine), and

he thickness of connector lines represents the dedicated (avail-

ble) bandwidth between VNFs. For the sake of simplicity, we as-

ume that each SF is hosted as a VNF in a single VM. Since nodes

SFs) can be part of one or many SFCs and the throughput of the

NF depends on the type (e.g., firewall or proxy) and the load of

F (incoming rate of packets) running in the VNF instance, VNFs

an become overloaded and consequently degrade the entire chain

erformance. Horizontal and vertical scaling of the VNF instances

re the promising mechanisms to build elastic SFC honoring the

nd-to-end latency requirement of the policies.

Fig. 2 b illustrates the case that VNF instance B is vertically

caled up by the allocation of more computational resources. Sim-

larly, when utilization of the VNF instance is considerably low,

he VNF instance can be scaled down by releasing redundant re-

ources. Vertical scaling of VNF instances to achieve processing ca-

acity required by the traffic might be impossible due to capacity

onstraints or allocated resources of the physical server. As shown

n Fig. 2 c horizontal scaling that allows adding/removing (scaling

n/out) VNF replica instances is another possible option in this sce-

ario. However, processing (Compute) capacity of VNF instances is

ot the only source of variation in service function performance.

he link capacity for transferring packet (available bandwidth) or

ven network congestion can become the bottleneck or the source

f performance degradation of a service chain. Allocating more

andwidth or finding other network paths to dedicate required

andwidth is necessary under circumstances that the network is

he source of the issue.

The most recent architecture for SFC has made use of software-

efined networking (SDN) to assist automated deployment of ser-

ice chains. SDN decouples the control plane from the forwarding

lane in traditional network switches and provides a logically cen-

ralized management controller along with programming APIs for

etwork management. The SDN controller can be used to dynami-

ally control the SFC topology and perform traffic steering across
Fs (Medhat et al., 2017). The SDN controller and NFV manager

ork in coordination to perform the allocation and management of

esources required by elastic SFC. Fig. 3 a depicts the same service

hain in Fig. 2 a in a physical network topology connecting eight

hysical servers. As it can be seen in the figure, virtual links among

F nodes are mapped into multiple physical links in the network.

f a physical link does not have enough dedicated bandwidth to

e allocated to the virtual link, dynamic flow scheduling gives us

he option to redirect traffic to another network path capable of

ccommodating updated bandwidth shown in Fig. 3 b. This is only

he case for network topologies having multiple paths available be-

ween a pair of source and destination hosts. If all possible paths

etween the source and the destination with the required latency

number of hobs) are not suitable to allocate required bandwidth,

NF migration allow migration of either of the two end VNF in-

tances of the virtual link or even both to find a proper placement

roviding required bandwidth. For example, in Fig. 3 c, the physical

ink connecting the physical server to the edge switch cannot pro-

ide the extra bandwidth required by the virtual link connecting A

o B. Thus, VNF A has been migrated to another host to gain the

equired dedicated bandwidth to satisfy performance requirements

f the service chain.

. Proposed algorithms

In this section, we propose our solution including series of al-

orithms to build elastic service chains in NFV environments. All

112 A. Nadjaran Toosi, J. Son and Q. Chi et al. / The Journal of Systems and Software 152 (2019) 108–119

Table 1

Notations.

Symbol Description

V = { v 1 , v 2 , . . . } List of all VNFs

V i List of VNFs of policy i

V Set of VNFs to scale up

V Set of VNFs to scale down

P = { p 1 , p 2 , . . . } List of policies

L i List of virtual links of policy i

P Set of policies to scale up their bandwidth

P Set of policies to scale down their bandwidth

θ i Average end-end latency of policy i

T i End-to-End latency required by SLA for policy i

δ Slack latency avoiding SLA violation i

H , H Overloading and underloading thresholds for hosts CPU utilization

B , B Overloading and underloading threshold for links bandwidth utilization

L = { l 1 , l 2 , . . . } List of all virtual links

L c i List of virtual links used by the chain c i
u b

j
The utilized capacity of the virtual link of l j

u h
i

The utilization of the host of the VNF node v i
l j List of links in the j th virtual link of the chain

v k List of VNF instances in the k th VNF node

|| v k || Size of VNF instances in v k
BW Default unit bandwidth for scaling virtual links

t

t

s

d

t

C

V

a

s

q

i

t

o

o

5

s

d

b

p

o

d

n

t

v

i

l

t

c

b

t

a

w

R

s

a

b

fl

b

a k
the notations and their description used in this section are given

in Table 1 .

5.1. Elastic SFC algorithm

Our solution works based on the proposed Algorithm 1 , called

ElasticSFC , and is executed periodically at fixed time intervals to

find the list of VNFs and virtual links that must be scaled to meet

the end-to-end latency requirement of the policy flow. Note that

the service chain end-to-end latency in this work is defined as the

time it takes for a packet to traverse the entire service chain from

the time it arrives at the ingress SF (sf 1) to the time it leaves the

egress SF (sf n). The variations in the latency caused by auto-scaling

algorithms at the service chain level will be translated to network

latency changes for the application in an abstract manner.

Algorithm 1 iterates over all policies in the outer loop of the al-

gorithm in lines 3–38. For every policy i , we calculate the average

end-to-end delay θ i in the last time interval, and compare it with

T i , the maximum end-to-end latency of the agreed on the SLA for

the policy minus, δ, a small slack value avoiding SLA violation. If

θ i is larger than T i − δ, the algorithm addresses the issue by allo-

cating more compute and network resources to service chains in

lines 5–18, otherwise, it finds resources that are underutilized and

are suitable for scale down process in lines 21–35.

The scaling up process looks into two possible ways of enhanc-

ing the performance of the corresponding service chain. 1) In lines

6–12, ElasticSFC algorithm checks that if there exists any virtual

link l j in the chain that its average bandwidth utilization in the last

time interval is higher than the maximum bandwidth threshold B .

Note that l j can be a list of virtual links if VNF node is horizontally

scaled earlier. All policies with an over-utilized virtual link l j are

added into the set P for more bandwidth allocation where func-

tion ScaleBW is called in line 42. Note that all virtual links of a

policy are scaled up even if a single virtual link is over-utilized. 2)

In lines 13–17, ElasticSFC algorithm adds all VNF nodes with aver-

age CPU utilization over the upper threshold H into the set V . In

line 40, all over-utilized VNF nodes are scaled by calling ScaleNF
function. Note that VNF node can be a group of VNF instances if

the VNF node is horizontally scale out earlier. This is the reason

that both l j and v k are notated in boldface.

In the scaling down process, the algorithm checks if all virtual

links in the service chain are under-utilized, that is, the average

bandwidth utilization of every virtual link l j , u b
i
, must be smaller
han the lower threshold B . If this is the case, the policy is added

o P , the set of policies that require to go through the bandwidth

caling down process in line 41, otherwise no bandwidth scaling

own is required. A similar process is repeated for VNF nodes of

he policy in the loop in lines 31–36. All VNF nodes with average

PU utilization below the lower threshold H are added to the set

 to be scaled down later in line 39.

The computational complexity of the Elastic SFC algorithm is

nalyzed as follows. The outer loop iterates over all policies in the

ystem, i.e., | P | . For each polciy i , the scaling up/down process re-

uires checking both every virtual link in L i and every VNF node

n V i in the service chain. Therefore, assuming that | L | and | V | are

he maximum number of virtual links and the maximum number

f VNF nodes in the service chain, the computational complexity

f Algorithm 1 is represented as O (| P | × (L + V)) .

.2. Bandwidth scaling algorithm

The ScaleBW algorithm (Algorithm 2) updates bandwidth for a

ervice chain. The algorithm has two parts, one for scaling up the

edicated bandwidth, the other for scaling down. This is decided

ased on the up variable. Note that we assume, service chains are

rovided by dedicated bandwidth with minimal or no impact on

ther network traffic. The bandwidth scaling algorithm updates the

edicated bandwidth for each service chain in order to provision

etwork resources elastically. In the scaling up process, lines 2–18,

he algorithm allocates the total of BW unit of bandwidth to every

irtual link. The loop in lines 3–17 iterates over all virtual links

n the chain, it calculates ω as the number links in virtual link

 j . If we have a horizontal scale-up for VNFs then l j includes all

hose links connecting previous VNF node to the next one in the

hain. The algorithm evenly distributes BW between all those links

y dividing BW to the number of links noted as | l j |. bw represents

he amount of bandwidth needs to be allocated to every link. We

ssume that when there are multiple links in a virtual link, for-

arded packets are distributed among the duplicated VNFs using a

ound-Robin fashion to equally distribute load across horizontally

caled VNFs. We also assume that a shared storage for sessions is

ccessible from any individual duplicated VNFs, thus packets can

e simply redirected among duplicated VNFs even for the statefull

ows. The inner loop in lines 5–16 tries to increase bandwidth by

w for every link l k in the virtual link set l j . Firstly, it attempts to

llocate bw for the link l in line 6. This includes bandwidth alloca-

A. Nadjaran Toosi, J. Son and Q. Chi et al. / The Journal of Systems and Software 152 (2019) 108–119 113

Algorithm 1 Elastic SFC.

Input: P , T , L , V

1: function ElasticSFC (x)

2: V , P , V, P = {}
3: for p i in P do

4: θi ← Average end to end delay of p i
5: if θi > T i − δ then � Scale Up

6: for l j in L i do

7: u b
j
← Average bandwidth utilization of l j

8: if u b
j
> B then

9: Add p i to P

10: Break

11: end if

12: end for

13: for v k in V i do

14: u h
i

← Average CPU utilization of v k

15: if u h
i

> H then

16: Add v k to V
17: end if

18: end for

19: else � Scale Down

20: isScaleDown ← true

21: for l j in L i do

22: u b
j
← Average bandwidth utilization of l j

23: if u b
i

> B then

24: isScaleDown ← false

25: Break

26: end if

27: end for

28: if isScaleDown then

29: Add p i to P

30: end if

31: for v k in V i do

32: u h
i

← Average utilization of v k

33: if u h
i

< H then

34: Add v k to V

35: end if

36: end for

37: end if

38: end for

39: ∀ v k ∈ V, ScaleNF (v k , false)

40: ∀ v k ∈ V, ScaleNF (v k , true)

41: ∀ p i ∈ P, ScaleBW (L i , false)

42: ∀ p i ∈ P, ScaleBW (L i , true)

43: end function

t

r

b

i

c

O

e

c

u

s

t

a

c

t

a

r

Algorithm 2 ScaleBW.

Input: s, d

1: function ScaleBW (L i , up)

2: if up then

3: for l j in L i do

4: ω ← | l j | , bw ←

BW

ω
5: for l k in l j do

6: if ! AllocateBW (l k , bw) then

7: path ← FindAlternate (l k , bw)

8: if path <> None then

9: ScheduleFlows (l k , path)

10: AllocateBW (l k , bw)

11: else

12: MigrateLink (l k , bw)

13: AllocateBW (l k , bw)

14: end if

15: end if

16: end for

17: end for

18: else

19: for l j in L i do

20: ω ← | l j | , bw ←

BW

ω
21: for l k in l j do

22: ReleaseBW (l k , bw)

23: end for

24: end for

25: end if

26: end function

p

a

i

|

5

V

t

F

c

c

t

i

c

t

|

T

t

i

p

t

t

i

r

t

i

a

i

m

O
ion for all physical links beneath. If that is not possible, the algo-

ithm finds an alternate path capable of accommodating the extra

w bandwidth for all physical links of the link, l k in line 7. If there

s such an alternate path, it calls the ScheduleFlows function to

hange the path for the link l k , and updates bandwidth in line 10.

therwise, it migrates the entire virtual link l k by moving both or

ither of VNF instances at the two ends of the link to find a lo-

ation that can provide additionally required bandwidth and then

pdates bandwidth in line 13. Finally, in lines 19–24, the algorithm

imply releases bandwidth for all virtual links.

The outer loop of the algorithm iterates over all virtual links in

he chain i that requires | L i | iteration. The inner loop, then iter-

tes over all links in the virtual link set l j for | l j | times. The time

omplexity of finding an alternate path algorithm depends on the

opology of the network. If | N | is the number of nodes (vertices)

nd | E | is the number edges in the network, and Dijkstra’s algo-

ithm is used, then the computational complexity based on a min-
riority queue implementation is O (| E| + | N | log| N |) . Link migration

lso requires time O (| N | 2). As a result, the overall time complex-

ty of the ScaleBW algorithm is represented as O (| L | × | l j | × (E +
 N| 2)) .

.3. Virtualized network functions scaling algorithm

The ScaleNF (Algorithm 3) is responsible for auto-scaling of a

NF node in the service chain. Similar to ScaleBW, it has two parts

o allocate and release resources based on the boolean variable up .

or allocating more resources (lines –), first, it attempts to verti-

ally scale up VNF instances in v k by means of allocating h units of

apacity to each VNF instance. h is calculated based on the propor-

ion of the scaling unit capacity H to the number of VNF instances

n a VNF node, i.e., | v k |. If scaling up is not possible due to resource

onstraints (see line 7), it sets an indicator variable horizontal to

rue, and tries horizontal scaling by adding a VNF instance of size

| v k ||, that is, the size of VNF instances in VNF node v k in line 1.

he ScaleOut function is in charge of adding a VNF instance to

he VNF node. The function needs to place the newly added VNF

nstance in the physical servers. It is not our aim to propose a VNF

lacement algorithm in this paper. Different methods proposed in

he literature can be used for the placement of VNF instances. In

his paper, we use first fit algorithm for placement of added VNF

nstances.

Lines 19–27 of the algorithm are dedicated to releasing surplus

esources. If size of VNF instances are larger than unit capacity H ,

he algorithm performs vertical scale down in line 23; otherwise,

t removes a VNF instance in line 26.

The time complexity of Algorithm 3 is analyzed as follows. The

lgorithm has a main loop that iterates over all VNF instances

n the VNF node v k . The ScaleOut function complexity is the

ost compute intensive part of the algorithm that requires at least

 (| M |) time for the first fit placement algorithm, where M is the

114 A. Nadjaran Toosi, J. Son and Q. Chi et al. / The Journal of Systems and Software 152 (2019) 108–119

Algorithm 3 ScaleNF.

Input: s, d

1: function ScaleNF (v k , up)

2: if up then

3: τ ← | v k |
4: h ←

H
τ

5: horizontal ← false

6: for v k in v k do

7: if ! CanScaleUp (v k , h) then � Scale Up

8: horizontal ← true

9: end if

10: end for

11: if ! horizontal then

12: for v k in v k do

13: ScaleUp (v k , h)
14: end for

15: else � Scale Out

16: ScaleOut (|| v k ||) � Add a VNF instance with size of

(|| v k ||) and update bandwidth

17: end if

18: else

19: if || v k || > H then

20: τ ← | v k |
21: h ←

H
τ

22: for v k in v k do

23: ScaleDown (v k , h)
24: end for

25: else

26: ScaleIn() � Remove a VNF Instance and update

bandwidth

27: end if

28: end if

29: end function

6

s

p

t

a

t

C

c

p

o

t

f

a

a

d

w

f

p

o

a

4

h

w

m

t

w

e

s

e

m

s

B

n

t

6

b

fi

r

t

s
number of physical servers in the system. Therefore, the overall

time complexity of the algorithm is O (| v k | × N) .

6. Performance evaluation

In this section, we present the experiment environment and re-

sults of the performance evaluation.
Fig. 4. 8-pod fat-tree topology
.1. Experimental setup

To evaluate our algorithms, we modeled and simulated a

oftware-defined cloud environment. We implemented the pro-

osed algorithms on CloudSimSDN (Son et al., 2015) environment

hat extends the CloudSim (Calheiros et al., 2011) to support SDN

nd NFV features in the simulation. In order to simulate SFC func-

ionalities and auto-scaling policies, we added extra modules to

loudSimSDN that creates SFs based on the exiting Virtual Ma-

hine module and the chain of multiple SFs. It also defines SFC

olicies that specify the source and destination VM, and the chain

f SFs that transfers the traffic between the source and the destina-

ion VM. The modified CloudSimSDN can detect the network traffic

rom the source VM to the destination VM specified in the policy

nd enforce the traffic to travel through the SFC. SFs can be created

nd placed as like a traditional VMs with additional information to

etermine the capacity of the SF. SFC policies are specified along

ith the VMs and SFs so that CloudSimSDN can enforce the SFC

or network traffics.

For the performance evaluation, a cloud data center with 8-

od fat-tree topology is created in CloudSimSDN, which consists

f 128 computing nodes connected with 32 edge, 32 aggregation,

nd 16 core switches as shown in Fig. 4 . Each pod has 4 edge and

 aggregation switches, and each edge switch connects 4 hosts. All

osts have 16 cores with 10,0 0 0 MIPS each, and the network band-

idth between hosts and switches are set to 200 MBytes/sec. The

ain reason we chose the common fat-tree topology is that Elas-

icSFC algorithm uses dynamic flow scheduling to handle the band-

idth requirement of the chain and fat-tree has multiple short-

st paths available between any given pair of hosts allowing for

uch dynamic flow scheduling. EltasticSFC is expected to provide

qually comparable results with other network topologies with

any equal-cost paths between a given pair of hosts such as leaf-

pine (Alizadeh and Edsall, 2013), VL2 (Greenberg et al., 2009) or

cube (Guo et al., 2009). Note that, we also consider CPU and

etwork performance in the evaluation with the assumption that

here is always enough memory and storage resources for VNFs.

.1.1. Application scenario and workload

We create a 3-tier web application consisting of arbitrary num-

er of web, app, and database (DB) VMs with the detailed speci-

cation depicted in Table 2 . Once the request from end users ar-

ived at web servers, the request is sent to an app server to re-

rieve the information from DB. Then, the DB responds to the app

erver with the relevant information which will be returned to the
 setup for experiments.

A. Nadjaran Toosi, J. Son and Q. Chi et al. / The Journal of Systems and Software 152 (2019) 108–119 115

Table 2

VM types for a 3-tier web application.

VM Type CPU Capacity (cores ∗MIPS) # of VMs

Web server 8 ∗10,0 0 0 8

App server 4 ∗10,0 0 0 24

Database 12 ∗10,0 0 0 2

Table 3

SFC policies defined for the 3-tier application in the evaluation.

Source VM Destination VM SFC

Web server App server {FW, LB1}

App server Database {LB2, IDS}

Database App server {IDS, LB2}

App server Web server {LB1}

e

4

c

d

p

i

t

g

b

s

a

r

a

t

r

t

G

c

t

q

q

t

w

c

i

E

s

6

c

i

s

g

b

t

s

c

w

s

g

t

b

a

a

p

w

c

t

p

V

i

i

i

p

w

a

t

t

f

m

i

V

s

a

t

w

c

a

p

nd-user through web server. Based on this process, we generate

 SFC policies which enforces the network traffic to go through a

hain of multiple SFs, such as firewall, load balancer, and intrusion

etection system. Please note that these policies are designed for

erformance evaluation purposes and are not necessarily typical

n real-world scenarios. The details of SFC policies for the evalua-

ion are shown in Table 3 . From the web to app server, the packet

oes through the firewall (FW) to filter the request and the load

alancer (LB1) to distribute the request across the number of app

ervers. Similarly, the request from app to DB is also sent through

 load balancer (LB2) and intrusion detection system (IDS). For the

esponse from DB to app, network traffic travels through the IDS

nd LB2 in the opposite direction. From app to web, however, the

raffic goes through only LB1 as firewall is not necessary for the

esponse packets. The detailed specification of SFs is explained in

he next subsection.

The workload is generated based on the Wikipedia traces in

erman language for 24 h. Each workload consists of CPU pro-

essing in each VM and network traffic between VMs which must

ravel through the SFC defined in the policy. The number of re-

uests in each hour is depicted in Fig. 5 . In total, 29 million re-

uests are generated to be distributed across the multiple servers

hrough the load balancers specified in the SFC.

In the experiment, we set 10 s for time-out so that the request

ill be cancelled and marked as SLA violation if it cannot be pro-

essed within 10 s. The time interval is set to 60 s for the monitor-

ng and scaling checkpoints, which results in running the proposed

lasticSFC algorithm every minute to check if any SFC needs to be

caled.
Fig. 5. The number of requests in the work
.1.2. Baseline policies

The proposed auto-scaling algorithm (ElasticSFC) is evaluated by

omparison with two baselines which does not implement scal-

ng algorithms. The first baseline, named NoScale-Min , is to use the

ame amount of CPU and network resources as the initial resources

iven to the ElasticSFC algorithm, but without any scaling. In this

aseline, we give the same amount of CPU and network resources

o the SFs and the network flows which is same as the initial re-

ource capacity for ElasticSFC policy. As the initial resources allo-

ated to SFCs are not enough for the whole workload, NoScale-Min

ould result in higher SLA violations especially for high demand.

The second baseline (NoScale-Max) is to provide maximum re-

ources enough to process the demand all the time which would

uarantee the SLA without any violation. As the SFC allocates more

han enough CPU and network resources at the beginning, this

aseline is over-provisioning the resources which does not incur

ny SLA violations without auto-scaling.

In addition to the two static baselines without auto-scaling, we

lso compare the proposed algorithm with simple auto-scaling ap-

roaches which exploit auto-scaling method for only VNFs or net-

ork bandwidth. With Scale-NF approach, the system automati-

ally adds or removes VMs for SFs based on the fluctuating real-

ime utilization of a SF. If the utilization of a SF exceeds the

redefined threshold, more VMs are created for the SF. Likewise,

Ms for a SF are removed once the utilization is below the min-

mum threshold. Scale-NF is similar to the approach presented

n Ghaznavi et al. (2016) which deploys multiple VNF instances

n distributed manner to provide network functionality. Scale-NF

rovides auto-scaling only for VMs, not for network bandwidth

hich ElasticSFC supports. We also implement Scale-BW algorithm

s another baseline which scales only network bandwidth be-

ween SFs in a policy based on the bandwidth utilization. Similar

o Cziva et al. (2018) , Scale-BW dynamically allocates bandwidth

or over-utilized links in a SF chain to reduce the network trans-

ission time. Note that Scale-BW does not auto-scale VMs.

The initial resources allocated to SF and networks are shown

n Table 4 . For ElasticSFC and NoScale-Min policies, we allocate 1

M for each SF with the minimum amount of CPU and network re-

ources. For NoScale-Max policy, multiple VMs are allocated for FW

nd IDS in order to serve the entire workload. In order to simplify

he comparison, we fix the unit MIPS in CPU resources (10,0 0 0)

hereas the total MIPS changes only depending on the number of

ores.

We measure the response time, SLA violation rate, and the

mount of allocated CPU and network resources with different

olicies.
load generated from Wikipedia trace.

116 A. Nadjaran Toosi, J. Son and Q. Chi et al. / The Journal of Systems and Software 152 (2019) 108–119

Table 4

Initial SF resource allocations in each policy.

SF Type ElasticSFC NoScale-Min NoScale-Max

CPU Number Bandwidth CPU Number Bandwidth

(Cores ∗MIPS) of VMs (MB/s) (Cores ∗MIPS) of VMs (MB/s)

Firewall (FW) 8 ∗10,0 0 0 1 50 0,0 0 0 16 ∗10,0 0 0 3 2,0 0 0,0 0 0

Load balancer (LB1) 2 ∗10,0 0 0 1 50 0,0 0 0 10 ∗10,0 0 0 1 2,0 0 0,0 0 0

Load balancer (LB2) 2 ∗10,0 0 0 1 50 0,0 0 0 10 ∗10,0 0 0 1 2,0 0 0,0 0 0

IDS 6 ∗10,0 0 0 1 50 0,0 0 0 12 ∗10,0 0 0 3 2,0 0 0,0 0 0

Fig. 6. SLA violation rate and average response time in Wikipedia application with

different policies.

n

c

b

n
6.2. Analysis of SLA violation rate and response time

SLA violation rate is calculated based on the number of timed-

out requests. We check the processing time inside a SF and net-

work delay between SFs in the chain and mark the request as

timed-out if it takes more than 10 s in any SF or network trans-

mission due to the VM overhead or network congestion.

The SLA violation rate is shown in Fig. 6 a. With the pro-

posed ElasticSFC algorithm, the SLA violation rate is measured at

0.03%, significantly lower than NoScale-Min. As we discussed ear-

lier, NoScale-Min allocates the minimum amount of CPU resources

to SFs and the network resources to the SFC, which resulted in

72.97% of the requests to be timed-out during the experiment. On

the other hand, NoScale-Max provides enough resources to process

all the requests, which is why no request is timed out.

For the auto-scaling baselines, the SLA violation remains as high

as NoScale-Min policy because their auto-scaling is only applied ei-

ther in VM (Scale-NF) or network bandwidth (Scale-BW). Although

Scale-NF policy can add more VMs if the current capacity of VMs

are not enough to process incoming requests, it does not pro-

vision network bandwidth which becomes bottleneck even after

more VMs have been created for a SF. As the network transmis-

sion cannot be processed within the deadline, the SLA violation

rate of Scale-NF policy reaches at 72.95% which is almost same as

NoScale-Min. Similarly, Scale-BW does provide auto-scaling mech-

anism for VMs, which made the SLA violation as high as the policy

without auto-scaling.

The small amount of SLA violations in the proposed ElasticSFC

algorithm is caused during the gap time between the high-demand

requests and the monitoring checkpoint. The requests are timed

out if they are processed before running ElasticSFC algorithm to

scale up the SFC. The SLA violation rate can be reduced by de-

creasing the interval time between the monitoring checkpoints, so

that the algorithm runs more often to check if a SFC is overloaded,

which however results in the overhead of frequent VM and net-

work scaling. Nonetheless, the result shows that the proposed al-

gorithm can provide elastic resources to adapt to the change of the

workload.

We also evaluate the performance of the algorithm by com-

paring the average response time. Fig. 6 b shows the average re-

sponse time of requests excluding the SLA violated ones. Similar

to the SLA violation results, the requests are responded in 0.96 s

with ElasticSFC algorithm which is slightly longer than NoScale-

Max, but significantly faster than the other baselines. Because of

the elastic resource allocation adapted to the workload, ElasticSFC

algorithm reduces the amount of resources if the utilization is less

than the threshold, which results in more resource saving but in-

creasing the response time slightly. Scale-NF baseline increases the

average response time to 8.44 s which is far more than NoScale-

Min result. In order to find the reason of this result, we further in-

vestigated to measure the average processing time in VMs and net-

work transmissions shown in Fig. 6 c. For VM processing, all poli-

cies had the same average processing time at 0.03 s. However, for

network transmission, Scale-NF takes far more than the other base-

lines. This shows that the excessive amount of time is wasted for
 s
etwork transmission in Scale-NF, due to more number of requests

onsuming the limited bandwidth especially after the VMs have

een scaled up. The static amount of network resources with more

umbers of VMs for a SF creates a bottleneck in network transmis-

ion, which results in increasing average response time.

A. Nadjaran Toosi, J. Son and Q. Chi et al. / The Journal of Systems and Software 152 (2019) 108–119 117

Fig. 7. Allocated CPU and network resources for SFCs over time.

6

t

a

F

r

t

c

F

N

o

s

t

t

s

S

w

w

i

n

w

M

i

e

a

t

a

a

i

f

w

w

w

p

i

7

i

s

s

e

o

c

v

t

N

i

t

m

t

2

p

p

d

i

d

p

a

i

d

w

i

V

fi

i

h

t

s

a

t

j

p

t

p

l

c

u

e

a

m

F

m

d

t

g

c

a
.3. Analysis of resource Usage

We measure the allocated CPU and network resources over

ime. Fig. 7 shows the number of total CPU cores used in all SFs

nd the network bandwidth allocated to the SFC from DB to App.

or CPU cores (Fig. 7 a), ElasticSFC policy started with the initial

esource allocation (18 cores), but immediately increased to 44

o adapt to the workload. After that, the algorithm dynamically

hanges the resource capacity adapting to the workload shown in

ig. 5 . The total CPU cores used in NoScale-Min, Scale-BW, and

oScale-Max baseline policies remain at the same amount with-

ut any change for the entire experiment, because they do not

cale the VMs of service functions elastically. On the other hand,

he number of CPU cores with Scale-NF policy dynamically adapts

o the workload similar to our ElasticSFC, although there was no

caling down between 4 and 6 h which is due to the continuous

LA violation.

Similarly, the allocated network bandwidth is adapted to the

orkload with our proposed algorithm (Fig. 7 b). Initially starting

ith the minimum bandwidth (0.5MBytes/sec), it was immediately

ncreased to 2 MB/sec once the SLA violation detected. When the

umber of requests is decreased after 2 h, the allocated band-

idth is also reduced to 0.5MB/sec. In NoScale-Min and NoScale-

ax, the bandwidth allocation is consistent. It is worth mention-

ng that, in Fig. 7 b, the Scale-BW policy also does not have differ-

nt bandwidth, since CPU capacity is the bottleneck in this case

nd adding more bandwidth will not improve the end-to-end la-

ency. This observation demonstrate the importance of dynamic

uto-scaling across both computing and network resources.
In short, the proposed algorithm dynamically adjusts the

mount of CPU and network resources for SFCs elastically adapt-

ng to the workload. Although Scale-NF can scale up and down

or VMs similar to ElasticSFC, it does not scale network bandwidth

hich results in continuous SLA violation. The results show that

e can achieve the resource saving with the proposed algorithm

hich does not over-provision the resources all the time, yet it

rovides adequate amount of resources for the dynamically chang-

ng workload.

. Related work

Network service chaining, also known as service function chain-

ng (SFC) is an automated process used by network operators to

et up a chain of connected network services. SFC enables the as-

embly of the chain of virtual network functions (VNFs) in an NFV

nvironment using instantiation of software-only services running

n commodity hardware. To avoid tedious manual steps of the

hain setup, the process of service chain provisioning in NFV en-

ironments happens through an NFV management and orchestra-

ion (MANO) framework. Managing and orchestrating of VNFs in

FV MANO has been a popular research topic and a widely stud-

ed problem in the literature (Medhat et al., 2017).

The problem of VNF placement, often very related to

he traditional VM placement in cloud computing environ-

ents (Eramo et al., 2017), has gained considerable attention over

he past few years (Ghaznavi et al., 2016). MORSA (Yoshida et al.,

014) is a multi-objective VNF placement approach proposed as

art of vConductor framework (Shen et al., 2014) to minimize the

hysical machine load and the intra-data center traffic. MORSA is

esigned to optimize placement for VNFs while it does not take

nto account other aspects such as auto-scaling of VNFs, consoli-

ation, and service chaining. Similarly, Clayman et al. (2014) pro-

osed MANO framework for the automated placement of VNFs

cross the resources. They also did not consider scaling and consol-

dations. SOVWin is a heuristic proposed by Pai et al. (2017) to ad-

ress the service-chain deployment problem. Different from other

orks, SOVWin aims at satisfying SLA requirements and maximiz-

ng the number of accommodated user requests.

The above works do not consider auto-scaling of service chains.

NF-P is a model proposed by Moens and Turck (2014) for ef-

cient placement of VNFs. They propose an NFV burst scenario

n which the base demand for the network function service is

andled by physical resources while the extra load is redirected

o the virtual service instances. Their method only considers a

ingle service chain. Drãxler et al. (2017) go one step further

nd propose a mixed integer programming solution and a cus-

om heuristic to address scaling and placement problem of VNFs

ointly. Wang et al. (2016) propose online algorithms for dynamic

rovisioning of virtualized network services. Their approach de-

ermines the numbers of VNF instances and their placement on

hysical servers to optimize operational cost and resource uti-

ization of the system. In a recent work, (Cziva et al., 2018) fo-

used on the VNF placement to optimize end-to-end latency for

sers. Their optimization method is adapted for a dynamic and

ver-changing edge networks. Rajagopalan et al. (2013) proposed

 system called FreeFlow based on the Split/Merge abstraction

odel that enables elasticity for stateful virtual network services.

reeFlow addresses auto-scaling of virtualized middleboxes by re-

oving the configuration complexity of running independent mid-

leboxes. Stratos (Gember et al., 2013) is a MANO framework aims

o provide a scalable network-aware strategy based on traffic en-

ineering, elastic scaling, and VM migration for service function

haining. Ghaznavi et al. (2016) propose an optimization model

nd heuristic called Kariz to optimize service chain deployment

118 A. Nadjaran Toosi, J. Son and Q. Chi et al. / The Journal of Systems and Software 152 (2019) 108–119

Table 5

Comparison of existing approaches for VNF placement and auto-scaling.

Work Placement Migration SLA Horizontal Vertical Dynamic Flows SFC

MORSA (Yoshida et al., 2014)
√

✗ ✗ ✗ ✗ ✗ ✗

Clayman et al. (2014)
√

✗ ✗ ✗ ✗ ✗
√

SOVWin (Pai et al., 2017)
√

✗
√

✗ ✗ ✗
√

VNF-P (Moens and Turck, 2014)
√

✗ ✗
√

✗ ✗ ✗

Drãxler et al. (2017)
√

✗ ✗
√

✗ ✗
√

Wang et al. (2016)
√

✗ ✗
√

✗ ✗
√

Cziva et al. (2018)
√ √ √

✗ ✗ ✗
√

FreeFlow (Rajagopalan et al., 2013) ✗ ✗
√ √

✗
√

✗

Stratos (Gember et al., 2013) ✗
√

✗
√

✗
√ √

Kariz (Ghaznavi et al., 2015)
√

✗
√

✗ ✗
√ √

SLFL (Ghaznavi et al., 2016)
√ √

✗
√

✗ ✗
√

Eramo et al. (2017)
√ √

✗ ✗
√

✗
√

NFV-RT (Li et al., 2016)
√

✗
√

✗
√

✗
√

DFCA (Wang et al., 2015) ✗ ✗
√

✗ ✗ ✗
√

ElasticSFC ✗
√ √ √ √ √ √

a

t

n

i

o

p

V

c

o

s

o

p

c

t

o

A

m

g

P

C

R

A

C

D

E

targeting custom throughput. In another work (Ghaznavi et al.,

2015), they propose a heuristic called Simple Lazy Facility Loca-

tion (SLFL) to minimize the overall operational costs by the effi-

cient consolidation of VNFs using migration and horizontal auto-

scaling of VNFs. Similarly, (Eramo et al., 2017) study the consolida-

tion, routing, and placement of VNFs in an NFV environment when

the vertical auto-scaling of VNFs is the case. They propose a mi-

gration policy that decides when and to where migration of VNF

instances must be done to minimize the overall cost.

Majority of these solutions are heuristics-based that they do not

provide SLA guarantee. Li et al. (2016) propose NFV-RT that dy-

namically provisions resources in an NFV environment to provide

packet-wise timing guarantees to service requests. They formulate

the resource provisioning problem with a mathematical model and

evaluate their solution using a simulator. Wang et al. (2015) have

developed a combinatorial optimization model to address dynamic

function composition problem, and proposed a distributed algo-

rithm using Markov approximation method to dynamically decide

the appropriate service function instances at runtime. They also

use simulation to evaluate their proposed algorithm.

In comparison to other works in the area (Table 5), the innova-

tive contribution of this work is that it proposes a holistic method

for auto-scaling of VNFs to build elastic service chains dynami-

cally adapting to the changes of the workload for different net-

work policies. Our model uses migration and horizontal/vertical

auto-scaling of VNFs along with dynamic bandwidth allocation and

flow scheduling to meet the SLA requirement of a service chain.

It does not only dynamically scale NFs within a chain, but also

allocates/releases dedicated network bandwidth, updates network

paths, and relocates communicating VNFs to meet the latency re-

quirements of the chain while minimizing the overall cost. Even

though we use a simple placement algorithm to build our sys-

tem, VNF placement is not the primary focus of this work and any

placement algorithm can be combined with our proposed method.

8. Conclusions and future work

In this paper, we presented a framework to build elastic ser-

vice chains in NFV-based cloud computing environments. We pro-

posed a set of auto-scaling algorithms to meet end-to-end de-

lay requirements of the service chains while minimizing the over-

all operational cost. We implemented our algorithms by extend-

ing a cloud simulator and conducted realistic experiments using

workload traces of Wikipedia application. Our experimental results

showed that our proposed method significantly reduces the cost of

SFC deployment while reduces SLA violation to 0.03% compared to

72.97% SLA violations of no scaling scenario.
In this work, we assumed that all VNFs are horizontally scal-

ble regardless of their states. A logical extension of this work is

o add solutions for auto-scaling stateful NFs and those that are

one trivial to scale horizontally. As a future work, we also aim to

mplement our algorithms in a real networking environment using

ur micro data center designed for software-defined cloud com-

uting and networking. Our micro data center uses OpenStack as

irtualized Infrastructure Manager and OpenDaylight (ODL) as SDN

ontroller. We will extend ODL SFC Project to evaluate and validate

ur proposed techniques. Using a real system, we are able to mea-

ure latency and link delays for service chains along with impacts

f dynamic flow scheduling and VNF migrations on the runtime

hase of the SFC lifecycle. We will also develop autonomic SFC

omposition and management that targets efficient utilization of

he data center including placement algorithms and consolidation

f VNF instances.

cknowledgments

This work supported through a collaborative research agree-

ent between the University of Melbourne and Huawei Technolo-

ies Co., Ltd (China) as part of the Huawei Innovation Research

rogram (HIRP). The work is carried out within the Melbourne

LOUDS Laboratory at the University of Melbourne.

eferences

lizadeh, M., Edsall, T., 2013. On the data path performance of leaf-spine datacenter
fabrics. In: The 21st IEEE Annual Symposium on High-Performance Intercon-

nects, pp. 71–74. doi: 10.1109/HOTI.2013.23 .
Calheiros, R.N. , Ranjan, R. , Beloglazov, A. , De Rose, C.A. , Buyya, R. , 2011. CloudSim:

a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software 41 (1), 23–50 .

Clayman, S., Maini, E., Galis, A., Manzalini, A., Mazzocca, N., 2014. The dynamic

placement of virtual network functions. In: Proceedings of the IEEE Net-
work Operations and Management Symposium (NOMS’14), pp. 1–9. doi: 10.1109/

NOMS.2014.6838412 .
ui, L., Tso, F.P., Pezaros, D.P., Jia, W., Zhao, W., 2017. Plan: joint policy- and network-

aware vm management for cloud data centers. IEEE Trans. Parallel Distrib. Syst.
28 (4), 1163–1175. doi: 10.1109/TPDS.2016.2604811 .

Cziva, R. , Anagnostopoulos, C. , Pezaros, D.P. , 2018. Dynamic, latency-optimal VNF

placement at the network edge. In: Proceedings of the 37th Annual IEEE Inter-
national Conference on Computer Communications (IEEE INFOCOM 2018) . Hon-

olulu, HI, USA.
rãxler, S., Karl, H., Mann, Z., 2017. Joint optimization of scaling and placement of

virtual network services. In: Proceedings of the 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID’17), pp. 365–370.

doi: 10.1109/CCGRID.2017.25 .
ramo, V., Miucci, E., Ammar, M., Lavacca, F.G., 2017. An approach for service func-

tion chain routing and virtual function network instance migration in network

function virtualization architectures. IEEE/ACM Trans. Netw. 25 (4), 2008–2025.
doi: 10.1109/TNET.2017.2668470 .

Gember, A . , Krishnamurthy, A . , John, S.S. , Grandl, R. , Gao, X. , Anand, A. , Benson, T. ,
Akella, A. , Sekar, V. , 2013. Stratos: a network-aware orchestration layer for mid-

dleboxes in the cloud. Technical Report. Technical Report .

https://doi.org/10.1109/HOTI.2013.23
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0002
https://doi.org/10.1109/NOMS.2014.6838412
https://doi.org/10.1109/TPDS.2016.2604811
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0005
https://doi.org/10.1109/CCGRID.2017.25
https://doi.org/10.1109/TNET.2017.2668470
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0008

A. Nadjaran Toosi, J. Son and Q. Chi et al. / The Journal of Systems and Software 152 (2019) 108–119 119

G

G

G

G

L

M

M

M

P

P

R

S

S

S

W

W

Y

haznavi, M., Khan, A., Shahriar, N., Alsubhi, K., Ahmed, R., Boutaba, R., 2015. Elas-
tic virtual network function placement. In: Proceedings of the 4th IEEE Inter-

national Conference on Cloud Networking (CloudNet’15), pp. 255–260. doi: 10.
1109/CloudNet.2015.7335318 .

haznavi, M., Shahriar, N., Ahmed, R., Boutaba, R., 2016. Service Function Chaining
Simplified. Technical Report arXiv: 1601.00751 .

reenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D.A., Pa-
tel, P., Sengupta, S., 2009. Vl2: a scalable and flexible data center network. In:

Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication.

ACM, New York, NY, USA, pp. 51–62. doi: 10.1145/1592568.1592576 .
uo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S., 2009.

BCube: a high performance, server-centric network architecture for modular
data centers. In: Proceedings of the ACM SIGCOMM 2009 Conference on Data

Communication. ACM, New York, NY, USA, pp. 63–74. doi: 10.1145/1592568.
1592577 .

i, Y., Phan, L.T.X., Loo, B.T., 2016. Network functions virtualization with soft real-

time guarantees. In: Proceedings of the 35th Annual IEEE International Confer-
ence on Computer Communications (IEEE INFOCOM 2016), pp. 1–9. doi: 10.1109/

INFOCOM.2016.7524563 .
echtri, M., Ghribi, C., Soualah, O., Zeghlache, D., 2017. NFV orchestration frame-

work addressing SFC challenges. IEEE Commun. Mag. 55 (6), 16–23. doi: 10.1109/
MCOM.2017.1601055 .

edhat, A.M., Taleb, T., Elmangoush, A., Carella, G.A., Covaci, S., Magedanz, T., 2017.

Service function chaining in next generation networks: state of the art and
research challenges. IEEE Commun. Mag. 55 (2), 216–223. doi: 10.1109/MCOM.

2016.1600219RP .
oens, H., Turck, F.D., 2014. Vnf-p: a model for efficient placement of virtual-

ized network functions. In: Proceedings of the 10th International Conference
on Network and Service Management (CNSM) and Workshop, pp. 418–423.

doi: 10.1109/CNSM.2014.7014205 .

ai, Y.-M., Wen, C.H.P., Tung, L.-P., 2017. Sla-driven ordered variable-width window-
ing for service-chain deployment in SDN datacenters. In: Proceedings of the

International Conference on Information Networking (ICOIN’17), pp. 167–172.
doi: 10.1109/ICOIN.2017.7899498 .

ham, C., Tran, N.H., Ren, S., Saad, W., Hong, C.S., 2017. Traffic-aware and energy-
efficient VNF placement for service chaining: joint sampling and matching ap-

proach. IEEE Trans. Serv. Comput. PP (99) . 1–1 doi: 10.1109/TSC.2017.2671867 .

ajagopalan, S. , Williams, D. , Jamjoom, H. , Warfield, A. , 2013. Split/merge: system
support for elastic execution in virtual middleboxes. In: Proceedings of the 10th

USENIX Conference on Networked Systems Design and Implementation. USENIX
Association, Berkeley, CA, USA, pp. 227–240 .

hen, W., Yoshida, M., Kawabata, T., Minato, K., Imajuku, W., 2014. vConductor: an
NFV management solution for realizing end-to-end virtual network services. In:

Proceedings of the 16th Asia-Pacific Network Operations and Management Sym-

posium, pp. 1–6. doi: 10.1109/APNOMS.2014.6996522 .
on, J., Dastjerdi, A.V., Calheiros, R.N., Ji, X., Yoon, Y., Buyya, R., 2015. CloudSimSDN:

modeling and simulation of software-defined cloud data centers. In: Proceed-
ings of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, pp. 475–484. doi: 10.1109/CCGrid.2015.87 .
zabo, R., Kind, M., Westphal, F.J., Woesner, H., Jocha, D., Csaszar, A., 2015. Elas-

tic network functions: opportunities and challenges. IEEE Netw. 29 (3), 15–21.
doi: 10.1109/MNET.2015.7113220 .

ang, P., Lan, J., Zhang, X., Hu, Y., Chen, S., 2015. Dynamic function composition for

network service chain: model and optimization. Comput. Netw. 92, 408–418.
doi: 10.1016/j.comnet.2015.07.020 .

ang, X., Wu, C., Le, F., Liu, A., Li, Z., Lau, F., 2016. Online VNF scaling in datacen-
ters. In: Proceedings of the 9th International Conference on Cloud Computing

(CLOUD’16), pp. 140–147. doi: 10.1109/CLOUD.2016.0028 .
oshida, M., Shen, W., Kawabata, T., Minato, K., Imajuku, W., 2014. MORSA: a multi-
objective resource scheduling algorithm for NFV infrastructure. In: Proceed-

ings of the 16th Asia-Pacific Network Operations and Management Symposium,
pp. 1–6. doi: 10.1109/APNOMS.2014.6996545 .

Adel Nadjaran Toosi is a Lecturer in Faculty of Informa-

tion Systems, Monash University, Australia. Before join-

ing Monash University, he was a research fellow at the
Cloud Computing and Distributed Systems (CLOUDS) Lab-

oratory, School of Computing and Information Systems,
The University of Melbourne. He received his Ph.D. de-

gree from the University of Melbourne in 2015. His re-
search interests include Distributed Systems, Cloud Com-

puting, Software-Defined Networking (SDN), Green Com-

puting, and Soft Computing. He is currently working on
the optimization of renewable energy use in micro-data

centers. For more details, please visit his homepage: http:
//adelnadjarantoosi.info .

Jungmin Son is a Research Assistant at the Cloud Com-

puting and Distributed Systems (CLOUDS) Laboratory at

the University of Melbourne, Australia. He completed his
Ph.D. degree with CLOUDS Laboratory, received the B.Eng.

degree in information and computer engineering from
Ajou University, Korea, and the M.Info.Tech. degree from

the University of Melbourne in 2006 and 2013 respec-
tively. His research interests include SDN-enabled cloud

computing, resource provisioning, scheduling, and energy

efficient data centers.

Qinghua Chi is a Senior Engineer in Wireless Network

Research Department of Shanghai Huawei Technologies
Co., Ltd. He received his Ph.D. degree in control science

and engineering from Zhejiang University, Hangzhou,

China, in 2015. His current research interests include ma-
chine learning and its application in wireless communica-

tion network, resource management in 5G network slice,
and model predictive control with relevant identification.

Rajkumar Buyya is a Redmond Barry Distinguished Pro-
fessor and Director of the Cloud Computing and Dis-

tributed Systems (CLOUDS) Laboratory at the University

of Melbourne, Australia. Dr. Buyya is recognized as a
“Web of Science Highly Cited Researcher” in 2016 and

2017 by Thomson Reuters, a Fellow of IEEE, and Scopus
Researcher of the Year 2017 with Excellence in Innovative

Research Award by Elsevier for his outstanding contribu-
tions to Cloud computing. For further information on Dr.

Buyya, please visit his cyberhome: www.buyya.com .

https://doi.org/10.1109/CloudNet.2015.7335318
http://arxiv.org/abs/1601.00751
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1145/1592568.1592577
https://doi.org/10.1109/INFOCOM.2016.7524563
https://doi.org/10.1109/MCOM.2017.1601055
https://doi.org/10.1109/MCOM.2016.1600219RP
https://doi.org/10.1109/CNSM.2014.7014205
https://doi.org/10.1109/ICOIN.2017.7899498
https://doi.org/10.1109/TSC.2017.2671867
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30042-1/sbref0019
https://doi.org/10.1109/APNOMS.2014.6996522
https://doi.org/10.1109/CCGrid.2015.87
https://doi.org/10.1109/MNET.2015.7113220
https://doi.org/10.1016/j.comnet.2015.07.020
https://doi.org/10.1109/CLOUD.2016.0028
https://doi.org/10.1109/APNOMS.2014.6996545
http://adelnadjarantoosi.info
http://www.buyya.com

	ElasticSFC: Auto-scaling techniques for elastic service function chaining in network functions virtualization-based clouds
	1 Introduction
	2 Background
	3 Service function chaining architecture
	4 Elastic service chaining approach
	5 Proposed algorithms
	5.1 Elastic SFC algorithm
	5.2 Bandwidth scaling algorithm
	5.3 Virtualized network functions scaling algorithm

	6 Performance evaluation
	6.1 Experimental setup
	6.1.1 Application scenario and workload
	6.1.2 Baseline policies

	6.2 Analysis of SLA violation rate and response time
	6.3 Analysis of resource Usage

	7 Related work
	8 Conclusions and future work
	Acknowledgments
	References

