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Abstract

Rapid increase in energy consumption is a serious problem in cloud storage systems.

Data accessed in large-scale storage systems usually exhibit temporal and spatial char-

acteristics, which make it possible to reduce energy consumption by clustering data

with similar access characteristics for storage in the same zone of cloud storage sys-

tems. Existing works usually only focus on the frequency of data access. However,

widely existing phenomena show data access with seasonal and tidal characteristics

in cloud storage systems. The seasonal and tidal characteristics of data access are

extracted thoroughly in this paper. According to the extracted data access character-

istics, energy-aware data clustering through a machine learning algorithm (K-ear) is

proposed. K-ear classifies data into five seasonal categories according to their sea-

sonal access characteristics and then classifies every seasonal category into three tidal

categories according to its tidal access characteristics. The 15 classified categories

are stored in different storage zones with different energy and performance modes.

Simulation experiments using CloudSimDisk with the constructed mathematic mod-

els demonstrate that the proposed K-ear algorithm is more energy-efficient than the

default data clustering algorithms in Hadoop and the classical data clustering stor-

age strategy according to the data access frequency (Striping-Based Energy-Aware

Strategy).

K E Y W O R D S

cloud storage system, data access characteristics, data clustering, energy consumption, seasonal

characteristics, tidal characteristics

1 INTRODUCTION

The exponential growth of the volume data is becoming one of the leading causes of high energy consumption in cloud storage systems.1-3 It has

been reported in the literature4 that the energy consumed by data centers will be more than 1000 TWh during 2013–2025, which will surpass the

total energy consumption of Japan and Germany. The energy consumed by data centers, including for cooling equipment, will consume 5% of the

total energy consumption worldwide. An even more serious problem is that increasing energy consumption will produce high carbon and Green-

house Gases emissions,5,6 which will result in serious environmental pollution. Therefore, reducing energy consumption is one of the hottest issues

in the cloud storage domain. Classifying data into different categories according to their access characteristics is an efficient way to enhance energy

Concurrency Computat Pract Exper. 2021;33:e6096. wileyonlinelibrary.com/journal/cpe © 2020 John Wiley & Sons, Ltd. 1 of 30
https://doi.org/10.1002/cpe.6096

https://orcid.org/0000-0002-3351-4599
https://orcid.org/0000-0003-3137-6257
https://orcid.org/0000-0001-9754-6496
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.6096&domain=pdf&date_stamp=2020-11-30


2 of 30 YOU ET AL.

efficiency in cloud storage systems. Different data categories are stored in different storage zones, running in different energy and performance

modes. This kind of method will lead to less energy consumption in the storage zone, which has a low energy and performance mode while the

workload is light. However, only the instant access frequency is considered in the current existing energy-aware data classification strategies. Long

periodic access characteristics, such as seasonal characteristics and tidal characteristics, are not considered. Classifying data according to their

instant access frequency will lead to frequent data migration, which will result in worse performance. Extracting the long periodic access charac-

teristics is an effective solution, which could allow the low energy and performance running mode for a relatively long time. On the other hand,

seasonal and tidal access characteristics obviously appear in cloud storage systems. As shown in Figure 1, the access frequencies (search index) of

spring clothing, summer clothing, autumn clothing, and winter clothing exhibit obvious seasonal period characteristics. Other words with seasonal

characteristics also have seasonal periodic access frequency.

As Figure 1 is the screenshot from the Baidu website, there are Chinese words in the figure. We list the Chinese words in the Figure 1 from left

to right, and top to down, where “春装” means “spring clothings,” “夏装”-“summer clothings,” “秋装” –“autumn clothings,” “冬装” winter clothings.

“平均值” –“average value,” “搜索指数”-“search indexes.”

As Figure 2 is also the screenshot from the Baidu website, there are Chinese words in the figure. We list the Chinese words in the Figure 2

from left to right, and top to down, where “整体趋势” means “whole trend,” “PC趋势”-“PC trend,” “移动趋势” –“mobile trend,” “最近”-“recent,”

“7天”-“7 days,” “30天”-“30 days,” “90天”-“90 days,” “半年”-“half a year,” “全部”-“all,” “自定义”-“custom,” “平均值” –“average value,” “搜索指

数”-“search indexes.”

As shown in Figure 2, the access frequency of work-related words has the same tidal periodic access characteristics: the peak points usually

appear on workdays and the valley points almost always appear on weekends. This kind of weekly tidal period phenomenon always appears in

work-related words, documents, and media.

As Figure 3 is also the screenshot from the Baidu website, there are Chinese words in the figure. We list the Chinese words in the figures from left

to right, and top to down, where “整体趋势” means “whole trend,” “PC趋势”-“PC trend,” “移动趋势” –“mobile trend,” “最近”-“recent,” “7天”-“7 days,”

F I G U R E 1 Varying curve of the search indexes of the different seasonal clothing in Baidu

F I G U R E 2 Varying curve of the search indexes of work-related words in Baidu
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F I G U R E 3 Varying curve of the search indexes of entertainment-related words in Baidu

“30天”-“30 days”, “90天”-“90 days,” “半年”-“half a year,” “全部”-“all,” “自定义”-“custom,” “电视剧”-“TV,” “电影”-“movie,” “游戏”-“game,”“平均值”

–“average value,” “搜索指数”-“search indexes.”

On the other hand, as shown in Figure 3, the access frequency of entertainment-related words also has the same tidal periodic access char-

acteristics. The peak points usually appear on weekends, and the valley points almost always appear on workdays. This kind of weekly tidal period

phenomenon always appears in entertainment-related words, documents and media.

Recently, placing data according to the access characteristics is one of the main techniques for energy saving in large-scale storage systems.7-10

However, only the temporal data access characteristics are considered in the existing literatures.

Based on the above observations and due to a lack of consideration of the periodic data access characteristics of the current existing

energy-aware data classification work, we focused on extracting the seasonal and tidal access characteristics for energy-aware data clustering

storage in this paper. In this direction, our paper makes the following key contributions:

1. Data seasonal and tidal access characteristics extracting algorithms (SCEA and TCEA) are designed, in which how to store the data access

frequency and how to express the seasonal and tidal characteristics are described in detail.

2. The energy-aware data clustering strategy K-ear is designed, in which the framework of K-ear is first constructed and then the data are clustered

by an unsupervised machine learning algorithm into different categories. Correspondingly, the cloud storage system is divided into 15 zones to

store data with similar access characteristics.

3. The proposed K-ear algorithm is modeled, and the classical data classification SEA and the Hadoop default data placement algorithms are

used for comparison through a mathematical method. The constructed mathematics model is the basis for analyzing the energy efficiency of

the proposed K-ear strategy and is also used to conduct simulation experiments to verify the advantage of the proposed strategy in energy

consumption.

4. Substantial simulation experiments are conducted using extended CloudSimDisk simulator, and the results demonstrate that the proposed K-ear

strategy is more energy-efficient than the other two data placement algorithms.

The rest of the paper is organized as follows. In Section 2, we analyze the related energy-aware data classification work. The detailed framework

and the algorithms of K-ear are described in Section 3. The mathematical model of the proposed K-ear strategy and the classical energy-aware data

classification algorithm SEA are constructed for energy and performance analysis in Section 4. In Section 5, we demonstrate the detailed energy

consumption and performance of the proposed K-ear, SEA and Hadoop default data storage algorithms. Conclusions and future work are presented

in the final section.

2 RELATED WORK

Energy-aware data classification strategies classify data into different categories according to the data access characteristics and then partition the

storage system into different zones. Data with similar access characteristic clustering are stored in the same storage zone. Different zones run in

different energy and performance modes. Energy consumption savings are achieved by managing the power state of the different zones. T. Xie first

proposed a striping-based energy-aware data placement strategy (SEA) in the RAID (Redundant Arrays of Independent Disks) storage system,11
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in which RAID disks are divided into Hot Disk Zone and Cold Disk Zone. Popular data are stored in the Hot Disk Zone while unpopular data are

stored in the Cold Disk Zone. Disks in Hot Disk Zone run in a mode with a high transfer rate and high power rate, while disks in Cold Disk Zone run

in a mode with a low transfer rate and low power rate. Analysis and simulation results show that the proposed SEA mechanism saves much energy

consumption with little performance loss. Analyzing the access traces in Yahoo showed that the data access patterns in the Hadoop cluster have

obvious heterogeneity. R.T. Kaushik et al. designed the GreenHDFS mechanism, in which data are classified into different categories according to

temperature. The temperature of data is deduced by their availability and the user’s performance requirement. Correspondingly, the Hadoop cluster

is divided into Hot Zone and Cold Zone. Simulation experiments conducted on the generated workload based on a real trace of 3 months of data

from Yahoo demonstrate that 26% of energy consumption can be reduced by only managing the cold zone at a lower power consumption rate while

the system load is light.12 A similar energy-aware data classification policy, Lightning, was designed by the Kaushik team13 to reduce the energy

consumption of the Yahoo cloud storage system. Inspired by GreenHDFS and the lighting mechanism, we have proposed a green data classification

strategy based on anticipation named AGDC, in which the neural network is employed to predict the temperature of data. Based on the predicted

temperature of data, they are classified into three categories: cold data, seasonal hot data, and hot data. Correspondingly, the cloud storage system

is divided into different zones. Simulation experiments conducted on the GridSim simulator demonstrated that the AGDC mechanism can save

approximately 16% of energy consumption at the expense of an increased average response time of 0.005 s. AGDC outperformed the integration

general classification algorithm TDCS.14 In the literature,15 data are classified into different categories according to their access frequency and

regularity. RACK is divided into Active-Zone and Sleep-Zone. Data with different access characteristics are stored in different zones. Simulation

experimental results in the MATLAB and GridMix environments show that the energy consumption saved by the proposed algorithm is up to 39.01%.

An energy-efficient algorithm that classifies data in the cloud storage system was proposed by Z. Tao et al.16 that divided the cloud storage system

into HotZone, ColdZone, and Reduplication Zone. Data are stored in the zones according to their repetition and activity factor characteristics. The

experimental results show that the energy utilization rate improved by 25%. Furthermore, the proposed algorithm performs better when the system

load is light. Recently, the SLA (Service Level Agreement) has been considered in more and more literatures for trading off the energy efficiency and

the QoS. A dynamic data aggregation algorithm for green cloud computing is proposed in Reference 17. According to the data access pattern, the

data are aggregately stored dynamically among nodes. By managing the power state of the storage nodes, energy consumption can be reduced along

with the QoS considered. Dr. Long designed static and dynamic file layout and replica and data layout policies to reduce the energy consumption in

cloud storage systems.18 The static file layout strategy (SFLS) first divides data into hot files and big files according to their access frequency and

service time. Correspondingly, the disks are divided into different groups. I/O requests are distributed to the different disk groups according to the

access frequency and service time. The results obtained from the CloudSim simulator demonstrate that SFLS can save power consumption by over

35% compared to the default HDFS. Moreover, R. Yadav et al. published the related article for minimizing energy consumption and SLA violation in

cloud computing.19-22 Other data placement or data layout strategies for energy efficiency have been published in recent years,15,19-33 but the period

access characteristics also have not been extracted for data clustering storing.

As described before, data classification is an efficient way to reduce energy consumption. However, only the instant data access frequency is

considered in all of the above energy-aware data classification strategies, which may cause frequent data migration and result in performance loss.

The seasonal and tidal periodic access characteristics of data are thoroughly extracted for data classification storing in our proposed K-ear strategy,

which can leave the nodes in a low power state for a relatively long time, leading to energy consumption savings.

A summary of the reviewed related work is presented in Table 1, comparing in terms of whether the access frequency or the periodic access

characteristics (seasonal or tidal periodic access characteristics) has been considered or not, the zones have been divided.

TA B L E 1 Summary of the reviewed related work compared with our work

Work Name Access frequency

Periodic access characteristics

Zones divided

Seasonal

characteristics

Tidal

characteristics

T. Xie11 SEA ✓ – – Hot Disk Zone, Cold Disk Zone

R.T. Kaushik et al12 GreenHDFS ✓ – – Hot Zone, Cold Zone

R.T. Kaushik et al13 Lightning ✓ – – Hot Zone, Cold Zone

X.D. You et al.14 AGDC ✓ ✓ – Cold Zone, Seasonal Hot Zone, Hot Zone

Z. Tao et al.16 – ✓ – – HotZone, Cold Zone and Reduplication Zone

X. L. Xu17 – ✓ – – Dynamically aggregating

S. Q. Long18 SFLS ✓ – – Hot Files Zone, Big Files Zone

Our work K-ear ✓ ✓ ✓ Five big zones (according to seasonal characteristics) with 15

small zones (according to tidal characteristics furthermore)
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3 K-EAR: ENERGY-AWARE DATA CLUSTERING STRATEGY

The proposed K-ear strategy consists of two data access characteristics extraction algorithms (Seasonal Characteristics Extracting Algorithm SCEA,

and Tidal Characteristics Extracting Algorithm TCEA) and a framework, which are described in the following subsections.

3.1 Periodic data access characteristics extraction

The data seasonal and tidal access characteristics are extracted by the SCEA and TCEA algorithms, respectively. To explain the SCEA and TCEA

algorithms clearly, some definitions are given first.

Representation Dataset: D= {d1, d2, · · ·, dm}, which is the representation data set of the primary data for clustering, and m is the number of data.

Data seasonal characteristics: They are represented by the vector SE =

⎡⎢⎢⎢⎢⎣

Se1

Se2

⋮
Sem

⎤⎥⎥⎥⎥⎦
. Assume that y is the number of years of data to be collected

and that there are four seasonal search index ratios for each year. Therefore, Sei = [se1, se2, · · ·, se4 * y].

Data tidal characteristics: They are represented by the vector CX =

⎡⎢⎢⎢⎢⎣

cx1

cx2

⋮
cxm

⎤⎥⎥⎥⎥⎦
and cxi =

[
pi,1 vi,1 pi,2 vi,2 · · · pi,z vi,z

]
, in which z is the

number of weeks of representation data (there are 52 weeks in 1 year).

The SCEA is described in Algorithm 1, through which the seasonal characteristics of the data stored in the SE vector.

TCEA is described in Algorithm 2, through which the seasonal characteristics of the data are stored in the CX vector.

Algorithm 1. : Seasonal characteristics extracting algorithm

Input: Data representation Set D = {d1, d2, · · ·, dm};

The number of the weeks y;

Output: Data Seasonal Characteristic SE =

⎡⎢⎢⎢⎢⎣

Se1

Se2

⋮
Sem.

⎤⎥⎥⎥⎥⎦
Begin

1: for each data di ∈D do

2: Parse the image data from Baidu index page into the Search Index Number of 1 week: ZS = {zs1, zs2, · · ·, zsy * 52};

3: Calculate the sum of searching index for each season;

4: Initialize the sum_of_season vector to zero;

5: for (j=1; j≤y*4; j++) // If there are y years, there are y*4 seasons.

6: sum_of_season[j]=0

7: End for

8: j=1; from the first year

9: for(k=1; k≤y*52; k++) //Travel every weeks to calculate the search index number of every seasons in different years

10: sum_of_season[j]+=zs[k] //calculate the index number of every seasons while k is the times of 12.

11: if the season ending, Thas is if (k%13==0)

12: go to next season j++;

13: End if

14: End for

15: Calculate the sum of searching index for each year

16: Initialize the sum_of_year vector to zero.

17: for (j=1; j≤y; j++)

18: sum_of_year[j]=0

19: End for

20: i=1; from the first season

21: for(k=1; k≤y*4; k++) // travel the seasons to calculate the search index of every years.
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22: sum_of_year[i]+=sum_of_season[k]

23: if the year ending, Thas is if (k%4==0)

24: go to the next season j++;

25: End if

26: End for

27: Calculate the frequency of searching index for each season

28: Initialize the frequency_of_season vector to zero

29: for(k=1; k≤y*4; k++)

30: se[k]=0.0;

31: End for

32: for(k=1; k≤y*4; k++)

33: se[k]=sum_of_season[k]/sum_of_year[k/4+1]// Calculate the frequency of searching index for each season

34: End for

35: End for

End

Algorithm 2. : Tidal characteristics extracting algorithm

Input: Data representation Set D = {d1, d2, · · ·, dm

The number of the weeks z;

Output: Data Tidal Characteristics CX =

⎡⎢⎢⎢⎢⎣

cx1

cx2

⋮
cxm

⎤⎥⎥⎥⎥⎦
Begin

1: for each data di ∈D do

2: Parse the image data from Baidu index page to the Search Index Number of 1 day: S = {s1, s2, · · ·, sz * 7};

3: Find the peak and the valley value of every week;

4: Initialize the first week k=1 and the index of first week’s tidal value x=1;

5: for j=1; j≤z*7; j++
6: Record the index of the weak peak and valley value

7: Initial value is: p_index=k; v_index=k;

8: if (s[j]>s[p_index]) p_index=j; // Record the index of the weak peak

9: End if

10: if (s[j]<s[v_index]) v_index=j; // Record the index of the valley value

11: End if

10: if( j%7==0) //new week will begin, record the week tidal value

12: if peak value is on the working days (from Monday to Thursday)

13: That is (p_index-k)%7=1or 2 or 3 or 4 cxi[x] = 1

14: End if

15: if peak value is on the weekends (Saturday or Sunday)

16: That is (p_index-k)%7=0 or 6 cxi[x] = 2

17: End if

18: if peak value is on Friday

19: That is (p_index-k)%7=5 cxi[x] = 3

20: End if

21: if valley value is on the working days (from Monday to Thursday)

22: That is (p_index-k)%7=1or 2 or 3 or 4 cxi[x+1] = −1

23: End if

24: if valley value is on the weekends (Saturday or Sunday)

25: That is (p_index-k)%7=0 or 6 cxi[x+1] = −2

26: End if



YOU ET AL. 7 of 30

27: if valley value is on Friday

28: That is (p_index-k)%7=5 cxi[x+1] = −3

29: End if

30: End if

31: Reset the initial peak and valley value index of the new week k=j+7;

32: Set the index of the new week’s tidal value x=x+2;

33: End for

34: End for

End

3.2 Framework and strategy of K-ear

The main procedures of the proposed K-ear are delineated in Figure 4. The seasonal access characteristics of data are extracted by the SCEA

algorithm (see Algorithm 1 for details). Then, the machine learning clustering-related algorithm is employed on the extracted seasonal access char-

acteristics. Data are clustered into five categories: spring data, summer data, autumn data, winter data, and other data. Correspondingly, the cloud

storage system is divided into five zones: the spring zone, summer zone, autumn zone, winter zone, and other zones. The different data cate-

gories are stored in the corresponding storage zones. When entering a certain zone, the TCEA (Algorithm 2 for detail) is utilized to extract the tidal

access characteristics of data. Similarly, the machine learning clustering-related algorithm is employed on the extracted tidal access characteristics.

The data are further clustered into three categories: work-related data, entertainment data, and other data. Therefore, the cloud storage sys-

tem is partitioned into 15 zones: the spring-work zone, spring-entertainment zone, spring-other zone, summer-work zone, summer-entertainment

zone, summer-other zone, autumn-work zone, autumn-entertainment zone, autumn-other zone, winter-work zone, winter-entertainment zone,

winter-other zone, other-work zone, other-entertainment zone, and other-other zone. We assume that a disk has two speed modes: a high-speed

mode with a high transfer rate and a high energy-consuming rate and a low-speed mode with a low transfer rate and a low energy consumption rate,

as it is a common method for modeling hard-disk power consumption.11,34-36 According to the different periods of the year, different storage zones

run in different speed modes. For example, on a workday in the spring, the spring-work zone, other-work zone and other-other zone run in the high

speed mode for performance consideration. The other zones run in low-speed mode to save energy consumption.

The symbols used in the proposed K-ear algorithm are explained in Tables 2 and 3.

F I G U R E 4 Framework of the K-ear strategy
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Symbol Meaning Symbol Meaning

ηs Ratio of data with spring

characteristics

ηs−w Ratio of data with Spring and work characteristics

ηs− h Ratio of data with Spring and entertainment

characteristics

ηs− o Ratio of data with Spring but without characteristics

ηo Ratio of data without seasonal

characteristics

ηo−w Ratio of data with work but without seasonal

characteristics

ηo− h Ratio of data with entertainment but without

seasonal characteristics

ηo− o Ratio of data without seasonal and tidal

characteristics

TA B L E 2 Symbols in
algorithms related to the
seasonal data proportion

Parameters Meanings

ηs−w × n1 The number of disks to store the data with spring and work characteristics

ηs− h × n1 The number of disks to store the data with spring and entertainment characteristics

ηs− o × n1 The number of disks to store the data with spring but without tidal characteristics

ηo−w × n5 The number of disks to store the data with work but without seasonal characteristics

ηo− h × n5 The number of disks to store the data with entertainment but without seasonal characteristics

ηo− o × n5 The number of disks to store the data without work seasonal characteristics

TA B L E 3 The number of disks
to store the data with tidal
characteristics of every seasonal
zone

When the s in the notation 𝜂s is replaced, respectively, by m, a, and w, notations meaning the related characteristics of the Summer, Autumn, and

Winter, respectively.

And the above symbols have the following relationships: ηs +ηm +ηa +ηw +ηo = 1,ηs−w +ηs−h +ηs− o = 1,ηm−w +ηm−h +ηm−o = 1,ηa−w +ηa−h

+ηa− o = 1, ηw −w +ηw − h +ηw −o = 1,ηo−w +ηo−h +ηo−o = 1.

Assume the number of the disks is n, and the disks set is defined as below. K = {s1, s2, · · ·, sn1, m1, m2, · · ·mn2, a1, a2, · · ·an3, w1, w2, · · ·, wn4, o1,

o2, · · ·on5}

And the set S = {s1, s2, · · ·, sn1} M = {m1, m2, · · ·mn2} A = {a1, a2, · · ·an3} W = { w1, w2, · · ·, wn4} O = {o1, o2, · · ·on5} represent the disks store the data

with spring, summer, autumn, winter and no seasonal characteristics, respectively, in which n1 = 𝜂s × n,n2 = 𝜂m × n,n3 = 𝜂a × n,n4 = 𝜂w × n,n5 = 𝜂o × n.

And the number of the disks to store the data with tidal characteristics of every seasonal zone are listed in Table 2.

In Table 3, when the s in the notation ηs is, respectively, replaced by m, a, and w, && n1 is, respectively, replcaed by n2, n3, n4 notations meaning

the number of the disk to store the data with related characteristics of the Summer, Autumn, and Winter, respectively.

The detailed procedures of the K-ear strategy are illustrated in Algorithm 3.

According to the Algorithm 3, the number of disks running in different modes during different time zones are listed in Table 4.

Algorithm 3. : Energy-aware data classification based on K-means (K-ear)

Input: Data-related characteristics: a collection of m data in the set D, and the corresponding parameters: 𝜂s , 𝜂m, 𝜂a, 𝜂w , 𝜂o and 𝜂s−w , 𝜂s− h, 𝜂s− o, 𝜂m−w ,

𝜂m− h, 𝜂m− o, 𝜂a−w , 𝜂a− h, 𝜂a− o, 𝜂w −w , 𝜂w − h, 𝜂w − o, 𝜂o−w , 𝜂o− h, 𝜂o− o.

The exacted data characteristics: the output of the Algorithm 1 and Algorithm 3: Data Tidal Characteristics CX =

⎡⎢⎢⎢⎢⎣

cx1

cx2

⋮
cxm

⎤⎥⎥⎥⎥⎦
, and the Data Seasonal

Characteristics SE =

⎡⎢⎢⎢⎢⎣

Se1

Se2

⋮
Sem

⎤⎥⎥⎥⎥⎦
Disk-related characteristics: A disk array DISK with n size, every disk with 2-speed mode.

Output: Allocation of the data on the corresponding storage zones.
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Begin

1: for each data di ∈D do

2: Based on the Data Seasonal Characteristics SE =

⎡⎢⎢⎢⎢⎣

Se1

Se2

⋮
Sem

⎤⎥⎥⎥⎥⎦
, and use the K-means clustering algorithm to classify the data into five classes firstly;

3: if di has the spring characteristics (Class 1)

4: place it evenly into the following storage zone S = {s1, s2, · · ·, sn1}

(Storage Zone 1)

5: based on the Data Tidal Characteristics CX1 =

⎡⎢⎢⎢⎢⎣

cx11

cx12

⋮
cx1ηs×m

⎤⎥⎥⎥⎥⎦
, and use the K-means clustering algorithm to classify the data into three classes;

6: If di has the working day characteristics (Sub_Class 1-1)

7: place the data into the 1∼ηs−w × n1 disks evenly(Storage Zone 1-1) // disks numbered by ordering

8: End if

9: If di has the holiday characteristics(Sub_Class 1-2)

10: place the data into the ηs−w × n1 +1∼ηs−w × n1 +ηs− h × n1 disks evenly; (Storage Zone 1-2) // disks numbered by ordering

11: End if

12: If di has no working and holiday characteristics (Sub_Class 1-3)

13: place the data into the 𝜂s−w × n1 + 𝜂s− h × n1 +1∼n1 disks evenly (Storage Zone 1-3) // disks numbered by ordering

14: End if

15: End if

16: if di has the summer characteristics (Class 2)

17: place it evenly into the following storage zone M = {m1, m2, · · ·mn2};

(Storage Zone 2)

18: based on the Data Tidal Characteristics CX2 =

⎡⎢⎢⎢⎢⎣

cx21

cx22

⋮
cx2ηm×m

⎤⎥⎥⎥⎥⎦
, and use the K-means clustering algorithm to classify the data into three classes;

19: If di has the working day characteristics (Sub_Class 2-1)

20: place the data into the 1∼ηm−w × n2 disks evenly; // disks numbered by ordering

(Storage Zone 2-1)

21: End if

22: If di has the holiday characteristics (Sub_Class 2-2)

23: place the data into the 𝜂m−w × n2 +1∼𝜂m−w × n2 + 𝜂m− h × n2 disks evenly; (Storage Zone 2-2) // disks numbered by ordering

24: End if

25: If di has no working and holiday characteristics (Sub_Class 2-3)

26: place the data into the ηm−w × n2 +ηm−h × n2 +1∼n2 disks evenly; // disks numbered by ordering

(Storage Zone 2-3)

27: End if

28: End if

29: if di has the autumn characteristics (Class 3)

30: place it evenly into the following storage zone A = {a1, a2, · · ·an3};

(Storage Zone 3)

31: based on the Data Tidal Characteristics CX3 =

⎡⎢⎢⎢⎢⎣

cx31

cx32

⋮
cx3ηa×m

⎤⎥⎥⎥⎥⎦
, and use the K-means clustering algorithm to classify the data into three classes;

32: If di has the working day characteristics (Sub_Class 3-1)

33: place the data into the 1∼𝜂a−w × n3 disks evenly; // disks numbered by ordering

(Storage Zone 3-1)

34: End if
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35: If di has the holiday characteristics (Sub_Class 3-2)

36: place the data into the 𝜂a−w × n3 +1∼𝜂a−w × n3 + 𝜂s− h × n3 disks evenly; (Storage Zone 3-2)

// disks numbered by ordering

37: End if

38: If di has no working and holiday characteristics (Sub_Class 3-3)

39: place the data into the 𝜂a−w × n3 + 𝜂s− h × n3 +1∼n3 disks evenly // disks numbered by ordering

(Storage Zone 3-3)

40: End if

41: End if

42: if di has winter characteristics; (Class 4)

43: place it evenly into the following storage zone W = { w1, w2, · · ·, wn4}

(Storage Zone 4)

44: based on the Data Tidal Characteristics CX4 =

⎡⎢⎢⎢⎢⎣

cx41

cx42

⋮
cx4ηw×m

⎤⎥⎥⎥⎥⎦
, and use the K-means clustering algorithm to classify the data into three classes;

45: If di has the working day characteristics (Sub_Class 4-1)

46: place the data into the 1∼𝜂w −w × n4 disks evenly // disks numbered by ordering;

(Storage Zone 4-1)

47: End if

48: If di has the holiday characteristics (Sub_Class 4-2)

49: place the data into the 𝜂w −w × n4 +1∼𝜂w −w × n4 + 𝜂w − h × n4 disks evenly; (Storage Zone 4-2)

// disks numbered by ordering

50: End if

51: If di has no working and holiday characteristics (Sub_Class 4-3)

52: place the data into the 𝜂w −w × n4 + 𝜂w − h × n4 +1∼n4 disks evenly // disks numbered by ordering

(Storage Zone 4-3)

53: End if

54: End if

55: if di has no seasonal characteristics (Class 5)

place it evenly into the following storage zone O = {o1, o2, · · ·on5};

(Storage Zone 5)

56: based on the Data Tidal Characteristics CX5 =

⎡⎢⎢⎢⎢⎣

cx51

cx52

⋮
cx5ηo×m

⎤⎥⎥⎥⎥⎦
, and use the K-means clustering algorithm to classify the data into three classes;

57: If di has the working day characteristics (Sub_Class 5-1)

58: place the data into the 1∼𝜂o−w × n5 disks evenly; // disks numbered by ordering

(Storage Zone 5-1)

59: End if

60: If di has the holiday characteristics (Sub_Class 5-2)

61: place the data into the 𝜂o−w × n5 +1∼𝜂o−w × n5 + 𝜂o− h × n5 disks evenly; (Storage Zone 5-2)

// disks numbered by ordering

62: End if

63: If di has no working and holiday characteristics (Sub_Class 5-3)

64: place the data into the 𝜂o−w × n5 + 𝜂o− h × n5 +1∼n5 disks evenly; // disks numbered by ordering

(Storage Zone 5-3)

65: End if

66: End if

67: End for

End
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TA B L E 4 The number of disks running in different modes during different time zones

Time zone The number of disks running in high mode The number of disks running in low mode

Workdays in Spring H1 = ηs−w × n1 +ηs− o × n1 +ηs−w × n5 +ηs− o × n5 L1=ηs−h × n1+n2+n3+n4+ηs− h × n5

Weekends in Spring H2 = ηs− h × n1 +ηs− o × n1 +ηs−h × n5 +ηs− o × n5 L2=ηs−w × n1+n2+n3+n4+ηs−w × n5

Workdays in Summer H3 = ηs−w × n2 +ηs− o × n2 +ηs−w × n5 +ηs− o × n5 L3=ηs−h × n2+n1+n3+n4+ηs− h × n5

Weekends in Summer H4 = ηs− h × n2 +ηs− o × n2 +ηs−h × n5 +ηs− o × n5 L3=ηs−w × n2+n1+n3+n4+ηs−w × n5

Workdays in Autumn H5 = ηs−w × n3 +ηs− o × n3 +ηs−w × n5 +ηs− o × n5 L5=ηs−h × n3+n1+n2+n4+ηs− h × n5

Weekends in Autumn H6 = ηs− h × n3 +ηs−o × n3 +ηs− h × n5 +ηs− o × n5 L6=ηs−w × n3+n1+n2+n4+ηs−w × n5

Workdays in Winter H7 = ηs−w × n4 +ηs− o × n4 +ηs−w × n5 +ηs− o × n5 L7=ηs−h × n4+n1+n2+n3+ηs− h × n5

Weekends in Winter H8 = ηs− h × n4 +ηs−o × n4 +ηs− h × n5 +ηs− o × n5 L8=ηs−w × n4+n1+n2+n3+ηs−w × n5

4 MATHEMATIC MODELING

To analyze the energy efficiency advantage of our proposed K-ear strategy, we model the K-ear mathematically in this section. The parameters used

during mathematical modeling are listed in following tables. Parameters of the whole system are listed in Table 5. Parameters about the spring season

are listed in Table 6. Parameters about the summer season, autumn season, and winter season will be explained correspondingly.

For short, when the spring in the labels of the Table 6 is replaced by the summer, autumn, and winter, respectively, the parameters are about the

Summer season, Autumn season and Winter season, respectively. Such as spring work tactive
h

means the total time of disks running in high mode with

active status during workdays in Spring, and the summer work tactive
h

means the total time of disks running in high mode with active status during

workdays in Summer. Furthermore, when the S in the labels of the Table 6 is replaced by the M, A, W respectively, the parameters are about the

Summer season, Autumn season and Winter season respectively. Such as S Wn
h

means the total access times in high mode during workdays in Spring,

and the M Wn
h

means the total access times in high mode during workdays in Summer. The replacement rule is the same for the remaining parameters.

According to the proposed K-ear strategy in Algorithm 3, the energy consumption model of K-ear is deduced as below.

etotal = spring_work_etotal + spring_holiday_etotal + summer_work_etotal + +summer_holiday_etotal + autumn_work_etotal + autumn_holiday_etotal

+ winter_work_etotal + winter_holiday_etotal (1)

TA B L E 5 Meaning of the parameters of
the whole system in mathematic models

Paramter Meaning

τh Transfer rate of disks running in high mode (MB/s)

ph Energy consuming rate of disks running in high mode during active status (J/s)

ih Energy consuming rate of disks running in high mode during idle status (J/s)

τl Transfer rate of disks running in low mode (MB/s)

pl Energy consuming rate of disks running in low mode during active status (J/s)

il Energy consuming rate of disks running in low mode during idle status (J/s)

s′ The average size of the dataset (MB)

etotal The total enery consumption (J)

eh Energy consumed by all of the disks running in high mode (J)

el Energy consumed by all of the disks running in low mode (J)

eactive
h

Energy consumed by all of the disks running in high mode during active status (J)

eidle
h

Energy consumed by all of the disks running in high mode during idle status (J)

eactive
l

Energy consumed by all of the disks running in low mode during active status (J)

eidle
l

Energy consumed by all of the disks running in low mode during idle status (J)

tactive
h

Total time of disks running in high mode with active status (Second)

tidle
h

Total time of disks running in high mode with idle status (Second)

tactive
l

Total time of disks running in low mode with active status (Second)

tidle
l

Total time of disks running in low mode with idle status (Second)

T Total service time of a disk (Second/disk)
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TA B L E 6 Meaning of the parameters about the spring season in mathematic models

spring work tactive
h

Total time of disks running in high mode with active status during workdays in Spring (s)

spring holiday tactive
h

Total time of disks running in high mode with active status during weekends in Spring (s)

spring work tidle
h

Total time of disks running in high mode with idle status during workdays in Spring (s)

spring holiday tidle
h

Total time of disks running in high mode with idle status during weekends in Spring (s)

spring work tactive
l

Total time of disks running in low mode with active status during workdays in Spring (s)

spring holiday tactive
l

Total time of disks running in low mode with active status during weekends in Spring (s)

spring work tidle
l

Total time of disks running in low mode with idle status during workdays in Spring (s)

spring holiday tidle
l

Total time of disks running in low mode with idle status during weekends in Spring (s)

spring_work_etotal Energy consumption during workdays in Spring (J)

spring_holiday_etotal Energy consumption during weekends in Spring (J)

spring work eactive
h

Energy Consumption of disks running in high mode with active status during workdays in Spring (J)

spring holiday eactive
h

Energy Consumption of disks running in high mode with active status during weekends in Spring (J)

spring work eactive
l

Energy Consumption of disks running in low mode with active status during workdays in Spring (J)

spring holiday eactive
l

Energy Consumption of disks running in low mode with active status during weekends in Spring (J)

spring work eidle
h

Energy Consumption of disks running in high mode with idle status during workdays in Spring (J)

spring holiday eidle
h

Energy Consumption of disks running in high mode with idle status during weekends in Spring (J)

spring work eidle
l

Energy Consumption of disks running in low mode with idle status during workdays in Summer (J)

spring holiday eidle
l

Energy Consumption of disks running in low mode with idle status during weekends in Summer (J)

spring_work_T Total service time of a disk during workdays in Spring (Second/disk) = 5 T/28

spring_holiday_T Total service time of a disk during weekends in Spring (Second/disk) = 2 T/28

S Wn
h

Total access times in high mode during workdays in Spring

S Wn
l

Total access times in low mode during workdays in Spring

S Hn
h

Total access times in high mode during weekends in Spring

S Hn
l

Total access times in low mode during weekends in Spring

The intuition behind the Equations (1) is that the total energy consumption of the systems is the summary of the energy consumption of

the workdays in spring (spring_work_etotal), holidays in spring (spring_holiday_etotal), workdays in summer (summer_work_etotal), holidays in summer

(summer_holiday_etotal), workdays in autumn (autumn_work_etotal), holidays in autumn (autumn_holiday_etotal), workdays in winter (winter_work_etotal),

holidays in winter (winter_holiday_etotal). And there are calculated by the following formulas

springworke total
= spring_work_eactive

h + spring_work_eidle
h + spring_work_eactive

l + spring_work_eidle
l (2)

summer_work_etotal = summer_work_eactive
h + summer_work_eidle

h + summer_work_eactive
l + summer_work_eidle

l (3)

autumn_work_etotal = autumn_work_eactive
h + autumn_work_eidle

h + autumn_work_eactive
l + autumn_work_eidle

l (4)

winter_work_etotal = winter_work_eactive
h + winter_work_eidle

h + winter_work_eactive
l + winter_work_eidle

l (5)

spring_holiday_etotal = spring_holiday_eactive
h + spring_holiday_eidle

h + spring_holiday_eactive
l + spring_holiday_eidle

l (6)

summer_holiday_etotal = summer_holiday_eactive
h + summer_holiday_eidle

h + summer_holiday_eactive
l + summer_holiday_eidle

l (7)

autumn_holiday_etotal = autumn_holiday_eactive
h + autumn_holiday_eidle

h + autumn_holiday_eactive
l + autumn_holiday_eidle

l (8)

winter_holiday_etotal = winter_holiday_eactive
h + winter_holiday_eidle

h + winter_holiday_eactive
l + winter_holiday_eidle

l (9)
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When

spring_work_eactive
h = ph × spring_work_tactive

h = ph × S_Wn
h × s′∕(τh × H1) (10)

spring_work_eidle
h = ih × (spring_work_T × H1 − spring_work_tactive

h ) = ih × (5T
28

× H1 − S_Wn
h × s′∕(τh × H1) (11)

spring_holiday_eactive
h = ph × spring_holiday_tactive

h = ph × S_Hn
h × s′∕(τh × H2) (12)

spring_holiday_eidle
h = ih × (spring_holiday_T × H2 − spring_holiday_tactive

h ) = ih ×
(

2T
28

× H2 − SH
n
h × s′∕(τh × H2)

)
(13)

And the other formulas to calculate the valuses related to the Summer season, Autumn season and Winter season are simluar to the formulas

from (10) to (13), as they accorrding to the above replacement rules plus that H1 and H2 are replcaed by H3 and H4, H5 and H6, H7, and H8.

spring_work_eactive
l = pl × spring_work_tactive

l = pl × S_Wn
l × s′∕(τl × L1) (14)

spring_work_eidle
l = il × (spring_work_T × L1 − spring_work_tactive

l ) = il ×
(

5T
28

× L1 − S_Wn
l × s′∕(τl × L1)

)
(15)

spring_holiday_eactive
l = pl × spring_holiday_tactive

l = pl × S_Hn
l × s′∕(τl × L2) (16)

spring_holiday_eidle
l = il × (spring_holiday_T × L2 − spring_holiday_tactive

l ) = il ×
(

2T
28

× L2 − S_Hn
l × s′∕(τl × L2)

)
(17)

And the other formulas to calculate the valuses related to the Summer season, Autumn season and Winter season are simluar to the formulas

from (14) to (17), as they accorrding to the above replacement rules plus that L1 and L2 are replcaed by L3 and L4, L5 and L6, L7, and L8.

Therefore,

etotal = ph × S_Wn
h × s′∕(τh × H1) + ih × (5T

28
× H1 − S_Wn

h × s′∕(τh × H1) + ph × S_Hn
h × s′∕(τh × H2) + ih × (2T

28
× H2 − S_Hn

h × s′∕(τh × H2)

+ ph × M_Wn
h × s′∕(τh × H3) + ih × (5T

28
× H3 − M_Wn

h × s′∕(τh × H3) + ph × M_Hn
h × s′∕(τh × H4) + ih × (2T

28
× H4 − M_Hn

h × s′∕(τh × H4)

+ ph × A_Wn
h × s′∕(τh × H5) + ih × (5T

28
× H5 − A_Wn

h × s′∕(τh × H5) + ph × A_Hn
h × s′∕(τh × H6) + ih × (2T

28
× H6 − A_Hn

h × s′∕(τh × H6)

+ ph × W_Wn
h × s′∕(τh × H7) + ih × (5T

28
× H7 − W_Wn

h × s′∕(τh × H7) + ph × W_Hn
h × s′∕(τh × H8) + ih × (2T

28
× H8 − W_Hn

h × s′∕(τh × H8)

+ pl × S_Wn
l × s′∕(τl × L1) + il ×

(
5T
28

× L1 − S_Wn
l × s′∕(τl × L1)

)
+ pl × S_Hn

l × s′∕(τl × L2) + il ×
(

2T
28

× L2 − S_Hn
l × s′∕(τl × L2)

)

+ pl × M_Wn
l × s′∕(τl × L3) + il ×

(
5T
28

× L3 − M_Wn
l × s′∕(τl × L3)

)
+ pl × M_Hn

l × s′∕(τl × L4) + il ×
(

2T
28

× L4 − M_Hn
l × s′∕(τl × L4)

)

+ pl × A_Wn
l × s′∕(τl × L5) + il ×

(
5T
28

× L5 − A_Wn
l × s′∕(τl × L5)

)
+ pl × A_Hn

l × s′∕(τl × L6) + il ×
(

2T
28

× L6 − A_Hn
l × s′∕(τl × L6)

)
+ pl

× W_Wn
l × s′∕(τl × L7) + il ×

(
5T
28

× L7 − W_Wn
l × s′∕(τl × L7)

)
+ pl × W_Hn

l × s′∕(τl × L8) + il ×
(

2T
28

× L8 − W_Hn
l × s′∕(τl × L8)

)
(18)

Assume B=ph × s′/τh C=pl × × s′/τl

The Energy Consumption Model can be simplified as:

etotal = (SW
n
h∕H1 + SH

n
h∕H2 + MW

n
h∕H3 + MH

n
h∕H4 + AW

n
h∕H5 + AH

n
h∕H6 + WW

n
h∕H7 + WH

n
h∕H8) × B + ih × (5T

28
× H1 − S_Wn

h × s′∕(τh × H1)

+ ih × (2T
28

× H2 − S_Hn
h × s′∕(τh × H2) + ih × (5T

28
× H3 − M_Wn

h × s′∕(τh × H3) + ih × (2T
28

× H4 − M_Hn
h × s′∕(τh × H4) + ih

× (5T
28

× H5 − A_Wn
h × s′∕(τh × H5) + ih × (2T

28
× H6 − A_Hn

h × s′∕(τh × H6) + ih × (5T
28

× H7 − W_Wn
h × s′∕(τh × H7) + ih

× (2T
28

× H8 − W_Hn
h × s′∕(τh × H8) + (SW

n
l ∕L1 + SH

n
l ∕L2 + MW

n
l ∕L3 + MH

n
l ∕L4 + AW

n
l ∕L5 + AH

n
l ∕L6 + WW

n
l ∕L7 + WH

n
l ∕L8 ) × C + il

×
(

5T
28

× L1 − S_Wn
l × s′∕(τl × L1)

)
+ il ×

(
2T
28

× L2 − S_Hn
l × s′∕(τl × L2)

)
+ il ×

(
5T
28

× L3 − M_Wn
l × s′∕(τl × L3)

)
+ il

×
(

2T
28

× L4 − M_Hn
l × s′∕(τl × L4)

)
+ il ×

(
5T
28

× L5 − A_Wn
l × s′∕(τl × L5)

)
+ il ×

(
2T
28

× L6 − A_Hn
l × s′∕(τl × L6)

)
+ il

×
(

5T
28

× L7 − W_Wn
l × s′∕(τl × L7)

)
+ il ×

(
2T
28

× L8 − W_Hn
l × s′∕(τl × L8)

)
(19)
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Correspondingly, the energy consumption model of the Hadoop default data placement strategy is as follows, which is without classification:

e′
total = e′active

h + e′ idle
h

e′active
h = ph × (SW

n
h + SH

n
h + MW

n
h + MH

n
h + AW

n
h + AH

n
h + WW

n
h + WH

n
h + S_Wn

l + S_Hn
l + M_Wn

l + M_Hn
l + A_Wn

l + A_Hn
l + W_Wn

l + W_Hn
l ) × s′∕(τh × n)

= (SW
n
h + SH

n
h + MW

n
h + MH

n
h + AW

n
h + AH

n
h + WW

n
h + WH

n
h + SW

n
l + SH

n
l + MW

n
l + MH

n
l + AW

n
l + AH

n
l + WW

n
l + WH

n
l ) × B∕n

e′ idle
h = ih × (T × n − (SW

n
h + SH

n
h + MW

n
h + MH

n
h + AW

n
h + AH

n
h + WW

n
h + WH

n
h + S_Wn

l + S_Hn
l + M_Wn

l + M_Hn
l + A_Wn

l + A_Hn
l + W_Wn

l + W_Hn
l )

× s′∕(τh × n)

Therefore,

e′
total = (SW

n
h + SH

n
h + MW

n
h + MH

n
h + AW

n
h + AH

n
h + WW

n
h + WH

n
h + SW

n
l + SH

n
l + MW

n
l + MH

n
l + AW

n
l + AH

n
l + WW

n
l + WH

n
l ) × B∕n + ih × (T × n

− (SW
n
h + SH

n
h + MW

n
h + MH

n
h + AW

n
h + AH

n
h + WW

n
h + WH

n
h + S_Wn

l + S_Hn
l + M_Wn

l + M_Hn
l + A_Wn

l + A_Hn
l + W_Wn

l + W_Hn
l ) × s′∕(τh × n)

(20)

And the Energy Consumption model of SEA classification11 can be deduced by the following formula:

etotalsea
= ehot + ecold = eactive

hot + eidle
hot + eactive

cold + eidle
cold = ph × nh × s′∕(τh × ηh × n) + ih × (T × ηh × n − nh × s′∕(τh × ηh × n)) + pl × nc × s′∕(τl × ηc × n) + il

× (T × ηc × n − nc × s′∕(τl × ηc × n)) (21)

where 𝜂h is the ratio of hot (popular) data and 𝜂c is the ratio of cold (unpopular) data. nh is the total access time of hot data, and nc is the total access

time of cold data.

As the mathematical models of the K-ear, Hadoop-default and SEA are stated in formula (19), (20), (21), respectively. We can deduce that the

time complexity of the three algorithms depends on the time to calculate the access frequency of the data. That is to say, the time complexity of

the three algorithms is O(n). On the other hand, space complexity of the three algorithms depends on the space to store the access frequency of

the data. That is to say, the space complexity of the three algorithms is also O(n). As the analyzed above, the advantage of the three algorithms are

usually depends on the energy consumption savings.

Based on the energy consumption model, simulation experiments with the K-ear algorithm and the SEA and Hadoop default algorithms will be

conducted in the following section.

5 PERFORMANCE EVALUATION

To evaluate the energy efficiency of the proposed K-ear strategy, we generate the workload according to the real access trace from the wiki (wiki

workload) and assume a disk with two speed modes. The different transfer rates and energy consumption rates are extracted from article.11 All of

the simulation experiments are conducted in CloudSimDisk,37 which builds on the CloudSim38 simulator and adds storage simulation capabilities.

And the detailed experimental parameters about the software and hardware configuration are listed in Table 7.

The general parameters utilized in the experiments are listed in Table 8.

Equipment/software Type/version

CPU Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz 3.3 GHz

Memory Size 4.0GB

Hard Disk 1 TB(TOSHIBA DT01ACA100 ATA Device)

Network Card Realtek PCIe GBE Family Controller

Operating System Windows 10

Energy-aware Disk Simulator CloudSimDisk1.0

Cloud Environment Simulator CloudSim 4.0

Programming Platform Eclipse-Java-Luna-SR2

TA B L E 7 Software and hardware configuration
in the experiments
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TA B L E 8 General parameters value in the simulation experiments
Paramter Value Paramter Value

ph 30.26 J/s il 2.17 J/s

ih 5.26 J/s τl 9.3 Mb/s

τh 31 Mb/s n 1000

pl 21.33 J/s T 31,536,000 s

Disks with two speed modes, the workload and the disk zone, are modeled in the CloudSimDisk environment. The energy efficiency of the three

algorithms is evaluated by setting the following ratios: (1) The ratio of the high speed disk utilization to the cloud storage system utilization, (2) the

ratio of the data with seasonal characteristics to the data without seasonal characteristics, (3) the ratio of the data with tidal characteristics to the

data without tidal characteristics, and (4) the ratio of the hot data to the cold data.

5.1 The impact of the different ratios of high-speed disk utilization on cloud storage system utilization

The parameters corresponding to the values set in the experiment are listed in Table 9.

In Table 9, The ratios of the other seasons with the different characteristics are the same as the Spring season, with the s in the notation 𝜂s is,

respectively, replaced by m, a, and w.

In order to calculate the energy consumption of the SEA algorithm, the ratio of the hot data to cold data is set to 4:6 in this experiment. Obtained

experiment results are demonstrated in the following tables (Tables 10–12), when the ratios of the high disk utilization to the whole system utilization

are 1.6, 1.8, 2.0, respectively.

As shown in the Table 10, the ratio of the high disk utilization to the whole system utilization is 1.6, energy consumed by the K-ear is least, and

the most is the Hadoop-default. While the energy consumed by the SEA is fall in between. Compared to the Hadoop-default, the average energy

consumption saved by the K-ear is more than 40%, while compared to the SEA, the saved energy consumption is about 11%. Moreover, we have

found that the system utilization has little impact on the energy consumption for the three algorithms.

As shown in the Table 11, when the ratio of the high disk utilization to the whole system utilization is 1.8, the energy consumed by the K-ear is

least, and the most is the Hadoop-default. While the energy consumed by the SEA is fall in between. Compared to the Hadoop-default, the average

energy consumption saved by the K-ear is about 42%, while compared to the SEA, the saved energy consumption is also about 11%. Moreover, we

also have found that the system utilization has little impact on the energy consumption for the three algorithms in this experiment.

As shown in the Table 12, when the ratio of the high disk utilization to the whole system utilization is 2.0, the energy consumed by the K-ear is

least, and the most is the Hadoop-default. While the energy consumed by the SEA is fall in between. Compared to the Hadoop-default, the average

energy consumption saved by the K-ear is about 42%, while compared to the SEA, the saved energy consumption is also about 11%. Moreover, we

also have found that the system utilization has little impact on the energy consumption for the three algorithms in this experiment.

The above experimental results show that under the different ratios of high-speed disk utilization to system utilization, the K-ear strategy con-

sumes the least energy and the Hadoop default strategy consumes the most energy. The amount of energy consumed by SEA is between the amounts

TA B L E 9 Parameters and values set
in this experiment

Parameter Value Parameter Value

Ratio of the data with Spring

characteristics ηs

0.2 Ratio of data with Spring and workday

characteristics ηs−w

0.3

Ratio of data with Spring and weekend

characteristics ηs− h

0.3

Ratio of data with Spring characteristics but

without tidal characteristics ηs− o

0.4

Ratio of the data without

seasonal characteristics ηo

0.2 Ratio of data with workday characteristics but

without seasonal characteristics ηo−w

0.3

Ratio of data with weekend characteristics but

without seasonal characteristics ηo− h

0.3

Ratio of data without seasonal and tidal

characteristics ηo− o

0.4
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System

utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 95,998.62547 165,958.2 107658.606

0.11 96,026.6813 165,966.084 107,683.3049

0.12 96,054.73713 165,973.968 107,708.0039

0.13 96,082.79295 165,981.852 107,732.7029

0.14 96,110.84878 165,989.736 107,757.4019

0.15 96,138.90461 165,997.62 107,782.1009

0.16 96,166.96043 166,005.504 107,806.7999

0.17 96,195.01626 166,013.388 107,831.4989

0.18 96,223.07209 166,021.272 107,856.1979

0.19 96,251.12792 166,029.156 107,880.8969

0.2 96,279.18374 166,037.04 107,905.5959

0.21 96,307.23957 166,044.924 107,930.2949

0.22 96,335.2954 166,052.808 107,954.9939

0.23 96,363.35123 166,060.692 107,979.6929

0.24 96,391.40705 166,068.576 108,004.3919

0.25 96,419.46288 166,076.46 108,029.0909

0.26 96,447.51871 166,084.344 108,053.7899

0.27 96,475.57453 166,092.228 108,078.4889

0.28 96,503.63036 166,100.112 108,103.1879

0.29 96,531.68619 166,107.996 108,127.8869

0.3 96,559.74202 166,115.88 108,152.5859

0.31 96,587.79784 166,123.764 108,177.2849

0.32 96,615.85367 166,131.648 108,201.9838

0.33 96,643.9095 166,139.532 108,226.6828

0.34 96,671.96532 166,147.416 108,251.3818

0.35 96,700.02115 166,155.3 108,276.0808

0.36 96,728.07698 166,163.184 108,300.7798

0.37 96,756.13281 166,171.068 108,325.4788

0.38 96,784.18863 166,178.952 108,350.1778

0.39 96,812.24446 166,186.836 108,374.8768

TA B L E 10 Energy consumption of the three data
placement strategies when the ratio of the high disk
utilization to the whole system utilization is 1.6

consumed by the K-ear strategy and the Hadoop default algorithm. Moreover, the energy consumption of the cloud storage system only slightly

increased as the ratio increased.

5.2 The impact of the different ratios of data with seasonal characteristics to data without seasonal
characteristics

The ratio of the high-speed disk utilization to the system utilization is set to 2.0, and the ratio of hot data to cold data is set to 4:6 in all of the

experiments (experiment 1, experiment 2, and experiment 3) in this subsection. The other parameter values are listed in Tables 13 and 14.

In Table 13, the ratios of the other seasons with the different characteristics are the same as the Spring season, with the s in the notation 𝜂s is,

respectively, replaced by m, a, and w.
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TA B L E 11 Energy consumption of the three data
placement strategies when the ratio of the high disk
utilization to the whole system utilization is 1.8

System

utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 95,998.72826 165,958.2 107,647.5193

0.11 96,026.79436 165,966.084 107,671.1096

0.12 96,054.86047 165,973.968 107,694.7

0.13 96,082.92657 165,981.852 107,718.2903

0.14 96,110.99268 165,989.736 107,741.8806

0.15 96,139.05878 165,997.62 107,765.4709

0.16 96,167.12489 166,005.504 107,789.0613

0.17 96,195.19099 166,013.388 107,812.6516

0.18 96,223.2571 166,021.272 107,836.2419

0.19 96,251.32321 166,029.156 107,859.8323

0.2 96,279.38931 166,037.04 107,883.4226

0.21 96,307.45542 166,044.924 107,907.0129

0.22 96,335.52152 166,052.808 107,930.6033

0.23 96,363.58763 166,060.692 107,954.1936

0.24 96,391.65373 166,068.576 107,977.7839

0.25 96,419.71984 166,076.46 108,001.3742

0.26 96,447.78595 166,084.344 108,024.9646

0.27 96,475.85205 166,092.228 108,048.5549

0.28 96,503.91816 166,100.112 108,072.1452

0.29 96,531.98426 166,107.996 108,095.7356

0.3 96,560.05037 166,115.88 108,119.3259

0.31 96,588.11647 166,123.764 108,142.9162

0.32 96,616.18258 166,131.648 108,166.5065

0.33 96,644.24868 166,139.532 108,190.0969

0.34 96,672.31479 166,147.416 108,213.6872

0.35 96,700.3809 166,155.3 108,237.2775

0.36 96,728.447 166,163.184 108,260.8679

0.37 96,756.51311 166,171.068 108,284.4582

0.38 96,784.57921 166,178.952 108,308.0485

0.39 96,812.64532 166,186.836 108,331.6389

As the value set as in Tables 12 and 13, the obtained experimental results are demonstrated in Table 15.

As shown in the Table 16, when the experimental parameters are set as in Tables 12 and 13, the energy consumed by the K-ear is least, and the

most is the Hadoop-default. While the energy consumed by the SEA is also fall in between. Compared to the Hadoop-default, the average energy con-

sumption saved by the K-ear is about 36%, while compared to the SEA, the saved energy consumption is also about 1.3%, which is almost the same.

Moreover, we also have found that the system utilization has little impact on the energy consumption for the three algorithms in this experiment.

The obtained experimental results are demonstrated in Table 17.

As shown in the Table 18, when the experimental parameters are set as in Tables 13 and 16, the energy consumed by the K-ear is least, and the

most is the Hadoop-default. While the energy consumed by the SEA is also fall in between. Compared to the Hadoop-default, the average energy

consumption saved by the K-ear is about 40%, while compared to the SEA, the saved energy consumption is also about 7%. Moreover, we also have

found that the system utilization has little impact on the energy consumption for the three algorithms in this experiment.

Seasonal characteristics related parameters’ value set in experiment 3 are listed in Table 18



18 of 30 YOU ET AL.

System

utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 95,998.83104 165,958.2 107,636.4326

0.11 96,026.90742 165,966.084 107,658.9143

0.12 96,054.98381 165,973.968 107,681.396

0.13 96,083.06019 165,981.852 107,703.8776

0.14 96,111.13658 165,989.736 107,726.3593

0.15 96,139.21296 165,997.62 107,748.841

0.16 96,167.28934 166,005.504 107,771.3226

0.17 96,195.36573 166,013.388 107,793.8043

0.18 96,223.44211 166,021.272 107,816.286

0.19 96,251.5185 166,029.156 107,838.7676

0.2 96,279.59488 166,037.04 107,861.2493

0.21 96,307.67126 166,044.924 107,883.7309

0.22 96,335.74765 166,052.808 107,906.2126

0.23 96,363.82403 166,060.692 107,928.6943

0.24 96,391.90042 166,068.576 107,951.1759

0.25 96,419.9768 166,076.46 107,973.6576

0.26 96,448.05318 166,084.344 107,996.1393

0.27 96,476.12957 166,092.228 108,018.6209

0.28 96,504.20595 166,100.112 108,041.1026

0.29 96,532.28234 166,107.996 108,063.5843

0.3 96,560.35872 166,115.88 108,086.0659

0.31 96,588.4351 166,123.764 108,108.5476

0.32 96,616.51149 166,131.648 108,131.0292

0.33 96,644.58787 166,139.532 108,153.5109

0.34 96,672.66426 166,147.416 108,175.9926

0.35 96,700.74064 166,155.3 108,198.4742

0.36 96,728.81702 166,163.184 108,220.9559

0.37 96,756.89341 166,171.068 108,243.4376

0.38 96,784.96979 166,178.952 108,265.9192

0.39 96,813.04618 166,186.836 108,288.4009

TA B L E 12 Energy consumption of the three data

placement strategies when the ratio of the high disk
utilization to the whole system utilization is 2.0

Parameter Value

Ratio of the data with Spring and workday characteristics 𝜂s−w 0.3

Ratio of the data with Spring and weekend characteristics 𝜂s− h 0.3

Ratio of the data with Spring but without tidal characteristics 𝜂s− o 0.4

Ratio of the data with workday characteristics but without seasonal characteristics 𝜂o−w 0.3

Ratio of the data with weekend characteristics but without seasonal characteristics 𝜂o− h 0.3

Ratio of the data without seasonal and tidal characteristics 𝜂o− o 0.4

TA B L E 13 General parameters’
values for the different ratios of the data

with seasonal characteristics and the
data without seasonal characteristics
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TA B L E 14 Seasonal characteristics related parameters’ value set in

experiment 1
Parameter Value

Ratio of the data with Spring characteristics 𝜂s 0.15

Ratio of the data with Summer characteristics 𝜂m 0.15

Ratio of the data with Autumn characteristics 𝜂a 0.15

Ratio of the data with Winter characteristics 𝜂w 0.15

Ratio of the data without seasonal characteristics 𝜂o 0.4

TA B L E 15 Energy consumption of the three
data placement strategies in experiment 1 System utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 106,182.9264 165,958.2 107,636.4326

0.11 106,206.2268 165,966.084 107,658.9143

0.12 106,229.5272 165,973.968 107,681.396

0.13 106,252.8276 165,981.852 107,703.8776

0.14 106,276.128 165,989.736 107,726.3593

0.15 106,299.4285 165,997.62 107,748.841

0.16 106,322.7289 166,005.504 107,771.3226

0.17 106,346.0293 166,013.388 107,793.8043

0.18 106,369.3297 166,021.272 107,816.286

0.19 106,392.6301 166,029.156 107,838.7676

0.2 106,415.9305 166,037.04 107,861.2493

0.21 106,439.2309 166,044.924 107,883.7309

0.22 106,462.5313 166,052.808 107,906.2126

0.23 106,485.8317 166,060.692 107,928.6943

0.24 106,509.1321 166,068.576 107,951.1759

0.25 106,532.4325 166,076.46 107,973.6576

0.26 106,555.7329 166,084.344 107,996.1393

0.27 106,579.0333 166,092.228 108,018.6209

0.28 106,602.3337 166,100.112 108,041.1026

0.29 106,625.6341 166,107.996 108,063.5843

0.3 106,648.9345 166,115.88 108,086.0659

0.31 106,672.2349 166,123.764 108,108.5476

0.32 106,695.5353 166,131.648 108,131.0292

0.33 106,718.8357 166,139.532 108,153.5109

0.34 106,742.1361 166,147.416 108,175.9926

0.35 106,765.4365 166,155.3 108,198.4742

0.36 106,788.7369 166,163.184 108,220.9559

0.37 106,812.0373 166,171.068 108,243.4376

0.38 106,835.3377 166,178.952 108,265.9192

0.39 106,858.6381 166,186.836 108,288.4009

TA B L E 16 Seasonal characteristics-related parameters’ value set in
experiment 2

Parameter Value

Ratio of the data with Spring characteristics 𝜂s 0.18

Ratio of the data with Summer characteristics 𝜂m 0.18

Ratio of the data with Autumn characteristics 𝜂a 0.18

Ratio of the data with Winter characteristics 𝜂w 0.18

Ratio of the data without seasonal characteristics 𝜂o 0.28
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System utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 100,074.2443 165,958.2 107,636.4326

0.11 100,100.5878 165,966.084 107,658.9143

0.12 100,126.9314 165,973.968 107,681.396

0.13 100,153.2749 165,981.852 107,703.8776

0.14 100,179.6184 165,989.736 107,726.3593

0.15 100,205.9619 165,997.62 107,748.841

0.16 100,232.3054 166,005.504 107,771.3226

0.17 100,258.6489 166,013.388 107,793.8043

0.18 100,284.9924 166,021.272 107,816.286

0.19 100,311.3359 166,029.156 107,838.7676

0.2 100,337.6794 166,037.04 107,861.2493

0.21 100,364.0229 166,044.924 107,883.7309

0.22 100,390.3664 166,052.808 107,906.2126

0.23 100,416.7099 166,060.692 107,928.6943

0.24 100,443.0534 166,068.576 107,951.1759

0.25 100,469.3969 166,076.46 107,973.6576

0.26 100,495.7404 166,084.344 107,996.1393

0.27 100,522.0839 166,092.228 108,018.6209

0.28 100,548.4275 166,100.112 108,041.1026

0.29 100,574.771 166,107.996 108,063.5843

0.3 100,601.1145 166,115.88 108,086.0659

0.31 100,627.458 166,123.764 108,108.5476

0.32 100,653.8015 166,131.648 108,131.0292

0.33 100,680.145 166,139.532 108,153.5109

0.34 100,706.4885 166,147.416 108,175.9926

0.35 100,732.832 166,155.3 108,198.4742

0.36 100,759.1755 166,163.184 108,220.9559

0.37 100,785.519 166,171.068 108,243.4376

0.38 100,811.8625 166,178.952 108,265.9192

0.39 100,838.206 166,186.836 108,288.4009

TA B L E 17 Energy consumption of the three
data placement strategies in experiment 2

Parameter Value

Ratio of the data with Spring characteristics 𝜂s 0.12

Ratio of the data with Summer characteristics 𝜂m 0.12

Ratio of the data with Autumn characteristics 𝜂a 0.12

Ratio of the data with Winter characteristics 𝜂w 0.12

Ratio of the data without seasonal characteristics 𝜂o 0.52

TA B L E 18 Seasonal characteristics related parameters’ value set in
experiment 3



YOU ET AL. 21 of 30

The obtained experimental results are demonstrated in Table 19.

As shown in the Table 19, when the experimental parameters are set as in Tables 12 and 17, the energy consumed by the SEA is least, and the

most is the Hadoop-default. While the energy consumed by the proposed K-ear is fall in between. Compared to the Hadoop-default, the average

energy consumption saved by the K-ear is about 32%, while compared to the SEA, the energy consumed by K-ear is increased is about 4%, which

has little difference. Moreover, we also have found that the system utilization has little impact on the energy consumption for the three algorithms

in this experiment.

As shown in the abovementioned experimental results, the K-ear and SEA strategies consume less energy than the Hadoop-default strategy

under different ratios of data with seasonal characteristics to data without seasonal characteristics. When the data has a higher ratio of seasonal

characteristics of 6:4, K-ear slightly outperforms SEA in energy consumption. It can also be found that the lower the ratio of seasonal characteristics

(48:52), SEA is more energy-efficient than K-ear but with little difference.

TA B L E 19 Energy consumption of the three data
placement strategies in experiment 3

System

utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 112,284.6623 165,958.2 107,636.4326

0.11 112,304.225 165,966.084 107,658.9143

0.12 112,323.7877 165,973.968 107,681.396

0.13 112,343.3504 165,981.852 107,703.8776

0.14 112,362.913 165,989.736 107,726.3593

0.15 112,382.4757 165,997.62 107,748.841

0.16 112,402.0384 166,005.504 107,771.3226

0.17 112,421.6011 166,013.388 107,793.8043

0.18 112,441.1638 166,021.272 107,816.286

0.19 112,460.7264 166,029.156 107,838.7676

0.2 112,480.2891 166,037.04 107,861.2493

0.21 112,499.8518 166,044.924 107,883.7309

0.22 112,519.4145 166,052.808 107,906.2126

0.23 112,538.9772 166,060.692 107,928.6943

0.24 112,558.5398 166,068.576 107,951.1759

0.25 112,578.1025 166,076.46 107,973.6576

0.26 112,597.6652 166,084.344 107,996.1393

0.27 112,617.2279 166,092.228 108,018.6209

0.28 112,636.7906 166,100.112 108,041.1026

0.29 112,656.3532 166,107.996 108,063.5843

0.3 112,675.9159 166,115.88 108,086.0659

0.31 112,695.4786 166,123.764 108,108.5476

0.32 112,715.0413 166,131.648 108,131.0292

0.33 112,734.6039 166,139.532 108,153.5109

0.34 112,754.1666 166,147.416 108,175.9926

0.35 112,773.7293 166,155.3 108,198.4742

0.36 112,793.292 166,163.184 108,220.9559

0.37 112,812.8547 166,171.068 108,243.4376

0.38 112,832.4173 166,178.952 108,265.9192

0.39 112,851.98 166,186.836 108,288.4009
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5.3 The impact of different ratios of data with tidal characteristics to data without tidal characteristics

The energy consumption of the three strategies with different ratios of data with tidal characteristics is tested in this subsection. The common

parameters used in the different experiments are listed in Table 20.

And the tidal characteristics-related parameters used in the first experiment are listed in Table 21.

The ratios of the other seasons with the different characteristics are the same as the Spring season, with the s in the notation 𝜂s is, respectively,

replaced by m, a, and w.

As the parameters of the first experiment set as the above tables, the obtained experimental results are shown in Table 22.

As shown in the Table 22, when the ratio of the data with tidal characteristics to the data without tidal characteristics is 4:6, the energy con-

sumed by the K-ear is least, and the most is the Hadoop-default. While the energy consumed by the SEA is also fall in between. Compared to the

Hadoop-default, the average energy consumption saved by the K-ear is about 40%, while compared to the SEA, the saved energy consumption is

also about 7%. Moreover, we also have found that the system utilization has little impact on the energy consumption for the three algorithms.

Tidal characteristics related parameters used in the second experiment are listed in Table 23.

In Table 23, the ratios of the other seasons with the different characteristics are the same as the Spring season, with the s in the notation 𝜂s is,

respectively, replaced by m, a, and w.

As the parameters of the second experiment set as the above tables, the obtained experimental results are shown in Table 24.

As shown in the Table 24, when the ratio of the data with tidal characteristics to the data without tidal characteristics is 5:5, the energy con-

sumed by the K-ear is least, and the most is the Hadoop-default. While the energy consumed by the SEA is also fall in between. Compared to the

Hadoop-default, the average energy consumption saved by the K-ear is about 41%, while compared to the SEA, the saved energy consumption is

also about 9%. Moreover, we also have found that the system utilization has little impact on the energy consumption for the three algorithms in this

experiment.

Tidal characteristics related parameters used in the third experiment are listed in Table 25.

In Table 24, the ratios of the other seasons with the different characteristics are the same as the Spring season, with the s in the notation 𝜂s is,

respectively, replaced by m, a, and w.

As the parameters of the third experiment set as the above tables, the obtained experimental results are shown in Table 26.

As shown in the Table 26, when the ratio of the data with tidal characteristics to the data without tidal characteristics is 2:8, the energy con-

sumed by the K-ear is least, and the most is the Hadoop-default. While the energy consumed by the SEA is also fall in between. Compared to the

Hadoop-default, the average energy consumption saved by the K-ear is about 37%, while compared to the SEA, the saved energy consumption is

also about 3.5%. Moreover, we also have found that the system utilization has little impact on the energy consumption for the three algorithms.

Parameter Value

Ratio of the data with Spring characteristics 𝜂s 0.2

Ratio of the data with Summer characteristics 𝜂m 0.2

Ratio of the data with Autumn characteristics 𝜂a 0.2

Ratio of the data with Winter characteristics 𝜂w 0.2

Ratio of the data without seasonal characteristics 𝜂o 0.2

Ratio of the high speed disk utilization to the system utilization 2.0

Ratio of the hot data to the cold data 4 ∶ 6

TA B L E 20 Common parameters used in the following three
experiments

Parameter Value

Ratio of the data with Spring and workday characteristics 𝜂s−w 0.2

Ratio of the data with Spring and weekend characteristics 𝜂s− h 0.2

Ratio of the data with Spring but without tidal characteristics 𝜂s− o 0.6

Ratio of the data with workday but without seasonal characteristics 𝜂o−w 0.2

Ratio of the data with weekend but without seasonal characteristics 𝜂o− h 0.2

Ratio of the data without seasonal and tidal characteristics 𝜂o− o 0.6

TA B L E 21 Tidal characteristics-related

parameters used in the first experiment
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TA B L E 22 Energy consumption of the three data
placement strategies when the ratio of the data with
tidal characteristics to the data without tidal
characteristics is 4:6

System

utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 99,880.22558 165,958.2 107,636.4326

0.11 99,906.65646 165,966.084 107,658.9143

0.12 99,933.08734 165,973.968 107,681.396

0.13 99,959.51822 165,981.852 107,703.8776

0.14 99,985.94909 165,989.736 107,726.3593

0.15 10,0012.38 165,997.62 107,748.841

0.16 100,038.8108 166,005.504 107,771.3226

0.17 100,065.2417 166,013.388 107,793.8043

0.18 100,091.6726 166,021.272 107,816.286

0.19 100,118.1035 166,029.156 107,838.7676

0.2 100,144.5344 166,037.04 107,861.2493

0.21 100,170.9652 166,044.924 107,883.7309

0.22 100,197.3961 166,052.808 107,906.2126

0.23 100,223.827 166,060.692 107,928.6943

0.24 100,250.2579 166068.576 107,951.1759

0.25 100,276.6888 166,076.46 107,973.6576

0.26 100,303.1196 166,084.344 107,996.1393

0.27 100,329.5505 166,092.228 108,018.6209

0.28 100,355.9814 166,100.112 108,041.1026

0.29 100,382.4123 166,107.996 108,063.5843

0.3 100,408.8431 166,115.88 108,086.0659

0.31 100,435.274 166,123.764 108,108.5476

0.32 100,461.7049 166,131.648 108,131.0292

0.33 100,488.1358 166,139.532 108,153.5109

0.34 100,514.5667 166,147.416 108,175.9926

0.35 100,540.9975 166,155.3 108,198.4742

0.36 100,567.4284 166,163.184 108,220.9559

0.37 100,593.8593 166,171.068 108,243.4376

0.38 100,620.2902 166,178.952 108,265.9192

0.39 100,646.721 166,186.836 108,288.4009

TA B L E 23 Tidal characteristics-related
parameters used in the second experiment

Parameter Value

Ratio of the data with Spring and workday characteristics ηs−w 0.25

Ratio of the data with Spring and weekend characteristics ηs− h 0.25

Ratio of the data with Spring but without tidal characteristics ηs− o 0.5

Ratio of the data with workday but without seasonal characteristics ηo−w 0.25

Ratio of the data with weekend but without seasonal characteristics ηo− h 0.25

Ratio of the data without seasonal and tidal characteristics ηo−o 0.5
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System

utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 97,939.76338 165,958.2 107,636.4326

0.11 97,967.04052 165,966.084 107,658.9143

0.12 97,994.31766 165,973.968 107,681.396

0.13 98,021.5948 165,981.852 107,703.8776

0.14 98,048.87194 165,989.736 107,726.3593

0.15 98,076.14907 165,997.62 107,748.841

0.16 98,103.42621 166,005.504 107,771.3226

0.17 98,130.70335 166,013.388 107,793.8043

0.18 98,157.98049 166,021.272 107,816.286

0.19 98,185.25763 166,029.156 107,838.7676

0.2 98,212.53477 166,037.04 107,861.2493

0.21 98,239.8119 166,044.924 107,883.7309

0.22 98,267.08904 166,052.808 107,906.2126

0.23 98,294.36618 166,060.692 107,928.6943

0.24 98,321.64332 166,068.576 107,951.1759

0.25 98,348.92046 166,076.46 107,973.6576

0.26 98,376.19759 166,084.344 107,996.1393

0.27 98,403.47473 166,092.228 108,018.6209

0.28 98,430.75187 166,100.112 108,041.1026

0.29 98,458.02901 166,107.996 108,063.5843

0.3 98,485.30615 166,115.88 108,086.0659

0.31 98,512.58329 166,123.764 108,108.5476

0.32 98,539.86042 166,131.648 108,131.0292

0.33 98,567.13756 166,139.532 108,153.5109

0.34 98,594.4147 166,147.416 108,175.9926

0.35 98,621.69184 166,155.3 108,198.4742

0.36 98,648.96898 166,163.184 108,220.9559

0.37 98,676.24612 166,171.068 108,243.4376

0.38 98,703.52325 166,178.952 108,265.9192

0.39 98,730.80039 166,186.836 108,288.4009

TA B L E 24 Energy consumption of the three data
placement strategies when the ratio of the data with
tidal characteristics to the data without tidal
characteristics is 5:5

Parameter Value

Ratio of the data with Spring and workday characteristics ηs−w 0.1

Ratio of the data with Spring and weekend characteristics ηs− h 0.1

Ratio of the data with Spring but without tidal characteristics ηs− o 0.8

Ratio of the data with workday but without seasonal characteristics ηo−w 0.1

Ratio of the data with weekend but without seasonal characteristics ηo− h 0.1

Ratio of the data with Spring and workday characteristics ηs−w 0.8

TA B L E 25 Tidal characteristics-related
parameters used in the third experiment
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TA B L E 26 Energy consumption of the three data
placement strategies when the ratio of the data with
tidal characteristics to the data without tidal
characteristics is 2:8

System

utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 103,759.5632 165,958.2 107,636.4326

0.11 103,784.1429 165,966.084 107,658.9143

0.12 103,808.7226 165,973.968 107,681.396

0.13 103,833.3023 165,981.852 107,703.8776

0.14 103,857.882 165,989.736 107,726.3593

0.15 103,882.4617 165,997.62 107,748.841

0.16 103,907.0413 166,005.504 107,771.3226

0.17 103,931.621 166,013.388 107,793.8043

0.18 103,956.2007 166,021.272 107,816.286

0.19 103,980.7804 166,029.156 107,838.7676

0.2 104,005.3601 166,037.04 107,861.2493

0.21 104,029.9398 166,044.924 107,883.7309

0.22 104,054.5194 166,052.808 107,906.2126

0.23 104,079.0991 166,060.692 107,928.6943

0.24 104,103.6788 166,068.576 107,951.1759

0.25 104,128.2585 166,076.46 107,973.6576

0.26 104,152.8382 166,084.344 107,996.1393

0.27 104,177.4179 166,092.228 108,018.6209

0.28 104,201.9976 166,100.112 108,041.1026

0.29 104,226.5772 166,107.996 108,063.5843

0.3 104,251.1569 166,115.88 108,086.0659

0.31 104,275.7366 166,123.764 108,108.5476

0.32 104,300.3163 166,131.648 108,131.0292

0.33 104,324.896 166,139.532 108,153.5109

0.34 104,349.4757 166,147.416 108,175.9926

0.35 104,374.0553 166,155.3 108,198.4742

0.36 104,398.635 166,163.184 108,220.9559

0.37 104,423.2147 166,171.068 108,243.4376

0.38 104,447.7944 166,178.952 108,265.9192

0.39 104,472.3741 166,186.836 108,288.4009

The results of the above three experiments demonstrate that our proposed K-ear strategy is more energy-efficient than the SEA algorithm

when the ratio of data with tidal characteristics is high. Furthermore, K-ear has an energy efficiency advantage over the Hadoop default strategy

whenever the ratio is high or low.

5.4 The impact of the different ratios of hot data to cold data

We set the different ratios of hot data to cold data while leaving the other parameters fixed. The energy consumption of the three strategies is

evaluated according to the different ratios. The common parameters used in the following three experiments are listed in Table 27.

In Table 27, the ratios of the other seasons with the different characteristics are the same as the Spring season, with the s in the notation 𝜂s is,

respectively, replaced by m, a, and w.

Results obtained from simulation experiments when the ratio of hot data to cold data is set as 4:6 are shown in Table 28.
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TA B L E 27 Common parameters used in the following three experiments

Parameter Value Parameters Value

Ratio of the data with Spring

characteristics ηs

0.2 Ratio of data with Spring and workday characteristics ηs−w 0.3

Ratio of data with Spring and weekend characteristics ηs−h 0.3

Ratio of data with Spring characteristics but without tidal characteristics ηs− o 0.4

Ratio of the data without seasonal

characteristics ηo

0.2 Ratio of data without seasonal characteristics but with workday characteristics ηo−w 0.3

Ratio of data without seasonal characteristics but with weekend characteristics ηo−h 0.3

Ratio of data without seasonal characteristics and tidal characteristics ηo− o 0.4

Parameter Value

Ratio of the high speed disk utilization

to the system utilization

2.0

System

utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 95,998.83104 16,5958.2 107, 636.4326

0.11 96,026.90742 165,966.084 107658.9143

0.12 96,054.98381 165,973.968 107,681.396

0.13 96,083.06019 165,981.852 107,703.8776

0.14 96,111.13658 165,989.736 107726.3593

0.15 96,139.21296 165,997.62 107748.841

0.16 96,167.28934 166,005.504 107,771.3226

0.17 96,195.36573 166,013.388 107,793.8043

0.18 96,223.44211 166,021.272 107,816.286

0.19 96,251.5185 166,029.156 107,838.7676

0.2 96,279.59488 166,037.04 107,861.2493

0.21 96,307.67126 166,044.924 107,883.7309

0.22 96,335.74765 166,052.808 107,906.2126

0.23 96,363.82403 166,060.692 107928.6943

0.24 96,391.90042 166,068.576 107,951.1759

0.25 96,419.9768 166,076.46 107,973.6576

0.26 96,448.05318 166,084.344 107996.1393

0.27 96,476.12957 166,092.228 108,018.6209

0.28 96,504.20595 166,100.112 108,041.1026

0.29 96,532.28234 166,107.996 108,063.5843

0.3 96,560.35872 166,115.88 108,086.0659

0.31 96,588.4351 166,123.764 108,108.5476

0.32 96,616.51149 166,131.648 108,131.0292

0.33 96,644.58787 166,139.532 108,153.5109

0.34 96,672.66426 166,147.416 108,175.9926

0.35 96,700.74064 166,155.3 108,198.4742

0.36 96,728.81702 166,163.184 108,220.9559

0.37 96,756.89341 166,171.068 108,243.4376

0.38 96,784.96979 166,178.952 108,265.9192

0.39 96,813.04618 166,186.836 108,288.4009

TA B L E 28 Energy consumption of the three data
placement strategies when the ratio of the hot data to
the cold data is 4:6
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As shown in the Table 28, when the ratio of the hot data to the cold data is 4:6, the energy consumed by the K-ear is least, and the most is the

Hadoop-default. While the energy consumed by the SEA is also fall in between. Compared to the Hadoop-default, the average energy consumption

saved by the K-ear is about 42%, while compared to the SEA, the saved energy consumption is also about 11%. Moreover, we also have found that

the system utilization has little impact on the energy consumption for the three algorithms.

Results obtained from simulation experiments when the ratio of hot data to cold data is set as 3:7 are shown in Table 29.

As shown in the Table 29, when the ratio of the hot data to the cold data is 3:7, the energy consumed by the K-ear is least, and the most is the

Hadoop-default. While the energy consumed by the SEA is also fall in between. Compared to the Hadoop-default, the average energy consumption

saved by the K-ear is about 42%, while compared to the SEA, the saved energy consumption is also about 2%, which is almost the same. Moreover,

we also have found that the system utilization has little impact on the energy consumption for the three algorithms.

Results obtained from simulation experiments when the ratio of hot data to cold data is set as 2:8 are shown in Table 30.

As shown in the Table 30, when the ratio of the hot data to the cold data is 2:8, the energy consumed by the SEAis least, and the most is

the Hadoop-default. While the energy consumed by the proposed K-ear is fall in between. Compared to the Hadoop-default, the average energy

TA B L E 29 Energy consumption of the three data
placement strategies when the ratio of the hot data
to the cold data is 3:7

System

utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 95,998.83104 165,958.2 97,939.76338

0.11 96,026.90742 165,966.084 97,967.04052

0.12 96,054.98381 165,973.968 97,994.31766

0.13 96,083.06019 165,981.852 98,021.5948

0.14 96,111.13658 165,989.736 98,048.87194

0.15 96,139.21296 165,997.62 98,076.14907

0.16 96,167.28934 166,005.504 98,103.42621

0.17 96,195.36573 166,013.388 98,130.70335

0.18 96,223.44211 166,021.272 98,157.98049

0.19 96,251.5185 166,029.156 98,185.25763

0.2 96,279.59488 166,037.04 98212.53477

0.21 96,307.67126 166,044.924 98,239.8119

0.22 96,335.74765 166,052.808 98,267.08904

0.23 96,363.82403 166,060.692 98,294.36618

0.24 96,391.90042 166,068.576 98,321.64332

0.25 96,419.9768 166,076.46 98,348.92046

0.26 96,448.05318 166,084.344 98,376.1976

0.27 96,476.12957 166,092.228 98,403.47473

0.28 96,504.20595 166,100.112 98,430.75187

0.29 96,532.28234 166,107.996 98,458.02901

0.3 96,560.35872 166,115.88 98,485.30615

0.31 96,588.4351 166,123.764 98,512.58329

0.32 96,616.51149 166,131.648 98,539.86043

0.33 96,644.58787 166,139.532 98,567.13756

0.34 96,672.66426 166,147.416 98,594.4147

0.35 96,700.74064 166,155.3 98,621.69184

0.36 96,728.81702 166,163.184 98,648.96898

0.37 96,756.89341 166,171.068 98,676.24612

0.38 96,784.96979 166,178.952 98,703.52326

0.39 96,813.04618 166,186.836 98,730.80039
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System

utilization

Energy consumption

of K-ear (KJ)

Energy consumption

of Hadoop-default (KJ)12

Energy consumption

of SEA(KJ)11

0.1 95,998.83104 165,958.2 88,231.10544

0.11 96,026.90742 165,966.084 88,261.97918

0.12 96,054.98381 165,973.968 88,292.85293

0.13 96,083.06019 165,981.852 88,323.72667

0.14 96,111.13658 165,989.736 88,354.60042

0.15 96,139.21296 165,997.62 88,385.47416

0.16 96,167.28934 166,005.504 88,416.3479

0.17 96,195.36573 166,013.388 88,447.22165

0.18 96,223.44211 166,021.272 88,478.09539

0.19 96,251.5185 166,029.156 88,508.96914

0.2 96,279.59488 166,037.04 88,539.84288

0.21 96,307.67126 166,044.924 88,570.71662

0.22 96,335.74765 166,052.808 88,601.59037

0.23 96,363.82403 166,060.692 88,632.46411

0.24 96,391.90042 166,068.576 88,663.33786

0.25 96,419.9768 166,076.46 88,694.2116

0.26 96,448.05318 166084.344 88,725.08534

0.27 96,476.12957 166,092.228 88,755.95909

0.28 96,504.20595 166,100.112 88,786.83283

0.29 96,532.28234 166,107.996 88,817.70658

0.3 96,560.35872 166,115.88 88,848.58032

0.31 96,588.4351 166,123.764 88879.45406

0.32 96,616.51149 166,131.648 88,910.32781

0.33 96,644.58787 166,139.532 88,941.20155

0.34 96,672.66426 166147.416 88,972.0753

0.35 96,700.74064 166,155.3 89,002.94904

0.36 96,728.81702 166,163.184 89,033.82278

0.37 96756.89341 166,171.068 89,064.69653

0.38 96,784.96979 166,178.952 89,095.57027

0.39 96,813.04618 166,186.836 89,126.44402

TA B L E 30 Energy consumption of the three data
placement strategies when the ratio of the hot data
to the cold data is 2:8

consumption saved by the K-ear is about 42%, while compared to the SEA, the energy consumed by K-ear is increased is about 7%. Moreover, we

also have found that the system utilization has little impact on the energy consumption for the three algorithms in this experiment.

As shown in the above comparative experimental results, it can be seen that when the ratio of hot data to cold data is higher, the K-ear strategy

performs better than the SEA algorithm. When the ratio is 4:6, K-ear has an obvious advantage over SEA. When the ratio is 3:7, the performance of

K-ear and SEA are almost the same. When the ratio is 2:8, SEA slightly outperforms K-ear.

6 CONCLUSIONS AND FUTURE WORK

An energy-aware data clustering strategy, K-ear, is proposed in this paper, in which the seasonal and tidal characteristics of data access are extracted

thoroughly. The machine learning algorithm is applied to cluster data into different categories, and based on the categories, the data are stored in

different storage zones. During the different time zones, some storage zones run in high performance mode to satisfy the performance requirement
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and the remaining storage zones run in low energy consumption mode to save energy consumption. To analyze and evaluate the energy efficiency of

the proposed K-ear strategy, the famous classical SEA strategy and default data placement strategy in Hadoop are used for comparison, and mathe-

matical models are constructed for the three strategies. Moreover, substantial simulation experiments are conducted in the CloudSimDisk simulator

from different perspectives with different ratios. Compared with the mainstream data placement strategy (Hadoop default), K-ear and SEA are

more energy efficient. The proposed K-ear strategy outperforms the classical SEA algorithm in most cases. Only when the ratio of hot data is very

low is SEA more energy-efficient than K-ear. As a whole, compared with the other evaluated algorithms, the proposed K-ear data clustering stor-

ing strategies extracted the data access characteristics more thoroughly and classified the data into fine granularity categories, which will achieve

more energy consumption savings with different disk running modes. Furthermore, as algorithm of SEA outperform the algorithms of Greedy,39 SP

(Sort Partitions),40 HP (Hybrid Partition),40 and PVFS (Parallel Virtual File System).41,42 And the Hadoop default is more energy efficient than the

algorithm of Datacenter without energy management. One part of our future work, we will explore how to combine the advantages of the different

data placement strategies to achieve higher energy consumption reduction in cloud storage systems.
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