
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Elastic Scaling of Stateful Operators Over
Fluctuating Data Streams
Minghui Wu, Dawei Sun, Shang Gao, Member, IEEE,

Keqin Li, Follow, IEEE and Rajkumar Buyya, Follow, IEEE

Abstract—Elastic scaling of parallel operators has emerged as a
powerful approach to reduce response time in stream applications
with fluctuating inputs. Many state-of-the-art works focus on
stateless operators and change the operator parallelism from one
aspect. They often lack efficient management of operator states
and overlook the costs associated with resource over-provisioning.
To overcome these limitations, we introduce Es-Stream for elastic
scaling of stateful operators over fluctuating data streams, which
includes: (1) We observe that under-provisioning of operator
parallelism leads to data pile-up, resulting in longer system
latency, while over-provisioning of operator parallelism causes
idle instances and additional resource consumption. (2) The
Es-Stream system scales in two dimensions: the parallelism of
operators and the number of resources. It dynamically adjusts
operators to an optimal parallelism while scaling the resources
used by the stream application. (3) When the parallelism of state-
ful operators changes, upstream operators backup downstream
operators’ state and cache the emitted data tuples at dynamic
time intervals, ensuring the operator parallelism is adjusted in a
low-overhead way. (4) Experimental results demonstrate that Es-
Stream provides promising performance improvements, reducing
the maximum system latency by 3x and saving the maximum state
recovery time by 2x, compared to existing state-of-the-art works.

Index Terms—Operator parallelism, Resource scaling, State
management, Stateful operator, Distributed stream computing.

I. INTRODUCTION

PROCESSING continuous data streams in a scalable and
timely manner is becoming crucial for applications such

as Internet of Things (IoT), traffic monitoring, telecommuni-
cations and health care [1], [2]. These stream-oriented appli-
cations need to quickly analyze large volumes of continuous
data and produce predictable and actionable results in a high-
performance computing environment [3], [4]. The performance
of a stream computing system can be affected by multiple
factors, including computing resource, operator parallelism,
memory settings and buffer sizes [5]. Among them, the degree
of operator parallelism plays an important role in exploiting

This work is supported by the National Natural Science Foundation of
China under Grant No. 62372419; the Fundamental Research Funds for the
Central Universities under Grant No. 265QZ2021001. (Corresponding author:
Dawei Sun.)

Minghui Wu and Dawei Sun are with the School of Information Engi-
neering, China University of Geosciences, Beijing, 100083, China (e-mail:
wuminghui@email.cugb.edu.cn; sundaweicn@cugb.edu.cn)

Shang Gao is with the School of Information Technology,
Deakin University, Waurn Ponds, Victoria, 3216, Australia (e-mail:
shang.gao@deakin.edu.an)

Keqin Li is with the Department of Computer Science, State University of
New York,New Paltz, New York, 12561, USA (e-mail: lik@newpaltz.edu)

Rajkumar Buyya is with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, School of Computing and Information Systems, The
University of Melbourne, Austral (e-mail: rbuyya@unimelb.edu.au)

the system performance [6]. Automatic adjustment to the
operator parallelism for performance optimization has become
a key challenge [7].

A real-time stream application running in a stream comput-
ing system can be modeled as a directed acyclic graph (DAG)
which describes the dependency between its tasks [8]. The
DAG is submitted to the cluster for deployment and each task
in the DAG is scheduled to compute node in the cluster for
execution. If there are no manual intervenes or system failures,
the deployed applications will run forever [9]. In this case, the
operator parallelism settings of DAGs are static and cannot
adapt to the fluctuating data stream rates [10]. This brings
two negative effects: (1) When the arrival rate of data stream
exceeds the tuple processing bottleneck of the system, a large
amount of data will pile up, leading to slow latency and even
system crash. (2) When the arrival rate is consistently low, the
computing resources occupied by the operators of DAG cannot
be dynamically recycled, causing the system to generate idle
resource consumption.

To ensure that data streams are processed with low latency
and resource efficiency, an elastic scaling mechanism for
operators is essential [11]. This mechanism is expected to
dynamically adjust the degree of parallelism between the
operators of DAG for low latency and effective resource allo-
cation. However, many existing works [12], [13] don’t provide
a suitable method that supports operator scaling up/down
and coordinates resources between operators of a DAG to
dynamically allocate and release resources based on current
data rate. For example, DRS [12] allocated resources along
one dimension by gradually increasing the parallelism of the
operator that benefits the most in the topology. However, when
the resources used by the stream application are inadequate,
simply changing the operator parallelism may not improve the
system performance [6].

Recent research [10], [14] has been developed to incorporate
multiple aspects for optimizing the parallelism of operators.
Specifically, [14] presented a platform that supports approxi-
mate computing and scales the parallelism of operators when
resources are sufficient. [10] focused on balancing the load
across stateful operator instances while scaling the parallelism,
offloading tasks from overloaded instances to new one. Despite
their great efforts, both studies overlooked the fact that adjust-
ing the operator parallelism using a greedy algorithm can lead
to increased system overhead. Additionally, improper instances
deployment during scaling can result in the over-provisioning
of compute nodes and resource waste.

Changing the operator parallelism of streaming applications

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

can improve the system performance [13], however, it also
introduces new challenges for the state management of tasks,
further complicating the auto-scaling mechanism. Changes to
the DAG’s structure can cause the inconsistency of data depen-
dency between the backups and the states of operators before
and after auto-scaling [15]. If the backups are re-partitioned
according to the scaled operators, additional overhead can be
generated. Should there be a better state management method
and an operator scaling up/down mechanism to dynamically
adjust the parallelism of stream applications for fluctuating
data streams, the system stability and performance may be
improved. These ideas motivate our research on elastic scaling
of parallel operators for fluctuation data streams.

To address the aforementioned issues, we scale parallel
operators to reduces the system latency and ensure the state
reliability of application operators. The following questions are
to be resolved: (1) Scaling operator parallelism. In a streaming
application, how to tune the ratio of parallelism degrees
between operators so that the system latency is minimized
when the application occupies fixed computing resources?
(2) Scaling resources. How to dynamically allocate more
resources to an application when its occupied resources are not
sufficient? (3) Low-overhead state recovery. How to effectively
guarantee consistency between the processed data tuples and
the stored task states if the application topology is changed?

A. Contributions

In this paper, a reliable resource scaling in/out framework
(Es-Stream) is proposed to reduce the response time of
distributed stream computing systems. Our contributions are
summarized as follows:

(1) We observe that under-provisioning of operator paral-
lelism leads to data pile-up and resource constraints,
while over-provisioning causes idle instances and extra
resource usage. This finding reveals the inherent conflict
between operator parallelism and resource dynamics.

(2) A data tuple queuing model based on the M/M/k system
is built to optimize the operator parallelism and achieve
a trade-off between the system latency and resource con-
sumption. Resource scaling is performed using skewed
distribution to evaluate the resource consumption.

(3) Upstream backup of operator states and data tuple
caches in dynamic time intervals is achieved to reduce
the state recovery cost. In addition, the backup interval
can be dynamically changed based on the resource load
of compute node to lower the system overhead.

Experimental results show that Es-Stream makes promising
improvements in resource configuration and state management
compared to existing works.

B. Paper organization

The rest of this paper is organized as follows. Section II
discusses the effect of parallelism on system latency and the
motivation for the research. Section III introduces the system
models, including the stream application model, communica-
tion model, data model and resource constraint model; Section

IV formalizes the resource allocation problem between the
operators and the states before and after scaling; Section V
introduces the Es-Stream system and its main algorithms;
Section VI evaluates the performance of Es-Stream; Section
VII presents related work and Section VIII concludes our work
along with future directions.

II. OBSERVATION AND MOTIVATION

A series of experiments are designed on the Storm 2.4.0
platform to identify the impact of different parallelisms on the
system latency and resource utilization, thus leading to the
motivation of our research.

We use the public data [16] from AliCloud to evaluate
the system performance. The system’ s cluster comprises 16
machines, each powered by an Intel(R) Xeon(R) X5650 CPU
(dual-core, 2.4 GHz), equipped with 2 GB of RAM and a
100 Mbps Ethernet interface card. Among the 16 machines
in the cluster, 3 run Nimbus as master nodes, and 13 deploy
Supervisor nodes. 3 machines (3 multiplexed with the Nimbus
nodes) deploy the Zookeeper cluster. We configure each com-
pute node to deploy a maximum of two Workers, with each
Worker running up to two operator instances. The average
size of tuples emitted by the data source is 92 bytes. Two
stream applications, COMMCount and Top N, are submitted
to the cluster using the EvenScheduler, which are commonly
used for performance test and analysis of stream computing
system. EvenScheduler employs a round-robin strategy to
evenly distribute these instances across compute nodes. Once
deployed, the operator instances run continuously unless there
is a failure or manual intervention. COMMCount and Top N
count the number of browsing commodities and the most
purchased commodities, respectively. The function and logic
graph of each operator in their DAGs are similar to [17].

A. Observations

As shown in Fig. 1, we allocate different resources to the
COMMCount topology by setting different instance numbers
to the operators. It can be observed that the system latency
under different resource configurations is different, and the
optimal resource configuration changes with the data rate.
When the input data rate is kept stable at 900 tuples/s, the
optimal instance number for operators is (3,10,11). However,
when the input rates are 1,800 tuples/s and 2,700 tuples/s, the
optimal configurations for COMMCount topology are (3,13,8)
and (8,15,6), respectively. This result shows that there exists
an optimal configuration producing minimal system latency
for a topology, and this configuration usually changes with
the input data rate.

As shown in Fig. 2, different resources are configured to
the Top N topology to test the system latency. It can be
observed that there exists an optimal configuration. When the
input is 900 tuples/s, the optimal and worst configurations for
Top N topology are (3,10,6,1) and (3,9,7,1), respectively. The
main reason behind is that the computing resources occupied
by different numbers of parallel operators are different, and
poor resource allocation between operators will cause longer

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

Fig. 1. System latency under dif-
ferent resource configurations for
COMMCount topology.

Fig. 2. System latency under dif-
ferent resource configurations for
Top N topology.

Fig. 3. System latency under differ-
ent instance numbers of the second
operator.

Fig. 4. Resource utilization under
different instance numbers of the
second operator.

queuing time for data processing. In this experiment, the sys-
tem latency exhibits fluctuations because resource competition
and data queue buildup alternately become the primary factor
affecting the latency under different topology configurations.
In addition, varying data stream rates lead to varying optimal
resource allocations between operators in the topology. For
example, at configuration (3,9,7,1), the input rate of 2,700
tuples/s has a lower latency than those of 900 tuples/s and
1,800 tuples/s, because the input rate of 2,700 tuples/s re-
ceives a better resource allocation between the operators. This
observation highlights the importance of finding a dynamic
scaling mechanism for varying numbers of operator instances
to handle fluctuating data streams.

In Fig. 3, the input rate is stabilized at 1,800 tuples/s,
and the instance number of the second operator gradually
increases. When the instance number is less than 10, increasing
the operator parallelism helps decrease the system latency.
However, when the number is greater than 10, the system
latency gradually becomes stable. The result shows that an
excessive instance number no longer helps diminish the system
latency. Therefore, it is important to set a proper instance
number for each operator to lower the resource consumption.

Resource consumption of a topology increases with the
number of instances. As shown in Fig. 4, with the input
rate of data stream stabilized at 100 tuples/s, the resources
consumed by all the instances of the second operator increase
with the number of instances. The main reason is that a new
operator instance takes up memory resources and consumes
certain CPU resources, also incurs additional communication
overhead. It is important to set a proper instance number for
each operator to optimize the system latency and resource
consumption.

B. Motivations

Based on the above observation and analysis, it can be seen
that the system latency can be affected by different resource
configurations to the topological operators. The optimal con-
figuration for a given topology is dynamic and affected by the
input rate. A poor resource allocation to operators will likely
generate longer latency and consume more resources. It is
wise to consider changing the operator parallelism at runtime
for performance optimization. However, manual adjustment to
the instance number of operator would incur expensive costs
and make it more difficult to maintain the operator states. To

optimize the performance and state recovery, an elastic scaling
method for parallel operators may help. Our motivations can
be summarized as follows:

(1) Given the input rate, output rate of instance and resource
load, how to achieve the trade-off between the instance number
of the operators and the resources consumed by the instances
in a comprehensive way when targeting low system latency?

(2) Given the resource load of the cluster and resources
consumed by topologies, at what time to scale the number of
resources consumed by topologies when targeting high system
throughput?

(3) How to effectively maintain the consistency between
the processed data tuples and the stored task states when the
parallelism of stateful operators changes?

III. SYSTEM MODEL

Before formalizing the resource allocation and state man-
agement problem and introducing our proposal, we first estab-
lish models for stream application, communication load and
resource constraint.

A. Stream application model

In a stream computing environment, user defines a topology
[17] for a given stream application and then submits it to the
computing cluster. The topology can be described as a directed
acyclic graph G = {V (G), E(G)}, composed of a finite vertex
set V (G) = {v1, v2, ..., vi, ..., vn} and a finite directed edge
set E(G) = {ei,j |vi, vj ∈ V (G)}. A vertex vi represents an
operator in the stream application, which is implemented by
a specific function f(vi) defined by the user. The function
f(vi) of each vertex vi is different, that is if ∀vi, vj ∈ V (G),
vi ̸= vj , then f(vi) ̸= f(vj). Edge ei,j between vertex vi and
vertex vj describes the dependency between the two vertices
and can be used to represent their communication load.

When a stream application is committed to the data centre,
the application is deployed by the scheduler. In this process,
multiple instances of vertex vi can be initialized with the
same function based on the parallelism set by the user, where
∀vi,k, vi,m ∈ vi, then ∃f(vi,k) = f(vi,m). The dependency
between instances is described as a directed acyclic instance
topology IT = {V (IT), E(IT)}, and V (IT) ⊆ V (G),
E(IT) ⊆ E(G). This instance topology is allocated with
computing resources by the scheduler.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

B. Communication load model
In the mapped instance topology IT = {V (IT), E(IT)},

we use edges E(IT) to describe the transmission rates be-
tween instances. E.g., tr(vi,k, vj,m) represents the data tuples’
rate that instance vj,m receives from an upstream instance vi,k.
At time t, the number of data tuples received by instance vj,m
from upstream can be calculated by Eq. (1).

wj,m =
∑

vi,k∈pre(vj,m)

tr(vi,k, vj,m), (1)

where wj,m denotes the number of tuples received by instance
vj,m per time unit, and pre(vj,m) is the set of immediate
predecessor instances of instance vj,m.

Since there may be transient fluctuations in the data arrival
rate, we calculate the average of wj,m by Eq. (2) to ease the
impact brought by sudden fluctuations.

Ewj,m
=

∫ te
ts

wj,mdt

te − ts
, (2)

where Ewj,m
represents the average input rate of instance vj,m

in time interval [ts, te]. ts and te denote the start time and end
time of a given short time period which can be set by users.

Then, the average input rate for operator vj can be calcu-
lated by Eq. (3).

Irvj =
∑

wj,m∈vj

Ewj,m
, (3)

where Irvj is the sum of average input rates of all instances
of operator vj during [te, ts], which provides data support for
the elastic scaling of operator parallelism degrees. The larger
the Irvj , the more instances that operator vj needs to reduce
the sojourn time of data tuples in vj . If Irvj is small and
the parallelism of operator vj is relatively large, operator vj
will consume extra resources. Therefore, making the operator’s
instance number adaptive to varying Irvj is important.

C. Resource constraint model
The latency of the instance changes with the resource load

of the compute node [18]. Resource overload can cause a
node to experience downtime. It is necessary to model the
constraints on node resources to ensure the cluster to work
uninterrupted. The resource load of compute nodes can be
measured in different dimensions, such as CPU, memory and
I/O. We assume that each compute node in the cluster does
not deploy other services except for stream applications. Given
a cluster with s compute nodes CN = {cn1, cn2, ..., cns},
the CPU utilization, memory utilization and I/O utilization
consumed by an instance of the stream application are denoted
as rcvi,j , r

m
vi,j and rivi,j , respectively. Multiple instances are

deployed on a compute node. Therefore, the CPU, memory
and I/O utilization of a compute node cnk can be calculated
by Eq. (4).

Rc
cnk

=
∑

vi,j∈cnk

rcvi,j + bccnk
,

Rm
cnk

=
∑

vi,j∈cnk

rmvi,j + bmcnk
,

Ri
cnk

=
∑

vi,j∈cnk

rivi,j + bicnk
,

(4)

Fig. 5. Parallelism of operators

where Rc
cnk

, Rm
cnk

and Ri
cnk

denote the CPU, memory and I/O
utilization of the compute node cnk, respectively. bccnk

, bmcnk

and bicnk
denotes the static CPU, memory, and I/O utilization

of the compute node cnk without running other services.
Once a stream application is submitted to the cluster, data

are continuously generated and processed. The instance de-
ployment caused by the elastic scaling of operator parallelism
degrees should not lead to resource overload on the compute
nodes. The following condition (5) is to be satisfied.

Rc
cnk
≤ αc, R

m
cnk
≤ αm, Ri

cnk
≤ αi, (5)

where αc, αm and αi denote the maximum CPU, memory
and I/O resources consumed by the compute node cnk, re-
spectively.

Based on this condition (5), it can be known that the system
performance can be affected by any of the CPU, Memory and
I/O [19]. Therefore, the resource load Rcnk

of compute node
cnk is represented by Eq. (6).

Rcnk
= max{Rc

cnk
, Rm

cnk
, Ri

cnk
}. (6)

IV. PROBLEM STATEMENT

In this section, we formalize the problem raised by the static
configuration of application topology, which mainly includes
the scalability of operator parallelism, state consistency and
state recovery overhead.

A. Scalability of operators

Based on the above models (Section III), the resource
allocation problem between operators can be described as
follows. Poor resource allocation between operators can affect
system performance or waste computing resources [13]. For
example, in Fig. 5, there are two operators vi and vj , and
the numbers of their instances are k1 and k2, respectively.
The input rate Irvj of the input queue for operator vj can be
calculated by the communication load model (Section III-B).
Assume that the tuple processing rates of the instances in vj
are {µj,1, µj,2, ..., µj,k2

}. Then, the tuple processing rate µvj

of operator vj can be calculated by Eq. (7).

µvj =

k2∑
m=1

µj,m. (7)

Obviously, operator vj must have enough instances for tuple
processing to keep up with the input rate. If Irvj > µvj

,
the queue for operator vj will keep getting longer, resulting

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

in the increase of tuple sojourn time of the operator, which
further pushes the downtime risk of the instances. In addition,
if Irvj << µvj , some instances of operator vj may experience
idle time while waiting for input from the upstream. This
is a waste of resources. Therefore, the number of instances
for operator vj is be adjusted to balance Irvj and µvj and
minimize the sojourn time of data tuples in the operator.

The optimization problem for a operator can be described
as Eq. (8).

z(k) = β · k + (1− β) ·Qvj (k), (8)

where β is the resources used by each instance of operator
vj , k is the number of instances of vj . Qvj (k) is the average
queue length of k instances of operator vj . Our objective now
is to find the minimum value k∗ in function z(k) under the
constraints of resource consumption and system latency.

Since k can only take integers, z(k) is not a continuous
function. We use marginal analysis to find the minimum value
, which is described as condition (9).{

z(k∗) ≤ z(k∗ − 1),

z(k∗) ≤ z(k∗ + 1).
(9)

Taking Eq. (8) into condition (9), we get
β · k∗ + (1− β) ·Qvj (k

∗)

≤ β · (k∗ − 1) + (1− β) ·Qvj (k
∗ − 1),

β · k∗ + (1− β) ·Qvj (k
∗)

≤ β · (k∗ + 1) + (1− β) ·Qvj (k
∗ + 1).

(10)

After simplifying condition (10), we get

Qvj (k
∗)−Qvj (k

∗ + 1) ≤ β

1− β
≤

Qvj (k
∗ − 1)−Qvj (k

∗).

(11)

Ultimately, our optimization problem is simplified to find an
optimal number k∗ which is the instance number of a given
operator and satisfies the constraints of resource and system
latency. If each operator satisfies the condition (11), the system
will have less latency and less waste of resources.

B. State consistency

In a streaming application, intermediate results (i.e., states)
are produced by an instance when processing data tuple dt.
This state information is usually stored in memory at runtime.
To improve the system reliability, the state information is
usually backed up in remote storage by checkpoint mechanism.
As shown in Fig. 6, instance vi,1 emits four data tuples
dt1, dt2, dt3 and dt4 to downstream instances vj,1 and vj,2
of operator vj at time t1. Instance vj,1 receives data tuples
dt1 and dt2, performs logical computation and produces states
(k1, v1) and (k2, v2), where k1 is the key of tuple dt1 and
v1 is the intermediate result of processing dt1 by any instance
of operator vj (as instances have the same processing logic).
The process of data tuple dti is grouped by the Hash function,
which can be described by Eq. (12).

vj(m
′
) = Hash(dti(ki))%m, (12)

Fig. 6. States before and after the change to the number of operator instances.

where m denotes the instance number of operator vj , and
vj(m

′
) denotes that the data tuple dti will be emitted to the

instance vj,m′ for processing. In addition, the state of instance
vj,m′ is periodically backed up to the remote storage.

At time t2, adding an instance to operator vj allows instance
vi,1 to redirect the data stream, which is described by Eq. (13).

v
′

j(m
′
) = Hash(dti(ki))%(m+∆), (13)

where ∆ denotes the variation in instance number. If ∆ ̸= 0,
then vj(m

′
) ̸= v

′

j(m
′
). As shown in Fig. 6, instance vj,3

receives data tuple dt3 after adding an instance to operator vj
at time t2, but the state of dt3 has been previously stored in
instance vj,2 at time t1. Similarly, instance vj,2 receives dt2
at time t2, but the state of dt2 has been stored in instance vj,1
at time t1. As a result, the tuples processed by the instances
are inconsistent with the previously stored states after the data
stream is redirected.

C. State recovery overhead

In an environment with unbounded data stream, it is un-
avoidable to have failing tasks, which poses challenges in
ensuring the reliability of data processing and resource scaling.

Fig. 7. State backup in Stream Computing System.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

Checkpoint mechanism is usually used to cope with faulty
tasks. However, it also introduces additional overhead, such
as (1) Double computing. If a task fails, the system will lose
part of the state data and perform a rollback to recalculate the
lost state. As shown in Fig. 7, the latest state in the system is
produced at t+ 1. When a task fails, the whole system needs
to roll the task back to its state produced at t. In the process,
the state at t + 1 is lost and the data tuples are re-fed from
tuple dto. (2) Global rollback. Once a task fails, the whole
task topology needs to roll back to the prior state, discarding
valid intermediate stream states.

V. ES-STREAM: ARCHITECTURE AND ALGORITHMS

Based on the above analysis, an elastic scaling method
for operator parallelism, Es-Stream, is proposed. It aims to
dynamically adjust the configuration of topology in a volatile
data stream environment. This section provides an overview of
Es-Stream, its architecture and the algorithms used for elastic
scaling and adaptive state repair.

A. System architecture

As shown in Fig. 8, Es-Stream consists of the modules
for monitor, topology analysis, resource analysis and state
notification management.

The monitoring module is responsible for real-time infor-
mation collection, including CPU, I/O and memory resource
consumption of compute nodes and tasks in the cluster, the
data transmission rates between tasks in the topology, and the
running status of the stream system. The collected information
is subsequently stored in the database.

Fig. 8. Es-Stream architecture.

The topology analysis module focuses on optimizing the
instance number for each operator in the topology. This
instance number is a critical parameter during when topology
initialization. A well-defined instance number for an operator
can effectively improve the system throughput and reduce
the response time. The topology analysis module retrieves
the topology information stored in the database, analyzes and
models these data to determine the optimal instance number
for each operator in the topology.

The resource analysis module analyzes the resource load of
the cluster and determines the appropriate nodes for deploying
or recycling operator instances based on the results of topology
analysis.

The state notification module notifies the tasks to repartition
the backup state. Using the output from the topology analysis
module, changes to the number of instances for stateful
operators can be obtained. If the number of operator instances
is scaled at runtime, the task’s state should be repartitioned
accordingly to ensure that the buffered data tuples are correctly
mapped to the respective partitions.

Compared to traditional solutions, Es-Stream has the fol-
lowing advantages: (1) Traditional solutions configure the
instance number for operators in a topology based on the stable
rate of data stream, resulting in a static running topology in
the cluster. Es-Stream, on the other hand, can dynamically
perceive changes in the data stream rate and adjust the resource
allocation weight between operators accordingly. In addition,
Es-Stream can effectively reduce the resources used in low
data stream rates scenarios. (2) Traditional solutions only
adjust the number of instances for stateless operators, which
limits their ability to improve system bottlenecks. Es-Stream
can scale the number of instances for both the stateless and
stateful operators for overall throughput improvement. Addi-
tionally, Es-Stream implements a flexible and low-overhead
state recovery mechanism by backing up task states to up-
stream instances and caching data tuples within a checkpoint
interval.

B. Elastic scaling

After operators of a streaming application are deployed to
the compute nodes, there arises a need to automatically scale
the instance number for operators to adapt to fluctuating data
streams. Several factors need to be considered in this process.
When the resources utilized by the streaming application are
sufficient, scaling up/down the parallelism of operators within
the stream application proves to be an effective way for
reducing system latency. When the resources are inadequate,
scaling out the resources becomes a viable solution to im-
proving the system bottlenecks. This involves instantiating new
instances of operators on additional compute nodes. Therefore,
the elastic scaling mechanism primarily encompasses scaling
operator parallelism and resource allocation.

(1) Scaling operator parallelism. We first focus on the
instance number of operator vi. Assume the average input
rate of operator vi in time interval [te, ts] is Irvi , and each
instance of operator vi processes data tuples at the rate of
{µi,1, µi,2, ..., µi,k}, where k is the current instance number of

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

operator vi, the average processing rate µvi of vi’s instances
can be calculated by Eq. (7).

If Irvi > µvi · k, operator vi can not keep up with the
incoming tuples, resulting in an increasing number of tuples
in the operator queue over time and infinite queuing latency. In
such cases, scaling up the parallelism for operator vi becomes
crucial for system performance optimization. Conversely, if
Irvi < µvi · k, we model operator vi as an M/M/k queuing
system [20] to further reduce the sojourn time of tuples
processed by operator vi.

Based on Erlang formula [12], it can be inferred:

pn = P{N = n} =

ρ
n

n! · p0, n = 1, ..., k,

ρ
n

k!·kn−k · p0, n ≥ k,

(14)

where pn denotes the probability distribution of queue length
n for operator vi in a steady environment, and p0 and ρ can
be calculated by Eq. (15).

p0 =

k−1∑
n=0

ρn

n!
+

ρk

k! · (1− Irvi
k·µvi

)

−1

, ρ =
Irvi
µvi

. (15)

The probability of n data tuples in operator vi under steady
conditions is given by Eq. (14). If n ≥ k, the data tuple
emitted by the upstream instance will be placed in the queue
in operator vi, awaiting processing. The waiting probability of
data tuples form upstream can then be calculated by Eq. (16).

wp =

∞∑
n=k

pn =
ρk

k! · (1− Irvi
k·µvi

)
· p0. (16)

Based on the waiting probability wp, the average queue
length Ql can be calculated by Eq. (17).

Ql =

∞∑
n=k+1

(n− k) · pn

=
p0 · ρk

k!
·

∞∑
n=k

(n− k) ·
(

Irvi
k · µvi

)n−k

=
wp · Irvi

k·µvi

1− Irvi
k·µvi

.

(17)

The number of data tuples in operator vi mainly consists of
the average queue length and the average number of tuples
being processed. Hence, the average queue length Qvi for
tuples in operator vi can be calculated by Eq. (18).

Qvi(k) = Ql + ρ

=
wp · Irvi

k·µvi

1− Irvi
k·µvi

+
Irvi
µvi

=

(
Irvi
µvi

)k

· Irvi · p0

k! ·
(
1− Irvi

k·µvi

)2

· k · µvi

+
Irvi
µvi

,

(18)

where Qvi(k) denotes the average number of data tuples in
operator vi when the number of instances of operator vi is k.

If there exists a value k∗ that makes Qvi(k
∗) satisfy condition

(11), then k∗ is considered the optimal number of instances
for operator vi.

From the stream application model, it is evident that a
stream application can be regarded as a directed acyclic graph.
Thus, the data tuples processed by the application follow a
directed flow, with upstream instances emitting processed data
tuples to downstream instances. When scaling up or down
the number of instances of operator vi, it does not affect the
upstream operators’ ability to process data tuples. However,
it may result in downstream operator instances accumulating
data tuples or generating idle resources. Therefore, adjusting
the instance number of operators should be performed hierar-
chically, with priority given to scaling up/down the instance
number of upstream operators. We utilize topological sorting
to determine the sequence of scaling operators, as it can
effectively analyze the dependencies between operators.

The algorithm for scaling up/down the instance number of
operators for stream applications is described in Algorithm 1.

Algorithm 1: Scaling up/down the instance number of
operators.
Input: Irvi and µvi .
Output: k∗.

1 Get the resource β used by the instance of operator vi ;
2 Initialize the number k of instances for operator vi,

k =
∣∣∣ Irviµvi

∣∣∣;
/* Search the optimal number of

instances */
3 while true do
4 Calculate the average queue length Qk of k

instances by (18);
5 Calculate the average queue length Qk+1 of k + 1

instances by (18);
6 Calculate the average queue length Qk−1 of k − 1

instances by (18);
7 if Qk −Qk+1 ≤ β

1−β ≤ Qk −Qk−1 then
8 k∗ ← k ;
9 Break ;

10 end
11 k ++;
12 end
13 return k∗

The input of Algorithm 1 includes the input rate Irvi and
processing rate µvi of operator vi. The output of the algorithm
is the optimal number k∗ of instances for operator vi. Step 1
gets the average resource used by each instance of operator
µvi . Step 2 initializes the minimum number of operator
instances, where the input rate equals the processing rate of the
operator. Under the constraints of resource consumption and
system latency, steps 4 to 13 search for the optimal number
of operator instances. The time complexity of Algorithm 1 is
O(k∗), where k∗ denotes the optimal number of instances.

(2) Scaling resources. Given a cluster CN = {cn1, cn2,
..., cns, ...,cnsc}, where cns represents a compute node in the
cluster of size sc, we assume the CPU utilization, memory

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

utilization and I/O utilization of a compute node cns are
Rc

cns
, Rm

cns
and Ri

cns
, respectively. For a compute node cns,

if its resource load satisfies condition (5), tasks deployed
on that node can process data tuples efficiently. Considering
all compute nodes in the cluster, when the data stream rate
increases, to keep the resource load of all nodes satisfy the
condition (5), we need to decide whether to deploy new
instances on the fixed compute nodes used by the stream
application or preempt new compute nodes. Similarly, when
the data stream rate decreases, we need to determine whether
to reduce the number of compute nodes used by the stream
application. To address this problem, we construct a resource
load model to evaluate the system’s resource usage. It is
described by Eq. (19).

SK =

cs ·
cs∑
i=1

(
Rcni −Rcn

)3
(cs− 1) · (cs− 2) · σ3

, cs ≤ sc, (19)

where SK is the skewness coefficient of the resource load for
the compute nodes used by the stream application, cs denotes
the number of compute nodes used by the stream application,
sc denotes the size of the cluster, Rcn is the average value of
Rcni

, and σ can be calculated by Eq. (20).

σ =

√√√√ cs∑
i=1

(
Rcni

−Rcn

)2
cs

, (20)

where σ is the standard deviation of resource load for the
compute nodes used by the stream application.

If SK > 0, it shows a right-skewed distribution of resource
load among nodes, meaning that most nodes have a lower
resource load compared to the average value Rcn. If SK < 0,
it implies a left-skewed distribution of resource load, where
most nodes have a higher resource load than the average value
Rcn. In addition, a larger absolute value of SK indicates a
more pronounced skewness in the load distribution among
nodes.

Based on the above analysis, if SK ≤ η and Rcn ≥ φ, the
system may approach a performance bottleneck. In this case, if
the data stream rate continues to increase, the problem of data
tuples piling up in the system can be addressed by adding
some new instances of operators in the stream application.
However, it is not advisable to deploy these new instances on
the nodes already used by the topology, as the resource load
of most nodes already exceeds φ. Instead, a better approach
to mitigate the risk of introducing a bottleneck in the stream
application is to deploy the new instances, generated through
scaling up the topology, on separate compute nodes.

If SK ≥ η or Rcn ≤ φ, it indicates that the system
has sufficient capacity to process more data tuples. In such
cases, deploying new instances on the compute nodes used by
the stream application can be explored. Consideration is first
given to deploying the new instance on the nodes with the
minimum resource load. If the nodes with the lowest resource
load cannot meet the deployment conditions, an appropriate
node will be selected from the entire cluster. In addition, the

CPU resource rcnew consumed by a new instance of operator
vi can be measured by Eq. (21).

rcnew =
1

k
·

∑
vi,j∈vi

rcvi,j , (21)

where k denotes the optimal number of instances for operator
vi and rcvi,j denotes the CPU resource consumed by instance
vi,j of operator vi.

Similarly, the memory resource rmnew and I/O resource rinew
consumed by the new instance of the operator can be measured
in the same way.

Based on the resource constraint model (Section III-C),
deploying a new instance of an operator to the compute node
cns needs to satisfy the conditions represented by Eq. (22).

Rc
cns

+ rcnew ≤ αc,

Rm
cns

+ rmnew ≤ αm,

Ri
cns

+ rinew ≤ αi.

(22)

If SK ≥ χ and Rcn ≤ ζ, it indicates that the system
may have idle resources. In this case, if the data stream
rate continuously decreases, reducing the number of instances
can effectively prevent the stream application from consuming
unnecessary resources. During this process, the compute nodes
that were preempted by scaling out the resource for the stream
application are prioritized for releasing resources to shrink the
number of nodes used by the stream application.

C. State recovery

To support scaling up or down the parallelism for stateful
operators, we design a data repartitioning mechanism that
involves partitioning and merging data backups while auto-
scaling the instances of operators at runtime. For each instance
of a stateful operator, when the logical topology of instances is
changed through elastic scaling, the backup for each instance
needs to adjust the mapping relationship between the state of
data tuples and the instance of the operator. This mapping
adjustment process is described by (23).

S(vi,j)
Map(vi)−→ {S(vi,1, Si,1), ..., S(vi,k∗ , Si,k∗)}, (23)

where S(vi,j) denotes the backup state of instance vi,j in
operator vi, and Si,k∗ and k∗ respectively denote the partial
state of instance vi,j and the optimal number of instances
after scaling the instances of operator vi. The backup state is
defined as the union of individual backup partitions, denoted as
S(vi,j) = Si,1∪Si,2∪...∪Si,k∗ , Si,1∩Si,2∩...∩Si,k∗ = ∅. Each
partition Si,m corresponds to a specific instance of operator
vi. The repartitioned states {Si,1, . . . , Si,k∗} from the backup
of instance vi,j are emitted to their corresponding instances.
Upon receiving the states from the backups, the instance
merges these state data, as described by Eq. (24).

S
′
(vi,j) = S1,j ∪ S2,j ∪ ... ∪ Sk∗,j , (24)

where S
′
(vi,j) denotes the merged state of instance vi,j and

S1,j ∩ S2,j ∩ ... ∩ Sk∗,j = ∅.
The overhead of this data repartitioning mechanism

conforms to the following Theorem 1.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

Theorem 1. The repartitioning time RT of state S for
operator vi decreases as the number of scaled instances in
operator vi increases.

Proof. When the parallelism of an operator changes, we need
to repartition the operator’s state to maintain state consistency.
Let the state of operator vi be S, its repartitioning time
RT is the maximum time taken to repartition the state S
across all instances of vi. In this repartitioning process, each
instance vi,j primarily incurs two time costs: the computation
time for repartitioning the state and the transmission time for
emitting the partitioned data to downstream instances. The
repartitioning time RT of state S for operator vi can be
calculated by Eq. (25).

RT = max

(
S

k∗ · cej
+

S

k∗ · trj

)
, j = 1, 2, ..., k (25)

where cej and trj respectively denote the computing effi-
ciency and the transmission bandwidth of the instance backing
up the state of vi,j , and k∗ denotes the optimal instance
number for operator vi.

From Eq. (25), it can be seen that RT is the repartitioning
time of the worse-performing instance (i.e., with the lowest
computing efficiency and bandwidth). When the optimal in-
stance number k∗ increases, the repartitioning time RT of the
worse-performing instance can be significantly reduced.

To minimize overhead while achieving a state repair mech-
anism for scaling the parallelism of stateful operators, we also
design a mechanism for the upstream operators to backup state
and cache data tuples. This mechanism has two key aspects:

(1) State Backup: The state of instances in stateful operators
is backed up to their upstream instances. Leveraging the
existing communication connections in the logical ring formed
by all operators in the stream application, each instance in
a stateful operator manages its own state. If the resource
load of a node is below a threshold value, denoted as α, the
instance periodically synchronizes its state with the upstream.
Otherwise, the sync interval is set to infinite.

(2) Output Result Backup: For a stateful operator, the output
results of its upstream instances for processing data tuples are
locally backed up within a specific time interval. When the par-
allelism of stateful operators changes, the upstream instances
repartition the backup state and send the partitioned state to the
corresponding downstream instances. Subsequently, the locally
cached backup output results within the current time interval
in the upstream instances are re-emitted to the downstream
instance. This approach avoids the need for a global rollback of
state across the entire topology and reduces system overhead.

The overhead of this state repair mechanism conforms to
the following Theorem 2.

Theorem 2. When operator vi has failed instances, there is
a positive correlation between the state repair time SR and
the checkpoint interval time CI for operator vi.

Proof. When there are failed instances in operator vi, merely
pulling the state of operator vi from the previous backup is
insufficient because the state data processed during the current

checkpoint interval has been lost. This state data has to be
recovered. Let the average input rates of the f failed instances
in operator vi be {IRi,1, IRi,2, ..., IRi,f}. In this state re-
pairing process, upstream data emission and downstream data
processing occur simultaneously, but they may have different
completion time due to variations in workload. Therefore,
the state repair time of each failed instance is the maximum
between the upstream data emission time and the downstream
data processing time. The state repair time SR for operator
vi is the maximum repair time across all the failed instances,
which can be calculated by Eq. (26).

SR = max

(
max

(
IRi,j · CI

eri,j
,
IRi,j · CI

µi,j

))
= CI ·max

(
max

(
IRi,j

eri,j
,
IRi,j

µi,j

))
, j ∈ [1, f]

(26)

where eri,j denotes the data receiving rate of the failed
instance vi,j during the state repairing process, which is
calculated by Eq. (3). µi,j denotes the processing rate of the
failed instance vi,j . f denotes the number of failed instances
in operator vi.

From Eq. (26), it can be seen that the state repair time SR
for operator vi is determined by the worst-performing instance
(i.e., with the lowest computing efficiency and/or the slowest
data receiving rate from upstream). Increasing or decreasing
the checkpoint interval CI can directly affect the state repair
time of the worst-performing instance.

VI. PERFORMANCE EVALUATION

In the section, we focus on evaluating the proposed Es-
Stream framework. Es-Stream was implemented and tested in
a simulated real-world production environment. We utilized
the public dataset from Alibaba Tianchi [16] to design two
application scenarios: real-time statistics of product exposure
(COMMCount topology) and identification of best-selling
products (Top N topology), both of which are commonly
found in the e-commerce field. The experimental settings
are the same as those in Section II. We evaluate two key
performance metrics for the COMMCount and Top N applica-
tions: system performance and system overhead for scaling the
parallelism of stateful operators. The evaluation of Es-Stream
aims to answer the following questions:

(1) Can Es-Stream improve system performance when pro-
cessing a high data stream rate?

(2) Can Es-Stream scale up/down the number of operator
instances and nodes in a streaming application to adapt
to a fluctuating stream data rate?

(3) Can Es-Stream decrease the system overhead when
scaling the parallelism for stateful operators?

A. System latency

System latency is the time interval from the input of data
tuples to the output of the system. We evaluate the latency
under different input rates, and compare it with state-of-the-
art works. Among these works, EvenScheduler [21], R-Storm
[22] and DRS [12] are the most representative in resource
management and parallelism configurations. In addition, we

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

Fig. 9. System latency of COMM-
Count under stable data rate.

Fig. 10. System latency of Top N
under stable data rate.

Fig. 11. System latency of COMM-
Count under increasing data rate.

Fig. 12. System latency of Top N
under increasing data rate.

define the system stabilization time as the duration from the
submission of a streaming application to the point where
system latency variations become minimal. We consider the
system to have reached a stable state when the system latency
fluctuates below a preset threshold over a system-defined num-
ber of consecutive samplings. Specifically, if the difference
between the maximum and minimum system latency over five
consecutive samplings taken every 2 mins is less than 4 ms
on Storm, we consider the system stable.

Given a stable data input rate of 1,800 tuples/s, Es-Stream
exhibits lower latency compared to other solutions when the
system becomes stable. Fig. 9 shows that the average response
time of COMMCount topology are 2.1 ms, 6.4 ms, 4.5 ms
and 2.9 ms for Es-Stream, EvenScheduler, R-Storm and DRS,
respectively, after the systems stabilize. This indicates that
Es-Stream outperforms EvenScheduler, R-Storm and DRS in
terms of system latency.

Given a stable data input rate of 2,700 tuples/s, Es-Stream
exhibits a shorter average response time compared to Even-
Scheduler, R-Storm and DRS after the systems stabilize. In
Fig. 10, the average response of Top N topology are 14.2 ms,
9.9 ms and 7.1 ms for EvenScheduler, R-Storm and DRS, re-
spectively. However, Es-Stream achieves an average response
time of 5.9 ms. This clearly demonstrates that Es-Stream has
a lower latency compared to EvenScheduler, R-Storm and
DRS. It was observed that DRS had the closest latency to Es-
Stream, but Es-Stream consistently maintained a lower latency.
This is because, while DRS is capable of constructing a well-
optimized topology for streaming applications, it ignores the
fact that changes in the parallelism of upstream operators can
affect the data processing time of downstream operators.

Given an increasing data stream rate, Es-Stream consistently
exhibits lower response time compared to EvenScheduler, R-
Storm and DRS. Fig. 11 and 12 show the average response
time for the COMMCount and Top N topologies under differ-
ent input rates after the systems stabilizes. The results show
that the system latency increases as the input rate grows.
However, Es-Stream shows a smaller incremental response
time compared to EvenScheduler, R-Storm and DRS when the
data stream rate increases. Overall, Es-Stream outperforms the
other three in terms of system latency across different input
rates.

In summary, Es-Stream has a lower system latency, because
Es-Stream consistently identifies an optimal configuration for
the operator parallelism of the topology under varying resource

demands, and elastically scales the number of nodes used by
the topology. Through these methods, Es-Stream effectively
reduces the backlog of data tuples in operator instances,
thereby further reducing the system latency.

B. System bottleneck

System bottleneck refers to the maximum data processing
rate that a system can handle. As the data stream rate increases,
if any task in a stream application fails, we consider the data
stream rate at that point to be the system’s bottleneck. To
identify this bottleneck, we deploy two streaming applications
respectively under EvenScheduler, R-Storm, DRS and Es-
Stream in the same resource environment. To ensure fair
comparison, all experiments use the same number of compute
nodes, the same dataset, and applied identical stream rate
increments.

Given an increasing data stream rate with increment of
500 tuples/s, Es-Stream has higher system throughput than
EvenScheduler, R-Storm, and DRS. As shown in Fig. 13, in
the two stream applications COMMCount and Top N, Es-
Stream’s system bottlenecks are 15,000 tuples/s and 13,500
tuples/s, respectively, which are significantly higher than those
of EvenScheduler, R-Storm, and DRS.

The reason for Es-Stream’s better performance is its ability
to dynamically adjust resource allocation based on operator
requirements. For operators that need more resources, Es-
Stream automatically configures higher parallelism; for those
with lower demands, it configures lower parallelism. This
dynamic adjustment ensures efficient resource utilization, re-
ducing waste and competition among operators. By optimizing
resource allocation, Es-Stream can optimize the system’s pro-
cessing capacity, thereby increasing overall throughput.

C. Elastic scaling

In this experiment, we aim to assess the effectiveness of
the elastic scaling mechanism by observing the variations
in the number of topology instances and computing nodes.
To conduct the experiment, the streaming applications are
deployed in a well-resourced cluster. For the stable input rate
scenario, we set the time interval between adjustments in the
parallelism of operators to 15 s. In the case of changing input
rates, we set the adjustment time to 10 s. We disable the scaling
of stateful operators, which will be discussed in the subsequent
subsection. In addition, we set the trigger scaling factor to 0.2,

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

Fig. 13. System bottleneck of two
streaming applications.

Fig. 14. Scaling up/down instances
under stable input rate.

Fig. 15. Scaling up/down instances
under changing input rate.

Fig. 16. Scaling up/down node num-
ber for COMMCount under fluctuat-
ing input rate.

Fig. 17. Scaling up/down node num-
ber for Top N under fluctuating in-
put rate.

Fig. 18. Recovery time for stateful
operator with different checkpoint inter-
vals.

Fig. 19. State recovery time
with increasing state data size.

Fig. 20. Repartitioning time with
increasing operator parallelism.

meaning that the data stream rate increases by more than 0.2x
for scaling to be triggered.

Given a stable input rate of 1,800 tuples/s, Es-Stream
demonstrates its ability to determine the optimal number
of instances for each operator, thereby minimizing system
latency. Fig. 14 illustrates the changes in instance numbers for
the first and second operators in both the COMMCount and
Top N topologies overtime. The instance number of the first
operator decreases, while that of the second operator increases.
Moreover, after the system becomes stable, the total number of
instances decreases for COMMCount and increases for Top N.
This observation suggests that different stream applications
require varying levels of resources to process the data stream
effectively. Es-Stream can automatically adjust the resources
allocation of a stream application to adapt to the data stream
rate.

Given a variable data stream rate, Es-Stream can adjust the
number of instances in the topology to accommodate these
variations. In our experiment, we change the data stream rate
to 3,600 tuples/s at 100 s. As shown in Fig. 15, the total
number of instances increases from 14 to 24 for COMMCount
and from 18 to 27 for Top N. Similarly, when we adjust the
data stream rate to 2,700 tuples/s at 160 s, the total number
of instances decreases from 24 to 19 for COMMCount and
from 27 to 23 for Top N. These results provide evidence that
Es-Stream is able to elastically scale a stream application in
response to fluctuating data streams.

Given a fluctuating data stream rate, Es-Stream can adjust
the number of compute nodes for the topology to adapt to
changing resource demands. As shown in Fig. 16 and Fig. 17,
Es-Stream exhibits adaptability by dynamically adjusting the

number of compute nodes based on the input rate, whereas
DRS and R-Storm use a static number of nodes regardless
of input rate fluctuations. In these experiments, Es-Stream
dynamically adjusts node usage, indicating an adaptive design
that scales with input load, while R-Storm maintains a minimal
and consistent node usage, prioritizing resource efficiency.
However, while R-Storm is resource-efficient, it may lead
to system instability under high load conditions. DRS, with
its static node usage, may ensure stability but at a higher
resource cost. Therefore, Es-Stream is more suitable under
fluctuating rates as it balances both resource efficiency and
system stability.

D. System overhead

System overhead refers to the time required for scaling the
parallelism of stateful operators and recovering from faulty
nodes. In this experiment, we use COMMCount topology to
evaluate the system overhead. The recovery time primarily in-
cludes the time of recovering state and the time of recomputing
data tuples.

Given a stable data input rate of 1,800 tuples/s, the recovery
time of Es-Stream for stateful operators is observed to be faster
than that of the Checkpoint mechanism. As shown in Fig. 18,
the recovery time for both Es-Stream and Checkpoint increases
as the Checkpoint interval increases. However, Es-Stream
exhibits a shorter recovery time compared to Checkpoint. In
addition, the standard deviation of recovery time for Es-Stream
and Checkpoint is 1.3 and 2.5, respectively. This indicates
that the Es-Stream has a smaller fluctuation in recovery time
as the checkpoint intervals increase, demonstrating its more
stable and efficient performance compared to the checkpoint

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

mechanism. This improvement is mainly attributed to the
fact that Es-Stream caches the data tuples of a checkpoint
interval, and when stateful operators experience state recovery
caused by scaling, it effectively reduces the state recovery time
through partial state rollback.

Given a stable input data rate of 9,00 tuples/s and a
checkpoint interval of 5s, the overhead of Es-Stream in terms
of recovery time is observed to be smaller compared to the
Checkpoint mechanism as the state data size increases. As
shown in Fig. 19, the recovery time for both Es-Stream
and Checkpoint gradually increases as the state data size
grows. However, Es-Stream exhibits a shorter recovery time
compared to Checkpoint, indicating its efficiency in handling
larger state data sizes. In addition, the standard deviation of
recovery time for Es-Stream and Checkpoint is 0.7 and 1.5,
respectively, suggesting that Es-Stream achieves a more stable
and consistent performance in recovering the state of instances
for stateful operators with increasing state data size. Es-Stream
performs well in increasing state size because Es-Stream
performs concurrent state repartitioning and then merges the
results, which enables Es-Stream to have better performance
in executing larger state recovery.

Given the same data state size (e.g., 42 MB), Es-Stream
demonstrates lower state repartitioning time through concur-
rent execution. As shown in Fig. 20, when the degree of
parallelism increases, the time taken to repartition state using
Es-Stream generally decreases until it stabilizes at 0.225 s.
The time taken using Checkpoint does not show a consistent
decreasing trend and remains relatively high, with slight vari-
ations around 0.71 s to 0.75 s. The reason Es-Stream shows
lower state repartitioning times compared to Checkpoint is
that Es-Stream performs concurrent state repartitioning and
then merges these results. This concurrent approach allows
Es-Stream to efficiently handle the repartitioning process,
leading to reduced overall time compared to Checkpoint,
which appears to handle the process in a less parallelized
manner.

Given a stable data input rate of 1,800 tuples/s, Es-Stream
exhibits faster fault recovery time for stateful operators com-
pared to the Checkpoint mechanism. As shown in Fig. 21,
Es-Stream consistently shows lower fault recovery times for
every checkpoint interval. For instance, at the checkpoint
interval time of 2 s, Es-Stream achieves a recovery time of
0.7 s, whereas Checkpoint requires 1.9 s. This trend holds
across all interval times tested. In this experiment, the state
repartitioning strategy is inactive due to unchanged operator
parallelism. Es-Stream’s efficiency in fault recovery time is
attributed to upstream operators caching data tuples. When a
stateful instance fails, these cached tuples are resent to the
failed instance to facilitate partial rollback for the streaming
application. In contrast, Checkpoint requires a global rollback
of all task states across the entire streaming application by
re-emitting tuples from the data sources.

VII. RELATED WORK

In this section, we review recent works in two related
areas: elastic scaling of operators and state management of

Fig. 21. Fault recovery time with different checkpoint intervals.

operators. A comparison between our work and the relevant
research is summarized in Table I, where Kmax denotes the
maximum number of operator instances, k denotes the number
of operator instances, and n denotes the number of operators
in the topology.

A. Elastic scaling operators

The elasticity of resource scaling in cloud computing en-
vironments has been widely researched. For example, [24]–
[26] dynamically adjusted computing resources according to
load variations, aiming to effectively utilize the compute nodes
in cloud environments to reduce budget costs, while ensuring
quality of service. However, in a stream computing environ-
ment, the strong dependencies between operators within a
stream application make resource management more complex.
Traditional elasticity scaling strategies in cloud computing
environments cannot be directly applied to stream computing
environments. To address this limitation, researchers have
made efforts to optimize the scaling mechanisms for stream
applications.

To balance operator parallelism and resource overhead,
[8], [27] implemented operator managers using reinforce-
ment learning to control the automatic scaling of operators.
However, it may take a long time to collect information on
operator parallelism changes for making a good operator scal-
ing strategy. An optimal decision model requires continuous
trial-and-error of the system, which incurs additional system
overhead. Other research [28], [29] collected historical data
on configuration parameters in cloud environments, such as
operator parallelism, and applied machine learning to train
models for determining suboptimal parameter configurations.
However, collecting such historical data is time-consuming and
labor-intensive, and the resulting models may not generalize
well across different scenarios.

To ensure the consistency of operator states after scaling,
Joker [30] iteratively increased the parallelism of operators
until the system performance cannot be further optimized.
In this process, it can adaptively redistribute operator states.
However, iterative updating of operator parallelism can intro-
duce more system overhead, and the redistributing of operator
states with changing parallelism can exacerbate this problem.
In addition, if the data processing is much smaller than the
operator bottleneck, not promptly scaling down the parallelism
will inevitably result in resource waste.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

TABLE I
RELATED WORK COMPARISON

Aspect Related Work
ELYSIUM [6] DRS [12] Li et al. [13] EDS [15] A-FP4S [23] Our work

Operator parallelism " " " % " "

Resource scaling " " % % % "

State backup % % % " " "

Data rate awareness " % " " " "
Time complexity O(k · n) O(Kmax · n) O(Kmax · n) Null Null O(n · e)

In conclusion, the aforementioned solutions provide valu-
able insights for addressing elastic scaling operations. Es-
Stream system, in particular, stands out by considering the
resource overhead of operators and the sojourn time of tuples
within operators. It also supports adjusting the operator par-
allelism, and scaling stateful operators through low-overhead
state recovery mechanisms.

B. State management of operators

Effective state management not only reduces system over-
head, but also improves system reliability [9]. To optimize
state backup and recovery, an increasing number of researchers
have studied different aspects of the area, such as upstream
state backup, distributed state backup and state slicing.

A fault-tolerant mechanism was proposed by [15] to ensure
state backup consistency and rollback recovery. The mecha-
nism performs a self-adaptive upstream backup for operator
state and elastic data slicing to enhance the reliability of
operator state. To mitigate runtime overhead and output latency
associated with full-backup mechanisms, an approximate fault-
tolerant scheme was proposed by [31]. This scheme investi-
gates the trade-off between fault-tolerance overhead and output
accuracy in stream processing systems, aiming to minimize the
overhead while meeting the accuracy requirements defined by
users. However, this approach improves system performance
at the cost of sacrificing some state accuracy.

In [32], the authors organize streaming application operators
into a distributed hash table, where each operator is associated
with a unique set of neighbors. It divides the in-memory
state of each operator into multiple fragments and periodically
saves them in the neighbors’s node to ensure state reliability.
However, this approach may face challenges when applied to
state recovery caused by scaling the parallelism of operators.

Compared to the above state-of-the-art works, Es-Stream
stands out by its ability to recover the state data when adjusting
the parallelism of stateful operators. In addition, it incorporates
a dynamic caching mechanism that effectively reduces system
overhead by caching data tuples within a variable time interval.

VIII. CONCLUSIONS AND FUTURE WORK

In a volatile data flow rate scenario, the key objectives of a
system implementation are to minimize system latency, reduce
resource overhead, and ensure the reliability of system state.
To achieve these objectives, it is essential to have a system that
can sense the size of data stream and the resource consump-
tion of operators in stream applications. The system should

dynamically allocate resource weights to operators, adjust the
parallelism of operators based on changing requirements, and
maintain system state consistency.

To address these requirements, we propose a reliable re-
source scaling framework that adapts to volatile data streams.
The framework encompasses three main aspects. First, it can
handle changes in data streams by dynamically adjusting the
parallelism of operators, while minimizing the system latency
and resource consumed by operators. Second, it can expand or
contract the number of compute nodes deployed by the stream
application, minimizing system resource overhead. Third, it
can respond to changes in the parallelism of stateful operators
in a stream application. This ensures the consistency and
reliability of the system state.

In the future, we will further explore the following areas.
(1) Integrate load balancing among the instances of stateful

operator into Es-Stream to further reduce system latency.
(2) Design probability models to support approximate com-

puting results for specific scenarios.

REFERENCES

[1] Z. Wen, R. Yang, B. Qian, Y. Xuan, L. Lu, Z. Wang, H. Peng, J. Xu,
A. Y. Zomaya, and R. Ranjan, “Janus: Latency-aware traffic scheduling
for iot data streaming in edge environments,” IEEE Transactions on
Services Computing, vol. 16, no. 6, pp. 4302–4316, 2023.

[2] W. Li, D. Liu, K. Chen, K. Li, and H. Qi, “Hone: Mitigating stragglers in
distributed stream processing with tuple scheduling,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 99, pp. 2021–2034,
2021.

[3] W. Chen, I. Paik, and P. C. K. Hung, “Transformation-based streaming
workflow allocation on geo-distributed datacenters for streaming big data
processing,” IEEE Transactions on Services Computing, vol. 12, no. 4,
pp. 654–668, 2019.

[4] F. Zhao, S. Li, B. B. Zhou, H. Jin, and L. T. Yang, “Hcache: A hash-
based hybrid caching model for real-time streaming data analytics,”
IEEE Transactions on Services Computing, vol. 14, no. 5, pp. 1384–
1396, 2021.

[5] H. Herodotou, L. Odysseos, Y. Chen, and J. Lu, “Automatic performance
tuning for distributed data stream processing systems,” in 2022 IEEE
38th International Conference on Data Engineering, 2022, pp. 3194–
3197.

[6] F. Lombardi, L. Aniello, S. Bonomi, and L. Querzoni, “Elastic symbiotic
scaling of operators and resources in stream processing systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 3, pp.
572–585, 2018.

[7] X. Liu, A. Dastjerdi, and R. Buya, “A stepwise auto-profiling method for
performance optimization of streaming applications,” ACM Transactions
on Autonomous and Adaptive Systems, vol. 12, no. 24, pp. 1–33, 2018.

[8] G. Russo Russo, V. Cardellini, and F. Lo Presti, “Hierarchical auto-
scaling policies for data stream processing on heterogeneous resources,”
ACM Transactions on Autonomous and Adaptive Systems, vol. 18, no. 4,
pp. 1–44, 2023.

[9] M. Wu, D. Sun, Y. Cui, S. Gao, X. Liu, and R. Buyya, “A state lossless
scheduling strategy in distributed stream computing systems,” Journal
of Network and Computer Applications, vol. 206, pp. 1–16, 2022.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[10] Z. She, Y. Mao, H. Xiang, X. Wang, and R. T. B. Ma, “Streamswitch:
Fulfilling latency service-layer agreement for stateful streaming,” in
IEEE INFOCOM 2023 - IEEE Conference on Computer Communica-
tions, 2023, pp. 1–10.

[11] X. Wei, L. Li, X. Li, X. Wang, S. Gao, and H. Li, “Pec: Proactive
elastic collaborative resource scheduling in data stream processing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 30, pp.
1628–1642, 2019.

[12] T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and Z. Zhang,
“Drs: Dynamic resource scheduling for real-time analytics over fast
streams,” in 2015 IEEE 35th International Conference on Distributed
Computing Systems, 2015, pp. 411–420.

[13] W. Li, Z. Zhang, Y. Shu, H. Liu, and T. Liu., “Toward optimal operator
parallelism for stream processing topology with limited buffers,” Journal
of Supercomputing, vol. 78, pp. 13 276–13 297, 2022.

[14] J. a. Francisco, M. E. Coimbra, P. F. R. Neto, F. Freitag, and L. Veiga,
“Stateful adaptive streams with approximate computing and elastic scal-
ing,” in Proceedings of the 38th ACM/SIGAPP Symposium on Applied
Computing, 2023, p. 174–183.

[15] X. Wei, Y. Zhuang, H. Li, and Z. Liu, “Reliable stream data processing
for elastic distributed stream processing systems,” Cluster Computing,
vol. 23, pp. 555–574, 2020.

[16] Aliyun, “tianchi,” https://tianchi.aliyun.com/dataset/649?t=1679727494514.
[17] D. Sun, Y. Cui, M. Wu, S. Gao, and R. Buyya, “An energy efficient and

runtime-aware framework for distributed stream computing systems,”
Future Generation Computer Systems, vol. 136, pp. 252–269, 2022.

[18] Y. Fang, J. Cui, and H. Zhong, “An efficient sdn load balancing scheme
based on server response time,” Future Generation Computer Systems,
vol. 68, pp. 183–190, 2017.

[19] Z. Li, J. Yu, C. Bian, Y. Pu, Y. Wang, Y. Zhang, and B. Guo, “Flink-er:
An elastic resource-scheduling strategy for processing fluctuating mobile
stream data on flink,” Mobile Information Systems, vol. 2020, pp. 1–17,
2020.

[20] J. Wang, Y. Zhang, and Z. G. Zhang, “Strategic joining in an m/m/k
queue with asynchronous and synchronous multiple vacations,” Journal
of the Operational Research Society, vol. 72, pp. 161–179, 2021.

[21] Apache, “Evenscheduler,” https://github.com/apache/storm/blob/v2.4.0/storm-
server/src/main/java/org/apache/storm/scheduler/EvenScheduler.java.

[22] B. Peng, M. Hosseini, Z. Hong, and R. Farivar, “R-storm resource-aware
scheduling in storm,” in Proceedings of the 16th Annual Middleware
Conference, 2015, pp. 149–161.

[23] H. Xu, P. Liu, S. T. Ahmed, D. Da Silva, and L. Hu, “Adaptive fragment-
based parallel state recovery for stream processing systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 8, pp.
2464–2478, 2023.

[24] P. Osypanka and P. Nawrocki, “Qos-aware cloud resource prediction for
computing services,” IEEE Transactions on Services Computing, vol. 16,
no. 02, pp. 1346–1357, 2023.

[25] M. Islam, H. Wu, S. Karunasekera, and R. Buyya, “Sla-based scheduling
of spark jobs in hybrid cloud computing environments,” IEEE Transac-
tions on Computers, vol. 71, no. 05, pp. 1117–1132, 2022.

[26] X. Gao, R. Liu, and A. Kaushik, “Hierarchical multi-agent optimization
for resource allocation in cloud computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 03, pp. 692–707, 2021.

[27] J. Xu and B. Palanisamy, “Model-based reinforcement learning for
elastic stream processing in edge computing,” in 2021 IEEE 28th
International Conference on High Performance Computing, Data, and
Analytics (HiPC), 2021, pp. 292–301.

[28] H. Herodotou, Y. Chen, and J. Lu, “A survey on automatic parameter
tuning for big data processing systems,” ACM Computing Surveys,
vol. 53, no. 2, pp. 1–37, 2020.

[29] I. Dharmadasa and F. Ullah, “Co-tuning of cloud infrastructure and
distributed data processing platforms,” in 2023 IEEE International
Conference on Big Data (BigData), 2023, pp. 207–214.

[30] B. Kahveci and B. Gedik, “Joker: Elastic stream processing with organic
adaptation,” Journal of Parallel and Distributed Computing, vol. 137,
pp. 205–223, 2020.

[31] Y. Zhuang, X. Wei, H. Li, M. Hou, and Y. Wang, “Reducing fault-
tolerant overhead for distributed stream processing with approximate
backup,” in 2020 29th International Conference on Computer Commu-
nications and Networks (ICCCN), 2020, pp. 1–9.

[32] P. Liu, H. Xu, D. Da Silva, Q. Wang, S. T. Ahmed, and L. Hu, “Fp4s:
Fragment-based parallel state recovery for stateful stream applications,”
in 2020 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2020, pp. 1102–1111.

Minghui Wu is a PhD student at the School of
Information Engineering, China University of Geo-
sciences, Beijing, China. He received his Bachelor
Degree in Network Engineering from Zhengzhou
University of Aeronautics, Zhengzhou, China in
2020. His research interests include big data stream
computing, distributed systems, and blockchain.

Dawei Sun is a Professor in the School of Informa-
tion Engineering, China University of Geosciences,
Beijing, P.R. China. He received his Ph.D. degree
in computer science from Northeastern University,
China in 2012, and conducted the Postdoctoral re-
search in the department of computer science and
technology at Tsinghua University, China in 2015.
His current research interests include big data com-
puting, cloud computing and distributed systems. In
these areas, he has authored over 90 journal and
conference papers.

Shang Gao received her Ph.D. degree in com-
puter science from Northeastern University, China
in 2000. She is currently a Senior Lecturer in the
School of Information Technology, Deakin Univer-
sity, Geelong, Australia. Her current research inter-
ests include distributed system, cloud computing and
cyber security.

Keqin Li is a SUNY Distinguished Professor of
Computer Science with the State University of New
York. He is also a National Distinguished Professor
with Hunan University, China. His current research
interests include cloud computing, big data comput-
ing and distributed system etc. He is among the
world’s top 5 most influential scientists in parallel
and distributed computing in terms of both single-
year impact and career-long impact based on a
composite indicator of Scopus citation database. He
has served on the editorial boards of the IEEE

Transactions on Parallel and Distributed Systems, the IEEE Transactions on
Computers, and the IEEE Transactions on Services Computing. He is an
AAAS Fellow, an IEEE Fellow, and an AAIA Fellow. He is also a Member
of Academia Europaea (Academician of the Academy of Europe).

Rajkumar Buyya is a Redmond Barry Distin-
guished Professor and Director of the Cloud Com-
puting and Distributed Systems (CLOUDS) Labora-
tory at the University of Melbourne, Australia. He is
also serving as the founding CEO of Manjrasoft, a
spin-off company of the University, commercializing
its innovations in Cloud Computing. He has authored
over 750 publications and four textbooks. He is one
of the highly cited authors in computer science and
software engineering worldwide (h-index 168 with
149,400+ citations). He is among the world’ s top 2

most influential scientists in distributed computing in terms of both singleyear
impact and career-long impact based on a composite indicator of Scopus
citation database.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3436596

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on September 13,2024 at 00:37:00 UTC from IEEE Xplore. Restrictions apply.

