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ABSTRACT

It is anticipated that future networks support network functions, such as firewalls, load balancers and
intrusion prevention systems in a fully automated, flexible, and efficient manner. In cloud computing en-
vironments, network functions virtualization (NFV) aims to reduce cost and simplify operations of such
network services through the virtualization technologies. To enforce network policies in NFV-based cloud
environments, network services are composed of virtualized network functions (VNFs) that are chained
together as service function chains (SFCs). All network traffic matching a policy must traverse network
functions in the chain in a sequence to comply with it. While SFC has drawn considerable attention, rela-
tively little has been given to dynamic auto-scaling of VNF resources in the service chain. Moreover, most
of the existing approaches focus only on allocating computing and network resources to VNFs without
considering the quality of service requirements of the service chain such as end-to-end latency. Therefore,
in this paper, we define a unified framework for building elastic service chains. We propose a dynamic
auto-scaling algorithm called ElasticSFC to minimize the cost while meeting the end-to-end latency of
the service chain. The experimental results show that our proposed algorithm can reduce the cost of SFC

deployment and SLA violation significantly.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Network Functions Virtualization (NFV) is an emerging trend
in networking that concerns with migration of network functions
(NFs) such as network address translation (NAT), firewalls, intru-
sion detection systems (IDS) into virtualized environments to re-
duce capital expenditure, simplify operations, and speed up ser-
vice deployment. Traditionally, NFs are embedded on dedicated
hardware devices called middleboxes or network appliances. Even
though, such middleboxes are designed to handle heavy loads effi-
ciently, they require high up-front investment and do not achieve
the elasticity feature of virtualized environments (Pham et al.,
2017). Hence, there is a significant tendency among cloud ser-
vice providers and operators to decouple NFs from their under-
lying hardware and run them on commodity servers (e.g., x86
servers) (Eramo et al., 2017). This tendency has given birth to NFV
technology that converts NFs into virtualized network functions
(VNFs) hosted in virtual machines or containers.
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Network policies often require those VNFs to be stitched to-
gether as Service Function Chains (SFC) to deliver value-added
services or certain network functionality (Pham et al., 2017). To
supply specific requirements, SFC defines a sequence of service
functions (SF) through which traffic (stream of packets) must be
steered. Note that here SF, NF and VNF are used synonymously.
Recently, the new software defined networking (SDN) technology
which decouples the data forwarding and network control planes
and enables the network to become centrally manageable is ef-
fectively exploited in policy enforcement and appropriate SFC for-
warding (Mechtri et al., 2017).

In today’s networks, many applications produce a large volume
of traffic that is required to be processed by SFC. Cloud service
providers’ goal is to utilize network and host resources optimally
to operate these service chains and provide their associated Qual-
ity of Service (QoS) requirements such as end-to-end latency or
throughput, while failure to do so results in violation of the ser-
vice level agreement (SLA) (Ghaznavi et al., 2015). The automated
and efficient NFV management and orchestration is one of the key
solutions to achieve this goal.

Cloud service providers have access to many prominent mech-
anisms and techniques to develop efficient NFV management and
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orchestration systems that minimizes their operational cost while
meeting SLA requirements. The elasticity feature of VNFs allows for
both horizontal and vertical scaling of resources in response to vari-
ation in service requests and workload. In horizontal scaling, VNF
instances can be added or removed, whereas in vertical scaling,
host and bandwidth can be allocated or released according to on-
demand requests. To the best of our knowledge, this paper is one
of the first attempts to use vertical and horizontal auto-scaling of
VNFs at the same time to build elastic service chains. The live mi-
gration of VNFs is another option that would enable consolidation
and replacement of the VNFs to minimize cost and improve perfor-
mance. For example, a VNF can be migrated to a new host closer
to the traffic source to reduce network delay or a host with more
residual network bandwidth or computing resources suitable for
vertical auto-scaling. Further, dynamic flow scheduling and traffic
engineering provides opportunities for flow scheduling to redirects
SFC traffic to other paths to gain more network bandwidth or avoid
congestion.

With this in mind, in this paper, we intend to minimize the op-
erational cost of the cloud computing service provider while the
end-to-end delay requirements of the service function chains are
satisfied using dynamic auto-scaling of resources in the network
chain. The majority of works in this area focused on the efficient
placement of VNFs to reduce operational cost and improve the per-
formance of the chain, for example (Yoshida et al., 2014; Moens
and Turck, 2014; Wang et al., 2016; Gember et al., 2013; Clayman
et al., 2014). However, they mostly ignore to how provide a strictly
guaranteed SLA to satisfy QoS requirements of the users which is
very critical to the cloud service providers. There are a few stud-
ies, partially similar to our work, that address the auto-scaling and
placement of VNFs with respect to end-to-end latency (Li et al.,
2016; Cziva et al.,, 2018).

Moreover, to best of our knowledge none of the existing works
proposes a unified method that builds elastic service function
chains with simultaneously considering all of auto-scaling (both
horizontal and vertical), placement, migration and network traffic
engineering together. To overcome the challenges of building such
method, we propose an elastic SFC management and orchestration
framework and make the following key contributions:

1. Definition of an extended architectural framework and princi-
ples for building elastic service chains in NFV environments,

2. Proposed ElasticSFC, a novel heuristic algorithm for end-to-end
latency-aware dynamic auto-scaling of service function chains
using horizontal and vertical scaling of VNFs and dynamic
bandwidth allocation. In dynamic bandwidth allocation, we use
dynamic flow scheduling and VNF migration to enable efficient
utilization of network resources,

3. Evaluation of the ElasticSFC using realistic network policies
and workload traces of a web application in our extended
CloudSimSDN simulator to support SFC and NFV.

The remainder of this paper is organized as follows:
Section 2 provides a brief background on network polices, Service
Function Chaining (SFC), and Network Functions Virtualization
(NFV). In Section 3, we describe the extended architecture for SFC
and fundamental principles to build elastic service chains. We
discuss our choices for building elastic service chains to meet QoS
requirements of users including horizontal and vertical scaling
of service functions, dynamic traffic steering in the network, and
virtualized network function migration in Section 4. Section 5 de-
scribes our proposed algorithms for dynamic auto-scaling of
network service functions. We present performance evaluation and
experimental results in Section 6. Section 7 discusses related work
and finally we conclude our paper in Section 8.

2. Background

Applications in distributed systems have complex commu-
nications patterns sometimes requiring enforcement of net-
work policies to comply with performance and security require-
ments (Cui et al., 2017). Network policies mandate traffic to tra-
verse a series of network functions (NFs) such as firewalls, proxies,
traffic shapers, load balancers, intrusion detection and prevention
systems (IDS or IPS). A network policy (shorted as policy here) can
be represented as a flow and a list of NFs the flow needs to tra-
verse, for instance, {Source IP, Source Port, Destination IP, Destination
Port, Protocol} — {Series of NFs}. Sample policy for a web applica-
tion front-end can be configured as:

{%, % LB1,80, TCP}— > {IDS1, F1},

which implies that all TCP requests from any ports of all clients
sent to the port 80 of the public IP of the front-end load bal-
ancer (LB1) must traverse through intrusion detection system IDS1
and then firewall F1 before reaching the destination load balancer
LB1. The responsibility of an NF is to perform specific treatment
of received packets (e.g., dropping all packets with specific head-
ers in a firewall) where it can act at various layers of the protocol
stack (e.g., at the network layer or other OSI layers).! Traditionally,
NFs are typically deployed in the form of “network appliances” or
“middleboxes” in which NF software is tightly coupled with propri-
etary hardware that needs to be manually installed and managed.
However, thanks to the advances in the Network Functions Virtu-
alization (NFV), NFs can be realized as virtual elements embedded
into Virtual Machines called virtualized network functions (VNFs)
that alleviate operational challenges of middleboxes and rapid de-
ployment of NFs.

A network policy can be interpreted as a service function chain
(SFC) defining an ordered list of service functions (SFs) enforcing
the ordering constraints and steering network flows through them.
The term “service function” is used here to denote a “network
function” or “virtualized network functions” in the context of this
paper.

We define P = {p1, py....} as the set of SFC policies in the sys-
tem. An SFC policy p; is defined in the form of {flow — sequence}.
A flow is denoted by a 5-tuple: {src, dst, srcport, dstport, proto},
where src and dst are IP addresses of the source and destination
hosts and srcport, dstport are their associated port numbers, re-
spectively. proto represents the protocol type that can be either
TCP or UDP. sequence is a list of SFs, {sf1,sf>,...,sfn}, that all net-
work flows matching the flow section of policy p; must traverse
in the sequence of sf; — sf, — ... — sf;. We denote sf; and sf; as
ingress and egress service functions, respectively.

SFCs might be unidirectional or bidirectional. Network traffic
in the unidirectional SFC needs to be be forwarded through the
ordered list of SFs in one direction, i.e. sf; — sfo, — ... = Sfa,
whereas a bidirectional SFC requires the traffic to pass through
both directions (sf; — sfy — ... > sfpand sfy, — ... —> sfy, — sf1).
Without loss of generality, we assume that SFCs are unidirectional
in this paper.

Based on the Internet Engineering Task Force (IETF) model, the
main component of SFC architecture includes: 1) a classifier that
differentiates the traffic flows against the policy and redirects them
to the specific SFC by adding an SFC header, and 2) a Service Func-
tion Forwarder (SFF) that uses the information in the SFC header to
forward packets received from the network to associated SFs. Traf-
fic from SFs eventually returns to the same SFF that injects back
traffic onto the network.

A wide range of research work has been conducted on the
design and development of novel frameworks and techniques for

1 https://tools.ietf.org/pdf/draft-ietf-sfc-architecture-07.pdf.
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successful realization of SFC goals. Among these works, consider-
able amount of attention has been given to VNF routing, place-
ment, and consolidation with the aim of decreasing operational
and network communications cost. The VNF placement and consol-
idation problems in NFV environments are very similar to the well-
studied VM placement and consolidation in cloud computing envi-
ronments (Eramo et al., 2017). However, existing works in the VM
management area are not suitable for SFC in their default forms
as they are designed without consideration of the sequencing re-
quirement of service chains (Ghaznavi et al., 2015).

The possibility to dynamically scale network functions in ser-
vice chains at runtime in an automated fashion is an important
area of the research that requires particular attention (Szabo et al.,
2015). Providing elastic networking services is similar to offering
flexible cloud services with the pay-as-you-go cost models. How-
ever, it is far from trivial as it requires careful consideration of the
chain-ordered set of SFs and configuration of virtualized resources
including virtual machines (VMs) and network resources to meet
the demand on the service chain.

One of the main benefits offered by the NFV approach is the op-
portunity to dynamically scale VNFs and the allocated bandwidth
between them to meet the performance requirements of the ser-
vice chain such as throughput or end-to-end latency. As mentioned
earlier, considerable attention in the literature has been given to
the VNF routing, placement, and consolidation which make the
building blocks of elastic service chains. However, holistic auto-
scaling approaches that unify all these advancements and con-
sider scaling for both compute and network resources to meet SLA
requirement of the service chain are not sufficiently investigated
in the current NFV management and orchestration frameworks.
Therefore, this work aims to develop dynamic auto-scaling algo-
rithms to support the construction of elastic service chains meet-
ing the end-to-end delay requirement of users in NFV management
and orchestration frameworks.

3. Service function chaining architecture

In this section, we describe our extended architecture for SFC
and fundamental components to build elastic service chains. With
elastic service function chaining, network service functions can be
dynamically scaled in order to meet QoS requirements of diversi-
fied clients (users).

The proposed architecture, shown in Fig. 1, includes service
function chaining applications that allow users to composite their
network policies and chain together their required network func-
tion services via a dashboard or command line (CLI) or applica-
tion program (API) interfaces. Central to the architecture is Man-
agement and Orchestration (MANO) module which is in charge of
the orchestration and management of resources and realization of
service chains. The architecture of MANO is aligned with ETSI NFV
architectural framework? and has three main functional blocks:
NFV Orchestrator (NFVO), VNF manager (VNFM), and Virtualised
Infrastructure Manager (VIM). NFVM is in charge of NFV lifecy-
cle management including instantiation, scaling and termination of
VNF instances. It maintains the view of the entire virtualization
infrastructure and keeps a record of installed VNFs and available
resources in the physical infrastructure. VIM controls and manage
the compute, storage and network resources within the infrastruc-
ture. NFVO is responsible for lifecycle management of network ser-
vices and policy management for VNF instances.

In this paper, we propose algorithms for building elastic service
chains that are dynamically scaled based on the system load and

2 ETSI GS NFV 002 (V1.1.1): “Network Functions Virtualisation (NFV); Architectural
Framework”.
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Fig. 1. Service function chaining architecture.

QoS requirements of users. Our proposed algorithms are plugged
into a module of MANO called elastic service controller that is re-
sponsible for auto-scaling of service chains. To build elastic service
chains, we use techniques such as flow scheduling, VNF migration,
and scaling that are explained in more details in the next section.
To perform its duties, MANO communicates with SDN controller in
a tightly regulated process that ensures proper deployment and
functioning of service chains. SDN controller is a logically central-
ized component of the system with a general view of the network
and handles traffic steering according to the requirement of the
service function chaining applications. SDN controller uses a pro-
tocol such as OpenFlow to set forwarding rule satisfying routing
requirement of service chains for the virtual and physical switches
in the infrastructure.

In the next section, we focus on the main techniques used by
elastic service controller to dynamically scale service functions to
meet elasticity requirement of service chains.

4. Elastic service chaining approach

In this section, we explore a range of possible options including
scaling up/down and scaling infout VNFs, dynamic flow schedul-
ing, and VNF migration to allocate required processing power and
bandwidth to build elastic service chains meeting QoS require-
ments. Please note that the majority of software-based network
appliances are CPU intensive and unlikely to be memory and disk
heavy. Hence, we only focus on the processing power of VNFs and
the network bandwidth between them that are essential to the
performance of the service chain for the sake of simplicity. We as-
sume that VNFs always have access to adequate memory and stor-
age resources and demand no scaling for these resources. However,
our proposed methods can be simply extended to support these
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(b) Vertical scaling of VNF B
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Fig. 2. Elasticity mechanism.

resources. In the following, we discuss challenges related to dy-
namic scaling of service functions in the NFV framework enforcing
service chaining.

Fig. 2a shows a service chain where each box represents one
abstract SF. Let us assume that the size of each box shows the pro-
cessing power of the hosting compute node (virtual machine), and
the thickness of connector lines represents the dedicated (avail-
able) bandwidth between VNFs. For the sake of simplicity, we as-
sume that each SF is hosted as a VNF in a single VM. Since nodes
(SFs) can be part of one or many SFCs and the throughput of the
VNF depends on the type (e.g., firewall or proxy) and the load of
SF (incoming rate of packets) running in the VNF instance, VNFs
can become overloaded and consequently degrade the entire chain
performance. Horizontal and vertical scaling of the VNF instances
are the promising mechanisms to build elastic SFC honoring the
end-to-end latency requirement of the policies.

Fig. 2b illustrates the case that VNF instance B is vertically
scaled up by the allocation of more computational resources. Sim-
ilarly, when utilization of the VNF instance is considerably low,
the VNF instance can be scaled down by releasing redundant re-
sources. Vertical scaling of VNF instances to achieve processing ca-
pacity required by the traffic might be impossible due to capacity
constraints or allocated resources of the physical server. As shown
in Fig. 2c¢ horizontal scaling that allows adding/removing (scaling
infout) VNF replica instances is another possible option in this sce-
nario. However, processing (Compute) capacity of VNF instances is
not the only source of variation in service function performance.
The link capacity for transferring packet (available bandwidth) or
even network congestion can become the bottleneck or the source
of performance degradation of a service chain. Allocating more
bandwidth or finding other network paths to dedicate required
bandwidth is necessary under circumstances that the network is
the source of the issue.

The most recent architecture for SFC has made use of software-
defined networking (SDN) to assist automated deployment of ser-
vice chains. SDN decouples the control plane from the forwarding
plane in traditional network switches and provides a logically cen-
tralized management controller along with programming APIs for
network management. The SDN controller can be used to dynami-
cally control the SFC topology and perform traffic steering across

(c) VNF Migration for Scaling Bandwidth

Fig. 3. Scaling bandwidth for a service chain.

SFs (Medhat et al.,, 2017). The SDN controller and NFV manager
work in coordination to perform the allocation and management of
resources required by elastic SFC. Fig. 3a depicts the same service
chain in Fig. 2a in a physical network topology connecting eight
physical servers. As it can be seen in the figure, virtual links among
SF nodes are mapped into multiple physical links in the network.
If a physical link does not have enough dedicated bandwidth to
be allocated to the virtual link, dynamic flow scheduling gives us
the option to redirect traffic to another network path capable of
accommodating updated bandwidth shown in Fig. 3b. This is only
the case for network topologies having multiple paths available be-
tween a pair of source and destination hosts. If all possible paths
between the source and the destination with the required latency
(number of hobs) are not suitable to allocate required bandwidth,
VNF migration allow migration of either of the two end VNF in-
stances of the virtual link or even both to find a proper placement
providing required bandwidth. For example, in Fig. 3c, the physical
link connecting the physical server to the edge switch cannot pro-
vide the extra bandwidth required by the virtual link connecting A
to B. Thus, VNF A has been migrated to another host to gain the
required dedicated bandwidth to satisfy performance requirements
of the service chain.

5. Proposed algorithms

In this section, we propose our solution including series of al-
gorithms to build elastic service chains in NFV environments. All
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Table 1
Notations.

Symbol Description

List of all VNFs
List of VNFs of policy i
Set of VNFs to scale up

V={v,vp,...}

{p1.p2....}  List of policies

DOV EE<<<
I

& =T 3
Il

List of all virtual links

=
,-::,F
—~
—
=
—
9

£

< o
=

Set of VNFs to scale down

List of virtual links of policy i

Set of policies to scale up their bandwidth

Set of policies to scale down their bandwidth

Average end-end latency of policy i

End-to-End latency required by SLA for policy i

Slack latency avoiding SLA violation i

Overloading and underloading thresholds for hosts CPU utilization
Overloading and underloading threshold for links bandwidth utilization

List of virtual links used by the chain c;

The utilized capacity of the virtual link of I;
The utilization of the host of the VNF node v;
List of links in the jth virtual link of the chain
List of VNF instances in the kth VNF node
|[viel] Size of VNF instances in vy

BW Default unit bandwidth for scaling virtual links

the notations and their description used in this section are given
in Table 1.

5.1. Elastic SFC algorithm

Our solution works based on the proposed Algorithm 1, called
ElasticSFC, and is executed periodically at fixed time intervals to
find the list of VNFs and virtual links that must be scaled to meet
the end-to-end latency requirement of the policy flow. Note that
the service chain end-to-end latency in this work is defined as the
time it takes for a packet to traverse the entire service chain from
the time it arrives at the ingress SF (sf;) to the time it leaves the
egress SF (sfy). The variations in the latency caused by auto-scaling
algorithms at the service chain level will be translated to network
latency changes for the application in an abstract manner.

Algorithm 1 iterates over all policies in the outer loop of the al-
gorithm in lines 3-38. For every policy i, we calculate the average
end-to-end delay 6; in the last time interval, and compare it with
T;, the maximum end-to-end latency of the agreed on the SLA for
the policy minus, §, a small slack value avoiding SLA violation. If
0; is larger than T; — §, the algorithm addresses the issue by allo-
cating more compute and network resources to service chains in
lines 5-18, otherwise, it finds resources that are underutilized and
are suitable for scale down process in lines 21-35.

The scaling up process looks into two possible ways of enhanc-
ing the performance of the corresponding service chain. 1) In lines
6-12, ElasticSFC algorithm checks that if there exists any virtual
link 1; in the chain that its average bandwidth utilization in the last
time interval is higher than the maximum bandwidth threshold B.
Note that I; can be a list of virtual links if VNF node is horizontally
scaled earlier. All policies with an over-utilized virtual link I; are
added into the set P for more bandwidth allocation where func-
tion ScaleBW is called in line 42. Note that all virtual links of a
policy are scaled up even if a single virtual link is over-utilized. 2)
In lines 13-17, ElasticSFC algorithm adds all VNF nodes with aver-
age CPU utilization over the upper threshold H into the set V. In
line 40, all over-utilized VNF nodes are scaled by calling ScaleNF
function. Note that VNF node can be a group of VNF instances if
the VNF node is horizontally scale out earlier. This is the reason
that both I; and vy are notated in boldface.

In the scaling down process, the algorithm checks if all virtual
links in the service chain are under-utilized, that is, the average
bandwidth utilization of every virtual link 1;, u?, must be smaller

than the lower threshold B. If this is the case, the policy is added
to P, the set of policies that require to go through the bandwidth
scaling down process in line 41, otherwise no bandwidth scaling
down is required. A similar process is repeated for VNF nodes of
the policy in the loop in lines 31-36. All VNF nodes with average
CPU utilization below the lower threshold H are added to the set
V to be scaled down later in line 39.

The computational complexity of the Elastic SFC algorithm is
analyzed as follows. The outer loop iterates over all policies in the
system, i.e., |P|. For each polciy i, the scaling up/down process re-
quires checking both every virtual link in L; and every VNF node
in V; in the service chain. Therefore, assuming that |L| and |V| are
the maximum number of virtual links and the maximum number
of VNF nodes in the service chain, the computational complexity
of Algorithm 1 is represented as O(|P| x (L +V)).

5.2. Bandwidth scaling algorithm

The ScaleBW algorithm (Algorithm 2) updates bandwidth for a
service chain. The algorithm has two parts, one for scaling up the
dedicated bandwidth, the other for scaling down. This is decided
based on the up variable. Note that we assume, service chains are
provided by dedicated bandwidth with minimal or no impact on
other network traffic. The bandwidth scaling algorithm updates the
dedicated bandwidth for each service chain in order to provision
network resources elastically. In the scaling up process, lines 2-18,
the algorithm allocates the total of BW unit of bandwidth to every
virtual link. The loop in lines 3-17 iterates over all virtual links
in the chain, it calculates w as the number links in virtual link
I;. If we have a horizontal scale-up for VNFs then l; includes all
those links connecting previous VNF node to the next one in the
chain. The algorithm evenly distributes BW between all those links
by dividing BW to the number of links noted as [l;|. bw represents
the amount of bandwidth needs to be allocated to every link. We
assume that when there are multiple links in a virtual link, for-
warded packets are distributed among the duplicated VNFs using a
Round-Robin fashion to equally distribute load across horizontally
scaled VNFs. We also assume that a shared storage for sessions is
accessible from any individual duplicated VNFs, thus packets can
be simply redirected among duplicated VNFs even for the statefull
flows. The inner loop in lines 5-16 tries to increase bandwidth by
bw for every link I in the virtual link set l;. Firstly, it attempts to
allocate bw for the link [ in line 6. This includes bandwidth alloca-
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Algorithm 1 Elastic SFC.

Algorithm 2 ScaleBW.

Input: P, T,L,V

1: function ELASTICSFC(x)
2: V,P,V,P={}

3 for p; in P do

4 6; < Average end to end delay of p;
5 if 6; > T; — § then > Scale Up
6: for |; in L; do
7
8
9

u? <« Average bandwidth utilization of
if u? > B then

: Add p; to P
10: Break
11: end if
12: end for
13: for vy in V; do
14: ul' — Average CPU utilization of vy
15: if ull > H then
16: Add vy to V
17: end if
18: end for
19: else > Scale Down
20: isScaleDown < true
21: for |; in L; do
22: u? < Average bandwidth utilization of I;
23: if u? > B then
24: isScaleDown <« false
25: Break
26: end if
27: end for
28: if isScaleDown then
29: Add p; to P
30: end if
31: for vy in V; do
32: ulf‘ <« Average utilization of vy
33: if u? < H then
34: Add v to V
35: end if
36: end for
37: end if

38: end for

39:  Vvg eV, ScaLENF(vy, false)
40: Vv eV, ScALENF(vy,true)

41: Vp; € P, ScALEBW(L;, false)
42: Vp; € P, SCALEBW(L;, true)
43: end function

tion for all physical links beneath. If that is not possible, the algo-
rithm finds an alternate path capable of accommodating the extra
bw bandwidth for all physical links of the link, [, in line 7. If there
is such an alternate path, it calls the ScheduleFlows function to
change the path for the link [, and updates bandwidth in line 10.
Otherwise, it migrates the entire virtual link [, by moving both or
either of VNF instances at the two ends of the link to find a lo-
cation that can provide additionally required bandwidth and then
updates bandwidth in line 13. Finally, in lines 19-24, the algorithm
simply releases bandwidth for all virtual links.

The outer loop of the algorithm iterates over all virtual links in
the chain i that requires |L;| iteration. The inner loop, then iter-
ates over all links in the virtual link set I; for [l;| times. The time
complexity of finding an alternate path algorithm depends on the
topology of the network. If |N| is the number of nodes (vertices)
and |E| is the number edges in the network, and Dijkstra’s algo-
rithm is used, then the computational complexity based on a min-

Input: s, d
1: function SCALEBW(L;, up)
2 if up then
3 for I; in I; do
4: a)<—|lj|,bw<—%
5: for [ in 1; do
6: if ALLOCATEBW(I,, bw) then
7 path < FINDALTERNATE (I, bw)
8 if path <> None then
9 ScHEDULEFLOWS (I, path)

10: ALLOCATEBW (I}, bw)
11: else

12: MIGRATELINK (I}, bw)
13: ALLOCATEBW (I, bw)
14: end if

15: end if

16: end for

17: end for

18:  else

19: for |; in L; do

20: @ < |lj|, bw « %

21: for [, in ; do

22: RELEASEBW (I}, bw)

23: end for

24: end for

25: end if
26: end function

priority queue implementation is O(|E| + |[N|log|N|). Link migration
also requires time O(|N|2). As a result, the overall time complex-
ity of the ScaleBW algorithm is represented as O(|L| x [Lj| x (E +
INI2)).

5.3. Virtualized network functions scaling algorithm

The ScaleNF (Algorithm 3) is responsible for auto-scaling of a
VNF node in the service chain. Similar to ScaleBW, it has two parts
to allocate and release resources based on the boolean variable up.
For allocating more resources (lines -), first, it attempts to verti-
cally scale up VNF instances in vi by means of allocating h units of
capacity to each VNF instance. h is calculated based on the propor-
tion of the scaling unit capacity H to the number of VNF instances
in a VNF node, i.e., |vi]|. If scaling up is not possible due to resource
constraints (see line 7), it sets an indicator variable horizontal to
true, and tries horizontal scaling by adding a VNF instance of size
[lvil], that is, the size of VNF instances in VNF node vy in line 1.
The ScaleOut function is in charge of adding a VNF instance to
the VNF node. The function needs to place the newly added VNF
instance in the physical servers. It is not our aim to propose a VNF
placement algorithm in this paper. Different methods proposed in
the literature can be used for the placement of VNF instances. In
this paper, we use first fit algorithm for placement of added VNF
instances.

Lines 19-27 of the algorithm are dedicated to releasing surplus
resources. If size of VNF instances are larger than unit capacity H,
the algorithm performs vertical scale down in line 23; otherwise,
it removes a VNF instance in line 26.

The time complexity of Algorithm 3 is analyzed as follows. The
algorithm has a main loop that iterates over all VNF instances
in the VNF node vy. The ScaleOut function complexity is the
most compute intensive part of the algorithm that requires at least
O(|M]) time for the first fit placement algorithm, where M is the
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Algorithm 3 ScaleNF.

Input: s, d

1: function SCALENF(vy, up)

2 if up then

3 T «— |Vk|

4: h < T

5: horizontal < false

6 for vy in vy do

7 if |CANSCALEUP (v, h) then > Scale Up
8 horizontal < true

9: end if

10: end for

11: if 'horizontal then

12: for v, in vy do

13: ScALEUP (v, h)

14: end for

15: else > Scale Out
16: ScALEOUT(||vg||) > Add a VNF instance with size of

(]lvgll) and update bandwidth

17 end if

18: else

19: if ||vk|| > H then
20: T <« |vgl
21: h < ¥
22: for v, in vy do
23: SCALEDOWN (v, h)
24: end for
25: else
26: ScALEIN() > Remove a VNF Instance and update

bandwidth
27: end if

28: end if
29: end function

number of physical servers in the system. Therefore, the overall
time complexity of the algorithm is O(|v,| x N).

6. Performance evaluation

In this section, we present the experiment environment and re-
sults of the performance evaluation.

6.1. Experimental setup

To evaluate our algorithms, we modeled and simulated a
software-defined cloud environment. We implemented the pro-
posed algorithms on CloudSimSDN (Son et al., 2015) environment
that extends the CloudSim (Calheiros et al., 2011) to support SDN
and NFV features in the simulation. In order to simulate SFC func-
tionalities and auto-scaling policies, we added extra modules to
CloudSimSDN that creates SFs based on the exiting Virtual Ma-
chine module and the chain of multiple SFs. It also defines SFC
policies that specify the source and destination VM, and the chain
of SFs that transfers the traffic between the source and the destina-
tion VM. The modified CloudSimSDN can detect the network traffic
from the source VM to the destination VM specified in the policy
and enforce the traffic to travel through the SFC. SFs can be created
and placed as like a traditional VMs with additional information to
determine the capacity of the SF. SFC policies are specified along
with the VMs and SFs so that CloudSimSDN can enforce the SFC
for network traffics.

For the performance evaluation, a cloud data center with 8-
pod fat-tree topology is created in CloudSimSDN, which consists
of 128 computing nodes connected with 32 edge, 32 aggregation,
and 16 core switches as shown in Fig. 4. Each pod has 4 edge and
4 aggregation switches, and each edge switch connects 4 hosts. All
hosts have 16 cores with 10,000 MIPS each, and the network band-
width between hosts and switches are set to 200 MBytes/sec. The
main reason we chose the common fat-tree topology is that Elas-
ticSFC algorithm uses dynamic flow scheduling to handle the band-
width requirement of the chain and fat-tree has multiple short-
est paths available between any given pair of hosts allowing for
such dynamic flow scheduling. EltasticSFC is expected to provide
equally comparable results with other network topologies with
many equal-cost paths between a given pair of hosts such as leaf-
spine (Alizadeh and Edsall, 2013), VL2 (Greenberg et al., 2009) or
Bcube (Guo et al, 2009). Note that, we also consider CPU and
network performance in the evaluation with the assumption that
there is always enough memory and storage resources for VNFs.

6.1.1. Application scenario and workload

We create a 3-tier web application consisting of arbitrary num-
ber of web, app, and database (DB) VMs with the detailed speci-
fication depicted in Table 2. Once the request from end users ar-
rived at web servers, the request is sent to an app server to re-
trieve the information from DB. Then, the DB responds to the app
server with the relevant information which will be returned to the

Aggregation

Fig. 4. 8-pod fat-tree topology setup for experiments.
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Table 2

VM types for a 3-tier web application.
VM Type CPU Capacity (cores*MIPS) # of VMs
Web server 8*10,000 8
App server 4+*10,000 24
Database 12*10,000 2

Table 3

SFC policies defined for the 3-tier application in the evaluation.
Source VM Destination VM SFC
Web server App server {FW, LB1}
App server Database {LB2, IDS}
Database App server {IDS, LB2}
App server Web server {LB1}

end-user through web server. Based on this process, we generate
4 SFC policies which enforces the network traffic to go through a
chain of multiple SFs, such as firewall, load balancer, and intrusion
detection system. Please note that these policies are designed for
performance evaluation purposes and are not necessarily typical
in real-world scenarios. The details of SFC policies for the evalua-
tion are shown in Table 3. From the web to app server, the packet
goes through the firewall (FW) to filter the request and the load
balancer (LB1) to distribute the request across the number of app
servers. Similarly, the request from app to DB is also sent through
a load balancer (LB2) and intrusion detection system (IDS). For the
response from DB to app, network traffic travels through the IDS
and LB2 in the opposite direction. From app to web, however, the
traffic goes through only LB1 as firewall is not necessary for the
response packets. The detailed specification of SFs is explained in
the next subsection.

The workload is generated based on the Wikipedia traces in
German language for 24 h. Each workload consists of CPU pro-
cessing in each VM and network traffic between VMs which must
travel through the SFC defined in the policy. The number of re-
quests in each hour is depicted in Fig. 5. In total, 29 million re-
quests are generated to be distributed across the multiple servers
through the load balancers specified in the SFC.

In the experiment, we set 10 s for time-out so that the request
will be cancelled and marked as SLA violation if it cannot be pro-
cessed within 10 s. The time interval is set to 60 s for the monitor-
ing and scaling checkpoints, which results in running the proposed
ElasticSFC algorithm every minute to check if any SFC needs to be
scaled.

2.5

0.5

User requests (millions / hour)

6.1.2. Baseline policies

The proposed auto-scaling algorithm (ElasticSFC) is evaluated by
comparison with two baselines which does not implement scal-
ing algorithms. The first baseline, named NoScale-Min, is to use the
same amount of CPU and network resources as the initial resources
given to the ElasticSFC algorithm, but without any scaling. In this
baseline, we give the same amount of CPU and network resources
to the SFs and the network flows which is same as the initial re-
source capacity for ElasticSFC policy. As the initial resources allo-
cated to SFCs are not enough for the whole workload, NoScale-Min
would result in higher SLA violations especially for high demand.

The second baseline (NoScale-Max) is to provide maximum re-
sources enough to process the demand all the time which would
guarantee the SLA without any violation. As the SFC allocates more
than enough CPU and network resources at the beginning, this
baseline is over-provisioning the resources which does not incur
any SLA violations without auto-scaling.

In addition to the two static baselines without auto-scaling, we
also compare the proposed algorithm with simple auto-scaling ap-
proaches which exploit auto-scaling method for only VNFs or net-
work bandwidth. With Scale-NF approach, the system automati-
cally adds or removes VMs for SFs based on the fluctuating real-
time utilization of a SE. If the utilization of a SF exceeds the
predefined threshold, more VMs are created for the SF. Likewise,
VMs for a SF are removed once the utilization is below the min-
imum threshold. Scale-NF is similar to the approach presented
in Ghaznavi et al. (2016) which deploys multiple VNF instances
in distributed manner to provide network functionality. Scale-NF
provides auto-scaling only for VMs, not for network bandwidth
which ElasticSFC supports. We also implement Scale-BW algorithm
as another baseline which scales only network bandwidth be-
tween SFs in a policy based on the bandwidth utilization. Similar
to Cziva et al. (2018), Scale-BW dynamically allocates bandwidth
for over-utilized links in a SF chain to reduce the network trans-
mission time. Note that Scale-BW does not auto-scale VMs.

The initial resources allocated to SF and networks are shown
in Table 4. For ElasticSFC and NoScale-Min policies, we allocate 1
VM for each SF with the minimum amount of CPU and network re-
sources. For NoScale-Max policy, multiple VMs are allocated for FW
and IDS in order to serve the entire workload. In order to simplify
the comparison, we fix the unit MIPS in CPU resources (10,000)
whereas the total MIPS changes only depending on the number of
cores.

We measure the response time, SLA violation rate, and the
amount of allocated CPU and network resources with different
policies.

12 16 20 24

Time (hour)

Fig. 5. The number of requests in the workload generated from Wikipedia trace.
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Table 4
Initial SF resource allocations in each policy.

SF Type ElasticSFC NoScale-Min NoScale-Max
CPU Number  Bandwidth ~ CPU Number  Bandwidth
(Cores*MIPS)  of VMs (MB/s) (Cores*MIPS)  of VMs (MB/s)
Firewall (FW) 810,000 1 500,000 16*10,000 3 2,000,000
Load balancer (LB1) ~ 2+10,000 1 500,000 10*10,000 1 2,000,000
Load balancer (LB2)  2+10,000 1 500,000 10*10,000 1 2,000,000
DS 610,000 1 500,000 12*10,000 3 2,000,000
6.2. Analysis of SLA violation rate and response time 08 72.95% 72.97% 72.97%
0.7
SLA violation rate is calculated based on the number of timed- 206
out requests. We check the processing time inside a SF and net- 2
work delay between SFs in the chain and mark the request as g 05
timed-out if it takes more than 10 s in any SF or network trans- =04
mission due to the VM overhead or network congestion. E 03
The SLA violation rate is shown in Fig. 6a. With the pro- <
posed ElasticSFC algorithm, the SLA violation rate is measured at 7 02
0.03%, significantly lower than NoScale-Min. As we discussed ear- 0.1
lier, NoScale-Min allocates the minimum amount of CPU resources 0.03% 0.00%
to SFs and the network resources to the SFC, which resulted in 00
72.97% of the requests to be timed-out during the experiment. On OElasticSFC BScale-NF - BScale-BW 8 NoScale-Min - ENoScale-Max
the other hand, NoSAcale‘—Max provides enqugb resources to process ( a) SLA violation rate.
all the requests, which is why no request is timed out.
For the auto-scaling baselines, the SLA violation remains as high 9.0
as NoScale-Min policy because their auto-scaling is only applied ei- 5 50
ther in VM (Scale-NF) or network bandwidth (Scale-BW). Although s
Scale-NF policy can add more VMs if the current capacity of VMs 2 7.0
are not enough to process incoming requests, it does not pro- & 6.0
vision network bandwidth which becomes bottleneck even after 2 5.0
more VMs have been created for a SF. As the network transmis- 240
sion cannot be processed within the deadline, the SLA violation 2
rate of Scale-NF policy reaches at 72.95% which is almost same as @ 30 228 2.28
NoScale-Min. Similarly, Scale-BW does provide auto-scaling mech- g820
anism for VMs, which made the SLA violation as high as the policy 5 1.0 0-96 % 0.55
without auto-scaling. 0.0 |—| NN

The small amount of SLA violations in the proposed ElasticSFC
algorithm is caused during the gap time between the high-demand
requests and the monitoring checkpoint. The requests are timed
out if they are processed before running ElasticSFC algorithm to
scale up the SFC. The SLA violation rate can be reduced by de-
creasing the interval time between the monitoring checkpoints, so
that the algorithm runs more often to check if a SFC is overloaded,
which however results in the overhead of frequent VM and net-
work scaling. Nonetheless, the result shows that the proposed al-
gorithm can provide elastic resources to adapt to the change of the
workload.

We also evaluate the performance of the algorithm by com-
paring the average response time. Fig. 6b shows the average re-
sponse time of requests excluding the SLA violated ones. Similar
to the SLA violation results, the requests are responded in 0.96 s
with ElasticSFC algorithm which is slightly longer than NoScale-
Max, but significantly faster than the other baselines. Because of
the elastic resource allocation adapted to the workload, ElasticSFC
algorithm reduces the amount of resources if the utilization is less
than the threshold, which results in more resource saving but in-
creasing the response time slightly. Scale-NF baseline increases the
average response time to 8.44 s which is far more than NoScale-
Min result. In order to find the reason of this result, we further in-
vestigated to measure the average processing time in VMs and net-
work transmissions shown in Fig. 6¢c. For VM processing, all poli-
cies had the same average processing time at 0.03 s. However, for
network transmission, Scale-NF takes far more than the other base-
lines. This shows that the excessive amount of time is wasted for

DElasticSFC BScale-NF B Scale-BW BNoScale-Min BNoScale-Max

(b) Average response time of requests.
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(c) Average processing time within a VM and
network transmissions.

Fig. 6. SLA violation rate and average response time in Wikipedia application with
different policies.

network transmission in Scale-NF, due to more number of requests
consuming the limited bandwidth especially after the VMs have
been scaled up. The static amount of network resources with more
numbers of VMs for a SF creates a bottleneck in network transmis-
sion, which results in increasing average response time.
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Fig. 7. Allocated CPU and network resources for SFCs over time.

6.3. Analysis of resource Usage

We measure the allocated CPU and network resources over
time. Fig. 7 shows the number of total CPU cores used in all SFs
and the network bandwidth allocated to the SFC from DB to App.
For CPU cores (Fig. 7a), ElasticSFC policy started with the initial
resource allocation (18 cores), but immediately increased to 44
to adapt to the workload. After that, the algorithm dynamically
changes the resource capacity adapting to the workload shown in
Fig. 5. The total CPU cores used in NoScale-Min, Scale-BW, and
NoScale-Max baseline policies remain at the same amount with-
out any change for the entire experiment, because they do not
scale the VMs of service functions elastically. On the other hand,
the number of CPU cores with Scale-NF policy dynamically adapts
to the workload similar to our ElasticSFC, although there was no
scaling down between 4 and 6 h which is due to the continuous
SLA violation.

Similarly, the allocated network bandwidth is adapted to the
workload with our proposed algorithm (Fig. 7b). Initially starting
with the minimum bandwidth (0.5MBytes/sec), it was immediately
increased to 2 MB/sec once the SLA violation detected. When the
number of requests is decreased after 2 h, the allocated band-
width is also reduced to 0.5MB/sec. In NoScale-Min and NoScale-
Max, the bandwidth allocation is consistent. It is worth mention-
ing that, in Fig. 7b, the Scale-BW policy also does not have differ-
ent bandwidth, since CPU capacity is the bottleneck in this case
and adding more bandwidth will not improve the end-to-end la-
tency. This observation demonstrate the importance of dynamic
auto-scaling across both computing and network resources.

In short, the proposed algorithm dynamically adjusts the
amount of CPU and network resources for SFCs elastically adapt-
ing to the workload. Although Scale-NF can scale up and down
for VMs similar to ElasticSFC, it does not scale network bandwidth
which results in continuous SLA violation. The results show that
we can achieve the resource saving with the proposed algorithm
which does not over-provision the resources all the time, yet it
provides adequate amount of resources for the dynamically chang-
ing workload.

7. Related work

Network service chaining, also known as service function chain-
ing (SFC) is an automated process used by network operators to
set up a chain of connected network services. SFC enables the as-
sembly of the chain of virtual network functions (VNFs) in an NFV
environment using instantiation of software-only services running
on commodity hardware. To avoid tedious manual steps of the
chain setup, the process of service chain provisioning in NFV en-
vironments happens through an NFV management and orchestra-
tion (MANO) framework. Managing and orchestrating of VNFs in
NFV MANO has been a popular research topic and a widely stud-
ied problem in the literature (Medhat et al., 2017).

The problem of VNF placement, often very related to
the traditional VM placement in cloud computing environ-
ments (Eramo et al., 2017), has gained considerable attention over
the past few years (Ghaznavi et al., 2016). MORSA (Yoshida et al.,
2014) is a multi-objective VNF placement approach proposed as
part of vConductor framework (Shen et al,, 2014) to minimize the
physical machine load and the intra-data center trafficc. MORSA is
designed to optimize placement for VNFs while it does not take
into account other aspects such as auto-scaling of VNFs, consoli-
dation, and service chaining. Similarly, Clayman et al. (2014) pro-
posed MANO framework for the automated placement of VNFs
across the resources. They also did not consider scaling and consol-
idations. SOVWin is a heuristic proposed by Pai et al. (2017) to ad-
dress the service-chain deployment problem. Different from other
works, SOVWin aims at satisfying SLA requirements and maximiz-
ing the number of accommodated user requests.

The above works do not consider auto-scaling of service chains.
VNF-P is a model proposed by Moens and Turck (2014) for ef-
ficient placement of VNFs. They propose an NFV burst scenario
in which the base demand for the network function service is
handled by physical resources while the extra load is redirected
to the virtual service instances. Their method only considers a
single service chain. Draxler et al. (2017) go one step further
and propose a mixed integer programming solution and a cus-
tom heuristic to address scaling and placement problem of VNFs
jointly. Wang et al. (2016) propose online algorithms for dynamic
provisioning of virtualized network services. Their approach de-
termines the numbers of VNF instances and their placement on
physical servers to optimize operational cost and resource uti-
lization of the system. In a recent work, (Cziva et al., 2018) fo-
cused on the VNF placement to optimize end-to-end latency for
users. Their optimization method is adapted for a dynamic and
ever-changing edge networks. Rajagopalan et al. (2013) proposed
a system called FreeFlow based on the Split/Merge abstraction
model that enables elasticity for stateful virtual network services.
FreeFlow addresses auto-scaling of virtualized middleboxes by re-
moving the configuration complexity of running independent mid-
dleboxes. Stratos (Gember et al., 2013) is a MANO framework aims
to provide a scalable network-aware strategy based on traffic en-
gineering, elastic scaling, and VM migration for service function
chaining. Ghaznavi et al. (2016) propose an optimization model
and heuristic called Kariz to optimize service chain deployment
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Table 5

Comparison of existing approaches for VNF placement and auto-scaling.

Work Placement ~ Migration = SLA  Horizontal ~ Vertical  Dynamic Flows  SFC
MORSA (Yoshida et al., 2014) J X X X X X
Clayman et al. (2014) v X X X X X v
SOVWin (Pai et al., 2017) v X v X X X v
VNF-P (Moens and Turck, 2014) Vv X X Vv X X X
Draxler et al. (2017) N X X N X X N
Wang et al. (2016) v X X J X X v
Cziva et al. (2018) N N N X X X N
FreeFlow (Rajagopalan et al., 2013) X X N Vv X Vv X
Stratos (Gember et al., 2013) X v X v X v N
Kariz (Ghaznavi et al., 2015) J X N X X N v
SLFL (Ghaznavi et al., 2016) v v X Vv X X Vv
Eramo et al. (2017) v v X X N X v
NFV-RT (Li et al., 2016) J X J X J X v
DFCA (Wang et al., 2015) X X N X X X N
ElasticSFC X N N N V N N

targeting custom throughput. In another work (Ghaznavi et al.,
2015), they propose a heuristic called Simple Lazy Facility Loca-
tion (SLFL) to minimize the overall operational costs by the effi-
cient consolidation of VNFs using migration and horizontal auto-
scaling of VNFs. Similarly, (Eramo et al., 2017) study the consolida-
tion, routing, and placement of VNFs in an NFV environment when
the vertical auto-scaling of VNFs is the case. They propose a mi-
gration policy that decides when and to where migration of VNF
instances must be done to minimize the overall cost.

Majority of these solutions are heuristics-based that they do not
provide SLA guarantee. Li et al. (2016) propose NFV-RT that dy-
namically provisions resources in an NFV environment to provide
packet-wise timing guarantees to service requests. They formulate
the resource provisioning problem with a mathematical model and
evaluate their solution using a simulator. Wang et al. (2015) have
developed a combinatorial optimization model to address dynamic
function composition problem, and proposed a distributed algo-
rithm using Markov approximation method to dynamically decide
the appropriate service function instances at runtime. They also
use simulation to evaluate their proposed algorithm.

In comparison to other works in the area (Table 5), the innova-
tive contribution of this work is that it proposes a holistic method
for auto-scaling of VNFs to build elastic service chains dynami-
cally adapting to the changes of the workload for different net-
work policies. Our model uses migration and horizontal/vertical
auto-scaling of VNFs along with dynamic bandwidth allocation and
flow scheduling to meet the SLA requirement of a service chain.
It does not only dynamically scale NFs within a chain, but also
allocates/releases dedicated network bandwidth, updates network
paths, and relocates communicating VNFs to meet the latency re-
quirements of the chain while minimizing the overall cost. Even
though we use a simple placement algorithm to build our sys-
tem, VNF placement is not the primary focus of this work and any
placement algorithm can be combined with our proposed method.

8. Conclusions and future work

In this paper, we presented a framework to build elastic ser-
vice chains in NFV-based cloud computing environments. We pro-
posed a set of auto-scaling algorithms to meet end-to-end de-
lay requirements of the service chains while minimizing the over-
all operational cost. We implemented our algorithms by extend-
ing a cloud simulator and conducted realistic experiments using
workload traces of Wikipedia application. Our experimental results
showed that our proposed method significantly reduces the cost of
SFC deployment while reduces SLA violation to 0.03% compared to
72.97% SLA violations of no scaling scenario.

In this work, we assumed that all VNFs are horizontally scal-
able regardless of their states. A logical extension of this work is
to add solutions for auto-scaling stateful NFs and those that are
none trivial to scale horizontally. As a future work, we also aim to
implement our algorithms in a real networking environment using
our micro data center designed for software-defined cloud com-
puting and networking. Our micro data center uses OpenStack as
Virtualized Infrastructure Manager and OpenDaylight (ODL) as SDN
controller. We will extend ODL SFC Project to evaluate and validate
our proposed techniques. Using a real system, we are able to mea-
sure latency and link delays for service chains along with impacts
of dynamic flow scheduling and VNF migrations on the runtime
phase of the SFC lifecycle. We will also develop autonomic SFC
composition and management that targets efficient utilization of
the data center including placement algorithms and consolidation
of VNF instances.
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